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Abstract

Alpino is a wide-coverage computational analyzer of Dutdficlr aims at accurate, full,
parsing of unrestricted text. We describe the head-driegitdlized grammar and the lex-
ical component, which has been derived from existing resesir The grammar produces
dependency structures, thus providing a reasonably abstnd theory-neutral level of lin-
guistic representation. An important aspect of wide-cagerparsing is robustness and
disambiguation. The dependency relations encoded in therdiency structures have been
used to develop and evaluate both hand-coded and stdtdiambiguation methods.

1 Introduction

For English, tremendous progress has been made in the amemefcoverage
parsing of unrestricted text. Many of the proposed systemstatistical parsers,
but systems based on a hand-written grammar exist as wadlaifh of Alpind is
to provide computational analysis of Dutch with coverage accuracy compara-
ble to state-of-the-art parsers for English.

The Alpino grammar (described in more detail below) is adelzed gram-
mar in the tradition of constructionalist Head-driven Rer&tructure Grammar
(Pollard and Sag 1994, Sag 1997). The grammar consists aFWatten, lin-
guistically motivated rules and lexical types. To evaluhtcoverage and disam-
biguation component of the system, a testbench of syn&igtennotated material
is absolutely crucial. Given the current lack of such maldor Dutch, we have
started to annotate corpora with dependency structureqemency structures
provide a convenient level of representation for annotatend a fairly neutral
representation for further processing. The annotatioméiris taken from the
projectCorpus Gesproken Nederlan@3orpus of Spoken DutOostdijk 2000).
The construction of dependency structures in the gramnthoantreebanking ef-
forts are described in section 4. Both the lexicalist natfréhe Alpino grammar
and the use of dependency structures imply that lexicaldtemast be associated
with detailed valency information. For the Alpino lexicorevmave extracted this
information from the Celex and Parole lexical databasedti(se3).

In section 5 we describe Alpino’s parsing architecture. tidac6 describes
a variety of disambiguation strategies which have beergmted in Alpino. In
addition, we report on a number of preliminary disambigoagéxperiments. We
conclude with some remarks on future work.

1Alpino is being developed as part of thevo PIONIERprojectAlgorithms for Linguistic Processing
www.let.rug.nl/"vannoord/alp
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2 Grammar

The Alpino grammar is an extension of the successfuk grammar (van Noord,
Bouma, Koeling and Nederhof 1999, Veldhuijzen van ZantesyrBa, Sima’an,
van Noord and Bonnema 1999), a lexicalized grammar in thditioa of Head-
driven Phrase Structure Grammar (Pollard and Sag 1994).gidramar formal-
ism is carefully designed to allow linguistically sophistted analyses as well as
efficient and robust processing.

In contrast to earlier work oAPSGgrammar rules in Alpino are relativey de-
tailed. However, as pointed outin Sag (1997), by organirithes in an inheritance
hierarchy, the relevant linguistic generalizations cdhtst captured. The Alpino
grammar currently contains over 100 rules, defined in terfresfew general rule
structures and principles. The grammar covers the basistaartions of Dutch
(including main and subordinate clauses, (indirect) daest imperatives, (free)
relative clauses, a wide range of verbal and nominal comgieation and modifi-
cation patterns, and coordination) as well as a wide vaoétyore idiosyncratic
constructions (appositions, verb-particle construdje®s including a patrticle,
NP's modified by an adverb, punctuation, etc.). The lexicontams definitions
for various nominal types (nouns with various complemeotepatterns, proper
names, pronouns, temporal houns, deverbalized noun&ugacomplementizer,
determiner, and adverb types, adjectives, and 36 verbabsegorization types.

The formalism supports the use of recursive constraints feature-structures
(using delayed evaluation, van Noord and Bouma (1994))s @alhdwed us to in-
corporate an analysis of cross-serial dependencies basadjoment-inheritance
(Bouma and van Noord 1998) and a trace-less account of ¢éxtmadong the lines
of Bouma, Malouf and Sag (2001).

3 L exical Resources

Accurate, wide-coverage parsing of unrestricted text irega lexical component
with detailed subcategorization frames. For lexicaligmgmar formalisms, the
availability of lexical resources which specify subcateépation frames is even
more crucial. In HPSG, for instance, phrase structure riggson the fact that

each head contains a specification of the elements it sigmraes for. If such

specifications are missing, the grammar will wildly overgeate.

