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add.isolates Add Isolates to a Graph

Description

Addsn isolates to the graph (or graphs) indat .

Usage

add.isolates(dat, n)

Arguments

dat one or more input graphs.

n the number of isolates to add.

Details

If dat contains more than one graph, then isolates are added to each member ofdat .

Value

The updated graph(s).

Note

Isolate addition is particularly useful when computing structural distances between graphs of dif-
ferent orders; see the above reference for details.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Butts, C.T., and Carley, K.M. (2001). “Multivariate Methods for Inter-Structural Analysis.” CASOS
Working Paper, Carnegie Mellon University.
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See Also

isolates

Examples

g<-rgraph(10,5) #Produce some random graphs

dim(g) #Get the dimensions of g

g<-add.isolates(g,2) #Add 2 isolates to each graph in g

dim(g) #Now examine g
g

bbnam Butts’ (Hierarchical) Bayesian Network Accuracy Model

Description

Takes posterior draws from Butts’ bayesian network accuracy/estimation model for multiple partic-
ipant/observers (conditional on observed data and priors), using a Gibbs sampler.

Usage

bbnam(dat, model="actor", ...)
bbnam.fixed(dat, nprior=matrix(rep(0.5,dim(dat)[2]^2),

nrow=dim(dat)[2],ncol=dim(dat)[2]), em=0.25, ep=0.25, diag=FALSE,
mode="digraph", draws=1500, outmode="draws", anames=paste("a",
1:dim(dat)[2],sep=""), onames=paste("o",1:dim(dat)[1], sep=""))

bbnam.pooled(dat, nprior=matrix(rep(0.5,dim(dat)[2]*dim(dat)[3]),
nrow=dim(dat)[2],ncol=dim(dat)[3]), emprior=c(1,1),
epprior=c(1,1), diag=FALSE, mode="digraph", reps=5, draws=1500,
burntime=500, quiet=TRUE, anames=paste("a",1:dim(dat)[2],sep=""),
onames=paste("o",1:dim(dat)[1],sep=""), compute.sqrtrhat=TRUE)

bbnam.actor(dat, nprior=matrix(rep(0.5,dim(dat)[2]*dim(dat)[3]),
nrow=dim(dat)[2],ncol=dim(dat)[3]),
emprior=cbind(rep(1,dim(dat)[1]),rep(1,dim(dat)[1])),
epprior=cbind(rep(1,dim(dat)[1]),rep(1,dim(dat)[1])), diag=FALSE,
mode="digraph", reps=5, draws=1500, burntime=500, quiet=TRUE,
anames=paste("a",1:dim(dat)[2],sep=""),
onames=paste("o",1:dim(dat)[1],sep=""), compute.sqrtrhat=TRUE)

Arguments

dat Data array to be analyzed. This array must be of dimension n x n x n, where n is
|V(G)|, the first dimension indexes the observer, the second indexes the sender of
the relation, and the third dimension indexes the recipient of the relation. (E.g.,
dat[i,j,k]==1 implies that i observed j sending the relation in question to
k.) Note that only dichotomous data is supported at present, and missing values
are permitted; the data collection pattern, however, is assumed to be ignorable,



6 bbnam

and hence the posterior draws are implicitly conditional on the observation pat-
tern.

model String containing the error model to use; options are “actor,” “pooled,” and
“fixed”

... Arguments to be passed bybbnam to the particular model method

nprior Network prior matrix. This must be a matrix of dimension n x n, containing
the arc/edge priors for the criterion network. (E.g.,nprior[i,j] gives the
prior probability of i sending the relation to j in the criterion graph.) If no net-
work prior is provided, an uninformative prior on the space of networks will be
assumed (i.e., p(i->j)=0.5). Missing values are not allowed.

em Probability of a false negative; this may be in the form of a single number, one
number per observation slice, one number per (directed) dyad, or one number
per dyadic observation (fixed model only)

ep Probability of a false positive; this may be in the form of a single number, one
number per observation slice, one number per (directed) dyad, or one number
per dyadic observation (fixed model only)

emprior Parameters for the (beta) false negative prior; these should be in the form of an
(alpha,beta) pair for the pooled model, and of an n x 2 matrix of (alpha,beta)
pairs for the actor model. If no emprior is given, an uninformative prior (1,1)
will be assumed; note that this is usually inappropriate, as described below.
Missing values are not allowed.

epprior Parameters for the (beta) false positive prior; these should be in the form of
an (alpha,beta) pair for the pooled model, and of an n x 2 matrix of (alpha,beta)
pairs for the actor model. If no epprior is given, an uninformative prior (1,1) will
be assumed; note that this is usually inappropriate, as described below. Missing
values are not allowed.

diag Boolean indicating whether loops (matrix diagonals) should be counted as data

mode A string indicating whether the data in question forms a “graph” or a “digraph”

reps Number of replicate chains for the Gibbs sampler (pooled and actor models
only)

draws Integer indicating the total number of draws to take from the posterior distribu-
tion. Draws are taken evenly from each replication (thus, the number of draws
from a given chain is draws/reps), and are randomly reordered to minimize de-
pendence associated with position in the chain.

burntime Integer indicating the burn-in time for the Markov Chain. Each replication is
iterated burntime times before taking draws (with these initial iterations being
discarded); hence, one should realize that each increment to burntime increases
execution time by a quantity proportional to reps. (pooled and actor models
only)

quiet Boolean indicating whether MCMC diagnostics should be displayed (pooled
and actor models only)

outmode “posterior” indicates that the exact posterior probability matrix for the criterion
graph should be returned, otherwise draws from the joint posterior are returned
instead (fixed model only)

anames A vector of names for the actors (vertices) in the graph

onames A vector of names for the observers (possibly the actors themselves) whose
reports are contained in the CSS
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compute.sqrtrhat
A boolean indicating whether or not Gelman et al.’s potential scale reduction
measure (an MCMC convergence diagnostic) should be computed (pooled and
actor models only)

Details

The bbnam models a set of network data as reflecting a series of (noisy) observations by a set of
participant/observers regarding an uncertain criterion structure. Each observer is assumed to send
false positives (i.e., reporting a tie when none exists in the criterion structure) with probabilitye+,
and false negatives (i.e., reporting that no tie exists when one does in fact exist in the criterion
structure) with probabilitye−. The criterion network itself is taken to be a Bernoulli (di)graph.
Note that the present model includes three variants:

1. Fixed error probabilities: Each edge is associated with a known pair of false negative/false
positive error probabilities (provided by the researcher). In this case, the posterior for the
criterion graph takes the form of a matrix of Bernoulli parameters, with each edge being
independent conditional on the parameter matrix.

2. Pooled error probabilities: One pair of (uncertain) false negative/false positive error proba-
bilities is assumed to hold for all observations. Here, we assume that the researcher’s prior
information regarding these parameters can be expressed as a pair of Beta distributions, with
the additional assumption of independence in the prior distribution. Note that error rates and
edge probabilities arenot independent in the joint posterior, but the posterior marginals take
the form of Beta mixtures and Bernoulli parameters, respectively.

3. Per observer (“actor”) error probabilities: One pair of (uncertain) false negative/false posi-
tive error probabilities is assumed to hold for each observation slice. Again, we assume that
prior knowledge can be expressed in terms of independent Beta distributions (along with the
Bernoulli prior for the criterion graph) and the resulting posterior marginals are Beta mixtures
and a Bernoulli graph. (Again, it should be noted that independence in the priors doesnot
imply independence in the joint posterior!)

By default, the bbnam routine returns (approximately) independent draws from the joint posterior
distribution, each draw yielding one realization of the criterion network and one collection of accu-
racy parameters (i.e., probabilities of false positives/negatives). This is accomplished via a Gibbs
sampler in the case of the pooled/actor model, and by direct sampling for the fixed probability
model. In the special case of the fixed probability model, it is also possible to obtain directly the
posterior for the criterion graph (expressed as a matrix of Bernoulli parameters); this can be con-
trolled by theoutmode parameter.

As noted, the taking of posterior draws in the nontrivial case is accomplished via a Markov Chain
Monte Carlo method, in particular the Gibbs sampler; the high dimensionality of the problem
(O(n2 + 2n)) tends to preclude more direct approaches. At present, chain burn-in is determined
ex ante on a more or less arbitrary basis by specification of the burntime parameter. Eventually, a
more systematic approach will be utilized. Note that insufficient burn-in will result in inaccurate
posterior sampling, so it’s not wise to skimp on burn time where otherwise possible. Similarly, it
is wise to employ more than one Markov Chain (set by reps), since it is possible for trajectories to
become “trapped” in metastable regions of the state space. Number of draws per chain being equal,
more replications are usually better than few; consult Gelman et al. for details. A useful measure of

chain convergence, Gelman and Rubin’s potential scale reduction (
√

R̂), can be computed using the
compute.sqrtrhat parameter. The potential scale reduction measure is an ANOVA-like com-
parison of within-chain versus between-chain variance; it approaches 1 (from above) as the chain
converges, and longer burn-in times are strongly recommended for chains with scale reductions in
excess of 1.1 or thereabouts.
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Finally, a cautionary concerning prior distributions: it is important that the specified priors actually
reflect the prior knowledge of the researcher; otherwise, the posterior will be inadequately informed.
In particular, note that an uninformative prior on the accuracy probabilities implies that it is a priori
equally probable that any given actor’s observations will be informative ornegativelyinformative
(i.e., that i observing j sending a tie to kreducesp(j->k)). This is a highly unrealistic assumption,
and it will tend to produce posteriors which are bimodal (one mode being related to the “informa-
tive” solution, the other to the “negatively informative” solution). A more plausible but still fairly
diffuse prior would be Beta(3,5), which reduces the prior probability of an actor’s being negatively
informative to 0.16, and the prior probability of any given actor’s being more than 50% likely to
make a particular error (on average) to around 0.22. (This prior also puts substantial mass near the
0.5 point, which would seem consonant with the BKS studies.) Butts (2003) discusses a number of
issues related to choice of priors for the bbnam, and users should consult this reference if matters
are unclear before defaulting to the uninformative solution.

Value

An object of class bbnam, containing the posterior draws. The components of the output are as
follows:

anames A vector of actor names.

draws An integer containing the number of draws.

em A matrix containing the posterior draws for probability of producing false neg-
atives, by actor.

ep A matrix containing the posterior draws for probability of producing false posi-
tives, by actor.

nactors An integer containing the number of actors.

net An array containing the posterior draws for the criterion network.

reps An integer indicating the number of replicate chains used by the Gibbs sampler.

Note

As indicated, the posterior draws are conditional on the observed data, and hence on the data collec-
tion mechanism if the collection design is non-ignorable. Complete data (e.g., a CSS) and random
tie samples are examples of ignorable designs; see Gelman et al. for more information concerning
ignorability.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Butts, C. T. (2003). “Network Inference, Error, and Informant (In)Accuracy: A Bayesian Ap-
proach.”Social Networks, 25(2), 103-140.

Gelman, A.; Carlin, J.B.; Stern, H.S.; and Rubin, D.B. (1995).Bayesian Data Analysis.London:
Chapman and Hall.

Gelman, A., and Rubin, D.B. (1992). “Inference from Iterative Simulation Using Multiple Se-
quences.”Statistical Science,7, 457-511.

Krackhardt, D. (1987). “Cognitive Social Structures.”Social Networks,9, 109-134.
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See Also

npostpred , event2dichot , bbnam.bf

Examples

#Create some random data
g<-rgraph(5)
g.p<-0.8*g+0.2*(1-g)
dat<-rgraph(5,5,tprob=g.p)

#Define a network prior
pnet<-matrix(ncol=5,nrow=5)
pnet[,]<-0.5
#Define em and ep priors
pem<-matrix(nrow=5,ncol=2)
pem[,1]<-3
pem[,2]<-5
pep<-matrix(nrow=5,ncol=2)
pep[,1]<-3
pep[,2]<-5

#Draw from the posterior
b<-bbnam(dat,model="actor",nprior=pnet,emprior=pem,epprior=pep,

burntime=100,draws=100)
#Print a summary of the posterior draws
summary(b)

bbnam.bf Estimate Bayes Factors for the bbnam

Description

This function uses monte carlo integration to estimate the BFs, and tests the fixed probability,
pooled, and pooled by actor models. (Seebbnam for details.)

Usage

bbnam.bf(dat, nprior=matrix(rep(0.5, dim(dat)[1]^2),
nrow = dim(dat)[1], ncol = dim(dat)[1]), em.fp=0.5, ep.fp=0.5,
emprior.pooled=c(1, 1), epprior.pooled=c(1, 1),
emprior.actor=cbind(rep(1, dim(dat)[1]), rep(1, dim(dat)[1])),
epprior.actor=cbind(rep(1, dim(dat)[1]), rep(1, dim(dat)[1])),
diag=FALSE, mode="digraph", reps=1000)

Arguments

dat Data array to be analyzed. This array must be of dimension m x n x n, where n is
|V(G)|, the first dimension indexes the observer, the second indexes the sender of
the relation, and the third dimension indexes the recipient of the relation. (E.g.,
dat[i,j,k]==1 implies that i observed j sending the relation in question to
k.) Note that only dichotomous data is supported at present, and missing values
are permitted; the data collection pattern, however, is assumed to be ignorable,
and hence the posterior inferences are implicitly conditional on the observation
pattern.
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nprior Network prior matrix. This must be a matrix of dimension n x n, containing
the arc/edge priors for the criterion network. (E.g.,nprior[i,j] gives the
prior probability of i sending the relation to j in the criterion graph.) If no net-
work prior is provided, an uninformative prior on the space of networks will be
assumed (i.e., p(i->j)=0.5). Missing values are not allowed.

em.fp Probability of false negatives for the fixed probability model

ep.fp Probability of false positives for the fixed probability model
emprior.pooled

(alpha,beta) pairs for the (beta) false negative prior under the pooled model
epprior.pooled

(alpha,beta) pairs for the (beta) false positive prior under the pooled model
emprior.actor

Matrix of per observer (alpha,beta) pairs for the (beta) false negative prior under
the per observer/actor model

epprior.actor
Matrix of per observer (alpha,beta) pairs for the (beta) false negative prior under
the per observer/actor model

diag Boolean indicating whether or not the diagonal should be treated as valid data.
Set this true if and only if the criterion graph can contain loops. Diag is false by
default.

mode String indicating the type of graph being evaluated. "Digraph" indicates that
edges should be interpreted as directed; "graph" indicates that edges are undi-
rected. Mode is set to "digraph" by default.

reps Number of monte carlo draws to take

Details

The bbnam model (detailed in thebbnam function help) is a fairly simple model for integrating
informant reports regarding social network data.bbnam.bf computes Bayes Factors (integrated
likelihood ratios) for the three error submodels of the bbnam: fixed error probabilities, pooled error
probabilities, and per observer/actor error probabilities.

Value

An object of classbayes.factor .

Note

It is important to be aware that the model parameter priors are essential components of the models
to be compared; inappropriate parameter priors will result in misleading Bayes Factors.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Butts, C. T. (2003). “Network Inference, Error, and Informant (In)Accuracy: A Bayesian Ap-
proach.”Social Networks, 25(2), 103-140.

Robert, C. (1994).The Bayesian Choice: A Decision-Theoretic Motivation.Springer.
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See Also

bbnam

Examples

betweenness Compute the Betweenness Centrality Scores of Network Positions

Description

betweenness takes one or more graphs (dat ) and returns the betweenness centralities of po-
sitions (selected bynodes ) within the graphs indicated byg. Depending on the specified mode,
betweenness on directed or undirected geodesics will be returned; this function is compatible with
centralization , and will return the theoretical maximum absolute deviation (from maximum)
conditional on size (which is used bycentralization to normalize the observed centralization
score).

Usage

betweenness(dat, g=1, nodes=NULL, gmode="digraph", diag=FALSE,
tmaxdev=FALSE, cmode="directed", geodist.precomp=NULL,
rescale=FALSE)

Arguments

dat one or more input graphs.

g integer indicating the index of the graph for which centralities are to be calcu-
lated (or a vector thereof). By default,g=1.

nodes vector indicating which nodes are to be included in the calculation. By default,
all nodes are included.

gmode string indicating the type of graph being evaluated. "digraph" indicates that
edges should be interpreted as directed; "graph" indicates that edges are undi-
rected.dmode is set to "digraph" by default.

diag boolean indicating whether or not the diagonal should be treated as valid data.
Set this true if and only if the data can contain loops.diag is FALSEby default.

tmaxdev boolean indicating whether or not the theoretical maximum absolute deviation
from the maximum nodal centrality should be returned. By default,tmaxdev ==FALSE.

cmode string indicating the type of betweenness centrality being computed (directed or
undirected geodesics).

geodist.precomp
A geodist object precomputed for the graph to be analyzed (optional)

rescale if true, centrality scores are rescaled such that they sum to 1.
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Details

The betweenness of a vertex, v, is given by

CB(v) =
∑

i,j:i 6=j,i 6=v,j 6=v

givj

gij

wheregijk is the number of geodesics from i to k through j. Conceptually, high-betweenness
vertices lie on a large number of non-redundant shortest paths between other vertices; they can thus
be thought of as “bridges” or “boundary spanners.”

Value

A vector, matrix, or list containing the betweenness scores (depending on the number and size of
the input graphs).

Warning

Rescale may cause unexpected results if all actors have zero betweenness.

Note

Judicious use ofgeodist.precomp can save a great deal of time when computing multiple
path-based indices on the same network.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Freeman, L.C. (1979). “Centrality in Social Networks I: Conceptual Clarification.”Social Net-
works, 1, 215-239.

See Also

centralization

Examples

g<-rgraph(10) #Draw a random graph with 10 members
betweenness(g) #Compute betweenness scores
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blockmodel Generate Blockmodels Based on Partitions of Network Positions

Description

Given a set of equivalence classes (in the form of anequiv.clust object,hclust object, or
membership vector) and one or more graphs,blockmodel will form a blockmodel of the input
graph(s) based on the classes in question, using the specified block content type.

Usage

blockmodel(dat, ec, k=NULL, h=NULL, block.content="density",
plabels=NULL, glabels=NULL, rlabels=NULL, mode="digraph",
diag=FALSE)

Arguments

dat one or more input graphs.

ec equivalence classes, in the form of an object of classequiv.clust orhclust ,
or a membership vector.

k the number of classes to form (usingcutree ).

h the height at which to split classes (usingcutree ).

block.content
string indicating block content type (see below).

plabels a vector of labels to be applied to the individual nodes.

glabels a vector of labels to be applied to the graphs being modeled.

rlabels a vector of labels to be applied to the (reduced) roles.

mode a string indicating whether we are dealing with graphs or digraphs.

diag a boolean indicating whether loops are permitted.

Details

Unless a vector of classes is specified,blockmodel forms its eponymous models by usingcutree
to cut an equivalence clustering in the fashion specified byk andh. After forming clusters (roles),
the input graphs are reordered and blockmodel reduction is applied. Currently supported reductions
are:

1. density : block density, computed as the mean value of the block

2. meanrowsum: mean row sums for the block

3. meancolsum : mean column sums for the block

4. sum: total block sum

5. median : median block value

6. min : minimum block value

7. max: maximum block value
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8. types : semi-intelligent coding of blocks by “type.” Currently recognized types are (in order
of precedence) “NA” (i.e., blocks with no valid data), “null” (i.e., all values equal to zero),
“complete” (i.e., all values equal to 1), “1 covered” (i.e., all rows/cols contain a 1), “1 row-
covered” (i.e., all rows contain a 1), “1 col-covered” (i.e., all cols contain a 1), and “other”
(i.e., none of the above).

Density or median-based reductions are probably the most interpretable for most conventional anal-
yses, though type-based reduction can be useful in examining certain equivalence class hypotheses
(e.g., 1 covered and null blocks can be used to infer regular equivalence classes). Once a given
reduction is performed, the model can be analyzed and/or expansion can be used to generate new
graphs based on the inferred role structure.

Value

An object of classblockmodel .

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Doreian, P.; Batagelj, V.; and Ferligoj, A. (2005).Generalized Blockmodeling.Cambridge: Cam-
bridge University Press.

White, H.C.; Boorman, S.A.; and Breiger, R.L. (1976). “Social Structure from Multiple Networks
I: Blockmodels of Roles and Positions.”American Journal of Sociology, 81, 730-779.

See Also

equiv.clust , blockmodel.expand

Examples

#Create a random graph with _some_ edge structure
g.p<-sapply(runif(20,0,1),rep,20) #Create a matrix of edge

#probabilities
g<-rgraph(20,tprob=g.p) #Draw from a Bernoulli graph

#distribution

#Cluster based on structural equivalence
eq<-equiv.clust(g)

#Form a blockmodel with distance relaxation of 10
b<-blockmodel(g,eq,h=10)
plot(b) #Plot it
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blockmodel.expand Generate a Graph (or Stack) from a Given Blockmodel Using Partic-
ular Expansion Rules

Description

blockmodel.expand takes a blockmodel and an expansion vector, and expands the former by
making copies of the vertices.

Usage

blockmodel.expand(b, ev, mode="digraph", diag=FALSE)

Arguments

b blockmodel object.

ev a vector indicating the number of copies to make of each class (respectively).

mode a string indicating whether the result should be a “graph” or “digraph”.

diag a boolean indicating whether or not loops should be permitted.

Details

The primary use of blockmodel expansion is in generating test data from a blockmodeling hypoth-
esis. Expansion is performed depending on the content type of the blockmodel; at present, only
density is supported. For the density content type, expansion is performed by interpreting the inter-
class density as an edge probability, and by drawing random graphs from the Bernoulli parameter
matrix formed by expanding the density model. Thus, repeated calls toblockmodel.expand
can be used to generate a sample for monte carlo null hypothesis tests under a Bernoulli graph
model.

Value

An adjacency matrix, or stack thereof.

Note

Eventually, other content types will be supported.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Doreian, P.; Batagelj, V.; and Ferligoj, A. (2005).Generalized Blockmodeling.Cambridge: Cam-
bridge University Press.

White, H.C.; Boorman, S.A.; and Breiger, R.L. (1976). “Social Structure from Multiple Networks
I: Blockmodels of Roles and Positions.”American Journal of Sociology, 81, 730-779.
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See Also

blockmodel

Examples

#Create a random graph with _some_ edge structure
g.p<-sapply(runif(20,0,1),rep,20) #Create a matrix of edge

#probabilities
g<-rgraph(20,tprob=g.p) #Draw from a Bernoulli graph

#distribution

#Cluster based on structural equivalence
eq<-equiv.clust(g)

#Form a blockmodel with distance relaxation of 15
b<-blockmodel(g,eq,h=15)

#Draw from an expanded density blockmodel
g.e<-blockmodel.expand(b,rep(2,length(b$rlabels))) #Two of each class
g.e

bn Fit a Biased Net Model

Description

Fits a biased net model to an input graph, using moment-based or maximum pseudolikelihood
techniques.

Usage

bn(dat, method = c("mple.triad", "mple.dyad", "mple.edge",
"mtle"), param.seed = NULL, param.fixed = NULL,
optim.method = "BFGS", optim.control = list(),
epsilon = 1e-05)

Arguments

dat a single input graph.

method the fit method to use (see below).

param.seed seed values for the parameter estimates.

param.fixed parameter values to fix, if any.

optim.method method to be used byoptim .

optim.control
control parameter foroptim .

epsilon tolerance for convergence to extreme parameter values (i.e., 0 or 1).
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Details

The biased net model stems from early work by Rapoport, who attempted to model networks via a
hypothetical "tracing" process. This process may be described loosely as follows. One begins with
a small "seed" set of vertices, each member of which is assumed to nominate (generate ties to) other
members of the population with some fixed probability. These members, in turn, may nominate new
members of the population, as well as members who have already been reached. Such nominations
may be "biased" in one fashion or another, leading to a non-uniform growth process. Specifically,
let eij be the random event that vertexi nominates vertexj when reached. Then the conditional
probability ofeij is given by

Pr(eij |T ) = 1− (1− Pr(Be))
∏
k

(1− Pr(Bk|T ))

whereT is the current state of the trace,Be is the a Bernoulli event corresponding to the baseline
probability ofeij , and theBk are "bias events." Bias events are taken to be independent Bernoulli
trials, givenT , such thateij is observed with certainty if any bias event occurs. The specification
of a biased net model, then, involves defining the various bias events (which, in turn, influence the
structure of the network).

Although other events have been proposed, the primary bias events employed in current biased net
models are the "parent bias" (a tendency to return nominations); the "sibling bias" (a tendency to
nominate alters who were nominated by the same third party); and the "double role bias" (a tendency
to nominate alters who are both siblings and parents). These bias events, together with the baseline
edge events, are used to form the standard biased net model. It is standard to assume homogeneity
within bias class, leading to the four parametersπ (probability of a parent bias event),σ (probability
of a sibling bias event),ρ (probability of a double role bias event), andd (probability of a baseline
event).

Unfortunately, there is no simple expression for the likelihood of a graph given these parameters
(and hence, no basis for likelihood based inference). However, Skvoretz et al. have derived a class of
maximum pseudo-likelihood estimators for the the biased net model, based on local approximations
to the likelihood at the edge, dyad, or triad level. These estimators may be employed withinbn by
selecting the appropriate MPLE for themethodargument. Alternately, it is also possible to derive
expected triad census rates for the biased net model, allowing an estimator which maximizes the
likelihood of the observed triad census (essentially, a method of moments procedure). This last
may be selected via the argumentmode="mtle" . In addition to estimating model parameters,bn
generates predicted edge, dyad, and triad census statistics, as well as structure statistics (using the
Fararo-Sunshine recurrence). These can be used to evaluate goodness-of-fit.

print , summary , andplot methods are available forbn objects. Seergbn for simulation from
biased net models.

Value

An object of classbn .

Note

Asymptotic properties of the MPLE are not known for this model. Caution is strongly advised.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉
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References

Fararo, T.J. and Sunshine, M.H. (1964). “A study of a biased friendship net.” Syracuse, NY: Youth
Development Center.

Rapoport, A. (1957). “A contribution to the theory of random and biased nets.”Bulletin of Mathe-
matical Biophysics,15, 523-533.

Skvoretz, J.; Fararo, T.J.; and Agneessens, F. (2004). “Advances in biased net theory: definitions,
derivations, and estimations.”Social Networks,26, 113-139.

See Also

rgbn , structure.statistics

Examples

#Generate a random graph
g<-rgraph(25)

#Fit a biased net model, using the triadic MPLE
gbn<-bn(g)

#Examine the results
summary(gbn)
plot(gbn)

#Now, fit a model containing only a density parameter
gbn<-bn(g,param.fixed=list(pi=0,sigma=0,rho=0))
summary(gbn)
plot(gbn)

bonpow Find Bonacich Power Centrality Scores of Network Positions

Description

bonpow takes one or more graphs (dat ) and returns the Boncich power centralities of positions
(selected bynodes ) within the graphs indicated byg. The decay rate for power contributions is
specified byexponent (1 by default). This function is compatible withcentralization , and
will return the theoretical maximum absolute deviation (from maximum) conditional on size (which
is used bycentralization to normalize the observed centralization score).

Usage

bonpow(dat, g=1, nodes=NULL, gmode="digraph", diag=FALSE,
tmaxdev=FALSE, exponent=1, rescale=FALSE, tol=1e-07)

Arguments

dat one or more input graphs.

g integer indicating the index of the graph for which centralities are to be calcu-
lated (or a vector thereof). By default,g=1.
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nodes vector indicating which nodes are to be included in the calculation. By default,
all nodes are included.

gmode string indicating the type of graph being evaluated."digraph" indicates that
edges should be interpreted as directed;"graph" indicates that edges are undi-
rected. This is currently ignored.

diag boolean indicating whether or not the diagonal should be treated as valid data.
Set this true if and only if the data can contain loops.Diag is FALSEby default.

tmaxdev boolean indicating whether or not the theoretical maximum absolute deviation
from the maximum nodal centrality should be returned. By default,tmaxdev =FALSE.

exponent exponent (decay rate) for the Bonacich power centrality score; can be negative

rescale if true, centrality scores are rescaled such that they sum to 1.

tol tolerance for near-singularities during matrix inversion (seesolve )

Details

Bonacich’s power centrality measure is defined byCBP (α, β) = α (I− βA)−1 A1, whereβ is
an attenuation parameter (set here byexponent ) andA is the graph adjacency matrix. (The
coefficientα acts as a scaling parameter, and is set here (following Bonacich (1987)) such that the
sum of squared scores is equal to the number of vertices. This allows 1 to be used as a reference
value for the “middle” of the centrality range.) Whenβ → 1/λA1 (the reciprocal of the largest
eigenvalue ofA), this is to within a constant multiple of the familiar eigenvector centrality score;
for other values ofβ, the behavior of the measure is quite different. In particular,β gives positive
and negative weight to even and odd walks, respectively, as can be seen from the series expansion
CBP (α, β) = α

∑∞
k=0 βkAk+11 which converges so long as|β| < 1/λA1. The magnitude ofβ

controls the influence of distant actors on ego’s centrality score, with larger magnitudes indicating
slower rates of decay. (High rates, hence, imply a greater sensitivity to edge effects.)

Interpretively, the Bonacich power measure corresponds to the notion that the power of a vertex is
recursively defined by the sum of the power of its alters. The nature of the recursion involved is
then controlled by the power exponent: positive values imply that vertices become more powerful as
their alters become more powerful (as occurs in cooperative relations), while negative values imply
that vertices become more powerful only as their alters becomeweaker(as occurs in competitive or
antagonistic relations). The magnitude of the exponent indicates the tendency of the effect to decay
across long walks; higher magnitudes imply slower decay. One interesting feature of this measure
is its relative instability to changes in exponent magnitude (particularly in the negative case). If
your theory motivates use of this measure, you should be very careful to choose a decay parameter
on a non-ad hoc basis.

Value

A vector, matrix, or list containing the centrality scores (depending on the number and size of the
input graphs).

Warning

Singular adjacency matrices cause no end of headaches for this algorithm; thus, the routine may fail
in certain cases. This will be fixed when I get a better algorithm.bonpow will not symmetrize your
data before extracting eigenvectors; don’t send this routine asymmetric matrices unless you really
mean to do so.
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Note

The theoretical maximum deviation used here is not obtained with the star network, in general. For
positive exponents, at least, the symmetric maximum occurs for an empty graph with one complete
dyad (the asymmetric maximum is generated by the outstar). UCINET V seems not to adjust for
this fact, which can cause some oddities in their centralization scores (thus, don’t expect to get the
same numbers with both packages).

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Bonacich, P. (1972). “Factoring and Weighting Approaches to Status Scores and Clique Identifica-
tion.” Journal of Mathematical Sociology, 2, 113-120.

Bonacich, P. (1987). “Power and Centrality: A Family of Measures.”American Journal of Sociol-
ogy, 92, 1170-1182.

See Also

centralization , evcent

Examples

#Generate some test data
dat<-rgraph(10,mode="graph")
#Compute Bonpow scores
bonpow(dat,exponent=1,tol=1e-20)
bonpow(dat,exponent=-1,tol=1e-20)

centralgraph Find the Central Graph of a Labeled Graph Stack

Description

Returns the central graph of a set of labeled graphs, i.e. that graph in which i->j iff i->j in >=50%
of the graphs within the set. Ifnormalize==TRUE , then the value of the i,jth edge is given as the
proportion of graphs in which i->j.

Usage

centralgraph(dat, normalize=FALSE)

Arguments

dat one or more input graphs.

normalize boolean indicating whether the results should be normalized. The result of this
is the "mean matrix". By default,normalize==FALSE .
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Details

The central graph of a set of graphs S is that graph C which minimizes the sum of Hamming
distances between C and G in S. As such, it turns out (for the dichotomous case, at least), to be
analogous to both the mean and median for sets of graphs. The central graph is useful in a variety
of contexts; see the references below for more details.

Value

A matrix containing the central graph (or mean matrix)

Note

0.5 is used as the cutoff value regardless of whether or not the data is dichotomous (as is tacitly
assumed). The routine is unaffected by data type whennormalize==TRUE .

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Banks, D.L., and Carley, K.M. (1994). “Metric Inference for Social Networks.”Journal of Classi-
fication, 11(1), 121-49.

See Also

hdist

Examples

#Generate some random graphs
dat<-rgraph(10,5)
#Find the central graph
cg<-centralgraph(dat)
#Plot the central graph
gplot(cg)
#Now, look at the mean matrix
cg<-centralgraph(dat,normalize=TRUE)
print(cg)

centralization Find the Centralization of a Given Network, for Some Measure of Cen-
trality

Description

Centralization returns the centralization GLI (graph-level index) for a given graph indat ,
given a (node) centrality measureFUN. Centralization follows Freeman’s (1979) generalized
definition of network centralization, and can be used with any properly defined centrality measure.
This measure must be implemented separately; see the references below for examples.
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Usage

centralization(dat, FUN, g=1, mode="digraph", diag=FALSE,
normalize=TRUE, ...)

Arguments

dat one or more input graphs.

FUN Function to return nodal centrality scores.

g Integer indicating the index of the graph for which centralization should be com-
puted. By default,g=1.

mode String indicating the type of graph being evaluated. "digraph" indicates that
edges should be interpreted as directed; "graph" indicates that edges are undi-
rected.mode is set to "digraph" by default.

diag Boolean indicating whether or not the diagonal should be treated as valid data.
Set this true if and only if the data can contain loops.diag is FALSEby default.

normalize Boolean indicating whether or not the centralization score should be normalized
to the theoretical maximum. (Note that this function relies onFUNto return this
value when called withtmaxdev==TRUE .) By default,tmaxdev==TRUE .

... Additional arguments toFUN.

Details

The centralization of a graph G for centrality measureC(v) is defined (as per Freeman (1979)) to
be:

C∗(G) =
∑

i∈V (G)

∣∣∣∣ max
v∈V (G)

(C(v))− C(i)
∣∣∣∣

Or, equivalently, the absolute deviation from the maximum of C on G. Generally, this value is
normalized by the theoretical maximum centralization score, conditional on|V (G)|. (Here, this
functionality is activated bynormalize .) Centralization depends on the function specified
by FUN to return the vector of nodal centralities when called withdat andg, and to return the
theoretical maximum value when called with the above andtmaxdev==TRUE . For an example of
such a centrality routine, seedegree .

