
540 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 4, APRIL 1998

Algorithmic Analysis of Nonlinear Hybrid Systems
Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi

Abstract—Hybrid systems are digital real-time systems that
are embedded in analog environments. Model-checking tools are
available for the automatic analysis of linear hybrid automata,
whose environment variables are subject to piecewise-constant
polyhedral differential inclusions. In most embedded systems,
however, the environment variables have differential inclusions
that vary with the values of the variables, e.g., _x = x. Such
inclusions are prohibited in the linear hybrid automaton model.
We present two methods for translating nonlinear hybrid systems
into linear hybrid automata. Properties of the nonlinear systems
can then be inferred from the automatic analysis of the translated
linear hybrid automata.

The first method, called clock translation, replaces constraints
on nonlinear variables by constraints on clock variables. The
clock translation is efficient but has limited applicability. The
second method, calledlinear phase-portrait approximation, con-
servatively overapproximates the phase portrait of a hybrid
automaton using piecewise-constant polyhedral differential inclu-
sions. Both methods are sound for safety properties; that is, if we
establish a safety property of the translated linear system, we may
conclude that the original nonlinear system satisfies the property.
When applicable, the clock translation is also complete for safety
properties; that is, the original system and the translated system
satisfy the same safety properties. The phase-portrait approxi-
mation method is not complete for safety properties, but it is
asymptotically complete; intuitively, for every safety property,
and for every relaxed nonlinear system arbitrarily close to the
original, if the relaxed system satisfies the safety property, then
there is a linear phase-portrait approximation that also satisfies
the property.

We illustrate both methods by using HYTECH—a symbolic
model checker for linear hybrid automata—to automatically
check properties of a nonlinear temperature controller and of
a predator–prey ecology.

Index Terms—Clock translation, formal verification, hybrid
systems, HYTECH, linear hybrid automata, model checking,
phase-portrait approximation, predator–prey ecologies.

I. INTRODUCTION

H YBRID SYSTEMS combine discrete and continuous
dynamics. The analysis of hybrid systems, therefore,

requires techniques from both computer science and control

Manuscript received August 2, 1996. Recommended by Associate Editor,
P. J. Antsaklis. This work was supported in part by the Office of Naval
Research Young Investigator Award N00014-95-1-0520, by the National
Science Foundation under CAREER Award CCR-9501708 and Grant CCR-
9504469, by the Air Force Office of Scientific Research under Contract
F49620-93-1-0056, by the Army Research Office MURI under Grant DAAH-
04-96-1-0341, by the Advanced Research Projects Agency under Grant
NAG2-892, and by the Semiconductor Research Corporation under Contract
95-DC-324.036. Preliminary reports of this work appeared in [6] and [15].

T. A. Henzinger is with the Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley, CA 94720 USA.

P.-H. Ho is with Strategic CAD Labs, Intel Corporation, Hillsboro, OR
97124 USA.

H. Wong-Toi is with Cadence Berkeley Labs, Berkeley, CA 94704 USA.
Publisher Item Identifier S 0018-9286(98)02661-0.

theory. From computer science, we have the model ofhybrid
automata, which combines discrete control graphs with con-
tinuously evolving variables [1]. A hybrid automaton exhibits
two kinds of state changes: discrete jump transitions occur
instantaneously, and continuous flow transitions occur while
time elapses. We have algorithmic techniques for checking
certain properties, such as safety, forlinear hybrid automata,
whose transitions are subject to linearity restrictions: for each
jump, the possible source and target values of the variables are
constrained by linear inequalities; for each flow, the possible
values of the variables during the flow are constrained by
linear inequalities on the variables; and the possible derivatives
of the variables during the flow are constrained by linear
inequalities on the derivatives [3]. It is important to realize that
the definition of linearity used here is more restrictive than in
systems theory. For instance, linear hybrid automata cannot
represent constraints of the form which relate the
derivative of with the value of Model-checking methods
for linear hybrid automata have been implemented in HYTECH

[10] and used to verify distributed real-time protocols [7],
[14], [9]. This paper extends the model-checking approach to
the analysis of nonlinear hybrid systems, by reduction to the
linear problem.

For automata, the verification problem for safety properties
reduces to the emptiness problem, i.e., whether there exists
a trajectory from an initial state to a final state. Every hybrid
automaton defines an infinite-state transition system with jump
transitions and flow transitions. Checking the emptiness of a
hybrid automaton, then, involves computing the successors (or
predecessors) of state sets in the underlying transition system.
The widest class of hybrid automata for which we know how
to compute flow successors reasonably efficiently is that of
linear hybrid automata. We therefore propose the following
methodology for analyzing a nonlinear hybrid automaton
First, we attempt to translate the constraints on each nonlinear
variable of into constraints on a clock variable, which
is a variable with the constant derivative one. Intuitively, the
translation is possible if is reinitialized with every jump that
causes changes in the constraints that govern the flow of
and at all times during a flow the value of is completely
determined by the initial value and the elapsed time. For
nonlinear variables that do not satisfy these requirements, in
a second step, we overapproximate the set of possible flow
vectors using linear constraints. The resulting linear hybrid
automaton whose emptiness can be checked by HYTECH,
has the same or strictly more trajectories thanSo if is
empty, then is also empty. If, however, is nonempty, we
can draw no conclusion about the emptiness ofand must
refine our approximation.

0018–9286/98$10.00 1998 IEEE

Authorized licensed use limited to: Baylor University. Downloaded on November 24, 2008 at 10:58 from IEEE Xplore. Restrictions apply.

HENZINGER et al.: ALGORITHMIC ANALYSIS OF NONLINEAR HYBRID SYSTEMS 541

Formally, the hybrid automaton that results from translating
the constraints on a nonlinear variable into clock constraints is
timed bisimilar to the original automaton, i.e., the translation
preserves all properties of interest [5]. The method, called
clock translation, is detailed in Section III and illustrated on
a simple temperature controller. The hybrid automaton that
results from overapproximating the set of possible flow vectors
time simulates the original automaton. While the approxi-
mate automaton may satisfy strictly fewer safety properties
than the original automaton, we show that at the cost of
increasing the discrete complexity of the approximation, every
hybrid automaton can be approximated arbitrarily closely.
The method, calledlinear phase-portrait approximation, is
detailed in Section IV and demonstrated on a predator–prey
ecology. Both methods complement each other and both
may be required for the successful algorithmic analysis of a
nonlinear hybrid system. The clock translation, while efficient,
may not be applicable, and the linear phase-portrait approxi-
mation, while always applicable, may produce an approximate
automaton that does not satisfy the desired property; increasing
the accuracy of the approximation may be too expensive.

Related Work

Phase portraits have been studied extensively in the lit-
erature on dynamical systems [13]. Typically, researchers
concentrate on nontrivial properties of continuous dynamics,
such as stability and convergence. Our work differs in two
respects. First, we considerproductsof nondeterministic dy-
namical systems with discrete control graphs. Second, our
goal is to analyze and derive simple properties of such
systemsautomatically. In computer science, the technique of
deriving system properties using conservative approximations
is called abstract interpretation. In [4], [12], [8], [19], and
[22], abstract interpretation techniques are used for improving
the efficiency of analyzing linear hybrid systems, whereas
here we approximate nonlinear hybrid systems. In [6] and
[21], restricted cases of linear phase-portrait approximations
for nonlinear hybrid systems are considered.

II. HYBRID AUTOMATA

Hybrid automata are a mathematical model for systems with
both discrete and continuous components. Informally, a hybrid
automaton consists of a finite set of real-valued variables
and a labeled multigraph The edges are used to
model discrete jumps. They are labeled with constraints on the
values of before and after jumps. The verticesare used
to model continuous flows. They are labeled with constraints
on the values and derivatives of during flows. The state of
the automaton changes either instantaneously when a discrete
jump occurs or, while time elapses, through a continuous flow.

