
Graz University of Technology

Institute for Computer Graphics and Vision

Dissertation

Handheld Augmented Reality

Daniel Wagner

Graz, Austria, September 2007

Thesis Supervisor

Prof. Dr. Dieter Schmalstieg

Referees

Prof. Dr. Blair MacIntyre

Prof. Dr. Mark Billinghurst

Handheld Augmented Reality

Dissertation

Graz University of Technology
Institute for Computer Graphics and Vision

Daniel Wagner
Graz, Austria, October 1st, 2007

Thesis Supervisor
Prof. Dr. Dieter Schmalstieg

Referees
Prof. Dr. Blair MacIntyre

Prof. Dr. Mark Billinghurst

TO MICHAEL

- iii -

Abstract

Augmented Reality (AR) aims at developing new user interfaces. Although research
has produced a large number of application prototypes and AR frameworks in the last
20 years, no project has yet been practical enough to create a mass market success.

There are many reasons for this. Traditionally, AR researchers have primarily
created prototypes that aim to solve engineering problems such as maintenance or
new interfaces for complex environments such as head up displays for navigation and
battlefield systems. Most researchers still see AR as a basic research area. Developing
easy to use, practical applications, such as for home users, is therefore usually not a
goal. Another problem with many Augmented Reality systems is the highly complex
hardware setup, often including expensive commercial sensors, input devices and
output devices. These devices are often bulky and fragile, since they were never meant
to be operated by untrained users.

 Research at the Vienna University of Technology and the Graz University of
Technology has aimed at moving Augmented Reality to a mass-market. Instead of
specialized and expensive hardware, this project targets low cost mobile devices,
namely mobile phones. In contrast to traditional AR hardware, people already own
these devices and know how to operate them. Recently, processing capabilities of
mobile phones have reached a level that makes these devices capable of running
standalone AR applications and renders them ideal candidates for mass marketed
Augmented Reality solutions.

This thesis presents a framework that for the first time allows for the creation of
practical AR applications on end user-owned devices. The software runs on a broad
range of devices and has been used for several–some even commercial–applications.
To prove the applicability of the new platform the author of this thesis has performed
evaluations with untrained users in real-life environments such as museum
exhibitions or conferences.

- iv -

Acknowledgements

I’d like to thank everybody without whom this dissertation would not have been
possible: First and foremost, I would like to thank my supervisor Prof. Dieter
Schmalstieg for given me the opportunity of joining his research group and working
in the area of Augmented Reality. During my time with him at the Vienna and Graz
Universities of Technology I learned a lot about research, leadership and team work. I
want to thank him especially for all inspirational discussions and giving me the
freedom to follow my own ideas.

Although this thesis was finished in Graz it started at the Vienna University of
Technology. I want to thank all staff of TU-Wien for the very well designed courses
on computer science. I am grateful to the members of the Interactive Media Systems
Group (IMS), especially to Istvan Barakonyi and Joseph Newman with whom I shared
an office for two years and who helped me to improve my English language. I’d also
like to thanks Gerhard Reitmayr and Hannes Kaufmann for introducing me into the
many complex topics of AR software development. A big thanks also goes to Thomas
Pintaric who co-developed most of my projects at TU-Wien.

I want to thank the Institute for Computer Graphics and Vision (ICG) for letting
me join the Graz University of Technology. I am much obliged to Michael Kalkusch
who shares an office with me for three years now and for the many fruitful
discussions on our car rides between Vienna and Graz. Special acknowledgements
goes to Albert Walzer, who developed many ideas for my games, created most of the
content and shared a flat with me for two years in Graz.

I appreciate the cooperation with Imagination GmbH, especially with Matthias
Stifter and Christian Traxler. I am grateful to Michael Gervautz who among the first
to believe in the commercial success of handheld Augmented Reality.

I am grateful to my parents who always believed in my scientific career and who
supported me in my studies. I am much obliged to my wife Valerie who tolerated my
long working hours and always supported me in my plans.

- v -

Contents

CHAPTER 1 INTRODUCTION ..1
1.1 Augmented Reality..1
1.2 Handheld Augmented Reality ...3
1.3 Hypothesis...5
1.4 Contribution ..6
1.5 Results...9
1.6 Collaboration statement ..11

CHAPTER 2 BACKGROUND AND RELATED WORK..15
2.1 Augmented Reality..15
2.2 3D User Interfaces ..24
2.3 Augmented Reality Authoring ..27
2.4 Pose Tracking..29
2.5 Multiuser Systems...31
2.6 Wireless Connectivity ...35
2.7 Discussion ...37

CHAPTER 3 POSE TRACKING ..38
3.1 Camera calibration ..39
3.2 Runtime Tracking Pipeline ...41
3.3 Advanced Features ..48
3.4 Performance measurements ..51
3.5 Discussion ...54

CHAPTER 4 RENDERING..56
4.1 Immediate Mode Rendering..57
4.2 Retained mode rendering ..66
4.3 3D Animations using the FPK library...73
4.4 2D graphics and animations with Adobe Flash...76
4.5 Discussion ...76

CHAPTER 5 DISTRIBUTED SYSTEM ...78
5.1 Muddleware, a middleware for multi-user applications..79
5.2 Built on XML Technology..79
5.3 Database Server...81
5.4 Muddleware Script ..84
5.5 Muddleware Controller ...86
5.6 Muddleware Client..88

- vi -

5.7 Graphical User Interface Generation...92
5.8 Performance ..93
5.9 Discussion ...93

CHAPTER 6 SOFTWARE ARCHITECTURE..94
6.1 Studierstube ES ...94
6.2 Sphinx ...101
6.3 Performance ..108
6.4 Discussion ...114

CHAPTER 7 RESULTS AND EVALUATION ..115
7.1 The Invisible Train..115
7.2 The Virtuoso Arts History Game ..121
7.3 Museum Augmented Reality Quest at Technisches Museum Wien138
7.4 Expedition Schatzsuche ..146
7.5 Signpost...155
7.6 Discussion ...166

CHAPTER 8 CONCLUSIONS AND GUIDELINES...167
8.1 Guidelines on Applicability ..170
8.2 Guidelines on Performance ...172
8.3 Future Work ..173

CHAPTER 9 APPENDIX...175
9.1 Studierstube ES Example Applications...175
9.2 Pose Refinement ...181
9.3 Questionnaires...182

CHAPTER 10 BIBLIOGRAPHY ...201

Chapter 1

Introduction

1

Chapter 1

Introduction

1.1 Augmented Reality
Many systems today are too difficult to use because of complex user interfaces. This is
partially due to a lack of competence in designing user interfaces many engineers
suffer from. A more important reason is that with the growing computational power
of modern systems, devices and applications become more complex and integrate
more features. Soft- and hardware that was only available to a small amount of
specialists a few decades ago, is now a well-integrated part of everyone’s daily life.
Good user interface design is therefore no longer an option but a hard requirement
for developing highly usable applications.

Augmented Reality (AR) research aims at developing new human computer
interfaces. Instead of showing information on isolated displays, it puts data right
where it belongs: into the real world. AR thereby blurs the distinction between the
real world and the user interface and combines them in a natural way allowing the
creation of simple and intuitive user interfaces even for complex applications.

Until today there is no clear definition of AR. Although first AR-like systems
were developed in the 1960s, Augmented Reality only separated itself from virtual
reality and became a research area in its own rights in the beginning of the 1990s.
Today two main definitions exist that describe Augmented Reality. Due to a lack of an
official agreement on the term, both are accepted. Following the definition of Azuma
[3] an AR system has to fulfill the three requirements:

• Combine the real and virtual
• Registered in the real world in 3D

Chapter 1

Introduction

2

• Interactive in real time

The first requirement is a fundamental description of AR in that it combines the
real world with virtual content. The second requirement separates Augmented Reality
from the more general concepts of mixed reality or mixed media by requiring that the
virtual content must be registered in 3D within the real world. Finally “Interactive in
real time” requires the system to react to the user and update in real time which
distinguishes AR from all off-line augmentations such as the use of computer
graphics in movies.

According to the older Virtuality continuum proposed by Milgram [69] (see
Figure 1.1), AR is just one possible manifestation of Mixed Reality (MR), which
brings together real and virtual within a single display. The Virtuality continuum
juxtaposes AR and Augmented Virtuality (AV). AR is mostly grounded in the real
world, with a limited set of virtual objects mixed in. The inverse concept, AV, is
conceived as a Virtual Environment with some real aspects - a recurring example for
AV are video-textured avatars (showing a live video feed of real people) within a
Virtual Environment. The boundary between AR and AV is not strictly defined.

Figure 1.1: Milgram's reality-virtuality continuum.

Augmented reality (AR) is a natural complement to mobile computing research,
since a mobile AR system can assist the user directly at the workplace instead of
requiring the user to attend to stationary workstations. There has been a lot of work
in creating mobile AR setups using mobile personal computer hardware such as
notebooks. The advantage of those approaches is that hard- and software very similar
to traditional non-mobile AR systems can be used. While there are many working
systems composed of a notebook and a head mounted display (HMD), most of these
setups have been designed as mere proof-of-concept and do not provide a usable form
factor. Usually wearable prototypes have all their hardware mounted to a large
backpack, including heavy power supplies for items not designed for mobile use.
While such backpack/HMD combinations unite superior performance with hands-
free operation, they severely affect dexterity, prevent practical use and are socially
unacceptable. They are maintenance intensive and lack robustness due to their
complex hardware setups. Most of the devices used were not designed for mobile

Chapter 1

Introduction

3

deployment and therefore not only require heavy batteries but also use fragile
connectors and cables. Furthermore, the prohibitive cost of these setups prevents
deploying them in a commercial market. In addition, the development of HMD
technology, which is an indispensable part of such an approach to wearable AR, is not
keeping pace with the advances in computer and sensor technology.

At the same time, broad consumer interest in very small form factor devices and
displays, such as cell phones and handheld computers, is dramatically accelerating the
development in this area. We therefore consider it to be obvious that one of the next
major steps in mobile AR development will be a shift to smaller and more ergonomic
devices.

Figure 1.2 Ergonomic considerations for Augmented Reality

Ideally an AR setup would look like the right image in Figure 1.2: instead of
carrying specialized, complex and expensive hardware a single pair of glasses would
be sufficient for video as well as audio augmentations. Of course such a system will
not be feasible for at least a decade. Instead the work in this thesis concentrated on
mobile devices that are available today: mobile phones and PDAs, which together
with Tablet PCs and the so called Ultra Mobile PCs (UMPCs) form the hardware
basis for handheld Augmented Reality.

1.2 Handheld Augmented Reality
Personal digital assistants (PDAs), game handhelds and smartphones have fueled the
interest in mobile gaming from both a commercial and a scientific perspective. While

Chapter 1

Introduction

4

there is a lot of previous research on pervasive computing, little work has been done
on mobile multi-user Augmented Reality applications.

Figure 1.3: Form factors of Mobile Augmented Reality systems:

(a) traditional "backpack" computer & HMD, (b) Tablet PC, (c) PDA, (d) Mobile phone

In this thesis we define handheld AR as a setup, where the user holds the mobile
device actively in his hand (b, c and d in Figure 1.3): Handheld AR is different from
AR using wearable computers with HMDs where users have both hands free (a in
Figure 1.3). A phone-based AR setups allows the user to use her phone as an AR
interaction device, although some of the processing or application intelligence might
not be implemented on the phone itself.

Each of the device classes in Figure 1.3 above has unique characteristics:
Backpack setups provide most processing power. Furthermore their HMDs give the
highest immersion among all four device classes. The digitizer inputs of Tablet PCs
make it possible to create highly accurate, yet easy to use user interfaces. Their
processing power is similar to backpacks although these devices have to make
compromises due to weight and size restrictions.

PDAs have recently merged with mobile phones. Classic PDAs without phone
capabilities hardly exist anymore as today most PDAs include networking capabilities
too. They are typically more powerful than mobile phones, have larger displays and
touch screens. Mobile phones are the smallest and most ubiquitous device class. In
contrast to the previously mentioned device classes they are today a fully integrated
part of most people’s daily life. Most mobile phones have similar screen resolutions as

Chapter 1

Introduction

5

PDAs, but their displays are smaller and most often they are not equipped with touch
screen input. Naturally they possess the smallest amount of processing power of all
device classes.

Besides ergonomic factors and processing capabilities, availability of ready-to-use,
commercial systems in large numbers is a major factor for practical projects and
setups. While mobile phones and PDAs usually come as a fully AR-capable package,
many Tablet PCs require an external camera for video-see through Augmented
Reality. While this can be easily achieved with minimal technical knowledge, the
implementation of a back-pack setup is a difficult and non-trivial engineering task.
The only company known to produce commercial back-pack systems is a_rage1, a
university spin-off. Their current status and commercial success is unknown.

Another decisive factor for practical setups is the cost per client device. Tablet
PCs typically start at ~1000€. The combined hardware costs of backpack setups
though, including a notebook, HMD and tracking solution usually sums up to several
1000€. A commercial system can therefore be expected to cost between 5000€ and
10000€, creating severe problems for mass user deployment. PDAs and mobile
phones typically cost between 300€ and 600€. Furthermore, most people today
already own mobile phones, which makes targeting the end users’ personal devices a
major goal for reducing costs. While only a small number of these phones are today
capable of running AR applications, their number is constantly increasing.

1.3 Hypothesis
This thesis discusses the suitability of mobile phone based Augmented Reality. It
therefore poses the following hypothesis statements that are examined throughout the
remainder of this document:

H1 Augmented Reality on phones can work as well as on personal computers,
despite the fact that phones are less powerful, have smaller screens and
inferior input capabilities.

H2 Using phone based AR, larger mobile Augmented Reality systems than
previously shown can be built at reasonable costs.

H3 The phone’s form factor is more suitable for untrained users than HMD-
based setups.

1 http://www.a_rage.com

Chapter 1

Introduction

6

The statements above are phrased vaguely on purpose and require a more
detailed explanation in order to not be misunderstood:

This thesis defines AR on phones as using off-the-shelf mobile phones for AR
input and output devices. This does not prevent developing systems with backend
servers for outsourcing tasks, as long as this backend is not perceived as part of the
user interface. Naturally phones possess inherent weaknesses compared to PC-based
systems such as inferior processing power. A major part of the work done in the
course of this thesis therefore concentrated on developing techniques that balance the
available resources.

By “size of a system”, this thesis defines the number of parts and people
interacting or collaborating. A larger system therefore integrates more interactions,
applications, devices or users. As will be shown in the remainder of this thesis, the
advantage of low cost in client devices is a major advantage for phone based AR –
especially compared to backpack setups. The development of such large systems
requires a toolkit that is easy to use yet capable to support complex requirements of
large setups, or as Einstein said: “Everything should be made as simple as possible, but
not one bit simpler.”

HMD-based setups clearly have the advantage of (potentially) higher immersion
than handheld mobile AR systems. Yet, they are not well accepted by end users for
several reasons including cabling, fragility, ergonomic factors and motion sickness.
This thesis does not present a formal study comparing HMD-based setups versus
TabletPC and phone based alternatives. Still, our own experiences over many years
with all three variants clearly show that handheld solutions are most often preferred
over HMD-based ones.

The positive reception of handheld AR by end users throughout the many trials
conducted during this thesis work, confirms a baseline of wide acceptance of
handheld AR.

1.4 Contribution
The contribution of this thesis is the design and development of a fully working
Augmented Reality framework that works on end-users’ devices and was tested in
multiple practical applications outside research labs. It is empirical proof of the
hypothesis formulated above. The system is highly novel in being the first and
currently only implementation of a complete handheld AR platform. This includes in
particular:

Chapter 1

Introduction

7

• A fiducial marker tracking library that is suitable for mobile phones and
PDAs.

• A scene-graph based render engine for AR applications, specifically targeting
the restrictions of mobile phones.

• A communication framework that targets the specific requirements of
distributed applications with spontaneous connectivity

• A flexible Augmented Reality framework the combines the back building
blocks listed above into an easy to use prototyping toolkit.

• Various applications that explore the possibilities and weaknesses of AR on
mobile phones and similar devices.

1.4.1 Marker Tracking System for Phones

Pose tracking is an integral part of every AR and VR application. The user’s or
device’s pose must be measured accurately, robustly and in real-time. While there are
many commercial tracking systems available that perfectly fulfill these requirements,
these solutions typically target stationary setups. For mobile setups tethered and
stationary systems are not suitable, which rules out an outside-in tracking approach
that is the basis for most commercial tracking systems.

Targeting a lost-cost solution that should run on unmodified mobile phones,
narrows down the available options considerably. Most mobile phones today are
equipped with built-in cameras, which naturally lends itself to using computer vision
based approaches for tracking. Tracking fiducial markers is a common strategy to
achieve robustness and computational efficiency simultaneously.

The ARToolKitPlus library developed in this thesis is based on the well known
open source ARToolKit library. It was ported to the Windows CE environment,
optimized for the mobile phone platform and heavily extended with features that
support mobility, such as automatic thresholding or large amounts of markers. The
very latest version of ARToolKitPlus (also known as Studierstube Tracker) is a
complete redevelopment that is no longer related to ARToolKit on a source code basis
and improves several outstanding issues such as memory consumption, tracking
quality or numerical stability.

A well working tracking system is the basic foundation of every AR setup. Hence,
ARToolKitPlus was welcomed by the AR community and is used today in many AR
applications. The results of the work on ARToolKitPlus have been reported in [113].
Details on the developed solutions are given in chapter 3 of this thesis.

Chapter 1

Introduction

8

1.4.2 A scene-graph based render toolkit for mobile phones

Next to tracking, rendering is the second most important aspect of every AR system.
Although Augmented Reality does not define rendering as a hard requirement, most
systems concentrate on graphical augmentations, rather than other feedback such as
audio, tactical or olfactory.

While professional solutions for rendering on mobile phones exist, these libraries
are usually expensive, closed source and not sufficiently general, which makes them
hard to extend and to use on commercial projects.

Studierstube Scene-Graph (StbSG) developed in the course of this thesis was
created to provide a similar flexibility such as well known scene-graph libraries on
desktop computers. Yet, care was taken to respect the specific restrictions of mobile
phones including low memory footprint, fast operation and support for native
renderers such as OpenGL ES and Direct3D. StbSG has been reported in [92]. Details
are given in chapter 6 of this thesis.

1.4.3 Communication framework for mobile AR

While many AR systems today are single-user setups, the full power of phone-based
AR can only be unleashed in multi-user applications that allow a large numbers of
users to share the virtual space on their phones introduces them to. There has been a
large amount of research for distributed VR systems, but only little for AR
applications. Existing research into this direction commonly assumes a stable
connection with high powered servers as well as clients.

For truly mobile and pervasive setups though, connectivity loss is not an
exception but rather a rule. An ideal multi-user system would run stand-alone when
no networking is available and instantly make use of spontaneous network
connectivity. Hence, applications as well as the underlying communication
framework must target these circumstances in their design.

The Muddleware communication framework developed in this thesis specifically
targets these requirements. It is built around a server-hosted XML database that can
be addressed via XPath queries. The client software is lightweight and allows
accessing the shared database either explicitly via query commands or by using a
shared-memory mechanism. Its scripting capabilities support the development of
data-driven applications.

Chapter 1

Introduction

9

Muddleware is used in several internal projects at the Graz University of
Technology as well as by other researchers. Details on Muddleware have been
reported in [114] and are presented in chapter 5 of this thesis.

1.4.4 Studierstube ES Framework

The contributions listed above build the basis for a practical, mobile AR system. Yet,
creating a real application requires tremendous efforts when directly combining these
basic building blocks. Studierstube ES (StbES) is a framework that integrates these
components into an easy to use solution than can be adapted to many client devices.
Details on StbES have been reported in [92] and are given in chapter 6.

1.4.5 Evaluations in practical Applications

The Handheld AR system developed in this thesis allows for the first time to build
large, practical AR systems on phones. In the course of this thesis several applications
were developed and evaluated. The results of these evaluations and the experiences
gained are important outcomes for other researchers, who aim to build similar setups.

Early Handheld AR applications reported in this thesis such as “Kanji Teaching”,
“Invisible Train”, the “Virtuoso” game and the “MARQ game at Technisches
Museum Wien” were developed using predecessors of StbES. While these applications
were based on PDAs with attached cameras, later applications such as “Expedition
Schatzsuche” or “Signpost 2007” were deployed on unmodified and therefore more
robust devices.

The applications developed, experiences gained and evaluations performed have
been reported in [109], [110], [111], [115] and [116]. Details are given in chapter 7.

1.5 Results
This document describes the development and architecture of the handheld AR

system that was developed as part of this thesis. It mainly concentrates on presenting
Studierstube ES, which is the latest version of the handheld AR project and the third
generation of this software.

Chapter 1

Introduction

10

Over the last four years the author has continuously improved the software and
benefited from the increasing capabilities of newly introduced mobile phones and
PDAs at the same time. There is reason to believe that handheld AR is now suitable
for real life usage by regular end users (customers, home users) which is not equally
true for other variants of AR setups. The work presented in this thesis is based on the
assumption that handheld AR is suitable as a mass-market interface if it fulfills the
following requirements:

• Low cost: A practical solution to be used at anytime and anyplace must be low
cost and therefore run on off-the-shelf commercial devices.

• Robust and fool-proof: To be usable by untrained users in unsupervised
situations, AR system must be robust and fool-proof. This requires soft- and
hardware that was specifically designed to be used by non-experts. It also
requires the creation of intuitive user interfaces.

• Self contained operation and networking support: Support for collaboration
is fundamental to unleash the full potential of AR applications, which requires
networking. On the other hand users expect their devices to run at any time
and any place which demands self contained operation. A successful system
must therefore be able to run standalone as well as take benefit of networking
capabilities.

• Tracking support: Real-time tracking is probably the most fundamental
requirement to any AR system. While many AR research approaches employ
high-quality, commercial tracking solutions, a system for the masses must rely
on simpler solutions that allow taking advantage of built-in device capabilities.

• Rapid prototyping: Although solutions developed in this thesis target a mass
market of end users there is still a lot of movement in the actual type and
design of applications and user interfaces. It is therefore important to support
the fast creation of new applications to evaluate new concepts.

• Content creation: After a first “wow-effect” wears off, users demand practical
benefits which, in the case of AR, require a strong content creation pipeline.
Other than for pure research it is not enough to get data “somehow” into the
AR application. Instead a clean chain of tools that relies on industry standards
is required.

Building upon the lessons learned in this thesis, researchers can more easily
evaluate Augmented Reality concepts and applications scenarios in realistic
environments. Until now, applications only included a small number of users. No
other mobile setups with more than 3 users have been reported so far. Finally, our

Chapter 1

Introduction

11

system allows creating and deploying applications evaluating the following scenarios
with real users in real environments:

• Massive Multi User AR: Augmented Reality can create shared virtual spaces
that are collocated with the real world. The full potential of these concepts can
only be exploited with many collaborative or competitive users. Until today the
high costs of typical AR systems prevented the introduction of AR “to the
masses”.

• Evaluating AR applications with real users: So far applications have typically
been evaluated with test users in test environments (research labs). Bringing
AR to the people and making it run in their devices allows evaluating usage in
natural environments and conditions.

• High quality content: Content creation is an expensive business and only pays
off if the market is large enough to support it. The number of deployed AR
capable mobile phones is predicted to reach one billion by 20122 making it
larger than any console or PC gaming market. The prediction provides a strong
backup for continuing work on handheld Augmented Reality.

1.6 Collaboration statement
This thesis builds upon work done in collaboration with other researchers. The
following list of publications gives an overview of the people involved in the handheld
AR project:

• Schmalstieg, D., Wagner, D., Experiences with Handheld Augmented Reality,
The Sixth IEEE and ACM International Symposium on Mixed and Augmented
Reality (ISMAR’07), 2007, Japan
This paper presents the MARQ Museum Augemented Reality Quest application
and the Studierstube ES system it builds upon.

• Wagner, D., Schmalstieg, D., First Steps Towards Handheld Augmented
Reality. Proceedings of the 7th International Conference on Wearable
Computers (ISWC 2003), pp. 127-135, 2003, USA
This paper represents the first publication in the course of thesis and describes the
Signpost 2003 application.

• Wagner, D., Schmalstieg, D., ARToolKit on the PocketPC Platform, The
Second IEEE International Augmented Reality Toolkit Workshop, 2003, Japan

2 Canalys report from Nov. 2006, http://www.canalys.com

Chapter 1

Introduction

12

This publication discusses the predecessor of ARToolKitPlus and hence the first
real-time 6DOF tracking solution running natively on off-the-shelf PDAs.

• Wagner, D., Barakonyi, I., Augmented Reality Kanji Learning, Proceedings of
the 2nd IEEE/ACM Symposium on Mixed and Augmented Reality (ISMAR
2003), 2003, Japan
This publication presents the AR Kanji Teaching application, a simple memory
game that trains the player in reading Kanji symbols.

• Wagner, D., Schmalstieg, D., A Handheld Augmented Reality Museum Guide,
Proceedings of IADIS International Conference on Mobile Learning 2005
(ML2005), 2005, Malta
The publication gives an overview of the handheld AR project and its work in the
area of AR in museums.

• Wagner, D., Pintaric, T., Ledermann, F., Schmalstieg, D., Towards Massively
Multi-User Augmented Reality on Handheld Devices, Proceedings of Third
International Conference on Pervasive Computing (Pervasive 2005), 2005,
Germany
The paper presents the Invisible Train application and draws conclusions for the
suitability of handheld AR for the masses.

• Wagner, D., Billinghurst, M., Schmalstieg, D., How Real Should Virtual
Characters Be?, Conference on Advances in Computer Entertainment
Technology (ACE 2006), 2006, USA
The paper written during the internship of the first author at the HITLabNZ,
studies the influence of virtual characters in Augmented Reality.

• Wagner, D., Schmalstieg, D., Handheld Augmented Reality Displays,
Proceedings of IEEE Virtual Reality (VR2006), 2006, USA
This position statement publication gives a broad overview on the latest
developments in the handheld AR project.

• Wagner, D., Schmalstieg, D., Billinghurst, M., Handheld AR for Collaborative
Edutainment, Proceedings of 16th International Conference on Artificial
Reality and Telexistence (ICAT), 2006, China
This paper presents a user study that compares the paper, desktop and handheld
AR variants of a multi-player edutainment game.

• Wagner, D., Schmalstieg, ARToolKitPlus for Pose Tracking on Mobile Devices,
Proceedings of 12th Computer Vision Winter Workshop (CVWW'07), 2007,
Austria
The paper gives a state of the art report on 6DOF tracking on mobile phones.

• Wagner, D., Schmalstieg, D., Muddleware for Prototyping Mixed Reality
Multiuser Games, Proceedings of IEEE Virtual Reality 2007 (VR2007), 2007,

Chapter 1

Introduction

13

USA
The paper presents Muddleware, the networking middleware developed during
this thesis.

The following people deserve specific mentioning, since a considerable part of
this thesis would not have been possible without them:

• Istvan Barakonyi of Graz University of Technology co-developed the
Signpost2007 application and animated the Virtuoso virtual character. He also
co-developed the idea of learning Kanjis using Augmented Reality and helped
in translating symbols and finding correct 3D models for the Kanji teaching
application.

• Michael Kalkusch of Graz University of Technology and Thomas Psik of
Vienna University of Technology wrote the Java client implementation of
Muddleware.

• Hirokazu Kato of NAIST, Japan and Mark Billinghurst of HITlab New
Zealand developed the original ARToolKit library that ARToolKitPlus builds
upon. Mark Billinghurst also co-designed the user study on virtual characters
and developed most of the conclusions from the evaluation results.

• Nina Mayer of Landesmuseum Kärnten researched and designed all the
hotspots for the MARQ application. Together with Uwe Neuhold of Verdandi,
Nina Mayer moderated the evaluation at the Landesmuseum Kärnten.

• Thomas Pintaric co-developed the Invisible Train applications, built most of
the props as well as organized and joined most of the demonstrations that led
into the evaluation results. He’s also the author of the DSVL Directshow
Wrapper library that is used for development on the PC.

• Christian Pirchheim of Graz University of Technology developed the
graphical user interface creation tool “Thekla” that builds on top of
Muddleware.

• Matthias Stifter of Imagination GmbH developed most of the MARQ content
and extended the first prototype into its final form.

• Albert Walzer of Graz University of Technology created graphics and videos
for most of the applications and was an invaluable help for designing game
concepts.

The remainder of this thesis discusses how the requirements stated in chapter 1.2
were met: After related work and state of the art is evaluated in chapter 2, chapter 3
presents the solution developed for tracking, while chapter 4 describes the rendering
toolkit. Chapter 5 discusses the requirements on networking for handheld AR

Chapter 1

Introduction

14

applications and describes the “Muddleware” networking middleware developed in
this thesis. Chapter 6 gives details about the handheld AR framework Studierstube ES.
It also presents Sphinx, an engine for creating multi-player AR treasure hunt games.
Chapter 7 reports on applications developed and studies performed during this thesis.
In chapter 8 conclusions are drawn and guidelines are given for development of
handheld AR systems. The chapter finishes with an outlook into future research
directions. The appendix in chapter 9 presents source code examples of simple AR
applications developed with Studierstube ES. It also contains all questionnaires of the
studies performed.

Chapter 2

Background and Related Work

15

Chapter 2

Background and Related Work
This chapter reports on existing work in all areas that this thesis touches. Since the
thesis reports on an extensive system design and draws inspiration from many
areas, only the most relevant aspects are examined here. After looking at general
aspects of previous work in Augmented Reality in section 2.1, this chapter
discusses relevant work on 3D user interfaces in section 2.2., followed by the
related issue of content creation in section 2.3. More technical aspects are
examined in the rest of the chapter: Section 2.4 discusses pose tracking solutions
for embedded devices, section 2.5 examined multiuser technology for AR and
section 2.6 provides background on wireless connectivity technology, which is
relevant for this work.

2.1 Augmented Reality
In 1968 Ivan Sutherland created the first head-mounted display (HMD) [101][102].
Due to limited processing power, his application showed only a simple wireframe
model overlaid onto the real world. Yet, it marks the first application that fulfills the
definition by Azuma and Milgram (see above).

The first Augmented Reality applications evolved from basic research, used
enormously expensive hardware and consequently mostly covered research and
technical problems only. In his 1995 survey paper Azuma lists six categories for AR
applications: medical, manufacture and repair, annotation and visualization, robot
path planning, military aircraft and entertainment. Some seminal works in these areas
are given in the following.

Researchers at UNC Chapel Hill conducted first trials of overlaying 3D
representations of ultra-sound data onto patients [5]. In the “Knowledge-based

Chapter 2

Background and Related Work

16

Augmented Reality for Maintenance Assistance” (KARMA) project Feiner et al.
created a laser printer maintenance application [24]. Milgram developed the ARGUS
system [70] to create an easier way for robot path planning.

With the introduction of powerful portable computers and notebooks, mobile
AR setups became possible. The Touring Machine [31][30] was among the first to use
this new hardware platform for mobile systems. A later project of the same research
group was MARS (Mobile Augmented Reality Systems) [49]. Presented in 1999, it was
one of the first truly mobile augmented reality setups, which allowed the user to freely
walk around while having all necessary equipment mounted onto his back. Several
similar platforms such as BARS [21], Tinmith [77] and Studierstube [56] examined
various application areas.

Due to the recent availability of Tablet PCs and UMPCs many researchers use
these devices to bring existing software to smaller devices. Newman et al. use these
mobile devices for experiments on wide area tracking [75]. Reitinger uses UMPCs to
gather data in an urban environment [81]. After starting with backpack setups the
iPERG project [62] then switched to UMPCs and Tablet PCs due to their lower costs
and hardware maintenance requirements. The AMIRE3 project used Tablet PCs for a
museum guide.

2.1.1 Augmented Reality on Handheld and Embedded Devices

Even before the success of the smartphones as mass-marketed items, pioneering
projects started using small displays for custom see-through devices. Many early
works at least partially outsourced processing tasks to a nearby server via tethered or
wireless networking.

As can be seen in Figure 2.1 there are four different levels of outsourcing
processing tasks to a server: In the ideal case Figure 2.1(a), all work is performed
natively by the client making it independent of the server and infrastructure. At the
other extreme, many early handheld AR applications were based on a thin client
approach with a "video-in/video-out" communication mechanism for receiving
assistance from a computing server, which is shown as Figure 2.1(d). Such a setup
does not only require a frame-by-frame communication but also requires sending
video images in both directions requiring maximum performance of the network
connection.

3 http://www.amire.net/

Chapter 2

Background and Related Work

17

Figure 2.1: Different level of outsourcing to a server:

a) All tasks are run natively by the client, b) Server performs tracking,
c) Server performs tracking and application logic, d) All work is done by the server

However, these two solutions are just extreme examples of how work may be
allocated among a server and handheld client. Depending on circumstances, solutions
in between these extremes may be useful and necessary.

If one limits the discussion to a typical AR system which uses a single video
source for both tracking and video see-through display, the processing pipeline is
composed of the following main tasks: video acquisition, tracking, application
computation, rendering, display. Offloading some of these tasks to a computing
server is an instance of horizontally distributed simulation [65], and it is established
knowledge that a scalable solution (many clients, many servers etc.) requires cautious
use of the available network bandwidth [118]. Communication of raw video streams
in both directions (Figure 2.1c) does not satisfy such bandwidth constraints. A better
alternative seems to be streaming graphics commands back to the client such as done
in the Chromium [52] framework.

The approach depicted in Figure 2.1(b) offloads the tracking task to a computing
server, which requires upstream communication of pre-processed, compressed video
for visual tracking purposes, followed by downstream communication of pose
information. The advantage of this approach is that a very concise, but generic and
computationally expensive task is offloaded to the server, while all application details
are handled exclusively by the client, thus dependencies between client and server are
minimal. For example, while tracking of artificial fiducials can be performed in real-
time on embedded clients now, natural feature tracking can benefit from the greater
computational power of a server for at least several more years.