Value

The centralization of the specified graph.

Note

Seecugtest for null hypothesis tests involving centralization scores.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉
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References

Freeman, L.C. (1979). “Centrality in Social Networks I: Conceptual Clarification.”Social Net-
works, 1, 215-239.

Wasserman, S., and Faust, K. (1994).Social Network Analysis: Methods and Applications.Cam-
bridge: Cambridge University Press.

See Also

cugtest

Examples

#Generate some random graphs
dat<-rgraph(5,10)
#How centralized is the third one on indegree?
centralization(dat,g=3,degree,cmode="indegree")
#How about on total (Freeman) degree?
centralization(dat,g=3,degree)

closeness Compute the Closeness Centrality Scores of Network Positions

Description

closeness takes one or more graphs (dat ) and returns the closeness centralities of positions (se-
lected bynodes ) within the graphs indicated byg. Depending on the specified mode, closeness on
directed or undirected geodesics will be returned; this function is compatible withcentralization ,
and will return the theoretical maximum absolute deviation (from maximum) conditional on size
(which is used bycentralization to normalize the observed centralization score).

Usage

closeness(dat, g=1, nodes=NULL, gmode="digraph", diag=FALSE,
tmaxdev=FALSE, cmode="directed", geodist.precomp=NULL,
rescale=FALSE)

Arguments

dat one or more input graphs.

g integer indicating the index of the graph for which centralities are to be calcu-
lated (or a vector thereof). By default,g=1.

nodes list indicating which nodes are to be included in the calculation. By default, all
nodes are included.

gmode string indicating the type of graph being evaluated. "digraph" indicates that
edges should be interpreted as directed; "graph" indicates that edges are undi-
rected.gmode is set to "digraph" by default.

diag boolean indicating whether or not the diagonal should be treated as valid data.
Set this true if and only if the data can contain loops.diag is FALSEby default.

tmaxdev boolean indicating whether or not the theoretical maximum absolute deviation
from the maximum nodal centrality should be returned. By default,tmaxdev==FALSE .
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cmode string indicating the type of closeness centrality being computed (distances on
directed or undirected geodesics).

geodist.precomp
ageodist object precomputed for the graph to be analyzed (optional)

rescale if true, centrality scores are rescaled such that they sum to 1.

Details

The closeness of a vertex v is defined as

CC(v) =
|V (G)| − 1∑

i:i 6=v d(v, i)

whered(i, j) is the geodesic distance between i and j (where defined). Closeness is ill-defined
on disconnected graphs; in such cases, this routine substitutesInf . It should be understood that
this modification is not canonical (though it is common), but can be avoided by not attempting to
measure closeness on disconnected graphs in the first place! Intuitively, closeness provides an index
of the extent to which a given vertex has short paths to all other vertices in the graph; this is one
reasonable measure of the extent to which a vertex is in the “middle” of a given structure.

Value

A vector, matrix, or list containing the closeness scores (depending on the number and size of the
input graphs).

Note

Judicious use ofgeodist.precomp can save a great deal of time when computing multiple
path-based indices on the same network.

Author(s)

Carter T. Butts,〈buttsc@uci.edu〉

References

Freeman, L.C. (1979). “Centrality in Social Networks I: Conceptual Clarification.”Social Net-
works, 1, 215-239.

See Also

centralization

Examples

g<-rgraph(10) #Draw a random graph with 10 members
closeness(g) #Compute closeness scores
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component.dist Calculate the Component Size Distribution of a Graph

Description

component.dist returns a list containing a vector of length n such that the ith element contains
the number of components of G having size i, and a vector of length n giving component member-
ship. Component strength is determined by theconnected parameter; see below for details.

Usage

component.dist(dat, connected=c("strong","weak","unilateral",
"recursive"))

Arguments

dat one or more input graphs.

connected a string selecting strong, weak, unilateral or recursively connected components;
by default,"strong" components are used.

Details

Components are maximal sets of mutually connected vertices; depending on the definition of “con-
nected” one employs, one can arrive at several types of components. Those supported here are as
follows (in increasing order of restrictiveness):

1. weak: v1 is connected tov2 iff there exists a semi-path fromv1 to v2 (i.e., a path in the weakly
symmetrized graph)

2. unilateral : v1 is connected tov2 iff there exists a directed path fromv1 to v2 or a directed
path fromv2 to v1

3. strong : v1 is connected tov2 iff there exists a directed path fromv1 to v2 and a directed
path fromv2 to v1

4. recursive : v1 is connected tov2 iff there exists a vertex sequenceva, . . . , vz such that
v1, va, . . . , vz, v2 andv2, vz, . . . , va, v1 are directed paths

Note that the above definitions are distinct for directed graphs only; ifdat is symmetric, then the
connected parameter has no effect.

Value

A list containing:

membership A vector of component memberships, by vertex

csize A vector of component sizes, by component

cdist A vector of length |V(G)| with the (unnormalized) empirical distribution func-
tion of component sizes

If multiple input graphs are given, the return value is a list of lists.
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Note

Unilaterally connected component partitions may not be well-defined, since it is possible for a
given vertex to be unilaterally connected to two vertices which are not unilaterally connected
with one another. Consider, for instance, the grapha → b ← c → d. In this case, the maxi-
mal unilateral components areab andbcd, with vertexb properly belonging to both components.
For such graphs, a unique partition of vertices by component does not exist, and we “solve” the
problem by allocating each “problem vertex” to one of its components on an essentially arbitrary
basis. (component.dist generates a warning when this occurs.) It is recommended that the
unilateral option be avoided where possible.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

West, D.B. (1996).Introduction to Graph Theory.Upper Saddle River, N.J.: Prentice Hall.

See Also

components , symmetrize , reachability geodist

Examples

g<-rgraph(20,tprob=0.075) #Generate a sparse random graph

#Find weak components
cd<-component.dist(g,connected="weak")
cd$membership #Who's in what component?
cd$csize #What are the component sizes?

#Plot the size distribution
plot(1:length(cd$cdist),cd$cdist/sum(cd$cdist),ylim=c(0,1),type="h")

#Find strong components
cd<-component.dist(g,connected="strong")
cd$membership #Who's in what component?
cd$csize #What are the component sizes?

#Plot the size distribution
plot(1:length(cd$cdist),cd$cdist/sum(cd$cdist),ylim=c(0,1),type="h")

components Find the Number of (Maximal) Components Within a Given Graph

Description

Returns the number of components withindat , using the connectedness rule given inconnected .

Usage

components(dat, connected="strong", comp.dist.precomp=NULL)
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Arguments

dat one or more input graphs.

connected the symmetrizing rule to be used bysymmetrize before components are ex-
tracted

comp.dist.precomp
a component size distribution object fromcomponent.dist (optional)

Details

Theconnected parameter corresponds to therule parameter ofcomponent.dist . By de-
fault, components returns the number of strong components, but weak components can be re-
turned if so desired. For symmetric matrices, this is obviously a moot point.

Value

A vector containing the number of components for each graph indat

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

West, D.B. (1996).Introduction to Graph Theory. Upper Saddle River, NJ: Prentice Hall.

See Also

component.dist , symmetrize

Examples

g<-rgraph(20,tprob=0.05) #Generate a sparse random graph

#Find weak components
components(g,connected="weak")

#Find strong components
components(g,connected="strong")

connectedness Compute Graph Connectedness Scores

Description

connectedness takes one or more graphs (dat ) and returns the Krackhardt connectedness
scores for the graphs selected byg.

Usage

connectedness(dat, g=NULL)
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Arguments

dat one or more graphs.

g index values for the graphs to be utilized; by default, all graphs are selected.

Details

Krackhardt’s connectedness for a digraphG is equal to the fraction of all dyads,{i, j}, such that
there exists an undirected path fromi to j in G. (This, in turn, is just the density of the weak
reachability graph ofG.) Obviously, the connectedness score ranges from 0 (for the null
graph) to 1 (for weakly connected graphs).

Connectedness is one of four measures (connectedness , efficiency , hierarchy , and
lubness ) suggested by Krackhardt for summarizing hierarchical structures. Each corresponds to
one of four axioms which are necessary and sufficient for the structure in question to be an outtree;
thus, the measures will be equal to 1 for a given graph iff that graph is an outtree. Deviations
from unity can be interpreted in terms of failure to satisfy one or more of the outtree conditions,
information which may be useful in classifying its structural properties.

Value

A vector containing the connectedness scores

Note

The four Krackhardt indices are, in general, nondegenerate for a relatively narrow band of size/density
combinations (efficiency being the sole exception). This is primarily due to their dependence on the
reachability graph, which tends to become complete rapidly as size/density increase. See Krack-
hardt (1994) for a useful simulation study.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Krackhardt, David. (1994). “Graph Theoretical Dimensions of Informal Organizations.” In K.
M. Carley and M. J. Prietula (Eds.),Computational Organization Theory, 89-111. Hillsdale, NJ:
Lawrence Erlbaum and Associates.

See Also

connectedness , efficiency , hierarchy , lubness , reachability

Examples

#Get connectedness scores for graphs of varying densities
connectedness(rgraph(10,5,tprob=c(0.1,0.25,0.5,0.75,0.9)))
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consensus Estimate a Consensus Structure from Multiple Observations

Description

consensus estimates a central or consensus structure given multiple observations, using one of
several algorithms.

Usage

consensus(dat, mode="digraph", diag=FALSE, method="central.graph",
tol=1e-06)

Arguments

dat a set of input graphs (must have same order).

mode "digraph" for directed data, else"graph" .

diag a boolean indicating whether the diagonals (loops) should be treated as data.

method one of"central.graph" , "single.reweight" , "iterative.reweight"
"PCA.reweight" , "LAS.intersection" , "LAS.union" , "OR.row" ,
or "OR.col" .

tol tolerance for the iterative reweighting algorithm.

Details

The term “consensus structure” is used by a number of authors to reflect a notion of shared or
common perceptions of social structure among a set of observers. As there are many interpretations
of what is meant by “consensus” (and as to how best to estimate it), several algorithms are employed
here:

1. central.graph : Estimate the consensus structure using the central graph. This correponds
to a “median response” notion of consensus.

2. single.reweight : Estimate the consensus structure using subject responses, reweighted
by mean graph correlation. This corresponds to an “expertise-weighted vote” notion of con-
sensus.

3. iterative.reweight : Similar to single.reweight , but fits a Romney-Batchelder
informant accuracy model using IPF. The implementation employed here uses both bias and
competency parameters.

4. PCA.reweight : Estimate the consensus using the (scores on the) first component of a net-
work PCA. This corresponds to a “shared theme” or “common element” notion of consensus.

5. LAS.intersection : Estimate the concensus structure using the locally aggregated struc-
ture (intersection rule). In this model, an i->j edge exists iff iand j agree that it exists.

6. LAS.union : Estimate the concensus structure using the locally aggregated structure (union
rule). In this model, an i->j edge exists iff ior j agree that it exists.

7. OR.row : Estimate the consensus structure using own report. Here, we take each informant’s
outgoing tie reports to be correct.

8. OR.col : Estimate the consensus structure using own report. Here, we take each informant’s
incoming tie reports to be correct.
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Note that the reweighted algorithms are not dichotomized by default; since some of these return
valued graphs, dichotomization may be desirable prior to use.

It should be noted that a model for estimating an underlying criterion structure from multiple in-
formant reports is provided inbbnam; if your goal is to reconstruct an “objective” network from
informant reports, this (or the R-B model ofiterative.reweight ) may prove more useful
than the ad-hoc solutions.

Value

An adjacency matrix representing the consensus structure

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Banks, D.L., and Carley, K.M. (1994). “Metric Inference for Social Networks.”Journal of Classi-
fication,11(1), 121-49.

Butts, C.T., and Carley, K.M. (2001). “Multivariate Methods for Inter-Structural Analysis.” CASOS
Working Paper, Carnegie Mellon University.

Krackhardt, D. (1987). “Cognitive Social Structures.”Social Networks,9, 109-134.

Romney, A.K.; Weller, S.C.; and Batchelder, W.H. (1986). “Culture as Consensus: A Theory of
Culture and Informant Accuracy.”American Anthropologist,88(2), 313-38.

See Also

bbnam, centralgraph

Examples

#Generate some test data
g<-rgraph(5)
g.pobs<-g*0.9+(1-g)*0.5
g.obs<-rgraph(5,5,tprob=g.pobs)

#Find some consensus structures
consensus(g.obs) #Central graph
consensus(g.obs,method="single.reweight") #Single reweighting
consensus(g.obs,method="PCA.reweight") #1st component in network PCA

cugtest Perform Conditional Uniform Graph (CUG) Hypothesis Tests for
Graph-Level Indices
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Description

cugtest tests an arbitrary GLI (computed ondat by FUN) against a conditional uniform graph
null hypothesis, via Monte Carlo simulation of likelihood quantiles. Some variation in the nature
of the conditioning is available; currently, conditioning only on size, conditioning jointly on size
and estimated tie probability (via density), and conditioning jointly on size and (bootstrapped) edge
value distributions are implemented. Note that fair amount of flexibility is possible regarding CUG
tests on functions of GLIs (Anderson et al., 1999). See below for more details.

Usage

cugtest(dat, FUN, reps=1000, gmode="digraph", cmode="density",
diag=FALSE, g1=1, g2=2, ...)

Arguments

dat graph(s) to be analyzed.

FUN function to compute GLIs, or functions thereof.FUNmust acceptdat and the
specifiedg arguments, and should return a real number.

reps integer indicating the number of draws to use for quantile estimation. Note
that, as for all Monte Carlo procedures, convergence is slower for more extreme
quantiles. By default,reps==1000 .

gmode string indicating the type of graph being evaluated. "digraph" indicates that
edges should be interpreted as directed; "graph" indicates that edges are undi-
rected.gmode is set to "digraph" by default.

cmode string indicating the type of conditioning assumed by the null hypothesis. If
cmode is set to "density", then the density of the graph in question is used
to determine the tie probabilities of the Bernoulli graph draws (which are also
conditioned on |V(G)|). Ifcmode=="ties" , then draws are bootstrapped from
the distribution of edge values within the data matrices. Ifcmode="order" ,
then draws are uniform over all graphs of the same order (size) as the graphs
within the input stack. By default,cmode is set to"density" .

diag boolean indicating whether or not the diagonal should be treated as valid data.
Set this true if and only if the data can contain loops.diag is FALSEby default.

g1 integer indicating the index of the first graph input to the GLI. By default,
g1==1 .

g2 integer indicating the index of the second graph input to the GLI. (FUNcan
ignore this, if one wishes to test the GLI value of a single graph, but it should
recognize the argument.) By default,g2==2 .

... additional arguments toFUN.

Details

The null hypothesis of the CUG test is that the observed GLI (or function thereof) was drawn
from a distribution isomorphic to that of said GLI evaluated (uniformly) on the space of all graphs
conditional on one or more features. The most common "features" used for conditioning purposes
are order (size) and density, both of which are known to have strong and nontrivial effects on
other GLIs (Anderson et al., 1999) and which are, in many cases, exogenously determined. Since
theoretical results regarding functions of arbitrary GLIs on the space of graphs are not available,
the standard approach to CUG testing is to approximate the quantiles of the likelihood associated
with the null hypothesis using Monte Carlo methods. This is the technique utilized bycugtest ,
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which takes appropriately conditioned draws from the set of graphs and computes on them the GLI
specified inFUN, thereby accumulating an approximation to the true likelihood.

The cugtest procedure returns acugtest object containing the estimated likelihood (distri-
bution of the test GLI under the null hypothesis), the observed GLI value of the data, and the
one-tailed p-values (estimated quantiles) associated with said observation. As usual, the (upper
tail) null hypothesis is rejected for significance level alpha if p>=observation is less than alpha (or
p<=observation, for the lower tail). Standard caveats regarding the use of null hypothesis testing
procedures are relevant here: in particular, bear in mind that a significant result does not necessarily
imply that the likelihood ratio of the null model and the alternative hypothesis favors the latter.

Informative and aesthetically pleasing portrayals ofcugtest objects are available via theprint.cugtest
andsummary.cugtest methods. Theplot.cugtest method displays the estimated distri-
bution, with a reference line signifying the observed value.

Value

An object of classcugtest , containing

testval The observed GLI value.

dist A vector containing the Monte Carlo draws.

pgreq The proportion of draws which were greater than or equal to the observed GLI
value.

pleeq The proportion of draws which were less than or equal to the observed GLI
value.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Anderson, B.S.; Butts, C.T.; and Carley, K.M. (1999). “The Interaction of Size and Density with
Graph-Level Indices.”Social Networks, 21(3), 239-267.

See Also

qaptest , gliop

Examples

#Draw two random graphs, with different tie probabilities
dat<-rgraph(20,2,tprob=c(0.2,0.8))
#Is their correlation higher than would be expected, conditioning
#only on size?
cug<-cugtest(dat,gcor,cmode="order")
summary(cug)
#Now, let's try conditioning on density as well.
cug<-cugtest(dat,gcor)
summary(cug)
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degree Compute the Degree Centrality Scores of Network Positions

Description

Degree takes one or more graphs (dat ) and returns the degree centralities of positions (selected by
nodes ) within the graphs indicated byg. Depending on the specified mode, indegree, outdegree,
or total (Freeman) degree will be returned; this function is compatible withcentralization ,
and will return the theoretical maximum absolute deviation (from maximum) conditional on size
(which is used bycentralization to normalize the observed centralization score).

Usage

degree(dat, g=1, nodes=NULL, gmode="digraph", diag=FALSE,
tmaxdev=FALSE, cmode="freeman", rescale=FALSE)

Arguments

dat one or more input graphs.

g integer indicating the index of the graph for which centralities are to be calcu-
lated (or a vector thereof). By default,g=1.

nodes vector indicating which nodes are to be included in the calculation. By default,
all nodes are included.

gmode string indicating the type of graph being evaluated. "digraph" indicates that
edges should be interpreted as directed; "graph" indicates that edges are undi-
rected.gmode is set to "digraph" by default.

diag boolean indicating whether or not the diagonal should be treated as valid data.
Set this true if and only if the data can contain loops.diag is FALSEby default.

tmaxdev boolean indicating whether or not the theoretical maximum absolute deviation
from the maximum nodal centrality should be returned. By default,tmaxdev==FALSE .

cmode string indicating the type of degree centrality being computed. "indegree", "out-
degree", and "freeman" refer to the indegree, outdegree, and total (Freeman)
degree measures, respectively. The default forcmode is "freeman".

rescale if true, centrality scores are rescaled such that they sum to 1.

Details

Degree centrality is the social networker’s term for various permutations of the graph theoretic
notion of vertex degree: indegree of a vertex, v, corresponds to the cardinality of the vertex set
N+(v) = {i ∈ V (G) : (i, v) ∈ E(G)}; outdegree corresponds to the cardinality of the vertex
set N−(v) = {i ∈ V (G) : (v, i) ∈ E(G)}; and total (or "Freeman") degree corresponds to
|N+(v)|+ |N−(v)|. (Note that, for simple graphs, indegree=outdegree=total degree/2.) Obviously,
degree centrality can be interpreted in terms of the sizes of actors’ neighborhoods within the larger
structure. See the references below for more details.

Value

A vector, matrix, or list containing the degree scores (depending on the number and size of the input
graphs).
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Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Freeman, L.C. (1979). “Centrality in Social Networks I: Conceptual Clarification.”Social Net-
works, 1, 215-239.

See Also

centralization

Examples

#Create a random directed graph
dat<-rgraph(10)
#Find the indegrees, outdegrees, and total degrees
degree(dat,cmode="indegree")
degree(dat,cmode="outdegree")
degree(dat)

diag.remove Remove the Diagonals of Adjacency Matrices in a Graph Stack

Description

Returns the input graphs, with the diagonal entries removed/replaced as indicated.

Usage

diag.remove(dat, remove.val=NA)

Arguments

dat one or more graphs.

remove.val the value with which to replace the existing diagonals

Details

diag.remove is simply a convenient way to applydiag to an entire collection of adjacency
matrices/network objects at once.

Value

The updated graphs.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

diag , upper.tri.remove , lower.tri.remove
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Examples

#Generate a random graph stack
g<-rgraph(3,5)
#Remove the diagonals
g<-diag.remove(g)

dyad.census Compute a Holland and Leinhardt MAN Dyad Census

Description

dyad.census computes a Holland and Leinhardt dyad census on the graphs ofdat selected by
g.

Usage

dyad.census(dat, g=NULL)

Arguments

dat one or more graphs.

g the elements ofdat to be included; by default, all graphs are processed.

Details

Each dyad in a directed graph may be in one of four states: the null state (a 6↔ b), the complete or
mutual state (a ↔ b), and either of two asymmetric states (a ← b or a → b). Holland and Lein-
hardt’s dyad census classifies each dyad into the mutual, asymmetric, or null categories, counting
the number of each within the digraph. These counts can be used as the basis for null hypothesis
tests (since their distributions are known under assumptions such as constant edge probability), or
for the generation of random graphs (e.g., via the U|MAN distribution, which conditions on the
numbers of mutual, asymmetric, and null dyads in each graph).

Value

A matrix whose three columns contain the counts of mutual, asymmetric, and null dyads (respec-
tively) for each graph

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Holland, P.W. and Leinhardt, S. (1970). “A Method for Detecting Structure in Sociometric Data.”
American Journal of Sociology, 70, 492-513.

Wasserman, S., and Faust, K. (1994). “Social Network Analysis: Methods and Applications.”
Cambridge: Cambridge University Press.

See Also

mutuality , grecip , rguman triad.census
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Examples

#Generate a dyad census of random data with varying densities
dyad.census(rgraph(15,5,tprob=c(0.1,0.25,0.5,0.75,0.9)))

efficiency Compute Graph Efficiency Scores

Description

efficiency takes one or more graphs (dat ) and returns the Krackhardt efficiency scores for the
graphs selected byg.

Usage

efficiency(dat, g=NULL, diag=FALSE)

Arguments

dat one or more graphs.

g index values for the graphs to be utilized; by default, all graphs are selected.

diag TRUEif the diagonal contains valid data; by default,diag==FALSE .

Details

Let G = ∪n
i=1Gi be a digraph with weak componentsG1, G2, . . . , Gn. For convenience, we

denote the cardinalities of these components’ vertex sets by|V (G)| = N and |V (Gi)| = Ni,
∀i ∈ 1, . . . , n. Then the Krackhardt efficiency ofG is given by

1−
|E(G)| −

∑n
i=1 (Ni − 1)∑n

i=1 (Ni (Ni − 1)− (Ni − 1))

which can be interpreted as 1 minus the proportion of possible “extra” edges (above those needed to
weakly connect the existing components) actually present in the graph. A graph which an efficiency
of 1 has precisely as many edges as are needed to connect its components; as additional edges are
added, efficiency gradually falls towards 0.

Efficiency is one of four measures (connectedness , efficiency , hierarchy , andlubness )
suggested by Krackhardt for summarizing hierarchical structures. Each corresponds to one of four
axioms which are necessary and sufficient for the structure in question to be an outtree; thus, the
measures will be equal to 1 for a given graph iff that graph is an outtree. Deviations from unity can
be interpreted in terms of failure to satisfy one or more of the outtree conditions, information which
may be useful in classifying its structural properties.

Value

A vector of efficiency scores
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Note

The four Krackhardt indices are, in general, nondegenerate for a relatively narrow band of size/density
combinations (efficiency being the sole exception). This is primarily due to their dependence on the
reachability graph, which tends to become complete rapidly as size/density increase. See Krack-
hardt (1994) for a useful simulation study.

The violation normalization used before version 0.51 wasN (N − 1)
∑n

i=1 (Ni − 1), based on a
somewhat different interpretation of the definition in Krackhardt (1994). The former version gave
results which more closely matched those of the cited simulation study, but was less consistent with
the textual definition.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Krackhardt, David. (1994). “Graph Theoretical Dimensions of Informal Organizations.” In K.
M. Carley and M. J. Prietula (Eds.),Computational Organization Theory, 89-111. Hillsdale, NJ:
Lawrence Erlbaum and Associates.

See Also

connectedness , efficiency , hierarchy , lubness , gden

Examples

#Get efficiency scores for graphs of varying densities
efficiency(rgraph(10,5,tprob=c(0.1,0.25,0.5,0.75,0.9)))

equiv.clust Find Clusters of Positions Based on an Equivalence Relation

Description

equiv.clust uses a definition of approximate equivalence (equiv.fun ) to form a hierarchical
clustering of network positions. Wheredat consists of multiple relations, all specified relations
are considered jointly in forming the equivalence clustering.

Usage

equiv.clust(dat, g=NULL, equiv.dist=NULL, equiv.fun="sedist",
method="hamming", mode="digraph", diag=FALSE,
cluster.method="complete", glabels=NULL, plabels=NULL, ...)

Arguments

dat one or more graphs.

g the elements ofdat to use in clustering the vertices; by default, all structures
are used.

equiv.dist a matrix of distances, by which vertices should be clustered. (Overridesequiv.fun .)
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equiv.fun the distance function to use in clustering vertices (defaults tosedist ).

method method parameter to be passed toequiv.fun .

mode “graph” or “digraph,” as appropriate.

diag a boolean indicating whether or not matrix diagonals (loops) should be inter-
preted as useful data.

cluster.method
the hierarchical clustering method to use (seehclust ).

glabels labels for the various graphs indat .

plabels labels for the vertices ofdat .

... additional arguments toequiv.dist .

Details

This routine is essentially a joint front-end tohclust and various positional distance functions,
though it defaults to structural equivalence in particular. Taking the specified graphs as input,
equiv.clust computes the distances between all pairs of positions usingequiv.fun (unless
distances are supplied inequiv.dist ), and then performs a cluster analysis of the result. The
return value is an object of classequiv.clust , for which various secondary analysis methods
exist.

Value

An object of classequiv.clust

Note

Seesedist for an example of a distance function compatible withequiv.clust .

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Breiger, R.L.; Boorman, S.A.; and Arabie, P. (1975). “An Algorithm for Clustering Relational Data
with Applications to Social Network Analysis and Comparison with Multidimensional Scaling.”
Journal of Mathematical Psychology, 12, 328-383.

Burt, R.S. (1976). “Positions in Networks.”Social Forces, 55, 93-122.

Wasserman, S., and Faust, K.Social Network Analysis: Methods and Applications.Cambridge:
Cambridge University Press.

See Also

sedist , blockmodel
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Examples

#Create a random graph with _some_ edge structure
g.p<-sapply(runif(20,0,1),rep,20) #Create a matrix of edge

#probabilities
g<-rgraph(20,tprob=g.p) #Draw from a Bernoulli graph

#distribution

#Cluster based on structural equivalence
eq<-equiv.clust(g)
plot(eq)

eval.edgeperturbation
Compute the Effects of Single-Edge Perturbations on Structural In-
dices

Description

Evaluates a given function on an input graph with and without a specified edge, returning the dif-
ference between the results in each case.

Usage

eval.edgeperturbation(dat, i, j, FUN, ...)

Arguments

dat A single adjacency matrix

i The row(s) of the edge(s) to be perturbed

j The column(s) of the edge(s) to be perturbed

FUN The function to be computed

... Additional arguments toFUN

Details

Although primarily a back-end utility forpstar , eval.edgeperturbation may be useful in
any circumstance in which one wishes to assess the stability of a given structural index with respect
to single edge perturbations. The function to be evaluated is calculated first on the input graph with
all marked edges set to present, and then on the same graph with said edges absent. (Obviously, this
is sensible only for dichotomous data.) The difference is then returned.

In pstar , calls toeval.edgeperturbation are used to construct a perturbation effect matrix
for the GLM.

Value

The difference in the values ofFUNas computed on the perturbed graphs.

Note

length(i) and length(j) must be equal; where multiple edges are specified, the row and
column listings are interpreted as pairs.
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Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Anderson, C.; Wasserman, S.; and Crouch, B. (1999). “A p* Primer: Logit Models for Social
Networks.Social Networks,21,37-66.

See Also

pstar

Examples

#Create a random graph
g<-rgraph(5)

#How much does a one-edge change affect reciprocity?
eval.edgeperturbation(g,1,2,grecip)

evcent Find Eigenvector Centrality Scores of Network Positions

Description

evcent takes one or more graphs (dat ) and returns the eigenvector centralities of positions (se-
lected bynodes ) within the graphs indicated byg. This function is compatible withcentralization ,
and will return the theoretical maximum absolute deviation (from maximum) conditional on size
(which is used bycentralization to normalize the observed centralization score).

Usage

evcent(dat, g=1, nodes=NULL, gmode="digraph", diag=FALSE,
tmaxdev=FALSE, rescale=FALSE)

Arguments

dat one or more input graphs.

g integer indicating the index of the graph for which centralities are to be calcu-
lated (or a vector thereof). By default,g=1.

nodes vector indicating which nodes are to be included in the calculation. By default,
all nodes are included.

gmode string indicating the type of graph being evaluated. "digraph" indicates that
edges should be interpreted as directed; "graph" indicates that edges are undi-
rected. This is currently ignored.

diag boolean indicating whether or not the diagonal should be treated as valid data.
Set this true if and only if the data can contain loops.diag is FALSEby default.

tmaxdev boolean indicating whether or not the theoretical maximum absolute deviation
from the maximum nodal centrality should be returned. By default,tmaxdev==FALSE .

rescale if true, centrality scores are rescaled such that they sum to 1.
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Details

Eigenvector centrality scores correspond to the values of the first eigenvector of the graph adjacency
matrix; these scores may, in turn, be interpreted as arising from a reciprocal process in which the
centrality of each actor is proportional to the sum of the centralities of those actors to whom he or she
is connected. In general, vertices with high eigenvector centralities are those which are connected
to many other vertices which are, in turn, connected to many others (and so on). (The perceptive
may realize that this implies that the largest values will be obtained by individuals in large cliques
(or high-density substructures). This is also intelligible from an algebraic point of view, with the
first eigenvector being closely related to the best rank-1 approximation of the adjacency matrix (a
relationship which is easy to see in the special case of a diagonalizable symmetric real matrix via
theSΛS−1 decomposition).)

The simple eigenvector centrality is generalized by the Bonacich power centrality measure; see
bonpow for more details.

Value

A vector, matrix, or list containing the centrality scores (depending on the number and size of the
input graphs).

WARNING

evcent will not symmetrize your data before extracting eigenvectors; don’t send this routine
asymmetric matrices unless you really mean to do so.

Note

The theoretical maximum deviation used here is not obtained with the star network, in general. For
symmetric data, the maximum occurs for an empty graph with one complete dyad; the maximum
deviation for asymmetric data is generated by the outstar. UCINET V seems not to adjust for this
fact, which can cause some oddities in their centralization scores (and results in a discrepancy in
centralizations between the two packages).

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Bonacich, P. (1987). “Power and Centrality: A Family of Measures.”American Journal of Sociol-
ogy, 92, 1170-1182.

Katz, L. (1953). “A New Status Index Derived from Sociometric Analysis.”Psychometrika, 18,
39-43.

See Also

centralization , bonpow

Examples

#Generate some test data
dat<-rgraph(10,mode="graph")
#Compute eigenvector centrality scores
evcent(dat)
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event2dichot Convert an Observed Event Matrix to a Dichotomous matrix

Description

Given one or more valued adjacency matrices (possibly derived from observed interaction “events”),
event2dichot returns dichotomized equivalents.

Usage

event2dichot(m, method="quantile", thresh=0.5, leq=FALSE)

Arguments

m one or more (valued) input graphs.

method one of “quantile,” “rquantile,” “cquantile,” “mean,” “rmean,” “cmean,” “abso-
lute,” “rank,” “rrank,” or “crank”.

thresh dichotomization thresholds for ranks or quantiles.

leq boolean indicating whether values less than or equal to the threshold should be
taken as existing edges; the alternative is to use values strictly greater than the
threshold.

Details

The methods used for choosing dichotomization thresholds are as follows:

1. quantile: specified quantile over the distribution of all edge values

2. rquantile: specified quantile by row

3. cquantile: specified quantile by column

4. mean: grand mean

5. rmean: row mean

6. cmean: column mean

7. absolute: the value ofthresh itself

8. rank: specified rank over the distribution of all edge values

9. rrank: specified rank by row

10. crank: specified rank by column

Note that when a quantile, rank, or value is said to be “specified,” this refers to the value ofthresh .

Value

The dichotomized data matrix (or matrices)

Author(s)

Carter T. Butts〈buttsc@uci.edu〉
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References

Wasserman, S. and Faust, K. (1994).Social Network Analysis: Methods and Applications.Cam-
bridge: Cambridge University Press.

Examples

#Draw a matrix of normal values
n<-matrix(rnorm(25),nrow=5,ncol=5)

#Dichotomize by the mean value
event2dichot(n,"mean")

#Dichotomize by the 0.95 quantile
event2dichot(n,"quantile",0.95)

gapply Apply Functions Over Vertex Neighborhoods

Description

Returns a vector or array or list of values obtained by applying a function to vertex neighborhoods
of a given order.

Usage

gapply(X, MARGIN, STATS, FUN, ..., mode = "digraph", diag = FALSE,
distance = 1, thresh = 0, simplify = TRUE)

Arguments

X one or more input graphs.

MARGIN a vector giving the “margin” ofX to be used in calculating neighborhoods. 1
indicates rows (out-neighbors), 2 indicates columns (in-neighbors), and c(1,2)
indicates rows and columns (total neighborhood).

STATS the vector or matrix of vertex statistics to be used.

FUN the function to be applied. In the case of operators, the function name must be
quoted.