A. Syntax

Let be a set of real-valued variables.
Let be the set of binary relational
operators. Anatomic predicateover is a predicate of
the form for a real-valued function

a relational operator and a real

Fig. 1. A thermostat.

constant A predicate over is a positive boolean
combination of atomic predicates over A valuationover
is a point in the -dimensional real space

or equivalently, a function that maps each variable
to a value We write to refer to the value
of the variable in the valuation For a predicate and
a valuation over we write for the truth value
obtained by evaluating with the constant replacing in

all occurrences of the variable for each
Every predicate over defines a set of valuations
such that iff is true. If is a convex set,
then is called a convex predicate.

A hybrid automaton is a system
consisting of the following

components.
Variables: A finite ordered set of

real-valuedvariables. For example, the thermostat automaton
in Fig. 1 has three variables, and where models the
temperature, models the amount of time spent in control
mode and models the total elapsed time.

Control Modes: A finite set of control modes. For ex-
ample, the thermostat automaton has two control modes,
and where models the heater being turned on, and
models the heater being turned off.

A state consists of a control mode a valua-
tion over the set of variables, and a valuation
over the set of variables, where
The dotted variable represents the first derivative ofwith
respect to time, i.e., Intuitively, a state describes
a control mode, a point, and a flow tangent at the point.

Flow Conditions: A labeling function that assigns a
flow conditionto each control mode The flow condition

is a predicate over While the automaton control
is in control mode the variables change along differentiable
trajectories for which the values of the variables and their
first derivatives satisfy the flow condition. For example, the
control mode of the thermostat automaton has the flow
condition Hence,
while the heater is turned on, the temperaturefollows the
differential equation The variable measures
the accumulated amount of time that the heater is active. The
variable measures the total elapsed time; such a variable,
with constant derivative one, is called a clock.

The state is admissibleif The
invariant condition for the control mode is the predicate

over The automaton control may
reside in a control mode only while the invariant condition
holds. Thus invariant conditions can be used to force progress
out of a control mode. For example, the control modeof the
thermostat automaton has the invariant condition

Authorized licensed use limited to: Baylor University. Downloaded on November 24, 2008 at 10:58 from IEEE Xplore. Restrictions apply.

542 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 4, APRIL 1998

Hence, the heater can be turned on only while the temperature
is in the range [1, 3], and it must be turned off at the latest
when the rising temperature hits 3.

Control Switches:A finite multiset of control switches.
Each control switch identifies a source control mode

and a target control mode For example, the
thermostat automaton has two control switches, and

Jump Conditions:A labeling function that assigns
a jump conditionto each control switch The jump
condition is a predicate over
where and The
variable refers to its value before the control switch, and the
primed variable refers to the value of after the control
switch. The variable refers to the first derivative of
before the control switch, and refers to the derivative of

after the control switch. Thus the jump conditions relate
the values of the variables before a control switch with those
after (allowing, for example, the assertion that trajectories
are continuous across control switches) and also relate the
tangents before the control switch with those after (allowing,
for example, the assertion that trajectories are differentiable
across control switches). For convenience, we use the special
predicate to indicate that certain primed variables
have the same values as their unprimed counterparts, e.g.,

denotes For example, in the
thermostat automaton, the control switch has the jump
condition The conjunct asserts
that the heater can be turned off only when the temperature is
3. The conjunct asserts that the target point of
the jump is the same as the source point.

Events: A finite set of eventsincluding thesilent event
and a labeling function that assigns an event in

to every control switch Control switches labeled
by are called silent. For convenience, we require that

for all silent control switches
Although not done here, the events can be used to define the
parallel composition of hybrid automata [3].

Initial Conditions: A labeling function that assigns an
initial condition to each control mode The initial condi-
tion is a predicate over The automaton control
may start in the control mode when holds. The state

is initial if it is admissible and
In the graphical representation of automata, initial conditions
appear as labels on incoming arrows without a source control
mode, and initial conditions of the form are not depicted.
For example, all initial states of the thermostat automaton are
in the control mode with Hence,
initially the heater is turned on and the temperature is 2.

Final Conditions: A labeling function that assigns a
final conditionto each control mode The final condition

is a predicate over The state is final if
it is admissible and We use final conditions
to specify the unsafe, or error, states of a system. Then, the
system is safe if, when started in an initial state, no final state
can be reached. For example, for the thermostat automaton,
consider the safety property that the heater is active less than
50% of the first 60 time units. The corresponding unsafe states

are specified by the final conditions

Remark: The definition of hybrid automata used here dif-
fers from previous definitions in the literature [1], [5]. In a
minor change, we add final conditions so that system safety
can be conveniently expressed as automaton emptiness. In a
major change, we augment the notion of a state with a vector
over providing the flow tangent at the given point, we
augment jump conditions with constraints over and we
make invariant conditions implicit within flow conditions. This
enables us to model changes (or the absence of changes) in
the first derivatives when a control switch occurs. Information
about higher order derivatives can be encoded by explicitly
introducing additional variables, e.g., with the flow condition

we may use to refer to the second derivative of

B. Timed Transition-System Semantics

We provide a formal semantics for hybrid automata in terms
of timed transition systems. Let denote the set of nonneg-
ative reals. Atimed transition system
consists of a (possibly infinite) set of states, a subset

of initial states, a subset of final states, a set
of transition labels(including the specialsilent transition

label), and atransition relation
Each triple is called atransition and denoted

There are two kinds of transitions:jump transitions
are of the form for a transition label andflow

transitions are of the form for a nonnegative real
which is called theduration of the flow transition.

Jump transitions of the form are calledsilent.
Every hybrid automaton defines a timed transition system

with the following components.

• is the set of admissible states of
• is the set of initial states of
• is the set of final states of
• is the set of events of
• The transition relation where

the jump transitions and the flow transitions are defined
as follows.

In jump transitions, the control mode of the automaton and
the values and derivatives of the variables change instanta-
neously, in accordance with a control switch and its jump
condition. Formally, for each event the binaryjump
relation on the admissible states is defined by

iff there exists a control switch of such
that and is
true. The control switch is referred to as awitnessfor the
jump transition

During flow transitions, the control mode of the automaton
stays fixed and the values and derivatives of the variables
change over time in accordance with the flow condition of
the active control mode. Formally, for each nonnegative real

the binaryflow relation on the admissible states

is defined by iff and either: 1)
and and or 2) and there exists a

continuously differentiable function such that

Authorized licensed use limited to: Baylor University. Downloaded on November 24, 2008 at 10:58 from IEEE Xplore. Restrictions apply.

HENZINGER et al.: ALGORITHMIC ANALYSIS OF NONLINEAR HYBRID SYSTEMS 543

the following two conditions hold.

1) The endpoints of the transition match those of, i.e.,
and where

is the first derivative of
2) The flow condition is satisfied along, i.e.,

is true for all

The function is referred to as awitness for the flow
transition This completes the definition
of

A trajectory of is a finite path
of transitions in with such that and

for all The state is referred to
as theend stateof the trajectory. The stateof is reachable
if there is a trajectory of with the end state We write

for the set of reachable states of The hybrid
automaton is emptyif no final state of is reachable, i.e.,

Otherwise is nonempty.

C. Time Simulation and Timed Bisimilarity

We define the concepts of time simulation and timed bisim-
ilarity for timed transition systems [5]. In the sense of Milner
our simulations areweak [18], with silent transitions being
invisible. In addition, a flow transition of durationcannot be
distinguished from two or more consecutive flow transitions
whose durations add up to This is captured by closing
the timed transition system under
stuttering. For each nonsilent transition label we
define thestutter-closed jump relation by
iff there exists a finite sequence of states, with

such that and
For each nonnegative real we define thestutter-

closed flow relation by iff there exist
a finite sequence of states and a finite sequence

of constants, with such that

and and
Let and

be two timed transition systems with the same
transition labels. The binary relation is a time
simulationof by if the following three conditions hold.

