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Control Synthesis of T–S Fuzzy Systems Based
on a New Control Scheme
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Abstract—This paper studies the control synthesis problem of
Takagi–Sugeno (T–S) fuzzy systems. By splitting the premise vari-
able spaces and using the properties of fuzzy sets, a new control
scheme is proposed based on a new class of fuzzy Lyapunov func-
tions, and a convex condition for designing fuzzy controllers is
given, where the new fuzzy Lyapunov functions and fuzzy con-
trollers are constructed based on the split subspaces. In particular,
some existing fuzzy Lyapunov functions and control schemes are
special cases of the new Lyapunov function and control scheme,
respectively. Numerical examples are given to illustrate the effec-
tiveness of the proposed method.

Index Terms—Fuzzy control, fuzzy Lyapunov function, linear
matrix inequalities (LMIs), nonlinear systems, Takagi–Sugeno
(T–S) fuzzy models.

I. INTRODUCTION

IN THE NONLINEAR control area, there is no system-
atic mathematical technique to obtain necessary and suf-

ficient conditions to guarantee the stability and performance
of nonlinear systems. In general, control of nonlinear sys-
tems is often very difficult, and various control methods have
been exploited for the nonlinear control systems [1]. In partic-
ular, an important approach to nonlinear control system de-
sign is to model the considered nonlinear systems as Tak-
agi and Sugeno (T–S) fuzzy systems, which are locally lin-
ear time-invariant systems connected by IF–THEN rules. As
a result, the conventional linear system theory can be ap-
plied for analysis and synthesis of the nonlinear control sys-
tems. In recent years, control synthesis problems of T–S fuzzy
systems have been well studied, where quadratic Lyapunov
function approaches [2]–[8] are widely employed. Since a
common Lyapunov matrix is used for all local models of
fuzzy systems, the quadratic Lyapunov function approach of-
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ten leads to conservative results. Then, parameter-dependent
Lyapunov functions (or called fuzzy Lyapunov functions)
[9]–[12], piecewise Lyapunov functions [13], [14], and
k-sample variation Lyapunov functions [15] are, respectively,
proposed to reduce the conservatism introduced by using
quadratic Lyapunov functions. In most of the fuzzy control
designs based on T–S fuzzy models, the parallel distributed
compensation (PDC) control scheme in [16], i.e., the controller
shares the same fuzzy rules with the considered fuzzy model,
plays an important role. In addition, a number of alternative
control schemes, such as the non-PDC control scheme in [11],
the switching constant controller gain scheme in [17], and the
switching PDC (SPDC) control scheme in [18] and [19], are
also developed for designing fuzzy controllers.

Although many important progresses have been achieved in
the fuzzy control area, the properties about the structure or
shape of membership functions are often neglected in some
of the literature. Therefore, a great deal of effort has recently
been devoted to exploiting the properties about the structure or
shape of membership functions for less-conservative results [7],
[20]–[30]. In [24], by using the knowledge of the membership
functions’ shape to introduce slack variables, relaxed stabil-
ity conditions are presented. A systematic design approach of
T–S fuzzy control systems is presented by searching a common
positive-definite symmetric matrix in each maximal overlapped-
rules group of fuzzy rules in [28]. By separating the original
plant rules into several fuzzy regions, the T–S fuzzy region
control approach and the regional-membership-function-shape-
dependent approach are, respectively, proposed in [25] and [30].
By exploiting the dependence of the stability upon membership
functions, a fuzzy control design approach is given based on
Kharitonov’s theorem in [23]. In [26], a line-integral function is
introduced as a fuzzy Lyapunov function without the association
with the time derivatives of membership functions, and then, re-
laxed stability conditions are achieved. Moreover, by exploiting
the properties of multidimensional fuzzy summation, relaxed
stability analysis and synthesis conditions are proposed in [6],
[7], and [31], and an asymptotically necessary and sufficient
condition is achieved in [6]. In particular, Cao et al. [20]–[22]
first partition the premise variable space into some subspaces
by fuzzy membership functions, and then, some relaxed sta-
bility analysis and synthesis conditions are presented based on
piecewise Lyapunov functions.

Motivated by these works, where the properties about the
structure or shape of membership functions are exploited
for less-conservative results, this paper will further study the
fuzzy control design technique by exploiting some new prop-
erties about the structure and shape of membership functions.
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According to the role of fuzzy sets, the premise variable space
is split into a set of subspaces, where there is one and only one
fuzzy set playing a dominant role on each premise variable vj -
axis. By switching the parameters of a class of matrix functions
with some special constraints between the split subspaces, the
continuity of the class of matrix functions can be guaranteed.
Further, by using the class of matrix functions, a new fuzzy Lya-
punov function (which are known as dominant fuzzy Lyapunov
functions) and a new control scheme can be obtained. Then, the
proposed technique can continuously switch Lyapunov func-
tions and control gains based on the role of the different fuzzy
sets, which has the potential to give less-conservative results.
The fact will be illustrated by numerical examples. In particu-
lar, the fuzzy Lyapunov functions in [9] and [32] and the non-
PDC control scheme in [11] can be viewed as special cases of
the dominant fuzzy Lyapunov functions and the new proposed
control scheme, respectively. The comparison will be given to
illustrate the effectiveness of the new technique by numerical
examples.

The rest of this paper is organized as follows. T–S fuzzy mod-
els are given by multiple-dimensional summations in Section II.
Based on the split subspaces of the premise variable space, a
new class of continuous functions, which is used to obtain new
Lyapunov functions and control schemes, are constructed in
Section III. In Section IV, a convex control design condition
is presented. Section V gives three numerical examples to il-
lustrate the effectiveness of the proposed method. Section VI
concludes the paper.

Notation: For a square matrix E,He(E) is defined asHe(E) =
E + ET , and E−T denotes (E−1)T if E is nonsingular.

II. SYSTEM DESCRIPTIONS

The nonlinear systems under consideration is described by
the following fuzzy system model:

Plant Rule (i1i2 . . . ip):

IF v1(t) is M1i1 and v2(t) is M2i2 , . . . , vp(t) is Mpip

THEN ẋ(t) = Ai1 i2 ...ip
x(t) + Bi1 i2 ...ip

u(t) (1)

x(t) ∈ R
nx is the state vector, u(t) ∈ R

nu is the control input
vector, v(t) = [v1(t) v2(t) . . . vp(t)]T ∈ R

p are the premise
variables and assumed to be measurable, and Mij denotes an
vj (t)-based fuzzy set. Let rj be the number of vj (t)-based fuzzy
sets. Then, r = Πp

i=1ri is the number of IF–THEN rules.
Given a pair of (x(t), u(t)), by using the fuzzy inference

method with a singleton fuzzifier, product inference, and center
average defuzzifiers, the final output of the T–S fuzzy model is
obtained as in (2), shown at the bottom of the page.

In order to make full use of the properties of fuzzy member-
ship functions, the T–S fuzzy model is rewritten as follows:

ẋ(t) =
r1∑

i1 =1

r2∑

i2 =1

. . .

rp∑

ip =1

(Πp
j=1μjij

(vj (t)))

× (Ai1 i2 ...ip
x(t) + Bi1 i2 ···ip

u(t)) (3)

where

μjij
(vj (t)) =

Mjij
(vj (t))∑rj

lj =1 Mjlj (vj (t))
. (4)

Remark 1: In (3), the fuzzy system is represented by multi-
dimensional fuzzy summations. The description is helpful for
making full use of the properties of fuzzy membership functions,
and the description in (3) has been used in [7], [26], and [31] etc.,
where many special properties of fuzzy membership functions
are exploited to obtain relaxed analysis and synthesis conditions.

In this paper, we consider a particular type of fuzzy system
models, which is often used to represent nonlinear systems. In
the fuzzy model, it is assumed that the vj -based fuzzy sets Mjij

,
1 ≤ ij ≤ rj are normal, consistent, and complete in Wj ⊂ R
with pseudotrapezoid membership functions, where Wj is the
universe of discourse on the vj -axis, which contains all the
possible elements of concern in each particular context or appli-
cation on the premise variable vj (t). In particular, some famil-
iar membership functions (triangular, trapezoidal, or Gaussian
membership functions, etc.) are all pseudotrapezoid member-
ship functions [33]. The concepts and properties about fuzzy
sets are shown in the Appendix, or see [33].

Then, these types of fuzzy systems have the following nice
properties.

1) By virtue of Lemma 3 in the Appendix, we can always
assume that Mj1 < Mj2 < · · · < Mjrj

, where the signi-
fication “<” refers to Definition 1(v).

2) According to Lemma 3 (ii) in the Appendix, there are at
most two fuzzy sets that are fired on the vj -axis at some
moment.

3) From (4), we have that 0 ≤ μjij
≤ 1,

∑rj

ij =1 μjij
= 1.

In the following, we further illustrate these properties with
a concrete example. For simplicity of explanation, a scale non-
linear system ẋ = f(x)x is considered, where f(x) is a non-
linear function on the compact set W = [α1 , α2 ] × [β1 , β2 ]. To
approximate f(x), define two sets of normal, consistent, com-
plete fuzzy sets M1i , 1 ≤ i ≤ 3 in [α1 , α2 ] and M2i , 1 ≤ i ≤ 3
in [β1 , β2 ] with pesudotrapezoid membership functions (see
Fig. 1). Then, a fuzzy system with nine rules can be constructed
to approximate f(x) as follows:

Rule (i1i2):

IF v1(t) is M1i1 and v2(t) is M2i2

THEN ẋ(t) = Ai1 i2 x(t). (5)

ẋ(t) =

∑r1
i1 =1

∑r2
i2 =1 . . .