... additional arguments toFUN.

mode "graph" if X is a simple graph, else"digraph" .

diag boolean; are the diagonals ofX meaningful?

distance the maximum geodesic distance at which neighborhoods are to be taken. 1 sig-
nifies first-order neighborhoods, 2 signifies second-order neighborhoods, etc.

thresh the threshold to be used in dichotomizingX.

simplify boolean; should we attempt to coerce output to a vector if possible?
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Details

For each vertex inX, gapply first identifies all members of the relevant neighborhood (as deter-
mined byMARGINanddistance ) and pulls the rows ofSTATSassociated with each.FUNis then
applied to this collection of values. This provides a very quick and easy way to answer questions
like:

• How many persons are in each ego’s 3rd-order neighborhood?

• What fraction of each ego’s alters are female?

• What is the mean income for each ego’s trading partners?

• etc.

With clever use ofFUNandSTATS, a wide range of functionality can be obtained.

Value

The result of the iterated application ofFUNto each vertex neighborhood’sSTATS.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

apply , sapply

Examples

#Generate a random graph
g<-rgraph(6)

#Calculate the degree of g using gapply
all(gapply(g,1,rep(1,6),sum)==degree(g,cmode="outdegree"))
all(gapply(g,2,rep(1,6),sum)==degree(g,cmode="degree"))
all(gapply(g,c(1,2),rep(1,6),sum)==degree(symmetrize(g),cmode="freeman")/2)

#Find first and second order neighborhood means on some variable
gapply(g,c(1,2),1:6,mean)
gapply(g,c(1,2),1:6,mean,distance=2)

gclust.boxstats Plot Statistics Associated with Graph Clusters

Description

gclust.boxstats creates side-by-side boxplots of graph statistics based on a hierarchical clus-
tering of networks (cut intok sets).

Usage

gclust.boxstats(h, k, meas, ...)
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Arguments

h an hclust object, presumably formed by clustering a set of structural dis-
tances.

k the number of groups to evaluate.

meas a vector of length equal to the number of graphs inh, containing a GLI to be
evaluated.

... additional parameters toboxplot .

Details

gclust.boxstats simply takes thehclust object inh, appliescutree to form k groups,
and then usesboxplot on the distribution ofmeas by group. This can be quite handy for assessing
graph clusters.

Value

None

Note

Actually, this function will work with anyhclust object and measure matrix; the data need not
originate with social networks. For this reason, the clever may also employ this function in con-
junction withsedist or equiv.clust to plot NLIs against clusters of positions within a graph.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Butts, C.T., and Carley, K.M. (2001). “Multivariate Methods for Interstructural Analysis.” CASOS
working paper, Carnegie Mellon University.

See Also

gclust.centralgraph , gdist.plotdiff , gdist.plotstats

Examples

#Create some random graphs
g<-rgraph(10,20,tprob=c(rbeta(10,15,2),rbeta(10,2,15)))

#Find the Hamming distances between them
g.h<-hdist(g)

#Cluster the graphs via their Hamming distances
g.c<-hclust(as.dist(g.h))

#Now display boxplots of density by cluster for a two cluster solution
gclust.boxstats(g.c,2,gden(g))
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gclust.centralgraph
Get Central Graphs Associated with Graph Clusters

Description

Calculates central graphs associated with particular graph clusters (as indicated by thek partition
of h).

Usage

gclust.centralgraph(h, k, dat, ...)

Arguments

h anhclust object, based on a graph stack indat .

k the number of groups to evaluate.

dat one or more graphs (on which the clustering was performed).

... additional arguments tocentralgraph .

Details

gclust.centralgraph usescutree to cut the hierarchical clustering inh into k groups.
centralgraph is then called on each cluster, and the results are returned as a graph stack. This
is a useful tool for interpreting clusters of (labeled) graphs, with the resulting central graphs being
subsequently analyzed using standard SNA methods.

Value

An array containing the stack of central graph adjacency matrices

Note

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Butts, C.T., and Carley, K.M. (2001). “Multivariate Methods for Interstructural Analysis.” CASOS
working paper, Carnegie Mellon University.

See Also

hclust , centralgraph , gclust.boxstats , gdist.plotdiff , gdist.plotstats
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Examples

#Create some random graphs
g<-rgraph(10,20,tprob=c(rbeta(10,15,2),rbeta(10,2,15)))

#Find the Hamming distances between them
g.h<-hdist(g)

#Cluster the graphs via their Hamming distances
g.c<-hclust(as.dist(g.h))

#Now find central graphs by cluster for a two cluster solution
g.cg<-gclust.centralgraph(g.c,2,g)

#Plot the central graphs
gplot(g.cg[1,,])
gplot(g.cg[2,,])

gcor Find the (Product-Moment) Correlation Between Two or More La-
beled Graphs

Description

gcor finds the product-moment correlation between the adjacency matrices of graphs indicated by
g1 andg2 in stackdat (or possiblydat2 ). Missing values are permitted.

Usage

gcor(dat, dat2=NULL, g1=NULL, g2=NULL, diag=FALSE, mode="digraph")

Arguments

dat one or more input graphs.

dat2 optionally, a second stack of graphs.

g1 the indices ofdat reflecting the first set of graphs to be compared; by default,
all members ofdat are included.

g2 the indices ordat (or dat2 , if applicable) reflecting the second set of graphs
to be compared; by default, all members ofdat are included.

diag boolean indicating whether or not the diagonal should be treated as valid data.
Set this true if and only if the data can contain loops.diag is FALSEby default.

mode string indicating the type of graph being evaluated. "Digraph" indicates that
edges should be interpreted as directed; "graph" indicates that edges are undi-
rected.mode is set to "digraph" by default.

Details

The (product moment) graph correlation between labeled graphs G and H is given by

cor(G, H) =
cov(G, H)√

cov(G, G)cov(H,H)
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where the graph covariance is defined as

cov(G, H) =
1(|V |
2

) ∑
{i,j}

(
AG

ij − µG

) (
AH

ij − µH

)
(with AG being the adjacency matrix of G). The graph correlation/covariance is at the center of
a number of graph comparison methods, including network variants of regression analysis, PCA,
CCA, and the like.

Note thatgcor computes only the correlation betweenuniquely labeledgraphs. For the more
general case,gscor is recommended.

Value

A graph correlation matrix

Note

Thegcor routine is really just a front-end to the standardcor method; the primary value-added
is the transparent vectorization of the input graphs (with intelligent handling of simple versus di-
rected graphs, diagonals, etc.). As noted, the correlation coefficient returned is a standard Pearson’s
product-moment coefficient, and output should be interpreted accordingly. Classical null hypothe-
sis testing procedures are not recommended for use with graph correlations; for nonparametric null
hypothesis testing regarding graph correlations, seecugtest and qaptest . For multivariate
correlations among graph sets, trynetcancor .

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Butts, C.T., and Carley, K.M. (2001). “Multivariate Methods for Interstructural Analysis.” CASOS
Working Paper, Carnegie Mellon University.

Krackhardt, D. (1987). “QAP Partialling as a Test of Spuriousness.”Social Networks, 9, 171-86

See Also

gscor , gcov , gscov

Examples

#Generate two random graphs each of low, medium, and high density
g<-rgraph(10,6,tprob=c(0.2,0.2,0.5,0.5,0.8,0.8))

#Examine the correlation matrix
gcor(g)



gcov 49

gcov Find the Covariance(s) Between Two or More Labeled Graphs

Description

gcov finds the covariances between the adjacency matrices of graphs indicated byg1 andg2 in
stackdat (or possiblydat2 ). Missing values are permitted.

Usage

gcov(dat, dat2=NULL, g1=NULL, g2=NULL, diag=FALSE, mode="digraph")

Arguments

dat one or more input graphs.

dat2 optionally, a second graph stack.

g1 the indices ofdat reflecting the first set of graphs to be compared; by default,
all members ofdat are included.

g2 the indices ordat (or dat2 , if applicable) reflecting the second set of graphs
to be compared; by default, all members ofdat are included.

diag boolean indicating whether or not the diagonal should be treated as valid data.
Set this true if and only if the data can contain loops.diag is FALSEby default.

mode string indicating the type of graph being evaluated. "digraph" indicates that
edges should be interpreted as directed; "graph" indicates that edges are undi-
rected.mode is set to "digraph" by default.

Details

The graph covariance between two labeled graphs is defined as

cov(G, H) =
1(|V |
2

) ∑
{i,j}

(
AG

ij − µG

) (
AH

ij − µH

)
(with AG being the adjacency matrix of G). The graph correlation/covariance is at the center of
a number of graph comparison methods, including network variants of regression analysis, PCA,
CCA, and the like.

Note thatgcov computes only the covariance betweenuniquely labeledgraphs. For the more
general case,gscov is recommended.

Value

A graph covariance matrix

Note

Thegcov routine is really just a front-end to the standardcov method; the primary value-added is
the transparent vectorization of the input graphs (with intelligent handling of simple versus directed
graphs, diagonals, etc.). Classical null hypothesis testing procedures are not recommended for use
with graph covariance; for nonparametric null hypothesis testing regarding graph covariance, see
cugtest andqaptest .



50 gden

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Butts, C.T., and Carley, K.M. (2001). “Multivariate Methods for Interstructural Analysis.” CASOS
Working Paper, Carnegie Mellon University.

See Also

gscov , gcor , gscor

Examples

#Generate two random graphs each of low, medium, and high density
g<-rgraph(10,6,tprob=c(0.2,0.2,0.5,0.5,0.8,0.8))

#Examine the covariance matrix
gcov(g)

gden Find the Density of a Graph

Description

gden computes the density of the graphs indicated byg in collectiondat , adjusting for the type
of graph in question.

Usage

gden(dat, g=NULL, diag=FALSE, mode="digraph")

Arguments

dat one or more input graphs.

g integer indicating the index of the graphs for which the density is to be calculated
(or a vector thereof). Ifg==NULL (the default), density is calculated for all
graphs indat .

diag boolean indicating whether or not the diagonal should be treated as valid data.
Set this true if and only if the data can contain loops.diag is FALSEby default.

mode string indicating the type of graph being evaluated. "digraph" indicates that
edges should be interpreted as directed; "graph" indicates that edges are undi-
rected.mode is set to "digraph" by default.

Details

The density of a graph is here taken to be the sum of tie values divided by the number of possible
ties (i.e., an unbiased estimator of the graph mean); hence, the result is interpretable for valued
graphs as the mean tie value. The number of possible ties is determined by the graph type (and by
diag ) in the usual fashion.
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Value

The graph density

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Wasserman, S., and Faust, K. (1994).Social Network Analysis: Methods and Applications.Cam-
bridge: Cambridge University Press.

Examples

#Draw three random graphs
dat<-rgraph(10,3)
#Find their densities
gden(dat)

gdist.plotdiff Plot Differences in Graph-level Statistics Against Inter-graph Dis-
tances

Description

For a given graph set,gdist.plotdiff plots the distances between graphs against their dis-
tances (or differences) on a set of graph-level measures.

Usage

gdist.plotdiff(d, meas, method="manhattan", jitter=TRUE,
xlab="Inter-Graph Distance", ylab="Measure Distance",
lm.line=FALSE, ...)

Arguments

d A matrix containing the inter-graph distances

meas An n x m matrix containing the graph-level indices; rows of this matrix must
correspond to graphs, and columns to indices

method The distance method used bydist to establish differences/distances between
graph GLI values. By default, absolute ("manhattan") differences are used.

jitter Should values be jittered prior to display?

xlab A label for the X axis

ylab A label for the Y axis

lm.line Include a least-squares line?

... Additional arguments toplot
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Details

gdist.plotdiff works by taking the distances between all graphs onmeas and then plot-
ting these distances againstd for all pairs of graphs (with, optionally, an added least-squares line
for reference value). This can be a useful exploratory tool for relating inter-graph distances (e.g.,
Hamming distances) to differences on other attributes.

Value

None

Note

This function is actually quite generic, and can be used with node-level – or even non-network –
data as well.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Butts, C.T., and Carley, K.M. (2001). “Multivariate Methods for Interstructural Analysis.” CASOS
working paper, Carnegie Mellon University.

See Also

gdist.plotstats , gclust.boxstats , gclust.centralgraph

Examples

#Generate some random graphs with varying densities
g<-rgraph(10,20,tprob=runif(20,0,1))

#Find the Hamming distances between graphs
g.h<-hdist(g)

#Plot the relationship between distance and differences in density
gdist.plotdiff(g.h,gden(g),lm.line=TRUE)

gdist.plotstats Plot Various Graph Statistics Over a Network MDS

Description

Plots a two-dimensional metric MDS ofd, with the corresponding values ofmeas indicated at each
point. Various options are available for controlling howmeas is to be displayed.

Usage

gdist.plotstats(d, meas, siz.lim=c(0, 0.15), rescale="quantile",
display.scale="radius", display.type="circleray", cex=0.5, pch=1,
labels=NULL, pos=1, labels.cex=1, legend=NULL, legend.xy=NULL,
legend.cex=1, ...)
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Arguments

d A matrix containing the inter-graph distances

meas An nxm matrix containing the graph-level measures; each row must correspond
to a graph, and each column must correspond to an index

siz.lim The minimum and maximum sizes (respectively) of the plotted symbols, given
as fractions of the total plotting range

rescale One of “quantile” for ordinal scaling, “affine” for max-min scaling, and “nor-
malize” for rescaling by maximum value; these determine the scaling rule to be
used in sizing the plotting symbols

display.scale
One of “area” or “radius”; this controls the attribute of the plotting symbol which
is rescaled by the value ofmeas

display.type One of “circle”, “ray”, “circleray”, “poly”, or “polyray”; this determines the
type of plotting symbol used (circles, rays, polygons, or come combination of
these)

cex Character expansion coefficient

pch Point types for the base plotting symbol (not the expanded symbols which are
used to indicatemeas values)

labels Point labels, if desired

pos Relative position of labels (seepar )

labels.cex Character expansion factor for labels

legend Add a legend?

legend.xy x,y coordinates for legend

legend.cex Character expansion factor for legend

... Additional arguments toplot

Details

gdist.plotstats works by performing an MDS (usingcmdscale ) on d, and then using the
values inmeas to determine the shape of the points at each MDS coordinate. Typically, these shapes
involve rays of varying color and length indicatingmeas magnitude, with circles and polygons of
the appropriate radius and/or error being options as well. Various options are available (described
above) to govern the details of the data display; some tinkering may be needed in order to produce
an aesthetically pleasing visualization.

The primary use ofgdist.plotstats is to explore broad relationships between graph proper-
ties and inter-graph distances. This routine complements others in thegdist andgclust family
of interstructural visualization tools.

Value

None

Note

This routine does not actually depend on the data’s being graphic in origin, and can be used with
any distance matrix/measure matrix combination.
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Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Butts, C.T., and Carley, K.M. (2001). “Multivariate Methods for Interstructural Analysis.” CASOS
working paper, Carnegie Mellon University.

See Also

gdist.plotdiff , gclust.boxstats , gclust.centralgraph

Examples

#Generate random graphs with varying density
g<-rgraph(10,20,tprob=runif(20,0,1))

#Get Hamming distances between graphs
g.h<-hdist(g)

#Plot the association of distance, density, and reciprocity
gdist.plotstats(g.h,cbind(gden(g),grecip(g)))

geodist Fund the Numbers and Lengths of Geodesics Among Nodes in a Graph

Description

geodist uses a BFS to find the number and lengths of geodesics between all nodes ofdat . Where
geodesics do not exist, the value ininf.replace is substituted for the distance in question.

Usage

geodist(dat, inf.replace=Inf)

Arguments

dat one or more input graphs.

inf.replace the value to use for geodesic distances between disconnected nodes; by default,
this is equalInf .

Details

This routine is used by a variety of other functions; many of these will allow the user to provide
manually precomputedgeodist output so as to prevent expensive recomputation. Note that the
choice of one greater than the maximum path length for disconnected vertex pairs is non-canonical
(albeit common), and some may prefer to simply treat these as missing values.geodist (without
loss of generality) treats all paths as directed, a fact which should be kept in mind when interpreting
geodist output.
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Value

A list containing:

counts A matrix containing the number of geodesics between each pair of vertices

sigma A matrix containing the geodesic distances between each pair of vertices

Note

Beforesna version 0.5,inf.replace defaulted toNROW(dat) .

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Brandes, U. (2000). “Faster Evaluation of Shortest-Path Based Centrality Indices.”Konstanzer
Schriften in Mathematik und Informatik, 120.

West, D.B. (1996).Introduction to Graph Theory.Upper Saddle River, N.J.: Prentice Hall.

See Also

component.dist , components

Examples

#Find geodesics on a random graph
gd<-geodist(rgraph(15))

#Examine the number of geodesics
gd$counts

#Examine the geodesic distances
gd$gdist

gliop Return a Binary Operation on GLI Values Computed on Two Graphs

Description

gliop is a wrapper which allows for an arbitrary binary operation on GLIs to be treated as a single
call. This is particularly useful for test routines such ascugtest andqaptest .

Usage

gliop(dat, GFUN, OP="-", g1=1, g2=2, ...)
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Arguments

dat a collection of graphs.

GFUN a function taking single graphs as input.

OP the operator to use on the output ofGFUN.

g1 the index of the first input graph.

g2 the index of the second input graph.

... Additional arguments toGFUN

Details

gliop operates by evaluatingGFUNon the graphs indexed byg1 andg2 and returning the result
of OPas applied to theGFUNoutput.

Value

OP(GFUN(dat[g1, , ],...),GFUN(dat[g2, , ],...))

Note

If the output ofGFUNis not sufficiently well-behaved, undefined behavior may occur. Common
sense is advised.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Anderson, B.S.; Butts, C.T.; and Carley, K.M. (1999). “The Interaction of Size and Density with
Graph-Level Indices.”Social Networks, 21(3), 239-267.

See Also

cugtest , qaptest

Examples

#Draw two random graphs
g<-rgraph(10,2,tprob=c(0.2,0.5))

#What is their difference in density?
gliop(g,gden,"-",1,2)
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gplot Two-Dimensional Visualization of Graphs

Description

gplot produces a two-dimensional plot of graphg in collectiondat . A variety of options are
available to control vertex placement, display details, color, etc.

Usage

gplot(dat, g = 1, gmode = "digraph", diag = FALSE,
label = c(1:dim(dat)[2]), coord = NULL, jitter = TRUE, thresh = 0,
usearrows = TRUE, mode = "fruchtermanreingold",
displayisolates = TRUE, interactive = FALSE, xlab = NULL,
ylab = NULL, xlim = NULL, ylim = NULL, pad = 0.2, label.pad = 0.5,
displaylabels = FALSE, boxed.labels = TRUE, label.pos = 0,
label.bg = "white", vertex.sides = 8, vertex.rot = 0,
arrowhead.cex = 1, label.cex = 1, loop.cex = 1, vertex.cex = 1,
edge.col = 1, label.col = 1, vertex.col = 2, label.border = 1,
vertex.border = 1, edge.lty = 1, label.lty = NULL, vertex.lty = 1,
edge.lwd = 0, label.lwd = par("lwd"), edge.len = 0.5,
edge.curve = 0.1, edge.steps = 50, loop.steps = 20,
object.scale = 0.01, uselen = FALSE, usecurve = FALSE,
suppress.axes = TRUE, vertices.last = TRUE, new = TRUE,
layout.par = NULL, ...)

Arguments

dat a graph or set thereof. This data may be valued.

g integer indicating the index of the graph which is to be plotted. By default,
g==1 .

gmode String indicating the type of graph being evaluated."digraph" indicates that
edges should be interpreted as directed;"graph" indicates that edges are undi-
rected;"twomode" indicates that data should be interpreted as bimodal (i.e.,
rows and columns are distinct vertex sets).gmode is set to"digraph" by
default.

diag boolean indicating whether or not the diagonal should be treated as valid data.
Set this true if and only if the data can contain loops.diag is FALSEby default.

label a vector of vertex labels, if desired; defaults to the vertex index number.

coord user-specified vertex coordinates, in an NCOL(dat)x2 matrix. Where this is
specified, it will override themode setting.

jitter boolean; should the output be jittered?

thresh real number indicating the lower threshold for tie values. Only ties of value
>thresh are displayed. By default,thresh =0.

usearrows boolean; should arrows (rather than line segments) be used to indicate edges?

mode the vertex placement algorithm; this must correspond to agplot.layout
function.
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displayisolates
boolean; should isolates be displayed?

interactive boolean; should interactive adjustment of vertex placement be attempted?

xlab x axis label.

ylab y axis label.

xlim the x limits (min, max) of the plot.

ylim the y limits of the plot.

pad amount to pad the plotting range; useful if labels are being clipped.

label.pad amount to pad label boxes (ifboxed.labels==TRUE ), in character size units.
displaylabels

boolean; should vertex labels be displayed?

boxed.labels boolean; place vertex labels within boxes?

label.pos position at which labels should be placed, relative to vertices.0 results in labels
which are placed away from the center of the plotting region;1, 2, 3, and4
result in labels being placed below, to the left of, above, and to the right of
vertices (respectively); andlabel.pos>=5 results in labels which are plotted
with no offset (i.e., at the vertex positions).

label.bg background color for label boxes (ifboxed.labels==TRUE ); may be a vec-
tor, if boxes are to be of different colors.

vertex.sides number of polygon sides for vertices; may be given as a vector, if vertices are to
be of different types.

vertex.rot angle of rotation for vertices (in degrees); may be given as a vector, if vertices
are to be rotated differently.

arrowhead.cex
expansion factor for edge arrowheads.

label.cex character expansion factor for label text.

loop.cex expansion factor for loops; may be given as a vector, if loops are to be of differ-
ent sizes.

vertex.cex expansion factor for vertices; may be given as a vector, if vertices are to be of
different sizes.

edge.col color for edges; may be given as a vector or adjacency matrix, if edges are to be
of different colors.

label.col color for vertex labels; may be given as a vector, if labels are to be of different
colors.

vertex.col color for vertices; may be given as a vector, if vertices are to be of different
colors.

label.border label border colors (ifboxed.labels==TRUE ); may be given as a vector, if
label boxes are to have different colors.

vertex.border
border color for vertices; may be given as a vector, if vertex borders are to be of
different colors.

edge.lty line type for edge borders; may be given as a vector or adjacency matrix, if edge
borders are to have different line types.

label.lty line type for label boxes (ifboxed.labels==TRUE ); may be given as a vec-
tor, if label boxes are to have different line types.
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vertex.lty line type for vertex borders; may be given as a vector or adjacency matrix, if
vertex borders are to have different line types.

edge.lwd line width scale for edges; if set greater than 0, edge widths are scaled by
edge.lwd*dat . May be given as a vector or adjacency matrix, if edges are to
have different line widths.

label.lwd line width for label boxes (ifboxed.labels==TRUE ); may be given as a
vector, if label boxes are to have different line widths.

edge.len if uselen==TRUE , curved edge lengths are scaled byedge.len .

edge.curve if usecurve==TRUE , the extent of edge curvature is controlled byedge.curv .
May be given as a fixed value, vector, or adjacency matrix, if edges are to have
different levels of curvature.

edge.steps for curved edges (excluding loops), the number of line segments to use for the
curve approximation.

loop.steps for loops, the number of line segments to use for the curve approximation.

object.scale base length for plotting objects, as a fraction of the linear scale of the plotting
region. Defaults to 0.01.

uselen boolean; should we useedge.len to rescale edge lengths?

usecurve boolean; should we useedge.curve ?
suppress.axes

boolean; suppress plotting of axes?

vertices.last
boolean; plot vertices after plotting edges?

new boolean; create a new plot? Ifnew==FALSE, vertices and edges will be added
to the existing plot.

layout.par parameters to thegplot.layout function specified inmode.

... additional arguments toplot .

Details

gplot is the standard network visualization tool within thesna library. By means of clever
selection of display parameters, a fair amount of display flexibility can be obtained. Graph layout
– if not specified directly usingcoord – is determined via one of the various available algorithms.
These should be specified via themode argument; seegplot.layout for a full list. User-
supplied layout functions are also possible – see the aforementioned man page for details.

Note that wheregmode=="twomode" , the supplied two-mode matrix is converted to bipartite
adjacency form prior to computing coordinates. Ifinteractive==TRUE , then the user may
modify the initial graph layout by selecting an individual vertex and then clicking on the location to
which this vertex is to be moved; this process may be repeated until the layout is satisfactory.

Value

A two-column matrix containing the vertex positions as x,y coordinates.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉
Alex Montgomery〈ahm@stanford.edu〉
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References

Wasserman, S. and Faust, K. (1994)Social Network Analysis: Methods and Applications.Cam-
bridge: Cambridge University Press.

See Also

plot , gplot.layout

Examples

gplot(rgraph(5)) #Plot a random graph
gplot(rgraph(5),usecurv=TRUE) #This time, use curved edges
gplot(rgraph(5),mode="mds") #Try an alternative layout scheme

#A colorful demonstration...
gplot(rgraph(5,diag=TRUE),diag=TRUE,vertex.cex=1:5,vertex.sides=3:8,

vertex.col=1:5,vertex.border=2:6,vertex.rot=(0:4)*72,
displaylabels=TRUE,label.bg="gray90")

gplot.arrow Add Arrows or Segments to a Plot

Description

gplot.arrow draws a segment or arrow between two pairs of points; unlikearrows orsegments ,
the new plot element is drawn as a polygon.

Usage

gplot.arrow(x0, y0, x1, y1, length = 0.1, angle = 20, width = 0.01,
col = 1, border = 1, lty = 1, offset.head = 0, offset.tail = 0,
arrowhead = TRUE, curve = 0, edge.steps = 50, ...)

Arguments

x0 A vector of x coordinates for points of origin

y0 A vector of y coordinates for points of origin

x1 A vector of x coordinates for destination points

y1 A vector of y coordinates for destination points

length Arrowhead length, in current plotting units

angle Arrowhead angle (in degrees)

width Width for arrow body, in current plotting units (can be a vector)

col Arrow body color (can be a vector)

border Arrow border color (can be a vector)

lty Arrow border line type (can be a vector)

offset.head Offset for destination point (can be a vector)

offset.tail Offset for origin point (can be a vector)
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arrowhead Boolean; should arrowheads be used? (Can be a vector))

curve Degree of edge curvature (if any), in current plotting units (can be a vector)

edge.steps For curved edges, the number of steps to use in approximating the curve (can be
a vector)

... Additional arguments topolygon

Details

gplot.arrow provides a useful extension ofsegments and arrows when fine control is
needed over the resulting display. (The results also look better.) Note that edge curvature is
quadratic, withcurve providing the maximum horizontal deviation of the edge (left-handed).
Head/tail offsets are used to adjust the end/start points of an edge, relative to the baseline coor-
dinates; these are useful for functions likegplot , which need to draw edges incident to vertices of
varying radii.

Value

None.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

gplot , gplot.loop , polygon

Examples

#Plot two points
plot(1:2,1:2)

#Add an edge
gplot.arrow(1,1,2,2,width=0.01,col="red",border="black")

gplot.layout Vertex Layout Functions for gplot

Description

Various functions which generate vertex layouts for thegplot visualization routine.

Usage

gplot.layout.adj(d, layout.par)
gplot.layout.circle(d, layout.par)
gplot.layout.circrand(d, layout.par)
gplot.layout.eigen(d, layout.par)
gplot.layout.fruchtermanreingold(d, layout.par)
gplot.layout.geodist(d, layout.par)
gplot.layout.hall(d, layout.par)
gplot.layout.kamadakawai(d, layout.par)
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gplot.layout.mds(d, layout.par)
gplot.layout.princoord(d, layout.par)
gplot.layout.random(d, layout.par)
gplot.layout.rmds(d, layout.par)
gplot.layout.segeo(d, layout.par)
gplot.layout.seham(d, layout.par)
gplot.layout.spring(d, layout.par)
gplot.layout.springrepulse(d, layout.par)
gplot.layout.target(d, layout.par)

Arguments

d an adjacency matrix, as passed bygplot .

layout.par a list of parameters.

Details

Vertex layouts for network visualization pose a difficult problem – there is no single, “good” layout
algorithm, and many different approaches may be valuable under different circumstances. With this
in mind,gplot allows for the use of arbitrary vertex layout algorithms via thegplot.layout.*
family of routines. When called,gplot searches for agplot.layout function whose third
name matches itsmode argument (seegplot help for more information); this function is then
used to generate the layout for the resulting plot. In addition to the routines documented here, users
may add their own layout functions as needed. The requirements for agplot.layout function
are as follows:

1. the first argument,d, must be the (dichotomous) graph adjacency matrix;

2. the second argument,layout.par , must be a list of parameters (orNULL, if no parameters
are specified); and

3. the return value must be a real matrix of dimensionc(2,NROW(d)) , whose rows contain
the vertex coordinates.

Other than this, anything goes. (In particular, note thatlayout.par could be used to pass addi-
tional matrices, if needed.)

Thegraph.layout functions currently supplied by default are as follows:

circle This function places vertices uniformly in a circle; it takes no arguments.

eigen This function places vertices based on the eigenstructure of the adjacency matrix. It takes
the following arguments:

layout.par$var This argument controls the matrix to be used for the eigenanalysis."symupper" ,
"symlower" , "symstrong" , "symweak" invokesymmetrize on d with the re-
spective symmetrizing rule."user" indicates a user-supplied matrix (see below), while
"raw" indicates thatd should be used as-is. (Defaults to"raw" .)

layout.par$evsel If "first" , the first two eigenvectors are used; if"size" , the two eigen-
vectors whose eigenvalues have the largest magnitude are used instead. Note that only
the real portion of the associated eigenvectors is used. (Defaults to"first" .)

layout.par$mat If layout.par$var=="user" , this matrix is used for the eigenanalysis.
(No default.)

fruchtermanreingold This function generates a layout using a variant of Fruchterman and Rein-
gold’s force-directed placement algorithm. It takes the following arguments:

layout.par$niter This argument controls the number of iterations to be employed. (Defaults
to 500.)
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layout.par$max.delta Sets the maximum change in position for any given iteration. (De-
faults toNROW(d).)

layout.par$area Sets the "area" parameter for the F-R algorithm. (Defaults toNROW(d)^2.)
layout.par$cool.exp Sets the cooling exponent for the annealer. (Defaults to 3.)
layout.par$repulse.rad Determines the radius at which vertex-vertex repulsion cancels out

attraction of adjacent vertices. (Defaults toarea*NROW(d) .)
layout.par$seed.coordA two-column matrix of initial vertex coordinates. (Defaults to a

random circular layout.)

hall This function places vertices based on the last two eigenvectors of the Laplacian of the input
matrix (Hall’s algorithm). It takes no arguments.

kamadakawai This function generates a vertex layout using a version of the Kamada-Kawai force-
directed placement algorithm. It takes the following arguments:

layout.par$niter This argument controls the number of iterations to be employed. (Defaults
to 1000.)

layout.par$sigma Sets the base standard deviation of position change proposals. (Defaults
to NROW(d)/4 .)

layout.par$initemp Sets the initial "temperature" for the annealing algorithm. (Defaults to
10.)

layout.par$cool.exp Sets the cooling exponent for the annealer. (Defaults to 0.99.)
layout.par$kkconst Sets the Kamada-Kawai vertex attraction constant. (Defaults toNROW(d)^2.)
layout.par$elen Provides the matrix of interpoint distances to be approximated. (Defaults to

the geodesic distances ofd after symmetrizing, capped atsqrt(NROW(d)) .)
layout.par$seed.coordA two-column matrix of initial vertex coordinates. (Defaults to a

gaussian layout.)

mds This function places vertices based on a metric multidimensional scaling of a specified dis-
tance matrix. It takes the following arguments:

layout.par$var This argument controls the raw variable matrix to be used for the subse-
quent distance calculation and scaling."rowcol" , "row" , and"col" indicate that the
rows and columns (concatenated), rows, or columns (respectively) ofd should be used.
"rcsum" and"rcdiff" result in the sum or difference ofd and its transpose being
employed. "invadj" indicates thatmax{d}-d should be used, while"geodist"
usesgeodist to generate a matrix of geodesic distances fromd. Alternately, an arbi-
trary matrix can be provided using"user" . (Defaults to"rowcol" .)

layout.par$dist The distance function to be calculated on the rows of the variable matrix.
This must be one of themethod parameters to\list{dist} ("euclidean" , "maximum" ,
"manhattan" , or "canberra" ), or else"none" . In the latter case, no distance func-
tion is calculated, and the matrix in question must be square (with dimensiondim(d) )
for the routine to work properly. (Defaults to"euclidean" .)

layout.par$exp The power to which distances should be raised prior to scaling. (Defaults to
2.)

layout.par$vm If layout.par$var=="user" , this matrix is used for the distance cal-
culation. (No default.)

Note: the following layout functions are based onmds:

adj scaling of the raw adjacency matrix, treated as similarities (using"invadj" ).
geodist scaling of the matrix of geodesic distances.
rmds euclidean scaling of the rows ofd.
segeoscaling of the squared euclidean distances between row-wise geodesic distances (i.e.,

approximate structural equivalence).
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seham scaling of the Hamming distance between rows/columns ofd (i.e., another approxi-
mate structural equivalence scaling).

princoord This function places vertices based on the eigenstructure of a given correlation/covariance
matrix. It takes the following arguments:

layout.par$var The matrix of variables to be used for the correlation/covariance calculation.
"rowcol" , "col" , and"row" indicate that the rows/cols, columns, or rows (respec-
tively) of d should be employed."rcsum" "rcdiff" result in the sum or difference of
d andt(d) being used."user" allows for an arbitrary variable matrix to be supplied.
(Defaults to"rowcol" .)

layout.par$cor Should the correlation matrix (rather than the covariance matrix) be used?
(Defaults toTRUE.)

layout.par$vm If layout.par$var=="user" , this matrix is used for the correlation/covariance
calculation. (No default.)

random This function places vertices randomly. It takes the following argument:

layout.par$dist The distribution to be used for vertex placement. Currently, the options are
"unif" (for uniform distribution on the square),"uniang" (for a “gaussian donut”
configuration), and"normal" (for a straight Gaussian distribution). (Defaults to"unif" .)

