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Algorithmic Analysis of Nonlinear Hybrid Systems

Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi

Abstract—Hybrid systems are digital real-time systems that
are embedded in analog environments. Model-checking tools are
available for the automatic analysis oflinear hybrid automata
whose environment variables are subject to piecewise-constant
polyhedral differential inclusions. In most embedded systems,
however, the environment variables have differential inclusions
that vary with the values of the variables, e.g.,# = z. Such
inclusions are prohibited in the linear hybrid automaton model.
We present two methods for translating nonlinear hybrid systems
into linear hybrid automata. Properties of the nonlinear systems
can then be inferred from the automatic analysis of the translated
linear hybrid automata.

The first method, called clock translation replaces constraints
on nonlinear variables by constraints on clock variables. The
clock translation is efficient but has limited applicability. The
second method, calledinear phase-portrait approximation con-
servatively overapproximates the phase portrait of a hybrid
automaton using piecewise-constant polyhedral differential inclu-
sions. Both methods are sound for safety properties; that is, if we
establish a safety property of the translated linear system, we may
conclude that the original nonlinear system satisfies the property.
When applicable, the clock translation is also complete for safety
properties; that is, the original system and the translated system
satisfy the same safety properties. The phase-portrait approxi-
mation method is not complete for safety properties, but it is
asymptotically complete; intuitively, for every safety property,
and for every relaxed nonlinear system arbitrarily close to the
original, if the relaxed system satisfies the safety property, then
there is a linear phase-portrait approximation that also satisfies
the property.

We illustrate both methods by using H*¥TECH—a symbolic
model checker for linear hybrid automata—to automatically
check properties of a nonlinear temperature controller and of
a predator—prey ecology.

Index Terms—Clock translation, formal verification, hybrid
systems, WTECH, linear hybrid automata, model checking,
phase-portrait approximation, predator—prey ecologies.

|. INTRODUCTION
YBRID SYSTEMS combine discrete and continuou

theory. From computer science, we have the moddiydifrid
automata which combines discrete control graphs with con-
tinuously evolving variables [1]. A hybrid automaton exhibits
two kinds of state changes: discrete jump transitions occur
instantaneously, and continuous flow transitions occur while
time elapses. We have algorithmic techniques for checking
certain properties, such as safety, fioear hybrid automata
whose transitions are subject to linearity restrictions: for each
jump, the possible source and target values of the variables are
constrained by linear inequalities; for each flow, the possible
values of the variables during the flow are constrained by
linear inequalities on the variables; and the possible derivatives
of the variables during the flow are constrained by linear
inequalities on the derivatives [3]. It is important to realize that
the definition of linearity used here is more restrictive than in
systems theory. For instance, linear hybrid automata cannot
represent constraints of the forth = z, which relate the
derivative ofz with the value ofz. Model-checking methods
for linear hybrid automata have been implemented YTECH

[10] and used to verify distributed real-time protocols [7],
[14], [9]. This paper extends the model-checking approach to
the analysis of nonlinear hybrid systems, by reduction to the
linear problem.

For automata, the verification problem for safety properties
reduces to the emptiness problem, i.e., whether there exists
a trajectory from an initial state to a final state. Every hybrid
automaton defines an infinite-state transition system with jump
transitions and flow transitions. Checking the emptiness of a
hybrid automaton, then, involves computing the successors (or
predecessors) of state sets in the underlying transition system.
The widest class of hybrid automata for which we know how
to compute flow successors reasonably efficiently is that of
linear hybrid automata. We therefore propose the following
methodology for analyzing a nonlinear hybrid automatbn
$irst, we attempt to translate the constraints on each nonlinear

~dynamics. The analysis of hybrid systems, thereforgariable z of A into constraints on a clock variable, which
requires techniques from both computer science and conti®l variable with the constant derivative one. Intuitively, the
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Formally, the hybrid automaton that results from translating

. R . . . - turnoff
the constraints on a nonlinear variable into clock constraints is ;- 54 on 3
timed bisimilar to the original automaton, i.e., the translatiom =04 z=0 1Se<3 Vel
. . Az=-2+5 atable(z,y, 2)
preserves all properties of interest [5]. The method, called Ap=1 turnon

clock translation is detailed in Section Il and illustrated on AE=1
a simple temperature controller. The hybrid automaton that
results from overapproximating the set of possible flow vectorg). 1. A thermostat.

time simulates the original automaton. While the approxi-

mate automaton may satisfy strictly fewer safety propertiggnstantc € R. A predicateover Y is a positive boolean
than the original automaton, we show that at the cost gbmbination of atomic predicates oVEr A valuationoverY
increasing the discrete complexity of the approximation, evewy g pointa = (ay,as,- - -, a,) in then-dimensional real space
hybrid automaton can be approximated arbitrarily closelg or equivalently, a function that maps each variaple Y
The method, calledinear phase-portrait approximationis to a valuea; € R”. We write a(y;) to refer to the valuey;
detailed in Section IV and demonstrated on a predator—pref/the variabley; in the valuationa. For a predicatey and
ecology. Both methods complement each other and beffvaluationa over Y, we write oY := a for the truth value
may be required for the successful algorithmic analysis ofgptained by evaluating: with the constants; replacing in
nonlinear hybrid system. The clock translation, while efficient; all occurrences of the variablg, for eachi € {1,---,n}.
may not be applicable, and the linear phase-portrait approgivery predicate overY defines a sdfy] C R™ of valuations

mation, while always applicable, may produce an approximaifich thaw € [¢] iff ¢[Y := a] is true. If [¢] is a convex set,
automaton that does not satisfy the desired property; increasifgn ¢ is called a convex predicate.

z=1 A stable(z,y, =)

the accuracy of the approximation may be too expensive. A hybrid automatonis a systemA = (X, V, flow,
E,jump, 3, event, init, final) consisting of the following
Related Work components.
Phase portraits have been studied extensively in the lit-Variables: A finite ordered setX’ = {zy,z3, ---, 25} oOf

erature on dynamical systems [13]. Typically, researchei@dl-valuedvariables For example, the thermostat automaton
concentrate on nontrivial properties of continuous dynamid8, Fig. 1 has three variables, y, andz, wherez models the
such as stability and convergence. Our work differs in twi§mperaturey models the amount of time spent in control
respects. First, we considproductsof nondeterministic dy- Modeon, and z models the total elapsed time.

namical systems with discrete control graphs. Second, ourControl Modes: A finite set1” of control modes For ex-
goal is to analyze and derive simple properties of su@mnple, the thermostat automaton has two control modies,
systemsautomatically In computer science, the technique oftndoff, whereon models the heater being turned on, asfi
deriving system properties using conservative approximatiof®dels the heater being turned off.

is called abstract interpretation In [4], [12], [8], [19], and A state(v,@,a) consists of a control mode € V, a valua-
[22], abstract interpretation techniques are used for improvifign@ € R over the sef{’ of variables, and a valuatianc R™
the efficiency of analyzing linear hybrid systems, where&¥er the setX of variables, whereX' = {a,d2, -, dn}.
here we approximate nonlinear hybrid systems. In [6] andhe dotted variable: represents the first derivative ofwith
[21], restricted cases of linear phase-portrait approximatiofgSPect to time, i.eq = dx/dt. Intuitively, a state describes

for nonlinear hybrid systems are considered. a control mode, a point, and a flow tangent at the point.
Flow Conditions: A labeling functionflow that assigns a
Il. HYBRID AUTOMATA flow conditionto each control mode € V. The flow condition

brid h ical model f Ié%)w(v) is a predicate ovek UX . While the automaton control
Hybrid automata are a mathematical model for systems Wi, ¢onrol mode, the variables change along differentiable

both discrete anc_i cont;nu?.urls compo?entsl. Inlformally,.a Tyb"tﬁjectories for which the values of the variables and their
automaton consists of a finite sat of real-valued variables first derivatives satisfy the flow condition. For example, the

and a labeled multigraplV, £). The edgest are used 10 ¢,qr61 modeon of the thermostat automaton has the flow
model discrete jumps. They are labeled with constraints on @Snditionl <z <3Ai=-z+5A7=1A%=1 Hence

values of.X' before and after jumps. The verticSare used \yhjie the heater is turned on, the temperaturéliows the
to model continuous fI.ows. They are labeled with constrainfe antial equationi = —z + 5. The variabley measures
on the values and der|vat|_ves m during flows. The state _Of the accumulated amount of time that the heater is active. The
the automaton changes either instantaneously when a disc{gf e , measures the total elapsed time: such a variable,
jump occurs or, while time elapses, through a continuous ﬂOWith constant derivative one, is called a clock.
The state(v,a,a) is admissibleif (a,a) € [flow(v)]. The
invariant conditionfor the control modev is the predicate
LetY = {1, 42, --,yn} be a set of real-valued variablesinv(v) = (3X - flow(v)) over X. The automaton control may
Let RelOps be the sef{ <, <, =, >, >} of binary relational reside in a control mode only while the invariant condition
operators. Anatomic predicateover Y is a predicate of holds. Thus invariant conditions can be used to force progress
the form f(y1,y2,---,yn) ~ ¢, for a real-valued function out of a control mode. For example, the control medef the
f: R* — R, a relational operator-c RelOps, and a real thermostat automaton has the invariant conditiod = < 3.