∑rp

ip =1(Π
p
j=1Mjij

)(Ai1 i2 ...ip
x(t) + Bi1 i2 ...ip

u(t))
∑r1

i1 =1
∑r2

i2 =1 . . .
∑rp

ip =1 Πp
j=1Mjij

. (2)
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Fig. 1. Normal, consistent, and complete fuzzy sets in v1 - and v2 -axes.

Using a singleton fuzzifier, product inference, and center aver-
age defuzzifiers

ẋ(t) =
3∑

i1 =1

3∑

i2 =1

μ1i1 (v1(t))μ2i2 (v2(t))Ai1 i2 x(t) (6)

where μlil
(vl(t)) are the grade of membership of vl(t) in Mlil

,
l = 1, 2. Among v1-based fuzzy sets, the overlapped fuzzy sets
can be M11 and M12 or M12 and M13 , which implies that
μ11(v1(t)) + μ12(v1(t)) = 1 or μ12(v1(t)) + μ13(v1(t)) = 1.

Given a point in the universe of discourse W = W1 × W2 ,
there are at most two fuzzy sets firing on the v1-axis (v2-axis).
Consider that the area I(21), (M11 , M12) or M12 or (M12 , M13)
are fired on v1-axis at the same moment, which implies that
μ11 + μ12 = 1 or μ12 = 1, or μ12 + μ13 = 1 at some moment
when the premise variable v(t) ∈ I(21).

In the next section, these properties will be used to construct
a class of continuous functions.

III. CONSTRUCT CONTINUOUS FUNCTIONS TO OBTAIN NEW

LYAPUNOV FUNCTIONS AND CONTROL SCHEMES

A. Class of Continuous Functions on the Split Subspaces

Assume a T–S fuzzy system is constructed by normal, consis-
tent, and complete fuzzy sets with pseudotrapezoid membership
functions, the premise variable is p dimensions, and the premise
variable space is denoted as W = W1 × W2 · · · × Wp . Then,
for a point belonging to W , there exists a fuzzy set Mjij

on
the vj -axis such that Mjij

plays a dominant role. For example,
consider the point q1 in Fig. 1; it can be seen that M12 plays a
dominant role on the v1-axis, and M22 plays a dominant role
on the v2-axis. Then, according to the dominant role of fuzzy
sets, we can split the space W = W1 × W2 in Fig. 1 into nine
subspaces, i.e., I(ij), 1 ≤ i, j ≤ 3. For the all points in I(ij),
the fuzzy sets M1i on the v1-axis and M2j on the v2-axis play

the dominant role. Note that there are at most two fuzzy sets
simultaneously firing in one axis, and the sum of the two corre-
sponding membership functions is equal to 1. Then, the space
is spilt by whether or not the value of the fuzzy membership
function on v1- and v2-axes is equal to 0.5 (see Fig. 1).

For the general case that p premise variables are considered,
we can split the premise variable space W as follows:

I(i1i2 · · · ip)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
v(t) =

⎡

⎢⎢⎢⎣

v1(t)

v2(t)
...

vp(t)

⎤

⎥⎥⎥⎦ : μjij
(vj (t)) ≥ 0.5, 1 ≤ j ≤ p

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.

Obviously

W =
⋃

1 ≤ i1 ≤ r1

.

.

.
1 ≤ ip ≤ rp

I(i1i2 · · · ip). (7)

Moreover, before constructing continuous functions, some new
significations are also given for clear descriptions.

Denote

i1 = i1→1 , i1i2 · · · ik−1ik = i1→k , 2 ≤ k ≤ p (8)

UD (i1→k ) = {l1→km1→k ||lδ − iδ | ≤ 1, |mδ − lδ | ≤ 1

|mδ − iδ | ≤ 1, lδ ,mδ ∈ {1, 2, · · · , rδ}, 1 ≤ δ ≤ k}
2 ≤ k ≤ p (9)

U 0
D (i1→k ) = {l1→km1→k ||lδ − iδ | ≤ 1, |mδ − lδ | ≤ 1

|mδ − iδ | ≤ 1, lδ ,mδ ∈ {1, 2, · · · , rδ}, 1 ≤ δ ≤ k

lk − mk = −1}, 2 ≤ k ≤ p (10)

Uk
D (ik ) = {lkmk ||lk − ik | ≤ 1, |mk − ik | ≤ 1

|lk − mk | ≤ 1, lk ,mk ∈ {1, 2, · · · , rk}}, 1 ≤ k ≤ p

Uk0
D (ik ) = {lkmk ||lk − ik | ≤ 1, |mk − ik | ≤ 1

lk − mk = −1, lk ,mk ∈ {1, 2, · · · , rk}}, 1 ≤ k ≤ p

US (i1→k ) = {l1→k ||lδ − iδ | ≤ 1, lδ ∈ {1, 2, · · · , rδ}
1 ≤ δ ≤ k}, 2 ≤ k ≤ p

Uk
S (ik ) = {lk ||lk − ik | ≤ 1, lk ∈ {1, 2, · · · , rk}}

1 ≤ k ≤ p. (11)

Remark 2: Note that we define some notations in the earlier
discussion, for example, UD (i1→k ), U 0

D (i1→k ), etc. These spe-
cial notations are given to obtain compact descriptions and clear
proofs of the subsequent lemmas and theorems.

In what follows, these notations are further explained
by the two examples in Figs. 1 and 10. In Fig. 10, the
space is split as three subspaces I(1), I(2), and I(3).
U 1

S (i1)|i1 =1 = {1,2}, U 1
S (i1)|i1 =2 = {1,2,3}, U 1

S (i1)|i1 =3
= {2,3}, and U 1

D (i1)|i1 =1 = {11,12,21,22}, U 1
D (i1)|i1 =2

= {11,12,21,22,23,32,33}, U 1
D (i1)|i1 =3 = {22,23,32,33}.
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In Fig. 1, the given universe of discourse W = W1 × W2 ,
where W1 = [α1 , α2 ], and W2 = [β1 , β2 ]. The space W
is split into nine subspaces, i.e., I(11), I(12), I(13),
I(21), I(22), I(23), I(31), I(32), I(33). UD (i1i2)|i1 =1,i2 =1 =
{1111,1112,1121,1122,1211,1212,1221,1222,2111,2112,2121,
2122,2211,2212,2221,2222}.

Note that the vj (t)-based fuzzy sets Mjij
, 1 ≤ ij ≤ rj are

normal, consistent, and complete in Wj ⊂ R with pseudo-
trapezoid membership functions; therefore, at some moment,
if the premise variables v(t) = [ v1(t) v2(t) · · · vp(t) ] ∈
I(i1i2 · · · ip), then only the Mjlj with |lj − ij | ≤ 1 on the
vj (t)-axis can be fired. The fact implies that μjlj (vj (t)) with
|lj − ij | ≤ 1, i.e., the grade of membership of vj (t) in Mjlj ,
can be fired and the μjlj (vj (t)) = 0 with |lj − ij | > 2. Thus,
for v(t) ∈ I(i1i2 · · · ip)

r1∑

i1 =1

r2∑

i2 =1

· · ·
rp∑

ip =1

(Πp
j=1μjij

)Ai1 i2 ···ip

=
∑

l1→p ∈US (i1→p )

μ1l1 μ2l2 · · ·μplp Al1→p
.

Then, the system (3) can be described by the following compact
form:

ẋ(t) = A(μ)x(t) + B(μ)u(t)) (12)

where

A(μ) =
∑

l1→p ∈US (i1→p )

μ1l1 μ2l2 · · ·μplp Al1→p

B(μ) =
∑

l1→p ∈US (i1→p )

μ1l1 μ2l2 · · ·μplp Bl1→p

for v(t) ∈ I(i1i2 · · · ip). (13)

Now, based on the split subspaces of W , a class of continuous
functions are constructed as follows:

F (μ(v(t))) =
∑

l1→p ∈US (i1→p )

μ1l1 μ2l2 · · ·μplp F
(i1→p )
l1→p

for v(t) ∈ I(i1i2 · · · ip) (15)

whose parameters satisfy the following equalities:
∑

lτ ∈{iτ ,iτ +1}
F

(i1→p )
l1→p

=
∑

lτ ∈{iτ ,iτ +1}
F

(i1 ···iτ −1 (iτ +1)iτ + 1 ···ip )
l1→p

for 1 ≤ τ ≤ p, 1 ≤ iτ ≤ rτ − 1 (15)

where F
(i1→p )
l1→p

, l1→p ∈ US (i1→p) are constant matrices.
The continuity of the function (14) can be proved by the

following theorem.
Theorem 1: The function (14) with (15) is continuous.
Proof: From the definition of F (μ(v(t))) in (14), it follows

that the function F (μ(v(t))) is continuous if the continuity of
the function can be guaranteed on the bound of I(i1i2 · · · ip).
In what follows, we will show that the function is continuously
across the bound.

Assume the function F (μ(v(t))) goes into I(j1j2 · · · jp) from
I(i1i2 · · · ip); then, their intersection is a no-empty set. In order

to give a simple proof, we also assume that

|iτ − jτ | =
{

1, 1 ≤ τ ≤ k

0, k + 1 ≤ τ ≤ p.

For the other cases, the same technique can be used.
When v(t) ∈ I(i1i2 · · · ip) and reaches the bound, there

are only two fuzzy membership functions, i.e., μτ iτ
(vτ (t)) =

μτ jτ
(vτ (t)) = 0.5, that are fired on each vτ -axis 1 ≤ τ ≤ k.

Then, the function F (μ(v(t))) can be written as follows:
∑

l1 ∈ {i1 , j1 }
.
.
.

lk ∈ {ik , jk }
lk + 1 ∈ U k + 1

S
(ik + 1 )

.

.