We have used two existing lexical databases (Celex and damicreate a
wide-coverage lexicon with detailed subcategorizati@mfes enriched with de-
pendency relations. Celex (Baayen, Piepenbrock and van1R®#93) is a large
lexical database for Dutch, with rich phonological and nimfpgical information.
For use within the CGN project, this database has been extienith dependency
frames (Groot 2000). This version of the lexicon containg80Q verbal stems,
with a total of 21,800 dependency frames. By far the mostuead frames are
those for intransitive (4,100) and transitive (6,500) werh fair number of frames
occurs more than 100 times, but 300 of the 650 different dégecy frameypes
in the database occur only once.
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Dependency Frame Overlap Celex Parole Total
only only
[SU:NP][OBJ1:NP] 1810 1211 240 3261
[SU:NP] 257 1697 42| 1996
[SU:NP][PC:PRpform)] 337 541 273 1151
[SU:NP][OBJ1:NP][PC:Pfpform)] 129 375 308 812
[SU:NP][VC:Ssubordinati 103 136 103| 342
[SUP:NRhe}][OBJ1:NP][SU:CP] 7 247 5 259
[SU:NP][OBJ2:NP][OBJ1:NP] 65 171 28| 264
[SU:NP][SE:NP][PC:Pkpform] 65 62 102 229
[SU:NP][SE:NP] 49 137 65| 251
[SU:NP][VC:VP] 10 16 37| 63

Table 1: Dependency Frames and the number of stems occwvithghis frame in both
resources, in CGN/Celex only, in Parole only, and the totehber of stems with this de-
pendency frame in the Alpino Lexicon.

The Dutch Parole lexicdrcomes with detailed subcategorization information,
including dependency relations. The Parole lexicon is En#han Celex, with
3,200 verbal stems and a total of 5000 dependency framese @he 320 different
dependency frame types, 190 of which occur only once.

Dependency frames for the Alpino lexicon have been contduasing the
dependency information provided by CGN/Celex, Parole, andntering defini-
tions by hand. The latter has been done mostly for auxiliany emodal verbs:
a small class of high-frequent elements which are exceationa number of
ways. The CGN/Celex dictionary is very large. As the Celetadase comes
with frequency information, we currently only include tiolexical items whose
frequency is above a certain threshold. For verbal stensptkans that roughly
50% of the stems in Celex is included in the Alpino lexiconl. \vadrbal stems from
the Parole lexicon with a dependency frame covered by thampar are included.

Currently, for 28 different CGN/Celex dependency framesfinition in the
grammar has been provided. This covers over 80% of the velbaéndency
frames in the CGN/Celex database, 10,400 of which are serftigi frequent to
be included in the Alpino lexicon. For 15 different dependeframes in the Pa-
role lexicon a definition in Alpino is present. Using these @xtract over 4,100
dependency frames (82% of the total number of dependenmefan the Parole
database). An overview of overlap and non-overlap for thetrfrequent frames
extractable from both sources is given in table 1. For ttaresand intransitive
verbs, we see that over 85% of the stems in Parole are pres€@@IN/Celex as
well. For most other dependency frames, however, the quéslgenerally much
smaller, and a significant portion of the stems present iolBas not present in

2http://www.inl.nl/corp/parole.htm
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Celex. This suggests that, for more specific subcategmizdtames, both re-
sources are only partially complete, and that not even thenuof both provides
exhaustive coverage.

4 Dependency Structures

Within the cGN-project (Oostdijk 2000), guidelines have been developedyn-
tactic annotation of spoken Dutch (Moortgat, Schuurman \zard der Wouden
2000), using dependency structures similar to those usethéoGerman Negra
corpus (Skut, Krenn and Uszkoreit 1997).

Dependency structures make explicit the dependency sakatietween con-
stituents in a sentence. Each non-terminal node in a depepg&ucture consists
of a head-daughter and a list of non-head daughters, whgsandency relation
to the head is marked. A dependency structure for (1) is givdigure 1. Con-
trol relations are encoded by means of co-indexing (i.e.sthtgect ofhebbenis
the dependent with indeX). Note that a dependency structure does not neces-
sarily reflect (surface) syntactic constituency. The deleenhaar nieuwe model
gisteren aangekondigdior instance, does not correspond to a (surface) syntactic
constituent in (1).