1) For all states and if then for
each transition label if
then there exists a state such that and

2) For every initial state there exists an initial
state such that

3) For every final state and for every state
if then

The timed transition system time simulatesthe timed
transition system denoted if there exists
a time simulation of by The hybrid automaton
time simulatesthe hybrid automaton if

For a binary relation define the inverse
to be the binary relation over such that

iff The binary relation is a
time bisimulationbetween and if is a time simulation
of by and is a time simulation of by The

timed transition systems and aretimed bisimilar, denoted
if there exists a time bisimulation between

and The two hybrid automata and aretimed bisimilar
if

By induction on the length of trajectories, it is easy to check
that if time simulates then for every trajectory of
there exists a trajectory of that follows the same sequence
of nonsilent events. Therefore, if is empty, then so is

Proposition 2.1 [20]: Let and be hybrid automata.

• If time simulates and is empty, then is empty.
• If and are timed bisimilar, then is empty iff

is empty.

Remark: The notions of time simulation and timed bisimi-
larity are unnecessarily strong conditions for emptiness check-
ing. They are, however, useful for also checking more general
classes of properties than safety, precisely because they pro-
vide such a tight coupling between systems [5].

D. Control-Mode Splitting

We often find it useful to split the control modes of a hybrid
automaton in order to obtain simpler or more constrained
flow conditions. Let

be a hybrid automaton. Aflow split
for is a function that maps each control mode to a
finite set of predicates over such that
there exists a finite open cover
of with for each

For example, for any the function
defined by and

is a flow split for the thermostat
automaton in Fig. 1. Since is a cover of , i.e.,

the flow condition is equivalent to
the disjunction Since all sets in are open, the
splitting of the flow condition into disjuncts does not prohibit
flow transitions.

Given a flow split, we derive a new hybrid automaton
such that for every flow transition of the original automaton,
the split automaton has a matching sequence of alternating
flow transitions and silent jump transitions. Formally, the
application of the flow split to the hybrid automaton

yields the hybrid automaton

with the following components.

•
• and
• For every control mode define

• where
and and

The control switches
in are inherited from control switches of and the
control switches in are silent control switches that
enable the automaton control to pass freely across copies
of the same control mode.

• For every control switch
define ,
i.e., the jump condition is inherited from the

Authorized licensed use limited to: Baylor University. Downloaded on November 24, 2008 at 10:58 from IEEE Xplore. Restrictions apply.

544 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 4, APRIL 1998

corresponding control switch of For every
control switch define

, i.e., the jump
condition requires the state to remain unchanged.

•
• For every control switch

define For
every control switch define

• For every control mode define

• For every control mode define

We define the projection on states by

The hybrid automaton is splittable if for every flow split
for the two automata and are timed bisimilar.

It may appear to be possible that for some hybrid automaton
and some flow split for the automaton does not

time simulate because all witnesses for some flow transition
of correspond to infinite sequences of flow transitions and
silent jump transitions of We show that, due to our
requirement that all flow splits are derived from finite open
covers, this scenario cannot occur.

Theorem 2.2:Every hybrid automaton is splittable.
Proof: Let be a hybrid automaton and a flow split

for We show that the relation defined
by iff is a time bisimulation between

and
First, consider time simulation of by Suppose

that for nonnegative
reals and states and of
The jump conditions for all silent control switches imply that
the variables and their first derivatives do not change. Hence,
if and are derived from the same control mode of

the witnesses for and can

be concatenated to a witness for If
and are derived from different control modes of then

and therefore By
induction it follows that stutter-closed flow transitions of the
form with can be time simulated in

For stutter-closed jump transitions of the form

with there exists a state such that
By the time simulation of flow transitions, we

need only show that each jump transition can be
time simulated in This is immediate, because all nonsilent
control switches in are directly inherited from

Second, consider the time simulation ofby Sup-

pose that for a nonnegative real and
states and of with the same control mode, say Let

be a witness for Let be the
finite open cover from which the set of flow conditions
is derived. Let be the function defined by

Since is continuously differentiable,
is continuous. For each let be an open ball
that contains and lies entirely in some open set
Such a ball exists, because is an open cover of

and all points in the range of satisfy Since is
continuously differentiable, it follows that the set is
open and hence includes an open intervalcontaining Thus
the set of intervals is an open cover for

The Heine–Borel–Lebesgue theorem states that every
open cover of a closed and bounded subset of the space of
real numbers has a finite subcover. Hence there is a finite open
cover of consisting of intervals in Since the cover is
open, we can identify a point in the overlap between each
pair of consecutive intervals and construct a finite sequence of
witnesses between the endpoints and the intermediate points,
with each witness lying entirely within some set from the cover

It follows that for some states and of
with and By induction we conclude

that stutter-closed flow transitions of the form can be
time simulated in The time simulation of stutter-closed
jump transitions is again immediate.

This theorem enables the control modes of an automaton
to be split in order to meet the conditions for applying the
clock translation (see Section III) and to allow more accurate
phase-portrait approximation (see Section IV).

E. Linearity

The linear hybrid automata form a subclass of hybrid
automata that can be analyzed effectively [3]. Alinear term
over a set of variables is a linear combination
of variables with real-valued coefficients The
linear term hasrational coefficientsif all coefficients are
rational. The atomic predicate over is (rationally) linear
if has the form for a linear term over (with
rational coefficients), a relation symbol and a real
(rational) constant The predicate over is (rationally)
linear if is a positive boolean combination of (rationally)
linear atomic predicates over If is a (rationally) linear
predicate, then is called a (rationally) linear set.

Consider the hybrid automaton
A variable is (rationally)

linear if in all flow, jump, initial, and final conditions of
all occurrences of and are contained within (rationally)
linear atomic predicates over and all occurrences
of and are contained within (rationally) linear atomic
predicates over Otherwise is a nonlinearvariable.
The hybrid automaton is (rationally) linear if all variables
in are (rationally) linear. If is a (rationally) linear hybrid
automaton, then every flow, jump, initial, and final condition
of is a (rationally) linear predicate. Furthermore, for every
control mode of the flow condition is equivalent
to a conjunction of the form where is a predicate
over and is a predicate over Thus, there may be
linear dependencies between the derivatives of variables, but
the derivative of a variable cannot depend on the value of a
variable: the set of flow tangents is constant for a given control
mode. For example, the flow condition
is legal for linear hybrid automata, but the flow condition

is not.
Let be the timed transition system

defined by the hybrid automaton A region of is a set of

Authorized licensed use limited to: Baylor University. Downloaded on November 24, 2008 at 10:58 from IEEE Xplore. Restrictions apply.

HENZINGER et al.: ALGORITHMIC ANALYSIS OF NONLINEAR HYBRID SYSTEMS 545

states of The region is (rationally) linear if there exist
(rationally) linear predicates over one for each
control mode such that For
example, if is a (rationally) linear hybrid automaton, then
the region of admissible states, the region of initial
states, and the region of final states are (rationally) linear.
We define thesuccessorfunction on regions
by and thepredecessor
function by

Theorem 2.3:Let be a (rationally) linear hybrid automa-
ton. If is a (rationally) linear region of then and

are also (rationally) linear regions of Moreover, for
every rationally linear predicate we can effectively construct
rationally linear predicates and defining
and respectively.

Proof Sketch:The proof of the theorem is similar to the
proof of the analogous theorem for previous definitions of
hybrid automata, where states do not include flow tangents
[3]. Here we consider only the operator and omit many
details. It suffices to show that the successor region of a single
(rational) state is (rationally) linear. We compute the successor
states via jump transitions and the successor states via flow
transitions separately; the former can be computed as in [3],
by treating the variables in like those in

So consider flow transitions with the source state
We assume that the flow condition ofhas the form

for convex linear predicates over and over
nonconvex flow conditions can be treated as in [3], by

splitting into convex parts. We need to compute the possible
target points and the possible flow tangentsfor these points,

such that for some If then
and For the case we compute the region

where is the set
of positive reals. Since is convex, for flow transitions
of positive duration, any target pointcan be reached with
flow tangent iff there is a different target point such
that the straight line from to has direction Define

by
Then

and

and

and

and

This region is linear. If the flow condition of is rationally lin-
ear, then for rational vectorsand the region
is rationally linear.