Amselem's work [1] and Fitzmaurice's Chameleon [26] used small tethered LCD
displays for location based information. Rekimoto's NaviCam [85] used color-coded
stickers to track objects in the environment. Due to the tethered trackers in these early

Chapter 2

Background and Related Work

18

works, the degree of mobility was rather limited. mPARD [80] is a variant using
analogue wireless video transmission to replace tethers. The Transvision [83] project
by Sony CSL introduced handheld AR devices for a shared space. Researchers at
HITLab later improved this concept [71] with a better user interface and an optical
tracking solution re-using the camera needed for video see-through. All these works
use simple tethered displays and cameras for the mobile device and are therefore
extreme examples of Figure 2.1(d).

From 2000 on, PDAs with wireless networking were considered suitable for thin-
client solutions outsourcing computationally intensive tasks such as rendering,
tracking and application to a nearby workstation. The Batportal [54] used non-mixed
3D graphics using VNC, while the AR-PDA project [35] used digital image streaming
from and to an application server. Both projects again use the method describe in
Figure 2.1(d). Shibata's work [95] aims at load balancing between client and server -
the weaker the client, the more tasks are outsourced to a server. It can therefore vary
between all situations described in Figure 2.1. ULTRA uses PDA-based AR to support
maintenance workers, but concentrates on augmenting "snapshot" still images [68]. In
the absence of real-time tracking for infrastructure independence it performs all tasks
natively (Figure 2.1a).

In 2003 the author ported ARToolKit [57] to the PocketPC and developed the
first fully self-contained PDA AR application [115]. This platform was used in a peer
to peer game in [111]. Möhring et al. were the first to successfully target a consumer
smartphone for mobile AR [72]. The scarce processing power of the target platform
allowed only a very coarse estimation of the object's pose on the screen. Henrysson
ported ARToolKit to the Symbian platform and created the first two-player AR game
[45] on current-generation smartphones.

Summarizing these developments one can conclude that there is no ideal
solution for systems with scarce processing capabilities. An infrastructure
independent solution, as developed in the work of this thesis is desirable, but not
feasible for all situations. E.g. when artificial feature tracking is not an option,
embedded devices simply do not have the processing capabilities yet. While this will
certainly change in the future, new more demanding problems will emerge too.

2.1.2 Handheld Augmented Reality Gaming

Augmented Reality (AR) as a new user interface technology has yet to see its
breakthrough into mainstream acceptance - but why? Generally speaking, new user
interfaces are often employed first in professional applications, where potential gains

Chapter 2

Background and Related Work

19

in productivity can justify high investments and even allow for some user interface
specific training if the learning curve is not too shallow. In contrast, entertainment
applications must immediately appeal to a mass audience, need to be self-explanatory
and do not permit high hardware cost. On the surface it seems that serious
applications have an edge over gaming as a vehicle for user interface research, but
actually the opposite may be true: Players of computer games tend to tolerate to
glitches in software quality that would be deemed unacceptable for professional
applications, as long as play value and usability of the interface are outstanding. This
makes games very suitable to test research on user interface technologies such as AR.

Returning to AR interfaces, the main barrier that has hindered bringing AR
games to a mass audience is the lack of an inexpensive hardware platform. The advent
of ARToolKit [57] as a free tracking/graphics starter kit has led to significant growth
of individuals (most of them not researchers) experimenting with desktop AR.
However, desktop AR with a stationary camera (webcam) looses a lot of appeal over
direct viewpoint control with a head-mounted display (HMD), and neither HMDs
nor high quality mountable cameras are standard peripherals available to a wide
audience. It is likely that the unavailability of a commercial off-the-shelf device to
show AR content has severely affected the potential growth of this technology.

The proliferation of handheld computing devices may bring a solution to this
problem. Handhelds in the form of tablet PCs, personal digital assistants (PDAs) or
smartphones are well-engineered, widely available and inexpensive. Using live images
from their built-in cameras as a video background, they can display video-see through
AR. This style of interaction is sometimes called magic lens metaphor [15][106]. The
wide-spread adoption of handhelds allows researchers to draw from a large target
audience of users already familiar with the general operation of the target device;
many users may even own handheld devices already.

Casual games are becoming increasingly popular on cell phones, so that
handheld AR games are also perceived as socially acceptable, but at the same time
new and exciting. The expectation that casual games should have short playtimes
helps researchers to set up satisfactory experiences without having to produce a lot of
game content. Possible target platforms range from conventional cell phones, on
which software-only solutions could allow immediate commercial marketing, to high-
end handheld and Tablet PC solutions which are useful for proof-of-concept
implementations until the lower end of the market has reached sufficient
performance levels. In the following some examples are described.

Penalty Kick [90] (see left and middle image in Figure 2.2) uses a coarsely
registered 3D marker, which can be printed on a poster or product package. The aim
of the game is to shot a soccer ball into a goal printed on the product package. The

Chapter 2

Background and Related Work

20

player can aim where to shot the ball by rotating and tilting the phone. The virtual
goal keeper will then try to hold the ball.

Figure 2.2: Left and middle: Penalty Kick (images property of Michael Rohs);

Right: Mosquito Hunt (image property of Siemens)

Mosquito Hunt (see right image in Figure 2.2) challenges the player to shoot
mosquitoes. The gun is pointed at the mosquitoes by moving the phone in space. A
simple pixel flow detection algorithm makes the mosquitoes stay fixed relative to the
environment. The world is captured by the build in camera acts as a backdrop for the
game, while the mosquitoes are rendered as 2D sprites on top of that background.
The game only measures orientation, so that actually only the orientation of the
device matters, while the position is irrelevant.

Mobile Maze [22] (see left image in Figure 2.3) goes one step further in the
direction of pure VR by turning the handheld device into a purely simulated
handheld maze game. The player has to guide a ball through a maze by tilting the
physical maze itself. The software visually tracks the phone's orientation using a
marker, but does not display any video image. Mobile Maze displays the whole maze
on the screen, so that the impression of a handheld physical maze is suggested.
Another variant of the same idea, Marble Revolution4 always centers on the Marble,
while scrolling the game field, which is much larger than the screen. Marble
Revolution has a physical interface, but otherwise no aspects that qualify as Mixed
Reality. Instead, the player has to navigate a ball through large, scrolling levels by
moving and tilting the phone. In contrast to Mobile Maze, Marble Revolution uses
pixel flow detection to navigate the ball and does therefore not require fiducial
markers.

AR Soccer [36] (see middle image in Figure 2.3) shows a virtual soccer goal and
blends in the handheld's video image in the bottom half of the screen, letting a user

4 http://www.bit-side.com

Chapter 2

Background and Related Work

21

view his own foot in the soccer environment. The aim of the game is to shot a virtual
ball into a virtual goal. To do that, the player has to kick the ball with his foot, which
is tracked using an advanced pixel flow detection algorithm. In contrast to simpler
pixel flow methods such as used by the Mosquito Hunt game, ARSoccer accurately
detects the edge of the moving foot and can thereby calculate the exact speed and
direction of the foot hitting the ball.

Figure 2.3: Left Mobile Maze (images property of HitlabNZ); Middle: AR Soccer (image

property of Siemens); Right: Impera Visco (image property of Michael Rohs).

Impera Visco [90] (see right image in Figure 2.3) is a typical turn-based (also
called "hot seat") multiplayer strategy game for cell phones that includes many
physical elements of classical board games such as dices, pieces and cards. The game
uses 36 cards that represent different resources and operations. In each game the
cards are arranged differently, requiring the players to scan the game board with the
mobile at game start. The mobile phone acts as a game manager rather than a 3D
graphics display. Since the game is turn-based, only one phone is required, which can
be passed on to the next player.

Symball [42] (see left image in Figure 2.4), a multi-player table tennis game for
Symbian phones was developed in 2005 by Video Processing Team at VTT (Finland).
The game shows a table tennis game from a player's perspective. Although the table
and the ball are shared conceptually, no tracking is performed on these and therefore
no shared space as described above exists. The game tracks the phones movements by
detecting objects of certain color in the camera's video feed. While the table is painted
as a static image, the paddle can be moved by tilting the phone. Two players can
connect their phones via Bluetooth to compete in a game. The disjoint players' spaces
in Symball theoretically enable remotely playing together, but in practice the short
range of Bluetooth limits this option.

Chapter 2

Background and Related Work

22

Figure 2.4: Left Symball/Pingis (image property of VTT);

Right: AR Tennis (image property of HitlabNZ).

AR Tennis [45] (see right image in Figure 2.4), developed in 2005 at HIT Lab
New Zealand also lets two players share a game of tennis but uses markers to establish
a shared space for the players. The phone itself is used as a paddle to hit the ball,
which requires a lot of physically movement with the device. Each phone can be fitted
with a marker on the back so that it can be detected by the opponent’s phone for
visual feedback.

2.1.3 Augmented Reality for Edutainment

AR as a new medium is attractive for education institutions such as museums aiming
at increasing the interest in their traditional exhibits through technology. The
incorporation of AR enhanced exhibits can range from a single high-performance AR
display [18] to an entire exhibition realized using Mixed Reality special effects [98].
On the one hand, stationary AR exhibits allow the use of technology without
compromising the experience with respect to form factor or power consumption. On
the other hand, mobile AR technology can offer an attractive replacement for the
traditional audio-tape tour guide.

Tour guides are a recurring application theme for mobile AR research, partially
because they show the strength of mobile AR, namely to present useful information
registered to static locations in the real world, such as historic edifices. Some examples
of outdoor AR guides are Situated Documentaries [48], ArcheoGuide [107], GEIST
[50] and Signpost [87]. Work on mobile indoor AR has specifically targeted museum
environments, for example the Guggenheim Bilbao museum [39] or Sweet Auburn
[67].

Chapter 2

Background and Related Work

23

Also relevant in a broader sense are mobile multimedia tour guides that do not
use AR displays, but provide location-based interaction with the environment.
Prominent examples are CyberGuide [64], Lighthouse [20], MIT's Mystery at the
Museum [58] and the phone guide at Senckenberg Museum [32].

2.1.4 Virtual Characters

Aiming at developing intuitive and easy to use user interfaces, this thesis also
evaluates the use of virtual characters, which are today a standard mechanism for
tutorials and guides in many applications including games. Virtual characters guiding
unfamiliar users have a long tradition in computer research and applications. The
most prominent, yet suboptimal examples are the office assistants such as the well
known paper clip in Microsoft’s Office until version 2003.

The work presented in thesis evaluates character representation and particularly
the presentation of virtual characters in an augmented reality setting. For the first
time, AR technology allows virtual characters to exist in the same real space as the
user. Despite this, the use of AR characters has also not been well studied.

In the Welbo system [2] an animated virtual robot assists an HMD equipped user
in setting up virtual furniture. Welbo has speech synthesis capabilities and can
understand simple instructions. It is aware of the user’s actions and movement and
reacts to commands by moving furniture or pointing to objects.

In one of the first examples of an AR character, Balcisoy et. al. [6] created a
virtual agent that could play checkers with a person in the real world. The agent didn’t
have any conversational ability, nor was it able to respond to a real user’s speech and
gesture commands. Simply by appearing in the same space as a real user, the authors
say it creates a strong sense of presence. However, Balcisoy also did not report on any
formal user studies exploring how the user’s felt about the agent.

In the AR Puppet project Barakonyi studied how animated characters improve
the man-machine communication in AR applications. In his work he focuses on the
interaction of virtual characters with their virtual as well as physical environment. In
the AR game MonkeyBridge [9] two players have to help their autonomous agents in
form of monster-like characters to cross a river. The characters are not scripted but
intelligently decide which virtual and physical objects to use in order to accomplish
the task. The AR Lego [8] application employs two agents: a physical robot and a
virtual animated repairman to assist an untrained user in assembling and maintaining
a LEGO Mindstorms robot.

Chapter 2

Background and Related Work

24

Augmented Reality interaction with mobile devices is inheritably different from using
HMDs or projection systems. As discussed in the next chapter using mobile displays
allows new types of AR applications. These mobile applications typically use the touch
screen or devices buttons rather than data gloves or 3D pointing devices as traditional
AR setups do. Furthermore since the AR system itself is extremely small it allows new
ways of shared applications, for example by passing the display from person to person.

Most real life applications can not be operated with a typical AR interface that
uses 3D user I/O only. Instead, many applications require 2D interfaces, which are a
natural strength of devices such as mobile phones over HMDs or projection-based
systems.

2.2 3D User Interfaces
3D user interfaces seem to be the most natural UI method for AR applications. In the
past much research concentrated on using data gloves in VR and AR setups, on
gesture recognition [47] and object manipulation [63]. While data gloves can be used
to create natural and fully 3D user interfaces [103], they usually do not allow accurate
selection and manipulation and suffer from supporting complex action sequences and
extensive tool or command sets.

Augmented Reality using tracked displays mandates the design inherently
different user interfaces. The magic lens metaphor afforded by handhelds imposes
very specific constraints to interaction design. The device must be held at a distance of
about 50cm, with the camera normally tilted downwards, to allow for prolonged use
without significant fatigue and also to let the user focus on the screen. The field of
view defined by the small handheld screen is therefore very limited. This means that
the amount of content that can be displayed - both world-registered and screen-
registered - is rather constrained.

It also implies that in order to observe a physically large environment, the device
needs to be frequently moved or rotated. Ergonomic constraints and the necessity to
keep a line of sight to the display limit the type and amount of possible movements of
the handheld. While rotation and movement with the supporting arm are quick,
moving the device through physical walking is more disrupting since it is often
difficult to keep the screen in view while physically navigating the environment.

Many application designs will therefore aim to minimize such physical
movements. For example, devices that feature a touch-screen can be held still while
interacting with the environment using the stylus. A similar approach may be taken

Chapter 2

Background and Related Work

25

using the miniature joysticks often found on cell phones. However, the author
observed that the enjoyment of physically navigating the environment is one of the
key contributions to the appeal of handheld AR applications in general and games
specifically. Of course a part of this success must be attributed to the fact that a larger,
navigable environment is specifically prepared to support the application. The
discussion will return to the issue of complex infrastructure below.

Figure 2.5: Left the screen of the handheld represents the AR display;

Right: the handheld itself represents the AR display.

The handhelds' small field of view introduces some ambiguity when trying to
assess AR applications with respect to the Virtuality continuum: A user will typically
focus on the handheld's screen, but simultaneously perceive context from the real
environment around the handheld. The handheld is so small that it can be interpreted
as a kind of "cursor" into the physical environment. Therefore, there are two possible
interpretations of an "Augmented Reality display":

• The screen of the handheld represents the AR display: This interpretation is
most meaningful if the handheld display superimposes computer graphics on
top of a video stream from the built-in camera. In this case the physical
environment is duplicated in miniature format on the display, and becomes a
conceptual part of the application. A handheld or Tablet PC with a slightly
larger display and a stylus is likely to strongly bind the user's attention to the
device, while diminishing the user's perception of the surrounding. The left
image in Figure 2.5 shows an example of this concept.

• The handheld itself represents the AR display (in this case, more an MR
display): The handheld display shows exclusively virtual content, but this
content is still fully registered to the physical environment. Moving the device

Chapter 2

Background and Related Work

26

in reality also moves the position (viewpoint) in the virtual world. In this case
the handheld itself is the AR display, since the display content must be
interpreted together with the surrounding real world. One could say that the
handheld is at the same time an AR display and a tangible interaction device.
This definition is more in line with Benford's "shared space" approach towards
mixed reality [14] which is much broader than the Virtuality continuum. The
right image in Figure 2.5 shows an example of this concept.

Some designs take a relaxed approach concerning registration and utilize only
the rotational degrees of freedom from the device pose, which allows using weak
tracking methods such as pixel flow detection. This decouples the virtual world from
the real world, since the focus of interaction is no longer important and rotational
changes are measured incrementally. Examples for this form of interaction are the
Mosquito Hunt, Mobile Maze and Marble revolution games which are covered in
chapter 2.1.2 of this thesis. All three games use optical flow detection interpreted as
rotational movement.

Even when the real and virtual worlds are fully registered, the use of the real
world may be purely to navigation mechanics, but have nothing to do with the
application semantics. A popular approach for instant AR is the placement of a
marker on a table, which is then tracked by the handheld's camera. While the virtual
content will remain registered to the real world while the handheld is moved, the
marker itself has no meaning other than defining a coordinate system for interaction.
The location of the marker is arbitrarily chosen by the user and has no influence on
the application unless it is moved. An interesting variety of using tracked objects such
as markers is that if multiple such objects are used, their identity and placement can
be used to manipulate the application with a tangible user interface. In particular,
tracked objects can be moved while the handheld remains relatively stationary.
Examples for this type of interaction include AR Kanji Teacher [109] as well as the AR
soccer game referenced in chapter 2.1.2.

Another aspect of UI design is how applications share the virtual space. The
following list considers multiplayer games to outline various possibilities:

• Sharing a single device: The simplest form of multiplayer sharing is the
sharing of the handheld device itself. While this obviously has the disadvantage
that no simultaneous interaction is possible, it suits turn-taking games very
well and is also popular in desktop games. Technically, the advantage of device
sharing is that only one device with suitable software is required, which
obliterates the need for software installation or networking, and is very suitable

Chapter 2

Background and Related Work

27

for instant, casual play. A game using this interaction paradigm is Impera
Visco [90].

• Co-located simultaneous interaction: Simultaneous AR gameplay using
multiple networked devices can either be constructed from multiple individual
AR spaces, i.e., one per user, or by constructing a shared space jointly observed
by the players. Disjoint AR spaces are technically simpler and work for users
who are in different locations. A shared space has more stringent requirements
concerning technical issues such as tracking accuracy or network latency, but
has the unique appeal of combining computer games with physically playing
together, being able to engage in a lively conversation and observing the
opponent's reactions. We have found these social aspects to be a strong factor
of motivation and enjoyment in AR games. The Symball [42] game uses this
principle to share a static and non-registered virtual ping-pong table.

• 3D registered shared space: A shared space can be defined by a generic object
such as a marker as done in the AR Tennis [45] game. In a minimalist setting
no further real world aspects are considered. Larger instrumented
environments typically have room for multiple players, as was implemented it
in the Virtuoso game (see chapter 7.2).

• Large area shared space: In the extreme the game space can encompass a large
area (e.g. a campus), supporting both face to face and remote gameplay at the
same time. This option is extremely compelling, since the immersion in the
"game world" is paid back in heightened excitement of the players. Nevertheless,
one must consider the effort involved in preparing such a larger, navigable
environment to support the gameplay, which is definitely not reconcilable with
instant, casual gaming. While placing a game board shipped with an AR game
on a tabletop may be straightforward, a game that involves physical museum
exhibits is only playable in exactly the museum it was designed for. Such a
complex environment will likely be designed for a larger number of concurrent
players, and will make the collaboration between the players more complex.
The “Schatzsuche” museum game (see chapter 7.3) is currently the only
representative of this kind of application we know of.

2.3 Augmented Reality Authoring
Content creation, also known as authoring describes the part of software development
that is not focused on programming but on content creation. For practical content-

Chapter 2

Background and Related Work

28

rich applications content creation is a major topic. While small projects can survive
using a complex chain of authoring tools, large applications require a smoothly
working content development pipeline. This issue is not unique to AR applications,
but has become a special problem in the area of professional game development.

Many research projects use the Virtual Reality Modeling Language (VRML)5, a
powerful 3D scene description language with an OpenInventor-like6 syntax. While
tools exist that allow creating simple scenes without programming, it is not an
authoring tool in the classic sense. Although VRML has been superseded by the XML-
based X3D standard7 it is still one of the most widely used graphics formats.

The Designers Augmented Reality Toolkit (DART) [66] specifically targets non-
programmers. Based on Macromedia Director8 it provides a user interface that is well
known to graphics artists and designer. The timeline concept allows the creation of
non-linear content in an intuitive graphical way. Another project targeted at non-
programmers is the MARS authoring toolkit [40]. Similar to DART, the custom
developed editor uses a timeline to author media that are linked in a hypermedia
fashion. The Authoring Mixed Reality (AMIRE) [39] project focuses on combining
basic building blocks, called Gems into a mixed reality application. Developers can
use a visual editor to connect and configure the Gems. Yet, the authoring, rather than
application development aspect itself is only minimally present in AMIRE. APRIL
[60] is an XML-based scripting language that uses the Studierstube framework and
adds high level concepts on top of it. APRIL uses a finite state machine (FSM) to
create non-linear stories and provides abstraction mechanisms to describe the needs
of the specific application that are then automatically mapped to the available hard-
and software.

Other projects use in situ modeling where the authoring editor itself is an AR
application. While such an approach is definitely not optimal for every type of
application it allows editing AR content in place, which is especially useful for mobile
scenarios. The Tinmith-Metro system uses the mobile Tinmith AR setup to provide
content developers with tools for creating virtual content directly in place using the
mobile setup. Predefined virtual objects can be dropped into the real environment
and modified using a tracked glove. Güvem et al. [41] use a mobile device to create
and edit hyperlinked situated media on-site. They explore several novel interaction
paradigms to work with these linked annotations. Lee et al. use tangible AR for

5 http://www.w3.org/MarkUp/VRML
6 http://oss.sgi.com/projects/inventor
7 http://www.web3d.org/x3d
8 http://www.adobe.com/products/director

Chapter 2

Background and Related Work

29

“immersive authoring” [61] that enables the user to create virtual scenes and script
simple commands directly in the AR environment.

The tools mentioned above can be classified into two main categories: authoring
in the AR runtime itself and authoring using professional toolkits. Both are not
optimal for phone-based AR: The reduced input and processing capabilities of mobile
phones make these devices unattractive to be used as platform for complex authoring
applications. Furthermore, the typically employed vision based tracking systems do
not allow working accurately. Using professional toolkits such as in the DART system
raises the problem of deploying the corresponding runtime on the target platform.
For the example of DART, no Adobe Shockwave runtime exists for mobile phones.
Hence the author of this thesis decided to develop a custom authoring solution as
presented in chapter 6.2.

2.4 Pose Tracking
Any Augmented Reality system requires some kind of tracking the user’s or display’s
pose in order to register it in respect to the real world. Pose tracking must run in real-
time, typically requiring solutions that estimate poses in less than 50 milliseconds.
Furthermore it must be robust under many conditions such as varying lighting. In
case tracking is lost, the system must be able to recover quickly.

Much work in mobile AR has focused on wide-area tracking. Most commercial
solutions such as optical or infrared trackers cover only a limited work area, so
researchers have aimed at using e. g., GPS [34], inertial sensors [4], and vision [88] for
tracking. The Bat System [54] from AT&T allows building-wide accurate tracking of
people and objects outfitted with badges that are tracked by a 3D ultrasonic location
system, but at the cost of deploying a building-wide electronic infrastructure.

2.4.1 Natural Feature Tracking

Recently processing power has reached a level that allows natural feature tracking in
real time. Some recent examples are: Bleser [19] uses a 3D CAD model to initialize the
tracking process. The system can then extend its model of the environment
automatically and even adapt to changes. Reitmayr [86] uses textured 3D models of
the real environment to track in urban outdoor environments. Pilet tracks and

Chapter 2

Background and Related Work

30

augments predefined deformable objects [78] in real time. Vacchetti combines edge-
and textured-based tracking for realtime pose estimation [105].

The tracking methods mentioned above are state of the art and therefore not
suitable for handheld or embedded devices due to limited processing and video
capturing capabilities. Natural feature tracking using optical flow has been
successfully implemented on these devices though. Among the first applications to
use pixel flow detection on mobile phones was the Mosquito Hunt game on the
Siemens SX-1 phone. Since then more mobile phones games have used this tracking
method. Wang recently released an open source pixel flow tracking library called
TinyMotion [108].

2.4.2 Marker Tracking

If limited computational resources do not permit robust markerless tracking, fiducial
marker tracking is often used in AR applications. One of the first projects using
camera-based 6DOF tracking of artificial 2D markers was Rekimoto's 2D Matrix
Code [82] in 1996. It pioneered the use of a square planar shape for pose estimation
and an embedded 2D barcode pattern for distinguishing markers. In 1999 Kato used a
similar approach to develop ARToolKit [57], which was released under the GPL
license and therefore became enormously popular among AR researchers and
enthusiasts alike. Since then, many similar square tracking libraries have emerged
among which the most prominent ones are ARTag [25], Cybercode [84], the SCR
marker system [117] and the IGD marker system used in the Arvika project [33].

ARToolKit is the basis for several projects concentrating on 6DOF tracking on
handheld devices. It uses black and white square marker that can be easily detected
even under low lighting conditions. Furthermore a single marker is sufficient for full
6DOF pose estimation. The author’s port of ARToolKit to Windows CE [112] led to
the first self-contained handheld AR application [115] in 2003. This work evolved
later into the ARToolKitPlus library [113] detailed in Chapter 3. In 2005 Henrysson
[45] created a Symbian port of ARToolKit partially based on the ARToolKitPlus
source code.

Other researchers tried making best use of the restricted resources of low to mid-
range mobile phones by using simpler models with very restricted tracking accuracy.
In 2004 Möhring [72] created a tracking solution for mobile phones that tracks color-
coded 3D markers. At the same time Rohs created the Visual Code system for
smartphones [89]. Both techniques provide only simple tracking in terms of position
on the screen, rotation and a very coarse distance measure. VTT developed a marker

Chapter 2

Background and Related Work

31

system [96] very similar to Rohs’ Visual Codes that does not provide pose estimation
though.

2.5 Multiuser Systems
Over the last decade multiplayer gaming has become extremely popular and today
represents the part of PC-based gaming where the highest revenue is made. Early
multiplayer games used peer-to-peer network topologies with a limited number of
clients. Today's multi-player games typically use client-server techniques, which allow
for better scalability and also an improved separation of concerns in the overall
system architecture. Despite a massive amount of research in the area of designing
and implementing massive multiplayer services, they still represent a challenging
endeavor.

As mobile devices are becoming increasingly available, shared spaces that were
previously bound to desktop computers within a fixed infrastructure are now moving
to handhelds such as cell phones or PDAs. Mobile applications and services are not
simply a trend towards a more convenient platform, but a fundamental paradigm
shift. For example, mobile games have the potential to combine wireless networking
with location based computing. The resulting Mixed Reality Games [98] bring the
game play out of the virtual world and back into the real world. Hence, the
requirements for MR and AR games are inherently different from conventional
online games.

This chapter analyzes the most common problems of mobile, multi-user
Augmented Reality applications, which were addressed with the Muddleware system,
before it then looks in detail at solutions developed in previous research projects:

• Communication is not guaranteed to be always available. When relying on
wireless communication such as WiFi or GPRS, high-quality, poor or no
communication at all may be available depending on the current location of
the device. Hence, the system must support both strongly as well as loosely
coupled connections. Loosing network connection during application
execution is not an exception but rather a rule. Users, thus, must be able to
enter and leave sessions at any time and even continue despite being
temporarily disconnected [10]. These special circumstances affect the design
space for applications and are therefore best made explicit in the networking
middleware.

Chapter 2

Background and Related Work

32

• Heterogeneity in the client platform is common for situated Augmented
Reality applications. AR clients differ significantly in their performance, user
interface capabilities, and mobility. Making the best use of this diversity can be
an important aspect of AR game design rather than an unwanted side effect.
For example, users of mobile and stationary clients can exploit their
complementary capabilities for collaborative problem solving. Moreover,
games that leverage the player's location in the real world for gameplay – for
example, by requiring a player to perform certain actions at a specific location
– require the game platform to interface with a large variety of sensing devices
and other input/output facilities in the real world. All this diversity makes it
unreasonable to expect the deployment of heavy-duty AR and networking
packages on client devices. Software for game and non-game clients must be
lightweight, highly modular and available for a very wide variety of platforms,
so that a client can participate in the shared space with only a minimum of
required software.

• Persistence of application content and state becomes an increasing concern as
the level of heterogeneity and distribution increases in Augmented Reality
applications. Like online role-playing games, AR games are situated in a
persistently evolving universe – however, in case of AR, this is the real world.
Since predictable behavior or even reachability of clients in the real world
cannot be expected, all important application data reflecting the real and
virtual parts of the application world must be stored persistently in a reliable
database. The difference to conventional online databases is that the structure
of the database must reflect the diversity of the real-world entities, and can
usually not be limited to just a few artificial object categories without severely
compromising the design space of the application or game.

• Rapid prototyping becomes increasingly important since there are no
established design practices or genre standards for Augmented Reality
applications or games as there are for their desktop counterparts. AR games are
currently mostly developed by small teams in academic or commercial research
labs. While this situation may evolve over time into a more traditional
development process, in the near future the possibility to quickly change game
database content and game protocols is of prime importance. From a technical
perspective, this means that network communication between the distributed
application components should be accessible via loosely typed, interpreted
scripting.

Chapter 2

Background and Related Work

33

Virtual Reality researchers have long ago started working on distributed systems
and tele-presence, allowing non-colocated users to share virtual environments.
Among the first projects is the work done by Benford [12], Zyda [119] and Snowdon
[97] in the early 1990s. While CORBA9 is a well established solution for distributed
systems, many researchers favor more specialized approaches such as distributed
scene-graphs [74][46][104]. Although a tremendous amount of work has been put
into these systems, they have not been widely successful, although developers of
massive multi-user games nowadays benefit from these works.

In contrast to Virtual Reality, only few AR projects tackled the problem of
distributed systems. Among these is DWARF [11], a component-based distributed
AR framework. These systems are similar to those developed in the area of ubiquitous
computing since they share the same problems: They deal a lot with research
allocation and management as well as service discovery. Yet, most multi-user AR
systems allow just either ad-hoc or stationary networking. Consequently the number
of concurrent users in these systems is generally very low.

To address these specific needs for AR middleware for many users in unreliable
and spontaneous networked environments, the author of this thesis has developed a
communication framework called Muddleware. It is originally inspired by the
concept of a Tuplespace [37], an associative memory that stores a collection of tuples.
The name Muddleware refers to a complex “pile” of data tuples. Tuplespaces are
sometimes also called Blackboards or Whiteboards. They are the theoretical
foundation for Linda [38], a programming language for parallel algorithms. The idea
is still popular in modern implementations such as IBM TSpaces [53] and JavaSpaces
[27].

While a classic Tuplespace is a very general data structure that is hard to
implement efficiently the approach described in this thesis is specialized for the use of
multi-user setups. Another projects that is based on the concept of a Tuplespace is
LIME [73] (Linda in a Mobile Environment), extends the original Tuplespace concept
by transiently sharing Tuplespaces among multiple clients. The Tuplespace is broken
up into many partial Tuplespaces, each one permanently associated to and stored on a
specific client unit. When a new client connects to the federation of Tuplespaces, its
current content is merged into the shared space by making it available to all other
clients. While all clients can query tuples from all other clients and even add new
tuples, all individual Tuplespaces remain on their original client. When a client leaves
the federation it takes all its content with it, which is then no longer available for the
other clients. The transient sharing makes LIME very dynamic, but is inappropriate

9 http://www.corba.org

Chapter 2

Background and Related Work

34

for deterministic application state since the availability of essential data cannot be
guaranteed.

In contrast, the Event Heap [55] was very influential for the development of
Muddleware. The Event Heap is an extended Tuplespace for synchronous groupware.
It allows sharing events among multiple users, applications and devices in a
distributed, interactive workspace. The Event Heap replaces the event queue
commonly used in operating systems, which was found inappropriate for distributed
groupware setups. The Event Heap extends the original Tuplespace concept with new
capabilities such as non-destructive reading of data, a lifetime property for tuples to
realize a kind of garbage collection, and a publish-subscribe mechanism for reliable
causally ordered communication. Among the key techniques useful for interactive
applications demonstrated in the Event Heap is the use of Tuplespace-style queries
for filtering events that are interesting to a client without the need for explicit
producer-consumer network channels.

The Enchantment Whiteboard [23] developed in the MIThrill project uses a
Tuplespace like system as a central hub for data exchange between various wearable
components in a Body Area Network. It extends the Tuplespace idea by allowing
clients to subscribe to portions of the whiteboard to automatically receive updates
when changes occur. To support concurrency, clients can lock parts of the whiteboard
before posting updates. Furthermore the Enchantment Whiteboard supports
symbolic links to other whiteboard servers allowing transparently referring data
across the network.

Another system that specifically addresses the problems of unreliable wireless
network connections was developed for the Battlefield Augmented Reality System
(BARS) [21], an Augmented Reality application that superimposes battlefield
information for soldiers directly onto the environment. In the BARS project Brown et
al. “Event-Based Data Distribution Mechanism” based on replicated databases and
custom network protocols.

Several generic middleware solutions for massive multi-player online gaming
exists, such as the Distributed-organized Information Terra (DoIT) platform [51] and
the Internet Communication Engine (ICE) [44]. ICE represents a light-weight
alternative to CORBA with advanced features such as grid computing, persistence
services and encryption. BigWorld Technology10 is a commercial MMO suite that
covers the complete development process from server application to 3D client
libraries. All these commercial multiplayer solutions can be categorized as message-
passing or remote procedure call platforms. The ADAPTIVE Communication

10 http://www.bigworldtech.com

Chapter 2

Background and Related Work

35

Environment (ACE) [93] is a network programming library that is used intensively in
Muddleware.

For Muddleware, the Tuplespace-inspired approach was chosen over more
conventional message passing for very similar reasons as stated by the creators of the
Event Heap and Enchantment Whiteboard. A Tuplespace allows data-driven
prototyping, flexible communication patterns and implicit persistence. While the
Muddleware approach shares those virtues with previous work, its implementation
differs in the choice of system characteristics and increased expressive power of the
communication primitives.

2.6 Wireless Connectivity
As outlined in the introduction of this thesis, network connectivity is a fundamental
requirement to exploit the full potential of handheld augmented reality. Especially for
gaming applications – collaborative or competitive as well – a shared virtual space is
essential.

An ideal network solution would allow connecting mobile clients in a peer-to-
peer fashion as well as to stationary servers. Of course such a solution should provide
coverage over a large area with a sufficient bandwidth and response time. Finally this
network infrastructure should have low costs for deployment as well as for permanent
usage. Of course such a solution does not exist and one has to choose between the
strength and drawbacks of those networking technologies that are available right now.
The following list analyzes all these systems. While it would be preferable to give a
clear preference of a most suitable solution for handheld AR, the applicability of all
systems strongly depends on the actual application.