Q) Mercedegzou haarnieuwemodelgisteren hebberaangekondigd
Mercedeshouldher new modelyesterdayhave announced
Mercedes should have announced her new model yesterday

The Alpino grammar produces dependency structures cobipatiith the
CGN-guidelines. We believe this is a useful output format fouaniver of reasons.
First of all, annotating a text with dependency structuseselatively straightfor-
ward and independent of the particular grammatical framtkvaesumed. Thus, a
dependency treebank can be used to debug and test varisicngof the Alpino
grammar. Second, as we adopt theN-guidelines, a considerable amount of an-
notated material will be available within the near futureiethcan be used for
development and testing. Third, it has been suggested émrdiency relations
provide a convenient level of representation for evaluatibcomputational gram-
mar based on radically different grammatical theories {@arBriscoe and San-
filippo 1998). Finally, statistics for dependency reladretween head words can
be used to develop accurate models for parse-selectioi€b999); preliminary
experiments are described in section 6.

Grammatical Construction of Dependency Structures. To produce depen-
dency structures with the Alpino grammar, a new level of espntation has been
added to the grammar. The attribuig dominates a dependency structure, with
attributes for the lexical headip) and the various dependents. The value of a
dependent attribute can be a dependency structure or adeafaeonsisting of a

3The less frequent verb stems in Celex (currently not inaiuieAlpino) are almost exclusively as-
signed the intransitive or transitive dependency frame.
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postag and word only.

The construction of dependency structures is driven byekiedn. For each
subcategorization type recognized in the lexical hienaecmapping between ele-
ments on the list-valued feature which specifies basic sabosazation properties
(suBcaT) and attributes obT is defined. Two examples are given in figure 2. The
leftmost feature structure exemplifies a finite, transitreeb. The value obT of
the nominativenpP on subcat is identical to the value of tse dependent. Sim-
ilarly, the value ofbT of the accusativeiP on subcat is identical to the value of
theoBJl dependent. The rightmost feature structure exemplifiesta firansitive
verb for which the object is assigned to theJi2 (secondary object) dependency
relation. In some cases, the addition of dependency stestaads to more fine-
grained distinctions. For instanaer-arguments can be linked @ (prepositional
complementor LD (locative or directional complemenivhere the distinction be-
tween these two is primarily semantic in nature. Therefeegbs taking a prepo-
sitional complement are assigned a subcategorizationefthiat differs from the
frame assigned to verbs taking suchacomplement.

In HEAD-COMPLEMENT structures, theT attribute can simply be shared be-
tween head daughter and motherHBAD-MODIFIER structures, the dependency
structure of the modifier is added to the list-valuedd dependent of the head.

Dependency Treebanks. For development and evaluation purposes, we have
started to annotate various sample text fragments withreecy structures.

The annotation process typically starts by parsing a seetaith the Alpino
grammar. This produces a (often large) number of possibédyaas. The an-
notator picks the analysis which best matches the correadysis. To facilitate
selection of the best parse among a large number of posisibjltheHDRUG en-
vironment has been extended with a graphical tool basedeS/ TreeBanker
(Carter 1997) which displays all fragments of the input wihéce a source of am-
biguity. By disambiguating these items (usually a much ssnaumber than the
number of readings), the annotator can quickly pick the raostirate parse.

For example, the sentendan zag het meisj&lan saw the girl’ has (in prin-
ciple) two readings corresponding to the dependency strestin figure 3. The
readings of a sentence are represented as a set of sets afidapg paths, as in
figure 4. From these sets of paths, the parse selection tagbutes a set ahax-
imal discriminantswhich can be used to select among different analyses. In this
case, the path ‘s:hd = zag is shared by all the analyses and so is not a useful
discriminant. On the other hand, the path ‘s:obj1:hd meisjé does distinguish
between the readings but it is not maximal, since it is sulesliny the path ‘s:obj1
= np het meisjewhich is shorter and makes exactly the same distinctiornise T
maximal discriminants are presented to the annotator, wéypmmark any of them
as either good (the correct parse must include it) or badognesct parse may not
include it). In this simple example, marking any one of theximeal discriminants
as good or bad is sufficient to uniquely identify the correatse. For more com-
plex sentences, several choices will have to be made totsetéogle best parse.
To help the annotator, when a discriminant is marked as bgdad, the following
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T B

hd su - hd obj1
obj1 su
verb noun verb noun
. np np .
zag jan zag jan
/\
det hd det] hd
det noun det noun
het meisje het] meisjg

