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This paper deals with some salient features of numerical detonation modeling, whose shock dynamics
exhibits mildly oscillations behavior. The study is based on the integration of the hyperbolic equations
with source terms, using a fifth-order Weighted Essentially Non-Oscillatory (WENO) scheme for the con-
vective flux and a third-order Runge–Kutta scheme for time advancement. Strang’s splitting technique is
used for the integration of the source terms. The computations are performed for both stable and mildly
unstable detonation waves. The study shows that the rate of convergence depends on the smoothness of
the solution and that in presence of strong detonation waves, the accuracy is much lower than commonly
believed. To improve the computation accuracy, a simple algorithm for shock detection is proposed along
with a chemical activator for weak activation energies. A mesh refinement is also employed to achieve
high resolution computations. It is found that a resolution of 66 points per half reaction zone is required
to correctly capture the main structure of the detonation front and the associated flow instabilities.
Examples are carried out to show that the proposed model yield accurate results. In particular, as the fric-
tion and the heat losses increase, the mean detonation velocity decreases and a series of period-doubling
self sustained oscillations appears. It is also found that non-adiabatic conditions play a crucial role on the
dynamics of the shock front, by enhancing the fluctuations. This aspect should be properly accounted for
when dealing with multi-dimensional detonations.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

A detonation wave is a supersonic combustion where a leading
shock is strongly coupled with a reaction zone, in which a chemical
decomposition occurs until the fresh mixture is completely
converted into products. The strong coupling between the shock
and the reaction zone makes the detonation wave self-similar.
The minimum self-sustained detonation velocity is the ideal
Chapman–Jouguet (CJ) detonation speed. The inner structure of
the detonation wave can be determined from the ZND (Zel’dovich,
von Neumann, Döring) model, which relies on the steady
one-dimensional Euler reactive formalism. For CJ detonations, the
end of the reaction zone is characterized by the sonic condition
in the reference frame attached to the shock [1,2].

In the past, several authors have studied the dynamics of ideal
one-dimensional detonations using a single-step Arrhenius model
[3–6] by numerical means. These studies indicated that the activa-
tion energy (Ea) is the main parameter which controls the onset of
the longitudinal instability for constant heat of reaction and speci-
fic heat ratio. For activation energies below a critical threshold Ea;c ,
the linear stability analysis shows the existence of a stable steady
detonation structure. Above Ea;c , oscillatory modes emerge [7,4]
making the detonation weakly then mildly unstable up to becom-
ing chaotic through the Feigenbaum double-period scenario.

Moreover, with scale reduction the propagation of detonations
is affected by the confinement effect, in contrast to the ideal case
[8,2, Chap. 7]. The detonation velocity is therefore lower than the
theoretical value due to the presence of solid walls. Following
the pioneering work of Zel’dovich [8] which considers the momen-
tum loss as the main mechanism responsible for the velocity defi-
cit, Zhang and Lee [9] and later Dionne et al. [10] showed that the
onset of the instability is not only triggered by Ea but that drag
forces are also important. Indeed, their numerical results indicated
that the wall friction tends to enhance the natural detonation
instabilities. They also pointed out that the stability limit is
reduced in frictional detonations.

Furthermore, defining the sonic locus is a key issue in detona-
tion. For steady state solutions, the generalized CJ criterion
[2,11,12] can be used to determine the subsonic reaction zone. In
unsteady detonations, Kasimov and Stewart [3] defined the
sonic locus as a separatrix of the family of forward characteristics.
Another important aspect in detonation problems is the
dynamics of the leading shock which can be seen as a signature
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of different non-stationary events appearing in the subsonic
reactive zone.

From a numerical view point, Romick et al. [13] have indicated
that a shock-capturing method retrieves the main features of the
detonation front dynamics with much finer resolution compared
to the shock-fitting technique [14]. In the case of weakly and
mildly unstable detonations, Bourlioux et al. [15] used a
shock-tracking technique. However, the issue of numerical conver-
gence remains when an ‘‘explosion within explosion occurs’’, and
when secondary fronts form within the reaction zone and overtake
the leading shock [16]. When using a shock-capturing technique, a
criterion for determining the shock location is required. For exam-
ple, Colella [17] for inert strong shocks and later Quirk [18] for det-
onation waves, used an empirical shock indicator based on the
local relative pressure jump. Although, their criterion is well
designed, it seems to be problem dependent. Recently, Yee et al.
[19] used a minmod-like shock indicator. Their paper presents a
state-of-art review of split and unsplit strategies. Spurious numer-
ical solutions are reported when under-resolved computations are
performed, as deflagration takes place within the numerical shock
layer. Several numerical schemes are compared, as well as the
extension to chemistry of the well-balanced strategy, which was
primarily designed to deal with specific issues associated with stiff
geometric source terms [20]. Lately, Menikoff and Shaw [21] pro-
posed a shock sensor based on the Hugoniot jump conditions for
condensed phase-detonations, which is independent of the numer-
ical dissipation. As the numerical scheme is entropy-positive, the
shock sensor is based on the relative position of the thermody-
namic states within the shock numerical layer as compared to
the Hugoniot curve. This criterion is however dependent on the
state upstream of the shock. Thus no burning occurs within the
numerical shock width [22]. Activation of chemistry thereby
occurs only after the shock passage, which is in accordance with
the ZND theory. This is also a common prescription to ensure the
correct detonation speed [23], even for underresolved resolution
of the reaction zone. Timmes et al. [24] show that the strength of
the cellular features, which depend on the detonation instabilities
are resolution-dependent. Papatheodore and Messer [23] also
point out that the numerical prohibition of burning within the
numerical shock can affect the capabilities of the numerical
method to capture the associated flow instabilities.