• GPRS is a mobile data service based on the widely spread GSM phone network.
As a consequence GPRS service has the highest coverage of all available
systems. Other than UMTS or WiFi it is available basically everywhere in
Europe. Its major disadvantage is extremely low response times of usually
around a second which renders it unsuitable for live data exchange for many
applications. Since GPRS is usually lower prioritized than speech the GSM
service, quality can vary enormously over time. It is most suitable for single
user applications that only require connectivity to download missing data such
as 3D models or annotations. Another current disadvantage that probably
disappears in the future is the high costs of transmitting data.

Chapter 2

Background and Related Work

36

• UMTS is a 3rd generation mobile phone network. Other than with GSM, data
services are fully integrated rather than added on top of it later on. Although
UMTS is marketed as high performance network, in practice network
performance and signal quality vary heavily. UMTS requires a much higher
density of base stations than GPRS which means that even in the long term
future, high performance networking via UMTS will probably only be available
in populated areas. Response times are typically around 200ms and therefore a
lot lower than when using GPRS.

• WiMAX is a high performance wide area network that provides data service
only. As such it compares to WiFi rather than UMTS. Other than WiFi it
requires licenses to operate and therefore creates provider/client partnerships
similar to UMTS and GRPS though. WiMAX is specified to provide up to
70MBit/sec at short range and 10MBit/sec at long distance (10km). Since
WiMAX is a very new technology coverage and number of providers are still
very low.

• Bluetooth is a standard short range (so called personal) network for up to 7
client devices. Its primary purpose is to wirelessly connect multiple devices of a
single user such as notebook, mouse and head-set. While the connectivity
range class 3 devices is only about one meter, class 1 devices can transmit data
up to a hundred meters. The Bluetooth standard is constantly improved. The
upcoming revision 3.0 will allow full USB 2.0 speed at 480 MBits/sec, but
current devices max out at 700kBit/sec only. Being a personal, local network
solution there are no costs of running the network. Due to its inherent
restrictions such as maximum number of client devices or the short range
Bluetooth requires other hardware and software infrastructure to cover an area
as large as a building or campus.

• WiFi (also known as wireless LAN or WLAN) is the wireless counterpart to
regular tethered networking. Its technology is fully compatible to regular
Ethernet systems including routing and switching. Its range of operation is
typically room or building wide. While projects such as Funkfeuer11 cover
complete cities they rely on stationary setups with large, accurately placed
antennas which prohibits this technology in mobile applications. Practical
bandwidth is around 20MBit/sec and response times are of usually below 10
milliseconds which renders WiFi an ideal solution for live data streaming and
exchange. A disadvantage is that spontaneous peer-to-peer networking is
usually not possible. Instead base stations have to be used to cover specific
areas.

11 http://graz.funkfeuer.at

Chapter 2

Background and Related Work

37

From the solutions described above WiFi will be preferred, for most purposes.
Once a network is deployed the costs of running it are very low as there are no fees as
opposed to GPRS, UMTS and WiMAX. The performance of WiFi is best among all
available options. A disadvantage is the small area of network coverage though. As
soon as wide are networking is required other solutions have to be used.

Many smartphones or similar devices do not support WiFi though. For short
area networking Bluetooth can be a competitive alternative. Installing WiFi base
stations equipped with Bluetooth USB sticks can be used to create a building network
wide Bluetooth clouds that are interconnected via the WiFi network. More details on
this technique can be found in chapter 7.4.1.

2.7 Discussion
This chapter presented a large body of state of the art in Augmented Reality from a
wide range of different research topics with the aim of justifying the various different
solutions developed in the course of this thesis, despite the many existing solutions
published before. The next four chapters present technology developed for mobile
phones based AR and several applications. Although previous work on each of these
categories exists, we found these to be insufficient for the specific requirements and
hypothesis of this thesis:

• Pose tracking (Chapter 3): No previous system was capable running at a
meaningful performance on mobile phones and similar devices. Hence, porting
existing and development of new solutions was mandatory.

• 3D rendering (Chapter 4): While professional 3D rendering solutions for
mobile phones exist, we decided to develop a solution specifically tailored to
the requirements of AR applications.

• Distributed computing (Chapter 5): Previous work on multi-user applications
mostly assumes fast and reliable network connections, which is not the case in
mobile computing. The solution described in Chapter 5 fulfills these
requirements plus the need for a portable thin client module and support for
rapid prototyping.

• AR framework (Chapter 6): The introduction of completely new building
blocks as described above requires the development of a new framework that
combines these into an optimal solution.

Chapter 3

Pose Tracking

38

Chapter 3

Pose Tracking
This chapter introduces the concepts of fiducial marker tracking and presents
ARToolKitPlus, a solution for marker tracking on mobile phones. It gives details on
the phone specific features and presents performance measurements on typical
devices.

Augmented Reality (AR) and Virtual Reality (VR) require real-time and accurate
6DOF pose tracking of devices such as head-mounted displays, tangible interface
objects, etc. Pose tracking must be inexpensive, work robustly in changing
environmental conditions, support a large working volume and provide automatic
localization in global coordinates. However a guaranteed level of accuracy is generally
not required.

Solutions that fail to address these requirements are not useful for VR and AR
applications. In particular for mobile AR applications, all the requirements must be
met while working with very constrained technical resources. The typical mobile AR
configuration involves a single consumer-grade camera mounted on a head-worn or
handheld device. The video stream from the camera is simultaneously used as a video
background and for pose tracking of the camera relative to the environment. This
inside-out pose tracking needs to execute in real-time with the limited computational
resources of a mobile device.

Tracking fiducial markers is a common strategy to achieve robustness and
computational efficiency simultaneously. While the visual clutter resulting from the
fiducial markers is undesirable, the deployment of black-and-white printed markers is
inexpensive and quicker than accurate off-line surveying of the natural environment.
By encoding unique identifiers in the marker, a large number of unique locations or
objects can be tagged efficiently. These fundamental advantages have led to a

Chapter 3

Pose Tracking

39

proliferation of marker-based pose tracking despite significant advances in pose
tracking from natural features.

Today, tracking rectangular fiducial markers is one of the most widely used
tracking solutions for video see-through Augmented Reality applications. This
chapter describes ARToolKitPlus, an open source marker tracking library developed
by the author of this theses and designed as a successor to the open source ARToolKit
library [57], which is the by far most successful marker tracking library.
Unfortunately ARToolKit was designed to run on standard PCs only. ARToolKitPlus
is unique in that it performs extremely well across a wide range of inexpensive devices,
in particular ultra-mobile PCs (UMPCs), personal digital assistants (PDAs) and
smartphones (see Figure 3.1).

Figure 3.1: Devices running ARToolKitPlus: Ultra Mobile PC, PDA, Smartphone

3.1 Camera calibration
Before camera-based 6DOF tracking can be performed, the camera must be

calibrated once in a pre-processing step. The results of this step are a perspective
projection matrix as well as the image distortion parameters of the camera. These
include the principal point, which defines the center of projection and is usually not
exactly in the center of the image of a real camera. Furthermore the intrinsic
parameters include the focal length and radial distortion parameters. The latter
describe the lens’ distortion using a radial model centered at the principal point,
which represents a good approximation for most real cameras. Usually this distortion
is rather low near the principle point of the image and increases at the corners. An
extreme case of radial distortion can be seen in the left picture in Figure 3.2. All these
parameters together form the “intrinsic camera parameters” and are saved in a
calibration file that is loaded later on during the start-up phase of the tracking system.

Chapter 3

Pose Tracking

40

ARToolKitPlus provides two methods for camera calibration. Users can use the
ARToolKit camera calibration tool that requires holding a printout of 6x4 black dots
in various poses in front of the camera (see left picture in Figure 3.2). For each pose,
the user has to manually select all dots. When enough poses have been registered, the
calibration tool estimates the camera’s parameters. A complete calibration of a camera
typically takes ~15 minutes.

Figure 3.2: ARToolKitPlus camera calibration. Left: Using the ARToolKit calibration

pattern. Right: Using the MATLAB checker board pattern.

Alternatively, ARToolKitPlus introduces calibration based on the freely available
MATLAB camera calibration toolbox12. While this requires the user to own a license
of the MATLAB software, it is more convenient, faster and produces more accurate
results. Furthermore it allows calibrating cameras of devices such as mobile phones
that are not capable to run the calibration software directly. For this calibration
method the user has to take multiple pictures (usually between 5 and 20) of a checker
board (see right picture in Figure 3.2). Since the image acquisition stage is decoupled
from the calibration stage, any type of camera of can be calibrated.

The MATLAB camera calibration toolbox then loads the previously acquired
images. First the user specifies basic settings such as the size of the checker board.
Calibration can work in two modes: in automatic mode the toolbox tries to find all
corners of the board autonomously, while in manual mode the user has to select the
outer four corners of the checker board by clicking on them. In case the automatic
mode fails on an image, it falls back to manual mode. The whole procedure typically
takes 5 minutes.

12 http://www.vision.caltech.edu/bouguetj/calib_doc/

Chapter 3

Pose Tracking

41

3.2 Runtime Tracking Pipeline
The runtime tracking pipeline is executed for every new camera image and results in a
set of zero or more estimated poses, depending on the number of markers identified
in the image. It consists of the five basic steps symbolized as shaded rectangles in
Figure 3.3. These steps are outlined in detail in the following chapters 3.2.1 to 3.2.5.

Figure 3.3: ARToolKitPlus runtime tracking pipeline

3.2.1 Fiducial Detection

In the sense of image based tracking, fiducials are objects or parts of objects in an
image that are of interest to the tracking system. The natural first step is therefore to
detect these fiducials so that they can be used for further processing in later steps of
the tracking pipeline.

In ARToolKitPlus, fiducials are black rectangular markers that must be
positioned in front of a bright background. Typically these markers are printed onto
white paper. While the markers can be cut out of the paper, it is important to keep a
white border around the marker to ensure that it can be robustly detected. A
disadvantage of this method is that printer ink is highly reflective. Areas which are
black can therefore appear as white in the camera image. For better results it is
therefore suggested to create the dark marker regions using self-adhesive velvet foil,
which does not reflect light under any circumstances and therefore results in more
robust marker detection.

Chapter 3

Pose Tracking

42

ARToolKitPlus uses a very simple fiducial detection system that is based on edge
following: As a first step ARToolKitPlus searches line by line (“scanlines”), left to
right for edges. There are multiple ways to define an edge. ARToolKitPlus uses
constant thresholding for this operation: Pixels with a luminance value below a
certain threshold are treated as dark and those above the threshold as bright. An edge
of a black marker in a scanline is then defined as dark pixels that follow after bright
pixels. When such a sequence of dark-right-of-bright pixels is found, it is considered
as a candidate for a marker’s border. The software then follows this edge until it either
closes the loop back to the start pixel or until it reaches the border of the image. Due
to the finite resolution of pixel images these are the only two outcomes of contour
following. All pixels that have been visited are marked as processed in order to
prevent following edges more than once. In case of a closed loop, the contour is stored
as a poly-line and considered for further processing. In the other case the edge is
simply discarded.

Figure 3.4: Fiducial Detection in ARToolKitPlus. Left: Source image; Middle: Threshold

image; Right: Three closed polygons as candidates for rectangle fitting.

Figure 3.4 points out the workflow of the process described above: The left
picture show the source image (as grayscale). The middle picture shows the binarized
version of the left picture, thresholded with a constant value of 80. The right picture
shows three candidates which are used for further processing. All other contours were
discarded since they are not closed or too small.

3.2.2 Rectangle Fitting

As a next step all closed polygons need to checked for actually being rectangles. For
this purpose a rectangle is defined as a 2D structure with 4 mostly straight lines that
intersect in 4 corner points. Since a physical marker might not be perfectly flat and
because the radial distortion can warp the camera image a considerably, it is necessary

Chapter 3

Pose Tracking

43

to use a relaxed method instead of searching for perfect straight line. An obvious
choice would be line fitting, but this method is not feasible since the closed contours
found in the previous step can consist of only four points (the corner points) which is
unsuitable for line fitting. Furthermore the algorithm would not only have to estimate
the line but also detect which points belong to the line and which do not.

Instead ARToolKitPlus uses an iterative process that incrementally detects more
and more corners along the contour until either no more corners can be found or
more than four corners were detected. In the latter case ARToolKitPlus discards the
contour as not being a rectangle. Only if exactly four corners were detected the
contour is identified as rectangle and stored for further processing.

To find corners, ARToolKitPlus guesses a first corner by selecting a contour
point that lies at the maximum distance to an arbitrary point of the contour. For the
case of a rectangle – even in the case of distortions – this operation always detects
corner points. ARToolKitPlus then calculates the centre of mass of all edge points and
creates a line through the first corner and this centre position. It then finds one corner
on each side of the line by searching for those points that have the largest distance to
this line. Having found three corners, ARToolKitPlus uses the same method to find
more corners on further lines that are formed by already detected corners.

ARToolKitPlus uses the length of lines for selecting thresholds that determine
how far points must be apart from the line to be treated as a corner. If a point falls
below this threshold it is treated as part of the line rather than a corner. Finally
ARToolKitPlus calculates the area of the rectangle as a second check that discards
markers which are too small.

Figure 3.5: Example for fitting a rectangle to a polygon.

Figure 3.5 shows the process described above using an example rectangle. In the
left picture, ARToolKitPlus selects an arbitrary point x and determines the point that
with the largest distance from x, which must be a corner point labeled c0. It calculates
the centre of mass from all edge points and creates a line through c0 and this new
point (blue line in middle picture of Figure 3.5). It then finds those points which are
most left and right of this line and labels them corner points c1 and c2. By building

Chapter 3

Pose Tracking

44

more lines using the points c0, c1 and c2. it recursively determines more corner points.
In the example above only one more point is found and labelled as c3. Creating new
lines from c2 to c3 and c3 to c1 reveals that no more corners exist. Finally the corner
indices are sorted into clockwise order.

The rectangle fitting step runs purely in simple integer arithmetic (mostly
multiplications, almost no divisions). It is therefore very fast and requires only a small
percentage (~1-2%) of the overall performance on mobile phones.

For comparison, a different method for finding rectangles is using a line based
approach, such as done by ARTag [25]. Instead of specifically searching for begins of
contours and following them to check if they are closed, ARTag finds all pixels that
contribute to edges independently and then groups those edge pixels into lines. An
advantage of this approach is that it can tolerate partially occluded markers by
allowing lines to be disconnected but still forming rectangles. A downside of this
approach is that its performance strongly depends on the amount of lines visible in
the camera image. Tests done by the author of ARTag reveiled that scenes with highly
structured backgrounds create severe performance bottlenecks for rectangle detection
on mobile phones.

3.2.3 Pattern Checking

After ARToolKitPlus successfully detected polygons with four corners and a
suitable size it needs to check if these quadrilaterals are valid markers. To do this it
first unprojects the markers’ interior regions into a normalized arrays of pixels. For
perspectively correct unprojection ARToolKitPlus calculates the homography matrix
using the markers’ corner point coordinates in the image and the knowledge that the
marker must be regular rectangles with 90° angles in the 3D world (see left image in
Figure 3.6). The homography matrix is then used to sample pixels (see middle image
in Figure 3.6) from the image which are then written into a pattern structure (see
right image in Figure 3.6). The size of the sampled patterns is arbitrary and depends
on the pattern checking method used next.

Chapter 3

Pose Tracking

45

Figure 3.6: Unprojecting the marker content. Left: Interior area defined by corner points;

Middle: sampling grid for unprojection; Right: Unprojected interior marker area.

ARToolKitPlus currently supports four different pattern checking methods. For
applications that need to use arbitrary marker images, users can select ARToolKit
template matching (see left picture in Figure 3.7), which checks the pattern area
against a database of images using cross correlation. It thereby calculates the sum of
squared differences between all pixels in the sampled and the database patterns. The
disadvantage of this method is that it is computational expensive and scales badly
with large numbers of known patterns: Each marker must be checked at four rotation
steps. N visible and M known markers therefore require 4*M*N template matching
operations.

Figure 3.7: Marker types in ARToolKitPlus. Left: Template markers;

Middle: ID-markers; Right: DataMatrix markers.

Alternatively users can select to use ID-based patterns (see middle picture in
Figure 3.7). In contrast to template patterns, the black and white pixels in the
unprojected pattern are directly interpreted as bit code from which a marker ID can
be calculated. ARToolKitPlus’ simple-ID patterns use simple four-fold redundancy
and can encode nine bits in a 6x6 pattern image. Alternatively ARToolKitPlus’ BCH
(Bose, Ray-Chaudhuri, Hocquenghem) code patterns use cyclic redundancy checks
(CRC) which require less redundancy for similar robustness. BCH markers can
therefore store 12 bits in the 6x6 pattern image.

Chapter 3

Pose Tracking

46

Detection of ID-markers is always faster than for template-markers since no
image matching using cross correlation is required. Currently ARToolKitPlus
supports up to 4096 id-markers. More markers could be supported at the cost of
decreasing the id-detection robustness. ID-markers offer several more advantages
over template markers (besides better performance): Although ARToolKit allows the
user to choose almost any image for marker patterns, most users still choose their
patterns out the small set of markers that comes with the ARToolKit distribution.
With id-markers, the user does not have to provide marker images, but can freely
choose any marker from a fixed set of 4096 patterns. In contrast to template markers,
the user is not required to train ARToolKitPlus with new patterns since any valid
marker is implicitly known to the system. The encoded id is highly redundant and is
therefore robust against 90° rotation steps, which is a natural problem with square
template markers.

Recently a fourth pattern type was introduced to ARToolKitPlus: Using
DataMatrix13 codes (see right picture in Figure 3.7), markers can encode complete
URLs or small binary data sets. The DataMatrix ISO standard defines patterns up to
144x144 pixels that are able to store 1558 bytes or 2335 characters. Such large patterns
are not suitable for tracking though since they’d only be correctly decoded with high
camera resolutions and under small perspective distortions.

3.2.4 Lens undistortion

Before an identified marker can be used for pose estimation it must be undistorted
using the intrinsic camera parameters that were estimated during the offline camera
calibration step.

ARToolKitPlus does not undistort the complete image but only the coordinates
of those points that are required for pose estimation. ARToolKitPlus has two different
methods for calculating the exact position of marker corners: The original ARToolKit
marker detector uses line fitting along the markers’ borders to intersect the lines for
corner estimation. Consequently all points along the borders must be undistorted.
ARToolKitPlus introduced corner estimation using Harris corner refinement. Based
on pixel-accurate corner positions that were detected during rectangle fitting (see
chapter 3.2.2) it uses the Harris corner detection algorithm for sub-pixel accurate
refinement. Consequently only these refined coordinates are then undistorted.

13 http://datamatrix.kaywa.com

Chapter 3

Pose Tracking

47

3.2.5 Pose Estimation

When markers have been identified in the camera’s image and undistorted corner
points are available, the final step is to estimate the camera’s pose with respect to the
markers. ARToolKitPlus can select from various pose estimators, which all use the
same basic conecpt: First an initial guess is created that estimates the marker’s coarse
position and orientation relative to the camera. This first estimate is then refined
iteratively until specific quality criteria are met or the maximum number of iterations
is reached.

ARToolKitPlus supports tracking of independent markers as well as sets of
markers which form a static 3D setup. The latter so called multi-markers have the
advantage that the set’s pose can be estimated as soon as a single marker is visible, but
the pose estimation quality improves as more markers are detected within the image.
For doing multi-marker tracking, ARToolKitPlus first estimates the poses of all visible
markers independently. The combined pose is then refined by creating a “super-
marker” who’s “corners” are built from all visible markers of the set. Considering a
typical case where 5-10 markers of such a multi-marker are visible, the estimated pose
from 20-40 corners is therefore highly accurate and stable.

The original ARToolKit single- and multi-marker pose estimators give good
results but suffers from jitter which is inherent to the used algorithm that tends to
converge against different minima spontaneously. Although ARToolKit never aimed
at accurate pose estimation, the effect of converging against different solutions
introduces jitter into the resulting pose which is very noticeable. The "Robust Planar
Pose Tracking" (RPP) algorithm [94] by Schweighofer et al. provides improved pose
estimation quality with less jitter and improved robustness. RPP takes into account
that two local minima exist for the pose estimation error function and specifically
deals with these two errors to always find the optimal solution. The RPP algorithm
was ported to C++ and added to ARToolKitPlus' set of pose estimators, running well
on standard PCs. Unfortunately, due to the high numerical precision requirements of
the algorithm, a fixed point port suitable for mobile devices seems currently not
feasible.

Recently, the author of this thesis introduced a new pose estimation algorithm
that uses non-linear refinement (Gauss-Newton iteration) to ARToolKitPlus
(respective to StbTracker). It is implemented in pure fixed point and therefore highly
suitable for mobile phones. The algorithm starts by calculating an initial pose from
the previously calculated homography (see chapter 3.2.3). Although this initial pose
could be used for tracking, it is coarse and jitters heavily. The refinement step uses the
algorithm described in appendix 6 (Iterative Estimation Methods) of [43]:

Chapter 3

Pose Tracking

48

The algorithm aims at refining the 6 parameters (3 for position and 3 for
rotation) that make up the pose of the camera. In each iteration step it first calculates
the Jacobian matrix (the matrix of all first-order partial derivatives) for the current
parameter values. It then uses the following formula to calculate a difference vector:

JT J d = -JT ε0

In the formula above, J is the Jacobian matrix; JT is the transpose of the Jacobian; d

is the difference vector and ε0 is the error vector (difference between optimal and
reprojected 2D points). Since JTJ is a symmetric positive-definite matrix, the equation
can be efficiently solved using the Cholesky decomposition. The resulting difference
vector is then added to the parameters from the previous step. In case the refined pose
does not meet the precision requirements yet (estimated by reprojection), another
iteration step is executed. See chapter 9.2 in appendix for source code.

3.3 Advanced Features
The following sections list the features that were added to ARToolKitPlus to improve
its suitability for mobile devices in general and cell phones specifically. Most of these
features were introduced into more than one step of the runtime tracking pipeline,
which is why they are listed here separately.

Fixed point
The lack of an FPU is probably the single, most important issue for floating point
intensive software on mobile phones and PDAs. To determine the time spent on
floating point operations, custom code instrumentation was applied to reveal the
most prominent bottlenecks. Tests showed that floating-point usage slowed down
especially the pose estimation part of ARToolKit on mobile devices. Replacing the
native C float data-type with a system-wide C++ class (emulating all operations with
fixed point arithmetic) failed due to strongly varying requirements on precision and
numeric range along the pipeline. Instead many functions had to be re-implemented
using hand-written fixed point code after determining local range and precision
requirements.

Chapter 3

Pose Tracking

49

Pixel formats
Supporting the native pixel formats of phone cameras is crucial for high performance
tracking. Converting to a common format costs too much performance, especially
due to the severe memory bandwidth limitations on these devices. Some camera
formats already provide data in a format that is ideal for tracking, such as the YUV12
format common on phones. YUV12 stores luminance (Y) at full resolution (8-bits),
followed by two chrominance components (UV) at half resolution (effectively 2-bits
each). Naturally 8-bit luminance images provide a suitable format for pose tracking
from back-and-white markers while minimizing memory footprint. In contrast,
formats such as RGB565 require the use of lookup tables for fast format conversion.

Automatic thresholding
In stationary setups lighting can often be controlled to provide well balanced
brightness throughout the complete environment of interest. In mobile setups, which
can easily span several rooms, floors or even combined indoor/outdoor areas,
tracking must adapt to changing lighting conditions. Although many cameras possess
auto-gain features today, the final image brightness can still vary heavily which causes
severe problems with constant threshold values. Global thresholding, the typical
solution for this problem, is computationally too expensive and therefore not suitable
for embedded platforms.

Figure 3.8: Automatic thresholding for tracking in extremely dark environments.

Instead ARToolKitPlus includes a simple, yet very effective heuristic for
automatic thresholding (see Figure 3.8) which imposes no measurable performance
loss. Instead of looking at the whole image, only the last seen marker is considered.
After a marker was found, the median of all extracted marker pixels is calculated and

Chapter 3

Pose Tracking

50

used as a threshold for the next image to process. If the heuristic fails because no
marker is found, ARToolKitPlus randomizes the threshold in such a case for every
new frame until a new marker is detected. Empirical tests show that after a marker
gets lost it takes only a few frames to find a new, working threshold.

Vignetting
Some cameras in mobile phones today exhibit strong vignetting (see left image in
Figure 3.9). Thresholding such an image with an image-wide constant value results in
an image as can be seen in the middle picture of Figure 3.9. If a marker is close to the
border in such an image, it will overlap with the dark areas that were classified as
black and the marker would therefore not be detected anymore. To prevent this,
ARToolKitPlus provides a simple vignetting compensation feature: The user can
specify a radial fall-off from the centre of the image to the corners. This fall-off is
specified numerically rather than using an image mask in order to minimize memory
bandwidth usage. After activating vignetting compensation even strongly tampered
images are thresholded correctly (see right picture in Figure 3.9). Vignetting
compensation adds only a minimal performance penalty.

Figure 3.9: Vignetting. Left: original camera image. Middle: constant thresholding.

Right: thresholding with vignetting compensation.

Portability
Today's mobile phones run a wide variety of system software. Hence, portability is of
high concern. ARToolKitPlus does not include code for camera access or 3D
rendering. Its only interfaces for data I/O are a pixel buffer for image input and 4x4
floating point matrices (compatible with the OpenGL matrix format) for tracking
results output. It is therefore only limited by the amount of supported input pixel
formats. ARToolKitPlus is implemented in pure C++ and is consequently highly
portable. Currently Windows XP, Windows CE, Symbian (experimental) and Linux
are supported which covers the majority of today's development and target devices.
While a Java port would extend the range of supported mobile devices considerably,

Chapter 3

Pose Tracking

51

our informal experiments have shown that the performance of Java on today's mobile
phones does not allow sufficiently interactive frame rates.

Custom memory management
Memory is not just a scarce hardware resource on mobile devices but often restricted
even further due to deficiencies in mobile operating systems. It is therefore crucial to
provide application developers with maximum control over memory de/allocation.
Hence all memory management in ARToolKitPlus can be customized by the
developer. On most platforms ARToolKitPlus uses the standard memory
de/allocation functions per default. On Windows CE ARToolKitPlus' memory
manager allocates memory outside the process' memory slot thereby keeping this
scarce resource available for DLLs and unmanaged memory allocations. Since
ARToolKitPlus' memory footprint is fixed and known at compile-time, the
requirements for such a custom memory manager are minimal.

Improved Lens Undistortion Performance
Precise lens undistortion is usually computationally expensive since it requires
evaluating non linear functions. ARToolKitPlus uses lookup tables to speed up this
process at runtime. Since even the generation of this lookup table can take up to 10
seconds on low-end devices, it can cache the table using the phone’s file storage.
When ARToolKitPlus searches for the cached lookup table at startup, it either loads it
or automatically creates and stores it for the next startup. Since lens distortion
functions are usually continuous, it is adequate to create the lookup table at a smaller
resolution than of the camera’s input image and to linearly interpolate values.

3.4 Performance measurements
Over the years, many optimizations were applied to ARToolKitPlus. Besides rewriting
major parts of floating point intensive code with fixed point counterparts,
ARToolKitPlus makes heavy usage of inline expansion and pre-processor techniques.
E.g. the pre-processor is used to generate separate functions for each supported pixel
format, which allows switching between those formats at runtime with no
performance penalty.

ARToolKitPlus uses lookup tables wherever possible. The pose estimation
algorithm intensively uses trigonometric functions that were accelerated with sine
and cosine lookup tables. The lens undistortion method of ARToolKitPlus is specified

Chapter 3

Pose Tracking

52

using higher order polynomials which introduce high computational costs at runtime
and were therefore replaced by a lookup table too. Matrix fitting requires perspective
projection, including (fixed point) divisions which are not implemented in hardware
on most ARM CPUs. Replacing these divisions with another lookup table resulted in
further significant speedups. Lookup tables can usually not provide the same exact
results as algorithmic methods. Special care was taken to always provide enough
accuracy so that final results are indistinguishable.

To test ARToolKitPlus' performance for practical applicability, benchmarks on
several handheld devices were performed. These tests compare tracking performance
with different numbers of visible markers, which is the only criterion that makes a
difference in tracking speed. Contrary to expectation, the size of the marker does not
influence the tracking speed. The reason for this is that the edge following step
generally adds only very little to the overall calculation time.

ARToolKitPlus is primarily CPU bound. So even though all test devices run
Windows CE, they represent a good overview of what is currently available on the
market. Additionally the benchmarks were run on a PC as a comparison of the
processing power on handhelds to a typical PC-based setup. Since several of these
devices are available under different brands, list also contains the OEMs' code names.
All builds were created using the Microsoft ARM and x86 compilers with full
optimization activated (/Ox). Where possible the Intel compiler suite was used to
compare different compilers. Benchmarks were performed on the following devices:

• i-mate SP5 (codename HTC Tornado) is a typical smartphone with a 200 MHz
Texas Instruments OMAP850 CPU.

• HTC MTeoR (codename HTC Breeze) is a fast smartphone device with a
300MHz Samsung S3C2442 CPU.

• HTC TyTN (codename HTC Hermes) is a PocketPC phone with a 400MHz
Samsung S3C2442 CPU.

• Gizmondo is a mobile gaming console with an nVidia GoForce 4500 3D chip
(not used in the benchmark), a built-in camera and a Samsung S3C2440 400
MHz CPU.

• T-Mobile MDA Pro (codename HTC Universal) is a high-end PocketPC
phone with an Intel XScale PXA270 CPU running at 520MHz.

• Dell Axim X51v is a high-end PocketPC PDA with an Intel 2700G 3D chip
(not used in the benchmark) and an Intel XScale PXA270 CPU running at
624MHz.

• Intel 2 GHz Core Duo represents a standard PC-based setup. On this device
ARToolKitPlus was executed with regular floating point code.

Chapter 3

Pose Tracking

53

Three different scenarios were evaluated: one using single marker tracking and
two using multi-marker tracking. In ARToolKit and ARToolKitPlus multi-marker
tracking is implemented by first tracking all markers separately, then combining all
tracking results and finally optimizing for the complete set. Because of the last step,
tracking a multi-marker set with N visible markers is considerably slower than
tracking N independent markers.

 Single Marker Multi Marker (4 markers) Multi Marker (10 markers)

Device MS Intel MS Intel MS Intel
i-mate SP5 14.8 ms 13.3 ms 66.4 ms 78.4 ms 234.1 ms 273.8 ms

HTC MTeoR 10.2 ms n/a 44.6 ms n/a 153.3 ms n/a
Gizmondo 8.5 ms n/a 34.5 ms n/a 122.7 ms n/a
HTC TyTN 8.3 ms n/a 34.9 ms n/a 128.1 ms n/a
MDA Pro 6.2 ms 6.0 ms 24.1 ms 29.5 ms 83.4 ms 99.1 ms
Dell X51v 5.4 ms 5.1 ms 20.7 ms 23.25 ms 69.8 ms 81.2 ms

PC 0.55 ms 0.43 ms 6.26 ms 2.77 ms 17.53 ms 8.3 ms

Table 3.1: Benchmarks performed on images with one, four and ten markers.
The latter two images were tracked with a multi-marker set of 12 markers of which

four and ten were visible.

Due to the aforementioned optimizations, the current version of ARToolKitPlus
is roughly 50 times faster on mobile devices than the initial port. Consequently, as can
be seen in Table 3.1, single marker tracking represents no major bottleneck on any of
the tested devices. It is interesting to notice that with single marker tracking the Intel
compiler gains some speed advantage over the Microsoft compiler on those CPUs
which can run that code. (Non-Intel CPUs required disabling some optimization flags
of the Intel compiler or the generated code would not run).

Multi-marker tracking puts a severe burden on the processing power of today's
mobile devices. While tracking a multi-marker set with four visible markers still
performs satisfactory on most devices, the cost for tracking ten visible markers is too
high for acceptable frame-rates - considering that tracking is only a one small part of a
practical application. It is interesting to notice that on all embedded devices the code
generated with the Intel compiler performs worse than the code generated with the
MS compiler, which is in contrast to the results of single marker tracking. The reason
for this behaviour is not revealed yet. Earlier tests with the Intel compiler revealed
though that some code, such as the Klimt library (see chapter 4.1) performs generally
worse with the Intel than with the MS compiler.

Almost all smartphones and PDAs today use ARM based CPUs. Furthermore,
ARToolKitPlus is almost fully CPU bound and hardly memory-bandwidth bound at

Chapter 3

Pose Tracking

54

all. Hence it is not surprising that the tracking performance on the devices in this
benchmark increases linear with the CPUs' clock rates. As can be seen in Figure 3.10,
all devices process 31.12 (+/- 1.76) frames per second at a normalized speed of 100
MHz.

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

160,00

180,00

200,00

SP5 MTeoR Gizmondo TyTN MDA Pro X51v

fra
m

es
 p

er
 s

ec
on

d

fps at full speed
fps at 100MHz

Figure 3.10: Frames per second for single marker tracking on embedded devices.

3.5 Discussion
This chapter presented a solution for tracking of fiducial markers on mobile

phones and similar devices. Tracking is a basic building block of every Augmented
Reality application. ARToolKitPlus is therefore an important contribution for any AR
system running on mobile phones, since it allows regular, unmodified phones to
estimate their pose in respect to objects of interest. Taking the limited requirements
on performance and accuracy into account, ARToolKitPlus on the phone performs
comparable to tracking systems on the PC, thereby contributing to fulfilling argument
H1 of the hypothesis in chapter 1.3.

Studies in this thesis (see Chapter 7) show that deployment of fiducial markers is
reasonably accepted. Yet we see fiducial marker tracking only as an intermediate step
to the long term goal of augmented everything and everywhere, consequently
requiring natural feature tracking. Today, most PC-based AR applications today also
use fiducial markers due to their unparalleled tracking robustness and performance.