.
lp ∈ U p

S
(ip )

0.5kμ(k+1)lk + 1 · · ·μplp F
(i1 i2 i3 ···ip )
l1 l2 l3 ···lp . (16)

When v(t) leaves the bound and enters into the subspace
I(j1j2 · · · jp), the function F (μ(v(t))) is the following form:

∑

l1 ∈ {i1 , j1 }
.
.
.

lk ∈ {ik , jk }
lk + 1 ∈ U k + 1

S
(ik + 1 )

.

.

.
lp ∈ U p

S
(ip )

0.5kμ(k+1)lk + 1 · · ·μplp F
(j1 j2 j3 ···jp )
l1 l2 l3 ···lp . (17)

Now, we will show that (16) is equal to (17), which implies that
the function F (μ(v(t))) is continuously across the bound.

Consider (16), we have
∑

l1 ∈ {i1 , j1 }
.
.
.

lk ∈ {ik , jk }
lk + 1 ∈ U k + 1

S
(ik + 1 )

.

.

.
lp ∈ U p

S
(ip )

0.5kμ(k+1)lk + 1 · · ·μplp F
(i1 i2 i3 ···ip )
l1 l2 l3 ···lp

=
∑

l2 ∈ {i2 , j2 }
.
.
.

lk ∈ {ik , jk }
lk + 1 ∈ U k + 1

S
(ik + 1 )

.

.

.
lp ∈ U p

S
(ip )

0.5kμ(k+1)lk + 1 · · ·μplp

∑

l1 ∈{i1 ,j1 }
F

(i1 i2 i3 ···ip )
l1 l2 l3 ···lp .

Combining it, (15), and |i1 − j1 | = 1 yields
∑

l1 ∈ {i1 , j1 }
.
.
.

lk ∈ {ik , jk }
lk + 1 ∈ U k + 1

S
(ik + 1 )

.

.

.
lp ∈ U p

S
(ip )

0.5kμ(k+1)lk + 1 · · ·μplp F
(i1 i2 i3 ···ip )
l1 l2 l3 ···lp
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=
∑

l2 ∈ {i2 , j2 }
.
.
.

lk ∈ {ik , jk }
lk + 1 ∈ U k + 1

S
(ik + 1 )

.

.

.
lp ∈ U p

S
(ip )

0.5kμ(k+1)lk + 1 · · ·μplp

∑

l1 ∈{i1 ,j1 }
F

(j1 i2 i3 ···ip )
l1 l2 l3 ···lp

=
∑

l1 ∈ {i1 , j1 }
.
.
.

lk ∈ {ik , jk }
lk + 1 ∈ U k + 1

S
(ik + 1 )

.

.

.
lp ∈ U p

S
(ip )

0.5kμ(k+1)lk + 1 · · ·μplp F
(j1 i2 i3 ···ip ).
l1 l2 l3 ···lp

Further, on applying the same technique to the earlier equality,
then it follows that

∑

l1 ∈ {i1 , j1 }
.
.
.

lk ∈ {ik , jk }
lk + 1 ∈ U k + 1

S
(ik + 1 )

.

.

.
lp ∈ U p

S
(ip )

0.5kμ(k+1)lk + 1 · · ·μplp F
(j1 i2 i3 ···ip )
l1 l2 l3 ···lp

=
∑

l1 ∈ {i1 , j1 }
l3 ∈ {i3 , j3 }

.

.

.
lk ∈ {ik , jk }

lk + 1 ∈ U k + 1
S

(ik + 1 )
.
.
.

lp ∈ U p
S

(ip )

0.5kμ(k+1)lk + 1 · · ·μplp

∑

l2 ∈{i2 ,j2 }
F

(j1 i2 i3 ···ip )
l1 l2 l3 ···lp

=
∑

l1 ∈ {i1 , j1 }
l3 ∈ {i3 , j3 }

.

.

.
lk ∈ {ik , jk }

lk + 1 ∈ U k + 1
S

(ik + 1 )
.
.
.

lp ∈ U p
S

(ip )

0.5kμ(k+1)lk + 1 · · ·μplp

∑

l2 ∈{i2 ,j2 }
F

(j1 j2 i3 ···ip )
l1 l2 l3 ···lp

=
∑

l1 ∈ {i1 , j1 }
.
.
.

lk ∈ {ik , jk }
lk + 1 ∈ U k + 1

S
(ik + 1 )

.

.

.
lp ∈ U p

S
(ip )

0.5kμ(k+1)lk + 1 · · ·μplp F
(j1 j2 i3 ···ip )
l1 l2 l3 ···lp

...

=
∑

l1 ∈ {i1 , j1 }
.
.
.

lk ∈ {ik , jk }
lk + 1 ∈ U k + 1

S
(ik + 1 )

.

.

.
lp ∈ U p

S
(ip )

0.5kμ(k+1)lk + 1 · · ·μplp F
(j1 ···jk ik + 1 ···ip )
l1 l2 l3 ···lp .

Then, we have

∑

l1 ∈ {i1 , j1 }
.
.
.

lk ∈ {ik , jk }
lk + 1 ∈ U k + 1

S
(ik + 1 )

.

.

.
lp ∈ U p

S
(ip )

0.5kμ(k+1)lk + 1 · · ·μplp F
(i1 ···ik ik + 1 ···ip )
l1 l2 l3 ···lp

=
∑

l1 ∈ {i1 , j1 }
.
.
.

lk ∈ {ik , jk }
lk + 1 ∈ U k + 1

S
(ik + 1 )

.

.

.
lp ∈ U p

S
(ip )

0.5kμ(k+1)lk + 1 · · ·μplp F
(j1 ···jk ik + 1 ···ip )
l1 l2 l3 ···lp .

Note that |iτ − jτ | = 0, k + 1 ≤ τ ≤ p; then, it follows that
(16) is equal to (17) from the aforementioned equality, which
implies that the function F (μ(v(t))) is continuously across the
bound. Thus, the proof is complete. �

Remark 3: Note that the function (14) is a summation of some
continuous functions μ1l1 μ2l2 · · ·μplp F

(i1→p )
l1→p

in one subregion
of the premise variable space, which implies that the function
(14) is continuous in each subregion of the premise variable
space. Moreover, from the Proof of Theorem 1, the condition
(15) guarantees that the function (14) is continuously across the
bound. Therefore, the function (14) is continuous in the global
variable space.

A simple example is introduced further to illustrate the con-
clusion of Theorem 1. Consider Fig. 10, and denote μ1i(v1(t))
as the grade of membership of v1(t) in Ai , i = 1, 2, 3. Then,
(14) and (15) are of the following forms:

F (μ(v(t)))

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μ11(v1(t))F
(1)
1 + μ12(v1(t))F

(1)
2 , v1(t) ∈ I(1)

μ11(v1(t))F
(2)
1 + μ12(v1(t))F

(2)
2

+μ13(v1(t))F
(2)
3 , v1(t) ∈ I(2)

μ12(v1(t))F
(3)
2 + μ13(v1(t))F

(3)
3 , v1(t) ∈ I(3)

with

F
(1)
1 + F

(1)
2 = F

(2)
1 + F

(2)
2

F
(2)
2 + F

(2)
3 = F

(3)
2 + F

(3)
3 .
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When v1(t) ∈ I(1) ∩ I(2), μ11(v1(t)) = μ12(v1(t)) = 0.5,
and μ13(v1(t)) = 0, then

μ11(v1(t))F
(1)
1 + μ12(v1(t))F

(1)
2

= 0.5(F (1)
1 + F

(1)
2 )

= 0.5(F (2)
1 + F

(2)
2 )

= μ11(v1(t))F
(2)
1 + μ12(v1(t))F

(2)
2 + μ13(v1(t))F

(2)
3 .

When v1(t) ∈ I(2) ∩ I(3), μ12(v1(t)) = μ13(v1(t)) = 0.5,
and μ11(v1(t)) = 0, then

μ11(v1(t))F
(2)
1 + μ12(v1(t))F

(2)
2 + μ13(v1(t))F

(2)
3

= 0.5(F (2)
2 + F

(2)
3 )

= 0.5(F (3)
2 + F

(3)
3 )

= μ12(v1(t))F
(3)
2 + μ13(v1(t))F

(3)
3 .

Thus, the function F (μ(v(t))) is continuous.

B. New Control Scheme and Dominant Fuzzy
Lyapunov Functions

In this section, based on the split subspaces of the premise
variable space, a new class of continuously switching fuzzy
Lyapunov functions are given. Because the premise variable
space is split according to whether or not the fuzzy sets on each
vj -axis, 1 ≤ j ≤ p, play the dominant roles, we call the new
class of fuzzy Lyapunov functions dominant fuzzy Lyapunov
functions in this paper. Moreover, a new continuously switching
fuzzy control scheme is also presented.

Assume symmetric matrices 0 < Q
(i1→p )
l1 l2 ...lp

∈ Rn×n , l1→p ∈
US (i1→p); then from Theorem 1, it follows that

Q(μ) = Q(i1→p )(μ) =
∑

l1→p ∈US (i1→p )

μ1l1 μ2l2 · · ·μplp Q
(i1→p )
l1→p

for v(t) ∈ I(i1i2 · · · ip)

with
∑

lτ ∈{iτ ,iτ +1}
Q

(i1→p )
l1→p

=
∑

lτ ∈{iτ ,iτ +1}
Q

(i1 ···iτ −1 (iτ +1)iτ + 1 ···ip )
l1→p

for 1 ≤ τ ≤ p, 1 ≤ iτ ≤ rτ − 1 (18)

is continuous and Q(μ) > 0 on

W =
⋃

1 ≤ i1 ≤ r1

.

.