A. Syntax
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Hence, the heater can be turned on only while the temperatare specified by the final conditiorfimal(on) = final(oft) =

is in the range [1, 3], and it must be turned off at the late§t = 60 A y > z/2).

when the rising temperature hits 3. Remark: The definition of hybrid automata used here dif-
Control Switches:A finite multiset £ of control switches fers from previous definitions in the literature [1], [5]. In a

Each control switch(v,+) identifies a source control modeminor change, we add final conditions so that system safety

v € V and a target control mode € V. For example, the can be conveniently expressed as automaton emptiness. In a

thermostat automaton has two control switches, off) and major change, we augment the notion of a state with a vector

(off,on). over X, providing the flow tangent at the given point, we
Jump Conditions:A labeling functionjump that assigns augment jump conditions with constraints ov&r, and we

a jump conditionto each control switcke € E. The jump make invariant conditions implicit within flow conditions. This

condition jump(e) is a predicate ovetX U X U X' U X', enables us to model changes (or the absence of changes) in

where X’ = {z},.--,z/} and X’ = {&,,.--,&,}. The the first derivatives when a control switch occurs. Information

variablez; refers to its value before the control switch, and thabout higher order derivatives can be encoded by explicitly

primed variablez) refers to the value of; after the control introducing additional variables, e.g., with the flow condition

switch. The variable:; refers to the first derivative of; % = u, we may usei to refer to the second derivative of

before the control switch, and, refers to the derivative of

x,; after the control switch. Thus the jump conditions relate

the values of the variables before a control switch with tho& Timed Transition-System Semantics

after (allowing, for example, the assertion that trajectories We provide a formal semantics for hybrid automata in terms

are continuous across control switches) and also relate #faimed transition systems. L&, denote the set of nonneg-

tangents before the control switch with those after (allowingtive reals. Atimed transition syster = (Q, Q1, QF, ¥, —)

for example, the assertion that trajectories are differentialyensists of a (possibly infinite) sef of states, a subset

across control switches). For convenience, we use the specjdlC @ of initial states a subse®* C Q of final statesa set

predicate stable to indicate that certain primed variabless of transition labels(including the speciasilent transition

have the same values as their unprimed counterparts, elgbel 7), and atransition relation— C @ x (X URs) x Q.

stable(z,y) denotesr = 2’ A g = 7. For example, in the Each triple(s,m,s’) € — is called atransition and denoted

thermostat automaton, the control swifeln, off) has the jump s % ¢, There are two kinds of transitionfump transitions

conditionz = 3 A stable(z,y, z). The conjunctz = 3 asserts are of the forms - s’ for a transition labeb € ¥, andflow

that the hegter can be turned off only when the temper_aturqr'bc,nsitions are of the forms - s/, for a nonnegative real

3. The conjuncttable(z,y, z) asserts that the target point ofs « g. which is called theduration of the flow transition.

the jump is the same as the source point. Jump transitions of the form = s are calledsilent

Events: A finite setX of eventsincluding thesilent event  gyary hyhrid automatont defines a timed transition system
7 and a labeling fuqctlomvent that assigns an event i Ty = (Q,QF,QF, 3, —) with the following components.
to every control switche € E. Control switches labeled Q is the set of admissible states

py T are_called silent For convenience, we require that | Q! is the set of initial states oft.
jump(e) = stable(X, X)) for all silent control switches:. . OF is the set of final states of
Although not done here, the events can be used to define the Y is the set of events oft '

parallel composition of hybrid automata [3]. « The transition relation-= U,cs, - UUscg 2. where
— a >0 b

Initial Conditions: A labeling functioninit that assigns an . o e .
o " L . the jump transitions and the flow transitions are defined
initial conditionto each control mode € V. The initial condi- as follows

tion init(v) is a predicate oveX U X. The automaton control ] -
may start in the control mode wheninit(v) holds. The state In jump transmon_s, the control mode_ of the automa?on and
the values and derivatives of the variables change instanta-

(v,a,@) is initial if it is admissible and(a,a) € [init(v)]. _ _ _ o
In the graphical representation of automata, initial conditioR€OUSly, in accordance with a control switch and its jump

appear as labels on incoming arrows without a source contf@dition. Formally, for each event € X, the binaryjump
mode, and initial conditions of the forfalse are not depicted. élation = on the admissible states is defined faya,a) —
For example, all initial states of the thermostat automaton 4@ & ) iff there exists a control swtcfa = (v, of A%“?h
in the control moden with = = 2 Ay = 0 A z = 0. Hence, thatevent(c) = o andjump(¢)[X, X, X', X" = a,a,4',a] is
initially the heater is turned on and the temperature is 2. U The control switcfe is /refsarr/ed to as avitnessfor the
Final Conditions: A labeling functionfinal that assigns a JUMP transition(v,a,a) = (v'.a,@).
final conditionto each control mode € V. The final condition  Puring flow transitions, the control mode of the automaton
final(v) is a predicate oveX U X. The statgv, a, ) is final if stays fixed an_d th_e values and de_nvatlves of the v_quables
it is admissible anda, &) € [final(v)]. We use final conditions change_ over time in accordance with the flow cond|_t|on of
to specify the unsafe, or error, states of a system. Then, mg active control mode. Formalléy, for each nonnegative real
system is safe if, when started in an initial state, no final state€ R>o, the binaryflow relation— on the admissible states
can be reached. For example, for the thermostat automatisndefined by(v, e, ) kA (v,d,d) iff v =1/, and either: 1)
consider the safety property that the heater is active less tifar- 0 anda = @ anda = & or 2) § >0 and there exists a
50% of the first 60 time units. The corresponding unsafe stantinuously differentiable functiop: [0, ] — R™ such that
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the following two conditions hold.

1) The endpoints of the transition match thosepofi.e.,
p(0) = a,(0) = a,p(8) = o', and p(6) = &, where
is the first derivative ofy.

2) The flow condition is satisfied along, i.e., flow(v)
[X, X := p(t), p(¢)] is true for allt € [0, §].

The function p is referred to as awitnessfor the flow
transition (v, a, &) KA (v',d ,&). This completes the definition
of Ty.

A trajectory of A is a finite pathsy =% s,
of transitions in7’4, with k& > 0, such thats, € @, and
s siy1 forall i € {0,---,k—1}. The statesy, is referred to
as theend stateof the trajectory. The stateof A is reachable
if there is a trajectory ofd with the end states. We write
reach(A) for the set of reachable states df The hybrid
automatonA is emptyif no final state ofA is reachable, i.e.,
QF Nreach(A) = (. OtherwiseA is nonempty

mMEe—1
— Sk

my

C. Time Simulation and Timed Bisimilarity
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timed transition systenig, and75; aretimed bisimilar denoted
T, =uis 1, if there exists a time bisimulatioa between[};
and7>». The two hybrid automatal and B aretimed bisimilar
if TA =bis TB.

By induction on the length of trajectories, it is easy to check
that if A time simulatesB, then for every trajectory ofB
there exists a trajectory ol that follows the same sequence
of nonsilent events. Therefore, & is empty, then so iB.

Proposition 2.1 [20]: Let A and B be hybrid automata.

e If A time simulatesB and A is empty, thenB is empty.

* If A and B are timed bisimilar, them is empty iff B

is empty.

Remark: The notions of time simulation and timed bisimi-
larity are unnecessarily strong conditions for emptiness check-
ing. They are, however, useful for also checking more general
classes of properties than safety, precisely because they pro-
vide such a tight coupling between systems [5].

D. Control-Mode Splitting

We define the concepts of time simulation and timed bisim- We often find it useful to split the control modes of a hybrid
ilarity for timed transition systems [5]. In the sense of MilneRutomaton in order to obtain simpler or more constrained

our simulations areveak [18], with silent transitions being
invisible. In addition, a flow transition of duratichcannot be

flow conditions. Let A (X4, Vs, flowy, £, jump 4,
Y 4,event 4,1init 4, final 4 ) be a hybrid automaton. Aow split

distinguished from two or more consecutive flow transition®r A is a function that maps each control mode V4 to a

whose durations add up té& This is captured by closing
the timed transition systeri’ = (Q,Q',QF,%,—) under
stuttering. For each nonsilent transition labek £\ {7}, we

define thestutter-closed jump relatior» C Q2 by s - s/

iff there exists a finite sequencs),---,s; of states, with
kE > 0, such thats = so andsg — s; — -+ —
For each nonnegative redl € R>o, we define thestutter-

. & & . .
closed flow relation» C Q2 by s — s’ iff there exist

Tt
— S — S.

a finite sequencey,- - -, so;. Of states and a finite sequenc

o, -+, 0r € R>o oOf constants, witht > 0, such thats = sq
andsg 2 sy 5 osy B Dosy 25 s andBE_ 8 = 6.

Let Tl = (leQ{vavzv_q) and T2 = (Q??Qé’

QF,¥,—2) be two timed transition systems with the sam

transition labels. The binary relation C Q; x Q2 is atime
simulationof 15 by 17 if the following three conditions hold.

1) For all states; € Q1 andss € Q», if s; = so, then for
each transition label € ¥\ {7} URso, if so 5 s,
then there exists a stat¢ such thats; 5 s| and
s) = s,

For every initial states, € Q%, there exists an initial
states; € Qf such thats; > s,.