An advantage of fiducial marker tracking is the fast and easy deployment which
makes it more practical than natural feature tracking in certain applications, as

Chapter 3

Pose Tracking

55

presented in chapter 7.5.2 on the Signpost 2007 application. For robust location
estimation in large areas, natural feature tracking inherently requires models of the
real environment (“model based tracking”), which are far more work intensive to
create than deploying fiducial markers. Deployment of commercial 6DOF tracking
systems is usually not affordable for wide areas too. Hence, also hypothesis H2
benefits from the work presented in this chapter, since it clearly supports building
larger AR applications.

Even if natural feature tracking is available, in some application areas, such as
advertisement, markers can serve as practical hints for users to activate an AR
application on their phone and aim it towards the marker. We therefore believe that a
next step will be the combined use of fiducial and natural marker tracking, combining
the strengths of both techniques.

Chapter 4

Rendering

56

Chapter 4

Rendering
Although AR is not exclusively focusing on visuals, most research focuses on
graphics augmentations, making rendering the second important aspect after
tracking, which was described in the previous chapter. This chapter first outlines
graphics concepts and then presents solutions for 2D and 3D graphics developed
in the course of this thesis.

Computer graphics researchers are accustomed to working with standardized low-
level APIs such as OpenGL. On small mobile platforms like PDAs and cell phones
there exists no built-in 3D graphics subsystem as of yet, and no widespread general
purpose commercial solutions currently exist. Although OpenGL ES is on its way to
become a solid base for 3D on mobile devices, most existing portable 3D applications
rely on OpenGL rather than OpenGL ES. Furthermore the AR framework developed
in this thesis, generally strives for a higher level of abstraction than OpenGL and
similar libraries provide.

An alternative solution to rendering natively on the handheld device is remote
rendering. In this scenario, a powerful server takes over the image generation task and
sends final images to the mobile device. For example, Lamberti et al. successfully
streamed mobile graphics using an MPEG video feed [59], assuming a fast network
connection. Such an approach is probably the only viable solution when graphics that
go far beyond the client’s capabilities have to be displayed. At the downside this
method scales badly with the amount of clients and becomes unpractical in low
bandwidth or low quality network situations. The handheld AR project therefore
concentrated on native rendering only.

This chapter describes graphics solutions that the author either developed for or
ported to mobile platforms. Some of them, such as Klimt have mostly historical value

Chapter 4

Rendering

57

anymore since it have been superseded with the wide availability of OpenGL ES
implementations.

4.1 Immediate Mode Rendering
In immediate mode rendering, also known as low level rendering, the user has full
control over the rendering process. Graphical objects are described on a vertex level
and retransmitted every frame. Immediate mode rendering is the basis and lowest
level for every current rendering system. The most common immediate mode 3D
APIs are OpenGL and Direct3D, of which the latter is only available on Windows
platforms and therefore of minor applicability for our purposes. Hence, OpenGL is
traditionally strongly represented in research and professional applications. It was
therefore important for the handheld AR project to have OpenGL or OpenGL ES
implementations available as the basis for all higher level 3D rendering libraries. Yet,
since some Windows CE devices with hardware 3D acceleration come with Direct3D
drivers only, support for this API was recently added in StbES too.

Figure 4.1 shows the OpenGL render pipeline as defined by the OpenGL 1.5
specification. Application data enters from the left. Programmers can either directly
manipulate pixel data using pixel operations or pass in vertex data. All
aforementioned operations can be recorded and played back using display lists. In the
rasterization stage, primitives are converted to frame buffer addresses called fragment,
which are then manipulated using per-fragment operations and finally written into
the frame buffer.

Since OpenGL implements the most complete pipeline among all widely used
immediate mode graphics toolkits today, it is used to compare it against the pipelines
of OpenGL ES, Direct3D Mobile, Klimt and KlimtES in the next chapters.

R
asterization

Fram
ebuffer

A
pplication

Figure 4.1: The OpenGL render pipeline.

Chapter 4

Rendering

58

4.1.1 OpenGL ES

OpenGL ES was designed by the Khronos14 group as a light-weight 3D API for
mobile devices. It is a powerful low-level API that is very similar to that of OpenGL
and provides most of OpenGL’s functionality. Khronos used the chance to clean up
the OpenGL API and solve many long outstanding issues such as window bindings.

It is available in hardware and/or software on all mobile key platforms. Hybrid
Graphics, a commercial vendor created a software implementation called Rasteroid15
that is free for non-commercial use. Vincent16 is a free open source implementation.
Both libraries use run-time code generation for the pixel pipeline: Instead of
including a fixed rasterizer that would have to efficiently handle all possible pixel
operation combinations, these libraries create machine code at runtime that optimally
implements the currently specified combination of raster operations. Since this is an
extremely low level approach, supporting different CPU architectures poses a
considerable amount of work. Unlike Rasteroid, Vincent therefore only supports
ARM CPUs and consequently does not run on PCs. For development purposes a
reference implementation of OpenGL ES that wraps an underlying OpenGL
implementation is available by Khronos.

Reduced Feature Set
A major design decision for OpenGL ES is that it provides no functionality that

can not be mapped directly to the underlying implementation in order to simply
driver development and reduces the driver’s code size. Furthermore all redundancy of
the OpenGL API was removed (see Table 4.1). Consequently there is no
glBegin/glEnd since programmers are advised to use the more efficient vertex array or
vertex buffer functions instead. No major 3D implementation today has native
support for primitive types other than points, lines and triangles. Hence, OpenGL ES
does not support quads or n-sided polygons. Instead of requiring the driver to
triangulate these primitive types this job is left to the programmer.

Many rarely used high level functions such as the GLU functions, evaluators,
picking or display lists have been removed too. Since these functions are not
implemented in hardware anyway, it was decided to leave the implementation to the
application programmer when needed. The overall effect of these streamlining efforts
is a heavily simplified graphics API as well as smaller, easier to implement and more
robust drivers. Looking at Figure 4.1, OpenGL ES misses the display list, evaluator

14 http://www.khronos.org
15 http://www.hybrid.fi
16 http://sourceforge.net/projects/ogl-es

Chapter 4

Rendering

59

and most of the pixel operation stages. As a consequence of the reduced feature set, a
full OpenGL ES 1.x software implementation can easily fit into a binary of a few
hundred kilobytes size.

 OpenGL OpenGL ES 1.x

glBegin/glEnd yes no, except SC profile
Primitive Types all no quads & polygons

Data Types float, double, int, etc. float, fixed
glDraw/Read Pixels yes glReadPixels only

Textures 1D,2D,3D,cube 2D
Stencil yes optional

Window Bindings WGL, GLX, etc. EGL

Table 4.1: Comparing OpenGL versus OpenGL ES.

Fixed Point
OpenGL ES targets primarily embedded systems, which usually do not have

floating point units. On these CPUs floating-point usage has to be emulated in
software, which is roughly 50 times slower than using native data types. Hence,
OpenGL ES adds fixed-point as a new data type over OpenGL. Floating point uses
separate representations for exponent and precession, while fixed-point stores both in
a single integral value. Fixed point can therefore be based on regular integral values
and most arithmetic operations can therefore be performed in hardware. While any
integral type can be used for representing fixed point data, the usage of two’s
complement is most common, since it is the native integral data type of many modern
CPU architectures, including ARM and x86.

OpenGL ES defines a 15.16 fixed point format for its API, which uses 15 bits
before and 16 bits after the radix point. Consequently a numeric range of -32768 to
+32767 can be expressed at a precision of 1/64k or 0,0000153. Despite its advantage of
allowing effectively implementation without floating point units, fixed point often
creates problems with the small numeric range resulting in numeric overflows.

Window Bindings
OpenGL ES defines a new window binding called EGL that mostly solves the platform
dependency issues of the OpenGL windows bindings such as WGL, GLX or AGL,
which are completely platform specific.

EGL specifies platform independent functions and handles for most operations.
Only minimal set of handles such as for device contexts or bitmaps is platform

Chapter 4

Rendering

60

dependent. Due to platform specific type definitions, these types are automatically
resolved at compile time though, posing no extra work for the developer.

EGL knows three different kinds or render targets. An implementation is free to
implement only a subset of them. Window surfaces are usually stored in video
memory, while PixMap surfaces are always stored in system memory. Furthermore
PBuffer surfaces allow off-screen rendering. It is due to the renderer to decide
whether to put them in system or video memory. A hardware implementation will
usually not support PixMap surfaces since this would require a full software based
renderer implementation too. The main advantage of using PixMap surfaces is the
access to the pixel data, which not possible using Window surfaces.

4.1.2 Direct3D Mobile

Direct3D Mobile was introduced by Microsoft with Windows CE 5.0 and is therefore
part of Windows Mobile since version 5 (also known as 2005). Its API is COM17
(Component Object Model) based, a Microsoft interface model, which is also the
basis for ActiveX. Consequently, the API is object oriented rather than procedural
such as the C-API of OpenGL ES.

Similar to OpenGL ES being a reduced version of OpenGL, Direct3D Mobile is a
subset of Direct3D. Direct3D Mobile is based on Direct3D 8, but it also incorporates a
few elements and behaviors of Direct3D 9. The differences become obvious when
comparing the number of classes of both APIs : While Direct3D contains 16 classes,
Direct3D Mobile has only 8 classes. Direct3D Mobile misses support for shaders,
texture formats other than 2D (such as 1D, cube and volume textures) and stage block
(for applying many render state changes at once). Most functionality of Direct3D
Mobile is gathered in the IDirect3DMobileDevice “god-class”.

Although the APIs of Direct3D and OpenGL ES 1.x are very different the
underlying concepts and the feature set are very close since they target exactly the
same class of hardware. Like OpenGL ES, Direct3D Mobile does not include the
display list, evaluator and most of the pixel operation stages from Figure 4.1.

Being even closer to metal than OpenGL ES, Direct3D Mobile does not allow
specifying vertex data via simple array pointers, but requires specifying a Flexible
Vertex Format (FVF), that defines the structure of vertex data passed to the graphics
driver. Unlike OpenGL ES, vertex data must always be interleaved, packing all

17 http://www.microsoft.com/com

Chapter 4

Rendering

61

components of a vertex such as position, normal, etc. closely together, which is closer
to how a GPU processes these elements than OpenGL ES does.

4.1.3 Immediate mode rendering with Klimt

When the Handheld AR project started in 2002, no suitable 3D rendering library was
available to fulfill the requirements of an Augmented Reality application. There have
been previous attempts to create libraries similar to OpenGL, such as PocketGL and
TinyGL, but these projects were either tailored to the specific needs of computer
games or have not reached sufficient maturity. The author of this thesis therefore
chose to implement a custom software renderer, called Klimt18, as an open-source 3D
library targeted for PDAs and mobile phones.

 Klimt OpenGL ES 1.x Direct3D Mobile

glBegin/glEnd concept yes no, except SC profile no
Display Lists yes no No

Primitive Types all no quads & polygons no quads & polygons
Data Types float, double, int, etc. float, fixed float, fixed

Frame buffer access yes reading only device specific
Textures 1D,2D,3D,cube 2D 2D
Stencil yes optional yes

Window Bindings EGL, WGL, GLX, etc. EGL Windows

Table 4.2: Comparing feature set of Klimt, OpenGL ES and Direct3D Mobile.

In contrast to these previously existing render libraries for mobile phones or
PDAs, Klimt is flexible enough to fulfil the requirements of an AR application such as
off-axis camera support required for tracking (see Figure 4.2). Its API is very similar
to that of OpenGL and OpenGL ES, although it would not pass official conformance
tests. For example, Klimt can be used as the low-level graphics toolkit for Coin19, an
OpenInventor-compatible scene-graph rendering library which was used in the
Handheld AR project at that time (see more about Coin in chapter 4.2.1).

Unlike OpenGL ES, Klimt has a full display list stage that can record most of the
GL render commands. Since rarely required it does not implement evaluators or most
of the pixel operations. Yet, being a pure software renderer, it provides full access to

18 http://studierstube.org/klimt
19 http://www.coin3d.org

Chapter 4

Rendering

62

the frame buffer. In this sense, the pixel operation stage from Figure 4.1, is mainly a
pass-through in both directions.

Figure 4.2: Textured avatar "Caleb" rendered on top of an

ARToolKit fiducial marker using Klimt.

Software Design
Klimt is implemented as a collection of C++ classes with a C wrapper for

OpenGL API compatibility. As a means to optimize runtime performance Klimt
makes heavy use of templates and inline functions. Klimt can be configured to use any
kind of native (e.g. 32 bit integer…) data type for internal processing. Because of the
lack of floating-point units in current mobile devices, Klimt by default performs all
internal operations using fixed-point math. Klimt is built from two main components,
the render context and the rasterizer (see execution layer in Figure 4.3).

The rasterizer is purely software-based and implements the pixel pipeline. It
renders RGB565 only, which is the native pixel format of most of modern mobile
phones and PDAs. Nevertheless, it provides most of the features supported by
OpenGL and OpenGL ES, such as gouraud-shading, texturing, transparency, alpha
blending, fog, z-buffering or any combination of them. Although only this rasterizer
has been implemented it would be easy to create other implementations with different
pixel formats or even hardware support.

The Context component keeps track of the current render context's state and
implements the complete vertex pipeline including transformation, lighting and
clipping, as well as important OpenGL concepts such as attribute stacks, display lists
and vertex arrays.

Chapter 4

Rendering

63

Figure 4.3: Klimt software architecture.

A general problem when creating a high performance implementation for a
standard such as OpenGL with a highly configurable render path is the development
of fast per-pixel routines. OpenGL allows modifying the per-pixel operations in many
ways through texturing, shading, blending, etc. Additionally to specifying how the
output color is created OpenGL allows setting a variety of visibility tests such as z-
buffering, clipping, alpha tests, stencil tests, etc. A naïve implementation would check
on a per-pixel basis which operations to apply. Since this chain of commands contains
about 10 operations, such an implementation would be extremely slow.

An early version of Klimt used compile-time code generation to generate the
most important combinations of these pixel operations. A Python script generated
735 combinations of scanline function setups which where then expanded using the
compiler’s pre-processor. For all other operations a slow general purpose
implementation was available as fall back. While this resulted in a very fast rasterizer,
the resulting binary (DLL) was between 1 and 2 megabytes in size (depending on
compiler settings), which created a serious problem for distributing and deploying the
software onto mobile devices.

A later, revised version performed these operations not per pixel but per scanline.
A triangle’s scanline was first shaded, then textured, etc. To make optimal use of early
z-tests, all visibility operations are performed first for the whole scanline and the
results are stored in a run-length encoded list that allows skipping these pixels quickly
for other pixel operations. Since a single scanline fits easily into the processor’s cache
there is only minimal overhead over the previous implementation. The resulting
binary is only a few hundred kilobytes large and therefore fits the requirements of
mobile devices.

Chapter 4

Rendering

64

Since Klimt is internally implemented as a set of C++ classes it requires wrappers
to comply with the standard C APIs (see wrappers layer in Figure 4.3). Klimt includes
wrappers for OpenGL and OpenGL ES as well as WGL and EGL window bindings.

4.1.4 Immediate mode rendering with KlimtES

With the advent of mobile phones and PDAs with hardware 3D support a pure
software-based Klimt implementation is no longer a competitive solution. While
Klimt can be extended to support hardware accelerated rasterization these devices
usually come with a complete OpenGL ES implementation. Instead of just using an
underlying OpenGL ES support for rasterization purposes only it makes more sense
to take advantage of the already implemented vertex stage too. Although OpenGL ES
can be used directly a lot of existing code relies on OpenGL instead. The author of this
thesis therefore created a wrapper that restores functionally missing in OpenGL ES.

KlimtES exposes almost the same OpenGL compatible API as Klimt and
therefore allows to run many existing software packages that rely on OpenGL features
without modification. At startup KlimtES searches for an existing OpenGL ES DLL. It
supports the common as well as common-lite profiles of OpenGL ES. In the latter
case, which does not support floating point, the data type conversion is performed by
KlimtES.

KlimtES implements the glBegin/glEnd clause by internally storing the specified
vertices in vertex arrays that are handed over to the OpenGL ES driver when the
arrays are full or the primitive type is changed. Furthermore KlimtES allows using
quads, quad-strips and polygons by internally triangulating these into vertex arrays.
The most crucial missing feature is floating point support though since OpenGL does
not include fixed point functions at all. While it is simple to convert from floating
point to fixed point these operations are very slow and therefore degrade performance
seriously. It is therefore advised to rewrite higher level applications or libraries to
directly use fixed point as was done with Coin ES (see chapter 4.2). Other OpenGL
features provided by KlimtES include support for WGL window binding, integer
index types and state queries missing in OpenGL ES.

Like Klimt, KlimtES is implemented in C++ and therefore requires C-wrappers
to conform to the OpenGL and OpenGL ES APIs. From an application point of view,
KlimtES completely replaces the OpenGL and OpenGL ES implementations. It
therefore wraps (pass-through) even those functions that are not modified in their
behavior.

Chapter 4

Rendering

65

4.1.5 Software vs. Hardware Rendering

While both hardware and software implementations of OpenGL ES and Direct3D
mobile provide the same feature set, their performance characteristics are highly
different. Besides pure software and hardware implementations, mixed approaches
are common. Similar to the beginning of hardware 3D support on desktop PCs in the
1990s, many mobile designs today only implement the pixel stage in hardware,
running the vertex stage in the driver and therefore on the CPU.

Hardware rendering obviously has the advantage of providing much more raw
processing power than software rendering, which usually removes the need to
carefully reduce the vertex count of 3D meshes. Furthermore texturing is typically as
fast as gouraud shading, making texturing a free option to select. Unfortunately, these
GPUs, which are primarily targeting games, are not fast in transferring textures,
which poses a severe problem for efficient rendering of the video background.

While pure hardware implementations are usually well balanced, smaller designs
often implement only the rasterization stage in hardware. Pure software renderers
typically suffer from bottlenecks in the pixel pipeline, but mixed designs are more
often vertex limited. The Intel 2700G as well as the nVidia Goforce Go 4500 GPUs are
typical examples for this category.

 Pure Software Mixed S/W-H/W Pure Hardware

Vertex Stage Software Software Hardware
Pixel Stage Software Hardware Hardware

Typical Limits Pixels Vertices -
Framebuffer Access Yes No No

Fast Texturing No. Yes Yes

Table 4.3: Comparing software, hardware and mixed implementations.

The main bottleneck of pure software renderers is typically the pixel pipeline,
especially when intensively making use of texturing. As a unique advantage, these
implementations usually allow direct frame buffer access, which enables copying the
video background directly into frame buffer, thereby by-passing slow texture
mapping routines. Furthermore, since the frame buffer of these designs is always in
system memory, this copy operation is extremely fast. Under specific circumstances
such as when rendering simple 3D graphics in Studierstube ES on the Gizmondo
(powered by a Goforce Go 4500 GPU), a pure software OpenGL ES implementation
can outperform the built-in graphics chip.

Chapter 4

Rendering

66

A high level toolkit such as Studierstube ES is therefore required to implement
multiple render paths for making optimal use of the strengths of each kind of
renderer. Studierstube ES contains different routines for 2D graphics operations, such
as drawing video background or buttons. When running on hardware 3D, direct
frame buffer access is not possible, and StbES therefore relies on texturing to draw
bitmaps onto the screen. In the software rendering case though, these bitmaps are
copied directly into the frame buffer.

4.2 Retained mode rendering
Retained mode rendering describes a high level rendering concept on top of the lower
level immediate mode presented in the previous chapters. In retained mode, objects
and their relationships are described as a whole rather than on per-vertex basis.
Retained mode introduces the concept of a scene that is made up of objects which
together form a virtual environment. While immediate mode requires procedural
programming, retained mode has a more descriptive flavor: instead of telling the
graphics subsystem how to render an image, users specify objects and leave the actual
rendering task to the rendering middleware, which is free to apply suitable rendering
strategies and optimizations.

Today, scene-graphs are the most common concept for retained mode rendering
and especially popular in research and for prototyping. A scene-graph structures
objects hierarchically and describes their interrelations as well as properties such as
materials, rendering styles or priorities.

4.2.1 Scene-graph Rendering with Coin ES

Coin3D, developed by Systems in Motion20, is a high-level scene-graph rendering
library that implements the OpenInventor API [99]. Instead of having to work
directly with low level APIs such as OpenGL or OpenGL ES, Coin3D allows
application developers to concentrate on high level tasks such as application design
and data flow. Among the large number of scene-graph libraries, OpenInventor is
probably the most flexible one and therefore ideally suited for prototyping graphical
data-driven applications. On the other side this flexibility comes with the price of

20 http://www.sim.no

Chapter 4

Rendering

67

lower performance and a non-deterministic real-time behavior. The Studierstube
team around Prof. Schmalstieg has a long history of using OpenInventor and Coin3D
which made it a natural choice for the handheld AR project too.

Coin3D integrates a vast number of features. Its roughly 500 C++ classes provide
support for loading various file formats such as VRML and 3ds as well as its native
Inventor (.iv) file format. Furthermore it has support for 3D audio and modern
texturing functions such as 3D textures, multi-textures, huge textures and bump-
mapping. It can output not only to video memory but to Postscript as well. Coin3D
can read a large number of texture sources including JPEG, PNG, GIF, TGA and
many more. Naturally this packet carries a heavy weight - VRML support alone
increases the overall size of Coin3D considerably. While this is not an issue on a PC, it
is too big for embedded platforms such as mobile phones or PDAs.

It was therefore mandatory to remove unnecessary functionality and to optimize
the performance for handheld devices as well. Besides minor modifications that make
Coin3D run with Klimt and KlimtES functionality was removed that is not required
for handheld AR such as draggers, manipulators, VRML and Postscript support.
Instead of the heavy weight window bindings that provide highly comfortable viewers,
a custom lean window binding was developed that only runs in full screen and has
minimal mouse and keyboard support. Further removing support for unnecessary
texture source formats resulted in a binary with roughly half of the original size. Yet, a
binary library with integrated support for loading JPEGs, PNGs and many other
image formats is still almost 3 Mbytes in size.

Although Coin3D runs on top of Klimt and KlimtES with only minimal
modifications, its performance was still unsatisfactory. Targeting high-end
applications on powerful workstations and VR systems, Coin3D’s memory
consumption is enormous for mobile devices. Therefore a custom memory manager
was added to overcome virtual memory restrictions under Windows CE21. Coin3D
naturally uses floating point as its internal data format. While Klimt can automatically
convert this data to fixed point, doing this on a per-frame basis for mostly static
models is a huge waste of processing power. Hence, the Coin3D primitive cache was
extended to support fixed point natively and thereby only have to convert data once.

A general problem of Coin3D is the large overhead of traversing the scene-graph.
Due to the way OpenInventor handles internal changes to the graph structure and
fields, the complete scene-graph can be traversed many times per frame. Large and
complex scene-graphs therefore pose a serious performance problem for low end
platforms. It is therefore of utter importance that the application designer carefully
constructs the scene-graph and optimizes it for minimal size. While the binary file

21 http://msdn2.microsoft.com/en-us/library/ms836325.aspx

Chapter 4

Rendering

68

size and memory consumptions are still enormous for embedded platforms, the
resulting rendering performance of a well designed scene-graph is close to direct
rendering using Klimt or KlimtES.

4.2.2 Scene-graph rendering with StbSG

While Coin3D is a powerful library and very suitable for developing AR applications
on the PC, it is still too big to be practical for mobile devices – even after our efforts of
reducing its feature set and size. Larger applications such as Studierstube 4 on the
PDA continued to run out of memory. Furthermore it is unrealistic to ask end-users
to install applications of many Megabytes in size of their phones.

Hence, the design decision was made to not rely on components anymore that
would prevent a practical deployment on end-user devices. Unfortunately there are
very few high level rendering libraries that support OpenGL ES directly and that were
specifically designed and implemented for mobile devices. A notable exception is the
Mobex3D22 game engine, which is available for Windows Mobile, Windows XP and
MacOS. Mobex3D has many advanced features such as particle systems, skeletal
animation and exporters for 3dsMAX, but it is expensive for commercial use. The free
version is very limited and allows only scripting, but no native C++ development.

Software Design
Studierstube ES therefore comes with its own custom scene-graph library called

StbSG (Studierstube Scene Graph) and optimized it for the specific requirements of
handheld Augmented Reality applications. StbSG is an integral part of Studierstube
ES rather than a separate library. Its design is similar to that of OpenInventor which
makes it easy for experienced Studierstube developers to migrate to Studierstube ES.
StbSG works on top of OpenGL ES and Direct3D Mobile and does therefore not
require an external wrapper such as KlimtES. It is optimized to work as a thin layer
between the application and OpenGL ES or Direct3D Mobile. Consequently it does
not expose graphical features that can not be mapped to the underlying graphics
toolkit implementation such as quad or polygon primitives.

StbSG has most of the typical features of scene-graph libraries. Before a node can
be used in the scene-graph it has to be registered to the scene-graph database that
stores the reflection information of all nodes and allows searching scene-graphs by
node types and names. This registration process is especially important for the

22 http://www.mobex3d.com

Chapter 4

Rendering

69

loading and saving mechanisms of StbSG. For all internal nodes this happens
automatically during startup. For custom nodes, developers have to call the
corresponding class methods manually. This mechanism allows developers to extend
StbSG with arbitrary new nodes that can even be loaded and instantiated from
different binary files at runtime.

Scene-graph Nodes
A scene-graph can hold an arbitrary number of cameras that are automatically

activated, when traversed. StbSG comes with implementations for orthographic,
perspective and general purpose camera models. The latter one can be freely
configured providing a projecting matrix and is therefore suitable for accurately
overlaying video backgrounds using off-axis projection.

Geometry can be specified in various ways. Using SgGeometry nodes provides
most flexibility since it only (optionally) stores indices and is not responsible for
providing per vertex data. These data sets are typically defined by other nodes such as
SgGeometryVertices, SgGeometryNormals, SgGeometryColors or
SgGeometryTexCoords. As an advantage of splitting up the data into different nodes,
data dependency is reduced. Consequently other nodes can also provide per-vertex
data such as the SgAnimatedGeometryVertices node, which defines animated vertices.

The geometry-related nodes described above all store their data in text form in
the XML scene-file. While this allows maximum flexibility, it increases file sizes and
loading times. StbSG therefore also contains a SgStaticMesh node that loads its data
from an external binary file. The node supports storing and loading data at full
precision in fixed-point and floating-point as well as in reduced precision, which
results in a file size reduction of roughly 60% at no noticeable quality loss.

The third type of geometry node is SgProgressiveMesh which allows progressive
streaming and rendering of polygonal data. Objects can be streamed via network and
rendered as soon as a few triangles are available. When more data is accessible, the
mesh is incrementally refined. Furthermore, the mesh can reduced for usage as fine
grained continuous level of detail (LOD).

Often animations on a per-vertex level are not required. Instead complete objects
can be animated by modifying their position and rotation via keyframe sampling
using the SgPoseAnimator node.

The appearance of objects can be influenced via SgTexture nodes that define
single- or multi-texturing. SgDirectionalLight and SgMaterial nodes specify how light
influences objects. SgDrawingStyle can modify front facing of triangles, depth mode,
stenciling, as well as depth buffering and blending.

Chapter 4

Rendering

70

SgRenderAction allows introducing more procedural approaches by clearing the
render target’s depth, color or stencil buffer, thereby enabling multi-pass rendering.
For more specialized render commands, developers can use SgCallback nodes that
invoke client code when traversed.

At the moment of writing this thesis, StbSG contains 37 node classes, which are
listed by category in Table 4.4.

 Nodes

Camera SgCamera, SgMatrixCamera,
SgOrthographicCamera, SgPerspectiveCamera

Geometry
SgCube, SgGeometry, SgGeometryColors, SgGeometryNormals,

SgGeometryTexCoords, SgGeometryVertices, SgLineSet,
SgProgressiveMesh, SgStaticMesh

Transformation SgMatrixTransform, SgPoseAnimator,
SgTransform, SgTransformSeparator

Appearance SgDirectionalLight, SgDrawingStyle, SgLight, SgMaterial,
SgProgressiveTexture, SgTexture, SgTextureSeparator

Animation SgAnimatedGeometryVertices, SgAnimator

State Specific SgGLStateModifier, SgLightSeparator,
SgRenderAction, SgRenderOnce

AR Specific SgBackground

Non-Graphical SgCallback., SgFileNode, SgMultiSwitch,
SgNode, SgScene, SgSwitch

Table 4.4: List of all nodes in StbSG.

Low Level Graphics Toolkit Abstraction
For optimal platform support, StbSG supports OpenGL ES as well as Direct3D

Mobile for those devices that do not come with OpenGL ES drivers. The abstraction
of the underlying rendering toolkit is implemented using the two classes Renderer
and GeometryBuffer, which are implemented for both toolkits. Stacks for state
variables and querying values of state variables are important operations for scene-
graph libaries. Since neither OpenGL ES nor Direct3D support stacks or queries for
most state variables such blending, depth sorting or matrices, all stacks are
implemented in the Renderer class.

GeometryBuffer abstracts passing geometrical data to the graphics toolkit. When
multiple options are available it automatically decides whether to store vertex data in
system or video memory. The two implementations of GeometryBuffer effectively
hide the differences between specifying vertex buffers in OpenGL ES and Direct3D.

Chapter 4

Rendering

71

Especially under Direct3D, the manual definition of the data structures for the
Flexible Vertex Format (FWF) is cumbersome and error prone.

Developers can use separator nodes to limit the effect of specific nodes such as
transformations, lighting or textures to certain sub-trees in the graph. After a sub-
graph has been traversed, the separator node undoes all changes of the GL states that
it protects.

Reflection
Similar to OpenInventor, StbSG uses fields to store attributes. Before a field can

be used, its type and valid values must be defined. StbSG includes fields for many
types such as integer, float, vector or matrix types, as well as enumerations. A field’s
type and values are defined using c-macros when the field’s owner (typically a node)
is registered.

StbSG make use of reflection to allow querying any node’s list of fields. Every
field has a name, a type and a default value. A system of C-macros automatically
implements a complete type system including reflection of all fields a node owns
Figure 4.4. Fields of compatible types can be connected via field connections to let
data flow across the graph or to connect data streams from outside into the graph. For
example, Studierstube ES uses this mechanism to stream live tracking data from the
tracking subsystem directly into transformation nodes of the scene-graph.

Figure 4.4: Example field registrations.

Figure 4.4 presents several examples for registering fields. The first line registers
an integer-valued field with name stencilRef and a default value of 1. The second and
third lines of code register a 3D vector and a color, while the fourth line registers a tri-
state field. Tri-states are important for flags that can either enable, disable or keep
targets unchanged. Finally, the last line shows how an enumeration value with three
possible values is registered.

Field connections are always updated before graph traversal. A dirty flag
indicates if a field has changed, which is used for caching such as for transformation

REGISTER_FIELD_TYPE(FieldTypeInt, stencilRef, 1);

REGISTER_FIELD_TYPE(FieldTypeVec3, translation, Vec3(0,0,0));

REGISTER_FIELD_TYPE(FieldTypeVec4, ambient, Color4(0.2f, 0.2f, 0.2f, 1.0f));

REGISTER_FIELD_TYPE(FieldTypeTriState, colorWrite, TRI_UNDECIDED);

REGISTER_FIELD_TYPE_ENUM(frontMode, FRONT_NO_CHANGE,
 ENUMS_3(FRONT_NO_CHANGE,FRONT_CW,FRONT_CCW));

Chapter 4

Rendering

72

matrices: Only when the transform’s position, rotation or scale values have changed
the matrix is recomputed.

StbSG uses XML for saving and loading of scene-graphs. Nodes are mapped to
XML elements and fields are mapped to XML attributes. Pure data fields such as
vertex arrays are mapped to XML text section. Every node must implement methods
for creation as well as for loading from and saving to XML files. Most work for
loading and saving is performed automatically. Figure 4.5 shows a code snippet from
the SgTransform.cpp file that creates a transform node (if not done yet from the super
class factory method) and then reads three fields from the element’s list of attributes.
Due to StbSG’s reflection capabilities a single call to readAttribute() is enough to
decide the field’s type and its default value in case the attribute is stored in the
element. Finally the factory function calls the factory function of the node’s base class
in order to read more attributes.

Figure 4.5: Code sample to load an SgTransform node from an XML file.

Field connections reference the name of target fields which must therefore be
unique across a scene. StbSG uses a two pass approach for loading scene-graph files:
In the first pass the complete graph is instantiated, while in the second pass all field
connections are resolved.

Nodes can be added to the scene graph multiple times by adding it once and
referencing it via its name. Since every attribute has a well known default value, only
fields with non-default values have to be stored in the XML file. See chapter 9.1 for
example scene-graph XML files.

To keep the file size and memory footprint at a minimum, StbSG itself has no
capabilities to import from other data sources than its own XML file format.
Studierstube ES includes with a VRML reading tool on the PC though that imports
VRML files and creates a corresponding StbSG instance. StbSG’s regular file saving
capability is then used to store the converted scene. While VRML is an old and mostly

SgNode*
SgTransformFactory::readNode(TiXmlElement* nElement, StringVector& nAttrToIgnore, SgNode* nNode)
{
 if(nNode && !nNode->isOfType(SgTransform::getClassType()))
 return NULL;

 SgTransform* transform = nNode ? reinterpret_cast<SgTransform*>(nNode) :
 SgTransform::create();

 readAttribute(nElement, transform->translation);
 readAttribute(nElement, transform->rotation);
 readAttribute(nElement, transform->scaleFactor);

 return callBaseReadNode<SgTransform>(nElement, nAttrToIgnore, transform);
}

Chapter 4

Rendering

73

outdated format, it provides all features required to create content suitable for mobile
phones, including support for per-vertex as well per-object animations. Unlike many
other file formats, high quality VRML exporters for all major graphics editors exist.

StbSG can clearly not compete with large established scene-graph libraries such
as Coin3D, OpenSceneGraph or OpenSG. Yet, neither of these libraries is optimized
for running on mobile phones. While for some of these libraries ports to OpenGL ES
exist, these ports naturally loose a lot of performance due to inherent design
differences (e.g. floating point vs. fixed point). Furthermore, none of these libraries
runs on top of Direct3D Mobile, which turned out to be an important aspect for
StbSG.