Note: circrand , which is a frontend to the"uniang" option, is based on this function.

spring This function places vertices using a spring embedder. It takes the following arguments:

layout.par$mass The vertex mass (in “quasi-kilograms”). (Defaults to0.1 .)

layout.par$equil The equilibrium spring extension (in “quasi-meters”). (Defaults to1.)

layout.par$k The spring coefficient (in “quasi-Newtons per quasi-meter”). (Defaults to0.001 .)

layout.par$repeqdis The point at which repulsion (if employed) balances out the spring ex-
tension force (in “quasi-meters”). (Defaults to0.1 .)

layout.par$kfr The base coefficient of kinetic friction (in “quasi-Newton quasi-kilograms”).
(Defaults to0.01 .)

layout.par$repulse Should repulsion be used? (Defaults toFALSE.)

Note: springrepulse is a frontend tospring , with repulsion turned on.

target This function produces a "target diagram" or "bullseye" layout, using a Brandes et al.’s force-
directed placement algorithm. (See alsogplot.target .) It takes the following arguments:

layout.par$niter This argument controls the number of iterations to be employed. (Defaults
to 1000.)

layout.par$radii This argument should be a vector of lengthNROW(d) containing vertex
radii. Ideally, these should lie in the [0,1] interval (and odd behavior may otherwise
result). (Defaults to the affine-transformed Freemandegree centrality scores ofd.)

layout.par$minlen Sets the minimum edge length, below which edge lengths are to be ad-
justed upwards. (Defaults to 0.05.)

layout.par$area Sets the initial "temperature" for the annealing algorithm. (Defaults to 10.)

layout.par$cool.exp Sets the cooling exponent for the annealer. (Defaults to 0.99.)

layout.par$maxdelta Sets the maximum angular distance for vertex moves. (Defaults to
pi .)

layout.par$periph.outside Boolean; should "peripheral" vertices (in the Brandes et al. sense)
be placed together outside the main target area? (Defaults toFALSE.)

layout.par$periph.outside.offset Radius at which to place "peripheral" vertices ifperiph.outside==TRUE .
(Defaults to 1.2.)

layout.par$disconst Multiplier for the Kamada-Kawai-style distance potential. (Defaults to
1.)



gplot.loop 65

layout.par$crossconstMultiplier for the edge crossing potential. (Defaults to 1.)

layout.par$repconst Multiplier for the vertex-edge repulsion potential. (Defaults to 1.)

layout.par$minpdis Sets the "minimum distance" parameter for vertex repulsion. (Defaults
to 0.05.)

Value

A matrix whose rows contain the x,y coordinates of the vertices ofd.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Brandes, U.; Kenis, P.; and Wagner, D. (2003). “Communicating Centrality in Policy Network
Drawings.” IEEE Transactions on Visualization and Computer Graphics,9(2):241-253.

Fruchterman, T.M.J. and Reingold, E.M. (1991). “Graph Drawing by Force-directed Placement.”
Software - Practice and Experience,21(11):1129-1164.

Kamada, T. and Kawai, S. (1989). “An Algorithm for Drawing General Undirected Graphs.”Infor-
mation Processing Letters,31(1):7-15.

See Also

gplot , gplot.target , gplot3d.layout , cmdscale , eigen

gplot.loop Add Loops to a Plot

Description

gplot.loop draws a "loop" at a specified location; this is used to designate self-ties ingplot .

Usage

gplot.loop(x0, y0, length = 0.1, angle = 10, width = 0.01, col = 1,
border = 1, lty = 1, offset = 0, edge.steps = 10, radius = 1,
arrowhead = TRUE, xctr=0, yctr=0, ...)

Arguments

x0 a vector of x coordinates for points of origin.

y0 a vector of y coordinates for points of origin.

length arrowhead length, in current plotting units.

angle arrowhead angle (in degrees).

width width for loop body, in current plotting units (can be a vector).

col loop body color (can be a vector).

border loop border color (can be a vector).

lty loop border line type (can be a vector).
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offset offset for origin point (can be a vector).

edge.steps number of steps to use in approximating curves.

radius loop radius (can be a vector).

arrowhead boolean; should arrowheads be used? (Can be a vector.)

xctr x coordinate for the central location away from which loops should be oriented.

yctr y coordinate for the central location away from which loops should be oriented.

... additional arguments topolygon .

Details

gplot.loop is the companion togplot.arrow ; like the latter, plot elements produced by
gplot.loop are drawn usingpolygon , and as such are scaled based on the current plotting
device. By default, loops are drawn so as to encompass a circular region of radiusradius , whose
center isoffset units fromx0,y0 and at maximum distance fromxctr,yctr . This is useful
for functions likegplot , which need to draw loops incident to vertices of varying radii.

Value

None.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

gplot.arrow , gplot , polygon

Examples

#Plot a few polygons with loops
plot(0,0,type="n",xlim=c(-2,2),ylim=c(-2,2),asp=1)
gplot.loop(c(0,0),c(1,-1),col=c(3,2),width=0.05,length=0.4,

offset=sqrt(2)/4,angle=20,radius=0.5,edge.steps=50,arrowhead=TRUE)
polygon(c(0.25,-0.25,-0.25,0.25,NA,0.25,-0.25,-0.25,0.25),

c(1.25,1.25,0.75,0.75,NA,-1.25,-1.25,-0.75,-0.75),col=c(2,3))

gplot.target Display a Graph in Target Diagram Form

Description

Displays an input graph (and associated vector) as a "target diagram," with vertices restricted to lie
at fixed radii from the origin. Such displays are useful ways of representing vertex characteristics
and/or local structural properties for graphs of small to medium size.
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Usage

gplot.target(dat, x, circ.rad = (1:10)/10, circ.col = "blue",
circ.lwd = 1, circ.lty = 3, circ.lab = TRUE, circ.lab.cex = 0.75,
circ.lab.theta = pi, circ.lab.col = 1, circ.lab.digits = 1,
circ.lab.offset = 0.025, periph.outside = FALSE,
periph.outside.offset = 1.2, ...)

Arguments

dat an input graph.

x a vector of vertex properties to be plotted (must match the dimensions ofdat ).

circ.rad radii at which to draw reference circles.

circ.col reference circle color.

circ.lwd reference circle line width.

circ.lty reference circle line type.

circ.lab boolean; should circle labels be displayed?

circ.lab.cex expansion factor for circle labels.
circ.lab.theta

angle at which to draw circle labels.

circ.lab.col color for circle labels.
circ.lab.digits

digits to display for circle labels.
circ.lab.offset

offset for circle labels.
periph.outside

boolean; should "peripheral" vertices be drawn together beyond the normal ver-
tex radius?

periph.outside.offset
radius at which "peripheral" vertices should be drawn ifperiph.outside==TRUE .

... additional arguments togplot .

Details

gplot.target is a front-end togplot which implements the target diagram layout of Brandes
et al. (2003). This layout seeks to optimize various aesthetic criteria, given the constraint that all
vertices lie at fixed radii from the origin (set byx ). One important feature of this algorithm is that
vertices which belong to mutual dyads (described by Brandes et al. as “core” vertices) are treated
differently from vertices which do not (“peripheral” vertices). Layout is optimized for core vertices
prior to placing peripheral vertices; thus, the result may be misleading if mutuality is not a salient
characteristic of the data.

The layout forgplot.target is handled bygplot.layout.target ; additional parameters
are specied on the associated manual page. Standard arguments may be passed togplot , as well.

Value

A two-column matrix of vertex positions (generated bygplot.layout.target )

Author(s)

Carter T. Butts〈buttsc@uci.edu〉
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References

Brandes, U.; Kenis, P.; and Wagner, D. (2003). “Communicating Centrality in Policy Network
Drawings.” IEEE Transactions on Visualization and Computer Graphics,9(2):241-253.

See Also

gplot.layout.target , gplot

Examples

#Generate a random graph
g<-rgraph(15)

#Produce a target diagram, centering by betweenness
gplot.target(g,betweenness(g))

gplot.vertex Add Vertices to a Plot

Description

gplot.vertex adds one or more vertices (drawn usingpolygon ) to a plot.

Usage

gplot.vertex(x, y, radius = 1, sides = 4, border = 1, col = 2,
lty = NULL, rot = 0, ...)

Arguments

x a vector of x coordinates.

y a vector of y coordinates.

radius a vector of vertex radii.

sides a vector containing the number of sides to draw for each vertex.

border a vector of vertex border colors.

col a vector of vertex interior colors.

lty a vector of vertex border line types.

rot a vector of vertex rotation angles (in degrees).

... Additional arguments topolygon

Details

gplot.vertex draws regular polygons of specified radius and number of sides, at the given
coordinates. This is useful for routines such asgplot , which use such shapes to depict vertices.

Value

None
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Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

gplot , polygon

Examples

#Open a plot window, and place some vertices
plot(0,0,type="n",xlim=c(-1.5,1.5),ylim=c(-1.5,1.5),asp=1)
gplot.vertex(cos((1:10)/10*2*pi),sin((1:10)/10*2*pi),col=1:10,

sides=3:12,radius=0.1)

gplot3d Three-Dimensional Visualization of Graphs

Description

gplot3d produces a three-dimensional plot of graphg in setdat . A variety of options are avail-
able to control vertex placement, display details, color, etc.

Usage

gplot3d(dat, g = 1, gmode = "digraph", diag = FALSE,
label = c(1:dim(dat)[2]), coord = NULL, jitter = TRUE, thresh = 0,
mode = "fruchtermanreingold", displayisolates = TRUE, displaylabels = FALSE,
xlab = NULL, ylab = NULL, zlab = NULL, vertex.radius = NULL,
absolute.radius = FALSE, label.col = "gray50", edge.col = "black",
vertex.col = "red", edge.alpha = 1, vertex.alpha = 1,
edge.lwd = NULL, suppress.axes = TRUE, new = TRUE,
bg.col = "white", layout.par = NULL)

Arguments

dat a graph or set thereof. This data may be valued.

g integer indicating the index of the graph (fromdat ) which is to be displayed.

gmode string indicating the type of graph being evaluated."digraph" indicates that
edges should be interpreted as directed;"graph" indicates that edges are undi-
rected;"twomode" indicates that data should be interpreted as two-mode (i.e.,
rows and columns are distinct vertex sets).

diag boolean indicating whether or not the diagonal should be treated as valid data.
Set this true if and only if the data can contain loops.

label a vector of vertex labels; setting this to a zero-length string (e.g.,"" ) omits

coord user-specified vertex coordinates, in anNCOL(dat) x3 matrix. Where this is
specified, it will override themode setting.

jitter boolean; should vertex positions be jittered?



70 gplot3d

thresh real number indicating the lower threshold for tie values. Only ties of value
>thresh are displayed.

mode the vertex placement algorithm; this must correspond to agplot3d.layout
function.

displayisolates
boolean; should isolates be displayed?

displaylabels
boolean; should vertex labels be displayed?

xlab X axis label.

ylab Y axis label.

zlab Z axis label.
vertex.radius

vertex radius, relative to the baseline (which is set based on layout features);
may be given as a vector, if radii vary across vertices.

absolute.radius
vertex radius, specified in absolute terms; this may be given as a vector.

label.col color for vertex labels; may be given as a vector, if labels are to be of different
colors.

edge.col color for edges; may be given as a vector or adjacency matrix, if edges are to be
of different colors.

vertex.col color for vertices; may be given as a vector, if vertices are to be of different
colors.

edge.alpha alpha (transparency) values for edges; may be given as a vector or adjacency
matrix, if edge transparency is to vary.

vertex.alpha alpha (transparency) values for vertices; may be given as a vector, if vertex
transparency is to vary.

edge.lwd line width scale for edges; if set greater than 0, edge widths are rescaled by
edge.lwd*dat . May be given as a vector or adjacency matrix, if edges are to
have different line widths.

suppress.axes
boolean; suppress plotting of axes?

new boolean; create a new plot? Ifnew==FALSE, the RGL device will not be
cleared prior to adding vertices and edges.

bg.col background color for display.

layout.par list of parameters to thegplot.layout function specified inmode.

Details

gplot3d is the three-dimensional companion togplot . As with the latter, clever manipulation
of parameters can allow for a great deal of flexibility in the resulting display. (Displays produced by
gplot3d are also interactive, to the extent supported byrgl .) If vertex positions are not specified
directly usingcoord , vertex layout is determined via one of the various available algorithms. These
should be specified via themode argument; seegplot3d.layout for a full list. User-supplied
layout functions are also possible - see the aforementioned man page for details.

Note that wheregmode=="twomode" , the supplied two-mode matrix is converted to bipartite
adjacency form prior to computing coordinates. It may be desirable to use parameters such as
vertex.col to differentiate row and column vertices.
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Value

A three-column matrix containing vertex coordinates

Requires

rgl

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Wasserman, S. and Faust, K. (1994)Social Network Analysis: Methods and Applications.Cam-
bridge: Cambridge University Press.

See Also

gplot , gplot3d.layout , rgl

Examples

## Not run:
#A three-dimensional grid...
gplot3d(rgws(1,5,3,1,0))

#...rewired...
gplot3d(rgws(1,5,3,1,0.05))

#...some more!
gplot3d(rgws(1,5,3,1,0.2))
## End(Not run)

gplot3d.arrow Add Arrows a Three-Dimensional Plot

Description

gplot3d.arrow draws an arrow between two pairs of points..

Usage

gplot3d.arrow(a, b, radius, color = "white", alpha = 1)

Arguments

a a vector or three-column matrix containing origin X,Y,Z coordinates.

b a vector or three-column matrix containing origin X,Y,Z coordinates.

radius the arrow radius, in current plotting units. May be a vector, if multiple arrows
are to be drawn.

color the arrow color. May be a vector, if multiple arrows are being drawn.

alpha alpha (transparency) value(s) for arrows. (May be a vector.)
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Details

gplot3d.arrow draws one or more three-dimensional "arrows" from the points given ina to
those given inb. Note that the "arrows" are really cones, narrowing in the direction of the destina-
tion point.

Value

None.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

gplot3d , gplot3d.loop , rgl.primitive

gplot3d.layout Vertex Layout Functions for gplot3d

Description

Various functions which generate vertex layouts for thegplot3d visualization routine.

Usage

gplot3d.layout.adj(d, layout.par)
gplot3d.layout.eigen(d, layout.par)
gplot3d.layout.fruchtermanreingold(d, layout.par)
gplot3d.layout.geodist(d, layout.par)
gplot3d.layout.hall(d, layout.par)
gplot3d.layout.kamadakawai(d, layout.par)
gplot3d.layout.mds(d, layout.par)
gplot3d.layout.princoord(d, layout.par)
gplot3d.layout.random(d, layout.par)
gplot3d.layout.rmds(d, layout.par)
gplot3d.layout.segeo(d, layout.par)
gplot3d.layout.seham(d, layout.par)

Arguments

d an adjacency matrix, as passed bygplot3d .

layout.par a list of parameters.

Details

Like gplot , gplot3d allows for the use of arbitrary vertex layout algorithms via thegplot3d.layout.*
family of routines. When called,gplot3d searches for agplot3d.layout function whose
third name matches itsmode argument (seegplot3d help for more information); this function is
then used to generate the layout for the resulting plot. In addition to the routines documented here,
users may add their own layout functions as needed. The requirements for agplot3d.layout
function are as follows:



gplot3d.layout 73

1. the first argument,d, must be the (dichotomous) graph adjacency matrix;

2. the second argument,layout.par , must be a list of parameters (orNULL, if no parameters
are specified); and

3. the return value must be a real matrix of dimensionc(3,NROW(d)) , whose rows contain
the vertex coordinates.

Other than this, anything goes. (In particular, note thatlayout.par could be used to pass addi-
tional matrices, if needed.)

Thegplot3d.layout functions currently supplied by default are as follows:

eigen This function places vertices based on the eigenstructure of the adjacency matrix. It takes
the following arguments:

layout.par$var This argument controls the matrix to be used for the eigenanalysis."symupper" ,
"symlower" , "symstrong" , "symweak" invokesymmetrize on d with the re-
spective symmetrizing rule."user" indicates a user-supplied matrix (see below), while
"raw" indicates thatd should be used as-is. (Defaults to"raw" .)

layout.par$evsel If "first" , the first three eigenvectors are used; if"size" , the three
eigenvectors whose eigenvalues have the largest magnitude are used instead. Note that
only the real portion of the associated eigenvectors is used. (Defaults to"first" .)

layout.par$mat If layout.par$var=="user" , this matrix is used for the eigenanalysis.
(No default.)

fruchtermanreingold This function generates a layout using a variant of Fruchterman and Rein-
gold’s force-directed placement algorithm. It takes the following arguments:

layout.par$niter This argument controls the number of iterations to be employed. (Defaults
to 300.)

layout.par$max.delta Sets the maximum change in position for any given iteration. (De-
faults toNROW(d).)

layout.par$volume Sets the "volume" parameter for the F-R algorithm. (Defaults toNROW(d)^3.)
layout.par$cool.exp Sets the cooling exponent for the annealer. (Defaults to 3.)
layout.par$repulse.rad Determines the radius at which vertex-vertex repulsion cancels out

attraction of adjacent vertices. (Defaults tovolume*NROW(d) .)
layout.par$seed.coordA three-column matrix of initial vertex coordinates. (Defaults to a

random spherical layout.)

hall This function places vertices based on the last three eigenvectors of the Laplacian of the input
matrix (Hall’s algorithm). It takes no arguments.

kamadakawai This function generates a vertex layout using a version of the Kamada-Kawai force-
directed placement algorithm. It takes the following arguments:

layout.par$niter This argument controls the number of iterations to be employed. (Defaults
to 1000.)

layout.par$sigma Sets the base standard deviation of position change proposals. (Defaults
to NROW(d)/4 .)

layout.par$initemp Sets the initial "temperature" for the annealing algorithm. (Defaults to
10.)

layout.par$cool.exp Sets the cooling exponent for the annealer. (Defaults to 0.99.)
layout.par$kkconst Sets the Kamada-Kawai vertex attraction constant. (Defaults toNROW(d)^3.)
layout.par$elen Provides the matrix of interpoint distances to be approximated. (Defaults to

the geodesic distances ofd after symmetrizing, capped atsqrt(NROW(d)) .)
layout.par$seed.coordA three-column matrix of initial vertex coordinates. (Defaults to a

gaussian layout.)
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mds This function places vertices based on a metric multidimensional scaling of a specified dis-
tance matrix. It takes the following arguments:

layout.par$var This argument controls the raw variable matrix to be used for the subse-
quent distance calculation and scaling."rowcol" , "row" , and"col" indicate that the
rows and columns (concatenated), rows, or columns (respectively) ofd should be used.
"rcsum" and"rcdiff" result in the sum or difference ofd and its transpose being
employed. "invadj" indicates thatmax{d}-d should be used, while"geodist"
usesgeodist to generate a matrix of geodesic distances fromd. Alternately, an arbi-
trary matrix can be provided using"user" . (Defaults to"rowcol" .)

layout.par$dist The distance function to be calculated on the rows of the variable matrix.
This must be one of themethod parameters to\list{dist} ("euclidean" , "maximum" ,
"manhattan" , or "canberra" ), or else"none" . In the latter case, no distance func-
tion is calculated, and the matrix in question must be square (with dimensiondim(d) )
for the routine to work properly. (Defaults to"euclidean" .)

layout.par$exp The power to which distances should be raised prior to scaling. (Defaults to
2.)

layout.par$vm If layout.par$var=="user" , this matrix is used for the distance cal-
culation. (No default.)

Note: the following layout functions are based onmds:

adj scaling of the raw adjacency matrix, treated as similarities (using"invadj" ).
geodist scaling of the matrix of geodesic distances.
rmds euclidean scaling of the rows ofd.
segeoscaling of the squared euclidean distances between row-wise geodesic distances (i.e.,

approximate structural equivalence).
seham scaling of the Hamming distance between rows/columns ofd (i.e., another approxi-

mate structural equivalence scaling).

princoord This function places vertices based on the eigenstructure of a given correlation/covariance
matrix. It takes the following arguments:

layout.par$var The matrix of variables to be used for the correlation/covariance calculation.
"rowcol" , "col" , and"row" indicate that the rows/cols, columns, or rows (respec-
tively) of d should be employed."rcsum" "rcdiff" result in the sum or difference of
d andt(d) being used."user" allows for an arbitrary variable matrix to be supplied.
(Defaults to"rowcol" .)

layout.par$cor Should the correlation matrix (rather than the covariance matrix) be used?
(Defaults toTRUE.)

layout.par$vm If layout.par$var=="user" , this matrix is used for the correlation/covariance
calculation. (No default.)

random This function places vertices randomly. It takes the following argument:

layout.par$dist The distribution to be used for vertex placement. Currently, the options
are "unif" (for uniform distribution on the unit cube),"uniang" (for a “gaussian
sphere” configuration), and"normal" (for a straight Gaussian distribution). (Defaults
to "unif" .)

Value

A matrix whose rows contain the x,y,z coordinates of the vertices ofd.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉
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References

Fruchterman, T.M.J. and Reingold, E.M. (1991). “Graph Drawing by Force-directed Placement.”
Software - Practice and Experience,21(11):1129-1164.

Kamada, T. and Kawai, S. (1989). “An Algorithm for Drawing General Undirected Graphs.”Infor-
mation Processing Letters,31(1):7-15.

See Also

gplot3d , gplot , gplot.layout , cmdscale , eigen

gplot3d.loop Add Loops to a Three-Dimensional Plot

Description

gplot3d.loop draws a "loop" at a specified location; this is used to designate self-ties ingplot3d .

Usage

gplot3d.loop(a, radius, color = "white", alpha = 1)

Arguments

a a vector or three-column matrix containing origin X,Y,Z coordinates.

radius the loop radius, in current plotting units. May be a vector, if multiple loops are
to be drawn.

color the loop color. May be a vector, if multiple loops are being drawn.

alpha alpha (transparency) value(s) for loops. (May be a vector.)

Details

gplot3d.loop is the companion togplot3d.arrow . The "loops" produced by this routine
currently look less like loops than like "hats" – they are noticable as spike-like structures which
protrude from vertices. Eventually, something more attractice will be produced by this routine.

Value

None.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

gplot3d.arrow , gplot3d , rgl
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graphcent Compute the (Harary) Graph Centrality Scores of Network Positions

Description

graphcent takes one or more graphs (dat ) and returns the Harary graph centralities of positions
(selected bynodes ) within the graphs indicated byg. Depending on the specified mode, graph
centrality on directed or undirected geodesics will be returned; this function is compatible with
centralization , and will return the theoretical maximum absolute deviation (from maximum)
conditional on size (which is used bycentralization to normalize the observed centralization
score).

Usage

graphcent(dat, g=1, nodes=NULL, gmode="digraph", diag=FALSE,
tmaxdev=FALSE, cmode="directed", geodist.precomp=NULL,
rescale=FALSE)

Arguments

dat one or more input graphs.

g integer indicating the index of the graph for which centralities are to be calcu-
lated (or a vector thereof). By default,g==1 .

nodes List indicating which nodes are to be included in the calculation. By default, all
nodes are included.

gmode String indicating the type of graph being evaluated. "digraph" indicates that
edges should be interpreted as directed; "graph" indicates that edges are undi-
rected.gmode is set to "digraph" by default.

diag Boolean indicating whether or not the diagonal should be treated as valid data.
Set this true if and only if the data can contain loops.diag is FALSEby default.

tmaxdev Boolean indicating whether or not the theoretical maximum absolute deviation
from the maximum nodal centrality should be returned. By default,tmaxdev==FALSE .

cmode String indicating the type of graph centrality being computed (directed or undi-
rected geodesics).

geodist.precomp
A geodist object precomputed for the graph to be analyzed (optional)

rescale If true, centrality scores are rescaled such that they sum to 1.

Details

The Harary graph centrality of a vertex v is equal to 1
maxu d(v,u) , whered(v, u) is the geodesic

distance from v to u. Vertices with low graph centrality scores are likely to be near the “edge”
of a graph, while those with high scores are likely to be near the “middle.” Compare this with
closeness , which is based on the reciprocal of the sum of distances to all other vertices (rather
than simply the maximum).

Value

A vector, matrix, or list containing the centrality scores (depending on the number and size of the
input graphs).
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Note

Judicious use ofgeodist.precomp can save a great deal of time when computing multiple
path-based indices on the same network.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Hage, P. and Harary, F. (1995). “Eccentricity and Centrality in Networks.”Social Networks, 17:57-
63.

See Also

centralization

Examples

g<-rgraph(10) #Draw a random graph with 10 members
graphcent(g) #Compute centrality scores

grecip Compute the Reciprocity of an Input Graph or Graph Stack

Description

grecip calculates the dyadic reciprocity of the elements ofdat selected byg.

Usage

grecip(dat, g = NULL, measure = c("dyadic", "dyadic.nonnull",
"edgewise"))

Arguments

dat one or more input graphs.

g a vector indicating which graphs to evaluate (optional).

measure one of"dyadic" (default),"dyadic.nonnull" or "edgewise" .

Details

The dyadic reciprocity of a graph is the proportion of dyads which are symmetric; this is computed
and returned bygrecip for the graphs indicated. (dyadic.nonnull returns the ratio of mutuals
to non-null dyads.) Note that the dyadic reciprocity is distinct from theedgewiseor tie reciprocity,
which is the proportion ofedgeswhich are reciprocated. This latter form may be obtained by setting
measure="edgewise" .

Value

The graph reciprocity value(s)
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Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Wasserman, S., and Faust, K. (1994).Social Network Analysis: Methods and Applications.Cam-
bridge: Cambridge University Press.

See Also

mutuality , symmetrize

Examples

#Calculate the dyadic reciprocity scores for some random graphs
grecip(rgraph(10,5))

gscor Find the Structural Correlations Between Two or More Graphs

Description

gscor finds the product-moment structural correlation between the adjacency matrices of graphs
indicated byg1 andg2 in stackdat (or possiblydat2 ) given exchangeability listexchange.list .
Missing values are permitted.

Usage

gscor(dat, dat2=NULL, g1=NULL, g2=NULL, diag=FALSE,
mode="digraph", method="anneal", reps=1000, prob.init=0.9,
prob.decay=0.85, freeze.time=25, full.neighborhood=TRUE,
exchange.list=0)

Arguments

dat a stack of input graphs.

dat2 optionally, a second graph stack.

g1 the indices ofdat reflecting the first set of graphs to be compared; by default,
all members ofdat are included.

g2 the indices ordat (or dat2 , if applicable) reflecting the second set of graphs
to be compared; by default, all members ofdat are included.

diag boolean indicating whether or not the diagonal should be treated as valid data.
Set this true if and only if the data can contain loops.diag is FALSEby default.

mode string indicating the type of graph being evaluated."digraph" indicates that
edges should be interpreted as directed;"graph" indicates that edges are undi-
rected.mode is set to"digraph" by default.

method method to be used to search the space of accessible permutations; must be one
of "none" , "exhaustive" , "anneal" , "hillclimb" , or "mc" .

reps number of iterations for Monte Carlo method.
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prob.init initial acceptance probability for the annealing routine.

prob.decay cooling multiplier for the annealing routine.

freeze.time freeze time for the annealing routine.

full.neighborhood
should the annealer evaluate the full neighborhood of pair exchanges at each
iteration?

exchange.list
information on which vertices are exchangeable (see below); this must be a
single number, a vector of length n, or a nx2 matrix.

Details

The structural correlation coefficient between two graphs G and H is defined as

scor (G, H |LG, LH ) = max
LG,LH

cor(`(G), `(H))

whereLG is the set of accessible permutations/labelings of G,`(G) is a permutation/relabeling of
G, and`(G) ∈ LG. The set of accessible permutations on a given graph is determined by thetheo-
retical exchangeabilityof its vertices; in a nutshell, two vertices are considered to be theoretically
exchangeable for a given problem if all predictions under the conditioning theory are invariant to a
relabeling of the vertices in question (see Butts and Carley (2001) for a more formal exposition).
Where no vertices are exchangeable, the structural correlation becomes the simple graph correla-
tion. Whereall vertices are exchangeable, the structural correlation reflects the correlation between
unlabeled graphs; other cases correspond to correlation under partial labeling.

The accessible permutation set is determined by theexchange.list argument, which is dealt
with in the following manner. First,exchange.list is expanded to fill an nx2 matrix. If
exchange.list is a single number, this is trivially accomplished by replication; ifexchange.list
is a vector of length n, the matrix is formed by cbinding two copies together. Ifexchange.list
is already an nx2 matrix, it is left as-is. Once the nx2 exchangeability matrix has been formed,
it is interpreted as follows: columns refer to graphs 1 and 2, respectively; rows refer to their cor-
responding vertices in the original adjacency matrices; and vertices are taken to be theoretically
exchangeable iff their corresponding exchangeability matrix values are identical. To obtain an un-
labeled graph correlation (the default), then, one could simply letexchange.list equal any
single number. To obtain the standard graph correlation, one would use the vector1:n .

Because the set of accessible permutations is, in general, very large (o(n!)), searching the set for
the maximum correlation is a non-trivial affair. Currently supported methods for estimating the
structural correlation are hill climbing, simulated annealing, blind monte carlo search, or exhaustive
search (it is also possible to turn off searching entirely). Exhaustive search is not recommended for
graphs larger than size 8 or so, and even this may take days; still, this is a valid alternative for small
graphs. Blind monte carlo search and hill climbing tend to be suboptimal for this problem and are
not, in general recommended, but they are available if desired. The preferred (and default) option
for permutation search is simulated annealing, which seems to work well on this problem (though
some tinkering with the annealing parameters may be needed in order to get optimal performance).
See the help forlab.optimize for more information regarding these options.

Structural correlation matrices are p.s.d., and are p.d. so long as no graph within the set is a lin-
ear combination of any other under any accessible permutation. Their eigendecompositions are
meaningful and they may be used in linear subspace analyses, so long as the researcher is careful
to interpret the results in terms of the appropriate set of accessible labelings. Classical null hy-
pothesis tests should not be employed with structural correlations, and QAP tests are almost never
appropriate (save in the uniquely labeled case). Seecugtest for a more reasonable alternative.
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Value

An estimate of the structural correlation matrix

Warning

The search process can bevery slow, particularly for large graphs. In particular, theexhaustive
method is order factorial, and will take approximately forever for unlabeled graphs of size greater
than about 7-9.

Note

Consult Butts and Carley (2001) for advice and examples on theoretical exchangeability.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Butts, C.T., and Carley, K.M. (2001). “Multivariate Methods for Interstructural Analysis.” CASOS
Working Paper, Carnegie Mellon University.

See Also

gscov , gcor , gcov

Examples

#Generate two random graphs
g.1<-rgraph(5)
g.2<-rgraph(5)

#Copy one of the graphs and permute it
perm<-sample(1:5)
g.3<-g.2[perm,perm]

#What are the structural correlations between the labeled graphs?
gscor(g.1,g.2,exchange.list=1:5)
gscor(g.1,g.3,exchange.list=1:5)
gscor(g.2,g.3,exchange.list=1:5)

#What are the structural correlations between the underlying
#unlabeled graphs?
gscor(g.1,g.2)
gscor(g.1,g.3)
gscor(g.2,g.3)
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gscov Find the Structural Covariance(s) Between Two or More Graphs

Description

gscov finds the structural covariance between the adjacency matrices of graphs indicated byg1
andg2 in stackdat (or possiblydat2 ) given exchangeability listexchange.list . Missing
values are permitted.

Usage

gscov(dat, dat2=NULL, g1=NULL, g2=NULL, diag=FALSE, mode="digraph",
method="anneal", reps=1000, prob.init=0.9, prob.decay=0.85,
freeze.time=25, full.neighborhood=TRUE, exchange.list=0)

Arguments

dat one or more input graphs.

dat2 optionally, a second graph stack.

g1 the indices ofdat reflecting the first set of graphs to be compared; by default,
all members ofdat are included.

g2 the indices ordat (or dat2 , if applicable) reflecting the second set of graphs
to be compared; by default, all members ofdat are included.

diag boolean indicating whether or not the diagonal should be treated as valid data.
Set this true if and only if the data can contain loops.diag is FALSEby default.

mode string indicating the type of graph being evaluated."digraph" indicates that
edges should be interpreted as directed;"graph" indicates that edges are undi-
rected.mode is set to"digraph" by default.

method method to be used to search the space of accessible permutations; must be one
of "none" , "exhaustive" , "anneal" , "hillclimb" , or "mc" .

reps number of iterations for Monte Carlo method.

prob.init initial acceptance probability for the annealing routine.

prob.decay cooling multiplier for the annealing routine.

freeze.time freeze time for the annealing routine.

full.neighborhood
dhould the annealer evaluate the full neighborhood of pair exchanges at each
iteration?

exchange.list
information on which vertices are exchangeable (see below); this must be a
single number, a vector of length n, or a nx2 matrix.

Details

The structural covariance between two graphs G and H is defined as

scov (G, H |LG, LH ) = max
LG,LH

cov(`(G), `(H))
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whereLG is the set of accessible permutations/labelings of G,`(G) is a permutation/labeling of
G, and`(G) ∈ LG. The set of accessible permutations on a given graph is determined by the
theoretical exchangeabilityof its vertices; in a nutshell, two vertices are considered to be theoreti-
cally exchangeable for a given problem if all predictions under the conditioning theory are invariant
to a relabeling of the vertices in question (see Butts and Carley (2001) for a more formal expo-
sition). Where no vertices are exchangeable, the structural covariance becomes the simple graph
covariance. Whereall vertices are exchangeable, the structural covariance reflects the covariance
between unlabeled graphs; other cases correspond to covariance under partial labeling.

The accessible permutation set is determined by theexchange.list argument, which is dealt
with in the following manner. First,exchange.list is expanded to fill an nx2 matrix. If
exchange.list is a single number, this is trivially accomplished by replication; ifexchange.list
is a vector of length n, the matrix is formed by cbinding two copies together. Ifexchange.list
is already an nx2 matrix, it is left as-is. Once the nx2 exchangeabiliy matrix has been formed, it
is interpreted as follows: columns refer to graphs 1 and 2, respectively; rows refer to their cor-
responding vertices in the original adjacency matrices; and vertices are taken to be theoretically
exchangeable iff their corresponding exchangeability matrix values are identical. To obtain an unla-
beled graph covariance (the default), then, one could simply letexchange.list equal any single
number. To obtain the standard graph covariance, one would use the vector1:n .