For every final states, € Qf, and for every state
s1 € Ql, if S1 = 89, thensl c Qf

The timed transition systenTi time simulatesthe timed
transition systenil,, denoted?; >, 1>, if there exists
a time simulation> of 7, by 77. The hybrid automatom
time simulateghe hybrid automato® if T4 >¢m TB.

For a binary relationrs C 1 x (), define the inverse=—!
to be the binary relation ovaps x @; such that(so,s;) €
="Liff (s;,s2) € =.The binary relationr= C Q; x Q, is a
time bisimulatiorbetweenl; and75 if = is a time simulation
of T, by 7, and=""! is a time simulation off; by 7. The

2)

3)

finite set{flow?, - - -, flow} } of predicates oveX UX such that
there exists a finite open cov€l” = {O7,---,0}} € 22"

of [flow(v)] with [flow;] [flow(v)] N Of for each
¢ € {1,---,k}. For example, for anye >0, the function
P defined byP(on) = {1l < x<2+¢2—e<z < 3} and
Ploff) = {1 < = < 3} is a flow split for the thermostat
automaton in Fig. 1. Sinc&®" is a cover of[flow(v)], i.e.,
[flow(v)] € UO?, the flow conditionflow(v) is equivalent to
éhe disjunctionv’_, flow?. Since all sets ifO" are open, the
splitting of the flow condition into disjuncts does not prohibit
flow transitions.

Given a flow split, we derive a new hybrid automaton
such that for every flow transition of the original automaton,
fhe split automaton has a matching sequence of alternating
flow transitions and silent jump transitions. Formally, the
application of the flow split? to the hybrid automaton
A vyields the hybrid automatorP(A) = (Xp(4y, Vp(a)
flowp(4), Ep(a), Jumppa), Lpa), evenbpa), initp(4),
finalp(4y) with the following components.

° XP(A) = XA.

Vpa) = {(v,9)lv € V4 andp € P(v)}.

For every control mode(v,¢) € Vp(yu), define
flow(v,¢) = (flow(v) A ).

Ep4) = E1 U Ey, where By = {((v,¢), (v, ¢"))|(v,v")

€ Es, ¢ € Pu), and ¢’ € P()} and E; =
{{(v, ), (v, ))|e, ¢’ € P(v)}. The control switches
in E4 are inherited from control switches of, and the
control switches inE, are silent control switches that
enable the automaton control to pass freely across copies
of the same control mode.

For every control switche = ((v,¢),(v',¢")) € Ei,
define jumpp4)((v, @), (v',¢")) jump 4 (v, v'),
i.e., the jump condition is from the

inherited
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corresponding control switch of A. For every
control switch ¢ ((v,9),(v,¢")) € E», define
jumpp (v, 9), (v, ¢")) = stable(X, X), i.e., the jump
condition requires the state to remain unchanged.
EP(A) = EA.

For every control switche = ((v,¢),(v/,¢")) € FEy,
define eventp(.4)((v, ), (v, ¢")) = event(v,v’). For
every control switch: € E», defineeventp4)(e) = 7.
For every control mode(v,p) € Vp(a), define
initp(a)(v, ) = (init4(v) A @).
For every control mode(v, ¢)
finalp(4)(v,¢) = (finals(v) A ¢).
define the projectionr: Qp4) — Q4 On states by
7<p)7a7d) = (U7a7d)'

€ Vpra, define

The hybrid automatoni is splittableif for every flow split
P for A, the two automat&’(A) and A are timed bisimilar.

It may appear to be possible that for some hybrid automatpiing transitions is again immediate.

A and some flow spli® for A, the automatorP(A) does not
time simulateA, because all witnesses for some flow transitiog, pe split in order to meet the conditions for applying the

of T’y correspond to infinite sequences of flow transitions anglyck translation (see Section I11) and to allow more accurate

silent jump transitions off’»4). We show that, due to our phase-portrait approximation (see Section V).
requirement that all flow splits are derived from finite open

covers, this scenario cannot occur.
Theorem 2.2:Every hybrid automaton is splittable.

Proof: Let A be a hybrid automaton arig a flow split

and all points in the range of satisfy flow(v). Sincep is
continuously differentiable, it follows that the s¢t!(B,) is

open and hence includes an open inteffyalontainingt. Thus

the set of intervals = {I;|t € (0,6)} is an open cover for
[0,6]. The Heine—Borel-Lebesgue theorem states that every
open cover of a closed and bounded subset of the space of
real numbers has a finite subcover. Hence there is a finite open
cover of [0, 4] consisting of intervals irZ. Since the cover is
open, we can identify a point in the overlap between each
pair of consecutive intervals and construct a finite sequence of
witnesses between the endpoints and the intermediate points,
with each witness lying entirely within some set from the cover
Ov. It follows that § —‘S»p(A) §' for some states and § of

P(A) with 7(8) = sandx(§') = ¢. By induction we conclude

that stutter-closed flow transitions of the forsmé» 4 s’ can be

time simulated irP(A). The time simulation of stutter-closed

[

This theorem enables the control modes of an automaton

E. Linearity
The linear hybrid automata form a subclass of hybrid

for A. We show that the relatiore C Q4 x Qp(4), defined automata that can be analyzed effectively [3]lidear term
by s; = so iff w(s2) = s1, is a time bisimulation between over a set” of variables is a linear combinatigh= Ekzlaiyi
T4 and TP(A)-
First, consider time simulation oP(A4) by A. Suppose linear termf hasrational coefficientsf all coefficients«; are
that s, &P(A) s2 Dpea) Sa QP(A) s4 for nonnegative rational. The atomic predicate overY” is (rationally) linear
reals 61,8, € Rxo, and statessp, s2, s3, and sy of P(A).
The jump conditions for all silent control switches imply thafational coefficients), a relation symbeke RelOps, and areal
the variables and their first derivatives do not change. Henégational) constant. The predicatep overY is (rationally)
if s, and s3 are derived from the same control mode dinear if ¢ is a positive boolean combination of (rationally)

. s 5
A, the witnesses fol; —p(4) s2 and sz =pr4) s4 can

be concatenated to a witness fofs;) 61—+—6>2A m(s4). If s2
and s; are derived from different control modes df, then

so T4 s3, and therefores; 54 s D4 s3 34 sq. By
inductioén it follows that stutter-closed flow transitions of they| occurrences of: and 2’ are contained within (rationally)
form s »p(4) 8, with § € R0, can be time simulated ir.
For stutter-closed jump transitions of the forgmf»p(A) s/, of & and 4’ are contained within (rationally) linear atomic

with o € £\ {7}, there exists a state¢’ such thats —O»p(A)

s &P(A) s’. By the time simulation of flow transitions, we

need only show that each jump transitiﬂhgpm) s’ can be
time simulated inA. This is immediate, because all nonsilenf 4 is 5 (rationally) linear predicate. Furthermore, for every
control switches irfP(A) are directly inherited from.
Second, consider the time simulation 4fby P(A). Sup-
pose thats iA s’ for a nonnegative reab € Rx(, and
statess and s’ of A with the same control mode, say Let
p: [0,6] — R™ be a witness fors 24 s Let ©¥ be the
finite open cover from which the sé(v) of flow conditions
is derived. Let¢: (0,6) — R?™ be the function defined by mode. For example, the flow conditi@r > y A & < 3y + 2

£(t)

(p(t), p(t)). Sincep is continuously differentiablel

%

of variablesy; € Y with real-valued coefficients; € R. The

if ¢ has the form§ ~ ¢, for a linear term# over Y (with

linear atomic predicates ovéf. If ¢ is a (rationally) linear
predicate, therf¢] is called a (rationally) linear set.
Consider the hybrid automatont (X,V, flow, E,
jump, ¥, event, init, final). A variablez € X is (rationally)
linear if in all flow, jump, initial, and final conditions of4,

linear atomic predicates oveX U X', and all occurrences

predicates oveX U X’. Otherwisez is a nonlinearvariable.
The hybrid automator is (rationally) linear if all variables

in X are (rationally) linear. If4 is a (rationally) linear hybrid
automaton, then every flow, jump, initial, and final condition

control modev of A, the flow conditionflow(v) is equivalent

to a conjunction of the formpy A ¢, wherey is a predicate
over X and ¢ is a predicate oveX. Thus, there may be
linear dependencies between the derivatives of variables, but
the derivative of a variable cannot depend on the value of a
variable: the set of flow tangents is constant for a given control

is legal for linear hybrid automata, but the flow condition

is continuous. For each € (0,6), let B, be an open ball £ = z is not.
that containst(¢) and lies entirely in some open s@te OV.
Such a ball exists, becaus® is an open cover offlow(v)] defined by the hybrid automata#. A regionof A is a set of