On the other side there are high quality, commercial 3D libraries such as EdgeLib
and Mobex3D that specifically target mobile phones. These libraries provide high
performance and many more features related to professional content creation such as
skeletal animation. Yet, their closed source nature and high licensing costs reduce
their suitability for deployment in academic as well as commercial environments at
the same time.

4.3 3D Animations using the FPK library
The lack of processing and graphics power on mobile devices prevents the use of
traditional character animation techniques. For example most existing animation
libraries make heavy use of floating-point operations which are not available in
hardware on today's PDAs. Many of today’s state-of-the-art animation techniques
such as skeletal animations or vertex skinning are not suitable for embedded devices
due to the lack of processing power and missing dedicated hardware support. While
these techniques have been used for a long time in offline rendering, only their recent
support by graphics hardware introduced them to real-time graphics on desktop
computer.

A computationally less expensive method for animating polygonal meshes is
keyframe-based animation. Other than the previously mentioned approaches that
deform a single mesh on-the-fly with respect to an underlying bone-structure,
keyframe-based animation relies on playing back and interpolation of pre-calculated
(3D) animations. A keyframe is a specific point on the time-line for which a complete
deformed version of the animated mesh is stored. Keyframes are often sampled in
regular intervals, which facilitates the creation and playback of the animation. More
advances approaches analyze before-hand, which parts of the animation are more

Chapter 4

Rendering

74

active than others and therefore require denser keyframe intervals. Consequently the
number of keyframes required can be reduced considerably.

Another decisive factor for the quality of playback is the method of interpolation,
also called “tweening” (for “in between”). Since keyframes are sampled at a much
lower rate than playback interpolation is required for smooth animations. The
simplest and least computationally expensive method is linear interpolation, which
results in jerky animations if the keyframes are sampled sparsely. Advanced methods
use more sample points such as cubic spline interpolation or even derivatives as in the
case of Hermite interpolation, which result in much smoother animations. Naturally
these methods are computationally more demanding.

In the course of this thesis there was a demand for a simple character animation
solution with minimal computational costs. The author of this thesis therefore
developed an animation package called FPK (Fixed Point Keyframe) that makes best
use of the particular restrictions of mobile devices. FPK supports only linear
interpolation and restricts texture coordinates to remain unchanged during
animation which further reduces the computational overhead.

Figure 4.6: Virtual character animated using FPK

Coordinates are stored in 16-bit fixed-point with values a 5.10 precision. While
this restricts models to a size of -32 to 32 units, it give millimeter accurate results and
a large working volume when selecting meters for the units. Instead of storing
normals directly, only an index to 16-bit a lookup table is kept. All together a single
vertex requires only 8 bytes of memory per frame. Compared to storing a complete

Chapter 4

Rendering

75

vertex including texture coordinates in floating point the memory load is thereby
reduced by 75%. Keyframes are interpolated linearly using pure fixed-point math for
highest play-back performance.

As a result, playing back an animated textured and lit 3D character (see Figure
4.6) on a mobile device causes almost no noticeable overall performance drop. FPK
includes tools to import data from the Quake2 MD223 character format as well as the
popular open source Cal3D24 skeletal animation package. Furthermore a Maya plug-
in that allows rigging and exporting a character directly into FPK files is under
development.

FPK includes a high level scripting layer on top of the low level keyframe
animation API. The higher layer exposes a simple scripting interface via a proprietary
XML dialect. Using this XML dialect authors can create complex sequences of
animations including precise timings for audio dubbing and subtitle rendering such
as in Figure 4.6.

Figure 4.7: A short sample script of the Virtuoso application.

Figure 4.7 shows a short excerpt of the script that animates the 3D character in
the Virtuoso application. The script begins by defining the keyframe and texture files
to load for the animation. It then continuous by defining actions that can be triggered
by the application. Due to space reasons, Figure 4.7 shows only a single action that

23 http://tfc.duke.free.fr/coding/md2-specs-en.html
24 http://cal3d.sourceforge.net/

<Actor>
 <Setup geometry="mr_virtuoso.fpk" texture="mr_virtuoso.jpg" />
 <Action name="GeVenus" next="Idle">
 <Animation name="WalkToTable" speed="5.0" />
 <Animation name="Explain1" speed="4.0" />
 <Animation name="Explain2" speed="4.0" />
 <Animation name="Explain1" speed="4.0" />
 <Animation name="WalkToBook" speed="4.0" />
 <Subtitle language="german" time-from="6" time-to="18" text="Diese kleine…" />
 <Subtitle language="german" time-from="18.2" time-to="31.0" text="..ist wie.." />
 <Subtitle language="english" time-from="6.0" time-to="18.0" text="This female…"/>
 <Subtitle language="english" time-from="18.2" time-to="31.0" text="..as always" />
 <Audio language="german" file="venus_german.ogg" time="6.0" />
 </Action>
<Actor>

Chapter 4

Rendering

76

includes the German voice over and sub titles for explaining the Venus item. Since the
audio dubbing have different timings for each language, different animation and sub
title timings are required too. In the sample above, The action starts by making the
character walk to the table and then plays back several animations while Mr. Virtuoso
is talking. At the end the character walks back to the book and another action called
“Idle” is automatically invoked. While the animations are played back, the script
player starts sub titles and audio playback according to the specified languages.

4.4 2D graphics and animations
with Adobe Flash

As a final building block, 2D graphics solutions suitable for handheld devices will be
considered. Practical, large and content-rich AR applications typically require not
only 3D, but also 2D content such as 2D user interfaces or short animated movies.
The Synchronized Multimedia Integration Language25 (SMIL) is an open standard
defined by the W3C committee and open source implementations exist.
Unfortunately though the standard is very complex, limited in its practical features
and no high quality open source players exist. Finally SMIL plays a negligible role
outside academia; most graphics artists are used to Adobe Flash instead, which is the
most widely established format due to its high quality tools for creating and playing
back multimedia content.

The Adobe Flash plug-in26 was therefore integrated, which is available for the
Windows and Windows Mobile platforms, into our framework. An AR application
can switch between full screen AR and Flash modes at any time. Flash applications
can use the built-in scripting language ActionScript to communicate with the AR
framework. Examples of the integration of 3D AR and Flash will be given in chapter
7.3.2.

4.5 Discussion
This chapter presented solutions for rendering graphics 3D and 2D content on mobile
phones. The solutions developed are flexible and powerful enough for typical AR

25 http://www.w3.org/AudioVideo/
26 http://www.adobe.com/products/flash/

Chapter 4

Rendering

77

applications and facilitate the creation of graphical user interfaces, thus contributing
to fulfilling argument H1 of the hypothesis of chapter 1.3.

A scene-graph library allows rapid prototyping of graphic intensive applications
and is therefore preferable over immediate mode graphics programming (OpenGL ES,
Direct3D Mobile). Consequently development time is reduced which supports
hypothesis H2 for building larger AR systems.

Despite their small screen size, the resolution of today’s mobile phones is similar
to that of typical PC and console games in the mid 1990s. It is therefore sufficient for
the creation of intuitive 3D und 2D user interfaces, which is explored in more detail
in Chapter 7. The smaller screen size (rather than resolution) reduces the
requirements on graphical content and hence makes it more economic to create large
applications with many AR hotspots (see chapter 7.4 on the Schatzsuche game).

A natural advantage of AR over VR (and classical computer games) is that the
area between points of interest does not have to be modeled, since it already exists in
the real world.

Chapter 5

Distributed System

78

Chapter 5

Distributed System
This chapter presents Muddleware a middleware for prototyping multi-user
applications. It outlines the design rationales that led to the development of
Muddleware and presents example applications that are built on Muddleware.

Today's game server technology was designed for high-performance scalable
communication between desktop clients and game servers. Many technical aspects
concerning clients (fast Windows PCs or consoles), servers (clusters hosted in
compute centers), user interface (keyboard/mouse/screen) and networks (broadband)
are chosen to match the underlying business model. Performance considerations will
often lead to even more inflexibility, making multiplayer middleware solutions
specific to a single game genre. For example, “instanced dungeons” in role-playing
games (i.e., a copy of the game world exclusively for a small group of collaborating
players) are necessary not only for increased player satisfaction but also for cluster
load balancing.

Unfortunately, all these restrictions and optimizations make established
multiplayer middleware rather unsuitable for developing Augmented Reality
applications or games. Instead, it is more fruitful to borrow techniques and practices
from research areas such as ubiquitous or wearable computing, who also deal with
similar problems. To address the specific needs for AR middleware, a communication
framework called Muddleware was developed. It is loosely inspired by Tuplespaces
[28] – the name Muddleware hints at the diversity of the unstructured data managed
by the framework.

Chapter 5

Distributed System

79

5.1 Muddleware, a middleware for
multi-user applications

Muddleware extends the traditional Tuplespace idea with advanced concepts such as
publish-subscribe patterns and state-driven application logic. It uses XML to provide
a modern and lightweight scriptable application programmer's interface. Although
designed as a prototyping tool it provides enough performance and stability for large
games with hundreds of clients. To our knowledge, Muddleware is the first multi-user
middleware specifically designed for mobile Augmented Reality applications.

In designing Muddleware [114], the author of this thesis strove for creating
highly functional software within a short period of time by re-using existing and
reliable technology. Another important requirement was a platform-agnostic
approach which allows for a wide variety of target devices. However, a large body of
existing software in Studierstube research group builds on C++, which was also
favoured for performance reasons. This ruled out a pure Java based approach, which
was adopted in other platforms such as T-Spaces or the Event Heap.

5.2 Built on XML Technology
A key observation towards our current design was that the most widely established
data model for network computing is the Extensible Markup Language, XML27. XML
elements with named attributes can be seen as a specific representation of a tuple. Of
course the most important difference between a conventional Tuplespace and an
XML Document Object Model (DOM) is that the latter represents a hierarchical data
model. A DOM permits a recursive definition of a tuple, which has child tuples as
attributes of parent tuples. This extended definition of a Tuplespace as a DOM for
favored for its increased expressive power, its elegant match to many typical data
structures such as spatial hierarchies in the real or virtual world, and its use of mature
existing technology, namely XML.

Muddleware was thus designed to adopt XML technologies for data storage,
addressing and retrieval of data. XML fits our requirements for several reasons:

• XML is a self-documenting format that describes its structure as well as data
types and meanings of values.

27 http://www.w3.org/XML

Chapter 5

Distributed System

80

• XML is simultaneously human- and machine-readable.
• XML is able to present many basic data structures such as lists, trees and

records.
• XML’s weak type system (when not enforcing a schema or DTD) supports

quick changes in data structures and thereby assists rapid prototyping.
• XML structures can be addressed using well known methods such as XPath28.
• High-quality open source implementations for many XML technologies exist

and are freely available.
• High-quality tools for creating, modifying and validating XML documents are

available.

In contrast to our approach, many existing servers use SQL for persistence.
Muddleware uses XML plus XPath over SQL for several reasons: SQL is ideal for huge
amounts of data in flat structures (tables). In the case of mixed reality games, data for
all the heterogeneous devices, locations etc. usually requires less space but is highly
structured which is a natural strength of XML. Furthermore due to XML’s self-
describing nature, existing structures can easily be extended with new attributes and
child elements without breaking existing code.

Care was taken to keep the system as simple as possible and yet make it modular.
The concept of sharing information via a high-performance database that acts as a
distribution hub is easy to understand and easy to program: a minimal application
requires only three lines of Muddleware specific C++ code.

Figure 5.1 gives a short example on how to manipulate data on the server. The first
line of code creates a connection object. The next command connects to the server, in
this case on the same machine. Naturally, in practice a developer would check if the
connection attempt succeeded. Finally the last command updates an XML attribute of
a node addressed by the specified XPath with the new value “13”.

XPath addressing is similar to hierarchical file systems, except that qualifiers can
be used along the path to select between alternatives. In the example in
Figure 5.1, the command addresses an attribute called ‘age’, which is owned by an
element called ‘Client’. The ‘Client’ element is a child element of a root element called
‘Application’, which is qualified by having an attribute called ‘name’ with the value
“MyApp”. If the specified attribute(s) or element(s) can not be found the operation
fails returns an error description.

28 http://www.w3.org/TR/xpath.html

Chapter 5

Distributed System

81

Figure 5.1: Code excerpt to update an attribute on the server
using the Muddleware Single-Operation-API

5.3 Database Server
The core of Muddleware is a “real-time” XML database that provides persistence and
that can be addressed associatively using XPath. The database server is extended by
several extension modules such as an XML based scripting language (Muddleware
Script, see section 5.4) and a server-side state machine (Muddleware Controller, see
section 5.5) that reacts on specific database changes and adds an independent thread
of control to the server. All server components run under Windows as well as Linux.
An arbitrary number of clients can connect to the server (see Figure 5.2) by using one
of four currently available APIs: Immediate C++, Shared Memory C++, Java and
Muddleware Script.

Database
File (XML)

Clients [1..n] Server

Muddleware
Client

Application Persistence
Service

XML Database

Read/Write

Muddleware
Controller

(State Machine)

Script Queries

Query Results

XML Queries

Script Queries

Query Results

Figure 5.2: Muddleware components

The real-time XML database is the core of Muddleware. All data elements are
stored as nodes of an XML DOM, using a modified version of the TinyXML29 library.
Clients can store arbitrary messages in the database in the form of XML fragments. As
a query language, clients use XPath to specify query or update operations. No schema
is enforced on the database, which facilitates rapid prototyping of communication
patterns and improves performance.

29 http://sourceforge.net/projects/tinyxml

MUDDLEWARE::Connection* connection = MUDDLEWARE::Connection::create();
connection->init("localhost");
connection->updateAttribute("/Application[@name=’MyApp’]/Client/@age", "23");

Chapter 5

Distributed System

82

Besides basic update and query operations, Muddleware supports atomic
conditional operations: An update can be restricted to be performed only in case the
value to be updated is identical to one of a list sent with the update operation. This
can be used for locking of specific elements which is required for most non-trivial
applications, essentially implementing a lightweight transaction protocol.
Furthermore batched operations can be chained: Subsequent operations are only
executed if previous ones were positively evaluated.

5.3.1 Update Notifications using Watchdogs

In addition to immediate databases operations, Muddleware allows clients to
register Watchdogs (observers) for updates: as soon as an observed node changes, the
client is informed about the update. This removes the need for polling and provides a
simple, yet powerful publish/subscribe mechanism that can be used to create specific
communication channels between clients. Two kinds of watchdogs are available:
synchronous and asynchronous watchdogs. When an XML element addressed by an
asynchronous watchdog is modified the server immediately sends a notification
message to the client which causes a callback invocation. In contrast, synchronous
watchdogs piggyback the notification to a regular message exchange between server
and client. While the asynchronous variant is ideal for clients that talk to the server
sporadically, the synchronous counterpart is suited for setups that rely on continuous
frame-by-frame communication.

Naïve use of watchdogs can cause performance problems for the server, since for
every update received by the server, all registered watchdogs need to be evaluated. In
practice, clients are only interested in the updates concerning a few specific elements
or issued by a few specific clients. In order to exploit this limited scope for better
scalability, Muddleware allows the creation of so called interest groups [13]. When an
element is modified, only those watchdogs that are in the same groups of interest as
that client that caused the modification are evaluated. This allows splitting watchdog
evaluation into (potentially) overlapping groups of clients and scales with the number
of interest groups rather than the number of elements or clients.

Figure 5.3 shows a communication sequence of two clients sharing data via the
Muddleware server. Upon start, both clients create an asynchronous watchdog
observing the same XML element in the database. Immediately after one client
updates that element, the other client receives the updated data.

Chapter 5

Distributed System

83

ClientA Server

Update Operation

ClientB

Result (incl. Watchdog Notification)
Watchdog Notification

Update Operation

Result (incl. Watchdog Notification)
Watchdog Notification

Register Watchdog
Register Watchdog

Figure 5.3: Two clients sharing data using an event channel

Muddleware uses the TinyXML DOM as a memory-mapped database. For
session handling, which is the performance critical portion of a distributed system the
ACE30 Proactor was chosen. Its implementation handles all I/O operations internally,
calling asynchronous system functions (such as for file reading or network
communication). The user written handler only reacts to finished I/O operations,
effectively allowing a single thread handle hundreds of clients concurrently. ACE
provides multiple platform dependent implementations for the Proactor pattern: On
each platform it uses highest performance APIs; such as asynchronous I/O and
completion ports for Windows XP. The APIs are usually difficult and error prone to
program, but effectively hidden behind the Proactor API. Using only a single thread
removes the need for thread synchronization and thereby avoids overhead.

At short intervals a background thread dumps the complete database to disk;
later versions may use a professional database management system for storage. ACE
and TinyXML were chosen for best performance and portability: TinyXML offers
only a minimal XML feature set and is therefore easily portable to any platform. ACE
on the other hand is a complex framework, but is available on all major platform
including Windows, Mac OSX and most UNIX variants. The Muddleware client can
optionally run without ACE making it possible to port the client-parts of applications
to platforms not supported by ACE, such as Symbian OS.

30 ACE toolkit: http://www.cs.wustl.edu/~schmidt/ACE.html

Chapter 5

Distributed System

84

5.3.2 Queries with XPath

XPath is a simple language for addressing elements and attributes of an XML
document. It was originally designed for usage in XSLT and XPointer, but many
independent XPath parsers are available which made it an interesting choice for
Muddleware. XPath uses a compact, non-XML syntax which applied to an XML
graph results in a list of zero or more elements. XPath is a pure declarative language
and does not include constructs such as for-loops, which makes XPath easy and fast
to implement.

In contrast to XPath, XQuery31 allows writing procedural programs that are
executed upon an XML document. XQuery includes all standard language constructs
such as for-loops and if-then-else clauses. Consequently XQuery is highly complex.
Furthermore, XQuery is a very new standard and only a small number of
implementations exist so far.

Since Muddleware does not require the full power of XQuery, it was decided to
build upon XPath and instead add specific features such as update operations on
elements or attributes ourselves.

5.4 Muddleware Script
Muddleware Script is a simple XML dialect for expressing data-driven queries. Clients
can create scripts and register these at the server. Each script is precompiled into
tokenized form for fast execution and identified by a unique name that is used for
execution later on. The scripting language allows invoking all available database
actions such as adding, removing and querying elements and attributes. Multiple
actions can be hierarchically combined using Boolean operations and functional
composition – results of one query can be used as input for another query. Results are
passed on from deeper nested actions to their respective parent nodes in the XML
graph. An XML schema helps developers to create only valid script files.

Muddleware script exposes only few actions: ActionAnd and ActionOr are used
to combine the result of multiple actions into a new single result. ActionEqual can be
used to compare a result to a specific value and returns a Boolean value.

The most flexible action is ActionExecute, which executes database operations on
the server. Via its ‘operation’ attribute, the developer can define which operation to
execute, while the ‘xpath’ attribute specifies the items to operate on. As always in

31 http://www.w3.org/TR/xquery

Chapter 5

Distributed System

85

Muddleware, the user is free to address more than one element or attribute at once via
the XPath. In such a case the operation is executed on all these items. Since this is not
always what the user wants, there’s a special attribute ‘only-first-xpathitem’. Finally
ActionExecute allows specifying a new value or a new name for the target item. The
actions that can be executed are: getElement, addElement, addElements,
removeElement, getElementExists, getAttribute, updateAttribute, addAttribute and
removeAttribute.
Figure 5.4 shows a short sample action that checks if a dragon was defeated. The
sample also demonstrates the strength of XPath’s associative addressing: Qualifiers
for attributes can be specified along the path through the DOM graph down to the
target item. In this example the developer wants to check if two attributes hold
specific values: only if both attributes hold the correct value the action
“checkGameWon” returns true.

To achieve this, the script reads those attributes from the server database using
ActionExecute commands. Both these commands return their results to their
respective parent elements, which compare these results to the specified values. The
Boolean results are then handed over to the ActionAnd element, which only returns
true, if both sub-commands return true too.

Figure 5.4: Sample Muddleware script code sequence

A GUI-enhanced client tool (see Figure 5.5) to invoke Muddleware Scripts makes
it easy to configure the XML database for testing and run-time re-configuration
during the prototyping phase. Muddleware script is also used by the controller (see
below) to execute complex commands as reactions to database events.

<ActionAnd name="checkGameWon”>
 <ActionEqual value="3">
 <ActionExecute operation="getAttribute"
 xpath="/Game[@name='Dungeon']/Level/@id"/>
 </ActionEqual>
 <ActionEqual value="dead">
 <ActionExecute operation="getAttribute"
 xpath="/Game[@name='Dungeon']/Enemy[@name=’Dragon’]/@state"/>
 </ActionEqual>
</ActionAnd>

Chapter 5

Distributed System

86

Figure 5.5: Muddleware Script GUI

5.5 Muddleware Controller
For most real-world Augmented Reality applications a purely passive database server
is not sufficient. An AR game needs to advance even if the players are inactive. For
example, it may be necessary to enforce time-outs for certain parts of the game. Such
overall game or application logic may not depend on the clients that may be
unreliable. Instead, this requirement is better addressed by a server-side component
with an independent thread of execution that can be loaded with application-specific
code to perform all the housekeeping.

The Muddleware controller is such a server component that observes the
database and reacts to changes based on internal interpretation of custom logic. The
controller is shielded from outside influences in a kind of sandbox since it only
communicates with the world by reading from and writing to the XML database (see
Figure 5.2). This makes the controller free of side-effects and thus simplifies
debugging and behavior analysis.

The controller connects to the XML database as a regular client, which allows
isolating controller and database on separate machines. The controller's internal logic
is built on a hierarchical finite state machine (FSM) with guards. FSMs are frequently
used in nonlinear story-driven applications, but are suitable for a wide variety of
application and user interface logic. They are very expressive and can be programmed

Chapter 5

Distributed System

87

by the purely data driven approach of specifying the state/transition graph (see Figure
5.6).

The FSM can run multiple paths in parallel. Each path starts at a specific entry
state. Actions, expressed as Muddleware scripts, are executed upon entry and exit of
states. Each state can have one or more transitions to other states. A transition is only
taken if the transition's guard condition holds. Transition guards refer to conditions
on elements in the XML database, updated by Muddleware script actions. Likewise all
actions triggered by the controller are implemented using Muddleware Script. The
controller writes its own state into the XML database, which allows monitoring and
influencing the state machine remotely.

entry/Reset

Round Start

entry/PutDetectorIntoInventory

Has Detector

Player Start

entry/TeamScores

Bomb Defused

Finds Detector
[checkPlayerFoundDetector]

entry/MarkBombOnMap

Found Bomb

Defuses Bomb
[checkBombDefused]

Player in Basecamp
[checkPlayerAtCampPosition]

Time-out
[checkBombTime]

Time-out
[checkBombTime]

Finds Bomb
[checkPlayerFoundBomb]

Figure 5.6: Example state graph for the Muddleware controller

The controller’s state graph is supplied as an UML state chart, encoded as an
XMI file. The XML dialect XMI can easily be parsed in an XML framework and the
controller can directly operate on the resulting DOM. This type of state chart was
originally designed for software engineering, and high quality graphical editors (e. g.,
Poseidon for UML32) exist for visual programming. Consequently game designers can
program the controller without any knowledge in programming languages or even
XML.

A simple state graph for a typical AR game scenario is shown in Figure 5.6. States
are represented as rectangles, each having an entry action that is executed when the
state is activated. Arrows illustrate transitions. Each transition has a name (in bold
letters) and a guard (in square brackets) that links to a Muddleware script action. The
graph starts with the initial state (marked as black disk) and immediately jumps into

32 http://www.gentleware.com

Chapter 5

Distributed System

88

the state “Round Start”. The first task for the player is to find the detector which in
succession allows finding the bomb. Finally the player has to defuse the bomb to score
for her team. If the player is to slow the bomb will explode which automatically
restarts the round.

5.6 Muddleware Client
Muddleware provides a choice of four client-side APIs to target a broad audience.
While the C++ immediate API allows fine graded communication with the server it
also requires most effort in programming. In contrast, the C++ shared memory API
sits on top of the immediate API and provides an easy high-level mechanism to access
specific elements on the server. Consequently it is the preferred solution in most cases
for C++ clients. In many situations, such as games running on mobile phones or web
browsers, C++ is not the tool of choice. To target these platforms a pure Java
implementation was created with an API similar to the C++ immediate API. Finally,
clients can use the aforementioned Muddleware script for communication with the
server from any client that is able to send and receive XML strings. The wide choice of
client-side APIs enables quick integration of a wide variety of existing applications
with Muddleware, which is a necessity to instrument an existing environment for a
mixed reality game:

C++ Immediate Client API
The C++ immediate API provides lowest-level access to client-side Muddleware

and is implemented as a toolbox of C++ classes. Programmers have the choice
between two different approaches:

• With the single operation API they can invoke simple methods such as
getElement(), updateAttribute(), etc.
Figure 5.1 shows a minimal code sample of updating an attribute in the XML
database. After creating the connection object and connecting to the server, a
single line of code is enough to write the new value “Peter” into an existing
attribute. The disadvantage of such a simple API is that all calls that invoke
database operations use blocking I/O and will halt the thread of execution until
the server's reply arrives. While this is sufficient for applications that query the
database only upon user actions (e.g. a chat client), most interactive
applications would suffer severely from this.

Chapter 5

Distributed System

89

• Alternatively programmers can use the multi operation API which differs in
that operations are stored in a request object which is then sent to the server.
The advantage is that multiple operations can be batched and the creation of
operations is uncoupled from the actual sending/receiving process.
Furthermore the process of sending and receiving packets is uncoupled from
the main thread which allows the client to perform useful work while waiting
for the server’s reply. Figure 5.7 shows an example of the multi operation API.
All four operations are stored in the request object and then sent together to
the server. After calling send()the client the time until the reply arrives for
other tasks that are independent of the result. Alternatively the client could
have used sendAndReceive() which blocks until the reply is available.

Figure 5.7: Code excerpt using the Multi-Operation API

performing 4 operations at once

A simple GUI tool (see Figure 5.8) allows developers to create and test operations
interactively before committing the communication statements to actual source code.

MUDDLEWARE::Request* request = MUDDLEWARE::Request::create();
MUDDLEWARE::Reply* reply = MUDDLEWARE::Reply::create();

request->updateAttribute("/MyApp/Owner/@name", "Peter");
request->removeAttribute("/MyApp/Owner/@address");
request->addElement("/MyApp/User", "<User name='John' age='35' />");
request->removeElement("/MyApp/User[name='Fritz']");

connection->send(*request);
//
// …other application code independent of the reply goes here…
//
connection->receive(*request, *reply);

Chapter 5

Distributed System

90

Figure 5.8: Muddleware Client GUI

C++ Shared Memory API
Manually sending updates and receiving query results is often tedious in application
level code. Although it provides finest graded control, such a level of control is not
always required. Remote object libraries are more convenient since they allow
accessing server data via proxy objects that behave like local data objects. The proxies
take care of transparently synchronizing all access with the remote database:
Whenever the client changes an object's value, this change is forwarded, and changes
by other clients are automatically incorporated. Even when sharing data is not the
goal such a mechanism can be used for persistence, which is especially interesting for
clients that have no storage capabilities or lack required robustness.

Figure 5.9: Usage of a C++ shared-memory class

MW_SHARED_DECLARE_ELEMENT_3_ATTRIBUTES(
BossEnemy, "/MyApp/Boss",
String, name,
Integer, healthpoints,
Boolean, active
);

Chapter 5

Distributed System

91

The C++ shared memory API implements such a feature set and is therefore the
preferred C++ client API for most applications. A programmer can declare a C++
data structure directly in C++ source, which is then automatically implemented by
usage of macros and internal tool methods (see Figure 5.9). No interface compiler
such as used by CORBA is required.

Figure 5.10: Usage of a C++ shared-memory class

as declared in Figure 5.9

Figure 5.9 shows an example declaration of a structure called 'BossEnemy' that is
linked to an XML element addressed with '/MyApp/Boss'. BossEnemy has three
member variables: a string called 'name', a numeric value called 'healthpoints' and a
Boolean value called 'active'. After declaration, the client programmer can then use
the class like a regular C++ structure (see Figure 5.10). The proxy objects have
overloaded access operators that transparently forward all updates to the server.

Java Client API
The Java client API is a pure Java implementation of the Immediate API. It was
developed for using Muddleware with PC-based Java games and applications, web
browser games and Java-enabled mobile phones. Its feature set and API are very
similar to that of its C++ counterpart.

XML Client API
Instead of using the C++ or Java client API to batch database operations, client
developers can also write Muddleware script. A script file is loaded by the client API,
sent to the server which registers all embedded actions. Clients can then invoke an
arbitrary number of operations with a single call to a registered XML action. This
technique reduces the network load and provides a more data-driven approach than
writing C++ code.
Figure 5.4 shows a short example script excerpt.

BossEnemy theBoss;
theBoss.setConnectionManager(manager);

std::string boss_name = theBoss.name;
theBoss. healthpoints = 100;

Chapter 5

Distributed System

92

5.7 Graphical User Interface Generation
A recent extension to the Muddleware system called Thekla allows the easy
generation of graphical user interfaces (GUI). Using the Qt Designer33, application
developers can build user interfaces without any programming. Thekla automatically
pushes the states of all GUI elements (“widgets”) onto the Muddleware server, which
are then forwarded to the application via a Watchdog notification.

A special Thekla module for the OpenInventor scene-graph library allows
creating connections between scene-graph attributes (“fields”) and Qt widgets
without writing a single line of source code. Figure 5.11 shows a simple Qt user
interface controlling an OpenInventor application using Thekla. The controls on the
right side of the application window directly control data of the scene-graph. In this
figure, the Inventor rendering output is embedded into the Qt application's user
interface. Alternatively, due to Muddleware's networking capabilities, the controlling
GUI and the 3D rendering application could also run on different screens and
computers.

Thekla was developed by Christian Pirchheim in the course of his master thesis
and is used in combination with Muddleware in various research projects. More
information on Thekla can be found in [79].

Figure 5.11: A Qt GUI controlling an OpenInventor application using Thekla

33 QT: http://www.trolltech.com/products/qt

Chapter 5

Distributed System

93

5.8 Performance
XML encoding and decoding as well as XPath decoding is known to be a
computationally intensive task. To prove that the Muddleware server is capable of
serving many clients some benchmarks were performed on a Windows XP machine
with 1 GB of RAM and a Pentium 4 processor at 3.0 GHz:

A simple benchmark showed that the XML server can easily handle thousands of
complex requests per second. To test Muddleware with a more practical example the
server’s CPU and network load was measured while running 50 instances of a pre-
recorded 4-player Virtuoso game (see chapter 7.2) in parallel. The server’s CPU load
with 200 concurrent clients is ~60% while the 100 Megabit network was operating at a
capacity of just 4%.

5.9 Discussion
This chapter presented Muddleware, a solution for creating distributed mobile AR
applications. Chapter 7 presents various applications such as Virtuoso and MARQ
that were built using Muddleware. In the number of interacting parts and users these
applications go beyond previously created mobile AR applications. We actually
noticed more collaboration between the users than on PC-based systems as shown in
the study on collaborative edutainment in chapter 7.2.2, hence supporting hypothesis
H1 of this thesis.

The blackboard mechanism of Muddleware is well known in pervasive
computing and makes prototyping easy. It is very forgiving for design flaws in the
protocol, which is further improved by the self-describing nature of XML. The
decoupling of sender and receiver simplifies changing communication patterns later
on.

Other than with directly connected communicating entities which result in up to
N2 relationships, the centralized blackboard mechanism requires only N relationships
and therefore scales well with the number of clients (see chapter 5.8 on performance).

Of course the use of Muddleware is not limited to AR on phones, but certainly a
contribution to hypothesis H2.

Chapter 6

Software Architecture

94

Chapter 6

Software Architecture
This chapter presents the system architecture of our handheld AR client. It also
presents the Sphinx engine, a solution specialized for creating multi-player AR
treasure hunt games.

6.1 Studierstube ES
Our Handheld AR framework, called Studierstube ES34 (StbES, ES for embedded
subset), was created with portability and lightweight footprint in mind. StbES is the
third generation of our software for Augmented Reality on small mobile devices.
While previous versions of our handheld AR software aimed at maintaining
compatibility with the PC-based Studierstube software, StbES has been rewritten from
ground up as a legacy-free design without compromises related to compatibility
concerns. It runs cross-platform on Windows CE (the target platform), Windows XP
(as a development or high-performance client platform) and also partially on Linux.
For the future a Symbian port is planned and prepared, but currently the main focus
is on Windows CE.

Our system runs smoothly on smartphones, PDAs, UMPCs and Tablet PCs. In
all configurations all processing is done natively on the client, which proved to be
more efficient than outsourcing computing tasks to a server. Typical frame rates for
the StbES applications running on smartphones are in the order of 10-20 fps,
depending on the actual application, tracking setup and target device.

For multi-user message passing, the client maintains a constant connection to
the Muddleware server if available, but it can run fully stand-alone too. The

34 http://studierstube.org/handheld_ar/stbes.php

Chapter 6

Software Architecture

95

combination of self-sufficient, low cost clients together with a single server that can
easily handle a large number of clients makes this a scalable system.

Hardware
(CPU, GPU, Display, Touchscreen, Buttons, Audio, Camera, Wifi, Bluetooth)

Hardware Abstraction
(Windowing, Rendering, Audio, Video, User Input, File System)

Studierstube ES

Studierstube ES
Application

Scene
Graph Tracking MultimediaGUI Networking

Studierstube ES
Application

Studierstube ES
Application

Muddleware
Client

Rendering
Toolkit

(OpenGL ES,
Direct3D Mobile)

ARToolKitPlus

Figure 6.1: Component based-design of the Handheld AR framework

A component based client software architecture (see Figure 6.1) was created to
accelerate the task of developing, porting and deploying collaborative applications.
The main component is the Studierstube ES framework that allows running multiple
concurrent networked applications. Its feature set can be reduced at compile time to
minimize the footprint for setups that do not require all available capabilities.