Because the set of accessible permutations is, in general, very large (o(n!)), searching the set for
the maximum covariance is a non-trivial affair. Currently supported methods for estimating the
structural covariance are hill climbing, simulated annealing, blind monte carlo search, or exhaustive
search (it is also possible to turn off searching entirely). Exhaustive search is not recommended for
graphs larger than size 8 or so, and even this may take days; still, this is a valid alternative for small
graphs. Blind monte carlo search and hill climbing tend to be suboptimal for this problem and are
not, in general recommended, but they are available if desired. The preferred (and default) option
for permutation search is simulated annealing, which seems to work well on this problem (though
some tinkering with the annealing parameters may be needed in order to get optimal performance).
See the help forlab.optimize for more information regarding these options.

Structural covariance matrices are p.s.d., and are p.d. so long as no graph within the set is a lin-
ear combination of any other under any accessible permutation. Their eigendecompositions are
meaningful and they may be used in linear subspace analyses, so long as the researcher is careful
to interpret the results in terms of the appropriate set of accessible labelings. Classical null hy-
pothesis tests should not be employed with structural covariances, and QAP tests are almost never
appropriate (save in the uniquely labeled case). Seecugtest for a more reasonable alternative.

Value

An estimate of the structural covariance matrix

Warning

The search process can bevery slow, particularly for large graphs. In particular, theexhaustive
method is order factorial, and will take approximately forever for unlabeled graphs of size greater
than about 7-9.

Note

Consult Butts and Carley (2001) for advice and examples on theoretical exchangeability.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉
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References

Butts, C.T., and Carley, K.M. (2001). “Multivariate Methods for Interstructural Analysis.” CASOS
Working Paper, Carnegie Mellon University.

See Also

gscor , gcov , gcor

Examples

#Generate two random graphs
g.1<-rgraph(5)
g.2<-rgraph(5)

#Copy one of the graphs and permute it
perm<-sample(1:5)
g.3<-g.2[perm,perm]

#What are the structural covariances between the labeled graphs?
gscov(g.1,g.2,exchange.list=1:5)
gscov(g.1,g.3,exchange.list=1:5)
gscov(g.2,g.3,exchange.list=1:5)

#What are the structural covariances between the underlying
#unlabeled graphs?
gscov(g.1,g.2)
gscov(g.1,g.3)
gscov(g.2,g.3)

gtrans Compute the Transitivity of an Input Graph or Graph Stack

Description

gtrans returns the transitivity of the elements ofdat selected byg, using the definition of
measure . Triads involving missing values are omitted from the analysis.

Usage

gtrans(dat, g=NULL, diag=FALSE, mode="digraph", measure = c("weak",
"strong", "weakcensus", "strongcensus"))

Arguments

dat a collection of input graphs.

g a vector indicating the graphs which are to be analyzed; by default, all graphs
are analyzed.

diag a boolean indicating whether or not diagonal entries (loops) are to be taken as
valid data.

mode "digraph" if directed triads are sought, or else"graph" .

measure one of"weak" (default),"strong" , "weakcensus" , or"strongcensus" .
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Details

Transitivity is a triadic, algebraic structural constraint. In its weak form, the transitive constraint
corresponds toa → b → c ⇒ a → c. In the corresponding strong form, the constraint is
a → b → c ⇔ a → c. (Note that the weak form is that most commonly employed.) Where
measure=="weak" , the fraction of potentially intransitive triads obeying the weak condition is
returned. With themeasure=="weakcensus" setting, by contrast, the totalnumberof transi-
tive triads is computed. Thestrong versions of the measures are similar to the above, save in that
the set of all triads is considered (since all are “at risk” for intransitivity).

Value

A vector of transitivity scores

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Holland, P.W., and Leinhardt, S. (1972). “Some Evidence on the Transitivity of Positive Interper-
sonal Sentiment.”American Journal of Sociology,72, 1205-1209.

Wasserman, S., and Faust, K. (1994).Social Network Analysis: Methods and Applications. Cam-
bridge: Cambridge University Press.

See Also

triad.classify , cugtest

Examples

#Draw some random graphs
g<-rgraph(5,10)

#Find transitivity scores
gtrans(g)

gvectorize Vectorization of Adjacency Matrices

Description

gvectorize takes an input graph set and converts it into a corresponding number of vectors by
row concatenation.

Usage

gvectorize(mats, mode="digraph", diag=FALSE, censor.as.na=TRUE)
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Arguments

mats one or more input graphs.

mode “digraph” if data is taken to be directed, else “graph”.

diag boolean indicating whether diagonal entries (loops) are taken to contain mean-
ingful data.

censor.as.na if TRUE, code unused parts of the adjacency matrix asNAs prior to vectorizing;
otherwise, unused parts are simply removed.

Details

The output ofgvectorize is a matrix in which each column corresponds to an input graph,
and each row corresponds to an edge. The columns of the output matrix are formed by simple
row-concatenation of the original adjacency matrices, possibly after removing cells which are not
meaningful (ifcensor.as.na==FALSE ). This is useful when preprocessing edge sets for use
with glm or the like.

Value

An nxk matrix, where n is the number of arcs and k is the number of graphs; ifcensor.as.na==FALSE ,
n will be reflect the relevant number of uncensored arcs.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

Examples

#Draw two random graphs
g<-rgraph(10,2)

#Examine the vectorized form of the adjacency structure
gvectorize(g)

hdist Find the Hamming Distances Between Two or More Graphs

Description

hdist returns the Hamming distance between the labeled graphsg1 andg2 in setdat for di-
chotomous data, or else the absolute (manhattan) distance. Ifnormalize is true, this distance is
divided by its dichotomous theoretical maximum (conditional on |V(G)|).

Usage

hdist(dat, dat2=NULL, g1=NULL, g2=NULL, normalize=FALSE,
diag=FALSE, mode="digraph")
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Arguments

dat a stack of input graphs.

dat2 a second graph stack (optional).

g1 a vector indicating which graphs to compare (by default, all elements ofdat ).

g2 a vector indicating against which the graphs ofg1 should be compared (by
default, all graphs).

normalize divide by the number of available dyads?

diag boolean indicating whether or not the diagonal should be treated as valid data.
Set this true if and only if the data can contain loops.diag is FALSEby default.

mode string indicating the type of graph being evaluated. "digraph" indicates that
edges should be interpreted as directed; "graph" indicates that edges are undi-
rected.mode is set to "digraph" by default.

Details

The Hamming distance between two labeled graphsG1 andG2 is equal to|{e : (e ∈ E(G1), e 6∈
E(G2)) ∧ (e 6∈ E(G1), e ∈ E(G2))}|. In more prosaic terms, this may be thought of as the
number of addition/deletion operations required to turn the edge set ofG1 into that ofG2. The
Hamming distance is a highly general measure of structural similarity, and forms a metric on the
space of graphs (simple or directed). Users should be reminded, however, that the Hamming dis-
tance is extremely sensitive to nodal labeling, and should not be employed directly when nodes are
interchangeable. The structural distance (Butts and Carley (2001)), implemented instructdist ,
provides a natural generalization of the Hamming distance to the more general case of unlabeled
graphs.

Null hypothesis testing for Hamming distances is available viacugtest , andqaptest ; graphs
which minimize the Hamming distances to all members of a graph set can be found bycentralgraph .
For an alternative means of comparing the similarity of graphs, considergcor .

Value

A matrix of Hamming distances

Note

For non-dichotomous data, the distance which is returned is simply the sum of the absolute edge-
wise differences.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Banks, D., and Carley, K.M. (1994). “Metric Inference for Social Networks.”Journal of Classifi-
cation, 11(1), 121-49.

Butts, C.T., and Carley, K.M. (2001). “Multivariate Methods for Interstructural Analysis.” CASOS
working paper, Carnegie Mellon University.

Hamming, R.W. (1950). “Error Detecting and Error Correcting Codes.”Bell System Technical
Journal,29, 147-160.
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See Also

sdmat , structdist

Examples

#Get some random graphs
g<-rgraph(5,5,tprob=runif(5,0,1))

#Find the Hamming distances
hdist(g)

hierarchy Compute Graph Hierarchy Scores

Description

hierarchy takes a graph set (dat ) and returns reciprocity or Krackhardt hierarchy scores for the
graphs selected byg.

Usage

hierarchy(dat, g=NULL, measure=c("reciprocity", "krackhardt"))

Arguments

dat a stack of input graphs.

g index values for the graphs to be utilized; by default, all graphs are selected.

measure one of"reciprocity" or "krackhardt" .

Details

Hierarchy measures quantify the extent of asymmetry in a structure; the greater the extent of asym-
metry, the more hierarchical the structure is said to be. (This should not be confused with how
centralizedthe structure is, i.e., the extent to which centralities of vertex positions are highly con-
centrated.)hierarchy provides two measures (selected by themeasure argument) as follows:

1. reciprocity : This setting returns one minus the dyadic reciprocity for each input graph
(seegrecip )

2. krackhardt : This setting returns the Krackhardt hierarchy score for each input graph. The
Krackhardt hierarchy is defined as the fraction of non-null dyads in thereachability
graph which are asymmetric. Thus, when no directed paths are reciprocated (e.g., in an
in/outtree), Krackhardt hierarchy is equal to 1; when all such paths are reciprocated, by con-
trast (e.g., in a cycle or clique), the measure falls to 0.

Hierarchy is one of four measures (connectedness , efficiency , hierarchy , and
lubness ) suggested by Krackhardt for summarizing hierarchical structures. Each corre-
sponds to one of four axioms which are necessary and sufficient for the structure in question
to be an outtree; thus, the measures will be equal to 1 for a given graph iff that graph is an
outtree. Deviations from unity can be interpreted in terms of failure to satisfy one or more of
the outtree conditions, information which may be useful in classifying its structural properties.
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Note that hierarchy is inherently density-constrained: as densities climb above 0.5, the proportion
of mutual dyads must (by the pigeonhole principle) increase rapidly, thereby reducing possibili-
ties for asymmetry. Thus, the interpretation of hierarchy scores should take density into account,
particularly if density is artifactual (e.g., due to a particular dichotomization procedure).

Value

A vector of hierarchy scores

Note

The four Krackhardt indices are, in general, nondegenerate for a relatively narrow band of size/density
combinations (efficiency being the sole exception). This is primarily due to their dependence on the
reachability graph, which tends to become complete rapidly as size/density increase. See Krack-
hardt (1994) for a useful simulation study.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Krackhardt, David. (1994). “Graph Theoretical Dimensions of Informal Organizations.” In K.
M. Carley and M. J. Prietula (Eds.),Computational Organization Theory, 89-111. Hillsdale, NJ:
Lawrence Erlbaum and Associates.

Wasserman, S., and Faust, K. (1994).Social Network Analysis: Methods and Applications.Cam-
bridge: Cambridge University Press.

See Also

connectedness , efficiency , hierarchy , lubness , grecip , mutuality , dyad.census

Examples

#Get hierarchy scores for graphs of varying densities
hierarchy(rgraph(10,5,tprob=c(0.1,0.25,0.5,0.75,0.9)),

measure="reciprocity")
hierarchy(rgraph(10,5,tprob=c(0.1,0.25,0.5,0.75,0.9)),

measure="krackhardt")

infocent Find Information Centrality Scores of Network Positions

Description

infocent takes one or more graphs (dat ) and returns the information centralities of positions (se-
lected bynodes ) within the graphs indicated byg. This function is compatible withcentralization ,
and will return the theoretical maximum absolute deviation (from maximum) conditional on size
(which is used bycentralization to normalize the observed centralization score).
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Usage

infocent(dat, g=1, nodes=NULL, gmode="digraph", diag=FALSE,
cmode="weak", tmaxdev=FALSE, rescale=FALSE,tol=1e-20)

Arguments

dat one or more input graphs.

g integer indicating the index of the graph for which centralities are to be calcu-
lated (or a vector thereof). By default,g==1 .

nodes list indicating which nodes are to be included in the calculation. By default, all
nodes are included.

gmode string indicating the type of graph being evaluated."digraph" indicates that
edges should be interpreted as directed;"graph" indicates that edges are undi-
rected. This is currently ignored.

diag boolean indicating whether or not the diagonal should be treated as valid data.
Set this true if and only if the data can contain loops.diag is FALSEby default.

cmode the rule to be used bysymmetrize when symmetrizing dichotomous data;
must be one of"weak" (for anORrule),"strong" for anANDrule),"upper"
(for a max rule), or"lower" (for a min rule). Set to"weak" by default, this
parameter obviously has no effect on symmetric data.

tmaxdev boolean indicating whether or not the theoretical maximum absolute deviation
from the maximum nodal centrality should be returned. By default,tmaxdev==FALSE .

rescale if true, centrality scores are rescaled such that they sum to 1.

tol tolerance for near-singularities during matrix inversion (seesolve ).

Details

Actor information centrality is a hybrid measure which relates to both path-length indices (e.g.,
closeness, graph centrality) and to walk-based eigenmeasures (e.g., eigenvector centrality, Bonacich
power). In particular, the information centrality of a given actor can be understood to be the har-
monic average of the “bandwidth” for all paths originating with said individual (where the band-
width is taken to be inversely related to path length). Formally, the index is constructed as follows.
First, we takeG to be an undirected (but possibly valued) graph – symmetrizing if necessary –
with (possibly valued) adjacency matrixA. From this, we remove all isolates (whose information
centralities are zero in any event) and proceed to create the weighted connection matrix

C = B−1

whereB is a pseudo-adjacency matrix formed by replacing the diagonal of1−A with one plus each
actor’s degree. Given the above, letT be the trace ofC with sumST , and letSR be an arbitrary
row sum (all rows ofC have the same sum). The information centrality scores are then equal to

CI =
1

T + ST−2SR

|V (G)|

(recalling that the scores for any omitted vertices are 0).

In general, actors with higher information centrality are predicted to have greater control over the
flow of information within a network; highly information-central individuals tend to have a large
number of short paths to many others within the social structure. Because the raw centrality values
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can be difficult to interpret directly, rescaled values are sometimes preferred (see therescale
option). Though the use of path weights suggest information centrality as a possible replacement
for closeness, the problem of inverting theB matrix poses problems of its own; as with all such
measures, caution is advised on disconnected or degenerate structures.

Value

A vector, matrix, or list containing the centrality scores (depending on the number and size of the
input graphs).

Note

The theoretical maximum deviation used here is not obtained with the star network; rather, the
maximum occurs for an empty graph with one complete dyad, which is the model used here.

Author(s)

David Barron〈david.barron@jesus.ox.ac.uk〉

Carter T. Butts〈buttsc@uci.edu〉

References

Stephenson, K., and Zelen, M. (1989). “Rethinking Centrality: Methods and Applications.”Social
Networks, 11, 1-37.

Wasserman, S., and Faust, K. (1994).Social Network Analysis: Methods and Applications.Cam-
bridge: Cambridge University Press.

See Also

evcent , bonpow , closeness , graphcent , centralization

Examples

#Generate some test data
dat<-rgraph(10,mode="graph")
#Compute information centrality scores
infocent(dat)

interval.graph Convert Spell Data to Interval Graphs

Description

Constructs one or more interval graphs (and exchangeability vectors) from a set of spells.

Usage

interval.graph(slist, type="simple", diag=FALSE)
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Arguments

slist A spell list. This must consist of an nxmx3 array, with n being the number of
actors, m being the maximum number of spells (one per row) and with the three
columns of the last dimension containing a (categorical) spell type code, the
time of spell onset (any units), and the time of spell termination (same units),
respectively.

type One of “simple”, “overlap”, “fracxy”, “fracyx”, or “jntfrac”.

diag Include the dyadic entries?

Details

Given some ordering dimension T (usually time), a “spell” is defined as the interval between a
specified onset and a specified termination (with onset preceding the termination). An interval
graph, then, on spell set V, isG = {V,E}, where{i, j} ∈ E iff there exists some pointt ∈ T such
that t ∈ i andt ∈ j. In more prosaic terms, an interval graph on a given spell set has each spell
as a vertex, with vertices adjacent iff they overlap. Such structures are useful for quantifying life
history data (where spells might represent marriages, periods of child custody/co-residence, periods
of employment, etc.), organizational history data (where spells might reflect periods of strategic
alliances, participation in a particular product market, etc.), task scheduling (with spells representing
the dedication of a particular resource to a given task), etc. By giving complex historical data a
graphic representation, it is possible to easily perform a range of analyses which would otherwise
be difficult and/or impossible (see Butts and Pixley (2004) for examples).

In addition to the simple interval graph (described above),interval.graph can also generate
valued interval graphs using a number of different edge definitions. This is controlled by thetype
argument, with edge values as follows:

1. simple: dichotomous coding based on simple overlap (i.e., (x,y)=1 iff x overlaps y)

2. overlap: edge value equals the total magnitude of the overlap between spells

3. fracxy: the (x,y) edge value equals the fraction of the duration of y which is covered by x

4. fracyx: the (x,y) edge value equals the fraction of the duration of x which is covered by y

5. jntfrac: edge value equals the total magnitude of the overlap between spells divided by the
mean of the spells’ lengths

Note that “simple,” “overlap,” and “jntfrac” are symmetric relations, while “fracxy” and “fracyx”
are directed. As always, the specific edge type used should reflect the application to which the
interval graph is being put.

Value

A data frame containing:

graph A graph stack containing the interval graphs

exchange.list
Matrix containing the vector of spell types associated with each interval graph

Author(s)

Carter T. Butts〈buttsc@uci.edu〉
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References

Butts, C.T. and Pixley, J.E. (2004). “A Structural Approach to the Representation of Life History
Data.” Journal of Mathematical Sociology, 28(2), 81-124.

West, D.B. (1996).Introduction to Graph Theory. Upper Saddle River, NJ: Prentice Hall.

Examples

is.connected Is a Given Graph Connected?

Description

ReturnsTRUEiff the specified graphs are connected.

Usage

is.connected(g, connected = "strong", comp.dist.precomp = NULL)

Arguments

g one or more input graphs.

connected definition of connectedness to use; must be one of"strong" , "weak" , "unilateral" ,
or "recursive" .

comp.dist.precomp
a component.dist object precomputed for the graph to be analyzed (op-
tional).

Details

is.connected determines whether the elements ofg are connected under the definition spec-
ified in connected . (Seecomponent.dist for details.) Sinceis.connected is really
just a wrapper forcomponent.dist , an object created with the latter can be supplied (via
comp.dist.precomp ) to speed computation.

Value

TRUEiff g is connected, otherwiseFALSE

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

West, D.B. (1996).Introduction to Graph Theory.Upper Saddle River, N.J.: Prentice Hall.

See Also

component.dist , components
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Examples

#Generate two graphs:
g1<-rgraph(10,tp=0.1)
g2<-rgraph(10)

#Check for connectedness
is.connected(g1) #Probably not
is.connected(g2) #Probably so

is.isolate Is Ego an Isolate?

Description

Returns TRUE iff ego is an isolate in graphg of dat .

Usage

is.isolate(dat, ego, g=1, diag=FALSE)

Arguments

dat one or more input graphs.

ego index of the vertex (or a vector of vertices) to check.

g which graph should be examined?

diag boolean indicating whether adjacency matrix diagonals (i.e., loops) contain mean-
ingful data.

Details

In the valued case, any non-zero edge value is taken as sufficient to establish a tie.

Value

A boolean value (or vector thereof) indicating isolate status

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Wasserman, S., and Faust, K. (1994).Social Network Analysis: Methods and Applications.Cam-
bridge: Cambridge University Press.

West, D.B. (1996).Introduction to Graph Theory. Upper Saddle River, NJ: Prentice Hall.

See Also

isolates , add.isolates
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Examples

#Generate a test graph
g<-rgraph(20)
g[,4]<-0 #Create an isolate
g[4,]<-0

#Check for isolates
is.isolate(g,2) #2 is almost surely not an isolate
is.isolate(g,4) #4 is, by construction

isolates List the Isolates in a Graph or Graph Stack

Description

Returns a list of the isolates in the graph or graph set given bydat .

Usage

isolates(dat, diag=FALSE)

Arguments

dat one or more input graphs.

diag boolean indicating whether adjacency matrix diagonals (i.e., loops) contain mean-
ingful data.

Value

A vector containing the isolates, or a list of vectors if more than one graph was specified

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Wasserman, S., and Faust, K. (1994).Social Network Analysis: Methods and Applications.Cam-
bridge: Cambridge University Press.

West, D.B. (1996).Introduction to Graph Theory. Upper Saddle River, NJ: Prentice Hall.

See Also

is.isolate , add.isolates

Examples

#Generate a test graph
g<-rgraph(20)
g[,4]<-0 #Create an isolate
g[4,]<-0

#List the isolates
isolates(g)
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lab.optimize Optimize a Bivariate Graph Statistic Across a Set of Accessible Per-
mutations

Description

lab.optimize is the front-end to a series of heuristic optimization routines (see below), all of
which seek to maximize/minimize some bivariate graph statistic (e.g., graph correlation) across a
set of vertex relabelings.

Usage

lab.optimize(d1, d2, FUN, exchange.list=0, seek="min",
opt.method=c("anneal", "exhaustive", "mc", "hillclimb",
"gumbel"), ...)

lab.optimize.anneal(d1, d2, FUN, exchange.list=0, seek="min",
prob.init=1, prob.decay=0.99, freeze.time=1000,
full.neighborhood=TRUE, ...)

lab.optimize.exhaustive(d1, d2, FUN, exchange.list=0, seek="min", ...)
lab.optimize.gumbel(d1, d2, FUN, exchange.list=0, seek="min",

draws=500, tol=1e-5, estimator="median", ...)
lab.optimize.hillclimb(d1, d2, FUN, exchange.list=0, seek="min", ...)
lab.optimize.mc(d1, d2, FUN, exchange.list=0, seek="min",

draws=1000, ...)

Arguments

d1 a single graph.

d2 another single graph.

FUN a function taking two graphs as its first two arguments, and returning a numeric
value.

exchange.list
information on which vertices are exchangeable (see below); this must be a
single number, a vector of length n, or a nx2 matrix.

seek "min" if the optimizer should seek a minimum, or "max" if a maximum should
be sought.

opt.method the particular optimization method to use.

prob.init initial acceptance probability for a downhill move (lab.optimize.anneal
only).

prob.decay the decay (cooling) multiplier for the probability of accepting a downhill move
(lab.optimize.anneal only).

freeze.time number of iterations at which the annealer should be frozen (lab.optimize.anneal
only).

full.neighborhood
should all moves in the binary-exchange neighborhood be evaluated at each it-
eration? (lab.optimize.anneal only).

tol tolerance for estimation of gumbel distribution parameters (lab.optimize.gumbel
only).
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estimator Gumbel distribution statistic to use as optimal value prediction; must be one of
“mean”, “median”, or “mode” (lab.optimize.gumbel only).

draws number of draws to take for gumbel and mc methods.

... additional arguments toFUN.

Details

lab.optimize is the front-end to a family of routines for optimizing a bivariate graph statistic
over a set of permissible relabelings (or equivalently, permutations). The accessible permutation
set is determined by theexchange.list argument, which is dealt with in the following man-
ner. First,exchange.list is expanded to fill an nx2 matrix. Ifexchange.list is a single
number, this is trivially accomplished by replication; ifexchange.list is a vector of length
n, the matrix is formed by cbinding two copies together. Ifexchange.list is already an nx2
matrix, it is left as-is. Once the nx2 exchangeabiliy matrix has been formed, it is interpreted as
follows: columns refer to graphs 1 and 2, respectively; rows refer to their corresponding vertices
in the original adjacency matrices; and vertices are taken to be theoretically exchangeable iff their
corresponding exchangeability matrix values are identical. To obtain an unlabeled graph statistic
(the default), then, one could simply letexchange.list equal any single number. To obtain the
labeled statistic, one would use the vector1:n .

Assuming a non-degenerate set of accessible permutations/relabelings, optimization proceeds via
the algorithm specified inopt.method . The optimization routines which are currently imple-
mented use a variety of different techniques, each with certain advantages and disadvantages. A
brief summary of each is as follows:

1. exhaustive search (“exhaustive”): Under exhaustive search, the entire space of accessible per-
mutations is combed for the global optimum. This guarantees a correct answer, but at a very
high price: the set of all permutations grows with the factorial of the number of vertices, and
even substantial exchangeability constraints are unlikely to keep the number of permutations
from growing out of control. While exhaustive searchis possible for small graphs, unlabeled
structures of size approximately 10 or greater cannot be treated using this algorithm within a
reasonable time frame.

Approximate complexity: on the order of
∏

i∈L |Vi|!, where L is the set of exchangeability
classes.

2. hill climbing (“hillclimb”): The hill climbing algorithm employed here searches, at each it-
eration, the set of all permissible binary exchanges of vertices. If one or more exchanges are
found which are superior to the current permutation, the best alternative is taken. If no supe-
rior alternative is found, then the algorithm terminates. As one would expect, this algorithm
is guaranteed to terminate on a local optimum; unfortunately, however, it is quite prone to
becoming “stuck” in suboptimal solutions. In general, hill climbing is not recommended for
permutation search, but the method may prove useful in certain circumstances.

Approximate complexity: on the order of|V (G)|2 per iteration, total complexity dependent
on the number of iterations.

3. simulated annealing (“anneal”): The (fairly simple) annealing procedure here employed pro-
ceeds as follows. At each iteration, the set of all permissible binary exchanges (iffull.neighborhood==TRUE )
or a random selection from this set is evaluated. If a superior option is identified, the best of
these is chosen. If no superior options are found, then the algorithm chooses randomly from
the set of alternatives with probability equal to the current temperature, otherwise retaining
its prior solution. After each iteration, the current temperature is reduced by a factor equal to
prob.decay ; the initial temperature is set byprob.init . When a number of iterations
equal tofreeze.time have been completed, the algorithm “freezes.” Once “frozen,” the
annealer hillclimbs from its present location until no improvement is found, and terminates.
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At termination, the best permutation identified so far is utilized; this need not be the most
recent position (though it sometimes is).

Simulated annealing is sometimes called “noisy hill climbing” because it uses the introduction
of random variation to a hill climbing routine to avoid convergence to local optima; it works
well on reasonably correlated search spaces with well-defined solution neighborhoods, and
is far more robust than hill climbing algorithms. As a general rule, simulated annealing is
recommended here for most graphs up to size approximately 50. At this point, computational
complexity begins to become a serious barrier, and alternative methods may be more practical.

Approximate complexity: on the order of|V (G)|2* freeze.time if full.neighborhood==TRUE ,
otherwise complexity scales approximately linearly withfreeze.time . This can be mis-
leading, however, since failing to search the full neighborhood generally requires thatfreeze.time
be greatly increased.)

4. blind monte carlo search (“mc”): Blind monte carlo search, as the name implies, consists of
randomly drawing a sample of permutations from the accessible permutation set and selecting
the best. Although this not such a bad option when A) a large fraction of points are optimal or
nearly optimal and B) the search space is largely uncorrelated, these conditions do not seem
to characterize most permutation search problems. Blind monte carlo search is not generally
recommended, but it is provided as an option should it be desired (e.g., when it is absolutely
necessary to control the number of permutations examined).

Approximate complexity: linear indraws .

5. extreme value estimation (“gumbel”): Extreme value estimation attempts to estimate a global
optimum via stochastic modeling of the distribution of the graph statistic over the space of
accessible permutations. The algorithm currently proceeds as follows. First, a random sample
is taken from the accessible permutation set (as with monte carlo search, above). Next, this
sample is used to fit an extreme value (gumbel) model; the gumbel distribution is the limiting
distribution of the extreme values from samples under a continuous, unbounded distribution,
and we use it here as an approximation. Having fit the model, an associated statistic (the mean,
median, or mode as determined byestimator ) is then used as an estimator of the global
optimum.

Obviously, this approach has certain drawbacks. First of all, our use of the gumbel model in
particular assumes an unbounded, continuous underlying distribution, which may or may not
be approximately true for any given problem. Secondly, the inherent non-robustness of ex-
tremal problems makes the fact that our prediction rests on a string of approximations rather
worrisome: our idea of the shape of the underlying distribution could be distorted by a bad
sample, our parameter estimation could be somewhat off, etc., any of which could have seri-
ous consequences for our extremal prediction. Finally, the prediction which is made by the
extreme value model isnonconstructive, in the sense thatno permutation need have been
found by the algorithm which induces the predicted value. On the bright side, thiscouldallow
one to estimate the optimum without having to find it directly; on the dark side, this means
that the reported optimum could be a numerical chimera.

At this time, extreme value estimation should be consideredexperimental, andis not recom-
mended for use on substantive problems.lab.optimize.gumbel is not guaranteed to
work properly, or to produce intelligible results; this may eventually change in future revi-
sions, or the routine may be scrapped altogether.

Approximate complexity: linear indraws .

This list of algorithms is itself somewhat unstable: some additional techniques (canonical labeling
and genetic algorithms, for instance) may be added, and some existing methods (e.g., extreme
value estimation) may be modified or removed. Every attempt will be made to keep the command
format as stable as possible for other routines (e.g.,gscov , structdist ) which depend on
lab.optimize to do their heavy-lifting. In general, it is not expected that the end-user will call
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lab.optimize directly; instead, most end-user interaction with these routines will be via the
structural distance/covariance functions which used them.

Value

The estimated global optimum ofFUNover the set of relabelings permitted byexchange.list

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Butts, C.T., and Carley, K.M. (2001). “Multivariate Methods for Interstructural Analysis.” CASOS
Working Paper, Carnegie Mellon University.

See Also

gscov , gscor , structdist , sdmat

Examples

#Generate a random graph and copy it
g<-rgraph(10)
g2<-rmperm(g) #Permute the copy randomly

#Seek the maximum correlation
lab.optimize(g,g2,gcor,seek="max",opt.method="anneal",freeze.time=50,

prob.decay=0.9)

#These two don't do so well...
lab.optimize(g,g2,gcor,seek="max",opt.method="hillclimb")
lab.optimize(g,g2,gcor,seek="max",opt.method="mc",draws=1000)

lnam Fit a Linear Network Autocorrelation Model

Description

lnam is used to fit linear network autocorrelation models. These include standard OLS as a special
case, althoughlm is to be preferred for such analyses.

Usage

lnam(y, x = NULL, W1 = NULL, W2 = NULL, theta.seed = NULL,
null.model = c("meanstd", "mean", "std", "none"), method = "BFGS",
control = list())
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Arguments

y a vector of responses.

x a vector or matrix of covariates; if the latter, each column should contain a single
covariate.

W1 a (possibly valued) graph on the elements ofy .

W2 another (possibly valued) graph on the elements ofy .

theta.seed an optional seed value foroptim .

null.model the null model to be fit; must be one of"meanstd" , "mean" , "std" , or
"none" .

method method to be used withoptim .

control optional control parameters foroptim .

Details

lnam fits the linear network autocorrelation model given by

y = ρ1W1y + Xβ + e, e = ρ2W2e + ν

wherey is a vector of responses,X is a covariate matrix,W1 andW2 are (possibly valued) adja-
cency matrices, andν ∼ N(0, σ2). Intuitively, ρ1 is an “AR”-like parameter (parameterizing the
autoregression of eachy value on its neighbors inW1) while ρ2 is an “MA”-like parameter (param-
eterizing the autocorrelation of eachdisturbancein y on its neighbors inW2). In general, the two
models are distinct, and either or both effects may be selected by including the appropriate matrix
arguments.

Model parameters are estimated by maximum likelihood, and asymptotic standard errors are pro-
vided as well; all of the above (and more) can be obtained by means of the appropriateprint and
summary methods. A plotting method is also provided, which supplies fit basic diagnostics for
the estimated model. For purposes of comparison, fits may be evaluated against one of four null
models:

1. meanstd : mean and standard deviation estimated (default).

2. mean: mean estimated; standard deviation assumed equal to 1.

3. std : standard deviation estimated; mean assumed equal to 0.

4. none : no parameters estimated; data assumed to be drawn from a standard normal density.

The default setting should be appropriate for the vast majority of cases, although the others may
have use when fitting “pure” autoregressive models (e.g., without covariates). Although a major
use of thelnam is in controlling for network autocorrelation within a regression context, the model
is subtle and has a variety of uses. (See the references below for suggestions.)

Value

An object of class"lnam" containing the following elements:

y the response vector used.

x if supplied, the coefficient matrix.

W1 if supplied, the W1 matrix.

W2 if supplied, the W2 matrix.
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model a code indicating the model terms fit.

infomat the estimated Fisher information matrix for the fitted model.

acvm the estimated asymptotic covariance matrix for the model parameters.

null.model a string indicating the null model fit.

lnlik.null the log-likelihood of y under the null model.
df.null.resid

the residual degrees of freedom under the null model.

df.null the model degrees of freedom under the null model.

null.param parameter estimates for the null model.

lnlik.model the log-likelihood of y under the fitted model.

df.model the model degrees of freedom.

df.residual the residual degrees of freedom.

df.total the total degrees of freedom.

rho1 if applicable, the MLE for rho1.

rho1.se if applicable, the asymptotic standard error for rho1.

rho2 if applicable, the MLE for rho2.

rho2.se if applicable, the asymptotic standard error for rho2.

sigma the MLE for sigma.

sigma.se the standard error for sigma

beta if applicable, the MLE for beta.

beta.se if applicable, the asymptotic standard errors for beta.
fitted.values

the fitted mean values.

residuals the residuals (response minus fitted); note that these correspond toê in the model
equation, not̂ν.

disturbances the estimated disturbances, i.e.,ν̂.

call the matched call.

Note

Actual optimization is performed by calls tooptim . Information on algorithms and control param-
eters can be found via the appropriate man pages.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Leenders, T.Th.A.J. (2002) “Modeling Social Influence Through Network Autocorrelation: Con-
structing the Weight Matrix”Social Networks, 24(1), 21-47.