The function that results from composing the operator
times is denoted Then, the region of reachable states of

the hybrid automaton is Even
if is rationally linear, there may not be a rationally linear
representation for because of the infinite union. If,
however, a state of is reachable, then for

some nonnegative integerIt follows that for rationally linear
hybrid automata, there is an effective procedure that terminates
if a final state is reachable but may not necessarily terminate
if no final state is reachable.

Corollary 2.4: The nonemptiness problem for rationally
linear hybrid automata (“Given a rationally linear hybrid
automaton is nonempty?”) is recursively enumerable.

Algorithmic analysis techniques for rationally linear hybrid
automata have been implemented in tools such as HYTECH

[10] and POLKA [12]. In particular, when applied to an
unsafe system, the emptiness-checking procedures of these
tools are guaranteed to detect a violation of the safety property.
Experiments to date show that for many real-world examples,
there is a nonnegative integersuch that all reachable states
can be reached within jump and flow transitions, i.e.,

In these cases, the safety
checks terminate also when applied to a safe system.

Remark: The safety of a rationally linear hybrid automaton
can be checked, alternatively, by iterating the operator,
starting from the region of final states. The operator
is also useful for checking more general classes of properties
than safety [3].

III. CLOCK TRANSLATION

For certain nonlinear hybrid automata, we can construct
timed bisimilar linear hybrid automata, by replacing all non-
linear variables with clocks. For a hybrid automaton the
variable is a clock if is linear and all flow conditions of
imply We can replace a nonlinear variableby a clock

if at all times the value of can be determined uniquely
from the value of This is the case if measures the time
that has elapsed since the value ofwas last changed by a
control switch, if the value of after that change is recorded
and if has followed a unique flow since that change. The
variables that can be replaced by clocks are called solvable.

A. Solvability

Before giving formal definitions, we intuitively describe the
conditions we require for a variable to be solvable. First,
we require that be independent of the other variables in
flow, jump, initial, and final conditions. Thus we need not
consider how to translate relationships betweenand the other
variables into relationships betweenand the other variables.
Second, we require to follow a unique flow from any starting
point. This restriction enables us to determine the value ofif
we know its initial value and the elapsed time. Third, in order
to determine the truth of atomic predicates such as for
any constant from the value of we require the flows
of to be strictly monotone. For example, ifhas initial value

strictly less than and is strictly increasing, we know that
is true iff , where is the time it takes for the

unique flow of to progress from to Fourth, we require
that at all times we know the initial value of the current flow
of and the elapsed time. For example, suppose thathas
value 1 when the automaton control enters the control mode

and the flow condition of implies Suppose that
the automaton control switches to another control mode

Authorized licensed use limited to: Baylor University. Downloaded on November 24, 2008 at 10:58 from IEEE Xplore. Restrictions apply.

546 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 4, APRIL 1998

when the variable equals 2. If the flow condition of also
implies then the value of can be determined from the
time that has elapsed since the control enteredby
regardless of when the control switched to However, if

differs from and the value of at the control
switch is not known, then it is no longer possible to determine
the current value of Thus, we say that the variable is
definite for the control switch if the jump condition of
implies for some constant and we require control
switches to be definite for whenever the flow conditions for
the source and target modes differ.

We now formalize these concepts. An atomic predicate is
simpleif it has the form or or where is
a variable, is a relational operator, and is
a constant. The predicateis simple for if all occurrences of

and in are contained within simple atomic predicates,
and and do not occur in The variable is independent
in the hybrid automaton if the following conditions hold.

• Every jump, initial, and final condition of is simple
for

• For every control mode of the flow condition
has the form for a function

a simple predicate over and a
predicate over where The
function is called theflow functionfor in the control
mode

The independent variableis monotonically determinedin the
control mode of if for all reals the initial-value
problem “ ” has a unique continuous
solution and that solution is strictly monotone (this is the
case, for instance, if for all). The variable is
initially definite for the control mode if the initial condition

is either false or implies for some constant
The constant is called theinitial value of for

The variable is definitefor the control switch of if the
jump condition implies for some constant

The constant is called thearrival value of for
The nonlinear variable of the hybrid automaton is

solvableif the following three conditions hold.

1) The variable is independent.
2) For all control modes of the variable is initially

definite and monotonically determined in
3) For all control switches of if the variable

is not definite for then and have the same flow
functions for , i.e., and the jump condition

implies

The hybrid automaton is solvableif all nonlinear variables
of are solvable. For example, the thermostat automaton of
Fig. 1 is solvable, since is the only nonlinear variable and

is solvable.
Remark: While our requirements for solvability are conve-

nient and easily checkable, they are, of course, unnecessarily
strong and can be relaxed in various ways. For instance,
the strict monotonicity of solutions can be replaced by the
requirement that the unique solution of the initial-value
problem is such that for each constant that appears in
an atomic predicate of the form or in certain

invariant and jump conditions, if there exists a time
with then is unique.

B. The Clock-Translation Algorithm

The clock-translation algorithm replaces a solvable variable
of a hybrid automaton by a clock such that the resulting

hybrid automaton is timed bisimilar to In this way, if
is solvable, then all nonlinear variables ofcan be replaced
one by one, and the final result is a linear hybrid automaton
that is timed bisimilar to

Consider a solvable variable of the hybrid automaton

The constant is a starting valuefor if there
exists a control mode such that is the initial value
of for or there exists a control switch such that
is the arrival value of for Let
with be the set of starting values for in
The clock-translation algorithm proceeds in two steps.

1) Each control mode of is split into a collection
of control modes, one for each start-

ing value of We then add the clock such that the
value of in the control mode is where

is the unique solution of the initial-value problem
“ ”

2) For all invariant, jump, and final conditions of
each atomic subformula over is replaced by an
atomic predicate over Then the variable can be
discarded.

Remark: For simplicity, we consider a global set of starting
values for each variable. If the starting values are parameter-
ized by control modes, in Step 1) the control modes can be
split more selectively.

Step 1) Adding the Clock

The result of this step is the hybrid automaton
with

the following components.

• The variables of are and the events
of are

• The control modes of are Each
control mode of has the flow condition

reflecting the fact
that the new variable is a clock. The control mode
has the initial condition
if implies and
otherwise. The control mode has the final condition

• For each control switch of for which is not
definite, the automaton has, for each a
control switch of the form with the
jump condition and
the event label For each control
switch of for which is definite with arrival
value the automaton has, for each
a control switch of the form with
the jump condition
and the event label

Authorized licensed use limited to: Baylor University. Downloaded on November 24, 2008 at 10:58 from IEEE Xplore. Restrictions apply.

HENZINGER et al.: ALGORITHMIC ANALYSIS OF NONLINEAR HYBRID SYSTEMS 547

Fig. 2. Clock translation of the thermostat automaton.

TABLE I

Example 3.1:We apply Step 1) to the variable of the
thermostat automaton from Fig. 1. All control switches are
definite for The starting values of are 1, 2, and 3, so we
split both control modes and into three control modes
each. Since the control modes and are
not reachable by a sequence of control switches from the initial
control mode we omit these three control modes from
the clock-translated automaton. The result of Step 1) is shown
on the left in Fig. 2.

Step 2) Replacing the Conditions onby Conditions on

Let be the unique solution of the initial-value problem
“ ” for Since is strictly
monotone, for each there is at most one such
that Let if and
if for all The transformation function

from simple atomic predicates over to simple atomic
predicates over is defined as follows:

if and
if and
if and
if and

where is a relational operator, and
and are defined by Table I.