Figure 3: Dependency structures for two readingdasf zag het meisje

s:hd = vzag s:hd = vzag
*S:SU = npjan *s:su = nphet meisje
*s:0bj1l = nphet meisje  s:su:det = dethet
s:objl:det = debhet s:su:hd = rmeisje

s:obj1l:hd = nmeisje *s:0bjl = npjan

Figure 4: Dependency paths faein zag het meisj¢ indicates a maximal discriminant).

inference rules are applied to further narrow the possiedi(Carter 1997):
¢ If adiscriminantis bad, any parse which includes it is bad.
e |f a discriminantis good, any parse which does not includeliad.
e If a discriminantis only included in bad parses, it must bd.ba
e If a discriminantis included in all the undecided parsesiist be good.

This allows users to focus their attention on discriminaitsut which they have
clear intuitions. Their decisions about these discrimie@ombined with the rules
of inference can then be used to automatically make decsibout less obvious
discriminants.

If the parse selected by the annotator is fully correct, tygeshdency structure
for that parse is stored asvL in the treebank. If the best parse produced by
the grammar is not the correct parse as it should be includéuki treebank, the
dependency structure for this parse is sent to the ThistterédThe annotator can
now produce the correct parse manually.

We have started to annotate various smaller fragments ukm@nnotation
tools described above. The largest fragments consist okti® of sentences ex-

4LT Thistle (Calder 2000)www.ltg.ed.ac.uk/software/thistle/ ,is an editor and display
engine for linguistic data-structures which suppoms. .
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tracted from the Eindhoven corpus (Uit den Boogaart 197%)e GbsL10 tree-
bank currently consists of the first 519 sentences of ten svordess from section
CDBL (newspaper text). ThebpsL20 treebank consists of the first 252 sentences
with more than 10 but no more than 20 words.

Evaluation. Evaluation of coverage and accuracy of a computational gram
usually is based on some metric which compares tree stegtguch as recall and
precision of (labelled) brackets or bracketing inconsistes (crossing brackets)
between test item and parser output). As is well-known, suehtrics have

a number of drawbacks. Therefore, Carroll et al. (1998) psapto annotate
sentences with triples of the forghead-word, dependency relation, dependent
head-word. For instance, for the example in (1) we might obtain:

(zou, su, mercedes (aangekondigd, obj1, model
(hebben, su, mercedes (model, det, haar
(aangekondigd, su, mercedles (model, mod, nieuwe

(aangekondigd, mod, gisteren

Dependency relations between head-words can be extraasig &om the
dependency structures in our treebank, as well as from thertkency structures
constructed by the parser. It is thus straightforward to gota precision, recall,
and f-score on the set of dependency triples.

5 Robust Parsing

The initial design and implementation of the Alpino parseinherited from the
system described in van Noord (1997), van Noord et al. (199@) van Noord
(2001). However, a number of improvements have been impieedenhich are
described below.

The construction of a dependency structure on the basiswé smput proceeds
in a number of steps, described below. The first step corfifggical analysis. In
the second step a parse forest is constructed. The thirdstesists of the selection
of the best parse from the parse forest.

Lexical Analysis. The lexicon associates a word or a sequence of words with
one or moretags Such tags contain information such as part-of-speech, in-
flection as well as a subcategorization frame. For verbs, lélé&on typi-
cally hypothesizes many different tags, differing mainty the subcategoriza-
tion frame. For sentence (1), the lexicon produces 83 tagsneSof those tags
are obviously wrong. For example, one of the tags for the wwetiben is
verb(hebben,pl,part _sbar _transitive(door)) . The tag indicates

a finite plural verb which requires a separable prefior , and which subcatego-
rizes for ansBAR complement. Sincdoor does not occur anywhere in sentence
(2), this tag will not be useful for this sentence. A filter taining a number of
hand-written rules has been implemented which checks thet simple condi-
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tions hold. For sentence (1), the filter removes 56 tags.rAffiefilter has applied,
feature structures are associated with each of these tafien,@ single tag is
mapped to multiple feature structures. The remaining 2&rét tags give rise to
89 feature structures.