LetT, = (Q,QF,QF, ¥, —) be the timed transition system
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states ofA. The regionP is (rationally) linear if there exist some nonnegative integerlt follows that for rationally linear
(rationally) linear predicates, over X U X, one for each hybrid automata, there is an effective procedure that terminates
control modev € V, such thatP = U,cv{v} X [¢.]. For if a final state is reachable but may not necessarily terminate
example, if A is a (rationally) linear hybrid automaton, therif no final state is reachable.
the region of admissible states, the regia@! of initial Corollary 2.4: The nonemptiness problem for rationally
states, and the regia@? of final states are (rationally) linear.linear hybrid automata (“Given a rationally linear hybrid
We define thesuccessofunction post: 2¢ — 2% on regions automaton4, is A nonempty?”) is recursively enumerabie.
by post(P) = {s2|3s1 € P -s1 — s2}, and thepredecessor  Algorithmic analysis techniques for rationally linear hybrid
functionpre: 2¢ — 2% by pre(P) = {s1|3so € P-s; — s2}. automata have been implemented in tools such a$HaH
Theorem 2.3:Let A be a (rationally) linear hybrid automa-[10] and PLKA [12]. In particular, when applied to an
ton. If P is a (rationally) linear region afi, thenpost(F) and unsafe system, the emptiness-checking procedures of these
pre(P) are also (rationally) linear regions @f. Moreover, for tools are guaranteed to detect a violation of the safety property.
every rationally linear predicatg, we can effectively construct Experiments to date show that for many real-world examples,
rationally linear predicates;,.., and ¢y, defining post(P) there is a nonnegative integersuch that all reachable states
and pre(P), respectively. can be reached withirk jump and flow transitions, i.e.,
Proof Sketch: The proof of the theorem is similar to thepost**1(Q7) C UX_; posti(Qf). In these cases, the safety
proof of the analogous theorem for previous definitions @hecks terminate also when applied to a safe system.
hybrid automata, where states do not include flow tangentsRemark: The safety of a rationally linear hybrid automaton
[3]. Here we consider only thpost operator and omit many can be checked, alternatively, by iterating e operator,
details. It suffices to show that the successor region of a singlarting from the regio)?" of final states. There operator
(rational) state is (rationally) linear. We compute the successdsralso useful for checking more general classes of properties
states via jump transitions and the successor states via flitan safety [3].
transitions separately; the former can be computed as in [3],
by treating the variables ifX like those inX. m
So consider flow transitions with the source state=

. CLOCK TRANSLATION

(v,a,a). We assume that the flow condition ofhas the form For certain nonlinear hybrid automata, we can construct
timed bisimilar linear hybrid automata, by replacing all non-

¢ A ¢ for convex linear predicateg over X and ¢ over ! - -
X nonconvex flow conditions can be treated as in [3], bl§;1ear variables with clocks. For a hybrid automatdn the

splitting into convex parts. We need to compute the possild@riabl.et is aclockif ¢ is linear and_ all flow ponditions oft
target pointd and the possible flow tangeritéor these points, IMPly ¢ = 1. We can replace a nonlinear variabléy a clock
s . t, if at all times the value of: can be determined uniquely

such thats — (v,b,b) for someé € Rxg. If § = 0, then - . .
b— db — & For th >0 = te th __from the value oft,.. This is the case if, measures the time

=aean _a/' or the cas 5> ! we compu e. € TegIon ihat has elapsed since the valueaofvas last changed by a
Posto(s) = {s|36 € R -5 = &'}, whereR. is the set control switch, if the value of: after that change is recorded
of positive reals. Sinclow(v) is convex, for flow transitions anq if » has followed a unique flow since that change. The

of positive duration, any target poibtcan be regch/ed With yariables that can be replaced by clocks are called solvable.
flow tangentd iff there is a different target poinb’ such

that the straight line frond’ to b has directionb. Define "
ki 7 = A. Solvabilit
post: R" — 28" by post(a) = {blp(@) A pb)A(b=aV (36 € Y

Ro - ¢[X .= (b—a)/5]))}. Then Before giving formal definitions, we intuitively describe the
conditions we require for a variable to be solvable. First,

posto(v,@, @) we require thatz be independent of the other variables in

_ {(v,b,i))|(a,d) € [flow(v)] and flow, jump, initial, and final conditions. Thus we need not
i consider how to translate relationships betweemd the other
- (b,b) € [How(v)] and variables into relationships betwegnand the other variables.

Second, we require to follow a unique flow from any starting
. — point. This restriction enables us to determine the value ibf
-3k1 € R>o - (@ + k1) € post(a) and we know its initial value and the elapsed time. Third, in order
3ky €Rsg - (b— in,) c ffﬁt(a)}. to determine the truth of atomic predicates suchas ¢, for
any constant € R, from the value ot,., we require the flows
This region is linear. If the flow condition afis rationally lin-  of = to be strictly monotone. For examplegithas initial value
ear, then for rational vectousanda, the regionpost., o(v,a,@) b, strictly less tharr, and is strictly increasing, we know that
is rationally linear. Bz > cis true iff £, > a, wherea is the time it takes for the
The function that results from composing thest operator unique flow ofz to progress frond to ¢. Fourth, we require
i times is denotegost’. Then, the region of reachable states ahat at all times we know the initial value of the current flow
the hybrid automato is reach(A) = U2 post’(QF). Even of x and the elapsed time. For example, suppose thaas
if A is rationally linear, there may not be a rationally lineavalue 1 when the automaton control enters the control mode
representation foreach(A) because of the infinite union. If, v, and the flow condition of; implies & = z. Suppose that
however, a state of A is reachable, thes € post(Q!) for the automaton control switches to another control motie

-b € post(a) and
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when the variable; equals 2. If the flow condition of’ also invariant and jump conditions, if there exists a time> 0
implies = z, then the value of can be determined from thewith ¢(¢) = ¢, thent is unique.

time that has elapsed since the control entergly z = ¢'=,

regardless of when the control switched #0 However, if B. The Clock-Translation Algorithm

flow(v") differs fromflow(v) and the value o at the control  Tpe clock-translation algorithm replaces a solvable variable

switch is not known, then it is no longer possible to determingqs 4 hybrid automatoet by a clock?, such that the resulting

the current value ofr. Thus, we say that the variable iS  hyprid automaton is timed bisimilar te. In this way, if A

definite for the control switcfe if the jump condition ofc s solvable, then all nonlinear variables dfcan be replaced

implies+’ = ¢ for some constant € R, and we require control gne py one, and the final result is a linear hybrid automaton

switches to be definite far whenever the flow conditions for hat is timed bisimilar toA.

the source and target modes differ. Consider a solvable variable of the hybrid automaton
We now formalize these concepts. An atomic predicate j — (X4, Va, flows, E4,jump 4, ¥4, event 4, init 4, final4).

simpleif it has the formz ~ corz’ = corz’ = z, wherez is  The constant € R is a starting valuefor z € X 4 if there

a variable~ € RelOps is a relational operator, andle Ris  exists a control mode € V,, such thatc is the initial value

a constant. The predicaeis simple forz if all occurrences of of  for v, or there exists a control switehe E 4 such that

z andz’ in ¢ are contained within simple atomic predicateSs the arrival value of: for ¢. Let Start 4 (z) = {c1,- -+, e},

andz andi’ do not occur inp. The variabler is independent with ¢, < ... < cx, be the set of starting values farin A.

in the hybrid automatoni if the following conditions hold.  The clock-translation algorithm proceeds in two steps.

* Every jump, initial, and final condition ofi is simple 1) Each control modes of A is split into a collection

for . (v,c1), -+, (v, e) of control modes, one for each start-
* For every control mode of A, the flow conditionflow(v) ing valuec; of z. We then add the clock, such that the

has the form(¢ = f2(x)) Ainv, A flowy for a function value of z in the control mode(v, ¢;) is g(t.), where

f2: R — R, a simple predicaténv,. over {z}, and a g(t) is the unique solution of the initial-value problem

predicateflowy overY UY, whereY = X \ {z}. The “t) = f2y);v(0) = ¢

function £ is called theflow functionfor - in the control ~ 2) For all invariant, jump, and final conditions of,

mode v. each atomic subformula ovefz} is replaced by an
The independent variableis monotonically determineih the atomic predicate oveft, }. Then the variable: can be
control modewv of A if for all reals ¢ € R, the initial-value discarded.

problem %(t) = f2(y(t));¥(0) = ¢" has a unique continuous Remark: For simplicity, we consider a global set of starting
solutiong(t), and that solution is strictly monotone (this is thesalues for each variable. If the starting values are parameter-
case, for instance, if;(y) # 0 for all y € R). The variabler is ized by control modes, in Step 1) the control modes can be
initially definite for the control mode if the initial condition split more selectively.

init(v) is eitherfalse or impliesz = ¢, for some constant

¢ € R. The constant is called theinitial value of = for v. Step 1) Adding the Clock,

The variablez is definitefor the control switche of A if the The result of this step is the hybrid automatdh —

. o N ;L _
jump COﬂdItIOHJuInp(?) implies z = d, for some constant (X3, Vi, llows, Ep, jumpy, X5, event s, init s, finalp) with
d € R. The constant! is called thearrival value of z for e. o following components.

The n_onlmear va_nablez: of the _h_ybnd automatord is + The variables o3 are X = X4 U {t,}, and the events
solvableif the following three conditions hold.
of BareXg = X4.