Anselin, L. (1988)Spatial Econometrics: Methods and Models.Norwell, MA: Kluwer.

See Also

lm , optim
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Examples

#Construct a simple, random example:
w1<-rgraph(100) #Draw the AR matrix
w2<-rgraph(100) #Draw the MA matrix
x<-matrix(rnorm(100*5),100,5) #Draw some covariates
r1<-0.2 #Set the model parameters
r2<-0.1
sigma<-0.1
beta<-rnorm(5)
#Assemble y from its components:
nu<-rnorm(100,0,sigma) #Draw the disturbances
e<-qr.solve(diag(100)-r2*w2,nu) #Draw the effective errors
y<-qr.solve(diag(100)-r1*w1,x%*%beta+e) #Compute y

#Now, fit the autocorrelation model:
fit<-lnam(y,x,w1,w2)
summary(fit)
plot(fit)

lower.tri.remove Remove the Lower Triangles of Adjacency Matrices in a Graph Stack

Description

Returns the input graph set, with the lower triangle entries removed/replaced as indicated.

Usage

lower.tri.remove(dat, remove.val=NA)

Arguments

dat one or more input graphs.

remove.val the value with which to replace the existing lower triangles.

Details

lower.tri.remove is simply a convenient way to applyg[lower.tri(g)]<-remove.val
to an entire stack of adjacency matrices at once.

Value

The updated graph set.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References
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See Also

lower.tri , upper.tri.remove , diag.remove

Examples

#Generate a random graph stack
g<-rgraph(3,5)
#Remove the lower triangles
g<-lower.tri.remove(g)

lubness Compute Graph LUBness Scores

Description

lubness takes a graph set (dat ) and returns the Krackhardt LUBness scores for the graphs se-
lected byg.

Usage

lubness(dat, g=NULL)

Arguments

dat one or more input graphs.

g index values for the graphs to be utilized; by default, all graphs are selected.

Details

In the context of a directed graphG, two actorsi andj may be said to have anupper boundiff there
exists some actork such that directedki andkj paths belong toG. An upper bound̀ is known as
a least upper boundfor i andj iff it belongs to at least oneki andkj path (respectively) for alli, j
upper boundsk; let L(i, j) be an indicator which returns 1 iff such an` exists, otherwise returning
0. Now, letG1, G2, . . . , Gn represent the weak components ofG. For convenience, we denote the
cardinalities of these graphs’ vertex sets by|V (G)| = N and|V (Gi)| = Ni, ∀i ∈ 1, . . . , n. Given
this, the Krackhardt LUBness ofG is given by

1−

∑n
i=1

∑
vj ,vk∈V (Gi)

(
1− L(vj , vk)

)
∑n

i=1
1
2 (Ni − 1)(Ni − 2)

Where all vertex pairs possess a least upper bound, Krackhardt’s LUBness is equal to 1; in general, it
approaches 0 as this condition is broached. (This convergence is problematic in certain cases due to
the requirement that we sum violations across components; where a graph contains no components
of size three or greater, Krackhardt’s LUBness is not well-defined.lubness returns aNaN in
these cases.)

LUBness is one of four measures (connectedness , efficiency , hierarchy , andlubness )
suggested by Krackhardt for summarizing hierarchical structures. Each corresponds to one of four
axioms which are necessary and sufficient for the structure in question to be an outtree; thus, the
measures will be equal to 1 for a given graph iff that graph is an outtree. Deviations from unity can
be interpreted in terms of failure to satisfy one or more of the outtree conditions, information which
may be useful in classifying its structural properties.
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Value

A vector of LUBness scores

Note

The four Krackhardt indices are, in general, nondegenerate for a relatively narrow band of size/density
combinations (efficiency being the sole exception). This is primarily due to their dependence on the
reachability graph, which tends to become complete rapidly as size/density increase. See Krack-
hardt (1994) for a useful simulation study.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Krackhardt, David. (1994). “Graph Theoretical Dimensions of Informal Organizations.” In K.
M. Carley and M. J. Prietula (Eds.),Computational Organization Theory, 89-111. Hillsdale, NJ:
Lawrence Erlbaum and Associates.

See Also

connectedness , efficiency , hierarchy , lubness , reachability

Examples

#Get LUBness scores for graphs of varying densities
lubness(rgraph(10,5,tprob=c(0.1,0.25,0.5,0.75,0.9)))

make.stochastic Make a Graph Stack Row, Column, or Row-column Stochastic

Description

Returns a graph stack in which each adjacency matrix indat has been normalized to row stochastic,
column stochastic, or row-column stochastic form, as specified bymode.

Usage

make.stochastic(dat, mode="rowcol", tol=0.005,
maxiter=prod(dim(dat)) * 100, anneal.decay=0.01, errpow=1)

Arguments

dat a collection of input graphs.

mode one of “row,” “col,” or “rowcol”.

tol tolerance parameter for the row-column normalization algorithm.

maxiter maximum iterations for the rwo-column normalization algorithm.

anneal.decay probability decay factor for the row-column annealer.

errpow power to which absolute row-column normalization errors should be raised for
the annealer (i.e., the penalty function).
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Details

Row and column stochastic matrices are those whose rows and columns sum to 1 (respectively).
These are quite straightforwardly produced here by dividing each row (or column) by its sum. Row-
column stochastic matrices, by contrast, are those in which each rowand each column sums to 1.
Here, we try to produce row-column stochastic matrices whose values are as close in proportion
to the original data as possible by means of an annealing algorithm. This is probably not optimal
in the long term, but the results seem to be consistent where row-column stochasticization of the
original data is possible (which it is not in all cases).

Value

The stochasticized adjacency matrices

Warning

Rows or columns which sum to 0 in the original data will generate undefined results. This can
happen if, for instance, your input graphs contain in- or out-isolates.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Examples

#Generate a test matrix
g<-rgraph(15)

#Make it row stochastic
make.stochastic(g,mode="row")

#Make it column stochastic
make.stochastic(g,mode="col")

#(Try to) make it row-column stochastic
make.stochastic(g,mode="rowcol")

mutuality Find the Mutuality of a Graph

Description

Returns the mutuality scores of the graphs indicated byg in dat .

Usage

mutuality(dat, g=NULL)
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Arguments

dat one or more input graphs.

g a vector indicating which elements ofdat should be analyzed; by default, all
graphs are included.

Details

The mutuality of a digraph G is defined as the number of complete dyads (i.e., i<->j) within G.
(Compare this to dyadic reciprocity, the fraction of dyads within G which are symmetric.) Mutu-
ality is commonly employed as a measure of reciprocal tendency within the p* literature; although
mutuality can be very hard to interpret in practice, it is much better behaved than many alternative
measures.

Value

One or more mutuality scores

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Moreno, J.L., and Jennings, H.H. (1938). “Statistics of Social Configurations.”Sociometry, 1,
342-374.

See Also

grecip

Examples

#Create some random graphs
g<-rgraph(15,3)

#Get mutuality and reciprocity scores
mutuality(g)
grecip(g) #Compare with mutuality

netcancor Canonical Correlation for Labeled Graphs

Description

netcancor finds the canonical correlation(s) between the graph setsx andy , testing the result
using either conditional uniform graph (CUG) or quadratic assignment procedure (QAP) null hy-
potheses.

Usage

netcancor(y, x, mode="digraph", diag=FALSE, nullhyp="cugtie",
reps=1000)
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Arguments

y one or more input graphs.

x one or more input graphs.

mode string indicating the type of graph being evaluated. "digraph" indicates that
edges should be interpreted as directed; "graph" indicates that edges are undi-
rected.mode is set to "digraph" by default.

diag boolean indicating whether or not the diagonal should be treated as valid data.
Set this true if and only if the data can contain loops.diag is FALSEby default.

nullhyp string indicating the particular null hypothesis against which to test the ob-
served estimands. A value of "cug" implies a conditional uniform graph test
(seecugtest ) controlling for orderonly; "cugden" controls for both order and
tie probability; "cugtie" controls for order and tie distribution (via bootstrap);
and "qap" implies that the QAP null hypothesis (seeqaptest ) should be used.

reps integer indicating the number of draws to use for quantile estimation. (Relevant
to the null hypothesis test only - the analysis itself is unaffected by this param-
eter.) Note that, as for all Monte Carlo procedures, convergence is slower for
more extreme quantiles.

Details

The netcancor routine is actually a front-end to thecancor routine for computing canonical
correlations between sets of vectors.netcancor itself vectorizes the network variables (as per its
graph type) and manages the appropriate null hypothesis tests; the actual canonical correlation is
handled bycancor .

Canonical correlation itself is a multivariate generalization of the product-moment correlation.
Specifically, the analysis seeks linear combinations of the variables iny which are well-explained
by linear combinations of the variables inx . The network version of this technique is performed
elementwise on the adjacency matrices of the graphs in question; as usual, the result should be
interpreted with an eye to the relationship between the type of data used and the assumptions of the
underlying model.

Intelligent printing and summarizing of netcancor objects is provided byprint.netcancor and
summary.netcancor .

Value

An object of classnetcancor with the following properties:

xdist Array containing the distribution of the X coefficients under the null hypothesis
test.

ydist Array containing the distribution of the Y coefficients under the null hypothesis
test.

cdist Array containing the distribution of the canonical correlation coefficients under
the null hypothesis test.

cor Vector containing the observed canonical correlation coefficients.

xcoef Vector containing the observed X coefficients.

ycoef Vector containing the observed Y coefficients.

cpgreq Vector containing the estimated upper tail quantiles (p>=obs) for the observed
canonical correlation coefficients under the null hypothesis.
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cpleeq Vector containing the estimated lower tail quantiles (p<=obs) for the observed
canonical correlation coefficients under the null hypothesis.

xpgreq Matrix containing the estimated upper tail quantiles (p>=obs) for the observed
X coefficients under the null hypothesis.

xpleeq Matrix containing the estimated lower tail quantiles (p<=obs) for the observed
X coefficients under the null hypothesis.

ypgreq Matrix containing the estimated upper tail quantiles (p>=obs) for the observed
Y coefficients under the null hypothesis.

ypleeq Matrix containing the estimated lower tail quantiles (p<=obs) for the observed
Y coefficients under the null hypothesis.

cnames Vector containing names for the canonical correlation coefficients.

xnames Vector containing names for the X vars.

ynames Vector containing names for the Y vars.

xcenter Values used to adjust the X variables.

xcenter Values used to adjust the Y variables.

nullhyp String indicating the null hypothesis employed.

Note

This will eventually be replaced with a superior cancor procedure with more interpretable output;
the new version will handle arbitrary labeling as well.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Butts, C.T., and Carley, K.M. (2001). “Multivariate Methods for Interstructural Analysis.” CASOS
working paper, Carnegie Mellon University.

See Also

gcor , cugtest , qaptest , cancor

Examples

#Generate a valued seed structure
cv<-matrix(rnorm(100),nrow=10,ncol=10)
#Produce two sets of valued graphs
x<-array(dim=c(3,10,10))
x[1,,]<-3*cv+matrix(rnorm(100,0,0.1),nrow=10,ncol=10)
x[2,,]<--1*cv+matrix(rnorm(100,0,0.1),nrow=10,ncol=10)
x[3,,]<-x[1,,]+2*x[2,,]+5*cv+matrix(rnorm(100,0,0.1),nrow=10,ncol=10)
y<-array(dim=c(2,10,10))
y[1,,]<--5*cv+matrix(rnorm(100,0,0.1),nrow=10,ncol=10)
y[2,,]<--2*cv+matrix(rnorm(100,0,0.1),nrow=10,ncol=10)
#Perform a canonical correlation analysis
nc<-netcancor(y,x,reps=100)
summary(nc)
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netlm Linear Regression for Network Data

Description

netlm regresses the network variable iny on the network variables in stackx using ordinary least
squares. The resulting fits (and coefficients) are then tested against the indicated null hypothesis.

Usage

netlm(y, x, intercept=TRUE, mode="digraph", diag=FALSE,
nullhyp=c("qap", "qapspp", "qapy", "qapx", "qapallx",
"cugtie", "cugden", "cuguman", "classical"), tol=1e-7,
reps=1000)

Arguments

y dependent network variable. This should be a matrix, for obvious reasons; NAs
are allowed, but dichotomous data is strongly discouraged due to the assump-
tions of the analysis.

x stack of independent network variables. Note that NAs are permitted, as is di-
chotomous data.

intercept logical; should an intercept term be added?

mode string indicating the type of graph being evaluated."digraph" indicates that
edges should be interpreted as directed;"graph" indicates that edges are undi-
rected.mode is set to"digraph" by default.

diag logical; should the diagonal be treated as valid data? Set this true if and only if
the data can contain loops.diag is FALSEby default.

nullhyp string indicating the particular null hypothesis against which to test the observed
estimands.

tol tolerance parameter forqr.solve .

reps integer indicating the number of draws to use for quantile estimation. (Relevant
to the null hypothesis test only - the analysis itself is unaffected by this param-
eter.) Note that, as for all Monte Carlo procedures, convergence is slower for
more extreme quantiles. By default,reps =1000.

Details

netlm performs an OLS linear network regression of the graphy on the graphs inx . Network re-
gression using OLS is directly analogous to standard OLS regression elementwise on the appropri-
ately vectorized adjacency matrices of the networks involved. In particular, the network regression
attempts to fit the model:

Ay = b0A1 + b1Ax1 + b2Ax2 + . . . + Z

whereAy is the dependent adjacency matrix,Axi
is the ith independent adjacency matrix,A1 is

an n x n matrix of 1’s, andZ is an n x n matrix of independent normal random variables with mean
0 and varianceσ2. Clearly, this model is nonoptimal whenAy is dichotomous (or, for that matter,
categorical in general); an alternative such asnetlogit should be employed in such cases. (Note
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thatnetlm will still attempt to fit such data...the user should consider him or herself to have been
warned.)

Because of the frequent presence of row/column/block autocorrelation in network data, classical
hull hypothesis tests (and associated standard errors) are generally suspect. Further, it is sometimes
of interest to compare fitted parameter values to those arising from various baseline models (e.g.,
uniform random graphs conditional on certain observed statistics). The tests supported bynetlm
are as follows:

classical tests based on classical asymptotics.

cug conditional uniform graph test (seecugtest ) controlling for order.

cugden conditional uniform graph test, controlling for order and density.

cugtie conditional uniform graph test, controlling for order and tie distribution.

qap QAP permutation test (seeqaptest ); currently identical toqapspp .

qapallx QAP permutation test, using independent x-permutations.

qapspp QAP permutation test, using Dekker’s "semi-partialling plus" procedure.

qapx QAP permutation test, using (single) x-permutations.

qapy QAP permutation test, using y-permutations.

Note that interpretation of quantiles for single coefficients can be complex in the presence of mul-
ticollinearity or third variable effects.qapspp is generally recommended for most multivariable
analyses, as it is known to be robust to these conditions. Reasonable printing and summarizing
of netlm objects is provided byprint.netlm andsummary.netlm , respectively. No plot
methods exist at this time, alas.

Value

An object of classnetlm

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Dekker, D.; Krackhardt, D.; Snijders, T.A.B. (2003). “Mulicollinearity Robust QAP for Multiple
Regression.” CASOS Working Paper, Carnegie Mellon University.

Krackhardt, D. (1987). “QAP Partialling as a Test of Spuriousness.”Social Networks, 9 171-186.

Krackhardt, D. (1988). “Predicting With Networks: Nonparametric Multiple Regression Analyses
of Dyadic Data.”Social Networks, 10, 359-382.

See Also

lm , netlogit
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Examples

#Create some input graphs
x<-rgraph(20,4)

#Create a response structure
y<-x[1,,]+4*x[2,,]+2*x[3,,] #Note that the fourth graph is unrelated

#Fit a netlm model
nl<-netlm(y,x,reps=100)

#Examine the results
summary(nl)

netlogit Logistic Regression for Network Data

Description

netlogit performs a logistic regression of the network variable iny on the network variables in
setx . The resulting fits (and coefficients) are then tested against the indicated null hypothesis.

Usage

netlogit(y, x, intercept=TRUE, mode="digraph", diag=FALSE,
nullhyp=c("qap", "qapspp", "qapy", "qapx", "qapallx",

"cugtie", "cugden", "cuguman", "classical"), tol=1e-7,
reps=1000)

Arguments

y dependent network variable.NAs are allowed, and the data should be dichoto-
mous.

x the stack of independent network variables. Note thatNAs are permitted, as is
dichotomous data.

intercept logical; should an intercept term be fitted?

mode string indicating the type of graph being evaluated."digraph" indicates that
edges should be interpreted as directed;"graph" indicates that edges are undi-
rected.mode is set to"digraph" by default.

diag boolean indicating whether or not the diagonal should be treated as valid data.
Set this true if and only if the data can contain loops.diag is FALSEby default.

nullhyp string indicating the particular null hypothesis against which to test the observed
estimands.

tol tolerance parameter forqr.solve .

reps integer indicating the number of draws to use for quantile estimation. (Relevant
to the null hypothesis test only – the analysis itself is unaffected by this param-
eter.) Note that, as for all Monte Carlo procedures, convergence is slower for
more extreme quantiles. By default,reps =1000.
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Details

netlogit is primarily a front-end to the built-inglm.fit routine.netlogit handles vector-
ization, sets upglm options, and deals with null hypothesis testing; the actual fitting is taken care
of by glm.fit .

Logistic network regression using is directly analogous to standard logistic regression elementwise
on the appropriately vectorized adjacency matrices of the networks involved. As such, it is often
a more appropriate model for fitting dichotomous response networks than is linear network regres-
sion.

Because of the frequent presence of row/column/block autocorrelation in network data, classical
hull hypothesis tests (and associated standard errors) are generally suspect. Further, it is some-
times of interest to compare fitted parameter values to those arising from various baseline models
(e.g., uniform random graphs conditional on certain observed statistics). The tests supported by
netlogit are as follows:

classical tests based on classical asymptotics.

cug conditional uniform graph test (seecugtest ) controlling for order.

cugden conditional uniform graph test, controlling for order and density.

cugtie conditional uniform graph test, controlling for order and tie distribution.

qap QAP permutation test (seeqaptest ); currently identical toqapspp .

qapallx QAP permutation test, using independent x-permutations.

qapspp QAP permutation test, using Dekker’s "semi-partialling plus" procedure.

qapx QAP permutation test, using (single) x-permutations.

qapy QAP permutation test, using y-permutations.

Note that interpretation of quantiles for single coefficients can be complex in the presence of mul-
ticollinearity or third variable effects. Althoughqapspp is known to be robust to these conditions
in the OLS case, there are no equivalent results for logistic regression. Caution is thus advised.
Reasonable printing and summarizing ofnetlogit objects is provided byprint.netlogit
andsummary.netlogit , respectively. No plot methods exist at this time.

Value

An object of classnetlogit

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Butts, C.T., and Carley, K.M. (2001). “Multivariate Methods for Interstructural Analysis.” CASOS
working paper, Carnegie Mellon University.

See Also

glm , netlm
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Examples

#Create some input graphs
x<-rgraph(20,4)

#Create a response structure
y.l<-x[1,,]+4*x[2,,]+2*x[3,,] #Note that the fourth graph is

#unrelated
y.p<-apply(y.l,c(1,2),function(a){1/(1+exp(-a))})
y<-rgraph(20,tprob=y.p)

#Fit a netlogit model
nl<-netlogit(y,x,reps=100)

#Examine the results
summary(nl)

npostpred Take Posterior Predictive Draws for Functions of Networks

Description

npostpred takes a list or data frame,b, and applies the functionFUNto each element ofb’s net
member.

Usage

npostpred(b, FUN, ...)

Arguments

b A list or data frame containing posterior network draws; these draws must take
the form of a graph stack, and must be the member ofb referenced by "net "

FUN Function for which posterior predictive is to be estimated

... Additional arguments toFUN

Details

Although created to work withbbnam, npostpred is quite generic. The form of the posterior
draws will vary with the output ofFUN; since invocation is handled byapply , check there if
unsure.

Value

A series of posterior predictive draws

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Gelman, A.; Carlin, J.B.; Stern, H.S.; and Rubin, D.B. (1995).Bayesian Data Analysis.London:
Chapman and Hall.
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See Also

bbnam

Examples

#Create some random data
g<-rgraph(5)
g.p<-0.8*g+0.2*(1-g)
dat<-rgraph(5,5,tprob=g.p)

#Define a network prior
pnet<-matrix(ncol=5,nrow=5)
pnet[,]<-0.5
#Define em and ep priors
pem<-matrix(nrow=5,ncol=2)
pem[,1]<-3
pem[,2]<-5
pep<-matrix(nrow=5,ncol=2)
pep[,1]<-3
pep[,2]<-5

#Draw from the posterior
b<-bbnam(dat,model="actor",nprior=pnet,emprior=pem,epprior=pep,

burntime=100,draws=100)
#Plot a summary of the posterior predictive of reciprocity
hist(npostpred(b,grecip))

nties Find the Number of Possible Ties in a Given Graph or Graph Stack

Description

nties returns the number of possible edges in each element ofdat , givenmode anddiag .

Usage

nties(dat, mode="digraph", diag=FALSE)

Arguments

dat a graph or set thereof.

mode one of “digraph”, “graph”, and “hgraph”.

diag a boolean indicating whether or not diagonal entries (loops) should be treated as
valid data; ignored for hypergraphic (“hgraph”) data.

Details

nties is used primarily to automate maximum edge counts for use with normalization routines.

Value

The number of possible edges, or a vector of the same
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Note

For two-mode (hypergraphic) data, the value returned isn’t technically the number of edges per se,
but rather the number of edge memberships.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

Examples

#How many possible edges in a loopless digraph of order 15?
nties(rgraph(15),diag=FALSE)

numperm Get the nth Permutation Vector by Periodic Placement

Description

numperm implicitly numbers all permutations of lengtholength , returning thepermnumth of
these.

Usage

numperm(olength, permnum)

Arguments

olength The number of items to permute

permnum The number of the permutation to use (in1:olength! )

Details

The n! permutations on n items can be deterministically ordered via a factorization process in which
there are n slots for the first element, n-1 for the second, and n-i for the ith. This fact is quite handy
if you want to visit each permutation in turn, or if you wish to sample without replacement from the
set of permutations on some number of elements: one just enumerates or samples from the integers
on [1,n!], and then find the associated permutation.numperm performs exactly this last operation,
returning thepermnumth permutation onolength items.

Value

A permutation vector

Note

Permutation search is central to the estimation of structural distances, correlations, and covariances
on partially labeled graphs.numperm is hence used bystructdist , gscor , gscov , etc.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉
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See Also

rperm , rmperm

Examples

#Draw a graph
g<-rgraph(5)

#Permute the rows and columns
p.1<-numperm(5,1)
p.2<-numperm(5,2)
p.3<-numperm(5,3)
g[p.1,p.1]
g[p.2,p.2]
g[p.3,p.3]

plot.bbnam Plotting for bbnam Objects

Description

Generates various plots of posterior draws from thebbnam model.

Usage

plot.bbnam(x, mode="density", intlines=TRUE, ...)

Arguments

x A bbnam object

mode “density” for kernel density estimators of posterior marginals; otherwise, his-
tograms are used

intlines Plot lines for the 0.9 central posterior probability intervals?

... Additional arguments toplot

Details

plot.bbnam provides plots of the estimated posterior marginals for the criterion graph and error
parameters (as appropriate). Plotting may run into difficulties when dealing with large graphs,
due to the problem of getting all of the various plots on the page; the routine handles these issues
reasonably intelligently, but there is doubtless room for improvement.

Value

None

Author(s)

Carter T. Butts〈buttsc@uci.edu〉
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References

Butts, C.T. (1999). “Informant (In)Accuracy and Network Estimation: A Bayesian Approach.”
CASOS Working Paper, Carnegie Mellon University.

See Also

bbnam

Examples

#Create some random data
g<-rgraph(5)
g.p<-0.8*g+0.2*(1-g)
dat<-rgraph(5,5,tprob=g.p)

#Define a network prior
pnet<-matrix(ncol=5,nrow=5)
pnet[,]<-0.5
#Define em and ep priors
pem<-matrix(nrow=5,ncol=2)
pem[,1]<-3
pem[,2]<-5
pep<-matrix(nrow=5,ncol=2)
pep[,1]<-3
pep[,2]<-5

#Draw from the posterior
b<-bbnam(dat,model="actor",nprior=pnet,emprior=pem,epprior=pep,

burntime=100,draws=100)
#Print a summary of the posterior draws
summary(b)
#Plot the result
plot(b)

plot.blockmodel Plotting for blockmodel Objects

Description

Displays a plot of the blocked data matrix, given a blockmodel object.

Usage

plot.blockmodel(x, ...)

Arguments

x An object of classblockmodel

... Further arguments passed to or from other methods
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Details

Plots of the blocked data matrix (i.e., the data matrix with rows and columns permuted to match
block membership) can be useful in assessing the strength of the block solution (particularly for
clique detection and/or regular equivalence).

Value

None

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

White, H.C.; Boorman, S.A.; and Breiger, R.L. (1976). “Social Structure from Multiple Networks
I: Blockmodels of Roles and Positions.”American Journal of Sociology, 81, 730-779.

Wasserman, S., and Faust, K. (1994).Social Network Analysis: Methods and Applications.Cam-
bridge: Cambridge University Press.

See Also

blockmodel , plot.sociomatrix

Examples

#Create a random graph with _some_ edge structure
g.p<-sapply(runif(20,0,1),rep,20) #Create a matrix of edge

#probabilities
g<-rgraph(20,tprob=g.p) #Draw from a Bernoulli graph

#distribution

#Cluster based on structural equivalence
eq<-equiv.clust(g)

#Form a blockmodel with distance relaxation of 10
b<-blockmodel(g,eq,h=10)
plot(b) #Plot it

plot.cugtest Plotting for cugtest Objects

Description

Plots the distribution of a CUG test statistic.

Usage

plot.cugtest(x, mode="density", ...)
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Arguments

x A cugtest object

mode “density” for kernel density estimation, “hist” for histogram

... Additional arguments toplot

Details

In addition to the quantiles associated with a CUG test, it is often useful to examine the form of the
distribution of the test statistic.plot.cugtest facilitates this.

Value

None

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Anderson, B.S.; Butts, C.T.; and Carley, K.M. (1999). “The Interaction of Size and Density with
Graph-Level Indices.”Social Networks, 21(3), 239-267.

See Also

cugtest

Examples

#Draw two random graphs, with different tie probabilities
dat<-rgraph(20,2,tprob=c(0.2,0.8))

#Is their correlation higher than would be expected, conditioning
#only on size?
cug<-cugtest(dat,gcor,cmode="order")
summary(cug)
plot(cug)

#Now, let's try conditioning on density as well.
cug<-cugtest(dat,gcor)
plot(cug)

plot.equiv.clust Plot an equiv.clust Object

Description

Plots a hierarchical clustering of node positions as generated byequiv.clust .

Usage

plot.equiv.clust(x, labels=NULL, ...)
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Arguments

x An equiv.clust object

labels A vector of vertex labels

... Additional arguments toplot.hclust

Details

plot.equiv.clust is actually a front-end toplot.hclust ; see the latter for more additional
documentation.

Value

None.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Breiger, R.L.; Boorman, S.A.; and Arabie, P. (1975). “An Algorithm for Clustering Relational Data
with Applications to Social Network Analysis and Comparison with Multidimensional Scaling.”
Journal of Mathematical Psychology, 12, 328-383.

Burt, R.S. (1976). “Positions in Networks.”Social Forces, 55, 93-122.

Wasserman, S., and Faust, K.Social Network Analysis: Methods and Applications.Cambridge:
Cambridge University Press.

See Also

equiv.clust , plot.hclust

Examples

#Create a random graph with _some_ edge structure
g.p<-sapply(runif(20,0,1),rep,20) #Create a matrix of edge

#probabilities
g<-rgraph(20,tprob=g.p) #Draw from a Bernoulli graph

#distribution

#Cluster based on structural equivalence
eq<-equiv.clust(g)
plot(eq)
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plot.lnam Plotting for lnam Objects

Description

Generates various diagnostic plots forlnam objects.

Usage

plot.lnam(x, ...)

Arguments

x an object of classlnam .

... additional arguments toplot .

Value

None

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

lnam

plot.qaptest Plotting for qaptest Objects

Description

Plots the Distribution of a QAP Test Statistic.

Usage

plot.qaptest(x, mode="density", ...)

Arguments

x A qaptest object

mode “density” for kernel density estimation, “hist” for histogram

... Additional arguments toplot

Details

In addition to the quantiles associated with a QAP test, it is often useful to examine the form of the
distribution of the test statistic.plot.qaptest facilitates this.
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Value

None

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Hubert, L.J., and Arabie, P. (1989). “Combinatorial Data Analysis: Confirmatory Comparisons
Between Sets of Matrices.”Applied Stochastic Models and Data Analysis, 5, 273-325.

Krackhardt, D. (1987). “QAP Partialling as a Test of Spuriousness.”Social Networks, 9 171-186.

Krackhardt, D. (1988). “Predicting With Networks: Nonparametric Multiple Regression Analyses
of Dyadic Data.”Social Networks, 10, 359-382.

See Also

qaptest

Examples

#Generate three graphs
g<-array(dim=c(3,10,10))
g[1,,]<-rgraph(10)
g[2,,]<-rgraph(10,tprob=g[1,,]*0.8)
g[3,,]<-1; g[3,1,2]<-0 #This is nearly a clique

#Perform qap tests of graph correlation
q.12<-qaptest(g,gcor,g1=1,g2=2)
q.13<-qaptest(g,gcor,g1=1,g2=3)

#Examine the results
summary(q.12)
plot(q.12)
summary(q.13)
plot(q.13)

plot.sociomatrix Plot Matrices Using a Color/Intensity Grid

Description

Plots a matrix,m, associating the magnitude of the i,jth cell ofmwith the color of the i,jth cell of an
nrow(m) by ncol(m) grid.

Usage

plot.sociomatrix(x, labels=NULL, drawlab=TRUE, diaglab=TRUE,
drawlines=TRUE, xlab=NULL, ylab=NULL, cex.lab=1, ...)
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Arguments

x an input graph.

labels a list containing the vectors of row and column labels (respectively); defaults to
numerical labels.

drawlab logical; add row/column labels to the plot?

diaglab logical; label the diagonal?

drawlines logical; draw lines to mark cell boundaries?

xlab x axis label.

ylab y axis label.

cex.lab optional expansion factor for labels.

... additional arguments toplot .

Details

plot.sociomatrix is particularly valuable for examining large adjacency matrices, whose
structure can be non-obvious otherwise.

Value

None

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

plot.blockmodel

Examples

#Plot a small adjacency matrix
plot.sociomatrix(rgraph(5))

#Plot a much larger one
plot.sociomatrix(rgraph(100),drawlab=FALSE,diaglab=FALSE)

potscalered.mcmc Compute Gelman and Rubin’s Potential Scale Reduction Measure for
a Markov Chain Monte Carlo Simulation

Description

Computes Gelman and Rubin’s (simplified) measure of scale reduction for draws of a single scalar
estimand from parallel MCMC chains.

Usage

potscalered.mcmc(psi)
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Arguments

psi An nxm matrix, with columns corresponding to chains and rows corresponding
to iterations.

Details

The Gelman and Rubin potential scale reduction (
√

R̂) provides an ANOVA-like comparison of
the between-chain to within-chain variance on a given scalar estimand; the disparity between these
gives an indication of the extent to which the scale of the simulated distribution can be reduced via

further sampling. As the parallel chains converge
√

R̂ approaches 1 (from above), and it is generally
recommended that values of 1.2 or less be obtained before a series of draws can be considered well-
mixed. (Even so, one should ideally examine other indicators of chain mixing, and verify that the
properties of the draws are as they should be. There is currently no fool-proof way to verify burn-in
of an MCMC, but using multiple indicators should help one avoid falling prey to the idiosyncrasies
of any one index.)

Note that the particular estimators used in the
√

R̂ formulation are based on normal-theory results,
and as such have been criticized vis a vis their behavior on other distributions. Where simulating
distributions whose properties differ greatly from the normal, an alternative form of the measure
using robust measures of scale (e.g., the IQR) may be preferable.

Value

The potential scale reduction measure

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Gelman, A.; Carlin, J.B.; Stern, H.S.; and Rubin, D.B. (1995).Bayesian Data Analysis.London:
Chapman and Hall.

Gelman, A., and Rubin, D.B. (1992). “Inference from Iterative Simulation Using Multiple Se-
quences.”Statistical Science,7, 457-511.

See Also

bbnam

Examples
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prestige Calculate the Vertex Prestige Scores

Description

prestige takes one or more graphs (dat ) and returns the prestige scores of positions (selected
by nodes ) within the graphs indicated byg. Depending on the specified mode, prestige based
on any one of a number of different definitions will be returned. This function is compatible with
centralization , and will return the theoretical maximum absolute deviation (from maximum)
conditional on size (which is used bycentralization to normalize the observed centralization
score).