Hardware specifications of mobile devices vary far more than on desktop
computers. For example, while there exist basically no desktop camera that delivers
video feed in portrait mode, both variants, portrait as well as landscape format are
common on mobile phones. Unfortunately the camera’s aspect ratio often does not
follow the screen’s format, which means that on some devices full screen video
background is not possible. Consequently configurability is of high concern for a
handheld AR system. During the design phase of Studierstube ES care was taken to
plan for all circumstances that became apparent after studying the development
guidelines of Windows Mobile and Symbian devices.

Chapter 6

Software Architecture

96

Boot Strapping
Studierstube ES uses a tiny boot loader (see top of Figure 6.2) that is only a few
kilobytes in size and contains only minimal features. The advantage over a single,
large executable is that the minimal boot loader can check the runtime conditions
before the full framework runs into problems during start-up. For example, a specific
issue under Windows CE is that the OS does not report which DLLs are missing, but
simply complains that an application could not be started. To work around this
problem and show the user meaningful error messages, the boot loader tries to load
all required DLLs manually, thereby keeping control which DLLs could be loaded and
which failed.

Studierstube ES (StbES.dll)

Bootloader (StbESPro.exe)

Checking Startup
Path

DLLs Checking &
Preloading

Execute StbES
Kernel

Mount
Bootstrapping

Containers
Load Config File

Initialize
Logger & Profiler

Create
Window
Binding

Initialize Global
Memory Manager

Initialize
Renderer
Context

Initialize
Scene-graph

Renderer

Initialize Camera
Capturing

Initialize Tracking

Load Root SceneInitialize Widget
Manager

Initialize Audio
Manager

Initialize
Application

Manager & Load
Applications

Start MainloopInitialize Network
Manager

Preload
Applications

Import Kernel
Entrypoint

Figure 6.2: Chain of actions while bootstrapping Studierstube ES.

After all DLLs have been preloaded, the boot loader imports the kernel’s entry-
point and executes the kernel. In some version of the framework the boot loader
checks for updates over the network. In such a case the boot loader, which rarely
changes, can download new versions of the framework before executing them.

Chapter 6

Software Architecture

97

The kernel (see bottom of Figure 6.2) begins its start-up by initializing the global
memory manager. Many objects that are used system-wide such as the file system or
the renderer are implemented as singletons. Some embedded operating systems, such
as Symbian, do not allow writing to static global data. StbES therefore uses a global
memory manager that holds the internal data of these singletons and stores it in
thread local storage instead of static variables.

As a next step StbES mounts bootstrapping containers. Containers can hold files
and are implemented as plain or encrypted ZIP files. Using the StbES file reading and
writing classes makes working with plain files or files in containers completely
transparent. Developers can mount and unmount containers at any time, but in order
to put fundamental files such as the configuration file or the root scene into a
container (e.g. to protect against modifications), StbES must mount that encrypted
container early during start-up. Hence the name and key for this boot-strapping
container are hard-wired at compile time.

StbES then loads the configuration file, which determines the rest of the start-up
phase. It then initializes the logging and profiling capabilities, which also include
memory logging to debug memory bottlenecks. Special conditions which are unique
to Windows CE can create problems when loading DLLs at a late point of the process
start-up (see chapter 4.2.1 for details). Developers can therefore decide to have their
application DLL preload early in the start-up phase.

The kernel then runs the window manager, which creates a render target
(window) either for rendering in system or in video memory, as specified in the
configuration file (see chapter 4.1.5 on a discussion on software vs. hardware
rendering). Next the render manager, which abstracts the basic rendering toolkit
(either OpenGL ES or Direct3D Mobile) is initialized and creates the render context.

The tracking manager then creates all tracking subsystems such as the
ARToolKitPlus tracker and initialized them. After this the video subsystem connects
to the camera and starts retrieving video frames. In the next step the scene-graph
renderer is instantiated, which loads the root scene to which applications attach their
own scene-graphs to. The widget manager then creates font objects for 2D text output
and prepares for creating and rendering widgets. The audio manager initializes and
waits for applications to request audio support. After an optional network connection
to the Muddleware server is created, the Application Manager starts loading and
executing applications. Finally the kernel starts the main loop, which is outlined in the
next section.

Chapter 6

Software Architecture

98

Main Loop
The StbES main loop is executed as a callback of the windowing system and is
therefore independent of the underlying operating system. Figure 6.3 gives an
overview of all the steps that Studierstube ES executes for generating a single frame.
The following list describes each step in detail

Figure 6.3: Workflow for processing a single frame in Studierstube ES.

• Update Profiler and Timings: Studierstube ES automatically profiles most of
the following steps in order to give developers feedback on where the scarce
processing time is spent. Furthermore this step initializes as per-frame timings
and thereby creates global, framework-wide consistent timing information,
such as used for animations or for interpolation and extrapolation of tracking
data.

• Reset Rendering State: This action resets the OpenGL ES or Direct3D
rendering state by setting it to well defined default values.

• Call update() on all Applications: Every active application’s update() method
is called. Application can use this to invoke actions before rendering starts,
which is an optimal point in time to perform updates to the scene-graph.
Applications can also queue requests for the Muddleware server, which will be
available later in the same frame.

• Send out Requests to the Muddleware Server: All requests queued so far our
sent out to the Muddleware server. Requests are only sent out, but not required
to return instantly, which gives the server enough time to process the messages
and send them back without stalling the client.

Chapter 6

Software Architecture

99

• Retrieve Video from Camera: StbES queries the camera for a new frame. In
case a new frame is available, all objects that registered as VideoUsers are
notified and handed over the new camera image.

• Update Tracking: The tracking subsystem calls all active tracking modules
such as the ARToolKitPlus or FTW (a proprietary gyroscope tracker connected
via Bluetooth) tracker. The resulting tracking data is stored in fields for later
use.

• Traverse and Render Scene-graph: The scene-graph renderer updates all field
connections and traverses the scene-graph for rendering.

• Render 2D Widgets: Studierstube ES’ widget manager now draws all widgets
such as buttons, images, etc. onto the screen, on top of previous 3D renderings.

• Receive Replies from the Muddleware Server: Replies from the Muddleware
server are expected to have arrived by now. Otherwise Studierstube ES goes
into a blocking wait. Most time consuming tasks such as video retrieval,
tracking and rendering are executing in the slot between sending requests and
receiving replies. The typical StbES frame duration is ~80 milliseconds, which
gives the server enough time to react.

• Display Debug Information and Performance Data: StbES optionally
displays debug information such as network errors, visible markers and
performance data (e.g. frames per second).

• Call render2D() on all Applications: Each application is notified that the
scene-graph traversal has finished and 2D data can be rendered on top of it
now. Furthermore the applications can retrieve results for queries to the
Muddleware server that have been queued in the update() method. Since each
request was tagged with the application’s id, it is guaranteed that every
application receives only its own replies.

• Finish Frame: In the last step the renderer presents the just created frame
buffer on the screen.

Configuration
StbES can be configured in many ways using XML config files. The following we

list presents the most important configuration parameters:

• Logging is a highly valuable tool for debugging hard crashes. While on a
desktop computer usually only the problematic application crashes, the same
program can easily take the mobile phone down with it during malfunction.
Logging allows checking for errors after rebooting the device. Since file logging
can slow down the system considerably, StbES provides several log levels for
fine adjustment.

Chapter 6

Software Architecture

100

• Render Target: Since many devices today do not include graphics chips yet,
software rendering is still rather the rule than exception. While both software
and hardware rendering produce the same results, they require different
strategies (render paths) to achieve optimal performance. StbES therefore
creates off-screen render targets (“PixMap” surfaces) for software rendering,
which allow direct video memory access, and on-screen render targets for
accelerated hardware rendering.

• Window bindings define how the application interacts with the operating
system’s screen and video memory management. StbES support two different
window bindings: Windows for PixMap render targets can blit the off-screen
image onto the screen. When using EGL window bindings, OpenGL ES
handles the buffer management itself. In the case of PixMap windows StbES
can rotate also the render target in 90° steps to adapt to users that hold the
devices in non-standard ways.

• Video capturing is of major importance for handheld AR. StbES supports
various video APIs including proprietary ones such as for the Gizmondo device.
Developers can choose to use full automatic mode selection: StbES will then
use heuristics to find a suitable video mode that best fits the screen’s resolution:
StbES then tries to scale and crop the video image in case it doesn’t fit onto the
screen in original size. Naturally, operations that change the original image as
little as possible are preferred. Alternatively developers can manually select a
specific video mode and configure cropping, zooming and format conversion.

• Font support in StbES is currently rudimentary since only pixel fonts are
supported. Yet the font type and size can be freely configured to adapt to
various screen resolutions.

• Tracking is an integral part of any AR application. While ARToolKitPlus is
currently the major tracking system used in the handheld AR project, StbES
allows integrating arbitrary tracking libraries.

• Containers and encryption can be important features when distributing
applications to an open, unknown audience. In such a case a developer can put
sensitive data into encrypted containers to protect the data as well as the
application against misuse. Furthermore assembling lots of small files into
fewer larger one simplifies application deployment.

Chapter 6

Software Architecture

101

6.2 Sphinx
For multimedia applications content creation, also known as authoring, is a major
topic. While small projects can get by with using just a few simple tools, large
applications require a carefully orchestrated content development pipeline. This issue
is not unique to AR applications, but has also been recognized as a major problem in
the area of professional game development.

Content creation for Augmented Reality is different from typical game
development processes. While today’s content in console games is usually a lot more
extensive and complex compared to that of Augmented Reality, developing AR
applications requires not only creating and managing virtual content, but physical
content too. Typical Augmented Reality demonstrations work with small data sets
that have been entered manually and do not require data management. Naturally this
approach is not feasible for larger applications.

Even small projects suffer from basic problems such as getting content from
graphical editors into the AR software. Larger applications have additional problems
that are similar to professional game development: After content has been imported
into the AR framework, it must be managed and put to use, which turns out to be a
major problem in its own right as soon as the amount of data grows beyond a certain
measure.

The Sphinx engine that was developed for a museum treasure hunt game (see
chapter 7.4) specifically targets these problems of large AR applications. A large
application such as a museum-wide game cannot be developed efficiently by creating
custom code for every interaction throughout the game. It was therefore decided to
create a custom game engine, Sphinx, on top of Studierstube ES and Muddleware. It
serves as a basis for all interactive exhibits called hotspots that players can interact
with. This engine must fulfill several requirements to be practical not only during the
time frame of the research project, but after the project's end as well.

A primary concern is the efficient creation of new content for the interactive
exhibits. The museum game that motivated the development of Sphinx targets a
number of roughly forty hotspots, so the amount of development work per hotspot
had to be kept at a minimum. Due to ongoing changes in the exhibitions it is
furthermore important that existing hotspots can be edited by the museum personnel
themselves, i.e., by users with limited technical knowledge. This requires simple to use,
graphical tools that can be operated by non-programmers. Since it is out of the scope
of the project to develop these tools ourselves it was mandatory relying on existing
software instead.

Chapter 6

Software Architecture

102

For a multi player game, where teams collaborate in solving a common goal it
would be desirable that each player has a unique experience while contributing a
small amount to the overall task. In practice though, creating unique content for each
player increases work for content creation enormously. E.g. a game by 10 players for
20 minutes of active game play equals 200 minutes of unique game play.

Consequently the game allows reconfiguring the setup to arbitrary numbers and
sizes of teams. Each team plays the complete game independent of the other teams.
The team that finishes the game first or solves most tasks wins the game. When a
small group of users plays the game they can be split into just two teams competing
against each other while larger groups can be divided into more teams.

The Sphinx engine is focused on creating and running adventure style
augmented reality games. Like in traditional adventure games such as pioneered by
Lucasarts35 in the 1980s, most game logic can be reduced to standard user interface
metaphors such as taking or giving items or combining items to create new ones.
Consequently the majority of the game content can be scripted, using a simple
interpreted control language, requiring custom C++ code only for those parts of the
game that go beyond the capabilities of the engine.

Figure 6.4: Sphinx client/server system layout

Sphinx consists of a server and a client part. The Sphinx server runs on a PC and
interfaces only with a Muddleware server, usually running on the same machine (see
Figure 6.4). For each team and hotspot the Sphinx server spawns a finite state
machine (FSM) in a separate thread. Each FSM listens to specific elements on the
XML server, such as waiting for clients to register at the hotspot. After a client
registers, the FSM starts sending actions to the client by putting commands or state
updates into the Muddleware database and waiting for the client to confirm. These
actions range from showing dialog boxes to starting AR applets (see below).

35 http://www.lucasarts.com

Chapter 6

Software Architecture

103

6.2.1 Sphinx Server

All intelligence controlling the hotspots is located in the finite state machines at the
Sphinx server whereas the client mostly just reacts to the commands from the server.
This restricts hotspots to locations where network connectivity is available. However,
it improves robustness since it is primarily the mobile clients that are likely to fail due
to malfunction, such as software problems, battery outage or misuse. In case of a
client malfunction it is sufficient to restart the handheld for recovery since the
complete game state is stored in the XML server.

The Sphinx server is an extended version of the Muddleware controller (see
chapter 5.5), but more focused on the task of controlling a multi player adventure
game. Both are similar in that they interact only with the Muddleware server directly.
Yet, while the Muddleware controller executes Muddleware script commands, the
Sphinx server executes C++ code, which allows going beyond the capabilities of
Muddleware script.

Command Description

CLIENT_ShowDialog(DIALOGNAME,
AUDIONAME)

Opens a dialog and optionally starts
playing an audio file

CLIENT_StartAudio(AUDIONAME) Starts playing an audio file

CLIENT_StartModule(MODULENAME) Loads a module (DLL) and starts
the AR applet (see next chapter)

CLIENT_StopModule(MODULENAME) Stops an applet and unloads the module
CLIENT_ModuleCommand(COMMANDNAME,

PARAMS)
Sends a command and

optional parameters to a module
CLIENT_StartTimer(TIMERNAME,

DURATION)
Creates a named timer with a

specified time-out value.
CLIENT_ActivatePhotoMode() Activates the photo mode

CLIENT_DeactivatePhotoMode() Deactivates the photo mode
CLIENT_ShowActionAR(NAME) Executes a scripted AR action (animation)

CLIENT_ActivateTools(TOOL1, TOOL2, ...) Activates one or more tools
in the inventory

CLIENT_DeactivateTools(TOOL1, TOOL2, ...) Deactivates one or more tools
in the inventory

CLIENT_LeaveContext(CONTEXTNAME) Tells the client to leave the context
DB_InventoryStore(ITEMNAME) Put an item into the player’s inventory

DB_CloseContext(CONTEXTNAME) Closes a context (hotspot)

DB_ValueSet(VARIABLENAME, VALUE) Sets a new value for variable
(used for inter-hotspot communication)

Table 6.1: List of all commands executed on the Sphinx server.

Chapter 6

Software Architecture

104

While a Sphinx server purely based on the Muddleware controller would
probably be feasible, it was decided to develop a custom tailored server with a more
focused API, which in consequence facilitates the development of the hotspot state
charts. Therefore, instead of requiring the application developer to write Muddleware
scripts that deal with the XML database, the Sphinx server exposes game specific
commands.

Table 6.1 gives an overview of all commands executed on the Sphinx server.
These commands are executed when entering or leaving a state. All CLIENT_
commands are written into the command node which the client listens to via a
watchdog and result in an immediate action executed on the client. The DB_
commands read and write values from the Muddleware database with only indirect
influence on the client (for example, DB_InventoryStore will make the client show an
icon in the inventory, but only because the client has a watchdog on the complete
inventory). All these commands still only interact with the Muddleware database, but
the streamlined, focused API of the Sphinx server makes the development and
maintenance of hotspots much easier than using the Muddleware controller.

Command Description

CLIENT_Action(ACTIONNAME) The client send a message named
ACTIONAME

CLIENT_AudioFinished(AUDIONAME) The client finished playing an audio file
name AUDIONAME

CLIENT_TimerFinished(TIMERNAME) A timer named TIMERNAME ran out
DB_InventoryFull() The client’s inventory is full

DB_InventoryNotFull() The client’s inventory is no full

DB_InventoryIs(ITEMNAME) The client’s inventory contains an item
name ITEMNAME

DB_MarkerVisible(MARKERNAME) The a specific marker is visible for the
currently registered client

DB_MarkerNotVisible(MARKERNAME) The a specific marker is not visible for the
currently registered client

DB_ValueIs(VARIABLEBNAME, VALUE) Checks if a variable has a specific value
DB_PlayerRegistered() A client is registered at the context

Table 6.2: Guards for transitions between states.
A guard returns true if the described condition is met.

Table 6.2 shows all guards of the Sphinx server. Only when a guard evaluates to
true, the state machine takes the corresponding transition into the next state.
CLIENT_ guards wait for the client to send specific messages, such as that an audio

Chapter 6

Software Architecture

105

file finished playing or an action occurred (e.g. the user pressed a button in a dialog).
DB_ guards on the other hand, check for states in the database.

Since each state machine runs in a separate thread, every hotspot is generally
completely independent of all other hotspots. Only each FSM's graph decides if a
hotspot can be played at any time or if it is activated only after specific conditions are
met, such as another hotspot being already finished.

State machines are frequently used in nonlinear story-driven games, but are
suitable for a wide variety of application logic. A natural strength of state machines is
that they can be created and edited without programming skills such as writing source
code. Instead game designers can use graphical editors for visual programming and
use basic building blocks provided by the engine to modify the state or react onto
state changes.

entry / CLIENT_ShowDialog(BridalCoupleDialog,BridalCoupleDialog)

Initials Wedding Couple

Show flat iron
do / CLIENT_ShowActionAR(IronAR)

Wrong Answer
do / CLIENT_ShowDialog(Wrong,Wrong)

Ask for saving
entry / CLIENT_ShowDialog(Save,Save)

entry / CLIENT_ShowDialog(Intro,Intro)

Intro Text

Inventory Full
entry / CLIENT_ShowDialog(InventoryVoll)

Cancel, Save?
entry / CLIENT_ShowDialog(Abbrechen)

Cancel?
entry / CLIENT_ShowDialog(Abbrechen)

Save flat iron
entry / DB_InventoryStore(Iron)
do / CLIENT_StartAudio(right)

Hotspot inactiv
do / CLIENT_LeaveContext()

Start Hotspot?
do / CLIENT_ShowDialog(StartHotspot)
exit / CLIENT_ShowDialog()

Close Hotspot
exit / DB_CloseContext()

Check Inventory

Begin

End

Choices:
"U+E"
"N+K"
"I+H"

 [CLIENT_Action(OK)]

 [CLIENT_AudioFinished(right)]

 [CLIENT_Action(U+E)]

 [CLIENT_Action(Cancel)]

 [CLIENT_Action(Cancel)]

 [CLIENT_Action(N+K)]

 [CLIENT_AudioFinished(Wrong)]

 [CLIENT_Action(OK)]

 [CLIENT_Action(Cancel)]

 [DB_PlayerRegistered()]

 [DB_InventoryFull()]

 [CLIENT_Action(OK)]

 [CLIENT_Action(OK)]

 [CLIENT_AudioFinished(Intro)]

 [CLIENT_Action(Cancel)]

 [CLIENT_Action(I+H)]

 [DB_InventoryNotFull()]

 [CLIENT_Action(IronAR)]

 [DB_MarkerNotVisible()] [CLIENT_Action(Cancel)]

 [CLIENT_Action(OK)]

 [CLIENT_Action(Cancel)]

 [CLIENT_Action(Cancel)]

 [CLIENT_AudioFinished(Save)]

Figure 6.5: Finite state machine of the "Trachtengürtel"

(a traditional belt in Carinthia) hotspot

Similar to the Muddleware controller, the Sphinx server's state graph is supplied
as an UML state chart (see Figure 6.5) encoded in XMI format. Sphinx parses the
open XML-based XMI format using TinyXML and the state machine can directly
operate on the resulting Document Object Model (DOM). As can be seen in Figure
6.5, hotspots typically start in an "inactivate" state where the FSM resides until a client
registers or jumps back to if the player cancels or something goes wrong. The player is
then usually introduced to the hotspot via a dialog box combined with an audio
message. At the hotspot in the Figure above the user has to answer a multiple-choice
question (state "Initials Wedding Couple"). If the player answers correctly he is
rewarded with an item. In this case, a 3D model of a flat iron flies from the real

Chapter 6

Software Architecture

106

environment (a tailor's workshop) onto the handheld and falls into the player
inventory. Finally the FSM closes down the hotspot.

Figure 6.6 shows a screenshot of the Qt-based user interface of the Sphinx server
that runs the state machines. The Sphinx server's GUI allows a game designer to
browse the full game state at any time. For each hotspot the current state and all its
transitions leaving from there can be viewed which is an important tool during
development and debugging. Single hotspots or all hotspots can be reset to restart or
replay them. The interface also lists all currently connected clients and shows their
current position and inventory items. Via the use of the Muddleware scripting
interface the corresponding context and client properties in the database can be
altered in any way, like placing or removing specific items in the client inventory.
This gives the operator the possibility to fulfill prerequisites for playing a hotspot and,
therefore, assist players if they require help at a hotspot.

Figure 6.6: Sphinx server user interface based on Qt

(team specific log history of state transitions and events are hidden)

The user interface can be reconfigured to adapt it to the game designer’s needs,
such as docking various team lists or log messages together. The number of teams and
clients per team are configured in the Muddleware database, beside the definitions of
the station-contexts where all of the game content is specified.

Chapter 6

Software Architecture

107

6.2.2 Sphinx Client

The Sphinx client runs as an AR application on top of Studierstube ES (see Figure 6.4).
During startup it connects to the Muddleware server and retrieves a list of all available
hotspots. When the handheld detects a marker it asks the user if he wants to play that
hotspot. The client application then registers at the XML server which triggers the
aforementioned finite state machine on the Sphinx server. The Sphinx engine
currently supports four different types of hotspots (or a combination of them). The
list below presents these types in the order of increasing technical complexity:

• Pure 2D GUI: At these hotspots, only simple 2D GUI based interaction is
available. This can be multiple-choice questions or asking the player to use a
specific item already found or still required to find. These hotspots are very
simple to create as they typically only require a short script and a few images to
be shown in a dialog box.

• Flash-based applets: For these hotspots the Sphinx engine starts an Adobe
Flash movie that can take over full control of the device and communicate with
the Sphinx server. Using Flash allows incorporating existing high-quality
design tools which graphics and web designer are used to. Via ActionScript,
Flash applets can talk to the Sphinx server such as waiting for new events or
sending results.

• Scripted AR hotspots: These hotspots make use of the AR interaction features
of the Sphinx engine. They typically require the player to interact with the
environment in a simple way such as using a game related virtual tool (e.g. the
lens for virtually looking in more detail at an exhibition item) or applying a
previously found item to the current hotspot.

• AR applets: By programming custom C++ code, more complex and unique
interactions that go beyond the scripting capabilities of Sphinx can be created.
Multiple AR applets can be grouped into DLLs that are loaded automatically
on request. An example for such a hotspot is the "Silent Piano" (see chapter 7.4)
where the user has to watch the handheld virtually playing a piece of music on
the real piano and then repeat it.

6.2.3 Offline State Machine

The Sphinx engine was originally planned to run in an area that is mostly covered via
a wireless network that includes all the locations of interactive exhibits. After running

Chapter 6

Software Architecture

108

first tests in the museum and presenting the results to the museum staff, the museum
management decided that it would be too expensive to outfit all required areas with
permanent wireless connectivity.

Hence, the Sphinx engine was extended to also run the state machines “offline”
on the client. The local state machine was designed to expose the very same API as on
the Sphinx server so that existing state machines designed for the server remain
unchanged. In offline mode network communication with the client is not mediated
via the network but directly from the state machine to the client’s communication
management class.

Since the games based on Sphinx are still multiplayer games, network
connectivity is still required at some point. The client searches permanently for
network connections. As soon at is succeeds in connecting to the server both
exchange data to provide updates into both directions. As a result the server is able to
integrate the latest actions of the player into the overall game state and the client gets
instantly receives this up to date overall game state. Chapter 7.4.1 presents the actual
setup of the redesigned of team base that shows an overview map.

6.3 Performance
To prove that the system developed in this thesis is highly suitable for AR on phones,
several benchmarks were run that reproduce typical situations on a series of devices
ranging from a low-end smartphone to a brand new device with hardware accelerated
graphics. The following list gives an overview of the devices used in the benchmarks
(see Figure 6.7):

• HTC Tornado: The Tornado is a small, low end smartphone, with a 240x320
pixels screen in a typical phone form factor with a T9 keypad. Its Texas
Instruments OMAP 850 CPU running at 200MHz is common for this device
class. The camera delivers images in YUV12 format at 320x240 pixels
landscape format and 15Hz. Since the screen is in portrait format, only the
overlapping 240x240 pixels can be used as video background AR.
This phone is branded under the names: O2 XDA IQ, O2 XDA Orion,
Swisscom XPA v1240, T-Mobile SDA US, Vodafone VDA II, Vodafone v1240,
Qtek 8300, Qtek 8310, Dopod 586W, Dopod 577W, I-Mate SP5

• HTC Excalibur: The Excalibur is a typical smartphone with a landscape screen
of 320x240 and a full QWERTZ keyboard below the screen – a form factor that
became popular due to the success of the Blackberry devices. It is based on the

Chapter 6

Software Architecture

109

same Texas Instruments OMAP 850 200MHz CPU as the Tornado, hence
similar performance measurements are to be expected. Its camera delivers
images in 320x240 in YUV12 format at 15Hz.
This phone is branded under the names: Orange SPV E600, T-Mobile MDA
Mail, T-Mobile Dash, Dopod C720W, O2 XDA Cosmo, HTC S620

• Palm Treo700W: The Treo was the first Windows Mobile powered device
released by Palm. Its screen is square at a resolution of 240x240 pixels. The
camera delivers images at 320x240 pixels in YUV12 at unusual 28Hz. It
possesses a full QWERTZ keyboard. The Treo uses an Intel XScale CPU that
runs at 312MHz, but can be overclocked to 520MHz.

• Motorola Q: The “MotoQ” has the same form factor as the HTC Excalibur: A
full QWERTZ keyboard is available below a 320x240 pixels screen. The camera
delivers images in 320x240 at 15Hz in YUV12 format. Its Intel XScale CPU
runs as 312MHz.

• Motorola Q9: The “Q9” is the successor to the MotoQ. Although it has the
same form factor, it incorporates completely different hardware: Its Texas
Instruments OMAP 2420 CPU has hardware 3D support for the vertex as well
as pixel stage and even includes a floating point co-processor. The camera
delivers images at 320x240 pixels in RGB565 format at 15Hz. Unfortunately,
the Q9 does not come with an OpenGL ES driver, but only a Direct3D Mobile
driver. Furthermore the floating point unit (FPU) is deactivated and requires
low-level programming to be accessible. To futher compare the influence of
hardware accelerated rendering, the Q9 was benchmarked with and without
GPU support.

Figure 6.7: Mobile phones used for benchmarking StbES. Left to right: HTC Tornado,

HTC Excalibur, Palm Treo700W, Motorola Q, Motorola Q9.
(images property of www.pdadb.net)

Chapter 6

Software Architecture

110

Benchmarks
On each phone several tests were run to benchmark the various parts of the

StbES mainloop. Every subsequent test adds more features of the AR pipeline:

• Empty Frame: This test runs a mostly disabled pipeline to benchmark the
overhead of StbES when not performing any AR related duties. All features
listed below are activated.

• Video Capture: This benchmark adds video capturing to the previous test.
Video is read from the DSVideoCE DirectShow wrapper library and converted
into the RGB565 format, if required, but not rendered.

• Video Render: This test adds video background rendering. In the cases of
software only rendering, this results in a simple memory copy operation, while
for hardware rendering a texture has to be loaded and rendered.

• Tracking: In this test tracking of a single ARToolKitPlus marker is added to
the pipeline. The mainloop performs all common actions, except that the
scene-graph does not contain drawable objects. Hence, this test shows the top
performance a device can deliver, if 3D rendering is not taking into account.

• Cube: This benchmark renders a lit cube with a 256x256 pixel sized texture on
top of the marker (see left image in Figure 6.8). Due to the extremely low
triangle count, it mainly tests the performance of the pixel stage.

• Venus: This test renders a detailed, textured model of the Venus of Willendorf
on top of a marker (see middle image in Figure 6.8). The 3D model consists of
870 vertices in 2625 triangles (stored as a single triangle strips) and a 256x256
pixel texture.

• Car: This test rendered a highly detailed, lit, untextered model of a car on top
of a marker (see right image in Figure 6.8). The model consists of 12 meshes
and materials. In sum the model contains 25652 vertices and 27219 triangles.

Figure 6.8: Test models rendered for benchmarking. Left: Textured cube; Middle: Venus

of Willendorf; Right: Model of a car.

Chapter 6

Software Architecture

111

All tests were performed on all devices listed above. The Treo700W was
benchmarked at 312MHz, as well as 520MHz to estimate the influence of pure clock
rate. Table 6.3 shows the results of the tests. The table lists only frames per second
(fps) values. For comparing the effect of specific stages, measurements in milliseconds
would be preferred, but the tests showed that several stages influence each other: On
all devices, capturing the video from the camera runs in a separate thread that
competes for processing time with the main thread. On hardware accelerated devices
the GPU runs in parallel too, making it extremely hard to estimate exact timings.
Therefore only timings of the complete mainloop are reported.

 Empty Video

Capture
Video

Render Tracking Cube Venus Car

Tornado 221,6 fps 62,4 fps 49,8 fps 27,3 fps 16,3 fps 13,2 fps 3,7 fps
Excalibur 147,0 fps 37,3 fps 29,6 fps 17,7 fps 11,2 fps 9,2 fps 2,6 fps

Treo @ 312Mhz 318,8 fps 106,6 fps 79,4 fps 40,2 fps 23,6 fps 19,9 fps 5,7 fps
Treo @ 520MHz 326,4 fps 128,2 fps 92,8 fps 48,6 fps 30,6 fps 26,5 fps 8,0 fps

MotoQ 167,3 fps 69,7 fps 53,3 fps 33,2 fps 19,4 fps 16,6 fps 4,9 fps
Q9 H/W 239,1 fps 201,6 fps 72,4 fps 45,2 fps 40,4 fps 36,4 fps 14,3 fps
Q9 S/W 145,6 fps 114,7 fps 82,5 fps 31,7 fps 19,5 fps 15,7 fps 4,2 fps

Table 6.3: Benchmarks of Studierstube ES on different mobile phones.
Higher fps (frames per second) values are better.

Discussion
As can be seen in the first row, every device performed extremely well with the

“empty” mainloop that renders an empty (black) rendering on the screen, but does
not include video capture, video background, tracking and 3D rendering. As can be
seen, the overhead of StbES is negligible: even on the slowest devices it sums up to less
than 7 milliseconds.

Video capture introduces highly different workload to the phones: While the Q9
hardly looses any performance, all other devices suffer enormously from this task.
The main reason for this is that the Q9 delivers images in RGB565 directly, while the
other devices have to convert from YUV12 to RGB565. Although StbES contains
optimized code for the format conversion, it still slows down the overall performance
considerably. Yet, some devices such as the Excalibur loose more performance than
others.

Rendering the video background creates inversed results to the retrieval of the
video images: Here the Q9 looses most performance, which is to be expected, since it

Chapter 6

Software Architecture

112

has to upload the video into a texture and then render that texture. The other devices,
running software rendering only, can directly copy the camera image into the frame
buffer. Hence, the Treo outperforms the Q9, even when not overclocked.

The next task added to the mainloop is tracking. Again the Q9 and Treo are far
above the rest. Yet, even the Excalibur still performs at 17,7 frames per second. Taking
the difference in timing between this and the previous test, one can estimate that
tracking takes 22,3 milliseconds on the slow Excalibur and only 9,8 milliseconds on
the overclocked Treo. As already outlined in chapter 3.4 the tracking performance
scales mostly linear with the clock rate, independent of the CPU manufacturer.

The remaining three benchmarks run the full mainloop including rendering of
3D objects. All devices perform similar on the cube as well as on the Venus, despite
the considerably larger polygon count of the Venus model. Obviously the 870 vertices,
grouped efficiently in a single triangle strip create no big bottleneck for the software-
implemented vertex stage.

Finally the car model creates a noticeable burden on all devices, including the
hardware accelerated Q9. While the Excalibur and Tornado run at frame rates which
are below of what is considered as real-time in AR, the other devices keep up
interactive rates at least. Only the Q9 runs at almost 15 fps, which is maximum frame
rate the camera can deliver.

The general performance trends become clearer when plotting all results into a
chart (see left chart in Figure 6.9). As can be seen, the overall performance goes down
quickly as more and more features of the AR pipeline are added. For a better
comparison between the various devices, the right chart in Figure 6.9 shows the data
in logarithmic scale.

All phones have enough processing power to blit the screen at 150 frames per
second or more. Hence, other than a few years ago this step does not pose a noticeable
bottleneck anymore on smartphones. For most devices the first big performance drop
occurs when capturing video capturing to the pipeline. Yet, as already mentioned
above, converting pixel formats from YUV12 to RGB565 demands lots of processing
power which results in a clear performance drop on all devices that have to perform
this task.

Chapter 6

Software Architecture

113

Figure 6.9: Absolute performance results. Left: Linear scale; Right: Logarithmic scale.

While the hardware accelerated Q9 could keep up very well so far it drops heavily
when video background rendering is added. Here, the hardware accelerated version
performs worse then using software rendering on the same device. Adding tracking
costs most devices similar performance as when rendering a simple model. Only the
H/W accelerated Q9 hardly looses performance with rendering, except for the car
model with its extremely high polygon count.

1

5

25

125

Empty
mainloop

Video
Capture

Video
Render

Tracking Cube Venus Car

HTC Tornado

HTC Excalibur

Treo700W @ 300

Treo700W @ 500

Motoroa Q

Motorola Q9 SW

Motorola Q9 HW

Figure 6.10: Performance results normalized to per 100Mhz CPU clock rate.