1) The variabler is independent. _ L + The control modes oB areVp = V4 x Start 4 (). Each
2) For all control mode® of A, the variablex is initially control modev; = (v,¢;) of B has the flow condition
definite and mon(?tonlcally det/ermmed.m . flowp(v;) = (flowa(v) A (£, = 1)), reflecting the fact
3) For all control switches = (v,') of A, if the variable that the new variable,, is a clock. The control mode;
2 is not definite fore, thenv and+’ have the same flow has the initial conditionit 5 (v;) = (init 4 (v)A(t, = 0))
functions_ forgz, i.e., fu = fr, and the jump condition if initi(v) implies = = ¢;, and initp(v;) = false
jump(e) implies «* = . otherwise. The control mode; has the final condition
The hybrid automatont is solvableif all nonlinear variables finalg(v;) = finala(v).

of A are solvable. For example, the thermostat automaton ofe For each control switch = (v, ") of A for which x is not
Fig. 1 is solvable, since is the only nonlinear variable and definite, the automatoB has, for each:; € Start4(z), a
x is solvable. control switch of the forne; = ((v, ¢;), (v/, ¢;)) with the
Remark: While our requirements for solvability are conve-  jump conditionjump z(e;) = (jump 4(e)A(t, = t,)) and
nient and easily checkable, they are, of course, unnecessarily the event labetvent(e;) = event 4(c). For each control
strong and can be relaxed in various ways. For instance, switche = (v,v’) of A for which z is definite with arrival
the strict monotonicity of solutions can be replaced by the valuec;, the automatorB has, for eacly; € Start4(z),

requirement that the unique solutigit) of the initial-value a control switch of the forne; ; = ((v, ¢;), (v'; ¢;)) with
problem is such that for each constané R that appears in the jump conditiofjump z(e;;) = (jump 4(e)A(t), = 0))
an atomic predicate of the form ~ ¢ or ' ~ ¢ in certain and the event labelventg(e;;) = event 4(e).
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turnoff turnoff

z=3At, =0 t:=In2At,=0
Atz =1

turnon turnon A§=0

tz=In3 At =0

z=1At, =0

turnoff
t: =In(3/2) At =0

z=2 (on,2)
Ay=0 y=0 tz < In(3/2)
Az=0 Az=0

Afz=1
Aty =0

STEP 2
Fig. 2. Clock translation of the thermostat automaton.

TABLE | the following four steps for each control mode= (v, ¢;) of
the hybrid automatorB.

op [ {t(op) l gt{op) O ]
= = S 1) In the flow condition ofy;, replace bytrue each atomic
< < S predicate that contains the variakileThen replace each
S - atomic predicate of the form ~ d, for ~ € RelOps,
S| < > by a, (z ~ d) if ¢; ~ d, and byfalse otherwise (in the
> < > latter case, the control mode may be removed).
2) For each control switcla of B with the sourcev;, in
the jump condition ofe, replace bytrue each atomic
Example 3.1:We apply Step 1) to the variable of the predicate that contains the variahieé and replace each
thermostat automaton from Fig. 1. All control switches are  atomic predicate of the form ~ d, for ~ € RelOps,
definite forz. The starting values af are 1, 2, and 3, so we by ac,(z ~ d).
split both control modesn andoff into three control modes 3) In the initial condition ofu;, replace bytrue each atomic
each. Since the control modésn, 3), (off, 1), and(off, 2) are predicate that contains the variabte

not reachable by a sequence of control switches from the initial4) In the final condition ot;;, replace each atomic predicate
control mode(on, 2), we omit these three control modes from  of the formz ~ d, for ~ € RelOps, by ac, (z ~ d).
the clock-translated automaton. The result of Step 1) is shoWhe resulting hybrid automatofy is called theclock transla-
on the left in Fig. 2. m tion of A with respect toz.
Example 3.2:In the thermostat example, we have the solu-
tions g1 (t) = —4e™" + 5 andga(t) = —3e~* + 5 for x in the
) ) o control modeon and the solutiorys(¢) = 3e™* for x in the
Let g.(t) be the unique solution of the initial-value problemyoniro| modeot. Consider the atomic predicate= 3 of the
“9(t) = f2(y(1)); y(0) = ¢,” for ¢ € R. Sinceg.(?) is strictly  jymp condition of the control switch frorfon, 2) to (off, 3).
monotone, for eackll € R ther_e is at most one € R>o such gjnce —30-t 4+ 5 = 3 implies ¢ = In(3/2), it follows that
thatg.(t) = d. Let g (d) =t if go(t) =d, andg:*(d) = L, _ 3ff ¢, = In(3/2). Hence the atomic predicate= 3 is
if g.(t) # d for all # € R>o. The transformation function repjaced byt, = In(3/2). The final result of Step 2) is shown
a. from simple atomic predicates ovér} to simple atomic 5, the right in Fig. 2. -
predicates oveft,} is defined as follows:

Step 2) Replacing the Conditions erby Conditions ort..

ae(z ~ d) C. Correctness
true, if g7(d) = L andc~ d, Let z be a solvable variable of the hybrid automatdn
_ ) false, if g-4(d) =L andc # d, and letC be the clock translation oft with respect toz.
txlt(’v)gc_ll(d% if gc_i(d) #Landc~d, We show thatA and C' are timed bisimilar. Let(),, be
tegt(~)gz (d),  if g7 (d) # Landc gt d the set of admissible states of, and let Q- be the set

of admissible states of’. Define 8: Q- — Q.4 such that
where~¢e RelOps is a relational operator, ardet RelOps —  (((v,¢),a1,61) = (v,a2,a2), Where the valuationa; anda;
RelOps and gt: RelOps — RelOps are defined by Table I. agree on all variables exceptandi,, the valuationgy; andas
Predicates using thi¢(~) operators correspond to constraintagree on all variables exceptand?,, anday(z) = g.(a; (.))
on how long ther ~ d predicate will remain true. We conductand ax() = fr(g.(a:(¢;))) for the solutiong.(¢) of the
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initial-value problem %(¢) = fy(y(t));y(0) = ¢” Define 1) Assume thajump 4(ez) implies z’ = d for some real

=3C Qc x Q4 by sy =g s2iff 55 = 3(s1). We prove that=g d € R. In this case, there exists a control switch
is a time bisimulation between the hybrid automéatand A. er = ((v,¢),(v',d)) of C derived frome, such that

Lemma 3.1:1f ((v1,¢),a1,81) =3 (v2,62,a2), thena;, € jumpe(e;) implies ¢, = 0 and evente(e;) = o.

[ac(z ~ d)] iff @ € [x ~ d]. Define @] such thata;(y) = a5(y) for y # ¢, and
Proof: Lets; = ((v,c),a1,a;) be an admissible state of @, (t,) = 0. Define & such thata)(y) = ay(y) for
C, and letsy = (v,ay,ay) be an admissible state of such y # t,, andaj(f,) = 1. Defines| = ((v/,d),a,,a)).
that s; =3 s2. Let g.(¢) be the solution of the initial-value We show thats] =3 s. Let gq(t) be the solution of
problem %(t) = fY(y(t));y(0) = ¢.” Recall that g.(t) is the initial-value problem #(t) = f¥ (y(t));4(0) =
continuous and strictly monotone. Létc R be any real. We d.” Since (aQ,ag,a’Q,a’Q) € [jump 4(e2)], we have
consider the four cases that arise from the definitionof ay(x ) = d = g4(0) = gq(d|(t;)) and then since

+ Assume thatg7!(d) = L and¢ ~ d. Since g.(t) + d (a5,d)) € [flow(v))], we haveds (i) = f2 (@ (x)) =
for all ¢ > 0, and g.(0) = ¢, in this case~ cannot be £ (9a(@; (). Admissibility of s; follows from
the equality relation. By the continuity @f.(t), we have s1 =g s and Lemma 3.1. It remains to be shown
gc(t) ~ d for all t > 0. Henceay(z) = g.(a; (t;)) ~ d. that ¢; witnesses the jump transitios, %¢ s of

 Assume thay !(d) = L andc # d. If ~ is the equality C. This follows from the construction ofump(e1),
relation, g1 (d) = L impliesax(z) = g.(a;(t,)) # d. If which ensures, by Lemma 3.1, that =3 s; and
~ is an inequality, then by continuity;.(t) + d for all sy =p b and (ay,@,a5,d) € [jump4(ez)] imply
¢ > 0, which impliesa,(z) = g.(ay(t,))  d. (a1,a1,a,@) € [jumpe(er)].