Usage

prestige(dat, g=1, nodes=NULL, gmode="digraph", diag=FALSE,
cmode="indegree", tmaxdev=FALSE, rescale=FALSE, tol=1e-07)

Arguments

dat one or more input graphs.

g integer indicating the index of the graph for which centralities are to be calcu-
lated (or a vector thereof). By default,g==1 .

nodes vector indicating which nodes are to be included in the calculation. By default,
all nodes are included.

gmode string indicating the type of graph being evaluated. "digraph" indicates that
edges should be interpreted as directed; "graph" indicates that edges are undi-
rected.gmode is set to "digraph" by default.

diag boolean indicating whether or not the diagonal should be treated as valid data.
Set this true if and only if the data can contain loops.diag is FALSEby default.

cmode one of "indegree", "indegree.rownorm", "indegree.rowcolnorm", "eigenvector",
"eigenvector.rownorm", "eigenvector.colnorm", "eigenvector.rowcolnorm", "do-
main", or "domain.proximity".

tmaxdev boolean indicating whether or not the theoretical maximum absolute deviation
from the maximum nodal centrality should be returned. By default,tmaxdev==FALSE .

rescale if true, centrality scores are rescaled such that they sum to 1.

tol Currently ignored

Details

"Prestige" is the name collectively given to a range of centrality scores which focus on the extent to
which one is nominated by others. The definitions supported here are as follows:

1. indegree: indegree centrality

2. indegree.rownorm: indegree within the row-normalized graph

3. indegree.rowcolnorm: indegree within the row-column normalized graph

4. eigenvector: eigenvector centrality within the transposed graph (i.e., incoming ties recursively
determine prestige)

5. eigenvector.rownorm: eigenvector centrality within the transposed row-normalized graph
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6. eigenvector.colnorm: eigenvector centrality within the transposed column-normalized graph

7. eigenvector.rowcolnorm: eigenvector centrality within the transposed row/column-normalized
graph

8. domain: indegree within the reachability graph (Lin’s unweighted measure)

9. domain.proximity: Lin’s proximity-weighted domain prestige

Note that the centralization of prestige is simply the extent to which one actor has substantially
greater prestige than others; the underlying definition is the same.

Value

A vector, matrix, or list containing the prestige scores (depending on the number and size of the
input graphs).

Warning

Making adjacency matrices doubly stochastic (row-column normalization) is not guaranteed to
work. In general, be wary of attempting to try normalizations on graphs with degenerate rows
and columns.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Lin, N. (1976).Foundations of Social Research. New York: McGraw Hill.

Wasserman, S., and Faust, K. (1994).Social Network Analysis: Methods and Applications.Cam-
bridge: Cambridge University Press.

See Also

centralization

Examples

g<-rgraph(10) #Draw a random graph with 10 members
prestige(g,cmode="domain") #Compute domain prestige scores

print.bayes.factor Printing for Bayes Factor Objects

Description

Prints a quick summary of a Bayes Factor object.

Usage

print.bayes.factor(x, ...)
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Arguments

x An object of classbayes.factor

... Further arguments passed to or from other methods

Value

None

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

bbnam.bf

Examples

print.bbnam Printing for bbnam Objects

Description

Prints a quick summary of posterior draws frombbnam.

Usage

print.bbnam(x, ...)

Arguments

x A bbnam object

... Further arguments passed to or from other methods

Value

None

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

bbnam

Examples
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print.blockmodel Printing for blockmodel Objects

Description

Prints a quick summary of ablockmodel object.

Usage

print.blockmodel(x, ...)

Arguments

x An object of classblockmodel

... Further arguments passed to or from other methods

Value

None

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

blockmodel

Examples

print.cugtest Printing for cugtest Objects

Description

Prints a quick summary of objects produced bycugtest .

Usage

print.cugtest(x, ...)

Arguments

x An object of classcugtest

... Further arguments passed to or from other methods

Value

None.
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Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

cugtest

Examples

print.lnam Printing for lnam Objects

Description

Prints an objsect of classlnam

Usage

print.lnam(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

x an object of classlnam .

digits number of digits to display.

... additional arguments.

Value

None.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

lnam



print.netcancor 129

print.netcancor Printing for netcancor Objects

Description

Prints a quick summary of objects produced bynetcancor .

Usage

print.netcancor(x, ...)

Arguments

x An object of classnetcancor

... Further arguments passed to or from other methods

Value

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

netcancor

Examples

print.netlm Printing for netlm Objects

Description

Prints a quick summary of objects produced bynetlm .

Usage

print.netlm(x, ...)

Arguments

x An object of classnetlm

... Further arguments passed to or from other methods

Value
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Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

netlm

Examples

print.netlogit Printing for netlogit Objects

Description

Prints a quick summary of objects produced bynetlogit .

Usage

print.netlogit(x, ...)

Arguments

x An object of classnetlogit

... Further arguments passed to or from other methods

Value

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

netlogit

Examples
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print.qaptest Printing for qaptest Objects

Description

Prints a quick summary of objects produced byqaptest .

Usage

print.qaptest(x, ...)

Arguments

x An object of classqaptest

... Further arguments passed to or from other methods

Value

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

qaptest

Examples

print.summary.bayes.factor
Printing for summary.bayes.factor Objects

Description

Prints an object of classsummary.bayes.factor .

Usage

print.summary.bayes.factor(x, ...)

Arguments

x An object of classsummary.bayes.factor

... Further arguments passed to or from other methods
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Value

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

summary.bayes.factor

Examples

print.summary.bbnam
Printing for summary.bbnam Objects

Description

Prints an object of classsummary.bbnam .

Usage

print.summary.bbnam(x, ...)

Arguments

x An object of classsummary.bbnam

... Further arguments passed to or from other methods

Value

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

bbnam

Examples
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print.summary.blockmodel
Printing for summary.blockmodel Objects

Description

Prints an object of classsummary.blockmodel .

Usage

print.summary.blockmodel(x, ...)

Arguments

x An object of classsummary.blockmodel

... Further arguments passed to or from other methods

Value

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

summary.blockmodel

Examples

print.summary.cugtest
Printing for summary.cugtest Objects

Description

Prints an object of classsummary.cugtest .

Usage

print.summary.cugtest(x, ...)

Arguments

x An object of classsummary.cugtest

... Further arguments passed to or from other methods
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Value

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

summary.cugtest

Examples

print.summary.lnam Printing for summary.lnam Objects

Description

Prints an object of classsummary.lnam .

Usage

print.summary.lnam(x, digits = max(3, getOption("digits") - 3),
signif.stars = getOption("show.signif.stars"), ...)

Arguments

x an object of classsummary.lnam .

digits number of digits to display.

signif.stars show significance stars?

... additional arguments.

Value

None

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

summary.lnam , lnam
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print.summary.netcancor
Printing for summary.netcancor Objects

Description

Prints an object of classsummary.netcancor .

Usage

print.summary.netcancor(x, ...)

Arguments

x An object of classsummary.netcancor

... Further arguments passed to or from other methods

Value

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

summary.netcancor

Examples

print.summary.netlm
Printing for summary.netlm Objects

Description

Prints an object of classsummary.netlm .

Usage

print.summary.netlm(x, ...)

Arguments

x An object of classsummary.netlm

... Further arguments passed to or from other methods
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Value

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

summary.netlm

Examples

print.summary.netlogit
Printing for summary.netlogit Objects

Description

Prints an object of classsummary.netlogit .

Usage

print.summary.netlogit(x, ...)

Arguments

x An object of classsummary.netlogit

... Further arguments passed to or from other methods

Value

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

summary.netlogit

Examples
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print.summary.qaptest
Printing for summary.qaptest Objects

Description

Prints an object of classsummary.qaptest .

Usage

print.summary.qaptest(x, ...)

Arguments

x An object of classsummary.qaptest

... Further arguments passed to or from other methods

Value

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

summary.qaptest

Examples

pstar Fit a p*/ERG Model Using a Logistic Approximation

Description

Fits a p*/ERG model to the graph indat containing the effects listed ineffects . The result is
returned as aglm object.

Usage

pstar(dat, effects=c("choice", "mutuality", "density", "reciprocity",
"stransitivity", "wtransitivity", "stranstri", "wtranstri",
"outdegree", "indegree", "betweenness", "closeness",
"degcentralization", "betcentralization", "clocentralization",
"connectedness", "hierarchy", "lubness", "efficiency"),
attr=NULL, memb=NULL, diag=FALSE, mode="digraph")



138 pstar

Arguments

dat a single graph

effects a vector of strings indicating which effects should be fit.

attr a matrix whose columns contain individual attributes (one row per vertex) whose
differences should be used as supplemental predictors.

memb a matrix whose columns contain group memberships whose categorical similar-
ities (same group/not same group) should be used as supplemental predictors.

diag a boolean indicating whether or not diagonal entries (loops) should be counted
as meaningful data.

mode "digraph" if dat is directed, else"graph"

Details

p* (also called the Exponential Random Graph (ERG) family) is an exponential family specification
for network data. Under p*, it is assumed that

p(G = g) ∝ exp(β0γ0(g) + β1γ1(g) + . . .)

for all g, where the betas represent real coefficients and the gammas represent functions of g. Un-
fortunately, the unknown normalizing factor in the above expression makes evaluation difficult in
the general case. One solution to this problem is to operate instead on the edgewise log odds; in
this case, the p* MLE can be approximated by a logistic regression of each edge on thedifferences
in the gamma scores induced by the presence and absence of said edge in the graph (conditional on
all other edges). It is this approximation (known as autologistic regression, or maximum pseudo-
likelihood estimation) which is employed here.

Using theeffects argument, a range of different potential parameters can be estimated. The
network measure associated with each is, in turn, the edge-perturbed difference in:

1. choice : the number of edges in the graph (acts as a constant)

2. mutuality : the number of reciprocated dyads in the graph

3. density : the density of the graph

4. reciprocity : the edgewise reciprocity of the graph

5. stransitivity : the strong transitivity of the graph

6. wtransitivity : the weak transitivity of the graph

7. stranstri : the number of strongly transitive triads in the graph

8. wtranstri : the number of weakly transitive triads in the graph

9. outdegree : the outdegree of each actor (|V| parameters)

10. indegree : the indegree of each actor (|V| parameters)

11. betweenness : the betweenness of each actor (|V| parameters)

12. closeness : the closeness of each actor (|V| parameters)

13. degcentralization : the Freeman degree centralization of the graph

14. betcentralization : the betweenness centralization of the graph

15. clocentralization : the closeness centralization of the graph

16. connectedness : the Krackhardt connectedness of the graph

17. hierarchy : the Krackhardt hierarchy of the graph

18. efficiency : the Krackhardt efficiency of the graph
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19. lubness : the Krackhardt LUBness of the graph

(Note that some of these do differ somewhat from the common p* parameter formulation, e.g.
quantities such as density and reciprocity are computed as per thegden andgrecip functions
rather than via the unnormalized "choice" and "mutual" quantities one often finds in the p* lit-
erature.) Please do not attempt to use all effects simultaneously!!!In addition to the above, the
user may specify a matrix of individual attributes whose absolute dyadic differences are to be used
as predictors, as well as a matrix of individual memberships whose dyadic categorical similarities
(same/different) are used in the same manner.

Although the p* framework is quite versatile in its ability to accommodate a range of structural
predictors, it should be noted that thesubstantialcollinearity of many of the standard p* predictors
can lead to very unstable model fits. Measurement and specification errors compound this prob-
lem; thus, it is somewhat risky to use p* in an exploratory capacity (i.e., when there is little prior
knowledge to constrain choice of parameters). While raw instability due to multicollinearity should
decline with graph size, improper specification will still result in biased coefficient estimates so
long as an omitted predictor correlates with an included predictor. Caution is advised.

Value

A glm object

WARNING

Estimation of p* models by maximum pseudo-likelihood is now known to be a dangerous practice.
Use at your own risk.

Note

In the long run, support will be included for p* models involving arbitrary functions (much like the
system used withcugtest andqaptest ).

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Anderson, C.; Wasserman, S.; and Crouch, B. (1999). “A p* Primer: Logit Models for Social
Networks.Social Networks,21,37-66.

Holland, P.W., and Leinhardt, S. (1981). “An Exponential Family of Probability Distributions for
Directed Graphs.”Journal of the American statistical Association, 81, 51-67.

Wasserman, S., and Pattison, P. (1996). “Logit Models and Logistic Regressions for Social Net-
works: I. An introduction to Markov Graphs and p*.”Psychometrika,60, 401-426.

See Also

eval.edgeperturbation
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Examples

#Create a graph with expansiveness and popularity effects
in.str<-rnorm(20,0,3)
out.str<-rnorm(20,0,3)
tie.str<-outer(out.str,in.str,"+")
tie.p<-apply(tie.str,c(1,2),function(a){1/(1+exp(-a))})
g<-rgraph(20,tprob=tie.p)

#Fit a model with expansiveness only
p1<-pstar(g,effects="outdegree")
#Fit a model with expansiveness and popularity
p2<-pstar(g,effects=c("outdegree","indegree"))
#Fit a model with expansiveness, popularity, and mutuality
p3<-pstar(g,effects=c("outdegree","indegree","mutuality"))

#Compare the model AICs -- use ONLY as heuristics!!!
extractAIC(p1)
extractAIC(p2)
extractAIC(p3)

qaptest Perform Quadratic Assignment Procedure (QAP) Hypothesis Tests for
Graph-Level Statistics

Description

qaptest tests an arbitrary graph-level statistic (computed ondat by FUN) against a QAP null
hypothesis, via Monte Carlo simulation of likelihood quantiles. Note that fair amount of flexibility
is possible regarding QAP tests on functions of such statistics (see an equivalent discussion with
respect to CUG null hypothesis tests in Anderson et al. (1999)). See below for more details.

Usage

qaptest(dat, FUN, reps=1000, ...)

Arguments

dat graphs to be analyzed. Though one could in principle use a single graph, this is
rarely if ever sensible in a QAP-test context.

FUN function to generate the test statistic.FUNmust acceptdat and the specifiedg
arguments, and should return a real number.

reps integer indicating the number of draws to use for quantile estimation. Note
that, as for all Monte Carlo procedures, convergence is slower for more extreme
quantiles. By default,reps =1000.

... additional arguments toFUN.

Details

The null hypothesis of the QAP test is that the observed graph-level statistic on graphsG1, G2, . . .
was drawn from the distribution of said statistic evaluated (uniformly) on the set of all relabelings
of G1, G2, . . .. Pragmatically, this test is performed by repeatedly (randomly) relabeling the input
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graphs, recalculating the test statistic, and then evaluating the fraction of draws greater than or
equal to (and less than or equal to) the observed value. This accumulated fraction approximates the
integral of the distribution of the test statistic over the set of unlabeled input graphs.

Theqaptest procedure returns aqaptest object containing the estimated likelihood (distribu-
tion of the test statistic under the null hypothesis), the observed value of the test statistic on the input
data, and the one-tailed p-values (estimated quantiles) associated with said observation. As usual,
the (upper tail) null hypothesis is rejected for significance level alpha if p>=observation is less than
alpha (or p<=observation, for the lower tail); if the hypothesis is undirected, then one rejects if either
p<=observation or p>=observation is less then alpha/2. Standard caveats regarding the use of null
hypothesis testing procedures are relevant here: in particular, bear in mind that a significant result
does not necessarily imply that the likelihood ratio of the null model and the alternative hypothesis
favors the latter.

In interpreting a QAP test, it is important to bear in mind the nature of the QAP null hypothesis. The
QAP test shouldnot be interpreted as evaluating underlying structural differences; indeed, QAP is
more accurately understood as testing differences induced by a particular vertex labelingcontrolling
for underlying structure. Where there is substantial automorphism in the underling structures, QAP
will tend to given non-significant results. (In fact, it isimpossibleto obtain a one-tailed signifi-
cance level in excess ofmaxg∈{G,H}

|Aut(g)|
|Perm(g)| when using a QAP test on a bivariate graph statistic

f(G, H), where Aut(g) and Perm(g) are the automorphism and permutation groups on g, respec-
tively. This follows from the fact that all members of Aut(g) will induce the same values off().) By
turns, significance under QAP does not necessarily imply that the observed structural relationship is
unusual relative to what one would expect from typical structures with (for instance) the sizes and
densities of the graphs in question. In contexts in which one’s research question implies a particular
labeling of vertices (e.g., "within this group of individuals, do friends also tend to give advice to
one another"), QAP can be a very useful way of ruling out spurious structural influences (e.g., some
respondents tend to indiscriminately nominate many people (without regard to whom), resulting in
a structural similarity which has nothing to do with the identities of those involved). Where one’s
question does not imply a labeled relationship (e.g., is theshapeof this group’s friendship network
similar to that of its advice network), the QAP null hypothesis is inappropriate.

Value

An object of classqaptest , containing

testval The observed value of the test statistic.

dist A vector containing the Monte Carlo draws.

pgreq The proportion of draws which were greater than or equal to the observed value.

pleeq The proportion of draws which were less than or equal to the observed value.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Anderson, B.S.; Butts, C.T.; and Carley, K.M. (1999). “The Interaction of Size and Density with
Graph-Level Indices.”Social Networks, 21(3), 239-267.

Hubert, L.J., and Arabie, P. (1989). “Combinatorial Data Analysis: Confirmatory Comparisons
Between Sets of Matrices.”Applied Stochastic Models and Data Analysis, 5, 273-325.

Krackhardt, D. (1987). “QAP Partialling as a Test of Spuriousness.”Social Networks, 9 171-186.
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Krackhardt, D. (1988). “Predicting With Networks: Nonparametric Multiple Regression Analyses
of Dyadic Data.”Social Networks, 10, 359-382.

See Also

cugtest

Examples

#Generate three graphs
g<-array(dim=c(3,10,10))
g[1,,]<-rgraph(10)
g[2,,]<-rgraph(10,tprob=g[1,,]*0.8)
g[3,,]<-1; g[3,1,2]<-0 #This is nearly a clique

#Perform qap tests of graph correlation
q.12<-qaptest(g,gcor,g1=1,g2=2)
q.13<-qaptest(g,gcor,g1=1,g2=3)

#Examine the results
summary(q.12)
plot(q.12)
summary(q.13)
plot(q.13)

reachability Find the Reachability Matrix of a Graph

Description

reachability takes one or more (possibly directed) graphs as input, producing the associated
reachability matrices.

Usage

reachability(dat, geodist.precomp=NULL)

Arguments

dat one or more graphs (directed or otherwise).
geodist.precomp

optionally, a precomputedgeodist object.

Details

For a digraphG = (V,E) with verticesi andj, let Pij represent a directedij path. Then the graph

R = (V (G) , {(i, j) : i, j ∈ V (G) , Pij ∈ G})

is said to be thereachability graphof G, and the adjacency matrix ofR is said to beG’s reachability
matrix. (Note that whenG is undirected, we simply take each undirected edge to be bidirectional.)
Vertices which are adjacent in the reachability graph are connected by one or more directed paths
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in the original graph; thus, structural equivalence classes in the reachability graph are synonymous
with strongly connected components in the original structure.

Bear in mind that – as with all matters involving connectedness – reachability is strongly related
to size and density. Since, for any given density, almost all structures of sufficiently large size are
connected, reachability graphs associated with large structures will generally be complete. Mea-
sures based on the reachability graph, then, will tend to become degenerate in the large|V (G)|
limit (assuming constant positive density).

Value

A reachability matrix

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Wasserman, S., and Faust, K. (1994).Social Network Analysis: Methods and Applications.Cam-
bridge: Cambridge University Press.

See Also

geodist

Examples

#Find the reachability matrix for a sparse random graph
g<-rgraph(10,tprob=0.15)
rg<-reachability(g)
g #Compare the two structures
rg

#Compare to the output of geodist
all(rg==(geodist(g)$counts>0))

read.nos Read (N)eo-(O)rg(S)tat Input Files

Description

Reads an input file in NOS format, returning the result as a graph set.

Usage

read.nos(file)

Arguments

file The file to be imported
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Details

NOS format consists of three header lines, followed by a whitespace delimited stack of raw adja-
cency matrices; the format is not particularly elegant, but turns up in certain legacy applications
(mostly at CMU).read.nos provides a quick and dirty way of reading in these files, without the
headache of messing withread.table settings.

The content of the NOS format is as follows:

<m>

<n> <o>

<kr1> <kr2> ... <krn> <kc1> <kc2> ... <kcn>

<a111> <a112> ... <a11o>

<a121> <a122> ... <a12o>

...

<a1n1> <a1n2> ... <a1no>

<a211> <a212> ... <a21o>

...

<a2n1> <a2n2> ... <a2no>

...

<amn1> <amn2> ... <amno>

where <abcd> is understood to be the value of the c->d edge in the bth graph of the file. (As
one might expect, m, n, and o are the numbers of graphs (matrices), rows, and columns for the
data, respectively.) The "k" line contains a list of row and column "colors", categorical variables
associated with each row and column, respectively. Although originally intended to communicate
exchangability information, these can be used for other purposes (though there are easier ways to
deal with attribute data these days).

Value

The imported graph set (in adjacency array form).

Note

read.nos currently ignores the coloring information.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

write.nos , scan , read.table

Examples



rgbn 145

rgbn Draw from a Skvoretz-Fararo Biased Net Process

Description

Produces a series of draws from a Skvoretz-Fararo biased net process using a Gibbs sampler.

Usage

rgbn(n, nv, param=list(pi=0, sigma=0, rho=0, d=0.5),
burn=nv*nv*1000, thin=nv)

Arguments

n number of draws to take.

nv number of vertices in the graph to be simulated.

param a list containing the biased net parameters.

burn number of burn-in draws to take (and discard).

thin thinning parameter.

Details

The biased net model stems from early work by Rapoport, who attempted to model networks via a
hypothetical "tracing" process. This process may be described loosely as follows. One begins with
a small "seed" set of vertices, each member of which is assumed to nominate (generate ties to) other
members of the population with some fixed probability. These members, in turn, may nominate new
members of the population, as well as members who have already been reached. Such nominations
may be "biased" in one fashion or another, leading to a non-uniform growth process.

While the original biased net model depends upon the tracing process, a local interpretation has
been put forward by Skvoretz and colleagues in recent years. Using the standard four-parameter
process, the conditional probability of an(i, j) edge given all other edges in a random graphG can
be written as

Pr(i→ j) = 1− (1− ρ)z(1− σ)y(1− π)x(1− d)

wherex = 1 iff j → i (and 0 otherwise),y is the number of verticesk 6= i, j such thatk → i, k →
j, andz = 1 iff x = 1 andy > 0 (and 0 otherwise). Thus,x is the number of "parent bias" events,
y is the number of "sibling bias" events, andz is the number of "double role bias" events.d is the
probability of the baseline edge event; note that an edge arises if the baseline event or any bias event
occurs, and all events are assumed conditionally independent. Written in this way, it is clear that
the edges ofG are conditionally independent iff they share no endpoint. Thus, the above model is a
subfamily of the Markov graphs.

It should be noted that the above process is not entirely consistent with the tracing-based model,
which is itself not uniformly well-specified in the literature. For this reason, the local model is
referred to here as a Skvoretz-Fararo graph process. One significant advantage of this process is
that it is well-defined, and easily simulated: the above equation forms the basis of a Gibbs sampler,
which is used byrgbn to take draws from the (local) biased net model. Burn-in and thinning
are controlled by the corresponding arguments; since degeneracy is common with Markov graph
models, it is advisable to check for adequate mixing.
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Value

An adjacency array containing the simulated graphs.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Rapoport, A. (1957). “A contribution to the theory of random and biased nets.”Bulletin of Mathe-
matical Biophysics,15, 523-533.

Skvoretz, J.; Fararo, T.J.; and Agneessens, F. (2004). “Advances in biased net theory: definitions,
derivations, and estimations.”Social Networks,26, 113-139.

See Also

bn

Examples

#Generate draws with low density and no biases
g1<-rgbn(50,10,param=list(pi=0, sigma=0, rho=0, d=0.17))
apply(dyad.census(g1),2,mean) #Examine the dyad census

#Add a reciprocity bias
g2<-rgbn(50,10,param=list(pi=0.5, sigma=0, rho=0, d=0.17))
apply(dyad.census(g2),2,mean) #Compare with g1

#Alternately, add a sibling bias
g3<-rgbn(50,10,param=list(pi=0.0, sigma=0.3, rho=0, d=0.17))
mean(gtrans(g3)) #Compare transitivity scores
mean(gtrans(g1))

rgnm Draw Density-Conditioned Random Graphs

Description

rgnm generates random draws from a density-conditioned uniform random graph distribution.

Usage

rgnm(n, nv, m, mode = "digraph", diag = FALSE)

Arguments

n the number of graphs to generate.

nv the size of the vertex set (|V (G)|) for the random graphs.

m the number of edges on which to condition.

mode "digraph" for directed graphs, or"graph" for undirected graphs.

diag boolean; should loops be allowed?
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Details

rgnm returns draws from the density-conditioned uniform random graph first popularized by the
famous work of Erdös and Rényi (theG(N,M) process). In particular, the pmf of aG(N,M)
process is given by

p(G = g|N,M) =
(

Em

M

)−1

whereEm is the maximum number of edges in the graph. (Em is equal tonv*(nv-diag)/(1+(mode=="graph")) .)

TheG(N,M) process is one of several process which are used as baseline models of social struc-
ture. Other well-known baseline models include the Bernoulli graph (theG(N, p) model of Erdös
and Rényi) and the U|MAN model of dyadic independence. These are implemented withinsna as
rgraph andrgnm , respectively.

Value

A matrix or array containing the drawn adjacency matrices

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Erdös, P. and Rényi, A. (1960). “On the Evolution of Random Graphs.”Public Mathematical
Institute of Hungary Academy of Sciences,5:17-61.

See Also

rgraph , rguman

Examples

#Draw 5 random graphs of order 10
all(gden(rgnm(5,10,9,mode="graph"))==0.2) #Density 0.2
all(gden(rgnm(5,10,9))==0.1) #Density 0.1

#Plot a random graph
gplot(rgnm(1,10,20))

rgraph Generate Bernoulli Random Graphs

Description

rgraph generates random draws from a Bernoulli graph distribution, with various parameters for
controlling the nature of the data so generated.

Usage

rgraph(n, m=1, tprob=0.5, mode="digraph", diag=FALSE, replace=FALSE,
tielist=NULL)
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Arguments

n The size of the vertex set (|V(G)|) for the random graphs

m The number of graphs to generate

tprob Information regarding tie (edge) probabilities; see below

mode “digraph” for directed data, “graph” for undirected data

diag Should the diagonal entries (loops) be set to zero?

replace Sample with or without replacement from a tie list (ignored iftielist==NULL

tielist A vector of edge values, from which the new graphs should be bootstrapped

Details

rgraph is a reasonably versatile routine for generating random network data. The graphs so
generated are either Bernoulli graphs (graphs in which each edge is a Bernoulli trial, independent
conditional on the Bernoulli parameters), or are bootstrapped from a user-provided edge distribution
(very handy for CUG tests). In the latter case, edge data should be provided using thetielist
argument; the exact form taken by the data is irrelevant, so long as it can be coerced to a vector. In
the former case, Bernoulli graph probabilities are set by thetprob argument as follows:

1. If tprob contains a single number, this number is used as the probability of all edges.

2. If tprob contains a vector, each entry is assumed to correspond to a separate graph (in order).
Thus, each entry is used as the probability of all edges within its corresponding graph.

3. If tprob contains a matrix, then each entry is assumed to correspond to a separate edge. Thus,
each entry is used as the probability of its associated edge in each graph which is generated.

4. Finally, if tprob contains a three-dimensional array, then each entry is assumed to correspond
to a particular edge in a particular graph, and is used as the associated probability parameter.

Finally, note thatrgraph will symmetrize all generated networks ifmode is set to “graph” by
copying down the upper triangle. The lower half oftprob , where applicable, must still be speci-
fied, however.

Value

A graph stack

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Erdös, P. and Rényi, A. (1960). “On the Evolution of Random Graphs.”Public Mathematical
Institute of Hungary Academy of Sciences,5:17-61.

Wasserman, S., and Faust, K. (1994).Social Network Analysis: Methods and Applications. Cam-
bridge: Cambridge University Press.

See Also

rmperm , rgnm , rguman
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Examples

#Generate three graphs with different densities
g<-rgraph(10,3,tprob=c(0.1,0.9,0.5))

#Generate from a matrix of Bernoulli parameters
g.p<-matrix(runif(25,0,1),nrow=5)
g<-rgraph(5,2,tprob=g.p)

rguman Draw Dyad Census-Conditioned Random Graphs

Description

rguman generates random draws from a dyad census-conditioned uniform random graph distribu-
tion.

Usage

rguman(n, nv, mut = 0.25, asym = 0.5, null = 0.25,
method = c("probability", "exact"))

Arguments

n the number of graphs to generate.

nv the size of the vertex set (|V (G)|) for the random graphs.

mut if method=="probability" , the probability of obtaining a mutual dyad;
otherwise, the number of mutual dyads.

asym if method=="probability" , the probability of obtaining an asymmetric
dyad; otherwise, the number of asymmetric dyads.

null if method=="probability" , the probability of obtaining a null dyad; oth-
erwise, the number of null dyads.

method the generation method to use."probability" results in a multinomial dyad
distribution (conditional on the underlying rates), while"exact" results in a
uniform draw conditional on the exact dyad distribution.

Details

A simple generalization of the Erdös-Rényi family, the U|MAN distributions are uniform on the set
of graphs, conditional on order (size) and the dyad census. As with the E-R case, there are two
U|MAN variants. The first (corresponding tomethod=="probability" ) takes dyad states as
independent multinomials with parametersm (for mutuals),a (for asymmetrics), andn (for nulls).
The resulting pmf is then

p(G = g|m,a, n) =
(M + A + N)!

M !A!N !
mMaAnN ,

whereM , A, andN are realized counts of mutual, asymmetric, and null dyads, respectively. (See
dyad.census for an explication of dyad types.)
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The second U|MAN variant is selected bymethod=="exact" , and places equal mass on all
graphs having the specified (exact) dyad census. The corresponding pmf is

p(G = g|M,A,N) =
M !A!N !

(M + A + N)!
.

U|MAN graphs provide a natural baseline model for networks which are constrained by size, den-
sity, and reciprocity. In this way, they provide a bridge between edgewise models (e.g., the E-R
family) and models with higher order dependence (e.g., the Markov graphs).

Value

A matrix or array containing the drawn adjacency matrices

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Holland, P.W. and Leinhardt, S. (1976). “Local Structure in Social Networks.” In D. Heise (Ed.),
Sociological Methodology, pp 1-45. San Francisco: Jossey-Bass.

Wasserman, S. and Faust, K. (1994).Social Network Analysis: Methods and Applications.Cam-
bridge: Cambridge University Press.

See Also

rgraph , rgnm , dyad.census

Examples

#Show some examples of extreme U|MAN graphs
gplot(rguman(1,10,mut=45,asym=0,null=0,method="exact")) #Clique
gplot(rguman(1,10,mut=0,asym=45,null=0,method="exact")) #Tournament
gplot(rguman(1,10,mut=0,asym=0,null=45,method="exact")) #Empty

#Draw a sample of multinomial U|MAN graphs
g<-rguman(5,10,mut=0.15,asym=0.05,null=0.8)

#Examine the dyad census
dyad.census(g)

rgws Draw From the Watts-Strogatz Rewiring Model

Description

rgws generates draws from the Watts-Strogatz rewired lattice model. Given a set of input graphs,
rewire.ws performs a (dyadic) rewiring of those graphs.
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Usage

rgws(n, nv, d, z, p)
rewire.ud(g, p)
rewire.ws(g, p)

Arguments

n the number of draws to take.

nv the number of vertices per lattice dimension.

d the dimensionality of the underlying lattice.

z the nearest-neighbor threshold for local ties.

p the dyadic rewiring probability.

g a graph or graph stack.

Details

A Watts-Strogatz graph process generates a random graph via the following procedure. First, ad-
dimensional uniform lattice is generated, here withnv vertices per dimension (i.e.,nv^d vertices
total). Next, allz neighbors are connected, based on geodesics of the underlying lattice. Finally,
each non-null dyad in the resulting augmented lattice is "rewired" with probabilityp, where the
rewiring operation exchanges the initial dyad state with the state of a uniformly selected null dyad
sharing exactly one endpoint with the original dyad. (In the standard case, this is equivalent to
choosing an endpoint of the dyad at random, and then transferring the dyadic edges to/from that
endpoint to another randomly chosen vertex. Hence the "rewiring" metaphor.) Forp==0 , the W-S
process generates (deterministic) uniform lattices, approximating a uniform G(N,M) process asp
approaches 1. Thus,p can be used to tune overall entropy of the process. A well-known property of
the W-S process is that (for largenv^d and smallp) it generates draws with short expected mean
geodesic distances (approaching those found in uniform graphs) while maintaining high levels of
local "clustering" (i.e., transitivity). It has thus been proposed as one potential mechanism for
obtaining "small world" structures.

rgws produces independent draws from the above process, returning them as an adjacency matrix
(if n==1 ) or array (otherwise).rewire.ws , on the other hand, applies the rewiring phase of the
W-S process to one or more input graphs. This can be used to explore local perturbations of the
original graphs, conditioning on the dyad census.rewire.ud is similar torewire.ws , save in
that all dyads are eligible for rewiring (not just non-null dyads), and exchanges with non-null dyads
are permitted. This process may be easier to work with than standard W-S rewiring in some cases.

Value

A graph or graph stack containing draws from the appropriate W-S process.

Warning

Remember that the total number of vertices in the graph isnv^d . This can get out of handvery
quickly.

Note

rgws generates non-toroidal lattices; some published work in this area utilizes underlying toroids,
so users should check for this prior to comparing simulations against published results.
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Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Watts, D. and Strogatz, S. (1998). “Collective Dynamics of Small-world Networks.”Nature,
393:440-442.

See Also

rgnm , rgraph

Examples

#Generate Watts-Strogatz graphs, w/increasing levels of rewiring
gplot(rgws(1,100,1,2,0)) #No rewiring
gplot(rgws(1,100,1,2,0.01)) #1
gplot(rgws(1,100,1,2,0.05)) #5
gplot(rgws(1,100,1,2,0.1)) #10
gplot(rgws(1,100,1,2,1)) #100

#Start with a simple graph, then rewire it
g<-matrix(0,50,50)
g[1,]<-1; g[,1]<-1 #Create a star
gplot(g)
gplot(rewire.ws(g,0.05)) #5

rmperm Randomly Permute the Rows and Columns of an Input Matrix

Description

Given an input matrix (or stack thereof),rmperm performs a (random) simultaneous row/column
permutation of the input data.

Usage

rmperm(m)

Arguments

m a matrix, or stack thereof (or a graph set, for that matter).

Details

Random matrix permutations are the essence of the QAP test; seeqaptest for details.