.
1 ≤ ip ≤ rp

I(i1i2 · · · ip).

Let

P (μ) = Q−1(μ). (19)

Then, P (μ) > 0 is continuous on W . Therefore, we may choose
P (μ) as a Lyapunov matrix.

Moreover, we also give a new continuously switching control
scheme as follows.

Control scheme:

u(t) = K(μ)x(t) (20)

with K(μ) = F (μ)Q−1(μ), and

F (μ) = F (i1→p )(μ(v(t))) =
∑

l1→p ∈US (i1→p )

μ1l1 μ2l2 · · ·μplp

× F
(i1→p )
l1→p

, for v(t) ∈ I(i1i2 · · · ip) (21)

whose parameters satisfy the following equalities:
∑

lτ ∈{iτ ,iτ +1}
F

(i1→p )
l1→p

=
∑

lτ ∈{iτ ,iτ +1}
F

(i1 ···iτ −1 (iτ +1)iτ + 1 ···ip )
l1→p

for 1 ≤ τ ≤ p, 1 ≤ iτ ≤ rτ − 1.

Remark 4: (i) Based on Theorem 1, a new class of fuzzy
Lyapunov matrices are proposed in this paper. For the split sub-
space I(i1i2 · · · ip), the membership functions μ1i1 (v1(t)) ≥
0.5, μ2i2 (v2(t)) ≥ 0.5, . . ., μpip

(vp(t)) ≥ 0.5, which implies
that the fuzzy set Mτ iτ

on vτ -axis 1 ≤ τ ≤ p plays a dominant
role; therefore, we call it a dominant fuzzy Lyapunov matrix in
this paper. If the matrices Q

(i1→p )
l1→p

= Q
(11···1)
l1→p

in (19), i.e., the

Q
(i1→p )
l1→p

will remain a constant in all the split subspaces, then
the dominant fuzzy Lyapunov matrix is reduced to the fuzzy
Lyapunov matrix. The fact implies that the condition based on
the dominant fuzzy Lyapunov function has the potential to give
less-conservative results.

(ii) Note that a new control scheme (20), which continuously
switches gains on the bound of the split subspaces I(i1i2 · · · ip),
is presented. If F

(i1→p )
l1→p

= F
(j1→p )
l1→p

, then the new control scheme
can be reduced to the non-PDC control scheme in [11].

IV. CONTROL SYNTHESIS CONDITION

In this section, based on the proposed dominant fuzzy Lya-
punov matrix (19) and the new fuzzy control scheme (20), a
convex controller design condition will be developed for the
T–S fuzzy system (3). To give the controller design condition,
we need the following lemmas.

Lemma 1: Assuming 0 ≤ η1 ≤ 0.5, 0.5 ≤ η2 ≤ 1, η1 + η2 =
1, if symmetric matrices R1 , R2 , and R3 satisfy the following
inequalities:

R1 ≤ 0

R1 + R2 + R3 ≥ 0

R3 ≥ 0

then

η2
1R1 + η1η2R2 + η2

2R3 ≥ 0.

Proof: Consider the following function:

f(λ) = λ2xT R1x + λxT R2x + xT R3x.

Then, d2(f)/dλ2 = xT R1x ≤ 0, and f(0) = xT R3x ≥ 0,
f(1) = xT R1x + xT R2x + xT R3x = xT (R1 +R2 +R3)x ≥
0, for x �= 0. Then f(λ) ≥ 0, for λ ∈ [0, 1].
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For 0 ≤ η1 ≤ 0.5, 0.5 ≤ η2 ≤ 1, it follows that 0 ≤ η1/η2 ≤
1. Further, f(η1/η2) ≥ 0, i.e.,

(
η1

η2

)2

xT R1x +
η1

η2
xT R2x + xT R3x ≥ 0

Combining it and 0.5 ≤ η2 ≤ 1 then yields

η2
1xT R1x + η1η2x

T R2x + η2
2xT R3x ≥ 0

which implies that

η2
1R1 + η1η2R2 + η2

2R3 ≥ 0.

Thus, the proof is complete. �
Lemma 2: If there exist symmetric matrices R

(i1→p )
l1→k −1 lk m 1→k −1 lk

and matrices R
(i1→p )
l1→k m 1→k

, l1→k−1m1→k−1 ∈ UD (i1→k−1),
lkmk ∈ Uk0

D (ik ), 1 ≤ k ≤ p, satisfying the following inequali-
ties:

R
(i1→p )
l1→k −1 ik m 1→k −1 ik a ≥ 0

R
(i1→p )
l1→k −1 (ik −1)m 1→k −1 (ik −1) ≤ 0

R
(i1→p )
l1→k −1 ik m 1→k −1 ik a + He(R(i1→p )

l1→k −1 (ik −1)m 1→k −1 ik
)

+ R
(i1→p )
l1→k −1 (ik −1)m 1→k −1 (ik −1) ≥ 0

R
(i1→p )
l1→k −1 ik m 1→k −1 ik b ≥ 0

R
(i1→p )
l1→k −1 (ik +1)m 1→k −1 (ik +1) ≤ 0

R
(i1→p )
l1→k −1 ik m 1→k −1 ik b + He(R(i1→p )

l1→k −1 ik m 1→k −1 (ik +1))

+ R
(i1→p )
l1→k −1 (ik +1)m 1→k −1 (ik +1) ≥ 0 (23)

then
∑

lk mk ∈U k
D

(ik )

μklk μkmk
R

(i1→p )
l1→k m 1→k

≥ 0,

for l1→k−1m1→k−1 ∈ UD (i1→k−1) (24)

where

R
(i1→p )
l1→k −1 ik m 1→k −1 ik

= R
(i1→p )
l1→k −1 ik m 1→k −1 ik a + R

(i1→p )
l1→k −1 ik m 1→k −1 ik b

μklk , 1 ≤ k ≤ p, 1 ≤ lk ≤ rk are the grade of membership of
vk (t) in Mkik

and the vk -based fuzzy sets Mklk , 1 ≤ lk ≤ rk

are normal, consistent, and complete in Wk ⊂ R with pseudo-
trapezoid membership functions.

Proof: Because the vk -based fuzzy sets Mklk , 1 ≤ lk ≤
rk are normal, consistent, and complete in Wk ⊂ R with
pseudotrapezoid membership functions μklk (vk (t)), from
Lemma 3 (ii), there are at most two fuzzy sets that
are fired on the vj -axis, which implies that μkik

(vk (t)) +
μk(ik −1)(vk (t)) = 1, or μkik

(vk (t)) + μk(ik +1)(vk (t)) = 1 for
v(t) ∈ I(i1 · · · ik · · · ip). Then, the left side of (24) can be
rewritten as follows:

∑

lk mk ∈U k
D

(ik )

μklk μkmk
R

(i1→p )
l1 ···lk m 1 ···mk

= μ2
kik

(vk (t))R(i1→p )
l1→k −1 ik m 1→k −1 ik

+ μ2
k(ik −1)(vk (t))R(i1→p )

l1→k −1 (ik −1)m 1→k −1 (ik −1)

+ μk(ik −1)(vk (t))μkik
(vk (t))He(R(i1→p )

l1→k −1 (ik −1)m 1→k −1 ik
)

or

= μ2
kik

(vk (t))R(i1→p )
l1→k −1 ik m 1→k −1 ik

+ μ2
k(ik +1)(vk (t))R(i1→p )

l1→k −1 (ik +1)m 1→k −1 (ik +1)

+ μk(ik +1)(vk (t))μkik
(vk (t))He(R(i1→p )

l1→k −1 (ik +1)m 1→k −1 ik
).

(25)

From v(t) ∈ I(i1 · · · ik · · · ip), we have 0.5 ≤ μkik
(vk (t)) ≤

1, 0 ≤ μk(ik −1)(vk (t)) ≤ 0.5, and 0 ≤ μk(ik +1)(vk (t)) ≤ 0.5.
Further from Lemma 1 and (23), we have

μ2
kik

(vk (t))R(i1→p )
l1→k −1 ik m 1→k −1 ik a

+ μ2
k(ik −1)(vk (t))R(i1→p )

l1→k −1 (ik −1)m 1→k −1 (ik −1)

+ μk(ik −1)(vk (t))μkik
(vk (t))He(R(i1→p )

l1→k −1 (ik −1)m 1→k −1 ik
)

≥ 0

and

μ2
kik

(vk (t))R(i1→p )
l1→k −1 ik m 1→k −1 ik b

+ μ2
k(ik +1)(vk (t))R(i1→p )

l1→k −1 (ik +1)m 1→k −1 (ik +1)

+ μk(ik +1)(vk (t))μkik
(vk (t))He(R(i1→p )

l1→k −1 (ik +1)m 1→k −1 ik
)

≥ 0.

From R
(i1→p )
l1→k −1 ik m 1→k −1 ik a ≥ 0, R

(i1→p )
l1→k −1 ik m 1→k −1 ik b ≥ 0, and the

aforementioned two inequalities, then we can obtain

μ2
kik

(vk (t))R(i1→p )
l1→k −1 ik m 1→k −1 ik

+ μ2
k(ik −1)(vk (t))R(i1→p )

l1→k −1 (ik −1)m 1→k −1 (ik −1)

+ μk(ik −1)(vk (t))μkik
(vk (t))He(R(i1→p )

l1→k −1 (ik −1)m 1→k −1 ik
)

≥ 0

and

μ2
kik

(vk (t))R(i1→p )
l1→k −1 ik m 1→k −1 ik

+ μ2
k(ik +1)(vk (t))R(i1→p )

l1→k −1 (ik +1)m 1→k −1 (ik +1)

+ μk(ik +1)(vk (t))μkik
(vk (t))He(R(i1→p )

l1→k −1 (ik +1)m 1→k −1 ik
)

≥ 0.