Predicates using the operators correspond to constraints
on how long the predicate will remain true. We conduct

the following four steps for each control mode of
the hybrid automaton

1) In the flow condition of replace by each atomic
predicate that contains the variableThen replace each
atomic predicate of the form for
by if and by otherwise (in the
latter case, the control mode may be removed).

2) For each control switch of with the source in
the jump condition of replace by each atomic
predicate that contains the variable and replace each
atomic predicate of the form for
by

3) In the initial condition of replace by each atomic
predicate that contains the variable

4) In the final condition of replace each atomic predicate
of the form for by

The resulting hybrid automaton is called theclock transla-
tion of with respect to

Example 3.2: In the thermostat example, we have the solu-
tions and for in the
control mode and the solution for in the
control mode Consider the atomic predicate of the
jump condition of the control switch from to
Since implies it follows that

iff Hence the atomic predicate is
replaced by The final result of Step 2) is shown
on the right in Fig. 2.

C. Correctness

Let be a solvable variable of the hybrid automaton
and let be the clock translation of with respect to
We show that and are timed bisimilar. Let be
the set of admissible states of and let be the set
of admissible states of Define such that

where the valuations and
agree on all variables exceptand the valuations and
agree on all variables exceptand and
and for the solution of the

Authorized licensed use limited to: Baylor University. Downloaded on November 24, 2008 at 10:58 from IEEE Xplore. Restrictions apply.

548 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 4, APRIL 1998

initial-value problem “ ” Define
by iff We prove that

is a time bisimulation between the hybrid automataand
Lemma 3.1: If then

iff
Proof: Let be an admissible state of

and let be an admissible state of such
that Let be the solution of the initial-value
problem “ ” Recall that is
continuous and strictly monotone. Let be any real. We
consider the four cases that arise from the definition of

• Assume that and Since
for all and in this case cannot be
the equality relation. By the continuity of we have

for all Hence
• Assume that and If is the equality

relation, implies If
is an inequality, then by continuity, for all

which implies
• Assume that and If is the equality

relation, then and for all
Therefore, iff iff
iff For inequalities of the form
or by the strict monotonicity of we have

iff because reaches the
cutoff value precisely when reaches the cutoff value

Similarly, for inequalities of the form
or we have iff

• Assume that and The proof is
analogous to the previous case.

Lemma 3.2: is a time simulation of by
Proof: Let and be

two admissible states of such that Let
be an admissible state of such that

We show that there exists an admissible stateof such
that and

First, consider flow transitions. Suppose that
has the duration and the witness We
construct a witness for a flow transition
of originating from and having duration Let

For all define such that
for and

We show that for all
Let be the solution of the initial-value problem

“ ” Since
we have

Therefore, for all we have
and

It remains to be shown that witnesses
a flow transition of , i.e., the flow condition of
is satisfied along This follows from the construction
of which ensures, by Lemma 3.1, that for all

if and
then

Second, consider jump transitions. Suppose that
has as witness the control switch of We
consider two cases.

1) Assume that implies for some real
In this case, there exists a control switch

of derived from such that
implies and

Define such that for and
Define such that for

and Define
We show that Let be the solution of
the initial-value problem “

” Since we have
and then since

we have
Admissibility of follows from

and Lemma 3.1. It remains to be shown
that witnesses the jump transition of

This follows from the construction of
which ensures, by Lemma 3.1, that and

and imply

2) Assume that implies In this case,
there exists a control switch of
derived from such that implies
and Define such that
for all and Define such
that for all and
Define We show that
Let be the solution of the initial-value problem
“ ” Since

we have Thus, since
we have

and then since we
have Similar to
the previous case, it can be shown thatis admissible
and that witnesses the jump transition of

Finally, we need to consider the initial and final states. Let
be an initial state of Since is initially

definite for the initial condition implies for
some Analogously to Case 1 for jump transitions, we
can find an initial state of such that If is a
final state of and then the construction of
ensures, by Lemma 3.1, that is a final state of

Lemma 3.3: is a time simulation of by
Proof: Let and

be two admissible states of Let
and We show that implies

First, consider flow transitions. Suppose that
for some duration and witness In
this case and Let be the solution of
the initial-value problem “ ” Let

Then Define
such that for all we have for
all and By the definition of
it follows that for all

We claim that is a witness for This
follows from the construction of which ensures,

Authorized licensed use limited to: Baylor University. Downloaded on November 24, 2008 at 10:58 from IEEE Xplore. Restrictions apply.

HENZINGER et al.: ALGORITHMIC ANALYSIS OF NONLINEAR HYBRID SYSTEMS 549

by Lemma 3.1, that for all since
also

Second, consider jump transitions. Suppose that
has as witness the control switch of
Then there is a control switch of from which

is derived such that We claim that is a
witness for Since is simple for we
need to consider only the atomic subformulas of
that contain or The atomic subformulas of the form
are covered by Lemma 3.1. There are two types of atomic
subformulas that contain

1) If implies for some then
implies Since we have
as required.

2) If implies then and
implies Since

we have as required.

The conditions on the initial and final states follow from
similar considerations.

Theorem 3.4:If is a solvable variable of the hybrid
automaton and is the clock translation of with respect
to then and are timed bisimilar.

Let be a solvable hybrid automaton with the nonlinear
variables Let and for
let be the clock translation of with respect to
The linear hybrid automaton is called theclock
linearization of If is rationally linear, then the hybrid
automaton is called rationally solvable. By Theorem 3.4
and the transitivity of timed bisimilarity, it follows that and

are timed bisimilar. By Proposition 2.1, it follows that
is nonempty iff is nonempty.

Corollary 3.5: The nonemptiness problem for rationally
solvable hybrid automata is recursively enumerable.

Remark: The nonemptiness problem is known to be recur-
sive for certain classes of rationally linear hybrid automata,
such as timed automata and initialized rectangular automata
[2], [11]. For each such class, we can formulate a corre-
sponding decidability result for the nonemptiness problem of
nonlinear hybrid automata whose clock linearizations fall into
the class.

IV. L INEAR PHASE-PORTRAIT APPROXIMATION

Since the clock translation applies only to solvable hybrid
automata, it is desirable to have a theory of conservative
approximations for linearizing a wider class of systems. More-
over, often the clock linearization of a nonlinear hybrid
automaton is not rationally linear and needs to be approxi-
mated using rational coefficients before analysis with HYTECH

is possible. This, for example, is the case for the thermostat
automaton of Fig. 1, whose clock linearization is linear but
not rationally linear (see Fig. 2).

We advocate the use of linear phase-portrait approximations.
Essentially, for each control mode of a hybrid automaton,
the state space is partitioned into linear regions, and within
each region, the flow field is overapproximated using linear
sets of flow vectors. The approximations may be obtained
manually, leveraging techniques from dynamics theory, or in

some cases automatically, when lower and upper bounds on
derivatives can be obtained from bounds on the values of the
variables [15]. The approximations can be made arbitrarily
accurate by approximating over suitably small regions of
the state space. Furthermore, initial approximations may be
successively refined with the help of automated analysis, as
demonstrated in Section IV-B.

A. Phase-Portrait Approximations

A hybrid automaton is time simulated (and therefore approx-
imated) by any hybrid automaton that results from relaxing
flow, jump, initial, and/or final conditions. Formally, the hybrid
automaton

is a basic phase-portrait approximationof the
hybrid automaton

if the following conditions hold.

• and and and
and

• For all control modes the predicate implies
the predicate the predicate implies the
predicate and the predicate implies
the predicate

• For all control switches the predicate implies
the predicate

The hybrid automaton is a phase-portrait approximationof
the hybrid automaton if there exists a flow split for
such that is a basic phase-portrait approximation of

Proposition 4.1: Let and be hybrid automata. If is a
phase-portrait approximation of then time simulates

Proof: Suppose that is a basic phase-portrait approxi-
mation of for some flow split of Then the identity
relation on the admissible states of is a time simulation
of by The proposition follows by Theorem 2.2 and
the transitivity of time simulation.