Figure 6.10 shows the same chart as Figure 6.9, except that this time all
measurements are normalized to 100MHz. It is interesting to notice that some devices
have a lot faster video memory access than other. Especially the Treo and Tornado

Chapter 6

Software Architecture

114

devices perform far beyond all others in this category. As soon as other tasks are
added, all devices perform very similar with respect to a normalized clock rate –
except for the Q9 which benefits from the RGB565 video format as well as from its
GPU. The chart shows clearly that without these two advantages, the Q9’s CPU
possesses no performance gain over the other, considerably older GPU designs.

Our tests show that even devices with similar specs can expose highly different
performance characteristics. Unlike when using synthetic benchmarks that cover only
a single task as reported in chapter 3.4, the performance of real life applications varies
heavily. The Q9 draws a lot of performance from its hardware accelerated rendering
and the 330MHz CPU. Both the MotoQ and the Treo possess an XScale processor
which is well known for good performance. Yet, the Treo surpasses the MotoQ
considerably in all tests. The smaller screen size of the Treo alone can not explain this
difference in performance. A similar situation happens with the Tornado and the
Excalibur phones. The older Tornado is almost 50% faster in all tests.

Probably the most interesting device of these benchmarks is the Motorola Q9,
since it is the only one with hardware 3D acceleration, a feature that is expected to be
available in most new phones released in 2008 and later. The tests show that although
the video background via texturing does cost a lot of performance, it is countervailed
by the enormous power when rendering high detailed 3D models.

6.4 Discussion
This chapter described Studierstube ES, a framework that combines the basic building
blocks ARToolKitPlus, StbSG and Muddleware that were presented in the previous
chapters of this thesis. Studierstube ES is optimized for running on mobile phones,
but also works on PC-based setups too. This enables developers doing most of their
work on powerful PCs, leaving only final tests to be performed on the actual client
device, which speeds up development cycles enormously.

Furthermore, the Sphinx game engine for mobile AR adventure style games was
introduced, which is the basis for the MARQ game, presented in the next chapter
among other applications.

The Studierstube ES framework is equally powerful for developers as
Studierstube (PC version), DWARF and Tinmith, etc. in the kind of applications that
can be built. While this is a subjective measure, it is supported empirically by the
applications presented in the next chapter and therefore a proof for hypothesis H1
and H2.

Chapter 7

Results and Evaluation

115

Chapter 7

Results and Evaluation
This chapter presents applications that have been developed and evaluated over
the course of the handheld AR project, ranging from classical single user
applications such as Signpost to content-rich multi-user programs such as the
Schatzsuche game.

To demonstrate the applicability of the handheld AR approach and to evaluate the
statements postulated in the beginning of the thesis, several applications have been
developed and evaluated in various user studies. While the Invisible Train game was
studied only informally, the feedback from its roughly 5000 users makes it as
important as the formal studies run on the Virtuoso and Signpost2007 applications.
The test runs of the “Schatzsuche” game, performed at the Landesmuseum Kärnten,
was led by professional pedagogues who have many years of experience in creating
and evaluating museum exhibitions.

7.1 The Invisible Train
The Invisible Train, developed 2003, is one of the first applications in the handheld
AR project. Hence, our main concern was in evaluating the suitability of handheld AR
for mass users. We therefore designed a simple multi-player game, in which players
steer virtual trains on a real wooden miniature railroad track (see Figure 7.1). These
virtual trains are only visible to players through their handheld’s video see-through
display, since they do not exist in the physical world.

Chapter 7

Results and Evaluation

116

Figure 7.1: Invisible Train game board.

While it would have been possible to draw inspiration from a number of marker-
based augmented reality applications published by other researchers, none of those
met all of our requirements or made use of the unique possibilities gained by bringing
marker-based AR to handheld devices. Naturally, we were looking for an interactive
application that would allow its users to participate in a collaborative or concurrent
task. The application should be distributed, synchronizing state between multiple
clients through wireless networking. Many marker-based AR applications that have
so far been presented make heavy use of fiducials as tangible interface components,
allowing their users to flip through the pages of marker-enhanced “magic books” [17],
to use markers as cards in an augmented memory game [111], or to use markers for
positioning various objects such as design elements or video surfaces in the user’s
workspace [16][7].

In contrast to these applications, which focus on the use of fiducial markers as
moveable, dynamic parts of the application, we decided to employ the handheld’s
tracked display itself as the tangible, dynamic interaction element. Therefore, we
decided to focus on pen-based touch-screen input as the main interaction technique.

An important requirement was that the application should be sufficiently
spatially distributed to give an impression of the properties of our tracked display
surface with respect to panning and zooming interactions — users should be required
to move in closely to the environment to discover important details, and to move the
perspective away from the setting in order to gain an overview of the scene. This
differs from other applications such as the magic book, which are designed to be fully

Chapter 7

Results and Evaluation

117

visible within the field of view of the user, and therefore require no navigational
actions from the user.

We specifically chose the game genre because we expected its playful nature of
engaging in cooperative tasks would encourage users to participate in our evaluation.
We deliberately left the decision whether the game should be collaborative or
competitive open. As a result, the game can be played either collaboratively (trying to
avoid a collision between trains for as long as possible) or competitively (attempting
to crash into the other player’s train). Since we anticipated people would use the
application for about a minute each, we omitted a scoring mechanism and left the
decision whether to cooperate or compete to the players.

Figure 7.2 shows the game’s user interface elements, as seen from a player’s
perspective. Users are offered two types of actions: operating track switches and
adjusting the speed of their virtual trains, both of which are triggered in response to a
tap on the PDA’s touch screen. There are two different kinds of track junctions: three-
way (Y-shaped) and four-way (X-shaped) interconnections. Both are visualized
through semi-transparent graphical icons floating above the physical junction
element. These track switch icons serve as clickable buttons and indicate their current
state and effect on train routes by their visual appearance (see Figure 7.3).

Figure 7.2: User interface and graphical features.

Chapter 7

Results and Evaluation

118

Figure 7.3: Track switch icons and their effect on train routes.

Whenever users activate a track switch, its icon turns fully opaque for one second,
during which other track switch buttons become unclickable. This mechanism was
primarily intended to provide users with visual feedback, but will also prevent “race
conditions” where multiple users rapidly try to operate the same track switch. Users
need not exercise great precision when aiming at their touch-screens: a ray-casting
algorithm automatically selects the appropriate track switch depending on the closest
virtual track being pointed at. Virtual trains can ride at two different speeds, which
can be controlled via two dedicated buttons in the upper right screen corner. The
active button is shown in color while the inactive button is grayed out. During the
game, application state is constantly synchronized between all participants via
wireless networking. Whenever a collision occurs, the game ends.

7.1.1 Evaluation

In order to assess the practical deployability and usability of our framework, we
considered it imperative to conduct a field test in which as large a number of users as
possible would be asked to try their hand at a PDA-based AR application. Ideally,
most participants would not have had prior experience with AR interfaces. The
application that we presented to end users in the evaluation was chosen according to
several criteria: first and foremost, the application should expose our framework's

Chapter 7

Results and Evaluation

119

major features and key properties to the end user while simultaneously allowing us to
draw early conclusions about the practical value of our developments. We
consecutively deployed the Invisible Train at ten different locations:

• SIGGRAPH 2004 computer graphics convention in Los Angeles (USA).
• An orientation day for incoming freshmen at Vienna University of Technology

(Austria).
• A career information event for secondary school students (Austria).
• Inside the Ars Electronica Center’s (AEC) “Museum of the Future” in Linz

(Austria).
• ISMAR 2004 conference in Arlington (USA).
• Imagina 2005 Trade Show in Monte Carlo (Monaco).
• LEARNTEC 2005 (Germany).
• Virtual Reality 2005 conference in Bonn (Germany).
• Pervasive 2005 in Munich (Germany).
• Wired NextFest 2005 in Chicago (USA).

Over the course of these exhibitions, we gradually moved from expert audiences,
who were familiar with AR technology, to a general public (see Figure 7.4) with little
or no previous exposure to AR. An estimated five to six thousand visitors have
engaged in playing the Invisible Train game during the four evaluation cycles, one of
which lasted for over four weeks and was partially unsupervised (with occasional
maintenance work done by AEC museum staff). To our knowledge, these quantities
lie at least an order of magnitude above comparable informal field tests of mobile AR
system, denoting the first time a mobile AR application has successfully withstood a
field-test of sizeable proportions.

Figure 7.4: Visitors playing the Invisible Train.

Chapter 7

Results and Evaluation

120

7.1.2 Results

Although we did not perform a formative user study, we solicited user feedback
through informal, unstructured (i.e. no specific or predetermined sets of questions
were asked) interviews and conducted a summative evaluation of user performance
and behavior, which led to small iterative refinements of the game’s user interface.
More importantly, however, we successfully completed a rigorous stress-test of our
system architecture’s overall robustness. Several of our empirical observations, some
of which were directly comparable to our past experience involving HMD-equipped
“backpack”-style setups, confirmed our assumption that handheld devices are
generally more accessible to a general public, and exhibit better learning curves than
traditional mobile AR systems: We found that visitors had little to no reservations
towards using our system. Several participants figured out how to play the Invisible
Train on their own by simple trial and error, others would learn the gameplay by
looking over another player’s shoulder while awaiting their turns — some children
would intuitively grasp the concept and outperformed even seasoned computer
science professionals.

Consequently, our supervision overhead was considerably lower than
administrators of traditional mobile AR application would normally experience. On
many occasions, we could observe unsupervised user experience in which visitors
would pass around the PDAs while explaining the game to each other. Most
participants would play at least a single game (averaging roughly 60 seconds) before
handing their PDA to the next visitor. In contrast to our past experiences with
“backpack” setups, we experienced almost no hardware-related failures, with the
exception of a small number of application crashes, whenever users removed the add-
on camera from its SDIO slot. These incidents have only further confirmed our
observation that wearable devices intended for public deployment must resemble
robust monolithic units without any loosely attached parts. According to user
feedback, our application was considered sufficiently responsive for the intended type
of spatial interaction: only a negligibly small fraction of players felt their PDA’s
display update rate and delay would impair their ability to play the game. We
measured our system’s average performance at 7 frames per second (on devices
equipped with Intel’s XScale PXA263 processor clocked at 400MHz, and an add-on
SDIO camera from Spectec Computer Ltd), while wireless network latency was
measured at about 40-50ms. Camera blur caused loss of registration during rapid
movements, but was not considered a major problem.

Chapter 7

Results and Evaluation

121

7.2 The Virtuoso Arts History Game
Using a predecessor of our Studierstube ES handheld AR platform, we implemented
Virtuoso, a collaborative educational game for up to four players. The players'
objective is to sort a collection of artworks according to their date of creation along a
timeline drawn on a wall-mounted billboard (see left picture in Figure 7.5).

Every marker on the timeline carries one of the artworks, which are only visible
through the player's AR PDA (see right picture in Figure 7.5). Initially the artworks
are in random order. A player can pick up any artwork with his or her PDA, by
clicking on the artwork on the display and drop it on a free position by clicking on an
empty marker on the display. While an item is located on the PDA, the player can
access explanations about it.

Figure 7.5: Timeline of the Virtuoso game.

Left: players using their PDAs; Right: screenshot of a player’s device.

A virtual animated character called Mr. Virtuoso (see Figure 7.6) can provide

help for players that are stuck. By placing the artwork on Mr. Virtuoso's desk, Mr.
Virtuoso will then be prompted to provide his expertise on the subject through the
use of text, audio playback and animation. The user can then take the item back,
hopefully knowing by then, where to put it onto the timeline. After an artwork is
placed onto its correct position on the timeline, it cannot be moved again.

Chapter 7

Results and Evaluation

122

Figure 7.6: Mr. Virtuoso giving details about an historical object.

Besides the hints from Mr. Virtuoso, the game engine can provide even more

help in several ways: It can show arrows pointing "left" and "right" next to the artwork
if it should be placed earlier or later on the timeline (see right picture in Figure 7.5).
Furthermore the game engine can display an item's date of creation when the item is
placed on the timeline. There are three configurable levels of difficulty by choosing
where and when the exact date of creation of an artwork will be revealed:

• Beginner’s level: all dates are always shown.
• Intermediate level: date is shown when an artwork is put into ist final position.
• Advanced level: dates are only revealed when all artworks are correctly placed

If the timeline is very long (more than 10 items) players can easily loose oversight.
To prevent that, the game can display the timeline as a series of icons on the bottom
of the PDAs' screens. The game master can enable and disable any of these options at
any time during the game.

The art history application features an overall selection of 20 artworks from
which the game master can select a subset for play. The game features textured,
animated 3D models, multimedia background material and pre-recorded audio
narration in three languages (English, German and Spanish). A graphical user
interface for the game master allows runtime configuration of all game features.

Chapter 7

Results and Evaluation

123

7.2.1 Virtual Characters in Handheld AR

We tested different virtual character representations in the Virtuoso game to evaluate
the influence of a humanoid avatar on the personal experience and learning effect of
the user [110]. The key research question we were exploring was how realistic does a
virtual character need to be for the user to feel engaged with it and enjoy the
application, and what benefit can be derived from using AR characters.

The original art history game can be played collaboratively by up to four players.
Since we wanted the subjects to focus on the learning part and the virtual character
rather than on collaboration with other players, we created a modified version that
was played by a single player. All help options such as arrows pointing into the
direction of an item's correct spot on the timeline were turned off.

In order to explore the effect of the virtual character representation we
conducted an experimental evaluation with five experimental conditions:

A Text only: The virtual character is just represented by text windows appearing
on the screen (Figure 7.7a).

B Text and Audio: As in condition A, but in addition an audio voice over was
played (Figure 7.7a).

C 2D Image: As in condition B, but in addition a 2D image representing the
character was shown on the screen (Figure 7.7b)

D 3D Character: As in condition B, but in addition a 3D animated virtual
character was shown on the screen. The character was fixed to the screen as a
TV moderator (Figure 7.7c)

E AR Character: As in condition D, but the 3D virtual animated character
appears fixed in space in the real world (Figure 7.7d).

Condition A includes an absolute minimum presence of the virtual character.
Conditions add progressively more and more realistic cues, while condition E (right-
most picture in Figure 7.7) is the only case where the virtual character is seen as part
of the user's physical environment, and so it is the only true AR condition. It should
also be noted that the virtual head shown in condition C is not animated, unlike
conditions D and E.

Chapter 7

Results and Evaluation

124

Figure 7.7: The five cases of Mr.Virtuoso: left-most picture (A/B): text and/or audio only;

picture 2 (C): 2D image of Mr.Virtuoso’s head; picture 3 (D): screen aligned and 3D
animated; right-most picture (E): fully 3D registered

For the experiment, users played the game once in each condition, trying to
correctly arrange four artworks each time. They were told to ask Mr. Virtuoso to learn
as much as possible about the art works as they would be tested on their knowledge
after each condition. The emphasis was on learning about the art rather than correctly
arranging the artworks in the shortest amount of time. The order of presentation of
the conditions and the artworks for each condition were changed to prevent order
effects in the results.

For each condition we measured the time taken to complete the task, and we
asked the users a number of questions relating to how much they enjoyed playing the
game, how real they thought the character was and how much they learnt. Subjects
were also asked a number of multi-choice questions about the artworks, asked to
rearrange pictures of the artworks and interviewed about the experience.

The key questions we were looking to answer include:

• Is there a relationship between the character representation and perceived
realism?

• Is there a relationship between character representation and enjoyment of the
experience?

• Is there a relationship between character representation and how much people
felt they learnt?

Knowing the answers to these questions may help developers create more
effective virtual character based entertainment experiences in the future and also
better understand how AR technology can be used to develop new types of characters.
Chapter 9.3.1 includes the original questionnaires that where handed out to the
participants.

Chapter 7

Results and Evaluation

125

Results
There were 13 participants of which 9 were male and 4 were female, aged 20 to 33
years. Most of the participants were native English speakers. None of them knew the
game before. The experiment lasted about 40 minutes per subject including a short
concluding discussion. Data analysis was performed using SPSS version 13. The main
effect was tested with repeated ANOVA. If a main effect was found, pair-wise post-
hoc comparisons using the Bonferroni adjustment for multiple comparisons were
performed.

Subjects used Mr. Virtuoso heavily, Table 7.1 showing the average number of
times used per condition. There were four artworks shown per condition, so the agent
was used almost once per artwork to discover more information about art.

Cond. A B C D E

Asked # 3.3 3.6 3.5 3.6 3.9

Table 7.1: Average Number of Times Mr. Virtuoso used

ANOVA shows no significant difference (F(4,60) = 0.26, P = 0.90) between
conditions in the time taken to arrange the art works in the correct order with. Table
7.2 shows the time players played each condition. There was no significant difference
across these measurements.

Cond. A B C D E

Time (s) 248.5 230.0 236.2 237.3 252.7

Table 7.2: Time to perform task

Table 7.3 shows the average results that users got right on the four multi-choice
test questions on the artwork after each condition. No significant differences were
found (F(4,45) = 1.01, P = 0.41).´

Cond. A B C D E

Score 3.0 2.8 2.5 2.3 2.6

Table 7.3: Average Number of Questions Correct

Chapter 7

Results and Evaluation

126

Subjects were asked to mark on a Likert scale of 1 to 7 how much they agreed or
disagreed with a number of statements, where 1 = Strongly Disagree and 7 = Strongly
Agree. There were a number of questions about the game and ease of use of the
interface, including (see Chapter 9.3.1 for the original questionnaires):

Q1: I enjoyed playing the art history game
Q2: The PDA interface was easy to use
Q3: The task was easy to solve
Q4: I felt I learned new facts about art items from the game

Table 7.4 shows the average results for each of these questions. As can be seen
there is little difference between conditions for these results. ANOVA tests found no
significant differences for the user survey scores for these questions.

Condition A B C D E

Q1 5.46 5.85 5.92 5.85 5.85

Q2 6.08 5.92 5.92 6.08 6.15

Q3 5.69 5.69 5.84 6.00 5.92

Q4 5.39 5.85 5.92 5.84 6.15

Table 7.4: Subjective Survey Scores

A second set of questions related to the virtual character:

Q5: Mr. Virtuoso seemed real to me
Q6: Mr. Virtuoso was helpful for completing the task
Q7: Mr. Virtuoso improved the overall experience
Q8: I found Mr. Virtuoso to be friendly
Q9: Mr. Virtuoso seemed to be part of the real world

There was a significant difference between the results for all of these questions.
Figure 7.8 shows the average results for Q5: Mr. Virtuoso seemed real to me. As the
virtual character exhibits more visual and audio cues the subjects felt that it was real.
An analysis of variance was conducted with type of virtual character (A - E) as the
within-subjects factor. Doing this we found a significant difference between
conditions (F(4,48) = 11.18, P < 0.001). Post-hoc found that Mr. Virtuoso in
conditions E (P < 0.001) and D (P < 0.001) was rated as significantly more real that in
condition A. Condition D was also rated significantly higher than condition A
(P<0.01). There were no other significant differences between conditions.

Chapter 7

Results and Evaluation

127

0

1

2

3

4

5

A B C D E
Figure 7.8: How real Mr. Virtuoso was (Q5)

Table 7.5 shows the average results for Q6, Q7 and Q8. An ANOVA on Q6: Mr.
Virtuoso was helpful for completing the task showed a significant difference across
conditions (F(4,48) = 8.186, P < 0.001). Post-hoc comparisons between conditions
found a significant difference between conditions D and E and condition A (P<0.05).
Similarly, an ANOVA on Q7: Mr. Virtuoso improved the overall experience produced
a significant difference across conditions (F(4,48) = 5.22, P < 0.01). Finally an
ANOVA on Q8: I found Mr. Virtuoso to be friendly produced a significant difference
across conditions (F(4,36) = 12.322, P < 0.001). Post-hoc comparisons found a
significant difference between conditions D and E and condition A (P<0.01), and
conditions B and A (P<0.05). In all cases the score of the condition without audio
(condition A) was lower than the other conditions, while the two conditions with 3D
graphics (conditions D and E) were the highest.

Cond. A B C D E

Q6 3.46 4.92 4.85 5.69 5.85

Q7 3.23 4.69 4.31 5.15 5.39

Q8 2.10 4.50 3.90 5.20 5.20

Table 7.5: Helpfulness, Experience, and Friendliness

As the quality of the character representation increased it also seemed to be more
part of the real world. Figure 7.9 shows a graph of the average response to question 9:
Mr. Virtuoso seemed to be part of the real world. An ANOVA showed a significant
difference across conditions (F(4,36) = 6.46, P < 0.001). Post-hoc comparisons found
a significant difference between conditions C and A (P<0.05), conditions D and A
(P<0.05), and conditions E and A (P<0.05). As before the 3D virtual characters (D, E)
are significantly different from the text-only condition (A).

Chapter 7

Results and Evaluation

128

In addition to providing subjective survey responses, subjects were also asked to
rank each of the conditions in order according to the following criteria. For each
criteria 1 = lowest, 5 = highest.

R1: How real Mr. Virtuoso seemed
R2: How much fun it was
R3: How much you learnt
R4: How helpful was Mr. Virtuoso

0

1

2

3

4

5

A B C D E
Figure 7.9: How much Mr. Virtuoso seemed part of the real world.

The rankings for R1 and R2 are significantly different across conditions. An

ANOVA for R1 finds (F(4,44) = 67.42, P < 0.001). Post-hoc comparisons show
significant difference (P<0.02) between all conditions except B and C. In fact, all of
the subjects except one ranked the AR condition as most real. Similarly, an ANOVA
for R2 found F(4,48) = 30.25, P < 0.001. All but two of the subjects ranked the AR
condition either highest or second on how fun it was. Figure 7.10 shows the results for
rankings R1 and R2. In this case, when users where forced to chose, as the virtual
character had more realistic characteristics they thought it was more real and
correspondingly more fun.

However there was no significant difference between rankings on R3: How much
you learnt. An ANOVA finds (F(4,32) = 0.80, P = 0.53). This is consistent with the
survey results for Q4 and the multi-choice question results. Table 7.6 shows the
average rankings.

Chapter 7

Results and Evaluation

129

0

1

2

3

4

5

6

A B C D E

Real
Fun

Figure 7.10: Average ranking on realism and fun

For ranking R4: How helpful Mr. Virtuoso was, an ANOVA produced a
significant difference across conditions (F(4,36) = 3.78, P < 0.01). Post-hoc
comparisons confirm that this is because of the difference between the condition with
no audio (Condition A) and the other conditions.

Cond. A B C D E

R3 2.54 3.67 3.19 2.55 2.91
R4 1.93 3.15 3.50 3.23 3.23

Table 7.6: Ranking of Learning and Helpfulness

Interviews
In the interviews with the subjects several consistent themes emerged. Although we
emphasized before and during the game that time was of no importance, 4 out of 12
users complained afterwards that they felt slowed down by Mr. Virtuoso, particularly
in condition E where they needed to wait for his walking animation to finish. The
main reason for this that Mr. Virtuoso presented information in his own speed and
could not be interrupted.

Most subjects pointed out that they were very aware of the fact that the more
feature-rich versions of Mr. Virtuoso did not provide more information then the
other versions. Still they usually liked the AR version more because they felt it looked
more natural and realistic. However many subjects pointed out the importance of Mr.
Virtuoso's voice feature as being critical.

Three subjects complained that Mr. Virtuoso did not make eye contact with
them while speaking which made them feel uncomfortable or even offended them.
Condition D (screen-aligned) did not have this problem since the screen-aligned

Chapter 7

Results and Evaluation

130

character implicitly looked in the player's direction. Those three subjects generally
preferred condition D over E.

One subject did not like the AR version because he had the feeling that he was
interrupting Mr. Virtuoso from his other actions when asking him for assistance. This
was not an issue with the screen-aligned version because Mr. Virtuoso in this
situation walks into the screen from the right side and is therefore not visible before.

Finally, two players felt that the animated character distracted them from reading
the text and listening to the voice.

Discussion
The main focus of our study has been to explore the effect of different virtual
character representations on user engagement, enjoyment and educational outcomes
in a learning task. The objective measures of time to complete the task and number of
correct test questions did not vary significantly across conditions, showing that the
various character representations did not have any effect on the educational outcomes.
Similarly when the users were asked their subjective opinion of the different
conditions there was no difference in how much they enjoyed each condition or how
difficult they found the task and how much they felt they learnt. However, when
forced to rank the conditions in order, as the virtual character became more realistic
the users felt the condition was more fun (Figure 7.10).

This is not too surprising since users were engaged in a relatively short task and
as the virtual character representation becomes increasingly realistic it did not
provide additional educational content, such as gesturing to specific parts of the
virtual artwork. If the task had a greater spatial learning element (such as learning
how an engine is taken apart) the more realistic characters could have an impact on
the learning outcomes.

The increasing enjoyment ranking when forced to make a choice may be due to
the novelty factor; AR characters are more novel than a disembodied voice over and
so relatively more fun.

The subjective results in response to the character did show significant
differences across conditions. When asked how real Mr. Virtuoso seemed and how
much he seemed to be part of the real world, the main differences was between 3D
and non-3D representations of the character and audio vs. non-audio. In all cases the
non-audio condition rated lowest while the 3D character was the highest, but there
was no difference between AR and screen aligned characters.

It is interesting to note the effect that adding audio can have on the user's
perception, causing a large jump in average scores between conditions A and B, while

Chapter 7

Results and Evaluation

131

there was no additional benefit of adding a 2D representation to the audio. If the 2D
character had been animated this may have had a greater effect.

Players did not rate the AR version more realistic than the screen-aligned 3D
virtual version and it was not perceived to be more helpful or friendly than the 3D
virtual version. Only when forced to choose did subjects rank the AR version more
realistic and more fun.

One of the reasons for this could be that the AR character did not exhibit any
more communication cues than the screen-aligned 3D virtual character that would
make it seem more real. Although he walks around the real table, the AR version of
Mr. Virtuoso did not give any spatially related information on the objects such as
pointing to specific spots on items as a real person would do while explaining.
Furthermore a realistic person is expected to behave politely and to look at the people
he is talking too.

7.2.2 Collaborative Edutainment

Handheld Augmented Reality is expected to provide ergonomic, intuitive user
interfaces for untrained users. Yet until now only few comparative studies have
evaluated these assumptions against more traditional user interfaces. We therefore
compared the suitability of our Virtuoso arts history learning game against its non-
AR variants on paper and on a desktop PC [116].

Figure 7.11: Three variants of the Virtuoso game: Augmented Reality, desktop and paper

The desktop PC version was programmed in Macromedia Flash (see middle
image in Figure 7.11). Players can move artworks on the timeline displayed on the
screen using drag and drop operations with the mouse. Consequently the PC version
can only be operated by one player at the time. While this restricts the user interface
of the game, it provides a realistic example of typical PC-based edutainment
applications or museum installations. As usual, when an item is located at its final

Chapter 7

Results and Evaluation

132

position its date of creation is displayed below of it and the item can no longer be
moved. Moving an item to the left-top pane provides basic information, while the
animated Mr. Virtuoso on the top-right pane provides detailed explanations in text
and audio. Items can be directly dragged from one slot on the timeline onto another.

For the paper version of the game we printed pictures of the artworks on playing
cards (see right image in Figure 7.11). On the front, the playing cards show the
introductory text, while on the back more detailed descriptions by Mr. Virtuoso are
provided. Players are only allowed to hold one playing card at a time and must only
put it back into a free position. While the computer can enforce the game rules for the
AR and desktop version we introduced a human game master to the paper version
who takes care that the game's rules are not violated. The game master will also reveal
an item's date of creation when an item is located on its correct position on the
timeline. Consequently this version of the game has the same functional
characteristics as the handheld AR and desktop PC versions.

Experimental Evaluation
We compared our collaborative AR application with the two non-AR variants of the
game (the desktop PC and paper-based version). In the experiment participants were
grouped into teams of four. In each game, players had to sort seven items on the
timeline. After a team finished its task they filled out a questionnaire about the game
they just played including detailed art history questions about the items they just
arranged, and how they felt about the game interface. Then all teams moved on to
another version of the game. After the participants played all three versions of the
game they filled out another questionnaire asking to rank the conditions in several
categories. The introductory instructions to the participants emphasized the focus on
collaboration and the need to learn about the artwork items. Users should learn rather
than completing the task as fast as possible. To further motivate cooperation between
players, players were told, that the goal of the game was to get a high team score,
rather than personal scores on the arts history questions they had to answer.

There were 48 participants 26 female and 22 male, aged from 20 to 43. 25 people
stated that they had never used a PDA before. The experiment lasted about one hour
for each subject including introduction and a short finishing discussion. Data analysis
was performed by using SPSS version 13 and the main effect was tested with repeated
ANOVA. If a main effect was found, pair-wise post-hoc comparisons using the
Bonferroni adjustment for multiple comparisons were performed. The questions the
participants had to answer after each game can be grouped into four main categories:
collaboration, easiness of the task, learning effect and fun factor. Subjects were asked
to mark on a Likert scale of 1 to 7 how much they agreed or disagreed with a number

Chapter 7

Results and Evaluation

133

of statements (1 = Strongly Disagree and 7 = Strongly Agree. Chapter 9.3.2 includes
the original questionnaires that were handed out to the participants.

Results
We asked two questions about the way people collaborated:

• Q1: I collaborated intensively with my team members.
• Q2: I knew exactly what the others were doing.

Table 7.7 shows the average results for each of these questions. Subjects felt that
they collaborated more in the Paper and PDA versions; an ANOVA test found a
significant difference for Q1 (F(2,94)=3.94, P<0.023) and a post-hoc comparison
found a significant difference between the PC game and the other two variants.
Similarly, an ANOVA for Q2 found a significant difference between how well subjects
felt they knew what the others were doing: F(2,94)=6,13, P<0.003. A post-hoc
comparison found a significant difference between the PDA condition and the PC
and paper versions of the game.

Condition Paper PC PDA

Q1 5.71 5.00 5.61
Q2 5.67 5.75 4.73

Table 7.7: Average results on collaboration

In the category ease of the task we asked the following five questions:

• Q3: I always had a good overview of the timeline
• Q4: I had sometimes problems with the user interface
• Q5: The game was sometimes confusing
• Q6: The user interface was easy to use
• Q7: The task was easy to solve

Table 7.8 shows the average results. As can be seen, there is little difference for
the conditions of the questions Q3, Q4 and Q5. An ANOVA test found significant
differences for Q6: The user interface was easy to use (F(2,94)=5.27, P<0.007). A post-
hoc comparison showed that the paper variant was rated significantly lower than the
PC version and there was no difference between the PC and PDA conditions. For Q7:
The task was easy to solve, ANOVA found significant differences (F(2,94)=3.52,
P<0.034), and a post-hoc comparison showed that the PC version was rated

Chapter 7

Results and Evaluation

134

significantly easier than the PDA version, but there was no significant difference
between the other conditions.

Condition Paper PC PDA

Q3 5.10 5.27 4.81
Q4 2.27 2.21 2.69
Q5 2.56 1.98 2.65
Q6 5.38 6.27 5.86
Q7 5.60 5.94 5.44

Table 7.8: Average results for ease of use.

To measure if people felt a learning effect we asked the question:

• Q8: I believe I learned something about those artworks

Performing an ANOVA on Q8 did not find any significant differences. The last
group of questions we asked after each game was about how much people liked the
game and how much it would fit into a museum setting:

• Q9: I enjoyed playing the game
• Q10: Playing the game was a great experience
• Q11: This game would fit well into a museum exhibition
• Q12: I would like to play this game in a museum

Figure 7.12 shows the average results for each of these questions. There were
significant differences between the results for all of these questions. As can be seen for
every question the PDA version scored highest while the paper version was rated
lowest. An ANOVA was conducted and Q9: I enjoyed playing the game resulted in
F(2,94)=5.472, P<0.006. Post-hoc analysis found that the PDA version was rated
significantly higher than the paper version. An ANOVA for Q10: Playing the game
was a great experience resulted in F(2,94)=32.916, P<0.001. Post-hoc analysis showed
that the results for all three conditions were significantly different. For question Q11:
This game would fit well into a museum exhibition the PC and PDA version got very
similar ratings. An ANOVA (F(2,94)=25.713, P<0,001) including a post-hoc analysis
showed significant differences between the paper and the other two conditions but no
differences between the PC and PDA conditions. Finally for Q12: I would like to play
this game in a museum, an ANOVA resulted in F(2,94)=30.716, P<0.001. Post-hoc
analysis found all three versions of the game were significantly different.

Chapter 7

Results and Evaluation

135

In general subjects thought the PDA version provided a greater experience than
the other two conditions and they would like to play this in a museum more than the
other two games.

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

Paper 4,85 4,23 4,06 3,81

PC 5,54 5,48 5,73 5,42

PDA 5,81 6,15 6,04 6,06

Q9 Q10 Q11 Q12

Figure 7.12: Average results for Questions Q9 - Q12

In addition, subjects were also asked to rank each of the conditions in order
according to the following criteria. For each criteria 1 = lowest, 3 = highest.

• R1: How easy the game was to play
• R2: How much you learnt
• R3: How good the overview of the timeline was
• R4: How much you collaborated
• R5: How much fun the game was
• R6: How much the game would improve a museum exhibition

Condition Paper PC PDA
R1 1.89 2.25 1.86
R2 1.82 2.09 2.09

Table 7.9: Average results for rankings R1 and R2

The rankings for R1 and R2 did not produce significantly different results. As
can be seen in Table 7.9, all conditions were ranked very closely. However, for
ranking R3: How good the overview of the timeline was, an ANOVA found
F(2,90)=4.723, P<0.011. A post-hoc analysis showed that the PC and PDA conditions
were significantly different giving the PC version the best score of overview of the

Chapter 7

Results and Evaluation

136

timeline (see Table 7.10). Interestingly, ranking R4: How much you collaborated,
resulted in exactly the opposite ratings. Here the PC version scored significantly lower,
while the paper and PDA conditions were rated almost equally well. An ANOVA plus
post-hoc comparisons resulted in F(2,88)=4.006, P<0.022 and found significant
differences between the PC condition and the other two conditions.

Condition Paper PC PDA

R3 1.89 2.35 1.76
R4 2.15 1.67 2.13

Table 7.10: Average results for rankings R3 and R4

Finally, R5: How much fun the game was and R6: How much the game would
improve a museum exhibition produced the results shown in Table 7.11. An ANOVA
found F(2,92)=43.607, P<0.001 for R5 and F(2,88)=31.253, P<0.001 for R6. For both
R5 and R6 post-hoc comparisons showed that all results were significantly different
resulting in the PDA version being ranked as the most fun and most appropriate for a
museum exhibition.