Combining them and (25), then (24) holds. Thus, the proof is
complete. �

By using Lemma 2, a convex condition for designing fuzzy
controllers is obtain as follows.
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Theorem 2: Assume μ̇τ lτ (vτ (t)) ≥ φτ lτ , for 1 ≤ τ ≤ p,
1 ≤ lτ ≤ rτ . If there exists symmetric matrices
Q

(i1→p )
l1→p

> 0, T
(i1→p )
l1→p

, l1→p ∈ US (i1→p), R
(i1→p )
l1→k −1 lk m 1→k −1 lk

,

X
(i1→p )
l1→k −1 lk m 1→k −1 lk

, l1→k−1 , m1→k−1 ∈ US (i1→k−1), lk ∈
Uk

S (ik ), and matrices F
(i1→p )
l1→p

, l1→p ∈ US (i1→p), R
(i1→p )
l1→k m 1→k

=

(R(i1→p )
l1→k −1 mk m 1→k −1 lk

)T , X
(i1→p )
l1→k m 1→k

= (X(i1→p )
l1→k −1 mk m 1→k −1 lk

)T ,
l1→km1→k ∈ U 0

D (i1→k ), 1 ≤ ik ≤ rk , 1 ≤ k ≤ p, satisfying
(15), (18), (23), and the following linear matrix inequalities
(LMIs):

Y
(i1→p )
l1→(k −1 ) lk m 1→(k −1 ) lk

+ R
(i1→p )
l1→(k −1 ) lk m 1→(k −1 ) lk

≤ X
(i1→p )
l1→(k −1 ) lk m 1→(k −1 ) lk

, l1→k−1m1→k−1 ∈ UD (i1→k−1)

lk ∈ Uk
S (ik ), 1 ≤ k ≤ p (26)

Y
(i1→p )
l1→k m 1→k

+ Y
(i1→p )
l1→k −1 mk m 1→k −1 lk

+ He(R(i1→p )
l1→k m 1→k

)

≤ He(X(i1→p )
l1→k m 1→k

)l1→k−1m 1→k −1 ∈ UD (i1→k−1)

lkmk ∈ Uk0
D (ik ), 1 ≤ k ≤ p (27)

Y (i1→p ) ≤ 0 (28)

Q
(i1→p )
η1→p − T

(i1→p )
η1 ···ητ −1 iτ ητ + 1 ···ηp

≥ 0, η1→p ∈ US (i1→p)

1 ≤ τ ≤ p (29)

where Y
(i1→p )
l1→k m 1→k

is as given in (30a), shown at the bottom of
the page, and

Y (i1→p ) =

⎡

⎢⎢⎢⎢⎢⎣

X
(i1→p )
τ1 τ1 X

(i1→p )
τ1 τ2 · · · X

(i1→p )
τ1 τw

X
(i1→p )
τ2 τ1 X

(i1→p )
τ2 τ2 · · · X

(i1→p )
τ2 τw

...
...

. . .
...

X
(i1→p )
τw τ1 X

(i1→p )
τw τ2 · · · X

(i1→p )
τw τw

⎤

⎥⎥⎥⎥⎥⎦

τ1 < τ2 < · · · < τw ∈ U 1
S (i1) and w = |U 1

S (i1)| (30b)

then the fuzzy system (3) is asymptotically stable via the con-
troller (20).

Proof: Multiplying (26) and (27), respectively, by μ2
klk

and
μklk μkmk

, then summing them, yields

∑

lk mk ∈U k
D

(ik )

μklk μkmk
(Y (i1→p )

l1→k m 1→k
+ R

(i1→p )
l1→k m 1→k

)

≤
∑

lk mk ∈U k
D

(ik )

μklk μkmk
X

(i1→p )
l1→k m 1→k

. (31)

From Lemma 2 and (23), we have

∑

lk mk ∈U k
D

(ik )

μklk μkmk
R

(i1→p )
l1→k m 1→k

≥ 0.

Combining it and (31), then it follows that

∑

lk mk ∈U k
D

(ik )

μklk μkmk
Y

(i1→p )
l1→k m 1→k

≤
∑

lk mk ∈U k
D

(ik )

μklk μkmk
X

(i1→p )
l1→k m 1→k

. (32)

Define

�μik
=

⎡

⎢⎢⎢⎢⎣

μkτ1 E
i1→p (ik )

μkτ2 E
i1→p (ik )
...

μkτw
Ei1→p (ik )

⎤

⎥⎥⎥⎥⎦
, τ1 < τ2 < · · · < τw ∈ Uk

S (ik )

w = |Uk
S (ik )|, 1 ≤ k ≤ p − 1.

Ei1→p (ik ) is an identity matrix with the same dimensions of

X
(i1→p )
l1→k m 1→k

.
Pre- and postmultiplying (28) by �μT

i1
and �μi1 then yields

∑

l1 m 1 ∈U 1
D

(i1 )

μ1l1 μ1m 1 X
(i1→p )
l1 m 1

≤ 0.

Combining it and (32) yields

∑

l1 m 1 ∈U 1
D

(i1 )

μ1l1 μ1m 1 Y
(i1→p )
l1 m 1

≤ 0. (33)

Y
(i1→p )
l1→k m 1→k

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

He(Al1→p
Q

(i1→p )
m 1→p + Bl1→p

F
(i1→p )
m 1→p )

−
p∑

τ =1

∑

ητ ∈US (iτ )

φτ ητ
(Q(i1→p )

l1 ···lτ −1 ητ lτ + 1 ···lp − T
(i1→p )
l1 ···lτ −1 iτ lτ + 1 ···lp ), for k = p

⎡

⎢⎢⎢⎢⎢⎢⎣

X
(i1→p )
l1→k τ1 m 1→k τ1

X
(i1→p )
l1→k τ1 m 1→k τ2

· · · X
(i1→p )
l1→k τ1 m 1→k τw

X
(i1→p )
l1→k τ2 m 1→k τ1

X
(i1→p )
l1→k τ2 m 1→k τ2

· · · X
(i1→p )
l1→k τ2 m 1→k τw

...
...

. . .
...

X
(i1→p )
l1→k τw m 1→k τ1

X
(i1→p )
l1→k τw m 1→k τ2

· · · X
(i1→p )
l1→k τw m 1→k τw

⎤

⎥⎥⎥⎥⎥⎥⎦

τ1 < τ2 < · · · < τw ∈ Uk+1
S (ik+1) and w = |Uk+1

S (ik+1)|, for 1 ≤ k < p

(30a)
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From the aforementioned inequality and (30), then it follows
that

∑

l1 m 1 ∈U 1
D

(i1 )

μ1l1 μ1m 1

×

⎡

⎢⎢⎢⎢⎢⎣

X
(i1→p )
l1 τ1 m 1 τ1

X
(i1→p )
l1 τ1 m 1 τ2

· · · X
(i1→p )
l1 τ1 m 1 τw

X
(i1→p )
l1 τ2 m 1 τ1

X
(i1→p )
l1 τ2 m 1 τ2

· · · X
(i1→p )
l1 τ2 m 1 τw

...
...

. . .
...

X
(i1→p )
l1 τw m 1 τ1

X
(i1→p )
l1 τw m 1 τ2

· · · X
(i1→p )
l1 τw m 1 τw

⎤

⎥⎥⎥⎥⎥⎦
≤ 0

τ1 < τ2 < · · · < τw ∈ U 2
S (i2), w = |U 2

S (i2)|

Pre- and postmultiplying the aforementioned inequality by �μT
i2

and �μi2 , then we can obtain

∑

l1 m 1 ∈U 1
D

(i1 )

μ1l1 μ1m 1

∑

l2 m 2 ∈U 2
D

(i2 )

μ2l2 μ2m 2 X
(i1→p )
l1 l2 m 1 m 2

≤ 0.

From (32) with k = 2 and considering the aforementioned in-
equality, then we have

∑

l1 m 1 ∈U 1
D

(i1 )

μ1l1 μ1m 1

∑

l2 m 2 ∈U 2
D

(i2 )

μ2l2 μ2m 2 Y
(i1→p )
l1 l2 m 1 m 2

≤ 0.

(34)
Further, the technique from (33) to (34) is recursively applied
for reaching k = p, then we can obtain (35), shown at the bottom
of the page. From (29), it follows that

p

Π
h=1,h �=τ

μhlh (Q(i1→p )
l1 ···lτ −1 ητ lτ + 1 ···lp − T

(i1→p )
l1 ···lτ −1 iτ lτ + 1 ···lp ) ≥ 0.

Combining it and μ̇τ ητ
(vτ (t)) ≥ φτ ητ

yields

μ̇τ ητ

p

Π
h=1,h �=τ

μhlh (Q(i1→p )
l1 ···lτ −1 ητ lτ + 1 ···lp − T

(i1→p )
l1 ···lτ −1 iτ lτ + 1 ···lp )

≥ φτ ητ

p

Π
h=1,h �=τ

μhlh (Q(i1→p )
l1 ···lτ −1 ητ lτ + 1 ···lp − T

(i1→p )
l1 ···lτ −1 iτ lτ + 1 ···lp ).