If is a phase-portrait approximation of by Proposi-
tion 2.1 it follows that if is empty, then is empty. Hence
phase-portrait approximations provide necessary criteria for
nonemptiness. The tool HYTECH can be applied only to phase-
portrait approximations that are rationally linear. The hybrid
automaton is a (rationally) linear phase-portrait approxi-
mation of the hybrid automaton if is both (rationally)
linear and a phase-portrait approximation of Rationally
linear phase-portrait approximations are typically obtained
by first splitting the control modes using a flow split and
then overapproximating, for each control modethe flow
condition by a convex rationally linear predicateso
that contains the convex hull of

Example 4.1: Suppose that we want to prove that within the
first 60 time units of operation of the thermostat automaton
from Fig. 1, the heater is active less than 50% of the time.
For this purpose, we replace the constraint in the
clock linearization of the thermostat automaton (Fig. 2) by the
rationally linear predicate because

is approximately equal to 0.693. Similarly, we overap-
proximate by Then
HYTECH automatically verifies the safety property. Indeed,
HYTECH determines that after 60 time units, the thermostat has

Authorized licensed use limited to: Baylor University. Downloaded on November 24, 2008 at 10:58 from IEEE Xplore. Restrictions apply.

550 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 4, APRIL 1998

Fig. 3. Linear phase-portrait approximation of the thermostat automaton.

(a) (b)

Fig. 4. Tighter approximation via finer flow splits.

been in control mode between and
of the time. These bounds are tight for

the approximate automaton, but they can be tightened further
for the original automaton by refining the approximation.

Example 4.2:Suppose that we directly approximate the
thermostat automaton of Fig. 1 without first performing a clock
translation. As before, the goal is to prove that the heater is
active for less than 50% of the first 60 time units. We use the
flow split with the predicates and
for the control mode and the predicates and

for the control mode Fig. 3 depicts the resulting
rationally linear phase-portrait approximation of the thermostat
automaton. While the proof of Theorem 2.2 requires that all
flow splits are derived from open covers, it is easy to see
that overlapping closed covers suffice for this example. All
flow transitions that pass through the dividing point
in the original automaton are mimicked in the approximate
automaton by a flow transition up to the point followed
by a silent transition between control modes, followed by a
flow transition originating at This approximation is too
coarse: HYTECH reveals that for this approximation, the active
time of the heater ranges from27.8% to 50.0%.

The approximation can be tightened by using a finer flow
split. For instance, consider the flow split that splits the
control mode of Fig. 3 and is derived from the predicates

and for the control mode and
the predicates and
for the control mode Fig. 4 depicts the increased accuracy
of the resulting approximation for computing time successors
of the state Automatic analysis with HYTECH

now shows that the heater is active between30.7% and
48.1% of the time, which implies the safety property of

interest. The finer the flow split, the tighter the approximation,
but the greater the computational cost. Using flow split
the computation time of HYTECH is longer than for (6.4 s
versus 5.3 s of CPU time on a Sun Sparcstation 5). By contrast,
HYTECH requires only 2.3 s to generate the much better bounds
for the approximated clock linearization of Example 4.1.
This demonstrates the benefits of using the clock-translation
algorithm where possible.

B. Example: Predator–Prey Systems

We illustrate the use of linear phase-portrait approximations
on nonlinear systems modeling the population growth of two
interacting species. We show that several interesting properties
of the system can be discovered automatically through a
combination of deductive reasoning and algorithmic analysis.

A Predator–Prey Ecology with Limited Growth

Much of our exposition defining predator–prey systems is
derived from [13, Ch. 12]. One species is thepredator, whose
population is modeled by the variableand the other itsprey,
modeled using the variable The prey forms the entire food
supply for the predator, and we assume that the per-capita food
supply for the predator at any instant of time is proportional
to the number of prey. The growth of the predator population
is proportional to the difference between its actual per-capita
food supply and a basic per-capita food supply required to
maintain the predator population. The population of the prey
is subject to two competing forces. First, the prey population
may grow because there is a constant food supply available
and may increase without bound in the absence of predators.
Furthermore, we assume the rate of increase is proportional to
the number of prey. Second, the predators consume the prey

Authorized licensed use limited to: Baylor University. Downloaded on November 24, 2008 at 10:58 from IEEE Xplore. Restrictions apply.

HENZINGER et al.: ALGORITHMIC ANALYSIS OF NONLINEAR HYBRID SYSTEMS 551

Fig. 5. Predator–prey hybrid automaton.

Fig. 6. Phase portrait for predator–prey populations(L;M nonintersecting).

at a rate that is proportional to the number of predators and to
the number of prey. This gives us the following equations:

for positive real-valued constants and No pop-
ulation really has the potential to increase without bound.
There are social phenomena, such as overcrowding, spread
of disease, and pollution, that imply that most populations
will experience negative growth once they exceed a threshold
limiting population. We assume that these negative growth
factors are proportional to the species population and its
difference from the threshold population. This leads to the
Volterra–Lotka predator–prey equations [17]

where and are all positive real-valued con-
stants. Assuming that the initial prey population isand the
initial predator population is the resulting hybrid automaton
is shown in Fig. 5. Both and are unsolvable nonlinear
variables.

Linear Phase-Portrait Approximation

We consider the case that the two lines
and do not intersect in the quadrant

In this case, the phase portrait of the predator–prey
system looks as shown in Fig. 6. Using the coordinate axes
and the two lines and we split the state space into linear
regions. Within each region, we can infer the signs ofand
as shown in Fig. 6. For the region to the right of the line
we can infer also a linear constraint that relates the derivatives
of and Since is nonpositive and nonnegative in
the directions of the flow vectors in are determined by
the function The absolute value of
is bounded above by any ratio where is an
upper bound on the value of in and is a lower

bound on the absolute value of We can take for
because is always positive. Since the lines and
do not intersect in we know that and hence

Since is no less than in we infer that
and hence We may therefore

take for We conclude that is bounded below
by It follows that all flow vectors
in have a direction between and , i.e., they
satisfy the flow condition

The hybrid automaton that represents the resulting linear
phase-portrait approximation is shown in Fig. 7. The layout
of the control modes matches the partitioning of the state
space as shown in Fig. 6. The predicate is shorthand
for The implicit invariant constraint

has been omitted from all flow conditions. The
constraint refers to all valuations on the line , i.e., all
valuations with The constraint refers to
all valuations at, or to the right of, the line , i.e., stands
for Similarly, let stand for
let stand for let stand for
and let stand for If and are
all rational constants, then the phase-portrait approximation is
rationally linear.

Computing Bounds on the Population Growth

The linear phase-portrait approximation can be used to com-
pute, for given starting populations, bounds on the populations
of both species. In particular, this shows that the populations
are indeed bounded. For example, suppose that the initial
populations and lie in the rightmost region of the state
space. The time successors of the state are obtained
by following all flow vectors in the cone indicated in Fig. 8.
First, the states in region are reached. Control may then pass
to the control mode corresponding to the central region in the
partition, where both and are nonpositive. After adding the
states in region and then the states in the computation
of reachable states terminates. The maximum value of
among the reachable states is
For example, given the equations and

and the initial population vector
(900, 150), HYTECH computes a bound of 230 on the predator
population

Bounds on the region of reachable states can often be used
to construct better phase-portrait approximations. Letbe a
predicate such that contains all reachable states of the
hybrid automaton The restriction of to is the hybrid
automaton that differs from only in its flow conditions:
for all control modes let The
two automata and are timed bisimilar (via the identity
relation). Restriction is useful, because it may be possible to
find tighter linear phase-portrait approximations for than
for because the phase portrait of may contain fewer
flow vectors than the phase portrait of

In the predator–prey example, it can be shown that in
the rightmost region the absolute value of is
bounded above by Let be a bounded
subset of Let be an upper bound for over all

Authorized licensed use limited to: Baylor University. Downloaded on November 24, 2008 at 10:58 from IEEE Xplore. Restrictions apply.