An important aspect of lexical analysis is the treatmentdfnown words. The
system applies a number of heuristics for unknown wordsre2uly, these heuris-
tics attempt to deal with numbers and number-like expressicapitalized words,
words with missing diacritics, words with ‘too many’ diatics, compounds, and
proper names.

If such heuristics still fail to provide an analysis, thee 8ystem guesses a tag
by inspecting the suffix of the word. A list of suffixes is maiimed which predict
the tag of a given word. If this still does not provide an as@ythen it is assumed
that the word is a noun.

In addition to the treatment of unknown words, the robustreédhe system is
enhanced by the possibility to skip tokens of the input. Eutly this possibility is
employed only for certain punctuation marks. Even thoughgtwation is treated
both in the lexicon and the grammar, the syntax of punctaasiarregular enough
to warrant the possibility to ignore punctuation. For im&t@, quotation marks may
appear almost anywhere in the input. The corpus contains:

(2) De z.g. " speelstraatdie hier en daar al bestaa®
Theso-called’ play-street thathereandtherealreadyexists ?

Apparently, the author intended to plapeeelstraat within quotes, but the
second quote is not present. During lexical analysis, teg®jptionally extended
to include neighbouring words which are classified as ‘dipa

Creating Parse Forests. The Alpino parser takes the result of lexical analysis
as its input, and producesparse forest a compact representation of all parse
trees. The Alpino parser is a left-corner parser with s@éleanemoization and
goal-weaking. Itis a variant of the parsers described inNaord (1997). We gen-
eralized some of the techniques described there to takadatount relational con-
straints, which are delayed until sufficiently instantéh{gan Noord and Bouma
1994).

As described in van Noord et al. (1999) and van Noord (200&) parser can
be instructed to find all occurrences of the start categorywhere in the input
This feature is added to enhance robustness as well. Inltagatser cannot find
an instance of the start category from the beginning of tmesee to the end,
then the parser produces parse trees for large chunks ohghe.i A best-first
search procedure then picks out the best sequence of sunkschHbepending on
the application, such chunks might be very useful. In the,pas successfully
employed this strategy in a spoken dialogue system (Vejekivan Zanten et al.
1999).
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beam cdbl10 cdbl20
accuracy (%) speed (msec)accuracy (%) speed (msec)
1 79.99 190 73.63 740
2 80.66 270 74.59 1470
4 81.11 350 75.07 2350
8 81.22 530 75.35 3630
16 81.36 590 75.31 5460
32 81.36 790 74.98 7880
00 81.36 640 - -

Table 2: Effect of beam-size on accuracy and efficiency afeaelection

Unpacking and Parse Selection. The motivation to construct a parse forest is
efficiency: the number of parse trees for a given sentencébeagnormous. In
addition to this, in most applications the objective willtioe to obtainall parse
trees, but rather thizestparse tree. Thus, the final component of the parser consists
of a procedure to select these best parse trees from thefpagse

In order to select the best parse tree from a parse forestsaenae a parse
evaluation function which assigns a score to each parseacting 6 we describe
some initial experiments with a variety of parse evaluafionctions. A naive
algorithm constructs all possible parse trees, assigns eae a score, and then
selects the best one. Since it is too inefficient to constaligtarse trees, we have
implemented the algorithm which computes parse trees ftwrparse forest as
a best-first search. This requires that the parse evaluétioction is extended
to partial parse trees. In order to be ablegtearanteethat this search procedure
indeed finds the best parse tree, a certain monotonicityinesgent should apply
to this evaluation function: if a (partial) tredis better thars, then a tree which
containss should be better thaih which is just liket except it has instead ofs.
However, instead of relying on such a requirement, we implet@d a variant of
a best-first search algorithm in such a way that for each statee search space,
we maintain theb best candidates, wheleis a small integer (thbean). If the
beam is decreased, then we run a larger risc of missing th@aese (but the result
will typically still be a relatively ‘good’ parse); if the [@en is increased, then the
amount of computation increases too. Currently, we findéhaglue ofb =4 is a
good compromise between accuracy and efficiency. In talile 2ffect of various
values forb is presented for two development treebanks. The grammigmessn
average about 33 parse trees per sentence fazdbH0 corpus. This number
increases rapidly for longer sentences: for¢del20 corpus it is at least 349.