Moreover, the use of higher order schemes for the hyperbolic
part is much more suitable to properly capture the period of the
shock oscillation, while a second-order scheme can be sufficient
to retrieve the peak pressure. As shown in Hwang et al. [6],
higher-order ENO schemes (higher than three) are able to predict
the oscillation period more accurately for a given mesh spacing
compared to second-order schemes. The former schemes achieve
better convergence behavior. Yet, they indicate that higher-order
schemes can achieve the correct peak pressure with a relatively
coarse mesh. Indeed, in detonation computations, it seems impor-
tant to resolve as accurately as possible the reaction zone, which
contains a wide variety of smooth fine scales, which has been
one of the scopes of the design of the WENO schemes [33]. Indeed,
the fluctuations of the leading shock give rise to a train of charac-
teristic as well as entropy waves. In turn, they modify the state
sensitive reaction-rate and the reaction zone behaves like a
non-linear oscillator [26]. For example, during the deceleration of
the leading shock, a reaction front and a pressure buildup will arise
and will then overtake the leading shock. It is thus desirable not to
smooth out the peak overpressure, as would do any TVD scheme, in
order to capture the time dynamics of this leading shock. In
another context, the space–time diagram and the corresponding
shock to detonation transition have been shown by Xu et al. [27]
to be more accurately captured with a fifth-order WENO numerical
scheme compared to a second-order scheme. In this study, we use
the usual Strang splitting to couple the integration of the hyper-
bolic operator with that of the chemistry, as recalled by Yee et al.
[19]. Moreover, the latter authors, based on extensive numerical
studies between fifth and second-order schemes have concluded
that the less dissipative scheme, the better for very coarse grid,
in particular as for the shock location. This is of particular interest
for our study. Thus the use of high-order numerical schemes is rec-
ommended, when dealing with detonation instabilities.

We then focus on the inherent numerical resolution needed in
order to capture this increase of instabilities. More specifically,
we investigate the dynamics of the von-Neumann spike, which is
the post-shock state characterized by a local extremum in the flow.
It is therefore the most difficult feature to capture. The effect of the
mesh refinement and that of the shock indicator versus the activa-
tion energy are studied. The objective is to highlight the numerical
features needed to apply the non-linear analysis of Ng et al. [4] to
the post-shock state and to determine the mean sonic locus [25]
which accounts for the presence of the fluctuations in the reaction
zone, in the case where the detonation non-ideality comes from
the momentum and heat losses.

This paper is organized as follows. The governing equations as
well as the post-processing procedure leading to the definition of
the mean detonation structure and the sonic locus are presented
in Section 2. The numerical procedure is given in Section 3. Results
and discussions are presented in Section 4. The main conclusions
are drawn in Section 5.

2. Governing equations

The flow is governed by the one-dimensional unsteady reactive
Euler equations with friction and heat loss (Zel’dovich model). The
system is cast into the following conservative form
Us þ Fv ¼ S ð1Þ

where U ¼ ðq;qv;qE;qYÞ is the conservative vector,
F ¼ ðqv;qv2 þ p;qEv þ pv ;qYvÞ the convective flux, and
S ¼ ð0; f ; _qth þ v f ; _xÞ are the source terms. s and v are the coordi-
nates in the laboratory frame. q;v ;p and E denotes density, velocity,
total energy E ¼ eþ v2=2, respectively. e ¼ p=ðc� 1Þqþ Yq is the
internal energy, Y the reactant mass fraction, q the heat of reaction,
and c the polytropic coefficient. f ¼ �cf qjv jv=2d is the drag force, cf

the skin friction. The heat loss is _qth ¼ �hcðT � TwÞ=2d, where
hc ¼ qcpjv jcf =2 is obtained via the Reynolds analogy [11]. cp; T; Tw

and d are the heat capacity, the static temperature, the wall temper-
ature and the diameter of the tube, respectively. A simple Arrhenius
exothermic source term _x ¼ �AqY expð�Ea=RTÞ is used to model
the chemical reaction. Both reactants and products are considered
as perfect gases, having the same molecular mass and specific heats.
A and Ea denote the pre-exponential factor and the activation
energy, respectively. The chemical source term is set to zero when
the mass fraction goes below a threshold of 106. In Sow et al.
[30], we show that the work of friction which is expressed by the
product of friction force by the velocity implies that the only source
of entropy production is due to the irreversible chemical reaction. In
the present study, the thermal heat transfer should be added as
another source of entropy production. This difference with the more
classical formulation has been done in order to underline the
extra-deficit of velocity of the detonation front and its dynamics,
which are inferred by the presence of fluctuations. Indeed, the
right-hand side of the mean Gibbs relation would imply only quan-
tities with fluctuations, whereas in the other case, there will be
terms relative to mean quantities, hiding the physics. When a met-
ric nv, which will be defined in Section 3.2, is used the governing
equation can be cast in the following form
Us þ nvFn ¼ S ð2Þ
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We present in the following the steady Zel’dovich–von Neu-
mann–Döring (ZND) solution and the mean structure of the deto-
nation reaction zone.