552 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 4, APRIL 1998

Fig. 7. Linear phase-portrait approximation of the predator–prey automaton.

Fig. 8. Reachability computation for the linear phase-portrait approximation.

valuations in and let (respectively,) be a
lower bound for (respectively,) over It follows that

provided that

Previously, we showed how reachability computation for
the automaton of Fig. 7 leads to the region in from
which we can infer the bounds and

We therefore replace the flow condition
of the region by Recomputation

now shows that only a proper subset of the region is
reachable. In particular, we obtain the tighter bound of

If we iterate this procedure, we gain
successively lower values of more restrictive flow
conditions, and more accurate approximations of the set of
reachable states.

Controlling the Ecology

Standard analysis techniques can be used to show that the
predator population always tends toward zero, while the prey
population tends to Suppose, however, that we wish
to keep the predator population above a nontrivial minimal
value, or more generally, that the populations need to be
controlled so that they remain within given lower and upper
bounds. Assume that the prey population can be accurately
measured but that the predator population is unobservable. Our
control strategy consists of monitoring the prey population
and releasing a fixed number of additional prey into the
system whenever it reaches its minimal allowable value. In
general, it may be unwise to increase the prey population
to its maximal allowable value because the abundance of

prey may cause the predator population to grow too large.
For the ecology above, we require the predator population
to lie within the range [100, 350], and the prey population
within [800, 1100]. Using HYTECH, we can verify that the
bounds are successfully maintained whenever For
larger values of the phase-portrait approximation admits
trajectories where the predator population exceeds the upper
bound of 350. Note, however, that this does not imply that
all values of greater than 200 may lead to excessively
large predator populations because the approximation has more
reachable states than the true system.

C. Error Analysis

Given a hybrid automaton some linear phase-portrait
approximations of are closer to than others. The closer
the approximation of the more safety properties ofcan be
verified by analyzing the approximation. We show that using
linear phase-portrait approximation, can be approximated
arbitrarily closely by choosing a sufficiently fine flow split.

Proximity can be defined via the infinity metric
where , i.e., the

distance between two points and is the maximal
componentwise separation. Let and be two predicates
over the set of real-valued variables.
The predicate is an -relaxation of the predicate for a
nonnegative real if and for all valuations

there exists a valuation such that
The hybrid automaton is an -relaxation of the hybrid

automaton for if results from by replacing
all flow, initial, final, and jump conditions with-relaxations.
If models a system with sensors and actuators, then the-
relaxations of model the same system under the assumption
that the sensors and actuators may have measurement errors,
and the flow transitions are subject to modeling errors, with
all errors being bounded by Clearly, every -relaxation of

for is a phase-portrait approximation of
An approximation operator for hybrid automata is a

function that maps each hybrid automatonto a set
of hybrid automata—the -approximationsof —such that
for all the automaton time simulates For
example, the(rationally linear) phase-portrait approximation
operator maps every hybrid automaton to the set of (ra-

Authorized licensed use limited to: Baylor University. Downloaded on November 24, 2008 at 10:58 from IEEE Xplore. Restrictions apply.

HENZINGER et al.: ALGORITHMIC ANALYSIS OF NONLINEAR HYBRID SYSTEMS 553

tionally linear) phase-portrait approximations of For an
approximation operator if is empty, then is
also empty, i.e., every safety property of is also satisfied
by The converse, however, is not necessarily true; hence
approximation is a sound but not complete proof technique
for verifying safety properties.

Given an approximation operator for hybrid automata,
and a hybrid automaton the -approximation
is -close to for a nonnegative real if some -
relaxation of time simulates We write for the
set of -close -approximations of Then, if
is nonempty, some-relaxation of is also nonempty, i.e.,
every safety violation of corresponds to a safety violation
of an automaton that lies within distance from The
approximation operator is asymptotically completeif for
all hybrid automata and all positive reals the set

of -close -approximations is nonempty. Asymptotic
completeness ensures that for every hybrid automatonif
some automaton arbitrarily close to, but different from,
satisfies a safety property, then there is an approximation of

that also satisfies the property.
We show that already a restricted form of linear phase-

portrait approximations are asymptotically complete, namely,
when all automaton constraints are overapproximated using
independent rational lower and upper bounds on the values
and derivatives of each variable [6]. The predicateis
rectangular if has the form where each is
a (possibly unbounded) interval over The predicate is
rationally rectangular if the endpoints of the interval are
rational, for each The hybrid automaton
is (rationally) rectangularif all flow, jump, initial, and final
conditions of are (rationally) rectangular. Clearly, every
(rationally) rectangular hybrid automaton is (rationally) lin-
ear. The(rationally) rectangular phase-portrait approximation
operatormaps every hybrid automaton to the set of phase-
portrait approximations of that are (rationally) rectangular.
For example, the automaton of Fig. 3 is a rationally rectangular
phase-portrait approximation of the thermostat automaton. The
hybrid automaton is boundedif the set [] is bounded
for every control mode .

Theorem 4.2:The rationally rectangular phase-portrait ap-
proximation operator for bounded hybrid automata is asymp-
totically complete.

Proof: Let be a hybrid automaton, and let be
a positive real. We construct a rationally rectangular phase-
portrait approximation that is -close to in two steps:
first we construct a (possibly irrational) rectangular phase-
portrait approximation that is -close to and then
we approximate all predicates of by rationally rectangular
predicates.

Given a predicate over the set of
variables, let for be the infimal (possibly
unbounded) interval of the reals that contains the projection
of onto the axis. Therectangularizationof is the
rectangular predicate over such that
The predicate has diameter if
for all valuations Let be a flow split for

that maps every control mode to a set of predicates,

each with diameter Such a flow split exists since is
bounded. Define to be the hybrid automaton that results
from replacing all flow, initial, final, and jump condition
of by their rectangularizations. Then the flow, jump,
initial, and final conditions of all have diameter Hence,
for all control modes of for every valuation

there exists a valuation with
Similarly, every valuation satisfying

the jump, initial, and final conditions of is within of
some valuation satisfying the corresponding condition of
(and therefore of). It follows that the rectangular hybrid
automaton is time simulated by an -relaxation of

We derive the rationally rectangular hybrid automaton
from by replacing every rectangular predicatein with
a rationally rectangular predicate that is an -relaxation of

In particular, if then is replaced by the
rationally rectangular predicate with where
for each we have and the endpoints
of the interval result from shifting up, or down, by at most

the endpoints of the interval to some rationals. Then,
every valuation satisfying the flow, jump, initial, and final
conditions of is within of some valuation satisfying
the corresponding condition of and therefore within of
some valuation satisfying the corresponding condition ofIt
follows that some -relaxation of time simulates

In practice, rectangular phase-portrait approximations are
often easier to compute than nonrectangular phase-portrait
approximations (because we need only compute projections
for all variables). Nonrectangular linear phase-portrait approx-
imations, however, are sometimes more accurate, as seen in
the predator–prey example.

V. CONCLUSION

We presented a methodology that enables the algorithmic
analysis of nonlinear hybrid systems via translation to linear
hybrid automata. Two transformation steps may be utilized.
The first step, the clock translation, should be applied when-
ever possible. It is efficient, both sound and complete for
proving safety properties, but applies only to a restricted class
of variables. Linear phase-portrait approximation can be used
to remove any remaining nonlinearities. It is sound, but not
complete, for proving safety properties, and it may cause a
substantial blow-up of the state space. Linear phase-portrait
approximation, however, is applicable to all hybrid systems,
supports the successive refinement of approximations, and in
many cases can be automated. The combined methodology
has been successfully applied to the benchmark industrial
steam-boiler specification [16] and to an electronic automotive
suspension-control system developed by BMW [23].