Then, we have that, as in (36), shown at the bottom of the next
page, holds. The left side of (36) can be rewritten as (37), shown
at the bottom the next page. Since

∑
ητ ∈ Uτ

S (iτ ) μτ ητ
= 1,

∑
ητ ∈ Uτ

S (iτ ) μ̇τ ητ
= 0; further, the left side of (36) is equal

∑

l1 m 1 ∈U 1
D

(i1 )

μ1l1 μ1m 1 · · ·
∑

lp mp ∈U p
D

(ip )

μplp μpmp
Y

(i1→p )
l1→p m 1→p

=
∑

l1 m 1 ∈U 1
D

(i1 )

· · ·
∑

lp mp ∈U p
D

(ip )

μ1l1 · · ·μplp μ1m 1 · · ·μpmp
Y

(i1→p )
l1→p m 1→p

=
∑

l1 m 1 ∈U 1
D

(i1 )

· · ·
∑

lp mp ∈U p
D

(ip )

μ1l1 · · ·μplp μ1m 1 · · ·μpmp

×
(
He

(
Al1→p

Q
(i1→p )
m 1→p + Bl1→p

F
(i1→p )
m 1→p −

p∑

τ =1

∑

ητ ∈U τ
S

(iτ )

φτ ητ

(
Q

(i1→p )
l1 ···lτ −1 ητ lτ + 1 ···lp − T

(i1→p )
l1 ···lτ −1 iτ lτ + 1 ···lp

))

=
∑

l1 m 1 ∈U 1
D

(i1 )

· · ·
∑

lp mp ∈U p
D

(ip )

μ1l1 · · ·μplp μ1m 1 · · ·μpmp
He
(
Al1→p

Q
(i1→p )
m 1→p + Bl1→p

F
(i1→p )
m 1→p

)

−
∑

l1 m 1 ∈U 1
D

(i1 )

· · ·
∑

lp mp ∈U p
D

(ip )

μ1l1 · · ·μplp μ1m 1 · · ·μpmp

p∑

τ =1

∑

ητ ∈U τ
S

(iτ )

φτ ητ

(
Q

(i1→p )
l1 ···lτ −1 ητ lτ + 1 ···lp − T

(i1→p )
l1 ···lτ −1 iτ lτ + 1 ···lp

))

=
∑

l1 m 1 ∈U 1
D

(i1 )

· · ·
∑

lp mp ∈U p
D

(ip )

μ1l1 · · ·μplp μ1m 1 · · ·μpmp
He
(
Al1→p

Q
(i1→p )
m 1→p + Bl1→p

F
(i1→p )
m 1→p

)

−
∑

l1 ∈U 1
S

(i1 )

· · ·
∑

lp ∈U p
S

(ip )

μ1l1 · · ·μplp

p∑

τ =1

∑

ητ ∈U τ
S

(iτ )

φτ ητ

(
Q

(i1→p )
l1 ···lτ −1 ητ lτ + 1 ···lp − T

(i1→p )
l1 ···lτ −1 iτ lτ + 1 ···lp

)

=
∑

l1 m 1 ∈U 1
D

(i1 )

· · ·
∑

lp mp ∈U p
D

(ip )

μ1l1 · · ·μplp μ1m 1 · · ·μpmp
He
(
Al1→p

Q
(i1→p )
m 1→p + Bl1→p

F
(i1→p )
m 1→p

)

−
p∑

τ =1

∑

l1 ∈U 1
S

(i1 )

· · ·
∑

lτ −1 ∈U τ −1
S

(iτ −1 )

∑

ητ ∈U τ
S

(iτ )

∑

lτ + 1 ∈U τ + 1
S

(iτ + 1 )

· · ·
∑

lp ∈U p
S

(ip )

φτ ητ

p

Π
h=1,h �=τ

μhlh

×
(
Q

(i1→p )
l1 ···lτ −1 ητ lτ + 1 ···lp − T

(i1→p )
l1 ···lτ −1 iτ lτ + 1 ···lp

)
≤ 0. (35)
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to

p∑

τ =1

∑

l1 ∈U 1
S

(i1 )

· · ·
∑

lτ −1 ∈U τ −1
S

(iτ −1 )

∑

ητ ∈U τ
S

(iτ )

∑

lτ + 1 ∈U τ + 1
S

(iτ + 1 )

· · ·
∑

lp ∈U p
S

(ip )

μ̇τ ητ
Π

p

Π
h=1,h �=τ

μhlh Q
(i1→p )
l1 ···lτ −1 ητ lτ + 1 ···lp .

Combining it and (36), we have

p∑

τ =1

∑

l1 ∈U 1
S

(i1 )

· · ·
∑

lτ −1 ∈U τ −1
S

(iτ −1 )

∑

ητ ∈U τ
S

(iτ )

∑

lτ + 1 ∈U τ + 1
S

(iτ + 1 )

· · ·
∑

lp ∈U p
S

(ip )

μ̇τ ητ
Π

p

Π
h=1,h �=τ

μhlh Q
(i1→p )
l1 ···lτ −1 ητ lτ + 1 ···lp

≥
p∑

τ =1

∑

l1 ∈U 1
S

(i1 )

· · ·
∑

lτ −1 ∈U τ −1
S

(iτ −1 )

∑

ητ ∈U τ
S

(iτ )

∑

lτ + 1 ∈U τ + 1
S

(iτ + 1 )

· · ·
∑

lp ∈U p
S

(ip )

φτ ητ

p

Π
h=1,h �=τ

μhlh

(
Q

(i1→p )
l1 ···lτ −1 ητ lτ + 1 ···lp

− T
(i1→p )
l1 ···lτ −1 iτ lτ + 1 ···lp

)

i.e.,

d

(∑
l1 ∈U 1

S
(i1 ) · · ·

∑
lp ∈U p

S
(ip )

p

Π
h=1

μhlh Q
(i1→p )
l1 ···lτ −1 lτ lτ + 1 ···lp

)

dt

≥
p∑

τ =1

∑

l1 ∈U 1
S

(i1 )

· · ·
∑

lτ −1 ∈U τ −1
S

(iτ −1 )

∑

ητ ∈U τ
S

(iτ )

∑

lτ + 1 ∈U τ + 1
S

(iτ + 1 )

p∑

τ =1

∑

l1 ∈U 1
S

(i1 )

· · ·
∑

lτ −1 ∈U τ −1
S

(iτ −1 )

∑

ητ ∈U τ
S

(iτ )

∑

lτ + 1 ∈U τ + 1
S

(iτ + 1 )

· · ·
∑

lp ∈U p
S

(ip )

μ̇τ ητ

p

Π
h=1,h �=τ

μhlh (Q(i1→p )
l1 ···lτ −1 ητ lτ + 1 ···lp − T

(i1→p )
l1 ···lτ −1 iτ lτ + 1 ···lp )

≥
p∑

τ =1

∑

l1 ∈U 1
S

(i1 )

· · ·
∑

lτ −1 ∈U τ −1
S

(iτ −1 )

∑

ητ ∈U τ
S

(iτ )

∑

lτ + 1 ∈U τ + 1
S

(iτ + 1 )

· · ·
∑

lp ∈U p
S

(ip )

φτ ητ

p

Π
h=1,h �=τ

μhlh

× (Q(i1→p )
l1 ···lτ −1 ητ lτ + 1 ···lp − T

(i1→p )
l1 ···lτ −1 iτ lτ + 1 ···lp ) (36)

p∑

τ =1

∑

l1 ∈U 1
S

(i1 )

· · ·
∑

lτ −1 ∈U τ −1
S

(iτ −1 )

∑

ητ ∈U τ
S

(iτ )

∑

lτ + 1 ∈U τ + 1
S

(iτ + 1 )

· · ·
∑

lp ∈U p
S

(ip )

μ̇τ ητ

p

Π
h=1,h �=τ

μhlh Q
(i1→p )
l1 ···lτ −1 ητ lτ + 1 ···lp

−
p∑

τ =1

∑

l1 ∈U 1
S

(i1 )

· · ·
∑

lτ −1 ∈U τ −1
S

(iτ −1 )

∑

ητ ∈U τ
S

(iτ )

∑

lτ + 1 ∈U τ + 1
S

(iτ + 1 )

· · ·
∑

lp ∈U p
S

(ip )

μ̇τ ητ

p

Π
h=1,h �=τ

μhlh T
(i1→p )
l1 ···lτ −1 iτ lτ + 1 ···lp

=
p∑

τ =1

∑

l1 ∈U 1
S

(i1 )

· · ·
∑

lτ −1 ∈U τ −1
S

(iτ −1 )

∑

ητ ∈U τ
S

(iτ )

∑

lτ + 1 ∈U τ + 1
S

(iτ + 1 )

· · ·
∑

lp ∈U p
S

(ip )

μ̇τ ητ

p

Π
h=1,h �=τ

μhlh Q
(i1→p )
l1 ···lτ −1 ητ lτ + 1 ···lp

−
p∑

τ =1

∑

l1 ∈U 1
S

(i1 )

· · ·
∑

lτ −1 ∈U τ −1
S

(iτ −1 )

∑

lτ + 1 ∈U τ + 1
S

(iτ + 1 )

· · ·
∑

lp ∈U p
S

(ip )

⎛

⎝
∑

ητ ∈U τ
S

(iτ )

μ̇τ ητ

p

Π
h=1,h �=τ

μhlh T
(i1→p )
l1 ···lτ −1 iτ lτ + 1 ···lp

⎞

⎠

=
p∑

τ =1

∑

l1 ∈U 1
S

(i1 )

· · ·
∑

lτ −1 ∈U τ −1
S

(iτ −1 )

∑

ητ ∈U τ
S

(iτ )

∑

lτ + 1 ∈U τ + 1
S

(iτ + 1 )

· · ·
∑

lp ∈U p
S

(ip )

μ̇τ ητ

p

Π
h=1,h �=τ

μhlh Q
(i1→p )
l1 ···lτ −1 ητ lτ + 1 ···lp

−
p∑

τ =1

∑

l1 ∈U 1
S

(i1 )

· · ·
∑

lτ −1 ∈U τ −1
S

(iτ −1 )

∑

lτ + 1 ∈U τ + 1
S

(iτ + 1 )