2.1. Steady ZND solution

The set of equations for steady state is given by (see Zhang and
Lee [9] for more details)

d
dx
ðquÞ ¼ 0 ð3aÞ

d
dx
ðqu2 þ pÞ ¼ f ð3bÞ

d
dx
ðqEuþ puÞ ¼ uf þ _qth ð3cÞ

d
dx
ðquYÞ ¼ _x ð3dÞ

where x and u denote the distance from the leading shock front and
the fluid particles velocity in the reference of the shock, respec-
tively. The so-called Master Equation ðMEZNDÞ, which is the general-
ized CJ solution, is obtained after some algebraic manipulations of
Eqs. (3a)–(3d)

du
dx
¼ /ZND

qc2ð1�M2Þ
ð4Þ

where /ZND ¼ �ðc� 1Þq _x� uf þ ðc� 1Þ _qth. M ¼ u=c is the Mach
number and c the thermodynamic speed of sound. The zone
between the incident shock and the sonic location defines the
steady subsonic reaction zone. The sonic locus is obtained when
the numerator (thermicity) and the denominator (sonicity) of Eq.
(4) go simultaneously to zero.

Eqs. (3a)–(3d) are solved with a shooting method which is an
iterative technique based on the detonation velocity, D. The main
steps of the shooting algorithm can be summarized as follows:

1. Give an arbitrary detonation velocity to start the iterative
procedure.

2. Solve the set of Eqs. (3a)–(3d) using a second-order Euler
method.

3. Check if the thermicity and the sonicity go simultaneously to
zero. Three cases are possible:
(a) the thermicity goes to zero and the sonicity remains greater

than zero meaning that the given velocity corresponds to
that of an overdriven detonation. The initial detonation
velocity is then decreased,

(b) the thermicity is different from zero and the sonicity goes to
zero, the numerical solution is not physical (as derivatives
become infinite), the detonation velocity is increased,

(c) both thermicity and sonicity go to zero. The detonation
velocity is the desired one, which ends the iteration process.

The criterion for the thermicity to be zero is the following

Y þ uf þ ðc� 1Þ _qth

ðc� 1ÞqAq expð�Ea=RTÞ < �1 ð5Þ

In all the calculations, �1 < 10�8—10�6, with Dx � 1—0:01lm. The
steady state solution obtained here is to be compared to the numer-
ical solution obtained from the direct simulations of Eq. (2). The
criterion for the sonicity to be zero is

j1�M2j < �1 ð6Þ
2.2. Mean solution

The unsteady solution is obtained by resolving Eq. (2). Then
the numerical results are post-treated in the instantaneous
shock-attached frame to define the mean structure of the detona-
tion wave. In contrast with Gamezo et al. [28] and Radulescu et al.
[29], the Favre-averaged procedure, which is detailed in [30] is
conditioned by the position of the shock. Based on this analysis,
a new Favre-averaged Master Equation (ME) defining the mean
sonic locus has been obtained

d~u
dx
¼

~/

�q~c2
Tð1� eM2

TÞ
ð7Þ

where ~c2
T ¼ ~c2 þ c2

t is the effective speed of sound, ~c2 ¼ c�p=�q is the
thermodynamic speed of sound and ~c2

t ¼ 6k is the speed related

to the mechanical fluctuations energy k ¼gu002=2. The associated

effective Mach number is eMT ¼ ~u=~cT . e/ is the mean thermicity,
which is the sum of the following contributions

~/chem ¼ �ðc� 1Þq _x
~/visc ¼ ðc� 1Þuf � c~u�f
~/th ¼ ðc� 1Þ _qth

~/acc ¼ c~uq _D� ðc� 1Þq _Du;

e/fluc ¼ �3
d
dx

p0u00 � d
dx

qu003

þ ð3� cÞ �u00
d�p
dx
þ p0

du00

dx
þ u00f � q _Du00

 !
� c

d
dx
ð�pu00Þ

where e/chem represents the exothermic contribution due to the

chemical heat-release while e/visc reflects the effect of the drag

forces and e/th the heat losses. e/acc and e/fluc are two news contribu-
tions due to the effects of the acceleration of the shock front and the
mechanical fluctuations.

The above cited contributions will be evaluated by
post-processing the Direct Numerical Simulation (DNS) of the
numerical resolution of Eq. (2).

3. Numerical procedure

The details of the high order shock-capturing scheme as well as
the numerical setup are given here. The outline of the
WENO5-HLLC spatial discretization and the temporal third-order
Runge–Kutta scheme are presented in [31]. We will present here
the Strang’s splitting resolution method and the computational
grid. The numerical mean procedure will also be presented.

Eq. (2) is solved using the fractional step approach [32,12].
Without loss of generality and for simplicity, the fractional step
method is briefly presented. At first, the homogenous part of Eq.
(2) is solved

Us þ nvFn ¼ 0 ð8Þ

with the initial condition Un over a time step Dtn, to obtain the tem-
porary solution U�. The WENO approximation is here applied to Fn.
As n is smooth enough, discrete conservation still holds [33]. The
discrete numerical operator, which integrates the hyperbolic part
of the system of equations is denoted LH. Thus U� ¼ LHUn. Then,
in the second step, the source term operator is integrated

Us ¼ S ð9Þ

with the initial condition U�. The discrete numerical operator is
denoted LS . In order to achieve an order of two, the Strang splitting
is used instead of the previous Lie splitting. This achieves the cou-
pling between the hydrodynamic solver and the source terms (see
also [31,34]).