ACKNOWLEDGMENT

The authors would like to thank P. Kopke for numerous
helpful suggestions.

REFERENCES

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X.
Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic analysis
of hybrid systems,”Theoretical Computer Sci., vol. 138, pp. 3–34, 1995.

Authorized licensed use limited to: Baylor University. Downloaded on November 24, 2008 at 10:58 from IEEE Xplore. Restrictions apply.

554 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 4, APRIL 1998

[2] R. Alur and D. L. Dill, “A theory of timed automata,”Theoretical
Computer Sci., vol. 126, pp. 183–235, 1994.

[3] R. Alur, T. A. Henzinger, and P.-H. Ho, “Automatic symbolic verifi-
cation of embedded systems,”IEEE Trans. Software Eng., vol. 22, pp.
181–201, 1996.

[4] N. Halbwachs, “Delay analysis in synchronous programs,” inProc. CAV
93: Computer-aided Verification, Lecture Notes in Computer Science,
no. 697, C. Courcoubetis, Ed. New York: Springer-Verlag, 1993, pp.
333–346.

[5] T. A. Henzinger, “The theory of hybrid automata,” inProc. 11th Annu.
Symp. Logic in Computer Science. New York: IEEE Computer Society
Press, 1996, pp. 278–292.

[6] T. A. Henzinger and P.-H. Ho, “Algorithmic analysis of nonlinear hybrid
systems,” inProc. CAV 95: Computer-aided Verification, Lecture Notes
in Computer Science, no. 939, P. Wolper, Ed. New York: Springer-
Verlag, 1995, pp. 225–238.

[7] , “HYTECH: The Cornell Hybrid Technology Tool,” inHybrid
Systems II, Lecture Notes in Computer Science, no. 999, P. Antsaklis,
A. Nerode, W. Kohn, and S. Sastry, Eds. New York: Springer-Verlag,
1995, pp. 265–293.

[8] , “A note on abstract-interpretation strategies for hybrid au-
tomata,” inHybrid Systems II, Lecture Notes in Computer Science, no.
999, P. Antsaklis, A. Nerode, W. Kohn, and S. Sastry, Eds. New York:
Springer-Verlag, 1995, pp. 252–264.

[9] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “HYTECH: The next
generation,” inProc. 16th Annual Real-time Systems Symp.New York:
IEEE Computer Soc. Press, 1995, pp. 56–65.

[10] , “A user guide to HYTECH,” in Proc. TACAS 95: Tools and
Algorithms for the Construction and Analysis of Systems, Lecture Notes
in Computer Science, no. 1019, E. Brinksma, W. R. Cleaveland, K. G.
Larsen, T. Margaria, and B. Steffen, Eds. New York: Springer-Verlag,
1995, pp. 41–71.

[11] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s
decidable about hybrid automata?” inProc. 27th Annual Symp. Theory
of Computing. ACM, 1995, pp. 373–382.

[12] N. Halbwachs, P. Raymond, and Y.-E. Proy, “Verification of linear
hybrid systems by means of convex approximation,” inProc. SAS:
Static Analysis Symp., Lecture Notes in Computer Science, no. 864,
B. LeCharlier, Ed. New York: Springer-Verlag, 1994, pp. 223–237.

[13] M. W. Hirsch and S. Smale,Differential Equations, Dynamical Systems,
and Linear Algebra. New York: Academic, 1974.

[14] P.-H. Ho and H. Wong-Toi, “Automated analysis of an audio control
protocol,” in Proc. CAV 95: Computer-Aided Verification, Lecture Notes
in Computer Science, no. 939, P. Wolper, Ed. Springer-Verlag, 1995,
pp. 381–394.

[15] T. A. Henzinger and H. Wong-Toi, “Linear phase-portrait approxima-
tions for nonlinear hybrid systems,” inHybrid Systems III, Lecture Notes
in Computer Science, no. 1066, R. Alur, T. A. Henzinger, and E. D.
Sontag, Eds. New York: Springer-Verlag, 1996, pp. 377–388.

[16] , “Using HYTECH to synthesize control parameters for a steam
boiler,” in Formal Methods for Industrial Applications: Specifying and
Programming the Steam Boiler Control, Lecture Notes in Computer
Science, no. 1165, J.-R. Abrial, E. Börger, and H. Langmaack, Eds.
Springer-Verlag, 1996, pp. 265–282.

[17] A. J. Lotka, “Analytical note on certain rhythmic relations in organic
systems,” inProc. National Academy of Sciences of the United States of
America, 1920, vol. 6, pp. 410–415.

[18] R. Milner, Communication and Concurrency. Englewood Cliffs, NJ:
Prentice-Hall, 1989.

[19] A. Olivero, J. Sifakis, and S. Yovine, “Using abstractions for the
verification of linear hybrid systems,” inProc. CAV 94: Computer-aided
Verification, Lecture Notes in Computer Science, no. 818, D. L. Dill,
Ed. New York: Springer-Verlag, 1994, pp. 81–94.

[20] D. M. R. Park, “Concurrency and automata on infinite sequences,” in
Proc. 5th GI Conf., Lecture Notes in Computer Science, no. 104, P.
Deussen, Ed. Springer-Verlag, 1981, pp. 167–183.

[21] A. Puri, V. Borkar, and P. Varaiya, “"-approximation of differential
inclusions,” inHybrid Systems III, Lecture Notes in Computer Science,
no. 1066, R. Alur, T. A. Henzinger, and E. D. Sontag, Eds. New York:
Springer-Verlag, 1996, pp. 362–376.

[22] A. Puri and P. Varaiya, “Verification of hybrid systems using abstrac-
tions,” in Hybrid Systems II, Lecture Notes in Computer Science, no.
999, P. Antsaklis, A. Nerode, W. Kohn, and S. Sastry, Eds. New York:
Springer-Verlag, 1995, pp. 359–369.

[23] T. Stauner, O. M̈uller, and M. Fuchs, “Using HYTECH to verify an
automotive control system,” inProc. HART 97: Hybrid and Real-Time
Systems, Lecture Notes in Computer Science, no. 1201, O. Maler, Ed.
New York: Springer-Verlag, 1997, pp. 139–153.

Thomas A. Henzinger(M’92) received the M.S. degree in computer science
from the University of Delaware, Newark, in 1986, the Dip.-Ing. degree in
computer science from Kepler University, Linz, Austria, in 1987, and the
Ph.D. degree in computer science from Stanford University, Stanford, CA,
in 1991.

He spent a Postdoctoral semester in Grenoble France. From 1992 to 1995,
he was an Assistant Professor of Computer Science at Cornell University,
Ithaca, NY. In 1996 he joined the Department of Electrical Engineering and
Computer Sciences of the University of California, Berkeley, where he is
currently an Associate Professor.

Pei-Hsin Ho received the B.S. degree in mathematics from Chung-Yuan
Christian University, Taiwan, in 1987, the M.S. degree in applied mathematics
from National Chiao Tung University, Taiwan, in 1989, and the M.S. and
Ph.D. degrees in computer science from Cornell University, Ithaca, NY, in
1994 and 1995, respectively.

He is currently with the Strategic CAD Labs. of Intel Corporation, working
on the formal verification and specification of microprocessors and multipro-
cessor systems.

Howard Wong-Toi received the B.Sc. (Hons.) degree in mathematics from
the University of Auckland, New Zealand, in 1987 and the Ph.D. degree in
computer science from Stanford University, Stanford, CA, in 1994.

He was a Postdoctoral Associate at Cornell University, Ithaca, NY. He has
been with Cadence Berkeley Labs. since 1996, where he is working on formal
methods for the design of reactive real-time and hybrid systems.

Authorized licensed use limited to: Baylor University. Downloaded on November 24, 2008 at 10:58 from IEEE Xplore. Restrictions apply.