· · ·
∑

lp ∈U p
S

(ip )

⎛

⎝
(

p

Π
h=1,h �=τ

μhlh T
(i1→p )
l1 ···lτ −1 iτ lτ + 1 ···lp

) ∑

ητ ∈U τ
S

(iτ )

μ̇τ ητ

⎞

⎠

=
p∑

τ =1

∑

l1 ∈U 1
S

(i1 )

· · ·
∑

lτ −1 ∈U τ −1
S

(iτ −1 )

∑

ητ ∈U τ
S

(iτ )

∑

lτ + 1 ∈U τ + 1
S

(iτ + 1 )

· · ·
∑

lp ∈U p
S

(ip )

μ̇τ ητ

p

Π
h=1,h �=τ

μhlh Q
(i1→p )
l1 ···lτ −1 ητ lτ + 1 ···lp

−
p∑

τ =1

∑

l1 ∈U 1
S

(i1 )

· · ·
∑

lτ −1 ∈U τ −1
S

(iτ −1 )

∑

lτ + 1 ∈U τ + 1
S

(iτ + 1 )

· · ·
∑

lp ∈U p
S

(ip )

⎛

⎝
∑

ητ ∈U τ
S

(iτ )

μ̇τ ητ

⎞

⎠
(

p

Π
h=1,h �=τ

μhlh T
(i1→p )
l1 ···lτ −1 iτ lτ + 1 ···lp

)
(37)
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· · ·
∑

lp ∈U p
S

(ip )

φτ ητ

p

Π
h=1,h �=τ

μhlh

(
Q

(i1→p )
l1 ···lτ −1 ητ lτ + 1 ···lp

− T
(i1→p )
l1 ···lτ −1 iτ lτ + 1 ···lp

)
.

Combining it and (35), then we have
∑

l1 m 1 ∈U 1
D

(i1 )

· · ·
∑

lp mp ∈U p
D

(ip )

μ1l1 · · ·μplp μ1m 1 · · ·μpmp

× He
(
Al1→p

Q
(i1→p )
m 1→p + Bl1→p

F
(i1→p )
m 1→p

)

−
d

(∑
l1 ∈U 1

S
(i1 ) · · ·

∑
lp ∈U p

S
(ip )

p

Π
h=1

μhlh Q
(i1→p )
l1→p

)

dt
≤ 0.

From the definitions of Uk
D (ik ), Uk

S (ik ), UD (i1→k ), and
US (i1→k ) in (8)–(11), the aforementioned inequality can be
rewritten as follows:

∑

l1→p m 1→p ∈UD (i1→p )

μ1l1 · · ·μplp μ1m 1 · · ·μpmp

× He
(
Al1→p

Q
(i1→p )
m 1→p + Bl1→p

F
(i1→p )
m 1→p

)

−
d

(∑
l1→p ∈US (i1→p )

p

Π
h=1

μhlh Q
(i1→p )
l1→p

)

dt
≤ 0

i.e.,

He(A(μ)Q(i1→p )(μ) + B(μ)F (i1→p )(μ)) − Q̇(i1→p )(μ) ≤ 0

where A(μ), B(μ), Q(i1→p )(μ), and F (i1→p )(μ) are, respec-
tively, the same as in (13), (19), and (21).

Letting P (i1→p )(μ) = (Q(i1→p )(μ))−1 and then multiplying
both sides of the aforementioned inequality by P (i1→p )(μ), it
follows that

He(P (i1→p )(μ)A(μ) + P (i1→p )(μ)B(μ)F (i1→p )(μ)

× P (i1→p )(μ)) − P (i1→p )(μ)Q̇(i1→p )(μ)P (i1→p )(μ) ≤ 0

which can be rewritten as follows:

He(P (i1→p )(μ)A(μ) + P (i1→p )(μ)B(μ)K(i1→p )(μ))

+ Ṗ (i1→p )(μ) ≤ 0 (38)

where K(i1→p )(μ) is the same as in (20).
Choosing Lyapunov function

V (t) = xT (t)P (i1→p )(μ)x(t), for v(t) ∈ I(i1→p)

then for v(t) ∈ I(i1→p)

V̇ (t) = 2xT (t)P (i1→p )(μ)(A(μ) + B(μ)K(i1→p )(μ))x(t)

+ xT (t)Ṗ (i1→p )(μ)x(t)

= xT (t)(He(P (i1→p )(μ)(A(μ) + B(μ)K(i1→p )(μ)))

+ Ṗ (i1→p )(μ))x(t).

Combining it and (38) then yields

V̇ (t) < 0

which implies that the system is asymptotically stable. Thus,
the proof is complete. �

Remark 5: (i) Based on the dominant fuzzy Lyapunov func-
tion and the control scheme (20), a convex condition is pre-
sented in Theorem 2. In contrast with the existing approach, if
the Lyapunov matrices do not switch between the spilt space
of the premise variables, i.e., Q(i1→p )

l1→p
= Q

(11···1)
l1→p

, then the dom-
inant fuzzy Lyapunov function is reduced to the fuzzy Lya-
punov function in [32]. On the other hand, if the parameters
F

(i1→p )
l1→p

= F
(11···1)
l1→p

in the fuzzy controller (20), then the con-
troller is reduced to the types of non-PDC controllers in [11]. It
has since been proved that the fuzzy Lyapunov function ap-
proach can give less-conservative results than the quadratic
Lyapunov function approach in [32]. Moreover, it has also
been shown that the non-PDC control scheme can give less-
conservative design than the conventional PDC control scheme
in [11]. Therefore, the condition in Theorem 2 has the potential
to give less-conservative results than the fuzzy Lyapunov func-
tion and quadratic Lyapunov function approaches. Examples in
Section V are given to illustrate the fact.

(ii) In Theorem 2, by splitting the premise variable space into
a set of subspaces, the new properties about the structure or
shape of membership functions are exploited; then, a relaxed
condition is obtained. On the other hand, we would like to
point out that more variables and inequalities in Theorem 2
lead to a big burden on the programming and computation. The
technique, which is with a light computational burden and small
conservativeness, will be exploited in the future.

V. EXAMPLE

Example 1: Consider the following nonlinear system, which
is the same as in [32]:

ẋ1 =x2(t)

ẋ2 = − 2x1(t) − x2(t) − f(t)x1(t)

where f(t) is a C1 function. Thus, the nonlinear system can be
described by the following fuzzy model:

ẋ(t) =
2∑

i=1

hi(v(t))(Aix(t) + Biu(t))

with

A1 =
[

0 1
−2 −1

]
, A2 =

[
0 1

−2 − k −1

]
, B1 = B2 =

[
0
0

]

and the membership functions are h1(v(t)) = k − f(t)/k and
h2(v(t)) = f(t)/k.

The common Lyapunov approach guarantees the stability of
the aforementioned system for k ≤ 3.82. In [34], a two-term
piecewise quadratic Lyapunov functions approach is presented
for linear time-varying systems, which can be used for T–S
fuzzy systems. The condition in [34] guarantees the stability for
k ≤ 4.7. Moreover, by considering the different values of φ1 ,
the fuzzy Lyapunov function method in [32] (i.e., Corollary 3
in [32]) and Theorem 2 with T 1

1 = Q1
2 and T 2

2 = Q2
2 can be

used (if T 1
1 = Q1

2 and T 2
2 = Q2

2 , then φ2(Q1
2 − T 1

1 ) = 0 and



334 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 19, NO. 2, APRIL 2011

Fig. 2. Maximum values of k guaranteeing feasibility.

φ2(Q2
2 − T 2

2 ) = 0, which implies that Theorem 2 can be used
without the knowledge of the bound φ2 of μ̇12 . The constraint
is imposed in order to give a fair comparison with the method in
[32]). The obtained maximum values of k guaranteeing stability
are shown in Fig. 2.

From Fig. 2, it can been seen that the common Lyapunov func-
tion and the piecewise Lyapunov function approaches are feasi-
ble, respectively, for the largest kmax = 3.82 and kmax = 4.7.
The fuzzy Lyapunov approach in [32] and the dominant fuzzy
Lyapunov function method guarantee larger feasible (stable)
areas for larger φ1 . When φ1 ≥ −2.3, the dominant fuzzy Lya-
punov function method in this paper guarantees the largest fea-
sible area for the parameter k. When φ1 < −2.3, the piecewise
Lyapunov function approach in [34] can guarantee the largest
feasible area. In particular, it can be seen from Fig. 2 that the
dominant fuzzy Lyapunov function approach always can give
less-conservative results than the fuzzy Lyapunov function and
the common Lyapunov function approaches. The fact shows that
the new technique can give less-conservative results than some
existing approaches.

Example 2: Consider the following problem of balancing an
inverted pendulum on a cart [14]. The equations of motion are
as follows:

ẋ1 = x2

ẋ2 =
g sin(x1) − (amlx2

2 sin(2x1)/2) − a cos(x1)u
4l/3 − aml cos2(x1)

where x1 denotes the angle of the pendulum from the vertical,
x2 is the angular velocity, g = 9.8 m/s2 is the gravity constant,
m is the mass of the pendulum, M is the mass of the cart,
2l is the length of the pendulum, and u is the force applied to
the cart a = 1/(m + M). We choose m = 2.0 kg, M = 8.0 kg,
and 2l = 1.0 m in the simulation and approximate the system
by the following two-rule fuzzy model.

Fig. 3. Membership functions for Example 2.