Unþ1 ¼ LS Dtn=2ð ÞLH Dtnð ÞLS Dtn=2ð ÞUn ð10Þ
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3.1. Integration of source terms

For the integration of the source terms a second-order method
is used

Uð1Þ ¼ Un þ Dtn

2
LsðUn;Dt=2Þ ð11aÞ

U� ¼ Un þ DtnLsðUð1Þ;DtÞ ð11bÞ

where Ls is the discrete source term operator. When Ls ¼ S, then
the integration is that of the Euler forward method. An exponential
integration can also be used as in [31]. For example, if the following
time scale s ¼ �U=S is defined from the source term of the reactant
and is hold constant during the time step, we get the exponential
integration [35] and Ls ¼ Uðexpð�Dt=sÞ � 1Þ. The discrete source
term for the products follows from the saturation constraint. The
latter integration is more stable in the course of the chemical inte-
gration. In overall, we can write U� ¼ LSðDtnÞUn. In the following,
the time step is imposed by the hyperbolic operator. As the objec-
tive is to determine the shock dynamics, the reaction zone can no
longer be under-resolved.

The activation of the chemical reaction, occurring behind the
leading front, is an important topic in detonation. For all of the con-
sidered cases in this paper, the chemical reaction is switched on
only for

p=p0 P 10 and Y P 10�6 ð12Þ

Condition (12) (called after chemical activator) is imposed to
ensure that only the shocked fluid particles will react [14]. As an
indication,

MCJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 � 1Þ: q

2c2
0

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 � 1Þ: q

2c2
0

þ 1

s
and

pCJ=p0 ¼
1þ cM2

CJ

1þ c
’ 12:5

with MCJ ’ 5—7 and c ¼ 1:2. Of course, for condition (12) to be valid
the search of the local pressure starts from the undisturbed flow to
the shocked one.

3.2. Mesh generation

A fixed (time-independent) grid stretching technique based on
Roberts’ distribution [36] is used to improve the resolution near
the shock front and in the reaction zone. This distribution is given by

vðnÞ=vc ¼ 1þ sinh½1ðn=Li �KÞ�= sinhð1KÞ ð13Þ

where vc is the point around which the mesh is clustered. Li is the
length of the stretched area and 1 a given positive parameter. K is
defined as

K ¼ 1
21

ln
1þ ðe1 � 1Þðvc=LiÞ

1þ ðe�1 � 1Þðvc=LiÞ

� �
The set of equations is solved in the generalized coordinate sys-

tem. Therefore, the transformation from the uniformly spaced grid
in the computational domain ð0; nÞ to the non-uniformly spaced
grid points in the physical domain ð0;vÞ is made through the map-
ping function
Fig. 1. Distribution of point
n ¼ nðvÞ and ð�Þv ¼ nvð�Þn ð14Þ

where nv is the metrics obtained from Eq. (13) as

nv ¼
Lm sinhð1KÞ

1vc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½v=vc � 1�2sinh2ð1KÞ

q
The controlling parameter 1 is given by the continuity condition
between physical grid spacings. Consider for instance, a physical
space which is divided into two sub-domains (see Fig. 1), with at
left a non-uniform space of length Lm with Nm grid points and a uni-
form space with a length of Lr and Nr grid points at right. If the grid
is tightened at Lm (i.e. at vNm

), the mapping function gives the small-
est grid spacing in the non-uniform space Dvmin ¼ vNm

� vNm�1
.

Taking Dvmin equal to the desired uniformly grid space
Dvr ¼ Lr=Nr ¼ Dvmin, will leads to the following condition on 1

Dvmin ¼ Lm
sinhð1=NmÞ

sinhð1Þ ð15Þ

1 is then obtained by solving Eq. (15) using the Newton–Raphson
method.

In order to measure the von-Neumann spike pressure, it is
worthwhile to know the shock position. Therefore a shock detector
that can adequately characterize the shock movement is needed. In
what follows, two types of shock indicator will be developed. In the
following section, the fundamental steps of the construction of
these shock indicators are recalled.

3.3. Shock indicators

Fluid particles that passed across the leading shock will undergo
a significant pressure increase. This relative pressure jump is used
by several authors [17,37] to estimate the position of the leading
shock. Since a shock capturing scheme is used in this study, the
location of high pressure gradient is first identified. After, a win-
dow of ten points is used to find the maximum pressure. In numer-
ical formulation, the first step is to do a local search starting from
the quiescent gases in order to locate the perturbed state. Then, the
following condition is imposed to correct the shock position given
by the first step

jpn
i�1 � pn

i j
pn

i�1

> 10�2 ð16Þ

The new shock position is again improved by doing a maximum
pressure research in a windows of ten points.

Another way to design a shock indicator is to use the Hugoniot
curve as done recently by Menikoff and Shaw [21]. This method is
based on the time-dependent Hugoniot curve defined as follows
(see Fig. 2)

HðVðtÞ; eðtÞÞ ¼ eðtÞ � e0 �
pðVðtÞ; eðtÞÞ þ p0

2
ðVðtÞ � V0Þ ð17Þ

where H; e and V ¼ 1=q are the time dependent Hugoniot curve,
internal energy and volumetric fraction, respectively. The subscript
0 denotes the initial state. The shock state is determined by looking
for a zero crossing in the case of compression waves following the
leading shock. For downstream expansion waves, the shock position
is indicated by a local minimum.
s of the physical space.