« Assume thay(d) # L andc ~ d. If ~ is the equality =~ 2) Assume thajump ,(ez) implies 2/ = z. In this case,
relation, theng.(0) = ¢ = d, and g.(t) # d for all t> 0. there exists a control switcty = ((v,¢), (v, ¢)) of C
Therefore,ax(z ) = d iff g.(ai(tz)) = d iff a;(tz) =0 derived fromey such thatjump(e;) implies ¢, = ¢,
iff @y (t,) = g7 *(d). For inequalitiesy of the formz < d andeventc(e1) = o. Definea; such thaw (y) = a3(y)
or 2> d, by the strict monotonicity ofy.(t), we have for all y # t., andaj(t.) = a(t.). Definea; such
ay € [¢] iff @ € [t. <g-'(d)], becauser reaches the thata) (9) = a(y) for all § # #., andé;(f.) = 1.
cutoff valued precisely whert,, reaches the cutoff value Define s; = ((v/,c),a4,a7). We show thats) =5 s5.
g-*(d). Similarly, for inequalitiesy of the formx < d Let g.(t) be the solution of the initial-value problem
or z > d, we havea; € [¢] iff a; € [t. < g7(d)]. “g(t) = f7(y(1);y(0) = ¢ Since (az,a;,a5,d,) €

« Assume thatg;*(d) # L and ¢ ¢ d. The proof is [iump 4(e2)], we havea,(r) = ax(x). Thus, since
analogous to the previous case. n s1 =g 52, We haveay(z) = @y(z) = gela(te)) =

Lemma 3.2:=; is a time simulation off’y by T¢. gc(all(‘t/w)‘) and’.t,hen sincgas, a;) € [flowa(v))], we
Proof: Let sy = (v,az,a2) and s, = (v/,d,a,) be havea,(i) = f; (& (x)) = £ (g:(a (). Similar to

two admissible states aft such thats, 4 . Let s, = the previous case, it can be shown tb’gﬂs agm|35|ble
((v,¢),a1,a ) be an admissible state 6f such thats; =5 so. and thate; witnesses the jump transition —c s; of

We show that there exists an admissible stdteof C' such C.

thats;, B¢ o) ands) =3 sb. Finally, we need to consider the initial and final states. Let

s2 = (v,m2,a2) be an initial state ofd. Sincez is initially
definite forv, the initial conditioninit 4 (v) implies z = d for
somed € R. Analogously to Case 1 for jump transitions, we
can find an initial state; of C' such thats; =3 ss. If s2 is a
final state ofA ands; =g s, then the construction dinalc
ensures, by Lemma 3.1, that is a final state of”. [ ]
Lemma 3.3: = —_1 is a time simulation ofl by T'4.
Proof: Let 31 ((v,¢),ap,a,) ands; = ((v/, ), @y, &)

First, consider flow transitions. Suppose that iA sh
has the duratiod > 0 and the witnesg,: [0,4] — R™. We
construct a witnesg;: [0,6] — R™ for a flow transition
of C originating from s; and having durationé. Let
to = w(ty). For all ¢ € [0,6], define pi(t) such that
p1(t)(y) = p2(t)(y) for y # o, and pi(t)(tz) = to + ¢
We show that((v, ¢), p1(¢), 01(t)) =3 (v, p2(t), p2(t)) for all
t € [0, 4]. Let g.(t) be the solution of the initial-value problem

“G(t) = Fo(y(t))y(0) = e Since ((v,¢), p(0), p1(0)) =, be two admissible statgs/ df. Let 5(s1) = 52 = (U,.QQ,(?Q)
(v,p2(0). 52(0)). We have pp(0)(a) = go(ps(O0)(t:)) = aNAJsH) =55 = (.3, dy). We showtha, Zc:; implies
gc(to). Therefore, for allt € [0,6], we havepy(t)(z) = 52 T4 5. _ 3 s

ge(to +1) = ge(pr()(t.)) and pa()(2) = fU(ge(to + 1)) = First, consider flow transitions. Suppose that —¢ s

f¥(ge(pL(H)(t))). It remains to be shown that; witnesses for some durations > 0 and witnessp;: [0,6] — R™. In
a flow transiton of C, i.e., the flow condition of(v,c) this casev’ = v and ¢ = c. Let g.(¢) be the solution of
is satisfied alongp;. This follows from the construction the initial- value problem ﬁ(t) = f2(y(®);y(0) = c” Let
of inve(v,¢), which ensures, by Lemma 3.1, that for alfo = ai(t:). Thenay(t,) = to + é. Define py: [0,6] — R”
t € [0,8], if ((v,¢),pr(t), pr(t)) =p (v, pa(t), p2(t)) and such that for allt € [0,6], we havep,(t)(y) = p1(t)(y) for
p2(t) € [inva(v)], thenpi(t) € [inve(v, c)]. all y # =, and p2(t)(z) = gc(to +t). By the definition of3,
Second, consider jump transitions. Suppose #gaf 4 s, it follows that 3((v, c), p1(¢), p1(t)) = (v, p2(t), p2(2)) for all
has as witness the control switeh = (v,v') of A. We ¢ € [0,6]. We claim thatp, is a witness forss 2, sh. This
consider two cases. follows from the construction ofuv¢ (v, ¢), which ensures,
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by Lemma 3.1, that for alt € [0, 6], sincep,(¢) € [inva(v)] some cases automatically, when lower and upper bounds on

also p2(t) € [inve(v, o)]. derivatives can be obtained from bounds on the values of the
Second, consider jump transitions. Suppose thafs- s variables [15]. The approximations can be made arbitrarily

has as witness the control switeh = ((v,c), (v/,¢')) of C. accurate by approximating over suitably small regions of

Then there is a control switck, = (v,+’) of A from which the state space. Furthermore, initial approximations may be

ey is derived such thatvent 4(e2) = 0. We claim thate; is a successively refined with the help of automated analysis, as

witness forsy =4 sh. Sincejump 4(e2) is simple forz, we demonstrated in Section IV-B.

need to consider only the atomic subformulasjahp ,(e2)

that containz or z’. The atomic subformulas of the form~d 510 ca_portrait Approximations

are covered by Lemma 3.1. There are two types of atomic ] o )
subformulas that contain’. A hybrid automaton is time simulated (and therefore approx-

imated) by any hybrid automaton that results from relaxing

flow, jump, initial, and/or final conditions. Formally, the hybrid

automaton A = (X4, V4, flowa, B4, jump 4, %4, event 4,

init 4, final4) is a basic phase-portrait approximatioaf the

hybrid automatonB = (Xp,Vp,flowp, Ep,jumpg, Xp,
eventp, initz, final ) if the following conditions hold.

e Xp=X,4 andVg = Va and EFg = E4 andXg = XA
andeventy = eventa.

* For all control modes, the predicatdlowg(v) implies
the predicatdlow 4 (v), the predicaténit 5 (v) implies the
predicateinit 4 (v), and the predicatéinalg(v) implies
the predicatefinal 4 (v).

1) If jump 4(ep) implies 2’ = d, for somed € R, then
jumpe(ep) implies ¢/, = 0. Sincea] (¢,) = 0, we have
ay(z) = d as required.

2) If jump,(ez) implies ' = =z, then ¢ = ¢ and
jumpe(er) implies ¢/, = t,. Sinced|(t,) = a:(t.),
we havea)(z) = a:(x) as required.

The conditions on the initial and final states follow from
similar considerations. |

Theorem 3.4:1f x is a solvable variable of the hybrid

automatond, andC is the clock translation oft with respect
to z, then A and C are timed bisimilar.

Let A be a solvable hybrid automaton with the nonlinear . o L

variablesz,, - -, zy,. Let Ay = A and fori € {1,---,k}, » For allcqntro! switches, the predicatg¢ump ;(¢) implies
let A; be the clock translation ofi; ; with respect toz;. the predicatgump,, (c).

The linear hybrid automato, = A, is called theclock The hybrid automatonl is a phase-portrait approximatioof
linearizationof A. If C,4 is rationally linear, then the hybrid the hybrid automatort? if there exists a flow split® for B
automatonA is called rationally solvable By Theorem 3.4 Such thatd is a basic phase-portrait approximation7ef5).
and the transitivity of timed bisimilarity, it follows that and ~Proposition 4.1: Let A and B be hybrid automata. il is a
C,4 are timed bisimilar. By Proposition 2.1, it follows that Phase-portrait approximation d#, then A time simulates5.

is nonempty iffC4 is nonempty. Proof: Suppose tha#i is a basic phase-portrait approxi-

Corollary 3.5: The nonemptiness problem for rationallymation of (B), for some flow split? of B. Then the identity

solvable hybrid automata is recursively enumerable. relation on the admissible statesBfB) is a time simulation

Remark: The nonemptiness problem is known to be recuff P(B) by A. The proposition follows by Theorem 2.2 and

sive for certain classes of rationally linear hybrid automati}€ transitivity of time simulation. u
such as timed automata and initialized rectangular automatdf 4 is a phase-portrait approximation &f, by Proposi-

[2], [11]. For each such class, we can formulate a corron 2.1 it follows that if A is empty, thenB is empty. Hence
sponding decidability result for the nonemptiness problem Bhase-portrait approximations provide necessary criteria for

nonlinear hybrid automata whose clock linearizations fall inf3°nemptiness. The tooMTECH can be applied only to phase-
the class. portrait approximations that are rationally linear. The hybrid

automatonA is a (rationally) linear phase-portrait approxi-
mation of the hybrid automatorB if A is both (rationally)
linear and a phase-portrait approximation Bf Rationally
Since the clock translation applies only to solvable hybrithear phase-portrait approximations are typically obtained
automata, it is desirable to have a theory of conservatiby first splitting the control modes using a flow split and
approximations for linearizing a wider class of systems. Mor#ghen overapproximating, for each control modethe flow
over, often the clock linearization of a nonlinear hybricdonditionflow(v) by a convex rationally linear predicaieso
automaton is not rationally linear and needs to be approtirat [¢] contains the convex hull dfflow(v)].
mated using rational coefficients before analysis wittTECH Example 4.1: Suppose that we want to prove that within the
is possible. This, for example, is the case for the thermosfast 60 time units of operation of the thermostat automaton
automaton of Fig. 1, whose clock linearization is linear bdtom Fig. 1, the heater is active less than 50% of the time.
not rationally linear (see Fig. 2). For this purpose, we replace the constraint= In2 in the
We advocate the use of linear phase-portrait approximatiowtock linearization of the thermostat automaton (Fig. 2) by the
Essentially, for each control mode of a hybrid automatorationally linear predicat&9/100 < ¢, < 70/100, because
the state space is partitioned into linear regions, and within2 is approximately equal to 0.693. Similarly, we overap-
each region, the flow field is overapproximated using linegroximatet, = In3 by 109/100 < ¢, < 110/100. Then
sets of flow vectors. The approximations may be obtainétk TECH automatically verifies the safety property. Indeed,
manually, leveraging techniques from dynamics theory, or vy TECH determines that after 60 time units, the thermostat has

IV. LINEAR PHASE-PORTRAIT APPROXIMATION
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stable(z,y, 2, 2,9, 2)

T

stable(z,y, 2, &,9,2)

turnon
T =1 A stable(z,y, z)

r

stable(z,y,2.2,4,2)

T

stable(z,y, z, 2,9, 2)

Fig. 3. Linear phase-portrait approximation of the thermostat automaton.