5This is the average number after creating all parse treesdoh sentence with a maximum of 1000
parse trees per sentence.
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6 Disambiguation

The best-first unpack strategy described in section 5 depamd parse evaluation
function which assigns scores to (partial) parse trees. 8Ve bxperimented with a
number of disambiguation techniques on tiibl10 andcdbl20 development
treebanks described earlier.

Penalty rules. The simplest disambiguation method consists of handawritt
‘penalty’ rules which implement a variety of preferencesachk such penalty rule

describes a partial parse tree. For a given parse tree, #tersycomputes how
often a sub-tree matches with a penalty rule, giving risééotbtal penalty of that

parse. The following lists characterizes some of the pgmales:

e complementation is preferred over modification
e subject topicalization is preferred over object topicatiian
e long distance dependencies are dis-preferred

e certain rules are dis-preferred (e.g. rules which coordiategories with-
out an explicit coordinator)

e certain lexical entries are dis-preferred (e.g. the préjposreadings for
the wordsaan, bij, in, naar, op, uit, voor, tussen are
preferred over the adjectival, noun and/or verb readings).

e certain guesses for unknown words are preferred over others

As can be concluded from the preliminary results presemtedble 3, it ap-
pears to be the case that about 60% of the disambiguatiomhepnatan be solved
using this very simple technique.

Dependency relations We also experimented with statistical models based on
dependency relations encoded in the dependency structheemodel assigns a
probality to a parse by considering each dependency relafi@r this purpose,
dependency relationd are 5-tuplesd = (W, pn, I, Wa, Pa) Wherew, is the head
word, pn is the corresponding part-of-speech tag taken from a sragdifgart-of-
speechqv,n,a,adv p,...}, r is the name of the relation taken from a small set of
relation namegsu,objl,0bj2,vc,mod,det.}; ws, is the argument word, angh is
its part of speech.

The probability of a parsg given a sentencemight then be defined as:

1
p(y‘x) = m !Zly p(r7 Wa, pa‘Wha ph)

For disambiguation, the normalizing factd(x) is the same for every parse of a
given sentence and can be ignored.
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Due to the occurrence of reentrancies, dependency stascéwe generally not
trees but graphs. Therefore, the product above gives paaitsebecause it will
have an unjustified bias against such reentrancies (a sg®ytigives rise to an
additional dependency relation). For this reason, we h&wesen to score parse
trees by determining thmearnvalue of— log p for each tuple; this improved results
considerably. The probability of a dependency is calcdlatefollows:

P(r,Wa, Pa/Wh, Ph) = P( [Wh, Ph) * P(PaWh, Ph, ) * P(Wa|Wh, Wp, I, Pa)

The three components are each calculated using a lineardfbskategy, where

the weights are determined by frequency and diversity (fdan2.66 of (Collins

1999)). The quantities we use for backing off are given infthlewing table:
back-off level  p(r|wh, pn)  P(PalWh, Ph,I)  P(Wa|Wh, Wp, I, Pa)

1 p(r|pn) P(palpn; ) P(Wa|Wp,T, Pa)
2 p(r) P(palr) P(Walr, Pa)
3 P(Pa) P(Wa|Pa)

4 P(Wa)

Because the size of the treebanks we have currently avaigbiuch too small
to estimate these quantities accurately, we have chosemdardkestimation using
unsupervised learning. We have parsed a large corpus (‘tskfant’ newspaper
text: first four months of 1997) using the penalty rules dibsat in the previous
section as our disambiguator. This corpus contains abd088 sentences and
6,200,000 words. We only used those sentences that thersgsiéd analyse as
a single constituent, and within a reasonable amount of. tiifes meant that we
could use the results of about 225,000 sentences. We estintta quantityp
using the best parse (according to the penalty rules) fan eathese sentences.
Collecting the 225,000 dependency structures took abaeihmonth of CPU-time
(using the high-performance computing cluster of the Ursiitg of Groningen).