Fig. 2. Hugoniot curve (H), isentrope shocked state (S), shock profile, and Rayleigh
line in (p;V)-diagram [21].
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The algorithm for the shock detection is summarized below.
First, Eq. (17) is discretized as

Hn
i ¼ en

i � e0 �
pn

i þ p0

2
Vn

i � V0
� �

ð18Þ

The position of the shock front is determined when the follow-
ing conditions is satisfied

Hn
i Hn

i�1 6 0 and Hn
i � Hn

i�1

� �
Hn

iþ1 � Hn
i

� �
6 0 ð19Þ

or

Hn
iþ1 � 2Hn

i þ Hn
i�1 P 0 ð20Þ
Table 1
Cases of simulation.

Cases f _qth Notation

Ideal detonation Off Off (A)
Frictional detonation On Off (B)
Detonation with friction and heat losses On On (C)

Fig. 3. Computational space (n=L) as a function of the physical space (x=L) and
spatial mesh resolution distribution (Dv=Dvmax). L is the total length of the
computational domain and Dv is the highest grid spacing.
3.4. Running average filter

The raw time-dependent data obtained using one of the above
shock detection algorithm are corrupted by noise. The running
average filter is then used to reduce the noise. The idea of the run-
ning average filter is simple. Each point in the output signal is gen-
erated by averaging a number of points from the input signal. This
is translated mathematically as

psðiÞ ¼
1
N

XN�1

k¼0

psrðiþ kÞ

where N is the number of points in the average. psr and ps are the
input and the output shock pressures, respectively.

3.5. Discrete mean procedure

Consider the temporal mean �u of a given variable u

�u ¼ lim
T !1

1
T

Z t

t0
udt ð21Þ

where T ¼ t � t0 is the sampling period and t0 the starting time for
integration. The first order discretization of Eq. (21) gives

�u ¼ lim
n!1

�un with �un ¼ 1
tn � t0

Xn

m¼ni

umðtmþ1 � tmÞ ð22Þ

Differentiating �unþ1 and �un leads to

�unþ1ðtnþ1 � t0Þ � �unðtn � t0Þ ¼ unþ1ðtnþ1 � t0Þ

which can be written into an incremental form

�unþ1 ¼ �un � Dtnþ1

tnþ1 � t0 ð �u
n �unþ1Þ ð23Þ
The initial t0 is chosen at the end of the initial transients, when
the mean detonation velocity has been stabilized. Moreover, this
shortens the sampling period and fastens the convergence of the
means. Note that the time step Dtn varies with time due to the
dynamics of the leading shock.

4. Results and discussions

In this section, the numerical setup and the validation tests are
first given. Secondly the influence of the mesh refinement is stud-
ied. Thirdly, the effect of grid resolution in the case of stable and
unstable ideal detonations are evaluated. The last point of this sec-
tion focus on the influence of the diameter reduction.
4.1. Problem setup

To quantify the relative effects of friction and heat losses on det-
onations, three tests cases are considered as reported in Table 1.
For a validation purpose, an ideal detonation case is first consid-
ered. This case is denoted by (A). In the second case denoted (B),
only friction is activated (adiabatic case) and in the third case
denoted (C), both friction and heat losses are activated. In
each case, three tests can be performed using three different
values of the activation energy. In the numerical tests,
c ¼ 1:2; q=RT0 ¼ 50; x1=2 ¼ 0:265 mm (x1=2 is the half reaction zone

for Ea=RT0 ¼ 27), A ¼ 3:23� 10�7 1=s; p0 ¼ 0:1 MPa and T0 ¼ 300
K. In this case, the critical activation energy Ea;c � 25:26RT0. Zhang
and Lee [9] and later Dionne et al. [10] showed that the onset of the
instability is not only triggered by Ea but that drag forces are also
important. Indeed, their numerical results indicated that the wall
friction tends to enhance the natural detonation instabilities. They
also pointed out that the stability limit is reduced to Ea ¼ 22RT0 in
frictional detonations.
max
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In order to study the long-time behavior of the shock front, a
negative inflow velocity is imposed at the right of the domain for
the purpose of reducing memory and CPU consumption. The
dimensionless length of the computational domain is
L� ¼ L=x1=2 ¼ 189; L = 50 mm with at least a total of 3500 grid
points (see Fig. 3). A fine and uniformly spaced mesh of at least
66 pts/x1=2 is used to capture the shock front and the reaction zone.
The mesh is then stretched in the upstream region (unburnt gas)
Fig. 4. Comparison of the peak pressure histories of current solution (line) and Ng
et al. [4] (circles) numerical data. Ideal case at Ea=RT0 ¼ 27. ts ¼ t

ffiffiffiffiffiffiffiffi
RT0
p

=x1=2.

Fig. 5. Shock pressure ps history (left) and corresponding limit cycle (right) showing dif
and Ea ¼ 27:82RT0 (8 modes). ts ¼ t

ffiffiffiffiffiffiffiffi
RT0
p

=x1=2.
and in the downstream (Zel’dovich–Taylor expansion waves) to
allow the flow relaxing towards the far-field boundary conditions.
Mean and fluctuating quantities are sampled and extracted over
more than 30 cycles of shock movement which necessitate 96 h
CPU on a MAC cluster.