1<z <2and2 < z < 3 for the control modeon, and
the predicated < z < 15,15 <z <2, and2 <z <3
for the control modeff. Fig. 4 depicts the increased accuracy
of the resulting approximation for computing time successors
of the state(off,# = 3). Automatic analysis with MTECH
P now shows that the heater is active betweeB0.7% and

e €15 1] ~48.1% of the time, which implies the safety property of
\ N interest. The finer the flow split, the tighter the approximation,
but the greater the computational cost. Using flow split

. ! :'ﬂ :._1. the computation time of HMTECH is longer than forP; (6.4 s
1 time ¢ time ¢ versus 5.3 s of CPU time on a Sun Sparcstation 5). By contrast,
@) (b) HYTECH requires only 2.3 s to generate the much better bounds

for the approximated clock linearization of Example 4.1.
This demonstrates the benefits of using the clock-translation
algorithm where possible. [ |

Fig. 4. Tighter approximation via finer flow splits.

been in control moden between(2317/60)% ~ 38.6% and
(2351/60)% = 39.2% of the time. These bounds are tight for,

X ; B. Example: Predator—Prey Systems
the approximate automaton, but they can be tightened further xamp y =y

for the original automaton by refining the approximatiorm We iII_ustrate the use of Iine_ar phase—portre_lit approximations
Example 4.2: Suppose that we directly approximate th@n nonlinear systems modeling the population growth of two
thermostat automaton of Fig. 1 without first performing a clodRteracting species. We show that several interesting properties
translation. As before, the goal is to prove that the heaterd5 the system can be discovered automatically through a
active for less than 50% of the first 60 time units. We use tff@Mpination of deductive reasoning and algorithmic analysis.

flow split P, with the predicated < z < 2and2 <z <3
for the control modeon, and the predicates < x < 2 and A Predator—Prey Ecology with Limited Growth

2 < & < 3forthe control modef. Fig. 3 depicts the resulting  \ych of our exposition defining predator—prey systems is
rationally linear phase-portrait approximation of the thermostgtrived from [13, Ch. 12]. One species is fredator, whose
automaton. While t_he proof of Theorem 2.2 r_equires that &lbpulation is modeled by the variabjeand the other itprey,
flow splits are derived from open covers, it is easy 10 S§fodeled using the variable. The prey forms the entire food
that overlapping closed covers suffice for this example. Adlpply for the predator, and we assume that the per-capita food
flow transitions that pass through the dividing point= 2 sypply for the predator at any instant of time is proportional
in the original automaton are mimicked in the approximaig the number of prey. The growth of the predator population
automaton by a flow transition up to the point= 2, followed s proportional to the difference between its actual per-capita
by a silent transition between control modes, followed by f@od supply and a basic per-capita food supply required to
flow transition originating at = 2. This approximation is too maintain the predator population. The population of the prey
coarse: WTECH reveals that for this approximation, the activgs subject to two competing forces. First, the prey population
time of the heater ranges from27.8% to~50.0%. may grow because there is a constant food supply available
The approximation can be tightened by using a finer floand may increase without bound in the absence of predators.
split. For instance, consider the flow split that splits the Furthermore, we assume the rate of increase is proportional to
control modeoif; of Fig. 3 and is derived from the predicateshe number of prey. Second, the predators consume the prey
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bound on the absolute value §f We can takeC'zy for max
becauseD + uy is always positive. Since the linds and M
do not intersect ifit% ,, we know that4/A < D/C, and hence
A-AD/C <0. Sincez is no less thaD/C'in R, we infer that
A—)Az <0, and henced — \z — By < — By. We may therefore
Fig. 5. Predator—prey hybrid automaton. take Byz for min . We conclude tha§(x, y) is bounded below

by —Czy/(Bzy) = —C/B. It follows that all flow vectors

in R have a direction betwedgn- B, C) and(-1,0), i.e., they
y _ o satisfy the flow conditiony > 0 A < —Ci/B.

j The hybrid automaton that represents the resulting linear
phase-portrait approximation is shown in Fig. 7. The layout
of the control modes matches the partitioning of the state
space as shown in Fig. 6. The predicateble is shorthand
for stable(x,y,&,%). The implicit invariant constraint: >
0 Ay > 0 has been omitted from all flow conditions. The
constraintM refers to all valuations on the ling/, i.e., all
A/x - Dbjc z valuations withC'z — D —py = 0. The constrainfi/ = refers to
all valuations at, or to the right of, the line, i.e., M= stands
for Cx > D+ py. Similarly, let M < stand forCz < D+ uy,
let L stand forA—By—\z = 0, let L= stand for\z < A— By,
at a rate that is proportional to the number of predators andgfd let= stand for\z > A—By. If A, B,C, D, \, andy are
the number of prey. This gives us the following equations: || rational constants, then the phase-portrait approximation is

& =(A— By rationally linear.

y=(Cxz— D)y

z>0Ay >0
Az = (A~ By~ Azx)z
ANy =(Cz—D—pyly

rT=zg ANy = Yo =

A/B

Fig. 6. Phase portrait for predator—prey populatibhsM nonintersecting).

for positive real-valued constant4, B, C, and D. No pop- Computing Bounds on the Population Growth

ulation really has the potential to increase without bound. The linear phase-portrait approximation can be used to com-
There are social phenomena, such as overcrowding, spreste, for given starting populations, bounds on the populations
of disease, and pollution, that imply that most populatior® both species. In particular, this shows that the populations
will experience negative growth once they exceed a thresh@lee indeed bounded. For example, suppose that the initial
limiting population. We assume that these negative growgi®pulationsrzo andyyo lie in the rightmost regiori? of the state
factors are proportional to the species population and Bpace. The time successors of the staig o) are obtained
difference from the threshold population. This leads to tHey following all flow vectors in the cone indicated in Fig. 8.
\olterra—Lotka predator—prey equations [17] First, the states in regiafy, are reached. Control may then pass
. to the control mode corresponding to the central region in the
&= (A= By—Az)x partition, where bott: andy are nonpositive. After adding the
y=(Cz—D — ny)y states in regiorb,, and then the states ifl;, the computation
of reachable states terminates. The maximum valuey of
among the reachable states(Byy + Czo — D)/(B + p).
For example, given the equatiotis= (2000 — y — 5z)z and
¥ = (4 — 2600 — 4y)y, and the initial population vector
(900, 150), FTECH computes a bound of 230 on the predator

where A, B, C, D, A\, and ;, are all positive real-valued con-
stants. Assuming that the initial prey populationcisand the

initial predator population igg, the resulting hybrid automaton
is shown in Fig. 5. Bothz and y are unsolvable nonlinear

variables. populationy.

. . ) ) Bounds on the region of reachable states can often be used
Linear Phase-Portrait Approximation to construct better phase-portrait approximations. gdie a

We consider the case that the two lifes=- (A— By— Az = predicate such thafy] contains all reachable states of the

0) andM = (Cz—D—-uy = 0) do not intersect in the quadranthybrid automatond. The restriction of A to ¢ is the hybrid
R2,. In this case, the phase portrait of the predator—preytomatond|, that differs fromA only in its flow conditions:
system looks as shown in Fig. 6. Using the coordinate axies all control modes, let flow 4 (v) = (flow.4(v) A¢). The
and the two lined. and M, we split the state space into lineatwo automatad|, and A are timed bisimilar (via the identity
regions. Within each region, we can infer the signs:@nds relation). Restriction is useful, because it may be possible to
as shown in Fig. 6. For the regidg to the right of the lineV/,  find tighter linear phase-portrait approximations féj, than

we can infer also a linear constraint that relates the derivativies A, because the phase portrait 4f, may contain fewer

of x andy. Sincez is nonpositive and; nonnegative ink, flow vectors than the phase portrait df

the directions of the flow vectors i® are determined by In the predator—prey example, it can be shown that in
the functioné(z,y) = y/&. The absolute value of(x,y) the rightmost regionR, the absolute value of(z,y) is

is bounded above by any ratinax / min, wheremax is an bounded above b{’'y/(Az + By — A). Let R’ be a bounded
upper bound on the value of in R and min is a lower subset of R. Let y,.. be an upper bound foy over all
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z =0 A stable

L

A stable A stable

\l/y =0 A stable

A stable

Fig. 7. Linear phase-portrait approximation of the predator—prey automaton.

prey may cause the predator population to grow too large.
For the ecology above, we require the predator population
to lie within the range [100, 350], and the prey population

AlB within [800, 1100]. Using MTECH, we can verify that the

bounds are successfully maintained whenelvex 200. For
ng larger values ofk, the phase-portrait approximation admits
¥y

trajectories where the predator population exceeds the upper
bound of 350. Note, however, that this does not imply that
all values of & greater than 200 may lead to excessively
large predator populations because the approximation has more
Fig. 8. Reachability computation for the linear phase-portrait approximatiofe@achable states than the true system.