Plant Rule 1:

IF |x1(t)| is about 0, THEN

ẋ(t) = A1x(t) + B21u(t)

Plant Rule 2:

IF |x1(t)| is about π/2, THEN

ẋ(t) = A2x(t) + B22u(t)

where

A1 =

⎡

⎣
0 1
g

4l/3 − aml
0

⎤

⎦ , A2 =

⎡

⎣
0 1
2g

π(4l/3 − amlβ2)
0

⎤

⎦

B21 =

⎡

⎣
0

− a

4l/3 − aml

⎤

⎦ , B22 =

⎡

⎣
0

− aβ

4l/3 − amlβ2

⎤

⎦

β = cos(88o) and membership functions for Rules 1 and 2 are
shown in Fig. 3.

Assuming μ̇1l1 ≥ −50, l1 = 1, 2, i.e., φ11 = φ12 = −50 and
applying the condition of Theorem 2 to the example, then we
can obtain the following results:

F 1
1 = [ 260.2790 −67.9682 ], F 1

2 = [ 534.2046 −184.1360 ]

Q1
1 =

[
1.9948 −4.9157
−4.9157 17.0504

]
, Q1

2 =
[

1.9951 −4.9168
−4.9168 17.0493

]

F 2
1 = [ 219.7715 −433.2055 ], F 2

2 = [ 574.7122 181.1013 ]

Q2
1 =

[
1.8418 −5.3816
−5.3816 16.5956

]
, Q2

2 =
[

2.1481 −4.4508
−4.4508 17.5040

]
.

By using the controller (20), the state and input trajectories are
shown in Figs. 4 and 5. From Figs. 4 and 5, it can be seen
that the system with the controller designed by Theorem 2 is
asymptotically stable, which further shows the effectiveness of
the new technique.

Example 3: Consider the following six-rule fuzzy system:

Rule (i1i2):

IF x1(t) is M1i1 and x2(t) is M2i2

THEN ẋ(t) = Ai1 i2 x(t) + Bi1 i2 u(t)

where x(t) = [x1(t) x2(t)]T ∈ R2 is the state, and u(t) ∈ R1

is the control input. M1i1 and M2i2 are fuzzy sets, and i1 = 1,
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Fig. 4. Trajectories of the states x(t).

Fig. 5. Trajectories of the input u(t).

2, i2 = 1, 2, 3, with

M11 =

⎧
⎪⎨

⎪⎩

1, x1 ∈ (−∞,−1)

−0.5x1 + 0.5, x1 ∈ [−1, 1]

0, x1 ∈ (1,+∞)

M12 =

⎧
⎪⎨

⎪⎩

0, x1 ∈ (−∞,−1)

0.5x1 + 0.5, x1 ∈ [−1, 1]

1, x1 ∈ (1,+∞)

M21 =

⎧
⎪⎨

⎪⎩

1, x2 ∈ (−∞,−2)

−x2 − 1, x2 ∈ [−2,−1]

0, x2 ∈ (−1,+∞)

Fig. 6. Feasible area for the common Lyapunov approach in [3].

M22 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, x2 ∈ (−∞,−2)

x2 + 2, x2 ∈ [−2,−1]

1, x2 ∈ [−1, 1]

−x2 + 2, x2 ∈ (1, 2]

0, x2 ∈ (2,+∞)

M23 =

⎧
⎪⎨

⎪⎩

0, x2 ∈ (−∞, 1)

x2 − 1, x2 ∈ [1, 2]

1, x2 ∈ (2,+∞)

A11 =
[

0 1
1 4

]
, A12 =

[
0 1

1.5 4

]
, A13 =

[
0 1
2 4

]

A21 =
[

1 2
1.3 4

]
, A22 =

[
1 2

1.8 4

]
, A23 =

[
1 2

2.3 4

]

B11 =
[

0.5
a

]
, B12 =

[
1
a

]
, B13 =

[
0.5 + b

a

]

B21 =
[
−1
1

]
, B22 =

[
−0.5

1

]
, B23 =

[
−1 + b

1

]
.

Assume μ̇ili ≥ −1 × 108 , i = 1, 2, l1 = 1, 2, and l2 =
1, 2, 3, i.e., φ11 = φ12 = φ21 = φ22 = φ23 = −1 × 108 . We
compare the dominant-dependent fuzzy Lyapunov approach
with the common Lyapunov approach in [3], the fuzzy Lya-
punov approach in [32], and the non-PDC control approach
(which can be obtained from Theorem 2 with Q

(i1→p )
l1→p

= Q
(11···1)
l1→p

and F
(i1→p )
l1→p

= F
(11···1)
l1→p

). We design stabilizing controllers for
several combinations of a and b using the aforementioned ap-
proaches. Figs. 6–9 show the feasible areas. From Figs. 6–
9, it can be seen that the new proposed dominant-dependent
fuzzy Lyapunov approach provides more relaxed conditions
than the common Lyapunov approaches in [3], fuzzy Lyapunov
approaches in [32], and non-PDC control approaches.
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Fig. 7. Feasible area for the fuzzy Lyapunov function approach in [32].

Fig. 8. Feasible area for using non-PDC controllers.

Fig. 9. Feasible area for Theorem 2 in this paper.

Fig. 10. Examples of pseudotrapezoid membership functions.

VI. CONCLUSION

In this paper, we have addressed the problem of state feedback
control for T–S fuzzy systems via fuzzy Lyapunov functions.
By splitting the premise variable spaces into some subspaces
and using the properties of fuzzy sets, a new control scheme
is proposed based on the dominant fuzzy Lyapunov function,
and an LMI-based condition for designing fuzzy controllers
has been given. Some existing fuzzy Lyapunov functions and
non-PDC controllers are special cases of the dominant fuzzy
Lyapunov functions and fuzzy controllers, respectively. Numer-
ical examples have been given to illustrate the effectiveness of
the proposed method.

APPENDIX

SOME EXISTING PRELIMINARY CONCEPTS ON FUZZY SETS

Definition 1: [33] (i) Normal pseudotrapezoid membership
function: Let [a, d] ⊂ R. The pseudotrapezoid membership
function of fuzzy set A is a continuous function in R given
by

μA (x, a, b, c, d) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H(x), x ∈ [a, b)

1, x ∈ [b, c]

D(x), x ∈ (c, d]

0, x ∈ R − (a, d)

where a ≤ b ≤ c ≤ d, 0 ≤ H(x) ≤ 1 is a nondecreasing func-
tion in [a, b), and 0 ≤ D(x) ≤ 1 is a nonincreasing function in
(c, d].

(ii) Completeness of fuzzy sets: Fuzzy sets A1 , A2 , . . ., AN in
W ⊂ R are said to be complete on W if for any x ∈ W , there
exists Aj such that μAj (x) > 0, where W is the universe of
discourse.

(iii) Consistency of fuzzy sets: A1 , A2 , . . ., AN in W ⊂ R
are said to be consistent on W if μAj (x) = 1 for some x ∈ W
implies that μAi (x) = 0 for all i �= j.

(iv) High set of fuzzy set: The high set of a fuzzy set A in
W ⊂ R is a subset in W defined by

hgh(A) = {x ∈ W |μA (x) = sup
x ′∈W

μA (x′)}.

If A is a normal fuzzy set with pseudotrapezoid membership
function μA (x, a, b, c, d), then hgh(A) = [b, c].

(v) Order between fuzzy sets: For two fuzzy sets A and B
in W ⊂ R, we say A > B if hgh(A) > hgh(B) (that is, if x ∈
hgh(A) and x′ ∈ hgh(B), then x > x′).

Fig. 10 shows some examples of pseudotrapezoid member-
ship functions. If the universe of discourse is bounded, then
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a, b, c, and d are finite numbers. Pseudotrapezoid membership
functions include many commonly used membership functions
as specia1 cases. For example, if we choose

H(x) =
x − a

b − a
, D(x) =

x − d

c − d
(39)

then the pseudotrapezoid membership functions become the
trapezoid membership functions. If b = c, and H(x) and D(x)
are the same as in (39), we obtain the triangular membership
functions. If we choose a = ∞, b = c = x̄, d = ∞, and

H(x) = D(x) = exp

(
−
(

x − x̄

σ

)2
)

then the pseudotrapezoid membership functions become the
Gaussian membership functions. Therefore, the pseudotrape-
zoid membership functions constitute a very rich family of
membership functions. See [33] for more details.

Note that there are three fuzzy sets in Fig. 10, i.e., A1 , A2 ,
and A3 in the universe of discourse W ⊂ R, and it follows from
Definition 1 that A1 , A2 , and A3 are consistent and complete in
W .

Based on Definition 1, some properties of fuzzy sets with
pseudotrapezoid membership functions are shown in the follow-
ing lemma, which is useful for the development of this paper.

Lemma 3: [33] (i) If A1 , A2 , . . ., AN are consistent and nor-
mal fuzzy sets in W ⊂ R with pseudotrapezoid membership
functions μAi (xi, ai, bi , ci , di), (i = 1, 2, . . . , N), then there
exists a rearrangement {i1 , i2 , . . . , iN } of {1, 2, . . . , N} such
that A1 < A2 < · · · < AN .

(ii) Let the fuzzy sets A1 , A2 , ..., AN in W ⊂ R be nor-
mal, consistent, and complete with pseudotrapezoid member-
ship functions μAi (xi, ai , bi , ci , di). If A1 < A2 < · · · < AN ,
then

ci ≤ ai+1 < di ≤ bi+1 .

Based on the definition of the order between fuzzy sets,
Lemma 3 shows that the consistent and normal fuzzy sets in
W ⊂ R with pseudotrapezoid membership functions can be
rearranged from “small” to “big,” which will be helpful for
obtaining the controller design conditions and simplifying the
description of the obtained conditions in the later theorems. For
example, there are three fuzzy sets Ā1 , Ā2 , and Ā3 , and they
can be rearranged as A2 , A1 , A3 such that A1 < A2 < A3 .
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