4.2. Validation tests

These validation tests are taken from Ng et al. [4] within the
frame of ideal unstable detonations. The first test deals with
Ea ¼ 27RT0. Results obtained are depicted in Fig. 4. Good agree-
ment between numerical results is shown. Validation tests are also
conducted by increasing Ea. As mentioned by Ng et al. [4] among
other authors two, four, and eight modes are obtained (in the case
of ideal detonation) for Ea ¼ 27:40RT0; Ea ¼ 27:80RT0 and
Ea ¼ 27:82RT0, respectively. These successive bifurcations from
two-period to four-period and further from four-period to
eight-period are correctly reproduced as shown in Fig. 5. In order
to extract the physical signal, a running average procedure with
a length of average of 601 points is applied to the raw results
which have to be corrected from the numerical noise (see
Section 3.4).

4.3. Influence of the chemical activator

By simulating stable ideal detonation waves, the influence of
the chemical activator is evaluated. In the first simulation
Ea ¼ 10RT0, two tests are performed. One is computed without
chemical activator and the other with the chemical activator as
ferent modes of oscillations for Ea ¼ 27:40RT0 (2 modes), Ea ¼ 27:80RT0 (4 modes),



(a)

(b)

Fig. 6. Pressure profiles at different times for Ea ¼ 10RT0 in the case of ideal
detonation. (a) Results computed without condition (12), the detonation fails and
(b) result obtained using condition (12), the detonation is sustained. Dvr ¼ 16 lm.

Fig. 7. Pressure profiles at different times for Ea ¼ 22RT0 in the case of ideal
detonation. Lines represent computed results without condition (12) and symbols
results obtained with condition (12).

Fig. 8. Pressure profiles for test case (A) and Ea=RT0 ¼ 22 at Dvr ¼ 4 lm. Dashed
line represents the solution obtained with uniform grid mesh and circles solution
given by using a mapping function. Horizontal dotted line represents the von-
Neumann state.

Table 2
Numerical resolution and corresponding grid points in the half reaction zone.

Dvmin (lm) 16 8 4 2 1

N1=2 for Ea ¼ 22RT0 17 34 68 137 274
N1=2 for Ea ¼ 27RT0 16 33 66 132 265
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depicted in Fig. 6. Results indicated that without chemical activator
the detonation fails after initiation. When the chemical activator is
switched on, the detonation propagation becomes sustained. In the
second simulation Ea ¼ 22RT0, two tests are again performed one
with chemical activator and the other without. The chemical acti-
vator have no influence on the results as seen in Fig. 7. From these
observations it can be inferred that chemical activation is needed
for large heat release (q ¼ 50RT0) and small activation energies
(Ea 6 10RT0). This explains why the shock indicator is a numerical
issue in solid-phase detonations where the rate law (Vieille Law)
depends mainly on the pressure and not on the temperature (the
activation energy tends to zero).

4.4. Influence of the mapping function

In order to evaluate the validity of results given by the mapping
function a test case is conducted by simulating an ideal stable det-
onation (A) for Ea ¼ 22RT0. A comparison between simulation
obtained with an uniformly spaced grid and results obtained with
mesh refinement is done. As it can be seen from Fig. 8 results com-
puted with mesh refinement are in perfect accordance with those
obtained with uniformly spaced grid. Moreover, the simulation
running with mesh refinement is less time consuming. Indeed,
simulation computed with mesh refinement is about 3.63 times
faster than the simulation made with a uniformly grid spacing.

4.5. Influence of the mesh resolution

In this section, the needed resolution to correctly capture
the dynamics of the wave front is studied. The different numerical
resolutions used and their corresponding points, N1=2, on the
steady half reaction zone are given in Table 2. The pressure
profiles for Dvr ¼ 16 lm;Dvr ¼ 8 lm;Dvr ¼ 4 lm;Dvr ¼ 2 lm
and Dvr ¼ 1 lm is shown in Fig. 9 for case (A) at Ea ¼ 22RT0. Good
agreement is found in term of global features. An enlargement



Fig. 9. Pressure profiles for test case (A) and Ea=RT0 ¼ 22 at: Dvr ¼ 16 lm (star), Dvr ¼ 8 lm (triangle up), Dvr ¼ 4 lm (square), Dvr ¼ 2 lm (circle) and Dvr ¼ 1 lm (dotted
line). At right, enlargement of the pressure profiles.

Table 3
Convergence rates (Ea=RT0 ¼ 22). Subscripts VN and HRL denote von-Neumann state
and the state where half of the reactant is consumed, respectively. E and r denote the
relative error and the convergence rate, respectively.

Dvmin (lm) 16 8 4 2 1

EVN ð�10�2Þ 1.620 0.590 0.290 0.150 0.070

EHLR ð�10�2Þ 0.453 1.060 0.549 0.286 0.132

rVN – 1.450 1.024 0.951 1.099
rHRL – – 0.949 0.941 1.115

Table 4
Relative error. pmax is the maximum pressure recorded. E is the relative error and r the
convergence rate. Ea=RT0 ¼ 27:82.