(z0,90)

A/x  D/C r

valuations in R', and let z,,;, (respectively,y.in) be a C. Error Analysis
lower bound forz (respectively,y) over R'. It follows that

€@, 9] < Cymax/(Atmin + Bymin — A), provided that approximations of4 are closer to4 than others. The closer

(AZwmin + Byin = A) 2 0. . i the approximation ofi, the more safety properties df can be
Previously, we sh_owed how reachab|I|t_y CQmputatlon fcUeriﬁed by analyzing the approximation. We show that using

the automaton of Fig. 7 leads to the regiSp in R, from yinonr hhase portrait approximationl can be approximated

which_we can inferhthefbounﬁilax = r213ohymin = 1d50’ and  aitrarily closely by choosing a sufficiently fine flow split.
Zmin = 800. We therefore replace the flow conditign < pyoyimity can be defined via the infinity metrtist: R x

—Cz/B of the regionS; by § < —922/215. Recompgtatipn R" — Rso, wheredist(a,b) = maxi <;<n |ai — b, i.e., the
now shows that _only a proper SUbS‘?t of the reginis distancedist(a,b) between two pointa andb is the maximal
reachable. In particular, We_obtaln th_e tighter boung,of, = _ componentwise separation. Let and ¢ be two predicates
55250/3_07 ~ 180. If we iterate this procedu_re,_ we gaing ar the sety — {41, ya} of real-valued variables.
successively lower values Ofiax, more restrictive flow pe predicatep is an e-relaxation of the predicatep, for a
conditions, and more accurate approximations of the set r?(;nnegative reat € Rso, if [¢] C [¢/] and for all valuations
reachable states. a € [], there exists a valuatihe [] such thatdist(a,b) <
, e. The hybrid automatoiB is an e-relaxation of the hybrid

Controlling the Ecology automatond, for ¢ € R, if B results fromA by replacing

Standard analysis techniques can be used to show that alidlow, initial, final, and jump conditions with-relaxations.
predator population always tends toward zero, while the préyA models a system with sensors and actuators, thes-the
population tends tad/A. Suppose, however, that we wishrelaxations ofA model the same system under the assumption
to keep the predator population above a nontrivial miniméhat the sensors and actuators may have measurement errors,
value, or more generally, that the populations need to bed the flow transitions are subject to modeling errors, with
controlled so that they remain within given lower and uppell errors being bounded by. Clearly, everye-relaxation of
bounds. Assume that the prey population can be accuratélyfor € > 0, is a phase-portrait approximation df.
measured but that the predator population is unobservable. OuAn approximation operatory for hybrid automata is a
control strategy consists of monitoring the prey populatidiunction that maps each hybrid automatdnto a sety(A)
and releasing a fixed numbér of additional prey into the of hybrid automata—they-approximationsof A—such that
system whenever it reaches its minimal allowable value. far all B € ~(A), the automatonB time simulatesA. For
general, it may be unwise to increase the prey populatiemample, thgrationally linear) phase-portrait approximation
to its maximal allowable value because the abundance agerator maps every hybrid automatoA to the set of (ra-

Given a hybrid automatomd, some linear phase-portrait
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tionally linear) phase-portrait approximations df For an each with diametee/2. Such a flow split exists sincdl is
approximation operatoy, if B € v(A) is empty, thend is bounded. DefineB to be the hybrid automaton that results
also empty, i.e., every safety property Bfis also satisfied from replacing all flow, initial, final, and jump condition
by A. The converse, however, is not necessarily true; henct P(A) by their rectangularizations. Then the flow, jump,
approximation is a sound but not complete proof techniqusitial, and final conditions of3 all have diametet/2. Hence,
for verifying safety properties. for all control modesv of B, for every valuation(a,a) €
Given an approximation operator for hybrid automata, flowg(v), there exists a valuatio(b,i)) € [flowp(.4)(v)] with
and a hybrid automatoni, the y-approximationB € v(4) dist((a,&), (b,b)) < /2. Similarly, every valuation satisfying
is e-closeto A, for a nonnegative reat € Rxo, if somee-  the jump, initial, and final conditions aB is within &/2 of
relaxation of A time simulatesB. We write v.(A) for the some valuation satisfying the corresponding conditio® af)
set of e-close y-approximations ofA. Then, if B € v.(4) (and therefore ofd). It follows that the rectangular hybrid
is nonempty, some-relaxation of A is also nonempty, i.e., automatonB is time simulated by am/2-relaxation ofA.
every safety violation of5 corresponds to a safety violation We derive the rationally rectangular hybrid automaton
of an automaton that lies within distaneefrom A. The from B by replacing every rectangular predicatén B with
approximation operatory is asymptotically completéf for a rationally rectangular predicate that is gf2-relaxation of
all hybrid automatad and all positive reals >0, the set . In particular, if [¢] = II?, I;, then is replaced by the
7:(A) of e-closevy-approximations is nonempty. Asymptoticrationally rectangular predicaie with [/] = II%_, I!, where
completeness ensures that for every hybrid automatpif  for eachi € {1,---,n}, we havel; C I/ and the endpoints
some automaton arbitrarily close to, but different from, of the interval]zf result from shifting up, or down, by at most
satisfies a safety property, then there is an approximationQf the endpoints of the interval; to some rationals. Then,
A that also satisfies the property. every valuation satisfying the flow, jump, initial, and final
We show that already a restricted form of linear phaseonditions of C is within £/2 of some valuation satisfying
portrait approximations are asymptotically complete, namelhe corresponding condition @8, and therefore withire of
when all automaton constraints are overapproximated usig@me valuation satisfying the corresponding conditioaioft
independent rational lower and upper bounds on the valUfeiows that somes-relaxation ofA time simulate<C. n
and derivatives of each variable [6]. The predicateis In practice, rectangular phase-portrait approximations are
rectangularif [¢] has the formII’_, I;, where eachl; is often easier to compute than nonrectangular phase-portrait
a (possibly unbounded) interval ov&: The predicatey is approximations (because we need only compute projections
rationally rectangularif the endpoints of the interval; are for all variables). Nonrectangular linear phase-portrait approx-
rational, for eachv € {1,---,n}. The hybrid automatord imations, however, are sometimes more accurate, as seen in
is (rationally) rectangularif all flow, jump, initial, and final the predator—prey example.
conditions of A are (rationally) rectangular. Clearly, every
(rationally) rectangular hybrid automaton is (rationally) lin-
ear. The(rationally) rectangular phase-portrait approximation We presented a methodology that enables the algorithmic
operatormaps every hybrid automatat to the set of phase- analysis of nonlinear hybrid systems via translation to linear
portrait approximations ofi that are (rationally) rectangular. hybrid automata. Two transformation steps may be utilized.
For example, the automaton of Fig. 3 is a rationally rectangul@ihe first step, the clock translation, should be applied when-
phase-portrait approximation of the thermostat automaton. Téxeer possible. It is efficient, both sound and complete for
hybrid automatord is boundedf the set flow(v)] is bounded proving safety properties, but applies only to a restricted class
for every control modey. of variables. Linear phase-portrait approximation can be used
Theorem 4.2:The rationally rectangular phase-portrait apto remove any remaining nonlinearities. It is sound, but not
proximation operator for bounded hybrid automata is asympemplete, for proving safety properties, and it may cause a
totically complete. substantial blow-up of the state space. Linear phase-portrait
Proof: Let A be a hybrid automaton, and let> 0 be approximation, however, is applicable to all hybrid systems,
a positive real. We construct a rationally rectangular phasgspports the successive refinement of approximations, and in
portrait approximation that is-close to A in two steps: many cases can be automated. The combined methodology
first we construct a (possibly irrational) rectangular phasbas been successfully applied to the benchmark industrial
portrait approximationB that is £/2-close to A, and then steam-boiler specification [16] and to an electronic automotive
we approximate all predicates &f by rationally rectangular suspension-control system developed by BMW [23].
predicates.
Given a predicatep over the setX = {zy,---,z,} of ACKNOWLEDGMENT
variables, letl,, .., fori € {1,---,n} be the infimal (possibly  The authors would like to thank P. Kopke for numerous
unbounded) interval of the reals that contains the projecti%|pfu| suggestions.
of [¢] onto thex; axis. Therectangularizationof ¢ is the
rectangular predicate¢) over X such that[y)] = 11, I, ,. REFERENCES
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