As can be concluded from table 3, such a model performs muttérltiean the
baseline. Moreover, a combined model in which we simply dgdrtile penalties
to the quantityp performs better than either model in isolation.

Log-linear models. While the model described in the previous section offers
good performance and conceptual simplicity, it is not withpproblems. In partic-
ular, the strategies for dealing with reentrancies in theethelency structures and
for combining scores derived from penalty rules and fromedeency relation
statistics are ad hoc. Log-linear models, introduced tanahtanguage processing
by Berger, Della Pietra and Della Pietra (1996) and Dellar®i®ella Pietra and
Lafferty (1997), and applied to stochastic constraintdoagrammars by Abney
(1997) and Johnson, Geman, Canon, Chi and Riezler (1996) tbé potential to
solve both of these problems. Given a conditional log-limeadel, the probability

of a sentence having the parsgis:

PV = 55 exp(zm f <x,y>>
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cdbl10 cdbl20
technique precision recall f-score precision recall f-score
baseline 62.3 63.3 62.8 585 59.6 59.0
log linear 76.0 76.6 76.3 66.3 67.6 66.0
penalties 786 793 78.9 731 733 73.2

dependency rel’g 789 79.7 79.3 69.7 711 70.4
heur. + dep-rel’s 809 817 81.3 746 754 75.0
maximum 89.1 90.0 89.6 83.2 841 83.7|

Table 3: Preliminary results on thedbl10 andcdbl20 development treebanks for a
number of disambiguation techniques. Theselinerow lists the percentages obtained if
we select for each sentence a random parse tree from thefpagse Themaximumrow
lists the percentages obtained if we take for each sentémcbest parse tree. These two
numbers thus indicate the lower and upper bounds for patsetiga.

As before, the partition functiod(x) will be the same for every parse of a given
sentence and can be ignored, so the score for a parse is dimeplyeighted sum
of the property functiond;(x,y). What makes log-linear models particularly well
suited for this application is that the property functionaynbe sensitive to any
information which might be useful for disambiguation. Rbkes property func-
tions include syntactic heuristics, lexicalized and baek#f dependency relations,
structural configurations, and lexical semantic classemdJog-linear models, all
of these disparate types of information may be combinedandémgle model for
disambiguation. Furthermore, since standard techniquesstimating the weights
A; from training data make no assumptions about the indepeedefrproperties,
one need not take special precautions when informatiorceswverlap.

The drawback to using log-linear models is that accuraienesion of the pa-
rameters\; requires a large amount of annotated training data. Sinde tsaining
data is not yet available, we instead attempted unsupettiziming from unanno-
tated data. We used the Alpino parser to find all parses of2t@® sentences with
ten or fewer words in the ‘de Volkskrant’ newpaper corpusindshe resulting col-
lection of 2,200,000 unranked parses, we then applied &iethl.'s (2000) ‘Itera-
tive Maximization’ algorithm to estimate the parametera ¢dgg-linear model with
dependency tuples as described in the previous sectioropenty functions. The
results, given in table 3, show some promise, but the pedoga of the log-linear
model does not yet match that of the other disambiguatiategjies. Current
work in this area is focused on expanding the set of propeatiel on using super-
vised training from what annotated data is available to &iap the unsupervised
training from large quantities of newspaper text.
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7 Conclusions

Alpino aims at providing a wide-coverage, accurate, comfamal grammar for
Dutch. The linguistic component of the system consists axécéhlist feature-
based grammar for Dutch, a wide-coverage and detaileddexend a method for
constructing dependency treebanks. The parser conta@xscall analysis module
and a method for reconstructing parses from a parse foré@st) ieam search,
which allows the linguistic knowledge to be applied effi¢cigrand robustly to
unrestricted text. Finally, we have presented preliminexperiments aimed at
providing accurate disambiguation.

In the near future, we hope to address a number of additiasales. The
valency information in the lexicon is in many ways incomplétVe hope to obtain
a more complete lexicon by acquiring dependency frames frorpora. Lexical
analysis currently uses hand-written filter rules to redil@enumber of tags for
lexical items. An obvious alternative is to use a corpusebdgmrt-of-speech tagger
to arrive at the relevant filters. Finally, the work on disaguation can profit
from the availability of more annotated material. This sestg that our efforts at
creating a dependency treebank may lead to improved résutis future.
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