Dvmin (lm) 16 8 4 2

pmax=p0 60.6782 65.8143 67.2961 68.2065

E ð�10�2Þ 11.037 3.507 1.335 –

r – 1.654 1.393 –
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view shows relative differences at the von-Neumann peak. We
measured the relative errors during time evolution to estimate
the order of convergence at the von-Neumann peak. The order of
convergence, r, is given by

r ¼ log½ED0=ED�
log½D0=D� ð24Þ

where ED and ED0 are the errors using the mesh of numerical resolu-
tion D and its double D0, respectively. Results obtained are summa-
rized in Table 3. We find a convergence rate of approximately 1 at
(a)

Fig. 10. Eight-period oscillations corresponding to Ea ¼ 27:82RT0 for different numerica
(symbol) and Dvr ¼ 2 lm (line).
the von-Neumann state as expected. A convergence rate of approx-
imately one is also found at half of the reaction zone. Note that the
exact solutions are given by the steady ZND solution.

The influence of the numerical resolution on the results is also
estimated using time-series data obtained from computations run-
ning with Dvr ¼ 16 lm;Dvr ¼ 8 lm;Dvr ¼ 4 lm and Dvr ¼ 2 lm
for Ea=RT0 ¼ 27:82 in the case of ideal detonation (A). Results are
depicted in Fig. 10. Data generated using the two lowest numerical
resolutions show that the maximum peak of the shock pressure is
under-estimated. For the two highest numerical resolutions, a con-
verged solution is obtained as shown in Table 4. This means that an
effective numerical resolution of 4 lm is enough to ensure that the
detailed features of the pulsating wave are properly resolved. We
can note that the rate of convergence is around 1.5. Note that a res-
(b)

l grid resolutions. (a) Dvr ¼ 16 lm (symbol) and Dvr ¼ 8 lm (line). (b) Dvr ¼ 4 lm



Table 5
Critical steady ZND detonation velocity, Dcr , for different skin friction at Ea ¼ 22RT0.

Law Schlichting Blasius Colebrook Prandtl Constant

Dcr=DCJ 0.7653 0.7631 0.7711 0.7663 0.7631

Table 6
Number of modes for Ea=RT0 ¼ 22; – and 0 means failure of detonation and stable
detonation, respectively.

Diameter (lm) 150 155 180 200 220 280 300 900

Period modes in case (B) 2 1 1 0 0 0 0 0
Period modes in case (C) – – – 2 1 0 0 0
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olution of 4 lm corresponds to 66 points per half ZND reaction
zone length, x1=2. The half-reaction zone length of the steady ZND
detonation is usually defined as the distance at which half of reac-
tants’ fractions is consumed in ideal detonations. In this paper,
unless specification an effective resolution of 66 points per half
reaction zone is at least used in the numerical simulations. Fur-
thermore, the analysis are carried out for stable or mildly unstable
detonation, i.e. detonation having no more than sixteen-period
oscillation.

4.6. Influence of the diameter reduction

Here, the importance of friction and heat losses on the detona-
tion velocity deficit is investigated. Before all, determining the skin
friction cf (that appears in the volumetric drag forces f) behind the
leading wave is a severe task. In the literature, there exists several
cf laws relating it to, the nature of the flow, the geometry, the
roughness and the Reynolds number. Some authors [10,38] for a
sake of simplification assumed the skin friction to be constant.
Others authors like Zel’dovich and Kompaneets [8], Zhang and
Lee [9] used the Blasius law to model the skin friction. Following
the above authors, a study is conducted using different skin friction
laws for a purpose of comparison. A Schlichting, Blasius, Colebrook,
Prandtl [39] and constant cf laws defined respectively by

cf ¼ ð2log10ðRed � 0:65ÞÞ�2:3 ð25Þ
cf ¼ 0:3164=Re�2:3

d ð26Þ
cf ¼ ð1:8log10ðRed=6:9ÞÞ�2 ð27Þ
cf ¼ 0:37ðlog10ðRedÞÞ�2:584 ð28Þ
cf ¼ constant ð29Þ

are tested, see Table 5, where Red ¼ qvd=l is the Reynolds number,
v is the velocity in the laboratory frame and l the viscosity coeffi-
cient determined according to the Sutherland’s law. Computations
are performed using the steady ZND equation with friction alone
(a)

Fig. 11. Comparison between mean detonation velocity (symbols) and ZND solution (line
and triangle up correspond to case (C). (a) Ea=RT0 ¼ 22. (b) Ea=RT0 ¼ 27. Results are sca
and Ea ¼ 22RT0. Results indicate that the critical velocity Dcr,
defined here as the velocity below which the steady ZND equations
does not have a solution, has approximately the same value that is
Dcr=DCJ � 0:76 despite the fact that the corresponding critical diam-
eters differ from one law to another. In the remainder of the paper,
the Blasius law is used in the numerical computations.

We study now the detonation velocity deficit from the numer-
ical results. Fig. 11 shows the detonation velocity as a function of
the diameter. This figure illustrates the velocity deficit of the lead-
ing wave with the diameter reduction, i.e. with the increase of wall
dissipative effects. In general, when heat losses are present, i.e.
case (C), the deficit of velocity is naturally high compared to the
adiabatic case, (B). For Ea=RT0 ¼ 22, fluctuations begin to appear
at d ¼ 0:15 mm in the adiabatic case and at a higher diameter,
d ¼ 0:2 mm, when heat losses are taken into account. Table 6 sum-
marizes the period oscillation obtain in both cases (B) and (C) for
Ea=RT0 ¼ 22. As it can be seen from Fig. 11 left, the points where
oscillations are present are marked by a deviation of the mean
solution from the steady laminar solution. Moreover, when the
activation energy increases from 22RT0 to 27RT0, the detonation
is always unstable even in the case of ideal detonations [2]. In this
case (see Fig. 11 right), the mean solution always deviates from the
prediction of the laminar steady detonation. It can be also noted
that, fluctuations are an additional source of energy loss.