Value

The permuted matrix (or matrices)
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Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

rperm

Examples

#Generate an input matrix
g<-rgraph(5)
g #Examine it

#Examine a random permutation
rmperm(g)

rperm Draw a Random Permutation Vector with Exchangeability Constraints

Description

Draws a random permutation on1:length(exchange.list) such that no two elements whose
correspondingexchange.list values are different are interchanged.

Usage

rperm(exchange.list)

Arguments

exchange.list
A vector such that the permutation vector may exchange the ith and jth positions
iff exchange.list[i]==exchange.list[j]

Details

rperm draws random permutation vectors given the constraints of exchangeability described above.
Thus, rperm(c(0,0,0,0)) returns a random permutation of four elements in which all ex-
changes are allowed, whilerperm(c(1,1,"a","a") (or similar) returns a random permutation
of four elements in which only the first/second and third/fourth elements may be exchanged. This
turns out to be quite useful for searching permutation spaces with exchangeability constraints (e.g.,
for structural distance estimation).

Value

A random permutation vector satisfying the given constraints

Author(s)

Carter T. Butts〈buttsc@uci.edu〉
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See Also

rmperm

Examples

rperm(c(0,0,0,0)) #All elements may be exchanged
rperm(c(0,0,0,1)) #Fix the fourth element
rperm(c(0,0,1,1)) #Allow {1,2} and {3,4} to be swapped
rperm(c("a",4,"x",2)) #Fix all elements (the identity permutation)

sdmat Estimate the Structural Distance Matrix for a Graph Stack

Description

Estimates the structural distances among all elements ofdat using the method specified inmethod .

Usage

sdmat(dat, normalize=FALSE, diag=FALSE, mode="digraph",
output="matrix", method="mc", exchange.list=NULL, ...)

Arguments

dat graph set to be analyzed.

normalize divide by the number of available dyads?

diag boolean indicating whether or not the diagonal should be treated as valid data.
Set this true if and only if the data can contain loops.diag is FALSEby default.

mode string indicating the type of graph being evaluated."digraph" indicates that
edges should be interpreted as directed;"graph" indicates that edges are undi-
rected.mode is set to"digraph" by default.

output "matrix" for matrix output,"dist" for adist object.

method method to be used to search the space of accessible permutations; must be one
of "none" , "exhaustive" , "anneal" , "hillclimb" , or "mc" .

exchange.list
information on which vertices are exchangeable (see below); this must be a
single number, a vector of length n, or a nx2 matrix.

... additional arguments tolab.optimize .

Details

The structural distance between two graphs G and H is defined as

dS (G, H |LG, LH ) = min
LG,LH

d (` (G) , ` (H))

whereLG is the set of accessible permutations/labelings of G, and`(G) is a permuation/relabeling
of the vertices of G (̀(G) ∈ LG). The set of accessible permutations on a given graph is deter-
mined by thetheoretical exchangeabilityof its vertices; in a nutshell, two vertices are considered to
be theoretically exchangeable for a given problem if all predictions under the conditioning theory
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are invariant to a relabeling of the vertices in question (see Butts and Carley (2001) for a more
formal exposition). Where no vertices are exchangeable, the structural distance becomes the its la-
beled counterpart (here, the Hamming distance). Whereall vertices are exchangeable, the structural
distance reflects the distance between unlabeled graphs; other cases correspond to distance under
partial labeling.

The accessible permutation set is determined by theexchange.list argument, which is dealt
with in the following manner. First,exchange.list is expanded to fill an nx2 matrix. If
exchange.list is a single number, this is trivially accomplished by replication; ifexchange.list
is a vector of length n, the matrix is formed by cbinding two copies together. Ifexchange.list
is already an nx2 matrix, it is left as-is. Once the nx2 exchangeabiliy matrix has been formed, it
is interpreted as follows: columns refer to graphs 1 and 2, respectively; rows refer to their cor-
responding vertices in the original adjacency matrices; and vertices are taken to be theoretically
exchangeable iff their corresponding exchangeability matrix values are identical. To obtain an unla-
beled distance (the default), then, one could simply letexchange.list equal any single number.
To obtain the Hamming distance, one would use the vector1:n .

Because the set of accessible permutations is, in general, very large (o(n!)), searching the set for the
minimum distance is a non-trivial affair. Currently supported methods for estimating the structural
distance are hill climbing, simulated annealing, blind monte carlo search, or exhaustive search (it is
also possible to turn off searching entirely). Exhaustive search is not recommended for graphs larger
than size 8 or so, and even this may take days; still, this is a valid alternative for small graphs. Blind
monte carlo search and hill climbing tend to be suboptimal for this problem and are not, in general
recommended, but they are available if desired. The preferred (and default) option for permutation
search is simulated annealing, which seems to work well on this problem (though some tinkering
with the annealing parameters may be needed in order to get optimal performance). See the help
for lab.optimize for more information regarding these options.

Structural distance matrices may be used in the same manner as any other distance matrices (e.g.,
with multidimensional scaling, cluster analysis, etc.) Classical null hypothesis tests should not be
employed with structural distances, and QAP tests are almost never appropriate (save in the uniquely
labeled case). Seecugtest for a more reasonable alternative.

Value

A matrix of distances (or an object of classdist )

Warning

The search process can bevery slow, particularly for large graphs. In particular, theexhaustive
method is order factorial, and will take approximately forever for unlabeled graphs of size greater
than about 7-9.

Note

For most applications,sdmat is dominated bystructdist ; the former is retained largely for
reasons of compatibility.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Butts, C.T., and Carley, K.M. (2001). “Multivariate Methods for Interstructural Analysis.” CASOS
Working Paper, Carnegie Mellon University.
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See Also

hdist , structdist

Examples

#Generate two random graphs
g<-array(dim=c(3,5,5))
g[1,,]<-rgraph(5)
g[2,,]<-rgraph(5)

#Copy one of the graphs and permute it
g[3,,]<-rmperm(g[2,,])

#What are the structural distances between the labeled graphs?
sdmat(g,exchange.list=1:5)

#What are the structural distances between the underlying unlabeled
#graphs?
sdmat(g,method="anneal", prob.init=0.9, prob.decay=0.85,

freeze.time=50, full.neighborhood=TRUE)

sedist Find a Matrix of Distances Between Positions Based on Structural
Equivalence

Description

sedist uses the graphs indicated byg in dat to assess the extent to which each vertex is
structurally equivalent;joint.analysis determines whether this analysis is simultaneous, and
method determines the measure of approximate equivalence which is used.

Usage

sedist(dat, g=c(1:dim(dat)[1]), method="hamming",
joint.analysis=FALSE, mode="digraph", diag=FALSE, code.diss=FALSE)

Arguments

dat a graph or set thereof.

g a vector indicating which elements ofdat should be examined.

method one of"correlation" , "euclidean" , "hamming" , or "gamma" .
joint.analysis

should equivalence be assessed across all networks jointly (TRUE), or individu-
ally within each (FALSE)?

mode "digraph" for directed data, otherwise"graph" .

diag boolean indicating whether diagonal entries (loops) should be treated as mean-
ingful data.

code.diss reverse-code the raw comparison values.
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Details

sedist provides a basic tool for assessing the (approximate) structural equivalence of actors.
(Two vertices i and j are said to be structurally equivalent if i->k iff j->k for all k.) SE simi-
larity/difference scores are computed by comparing vertex rows and columns using the measure
indicated bymethod :

1. correlation: the product-moment correlation

2. euclidean: the euclidean distance

3. hamming: the Hamming distance

4. gamma: the gamma correlation

Once these similarities/differences are calculated, the results can be used with a clustering routine
(such asequiv.clust ) or an MDS (such ascmdscale ).

Value

A matrix of similarity/difference scores

Note

Be careful to verify that you have computed what you meant to compute, with respect to similar-
ities/differences. Also, note that (despite its popularity) the product-moment correlation can give
rather strange results in some cases.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Breiger, R.L.; Boorman, S.A.; and Arabie, P. (1975). “An Algorithm for Clustering Relational Data
with Applications to Social Network Analysis and Comparison with Multidimensional Scaling.”
Journal of Mathematical Psychology, 12, 328-383.

Burt, R.S. (1976). “Positions in Networks.”Social Forces, 55, 93-122.

Wasserman, S., and Faust, K.Social Network Analysis: Methods and Applications.Cambridge:
Cambridge University Press.

See Also

equiv.clust , blockmodel

Examples

#Create a random graph with _some_ edge structure
g.p<-sapply(runif(20,0,1),rep,20) #Create a matrix of edge

#probabilities
g<-rgraph(20,tprob=g.p) #Draw from a Bernoulli graph

#distribution

#Get SE distances
g.se<-sedist(g)

#Plot a metric MDS of vertex positions in two dimensions
plot(cmdscale(as.dist(g.se)))
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sna-defunct Defunct sna Objects

Description

These objects have been removed fromsna , and should no longer be used.

Usage

addisolates(dat, n)

Arguments

dat One or more adjacency matrices

n The number of isolates to add

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

sna-deprecated Deprecated Functions in sna Package

Description

These functions are provided for compatibility with older versions ofsna only, and may be defunct
as soon as the next release.

Details

The followingsna functions are currently deprecated:

None.

The original help pages for these functions can be found athelp("oldName-deprecated") .
Please avoid using them, since they will disappear....

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

Deprecated
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sna-internal Internal sna Functions

Description

Internalsna functions.

Usage

as.sociomatrix.sna(x, attrname=NULL, simplify=TRUE)
bbnam.jntlik(dat, log=FALSE, ...)
bbnam.jntlik.slice(s, dat, a, em, ep, log=FALSE)
bbnam.probtie(dat, i, j, npriorij, em, ep)

Details

These are not to be called by the end user.

sna Tools for Social Network Analysis

Description

sna is a package containing a range of tools for social network analysis. Supported functionality
includes node and graph-level indices, structural distance and covariance methods, structural equiv-
alence detection, p* modeling, random graph generation, and 2D/3D network visualization (among
other things).

Details

Network data forsna routines can (except as noted otherwise) appear in any of the following forms:

• adjacency matrices (dimension N x N);

• arrays of adjacency matrices, aka "graph stacks" (dimension m x N x N);

• network objects; or

• lists of adjacency matrices/arrays and/ornetwork objects.

Within the package documentation, the term "graph" is used generically to refer to any or all of the
above (with multiple graphs being referred to as a "graph stack"). Note that usage ofnetwork
objects requires that thenetworkpackage be installed. (No additional packages are required for
use of adjacency matrices/arrays or lists thereof.) In general,sna routines attempt to make intel-
ligent decisions regarding the processing of multiple graphs, but common sense is always advised;
certain functions, in particular, have more specific data requirements. Callingsna functions with
inappropriate input data can produce "interesting" results.

To get started withsna , try obtaining viewing the list of available functions. This can be accom-
plished via the commandlibrary(help=sna) .

Author(s)

Carter T. Butts〈buttsc@uci.edu〉
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sna.operators Graphical Operators

Description

These operators allow for algebraic manupulation of graph adjacency matrices.

Usage

x %c% y

Arguments

x an (unvalued) adjacency matrix.

y another (unvalued) adjacency matrix.

Details

Currently, only one operator is supported.x %c% yreturns the adjacency matrix of the composi-
tion of graphs with adjacency matricesx andy (respectively). (Note that this may contain loops.)

Value

The resulting adjacency matrix.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Wasserman, S. and Faust, K. (1994).Social Network Analysis: Methods and Applications.Cam-
bridge: University of Cambridge Press.

Examples

#Create an in-star
g<-matrix(0,6,6)
g[2:6,1]<-1
gplot(g)

#Compose g with its transpose
gcgt<-g%c%t(g)
gplot(gcgt,diag=TRUE)
gcgt
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sr2css Convert a Row-wise Self-Report Matrix to a CSS Matrix with Missing
Observations

Description

Given a matrix in which the ith row corresponds to i’s reported relations,sr2css creates a graph
stack in which each element represents a CSS slice with missing observations.

Usage

sr2css(net)

Arguments

net an adjacency matrix.

Details

A cognitive social structure (CSS) is an nxnxn array in which the ith matrix corresponds to the ith
actor’s perception of the entire network. Here, we take a conventional self-report data structure and
put it in CSS format for routines (such asbbnam) which require this.

Value

An array (graph stack) containing the CSS

Note

A row-wise self-report matrix doesn’t contain a great deal of data, and the data in question is
certainly not an ignorable sample of the individual’s CSS for most purposes. The provision of this
routine should not be perceived as license to substitute SR for CSS data at will.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Krackhardt, D. (1987).Cognitive Social Structures, 9, 109-134.

Examples

#Start with some random reports
g<-rgraph(10)

#Transform to CSS format
c<-sr2css(g)
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stackcount How Many Graphs are in a Graph Stack?

Description

Returns the number of graphs in the stack provided byd.

Usage

stackcount(d)

Arguments

d a graph or graph stack.

Details

Value

The number of graphs ind

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

nties

Examples

stackcount(rgraph(4,8))==8

stresscent Compute the Stress Centrality Scores of Network Positions

Description

stresscent takes one or more graphs (dat ) and returns the stress centralities of positions (se-
lected bynodes ) within the graphs indicated byg. Depending on the specified mode, stress on di-
rected or undirected geodesics will be returned; this function is compatible withcentralization ,
and will return the theoretical maximum absolute deviation (from maximum) conditional on size
(which is used bycentralization to normalize the observed centralization score).

Usage

stresscent(dat, g=1, nodes=c(1:dim(dat)[2]), gmode="digraph",
diag=FALSE, tmaxdev=FALSE, cmode="directed",
geodist.precomp=NULL, rescale=FALSE)
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Arguments

dat one or more input graphs.

g Integer indicating the index of the graph for which centralities are to be calcu-
lated (or a vector thereof). By default,g==1 .

nodes list indicating which nodes are to be included in the calculation. By default, all
nodes are included.

gmode string indicating the type of graph being evaluated."digraph" indicates that
edges should be interpreted as directed;"graph" indicates that edges are undi-
rected.gmode is set to"digraph" by default.

diag boolean indicating whether or not the diagonal should be treated as valid data.
Set this true if and only if the data can contain loops.diag is FALSEby default.

tmaxdev boolean indicating whether or not the theoretical maximum absolute deviation
from the maximum nodal centrality should be returned. By default,tmaxdev==FALSE .

cmode string indicating the type of betweenness centrality being computed (directed or
undirected geodesics).

geodist.precomp
ageodist object precomputed for the graph to be analyzed (optional).

rescale if true, centrality scores are rescaled such that they sum to 1.

Details

The stress of a vertex, v, is given by

CS(v) =
∑

i,j:i 6=j,i 6=v,j 6=v

givj

wheregijk is the number of geodesics from i to k through j. Conceptually, high-stress vertices lie
on a large number of shortest paths between other vertices; they can thus be thought of as “bridges”
or “boundary spanners.” Compare this withbetweenness , which weights shortest paths by the
inverse of their redundancy.

Value

A vector, matrix, or list containing the centrality scores (depending on the number and size of the
input graphs).

Note

Judicious use ofgeodist.precomp can save a great deal of time when computing multiple
path-based indices on the same network.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Shimbel, A. (1953). “Structural Parameters of Communication Networks.”Bulletin of Mathemati-
cal Biophysics,15:501-507.
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See Also

centralization

Examples

g<-rgraph(10) #Draw a random graph with 10 members
stresscent(g) #Compute stress scores

structdist Find the Structural Distances Between Two or More Graphs

Description

structdist returns the structural distance between the labeled graphsg1 andg2 in stackdat
based on Hamming distance for dichotomous data, or else the absolute (manhattan) distance. If
normalize is true, this distance is divided by its dichotomous theoretical maximum (conditional
on |V(G)|).

Usage

structdist(dat, g1=NULL, g2=NULL, normalize=FALSE, diag=FALSE,
mode="digraph", method="anneal", reps=1000, prob.init=0.9,
prob.decay=0.85, freeze.time=25, full.neighborhood=TRUE,
mut=0.05, pop=20, trials=5, exchange.list=NULL)

Arguments

dat one or more input graphs.

g1 a vector indicating which graphs to compare (by default, all elements ofdat ).

g2 a vector indicating against which the graphs ofg1 should be compared (by
default, all graphs).

normalize divide by the number of available dyads?

diag boolean indicating whether or not the diagonal should be treated as valid data.
Set this true if and only if the data can contain loops.diag is FALSEby default.

mode string indicating the type of graph being evaluated."digraph" indicates that
edges should be interpreted as directed;"graph" indicates that edges are undi-
rected.mode is set to"digraph" by default.

method method to be used to search the space of accessible permutations; must be one
of "none" , "exhaustive" , "anneal" , "hillclimb" , or "mc" .

reps number of iterations for Monte Carlo method.

prob.init initial acceptance probability for the annealing routine.

prob.decay cooling multiplier for the annealing routine.

freeze.time freeze time for the annealing routine.
full.neighborhood

should the annealer evaluate the full neighborhood of pair exchanges at each
iteration?

mut GA Mutation rate (currently ignored).



structdist 165

pop GA population (currently ignored).

trials number of GA populations (currently ignored).

exchange.list
information on which vertices are exchangeable (see below); this must be a
single number, a vector of length n, or a nx2 matrix.

Details

The structural distance between two graphs G and H is defined as

dS (G, H |LG, LH ) = min
LG,LH

d (` (G) , ` (H))

whereLG is the set of accessible permutations/labelings of G, and`(G) is a permuation/relabeling
of the vertices of G (̀(G) ∈ LG). The set of accessible permutations on a given graph is deter-
mined by thetheoretical exchangeabilityof its vertices; in a nutshell, two vertices are considered to
be theoretically exchangeable for a given problem if all predictions under the conditioning theory
are invariant to a relabeling of the vertices in question (see Butts and Carley (2001) for a more
formal exposition). Where no vertices are exchangeable, the structural distance becomes the its la-
beled counterpart (here, the Hamming distance). Whereall vertices are exchangeable, the structural
distance reflects the distance between unlabeled graphs; other cases correspond to distance under
partial labeling.

The accessible permutation set is determined by theexchange.list argument, which is dealt
with in the following manner. First,exchange.list is expanded to fill an nx2 matrix. If
exchange.list is a single number, this is trivially accomplished by replication; ifexchange.list
is a vector of length n, the matrix is formed bycbind ing two copies together. Ifexchange.list
is already an nx2 matrix, it is left as-is. Once the nx2 exchangeabiliy matrix has been formed, it
is interpreted as follows: columns refer to graphs 1 and 2, respectively; rows refer to their cor-
responding vertices in the original adjacency matrices; and vertices are taken to be theoretically
exchangeable iff their corresponding exchangeability matrix values are identical. To obtain an unla-
beled distance (the default), then, one could simply letexchange.list equal any single number.
To obtain the Hamming distance, one would use the vector1:n .

Because the set of accessible permutations is, in general, very large (o(n!)), searching the set for the
minimum distance is a non-trivial affair. Currently supported methods for estimating the structural
distance are hill climbing, simulated annealing, blind monte carlo search, or exhaustive search (it is
also possible to turn off searching entirely). Exhaustive search is not recommended for graphs larger
than size 8 or so, and even this may take days; still, this is a valid alternative for small graphs. Blind
monte carlo search and hill climbing tend to be suboptimal for this problem and are not, in general
recommended, but they are available if desired. The preferred (and default) option for permutation
search is simulated annealing, which seems to work well on this problem (though some tinkering
with the annealing parameters may be needed in order to get optimal performance). See the help
for lab.optimize for more information regarding these options.

Structural distance matrices may be used in the same manner as any other distance matrices (e.g.,
with multidimensional scaling, cluster analysis, etc.) Classical null hypothesis tests should not be
employed with structural distances, and QAP tests are almost never appropriate (save in the uniquely
labeled case). Seecugtest for a more reasonable alternative.

Value

A structural distance matrix
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Warning

The search process can bevery slow, particularly for large graphs. In particular, theexhaustive
method is order factorial, and will take approximately forever for unlabeled graphs of size greater
than about 7-9.

Note

Consult Butts and Carley (2001) for advice and examples on theoretical exchangeability.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Butts, C.T., and Carley, K.M. (2001). “Multivariate Methods for Interstructural Analysis.” CASOS
Working Paper, Carnegie Mellon University.

See Also

hdist , sdmat

Examples

#Generate two random graphs
g<-array(dim=c(3,5,5))
g[1,,]<-rgraph(5)
g[2,,]<-rgraph(5)

#Copy one of the graphs and permute it
g[3,,]<-rmperm(g[2,,])

#What are the structural distances between the labeled graphs?
structdist(g,exchange.list=1:5)

#What are the structural distances between the underlying unlabeled
#graphs?
structdist(g,method="anneal", prob.init=0.9, prob.decay=0.85,

freeze.time=50, full.neighborhood=TRUE)

structure.statistics
Compute Network Structure Statistics

Description

Computes the structure statistics for the graph(s) indat .

Usage

structure.statistics(dat, geodist.precomp = NULL)
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Arguments

dat one or more input graphs.
geodist.precomp

ageodist object (optional).

Details

Let G = (V,E) be a graph of orderN , and letd(i, j) be the geodesic distance from vertexi to
vertex j in G. The "structure statistics" ofG are then given by the seriess0, . . . , sN−1, where
si = 1

N2

∑
j∈V

∑
k∈V I (d(j, k) ≤ i) andI is the standard indicator function. Intuitively,si is

the expected fraction ofG which lies within distancei of a randomly chosen vertex. As such, the
structure statistics provide an index of global connectivity.

Structure statistics have been of particular importance to biased net theorists, because of the link
with Rapoport’s original tracing model. They may also be used along with component distributions
or connectedness scores as descriptive indices of connectivity at the graph-level.

Value

A vector, matrix, or list (depending ondat ) containing the structure statistics.

Note

The term "structure statistics" has been used somewhat loosely in the literature, a trend which seems
to be accelerating. Users should carefully check references before comparing results generated by
this routine with those appearing in published work.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Fararo, T.J. (1981). “Biased networks and social structure theorems. Part I.”Social Networks,3,
137-159.

Fararo, T.J. (1984). “Biased networks and social structure theorems. Part II.”Social Networks,6,
223-258.

Fararo, T.J. and Sunshine, M.H. (1964). “A study of a biased friendship net.” Syracuse, NY: Youth
Development Center.

See Also

geodist , component.dist , connectedness , bn

Examples

#Generate a moderately sparse Bernoulli graph
g<-rgraph(100,tp=1.5/99)

#Compute the structure statistics for g
ss<-structure.statistics(g)
plot(0:99,ss,xlab="Mean Coverage",ylab="Distance")
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summary.bayes.factor
Detailed Summaries of Bayes Factor Objects

Description

Returns abayes.factor summary object.

Usage

summary.bayes.factor(object, ...)

Arguments

object An object of classbayes.factor

... Further arguments passed to or from other methods

Value

An object of classsummary.bayes.factor

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

bbnam.bf

Examples

summary.bbnam Detailed Summaries of bbnam Objects

Description

Returns abbnam summary object

Usage

summary.bbnam(object, ...)

Arguments

object An object of classbbnam

... Further arguments passed to or from other methods
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Value

An object of classsummary.bbnam

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

bbnam

Examples

summary.blockmodel Detailed Summaries of blockmodel Objects

Description

Returns ablockmodel summary object.

Usage

summary.blockmodel(object, ...)

Arguments

object An object of classblockmodel

... Further arguments passed to or from other methods

Value

An object of classsummary.blockmodel

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

blockmodel

Examples
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summary.cugtest Detailed Summaries of cugtest Objects

Description

Returns acugtest summary object

Usage

summary.cugtest(object, ...)

Arguments

object An object of classcugtest

... Further arguments passed to or from other methods

Value

An object of classsummary.cugtest

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

cugtest

Examples

summary.lnam Detailed Summaries of lnam Objects

Description

Returns alnam summary object.

Usage

summary.lnam(object, ...)

Arguments

object an object of classlnam .

... additional arguments.
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Value

An object of classsummary.lnam .

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

lnam

summary.netcancor Detailed Summaries of netcancor Objects

Description

Returns anetcancor summary object

Usage

summary.netcancor(object, ...)

Arguments

object An object of classnetcancor

... Further arguments passed to or from other methods

Value

An object of classsummary.netcancor

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

netcancor

Examples
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summary.netlm Detailed Summaries of netlm Objects

Description

Returns anetlm summary object

Usage

summary.netlm(object, ...)

Arguments

object An object of classnetlm

... Further arguments passed to or from other methods

Value

An object of classsummary.netlm

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

netlm

Examples

summary.netlogit Detailed Summaries of netlogit Objects

Description

Returns anetlogit summary object

Usage

summary.netlogit(object, ...)

Arguments

object An object of classnetlogit

... Further arguments passed to or from other methods
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Value

An object of classsummary.netlogit

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

netlogit

Examples

summary.qaptest Detailed Summaries of qaptest Objects

Description

Returns aqaptest summary object

Usage

summary.qaptest(object, ...)

Arguments

object An object of classqaptest

... Further arguments passed to or from other methods

Value

An object of classsummary.qaptest

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

qaptest

Examples
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symmetrize Symmetrize an Adjacency Matrix

Description

Symmetrizes the elements ofmats according to the rule inrule .

Usage

symmetrize(mats, rule="weak")

Arguments

mats a graph or graph stack.

rule one of “upper”, “lower”, “strong” or “weak”.

Details

The rules used bysymmetrize are as follows:

1. upper: Copy the upper triangle over the lower triangle

2. lower: Copy the lower triangle over the upper triangle

3. strong: i<->j iff i->j and i<-j (AND rule)

4. weak: i<->j iff i->j or i<-j (OR rule)

Value

The symmetrized graph stack

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Wasserman, S., and Faust, K. (1994).Social Network Analysis: Methods and Applications. Cam-
bridge: Cambridge University Press.

Examples

#Generate a graph
g<-rgraph(5)

#Weak symmetrization
symmetrize(g)

#Strong symmetrization
symmetrize(g,rule="strong")
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triad.census Compute the Davis and Leinhardt Triad Census

Description

triad.census returns the Davis and Leinhardt triad census of the elements ofdat indicated by
g.

Usage

triad.census(dat, g=NULL, mode = c("digraph", "graph"))

Arguments

dat a graph or graph stack.

g the elements ofdat to process.

mode string indicating the directedness of edges;"digraph" implies a directed
structure, whereas"graph" implies an undirected structure.

Details

The Davis and Leinhardt triad census consists of a classification of all directed triads into one of
16 different categories; the resulting distribution can be compared against various null models to
test for the presence of configural biases (e.g., transitivity bias).triad.census is a front end
for the triad.classify routine, performing the classification for all triads within the selected
graphs. The results are placed in the order indicated by the column names; this is the same order as
presented in thetriad.classify documentation, to which the reader is referred for additional
details.

In the undirected case, the triad census reduces to four states (based on the number of edges in each
triad. Wheremode=="graph" , this is returned instead.

Comparetriad.census to dyad.census , the dyadic equivalent.

Value

A matrix whose 16 columns contain the counts of triads by class for each graph, in the directed
case. In the undirected case, only 4 columns are used.

Warning

Valued data may cause strange behavior with this routine. Dichotomize the data first.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Davis, J.A. and Leinhardt, S. (1972). “The Structure of Positive Interpersonal Relations in Small
Groups.” In J. Berger (Ed.),Sociological Theories in Progress, Volume 2, 218-251. Boston:
Houghton Mifflin.

Wasserman, S., and Faust, K. (1994). “Social Network Analysis: Methods and Applications.”
Cambridge: Cambridge University Press.
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See Also

triad.classify , dyad.census , gtrans

Examples

#Generate a triad census of random data with varying densities
triad.census(rgraph(15,5,tprob=c(0.1,0.25,0.5,0.75,0.9)))

triad.classify Compute the Davis and Leinhardt Classification of a Given Triad

Description

triad.classify returns the Davis and Leinhardt classification of the triad indicated bytri in
thegth graph of stackdat .

Usage

triad.classify(dat, g=1, tri=c(1, 2, 3), mode=c("digraph",
"graph"))

Arguments

dat a graph or graph stack.

g the index of the graph to be analyzed.

tri a triple containing the indices of the triad to be classified.

mode string indicating the directedness of edges;"digraph" implies a directed
structure, whereas"graph" implies an undirected structure.

Details

Every unoriented directed triad may occupy one of 16 distinct states. These states were used by
Davis and Leinhardt as a basis for classifying triads within a larger structure; the distribution of
triads within a graph (seetriad.census ), for instance, is linked to a range of substantive hy-
potheses (e.g., concerning structural balance). The Davis and Leinhardt classification scheme de-
scribes each triad by a string of four elements: the number of mutual (complete) dyads within the
triad; the number of asymmetric dyads within the triad; the number of null (empty) dyads within
the triad; and a configuration code for the triads which are not uniquely distinguished by the first
three distinctions. The complete list of classes is as follows.

003 a 6↔ b 6↔ c, a 6↔ c

012 a→ b 6↔ c, a 6↔ c

102 a↔ b 6↔ c, a 6↔ c

021D a← b→ c, a 6↔ c

021U a→ b← c, a 6↔ c

021C a→ b→ c, a 6↔ c

111D a 6↔ b→ c, a↔ c

111U a 6↔ b← c, a↔ c
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030T a→ b← c, a→ c

030C a← b← c, a→ c

201 a↔ b 6↔ c, a↔ c

120D a← b→ c, a↔ c

120U a→ b← c, a↔ c

120C a→ b→ c, a↔ c

210 a→ b↔ c, a↔ c

300 a↔ b↔ c, a↔ c

These codes are returned bytriad.classify as strings. In the undirected case, only four triad
states are possible (corresponding to the number of edges in the triad). These are evaluated for
mode=="graph" , with the return value being the number of edges.

Value

A string containing the triad classification, orNAif one or more edges were missing

Warning

Valued data and/or loops may cause strange behavior with this routine. Dichotomize/remove loops
first.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

References

Davis, J.A. and Leinhardt, S. (1972). “The Structure of Positive Interpersonal Relations in Small
Groups.” In J. Berger (Ed.),Sociological Theories in Progress, Volume 2, 218-251. Boston:
Houghton Mifflin.

Wasserman, S., and Faust, K. (1994).Social Network Analysis: Methods and Applications.Cam-
bridge: Cambridge University Press.

See Also

triad.census , gtrans

Examples

#Generate a random graph
g<-rgraph(10)

#Classify the triads (1,2,3) and (2,3,4)
triad.classify(g,tri=c(1,2,3))
triad.classify(g,tri=c(1,2,3))

#Plot the triads in question
gplot(g[1:3,1:3])
gplot(g[2:4,2:4])
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upper.tri.remove Remove the Upper Triangles of Adjacency Matrices in a Graph Stack

Description

Returns the input graph stack, with the upper triangle entries removed/replaced as indicated.

Usage

upper.tri.remove(dat, remove.val=NA)

Arguments

dat a graph or graph stack.

remove.val the value with which to replace the existing upper triangles.

Details

upper.tri.remove is simply a convenient way to applyg[upper.tri(g)]<-remove.val
to an entire stack of adjacency matrices at once.

Value

The updated graph stack.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

upper.tri , lower.tri.remove , diag.remove

Examples

#Generate a random graph stack
g<-rgraph(3,5)
#Remove the upper triangles
g<-upper.tri.remove(g)
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write.dl Write Output Graphs in DL Format

Description

Writes a graph stack to an output file in DL format.

Usage

write.dl(x, file, vertex.lab = NULL, matrix.lab = NULL)

Arguments

x a graph or graph stack, of common order.

file a string containing the filename to which the data should be written.

vertex.lab an optional vector of vertex labels.

matrix.lab an optional vector of matrix labels.

Details

DL format is used by a number of software packages (including UCINET and Pajek) to store net-
work data. write.dl saves one or more (possibly valued) graphs in DL edgelist format, along
with vertex and graph labels (if desired). These files can, in turn, be used to import data into other
software packages.

Value

None.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

write.nos

Examples

## Not run:
#Generate a random graph stack
g<-rgraph(5,10)

#This would save the graphs in DL format
write.dl(g,file="testfile.dl")
## End(Not run)
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write.nos Write Output Graphs in (N)eo-(O)rg(S)tat Format

Description

Writes a graph stack to an output file in NOS format.

Usage

write.nos(x, file, row.col = NULL, col.col = NULL)

Arguments

x a graph or graph stack (all graphs must be of common order).

file string containing the output file name.

row.col vector of row labels (or "row colors").

col.col vector of column labels ("column colors").

Details

NOS format consists of three header lines, followed by a whitespace delimited stack of raw adja-
cency matrices; the format is not particularly elegant, but turns up in certain legacy applications
(mostly at CMU).write.nos provides a quick and dirty way of writing files NOS, which can
later be retrieved usingread.nos .

The content of the NOS format is as follows:

<m>

<n> <o>

<kr1> <kr2> ... <krn> <kc1> <kc2> ... <kcn>

<a111> <a112> ... <a11o>

<a121> <a122> ... <a12o>

...

<a1n1> <a1n2> ... <a1no>

<a211> <a212> ... <a21o>

...

<a2n1> <a2n2> ... <a2no>

...

<amn1> <amn2> ... <amno>

where <abcd> is understood to be the value of the c->d edge in the bth graph of the file. (As
one might expect, m, n, and o are the numbers of graphs (matrices), rows, and columns for the
data, respectively.) The "k" line contains a list of row and column "colors", categorical variables
associated with each row and column, respectively. Although originally intended to communicate
exchangability information, these can be used for other purposes (though there are easier ways to
deal with attribute data these days).

Note that NOS format only supports graph stacks of common order; graphs of different sizes cannot
be stored within the same file.
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Value

None.

Author(s)

Carter T. Butts〈buttsc@uci.edu〉

See Also

read.nos , write.dl , write.table

Examples

## Not run:
#Generate a random graph stack
g<-rgraph(5,10)

#This would save the graphs in NOS format
write.nos(g,file="testfile.nos")

#We can also read them back, like so:
g2<-read.nos("testfile.nos")
## End(Not run)
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