Now, we evaluate the influence of heat losses on the sonic locus.
The former is determined by two means: the Master Equation of
the steady ZND solution, Eq. (4), and the Master Equation of the
Favre averaged equations, Eq. (7). First, an adiabatic test case is
considered, i.e. _qth ¼ 0, for a validation step. It has a diameter
d ¼ 0:2 mm and Ea=RT0 ¼ 22. This case corresponds to a stable det-
onation (see Table 6). Since no fluctuation is present, the steady
ZND solution and the mean solution are in perfect accordance as
reported in Fig. 12. After, the mean sonic locus is evaluated for
d ¼ 0:2 mm and Ea=RT0 ¼ 22 in case (C). The result is also shown
in Fig. 12. It can be seen that, heat losses lengthen the mean sub-
(b)

s) for cases (B) and (C). Solid line and triangle left correspond to case (B). Dashed line
led by DCJ ¼ 1179:43 m/s and x1=2 ¼ 0:265mm.



Fig. 12. Spatial distributions of dimensionless thermicity e/� ¼ /x1=2=qc2DCJ and

Mach number functions (1�M2), 1� eM2
T;a

� �
and 1� eM2

T

� �
. Subscript a is for

adiabatic case. Arrows indicate the locus of the mean sonic points. Cases ðB) and
(C) at d ¼ 0:2 mm for Ea=RT0 ¼ 22.

Fig. 13. Spatial distributions of the Reynolds number Re behind the detonation
front. Solution given by the ZND solver. Case (C) at d ¼ 0:2 mm and Ea=RT0 ¼ 22.

(a)

Fig. 14. Shock pressure ps histories at d ¼ 2 mm and Ea=RT0 ¼ 27. (a) Test case (B). (b
deal case.
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sonic reaction zone. The Reynolds number (Red ¼ qvd=l;v velocity
in the laboratory frame) corresponding to the above case is plotted
in Fig. 13 as a function of the distance to the shock. The Reynolds
number reaches its maximum value at the shock and decreases
as the reaction proceeds.

Fig. 14 gives plots of the shock pressure versus time at d ¼ 2
mm and Ea=RT0 ¼ 27 for configurations (B) and (C). In the first test,
the heat losses are switched off (Fig. 14 left). In the second one,
they are switched on (Fig. 14 right). When heat losses are vanished,
one predicts a period-two oscillation. But, when the heat losses are
activated, the system undergoes period-four oscillations. The peak
amplitudes are used to define the oscillation periods as indicated
by the doted lines. This means that heat losses act like an activa-
tion energy increase in ideal detonations. This can be explained
by the fact that heat losses at the wall tend to cool the flow as it
enters the thermal boundary layer at the vicinity off the wall
reducing thereby the temperature of the flow. This fact, leads in
turn to an increase of the global activation energy Ea=RT .

If the diameter is further decreased, the effective activation
energy increases due to the combined effects of both friction and
heat losses. Period-eight oscillation is observed at d ¼ 1:86 mm
as reported in Fig. 15. Further decrease of the diameter to
(b)

) Test case (C). n is the number of period, pN is the von-Neumann pressure in the

Fig. 15. Shock pressure ps histories for case (B) at d ¼ 1:86 mm and Ea=RT0 ¼ 27. n
is the number of period, pN is the von-Neumann pressure in deal case.



Fig. 16. Shock pressure ps histories for test case (B) at d ¼ 1:84 mm and
Ea=RT0 ¼ 27.
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1:84 mm leads to period-sixteen oscillation as shown in Fig. 16.
However, it is quite difficult to distinguish the maximum peak
amplitudes. When the diameter is further decreased in the case
of Ea=RT0 ¼ 27 the number of modes excited increases rapidly.
The resolution required to capture the dynamics of the shock
becomes increasingly overwhelming [4,13]. These points are out
of scope of the current study.

Note that the smallest diameters considered in this paper for
unsteady solution are 0:15 mm and 1:84 mm for Ea=RT0 ¼ 22 and
Ea=RT0 ¼ 27, respectively.
5. Concluding remarks

In this paper, the analysis of the influence of momentum and
heat losses on one-dimensional mildly unstable detonation is stud-
ied. First, it is found that heat losses affect the dynamics of the
shock front, suggesting the possibility that the effective activation
energy is increased. Moreover, the non-adiabatic influence is
observed to increase the velocity deficit. This in turn slow down
the rate of the reaction, leading thereby to the delay of the sonic
point. The delay of the sonic surface is also observed to be fluctu-
ations dependent. Furthermore, the present study demonstrated
that similar results to those obtained in ideal detonation when
the activation energy increases, can be predicted when the diame-
ter decreases.

The results indicate that, shock-capturing coupled with
fifth-order spatial discretization and third-order time discretiza-
tion can gives accurate results in the case of mildly unstable deto-
nation. The order of the numerical results is slightly greater than
one, even for the case of mildly unstable non-ideal detonations.
Moreover, the computations results show that the use of chemical
activator is needed for large heat release and small activation ener-
gies. The proposed averaged method giving the mean sonic locus
will be extended to two dimensional detonations.
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