Condition Paper PC PDA

R5 1.36 1.89 2.75
R6 1.36 2.00 2.64

Table 7.11: Average results for rankings R5 and R6

Interviews
We interviewed the participants after each condition and several consistent themes
emerged. For the paper version, subjects felt that they needed to organize themselves
to prevent chaos, which was not a problem in the electronic versions of the game
where strict rules were implicit. While many players said that it felt good to have a
physical object in their hands they also added that the paper version was very "old
school". In general subjects felt the paper version was less appealing.

Although most participants rated the PC version as providing the best overview
of the timeline in the questionnaires, some participants complained that too many
items crowded the screen which confused them. Interestingly, the same audio
recordings for Mr. Virtuoso's voice-over was used in the PC and PDA version, but
several users commented that the PC version's virtual character sounded more
pleasing. We assume the reason for this is the low quality of the PDAs' built-in
speakers. Subjects told us that collaboration was most difficult with the PC version

Chapter 7

Results and Evaluation

137

because there was only one mouse to use and every action had to be first discussed
with the other players. Players sitting more distant from the PC screen usually
participated the least.

Some subjects said that the PDAs' touch-screens were more difficult to use than
the mouse interface which is expected since most subjects had never used a PDA
before, and people were afraid to break the PDA, especially due to the attached
camera. All participants complained that Mr. Virtuoso should speak louder which is a
well known problem with PDA speakers. Participants noted that the small screens
could not be seen by the other players so collaboration was more difficult than with
the paper version. Mr. Virtuoso was identified as a bottleneck for the game progress
because other players would have to wait until Mr. Virtuoso had finished describing
the artwork. People thought the user interface and the graphics in general were very
appealing although some participants argued that it was difficult to explore the 3D
artworks on the small screen. As most users had only minimal computer science
experience, they were very excited due to the high-tech feeling of the PDA game and
commented that the handheld AR concept was "innovative" and "ingenious".

Discussion
Although we tested three different game conditions, there was no difference in the
educational outcomes. This could be because the learning task was essentially a
memory task that wasn't dependent on effective collaboration or the ease of use of the
interface. However, there were significantly different user subjective results as a
consequence of the different characteristics of each condition.

One of the most obvious differences between the conditions is in how space was
used. In both the AR PDA case and the paper interface the art pieces were spread out
in physical space allowing the four users to work on the game in parallel. This shows
one of the advantages of AR, namely that it allows virtual content to move from the
screen and into the real world. In contrast, with the PC interface the users are
working on a much smaller screen with only a single input device. In this case it was
impossible for users to manipulate objects at the same time. Thus users felt that both
the AR PDA interface and the paper version allowed them to collaborate more
effectively than the PC interface.

Another key difference between the interfaces was in how much awareness they
provided of what the others were doing. In the PC and paper versions all of the users
could see all of the art pieces on the timeline at the same time. When a player moves a
piece of artwork, everyone is aware of it. In contrast, in the AR PDA application, each
of the users had a personal view of the virtual content, and unless they shared their
PDA, they were not aware of which players had picked up which art pieces. One of

Chapter 7

Results and Evaluation

138

the challenges of designing collaborative AR systems is providing independent views
of virtual data while at the same time creating shared group awareness.

Despite the different interface conditions, there was not a significant difference
in usability. Although the users had never used an AR PDA interface before, in
general they found it relatively easy to use; as easy as using the mouse-based PC
interface and manipulating real cardboard pictures. This is unusual for first time users
of a novel interface, but is due to using an intuitive interface metaphor. In this case a
magic lens metaphor in which the AR PDA becomes a virtual window on the real
world. Users are able to view the virtual scene as easily as if they were using a real
handheld lens.

Users ranked the PDA interface as the most enjoyable of the three conditions and
the one that they would most like to see in a museum. The fun factor may be due to
both the novelty and visually appealing nature of the AR interface. The AR condition
provided 3D virtual imagery, animation, sound and text.

From these results we can infer several design guidelines for handheld AR
interfaces that can inform future applications:

• Allow the user to experience the virtual content in space.
• Use an appropriate interface metaphor, such as a lens input metaphor.
• Seamlessly integrate 3D virtual imagery with animation, 2D images and text to

create a multi-sensory experience.

In general, in a face to face collaborative AR interface, key elements of normal
human face to face must be considered. This includes providing a mechanism for
sharing user views to establish shared understanding, enabling users to work in
parallel, and preserving the ability to share verbal and non-verbal face to face
communication cues.

7.3 Museum Augmented Reality Quest at
Technisches Museum Wien

Before we created the “Schatzsuche” game at the Landesmuseum Kärnten (see chapter
7.4) we developed a prototype that was situated in the permanent exhibition
medien.welten at Technisches Museum Wien (TMW). The theme of this exhibition is

Chapter 7

Results and Evaluation

139

the history of media storage and transmission. The exhibition illustrates how different
media were preserved and transmitted since antiquity.

Museum Augmented Reality Quest (MARQ) encompasses a selection of exhibits
and links them into an exciting story. The objective of the game is to solve a quest
composed of puzzles and other tasks associated with the exhibits. The target groups
are classes of teenagers at the age of 12 to 16.

Tasks vary widely depending on the nature of the exhibit and the kind of
knowledge to be mediated. Interactions with mobile AR applications are
supplemented by simpler techniques, like displaying classical 2D interfaces on the
PDA. This allows integrating classical e-learning methods such as multiple choice
questions, which are more rapidly produced.

A noteworthy type of mixed reality task is interaction with the instrumented
hands-on exhibits. These exhibits are tangible interfaces, specifically designed to
explain certain technologies: For example, the Morse exhibit (see left and middle
pictures in Figure 7.15) allows a user to input a character using an old-style push
button, and displays the corresponding letter if one is recognized. These hands-on
exhibits are computer controlled and can be set to present a certain task or operating
mode when approached by a MARQ player. In that way, the environment is
responsible to the player in ways beyond the through-the-lens AR experience.

A first version of the game focused on three exhibits which have been embedded
in a small espionage story set in World War II. The exhibits have to be visited by the
players in a certain sequence to achieve the game objectives. They start from the
checkpoint, where the quest is introduced and the PDAs are handed out (see left
image in Figure 7.13). A group of players with one PDA usually consists of two or
three students.

The screens of the checkpoint and PDAs show a map of the exhibition,
highlighting the relevant task locations. The map also indicates the current position of
the players and lists already solved and remaining tasks.

7.3.1 MARQ Hotspots

The first task is a radio direction finder used at wartime to detect and record
radio messages from mobile transceivers. The operator had to manually turn the
antenna to home in on the signal and then follow it to record it. A special electronic
guide was aiding this task by producing characteristic sounds when turning the
antennas near the exact signal direction.

Chapter 7

Results and Evaluation

140

Figure 7.13: Left: Checkpoint, where the quest starts;

Right: Recording the message at the radio finder

The radio finder game (see right picture in Figure 7.13) developed for MARQ
uses an AR application running on a PDA. The PDA has to be physically moved
around the exhibit to find and hold the exact signal direction. Looking through the
PDA the players see a virtual compass superimposed onto the lower platform of the
real exhibit (see left image in Figure 7.14). The PDA also plays sounds indicating the
deviation from the exact signal direction. The sound depends on the direction and the
angle of deviation. The interval between beeps gets shorter when the PDA gets closer
to the signal location. When entering a small angular interval around the exact signal
direction the characteristic beeps of a Morse message are played, that are easily
distinguishable form the homing sounds. Once the players have found this window
the PDA must stay in it until the entire message has been received. A progress bar on
the PDA shows the percentage of recorded data.

Figure 7.14: In-game screenshots. Left: Radio Finder hotspot; Middle: Morse hotspot;

Right: Translating the Morse code at the Enigma hotspot.

The game story explains that the message was sent in Morse code. Thus for the
next task the players must visit the hands-on exhibit presenting the history of Morse

Chapter 7

Results and Evaluation

141

codes. It features a tangible interface - a replica of an old-fashioned telegraph
pushbutton for typing Morse codes (see left and middle pictures in Figure 7.15).

The players are asked to translate the Morse code received at the radio direction
finder into text. For that purpose the Morse exhibit is automatically switched to input
mode: Every character input via the pushbutton is immediately translated into the
corresponding letter on the terminal's screen (see middle image in Figure 7.14).

Figure 7.15: Left: Translating the Morse code at the Morse station, an interactive exhibit

of the museum; Middle: The tangible interface of the Morse station, an old-style push
button; Right: The virtual show case containing the Enigma

A Flash application on the PDA shows the previously recorded Morse code. The
interface also contains a play button replaying the Morse code, and a virtual keyboard
for entering the translation. The message has to be translated letter by letter. The
player can listen several times to the sound of the actual Morse code. Once they have
identified the combination of short and long beeps, one student types them into the
interactive exhibit with the pushbutton interface and then reads the translated letter
from the display. The person operating the PDA uses the virtual keyboard to enter the
letter, and then the next Morse code is presented. This process is intended to
encourage the collaboration between the players.

When the players have completed this task, they learn that the translated message
makes no sense at all but looks like a random gibberish of letters. This is because the
message was encrypted by the Enigma machine.

They have to move to the Enigma hands-on exhibit (see right picture in Figure
7.15) to decrypt the message. The Enigma was used by the Germans during World
War II to encrypt messages prior to transmission. The exhibit shows a real Enigma
embedded in a Virtual Showcase [18], a mixed reality display combining real artefacts
(in this case, a real Enigma machine) with projected imagery through mirror optics

Chapter 7

Results and Evaluation

142

Using a trackball interface, the visitors can operate the virtual overlaid Enigma
without touching the real one.

When the team arrives at this exhibit the Enigma exhibit switches to free
decryption mode (normal visitors have to run through a story, where fixed messages
have to be decrypted). The players first have to set the day key on the Enigma as
instructed by the PDA. Then they decrypt the message letter by letter. One player
operates the Enigma while another types in the plaintext into the PDA using a virtual
keyboard (see right image in Figure 7.14). The two user operation corresponds to the
way an Enigma was actually operated in the field.

After solving all assigned tasks or running out of time, the quest game is over and
the players return to the checkpoint, where the results of their performance are
displayed. The screen shows where mistakes occurred and the percentage of the
message that was revealed.

7.3.2 Integrating of Hands-on Exhibits

Figure 7.16 shows the integration of hands-on exhibits and embedded terminal PCs
(“Checkpoint Terminal”) into the MARQ game at the Technisches Museum Wien.
Flash is used intensive on various parts of the distributed application: On the mobile
clients it drives the 2D parts of the game (see next chapter), while on the terminal PCs
it shows the team’s overview map and game state.

XML Database

Muddleware Client

Proxy

Flash Gateway

Muddleware Client

Flash Controller

Muddleware
Controller

Checkpoint
Terminal Map

Exhibit Software

Studierstube

Exhibit Controller

Muddleware
Client

Task Application
(AR / loadable)

Flash Gateway

Task Application
(AR / loadable)

PDA [1..n]

Flash Controller

Checkpoint Terminal

Hands-on Exhibit [1..n]

 Task Application
(Flash / loadable)

 Task Application
(Flash / loadable)

Figure 7.16: Integration of terminal PCs and hands-on exhibits

into the MARQ prototype developed for the Technisches Museum Wien

Chapter 7

Results and Evaluation

143

On the handhelds it is integrated into Studierstube. It communicates with
Studierstube using an the “Flash Controller” an ActionScript class that talks to the
“Flash Gateway”, implemented as an application inside Studierstube, which directly
executes local commands and forwards the remaining operations to the Muddleware
server.

The “Checkpoint Terminals” are PCs integrated into the museum that usually
run the Museum’s information browser. For the game the terminals were modified to
run the server as well as another Flash application showing the team’s overview map
and game state. Again this Flash application uses the Flash Controller and Flash
Gateway to talk to the Muddleware server.

Hands-on exhibits are installations that are controlled by PCs and allow users to
interact with the exhibition items. Other than the terminal PCs, the PCs of the hands-
on exhibits are already prepared to put the exhibits into a special “free” mode. It was
therefore sufficient to develop a Muddleware client that acts as a bridge between the
game server and these PCs.

7.3.3 2D User Interface in MARQ

Besides the story-driven tasks, MARQ also features a number of multiple choice
questions related to real exhibits or AR exhibits (see Figure 7.17), which can be
included in the game, but are mostly unrelated to the espionage story. Multiple choice
questions are implemented in Flash and consist of three parts, introduction, question
and evaluation. The multiple choice application is data driven and can be configured
purely by entering text associated with an exhibit in the XML database. A marker next
to an exhibit triggers the display of the question once observed by the user's PDA.

Figure 7.17: Left: Radio finder task introduction; Middle: Multiple choice question;

Right: Overview map showing current position of team members

Chapter 7

Results and Evaluation

144

The right picture in Figure 7.17 shows the overview map on the player’s client
device. Furthermore, users can see which hotspots have already been played by the
team and which are still available.

7.3.4 Evaluation

The evaluation of MARQ consisted of an front-end evaluation, to find out about
user interests and expectations, and a survey of the acceptance of the game, as well as
a formative evaluation to test the system and gain feedback for the game design and
development.

MARQ was tested by eight groups from different schools (encompassing 19
persons, aged 12-15) and has been evaluated by carrying out observation studies,
supplemented by quantitative logging data and analyzing semi-structured interviews
concerning handling and experience. The result of the survey has been qualitatively
analyzed and the feedback was used for ongoing improvements in user interface and
the conceptual formulation of the task descriptions. The changes were made after
evaluation of group 4. See chapter 9.3.3 for the original questionnaires.

Interview Question Assessment [1..5]

Experience with PDA 1,29
Motivation by use of PDA 4,29

Mark for the game 4,29
Extend game whole exhibition 4,2

Table 7.12: Average values of interviews rating from 1 to 5(=best)

Almost none of the subjects stated to have any experience with a PDA before.
Only one person had seen and held a PDA once at least in his hands before (see Table
7.12). Cross-checking with a nominal question (yes/no) about experience with other
mobile devices showed, that all of them were familiar with mobile telephones and
some with portable game consoles.

The duration of the quest game was limited to 15 minutes, beginning from the
moment the game has started. A single task was limited to 5 minutes absolute. If the
task was interrupted or cancelled and chosen from another group, only the remaining
time was available for solving it. The average task duration time (see Table 7.13)
analyzed from logging data showed, that it was below the 5 minute time limit.

Chapter 7

Results and Evaluation

145

Quest Application Average duration Average Score
Radio Detection Finder 1:44 min 9 of 9

Morse Telegraph 3:01 min 7 of 9
Enigma 3:33 min 9 of 9

All quests 2:44 min -

Table 7.13: Result of statistical analysis from the logging data

The game time limit was not exceeded except for the first group, which had
severe difficulties in navigating the exhibition space without help. However,
observation left the impression that the total game time was almost too short, because
of the distances between task locations and the time needed to comprehend the task.

The interviews revealed that subjects demand having "more PDAs", "more
action", "longer messages to decode" and "more adventure" in the game. Only in one
case students were not convinced that the game should be extended to the whole
exhibition. As their main reason they mentioned the complexity of the tasks, which
turned out to be caused by insufficient instructions. As a consequence the
descriptions and the user interface have been improved.

The first tasks were found to be the most demanding for inexperienced users,
who had no previous experience with marker tracking and therefore needed a certain
time for familiarisation. We consider introducing a tutorial task at the beginning,
which just demonstrates how to use AR interaction with markers.

The quest which incorporates the Morse exhibit seems to be more difficult to
solve correctly than the other two. This is emphasized by the high average duration
time on this exhibit and the least correct answers. Interestingly the Morse quest was
found to be most enjoyable. The two main reasons given by the subjects were: using
the tangible interface in combination with the PDA and playing the sounds of real
Morse signals.

Qualitative analysis of the survey data assumes that the overall acceptance of the
game was fairly good, and it was perceived better by male students than female
students, probably due to their acquaintance with portable game consoles. In contrast
to the technical affinity of male students, female students left the impression that they
had faster insight in understanding the task.

One of the main results of the observation shows that playing the quest must not
be interrupted by interface complexity. Motivation is high, if the technology and the
interaction works out fine, but frustration can quickly arise, if the user feels
uncomfortable or experience malfunctions.

Chapter 7

Results and Evaluation

146

7.4 Expedition Schatzsuche
Based on the Sphinx engine described in detail in Chapter 6, we created a large
situated game called "Expedition Schatzsuche" (Expedition Treasure Hunt). Although
it is a direct successor to the quest developed for Technisches Museum Wien
presented above, it is based on completely redeveloped software designs and game
concepts, making best use of the lessons that we learned during creation of its
predecessor.

The game was developed together with Imagination GmbH and Landesmuseum
Kärnten and is hosted in the very same museum. For the first version that we
evaluated, we developed 16 hotspots. All hotspots have been selected and described by
the pedagogical staff of the museum, who also wrote all the texts and designed the
tasks the players have to master. At each hotspot a player can experience what the
exhibited item was used for. The museum staff used the chance to focus on items that
look especially unspectacular in the showcase, items that are likely to be missed when
walking through the museum without a guided tour.

Most hotspots are connected into sequences of events that require them to be
played in a specific order. At the end of each sequence the player receives a piece of
the treasure map. Early user tests revealed that especially children do not enjoy
reading text on the small screen. Consequently we took care that all written texts in
the game are just a few words long. Instead, there are multiple voice recordings for
every hotspot, spoken by professional actors. While some of the sequences described
below might appear unconnected, the well designed story and professional audio
recordings convincingly link the hotspots together. In the following we describe two
complete sequences, the photo tasks and the teams’ base camps. The game starts at
the base stations where the players can deposit map pieces or retrieve special tasks
such as searching for an answer in the museum or photographing a specific exhibition
item.

Due to the nature of the museum, the context of many exhibits is difficult to
understand without participating in a guided tour. During the design phase the game,
the museum staff decided explicitly to make use of AR for these exhibits:

• Placement of the "Stimmbogen" at the "Wiener Horn": The virtual crook is
positioned at the horn (where it is missing in reality), to illustrate where to
connect it to adjust the pitch of the horn.

• Illustration of the heating process of a flat iron: At the tailors' workshop the
player's attention is attracted to the heating action - without electricity - of a

Chapter 7

Results and Evaluation

147

flat iron by putting it into an oven. This principle could be easily missed by
visitors, because only the wooden grasp remains visible of the plugged flat iron.

• Playing the "silent piano": Playing a key with no audible sound illustrates the
mode of operation of this training device. Electrified headphone systems have
since then replaced the need for dummy pianos.

• Lifting bellows of an organ: The two flat bellows on the back side of the
museum's organ are easily missed by visitors and it is difficult to imagine their
inflated state during operation. Inflation is necessary to blow air into the organ
which causes the typical sound of the instrument. The aim is to explain the
working principle: One of the bellows has to always go down blowing air into
the organ allowing the pianist to play.

Chain of hotspots: “Brauchtum”
This sequence about old traditions in Carinthia incorporates three hotspots. The story
of this sequence is about a wedding and customs related to this topic. At the first
hotspot (see left picture in Figure 7.18) the player has to look at a traditional belt and
find initials of a wedding couple on it. If he succeeds he retrieves a flat iron of that
time.

Figure 7.18: Hotspots of sequence "Brauchtum. Left: the player retrieves the flat iron for
finding out the initials of the wedding couple; Middle: the player puts the iron into the

tailors' oven; Right: the player learns about the wedding rider and finishes the sequence.

The flat iron serves as a hint to go to the old tailor's workroom where he learns
how a tailor's everyday work life looked like (second image in Figure 7.18). Since the
tailors are currently missing an iron the player can help out by providing the flat iron
he just got. Gratefully the tailors reward the player with a wedding suit. In the next
room the player finds a picture of a wedding rider (right picture in Figure 7.18). The
handheld device continues with the story, telling that the wedding rider is missing his
wedding suit without which he cannot invite all the families to the wedding. After the

Chapter 7

Results and Evaluation

148

player delivers the wedding suit, the rider thankfully presents a piece of the treasure
map.

Chain of hotspots: “Music”
This sequence contains four hotspots (see Figure 7.19) of which two - the silent piano
and the organ - are implemented as AR applets. The music sequence starts with a
silent piano that was used by novice pianists to practice without disturbing others.
The handheld invites the player to learn a short piece of music. First only one note is
played by highlighting it on the real keyboard, which the user has then to play too.
Consecutively more and more keys have to be pressed until the user can play a
complete short sequence. As a result the player receives a sheet of music. At the
Mandora (a bass lute) showcase the player is asked to present some notes to hear a
composition played on the instrument. In return the user receives a "Stimmbogen"
(crook), which is used to modify the resonance characteristic of a horn.

Figure 7.19: Hotspots of sequence "Music": Left: playing the silent piano; Second: listening
to the Mandora; Third applying the "Stimmbogen" to the horn; Right: keeping the organ

playing by pumping up the bellows.

At the "Wiener Horn" the player learns that the horn can play a large range of
notes when applying different Stimmbögen. After applying the Stimmbogen the horn
starts playing a song and the user receives a bellow. The bellow belongs to an organ in
the very same room. To play the organ a second person always had to keep one of the
two bellows moving or the music would stop. At this hotspot the player takes over the
role of this second person in an arcade style mini game: He has to keep the virtual
bellows blowing or the music will stop. To do this the player has to quickly select one
bellow and press the “play button” of the Gizmondo continuously as fast as possible
to pump it up. After providing air pressure for a short piece of music he receives a
part of the treasure map and thereby finishes the sequence.

Answering questions using the Photo mode
Several hotspots require the players to answer questions (see second picture in Figure
7.20). Alternatively to presenting a list of possible choices, some of these hotspots put

Chapter 7

Results and Evaluation

149

the mobile device into photo mode (see third picture in Figure 7.20). To solve the task
the players have to take pictures of specific items they have to find in the museum.
The players can take up to three pictures and must then return to the base camp for
reward. After taking pictures of the correct item, an audio narration explains the story
of the object. In case of questions concerning music instruments, an original piece of
music is played as well.

Figure 7.20: Left: Virtual diamonds telling the state of a hotspot (green: free, yellow: in use,

red: already solved); Second: virtual questions marks use the same color codes as the
diamonds; Third: Solving a task by taking a picture of the wanted item; Right: map of the

museum showing all hotspots and their availability.

The Team’s Base Camp
These hotspots serve as base camps and meeting points for the expedition teams in
the museum. The players are told to bring all pieces of the treasure map to this station.
On a big screen at a central location in the museum (in front of the stairway) the
progress of the game is shown to the teams. A map displays the current state of the
hotspots (see right picture in Figure 7.20): Available, currently in-use or already
solved. After solving the quest and delivering the last piece of the map, the client
device displays another map that reveals the location of the secret treasure in the
museum.

7.4.1 Museum Integration

We selected the Gizmondo gaming console (see Figure 7.21) as the mobile device for
our first prototype. The Gizmondo is a Windows CE 4.2 based gaming console with a
400MHz ARM CPU, 64MB of RAM, GoForce 4500 GPU, a screen size of 320x240
pixels, Bluetooth and GPS. Via its SD Card slot the Gizmondo's storage capabilities
can be extended far beyond our requirements. The robust and well known form factor
of a game console makes the Gizmondo an ideal device for our purposes.

Chapter 7

Results and Evaluation

150

Figure 7.21 shows a picture of the mobile client device running the Sphinx client
engine Since the device itself has been designed for games the large number of
physical buttons compensates for the lack of a touch screen. On top of the screen the
name of the currently active hotspot is displayed. Even before a player activates a
hotspot he can see the hotspots state by a colored diamond (see left picture in Figure
7.20) rotating on top of the marker: green means that the hotspot is free to play, while
yellow denotes a hotspot already being played by another member of the team.

Figure 7.21: Client user interface

Finally a finished and closed hotspot is marked with a red diamond. Since there
is network connectivity at hotspots this information is always up to date. The state
and position of all hotspots can also be explored by every player and at any time by
bringing up the 2D map (see right picture in Figure 7.20) using the home button, the
left most button in the "button bar" at the top of the device.

At the bottom of the device's screen a ring menu lets the user browse all tools and
items he is currently carrying. Each entry of the ring menu is symbolized with a white
bubble that can hold one item. If the user wants to take a closer look at a scene he can
activate the lens, or if he wants to switch the device into photo-mode, he can activate
the camera tool. Early in-house user tests revealed that players wanted to have visual
feedback when the device detected a marker, which was implemented using a red
frame around the screen.

Figure 7.21 shows the mobile device asking the player to identify initials on a
traditional belt. The question is posed using an audio message accompanied by a
short on-screen text. All dialog boxes are defined and stored as templates on the client
device, which allows re-layouting the GUI on-the-fly for different clients devices. To
show a dialog, the state machine on the server asks the client to load a specific

Chapter 7

Results and Evaluation

151

template and then fills the template's items (buttons, text fields and images) with
content. Furthermore dialogs can be animated by updating the items in a timed
sequence allowing "PowerPoint"-like presentations, which are typically used to
introduce the player to the story of a hotspot.

A wireless network was installed in the museum to support the mobile devices.
Our mobile devices only have Bluetooth, so we distributed Linux based WiFi base
stations throughout the museum that can be extended with Bluetooth capabilities.
These base stations act as bridges relaying incoming Bluetooth signals to the WiFi
network providing a cost effective solution for an untethered, building-wide
Bluetooth network (see Figure 7.22). One station can typically serve a Bluetooth cloud
for two or three rooms, depending on the layout of the rooms and the mounting of
the Bluetooth emitter.

We created a graph structure that models the neighborhood of Bluetooth access
points and allows clients to quickly roam between Bluetooth connections. Since the
MAC addresses of all Bluetooth stations are known at start-up the lengthy Bluetooth
device discovery procedure can be skipped and the mobile clients can directly connect
to new hotspots, which usually takes only a fraction of a second.

Figure 7.22: Museum network structure

Yet, after first test runs the museum management decided to save costs by not
outfitting the museum with wireless network, which required extending the Sphinx
engine to run the already designed state machine graphs on the client devices too (see
chapter 6.2.2).

The network topology was therefore redesigned to only include a single
Bluetooth cloud at a central meeting point in the staircase. A large high-resolution TV
screen permanently shows the overview map of the game as well as the list of all
players. Icon show how many map of pieces each player already found.

Chapter 7

Results and Evaluation

152

Figure 7.23: Overview map and list of player on the big screen

at the central meeting point.

7.4.2 Evaluation

The field evaluation was conducted as a participant observation and half-structured
interviews afterwards, with support of the education department of the museum. Two
runs of six simultaneous players (12 high school pupils, six male and six female, at the
age of 12 years) have been carried out. Each of the test persons has been given their
own Gizmondo to play the game.

While the interaction with the game interface and the comprehension of the
game tasks posed no problems for the test subjects, the aspects of tracking and
augmentation were new to them. The mechanism of activating a hotspot by aiming at
it and pressing a button while the hotspot is being detected by the tracking system was
intuitively accepted by the users.

Observation and analysis of video recordings showed that the users understood
and used the visual feedback of the red frame that appears on the screen when the
tracking subsystem detects a marker.

In the interviews the users rated playing the AR mini-games as more difficult
than the conventional tasks, which is backed up by our observations. Players stated
that they had no problem with playing the "silent piano" after finding out 'how to' and
'what to do'. The time critical task of operating the organ's bellows on the other hand

Chapter 7

Results and Evaluation

153

demanded their full attention. Consequently some players stopped aiming the camera
at a marker while playing (which had no negative effect except for incorrect
augmentation). To improve this, the users should be given more time for getting
acquainted to AR interaction.

Following, we summarize our key observations of the test run.

What went right:

• AR animations were experienced as exciting and interesting: "the station with
the flat iron was cool"

• The mechanism of tracking was easy to understand: "that was quick to
comprehend" and "has been all illustrated"

• Collaboration and cooperative use of the client device: Three of the users were
sharing two devices, after one device crashed due to hardware problems.

• The on-device overview map was used extensively for localization of the
hotspots: "look we are here - we have to go there".

• The players spontaneously formed groups playing together as well as split up
and played individually.

• The users rated playing is highly motivating: "Not only answering questions,
but also playing … like the piano and the organ." and "to learn and to play [at
the same time]"

• Playing the game was perceived as fun and learning at the same time:
"…although one is learning" and "I haven't known that the music instruments
are so old." (referring to the oldest conserved Mandora in the world).

• Solving questions by taking pictures of the answers has been perceived as
intuitively and easy to handle. When the players found the right answers, audio
explanations are given.

• Although the first hotspot of a sequence was not specially marked and
therefore took some time to figure out, the test persons stated the concept of
solving one station to make the next station playable as very motivating: "the
combination 'thing' was very good" and "… that you have to move around and
search … like a detective"

What went wrong:

• Augmentations were intuitively comprehended, but players had sometimes
difficulties with aiming the camera at markers, especially when distracted by
interactions.

Chapter 7

Results and Evaluation

154

• When players formed groups they often operated all client devices
simultaneously, which resulted in playing multiple audios at the same time.
Especially voices were hard to understand in such a case.

• One device failed due to problems with a slow memory card containing the
client-side game content. One of the groups had to restart their game several
times until we removed the device from the game.

• The extremely strong walls of the ancient museum building requires a lot more
WiFi access points than anticipated and resulted in changes of the overall game
play (see chapter 7.4.1).

• Showcases that are situated opposite to windows can suffer from strong
reflections. While the human brain can easily compensate this effect, the
tracking quality can be reduced considerably.

7.4.3 Lessons learned

Using the ARToolKitPlus markers for tracking is a non-trivial task in a museum.
Placement of markers is restricted, since they cannot be directly attached to historical
artifacts, yet need to be of reasonable size and in view of the camera. Understandably,
the museum staff would like to place markers in a way so that they are not noted by
the visitor, which is in contrast though to the technical requirements of marker
tracking.

More tracking problems are caused by the dim light. Many exhibits are very old
and may only be presented under severely restricted lighting conditions. Some
interesting areas in the exhibition could not be integrated due to improper
illumination or the inability of proper market placement.

The fact that typically only teachers will be available for supervision puts
extraordinary requirements on the robustness and ease of use of the client devices.
We aimed at making the user interface as intuitive as possible, and provide detailed
task descriptions at any time. Still it turned out that some tasks need to be explained
in more detail to be fully understood - especially those that go beyond the usual
interaction mechanisms, notably the AR applets.

The task of keeping track of markers with the video camera works well while
consuming AR enriched animations, but turned out being too difficult for some users
while playing fast-paced AR games. It is therefore essential to integrate better tracking
technologies. A preferred solution would natural feature tracking, which sounds
reasonable, considering that in a museum application typically only small and well

Chapter 7

Results and Evaluation

155

know areas with constant lighting conditions around exhibition items need to be dealt
with.

7.5 Signpost
There is a long history of the Signpost applications in the group around Prof. Dieter
Schmalstieg. The idea of the Signpost application is to guide a user through an
unfamiliar building: The user selects a target location and the system shows the way
until the user reaches this destination.

The first incarnation was created as an undergraduate project by Michael
Kalkusch et. al [56] in 2002 (see left and middle image in Figure 7.24). The project
mainly focused on wide area tracking using the ARToolKit library [57] and required
distributing dozens of markers on the walls. Using the application, a member of the
faculty would be guided to the institute's library and directed to a previously selected
book. Naturally, a back-pack setup is not a practical means for selecting a book from a
library. Yet, the project set a milestone in wide area, low-cost indoor tracking.

The concept was later improved by Gerhard Reitmayr [87] who extended the
system to work outdoors. In this application tourists equipped with a back-pack AR
system are guided through a city. When they approach an object of interest, the
system augments spatially registered graphical information onto the view of the user.
Targeting outdoor usage, Reitmayr extended the tracking system with GPS and
inertial tracking.

Figure 7.24: Signpost on the PC. Left and middle: Signpost 2002 for indoor tracking;

Right: The World In Miniature (WIM) interface.

Chapter 7

Results and Evaluation

156

In 2003 Michael Knapp improved the indoor application with his work on
Signpost II, which introduced the BAUML (Building AUgmentation Markup
Language) XML dialect for creating, storing and retrieving building data. The WIM
(World in Miniature Model, see right image in Figure 7.24), allows a user to get a
better overview of his current location. A marker-allocator application systematically
targeted the problem of repeating the limited number of markers in a large area.

From 2005 on Schall worked on self-surveying [91] in order to reduce the
deployment times for Signpost-like systems in large buildings. The software
developed in this project imports measurement data from a Leica Total Station, a tool
commonly used for high precision indoor and outdoor 3D measurements. Based on
the multiple sets of measured data, a graph of inter-relationships is created, optimized
for minimal error and finally converted into a BAUML representation.

The author of this thesis contributed to this series of applications with the
development of Signpost 2003 and Signpost 2007. Although the 2007 version is the
successor to the Signpost 2003 application, the original application had several
features that were not reimplemented in the new version. Both applications mark the
very first and the last developments performed during this thesis. It is therefore of
interest to first introduce the original application before presenting its successor.

7.5.1 Signpost 2003

Development of Signpost 2003 started in end of 2002 with the beginning of the
handheld AR project. Due to the early stage of the handheld AR project and our
minimal experience with PDAs at that time no high quality content was available.
Signpost 2003 used a custom renderer, which later evolved into the Klimt library (see
chapter 4.1.3) and displayed most 3D graphics in wireframe (see Figure 7.25).

The complete application, including user interface was optimized to use
permanent tracking due to the vast amount of markers deployed at the institute at the
Vienna University of Technology. While such a setup is unrealistic for practical
applications and led to significant design changes for the 2007 version, it was easily
justified for an early research proof-of-concept demonstration.

Signpost 2003 acts as a guide that routes a visitor through an unfamiliar building.
At startup the user selects a target room. The application uses a cell and portal system
to guide the user room by room to the target location. A 3D arrow shows the user the
direction to go: It points to the next door to take (see left image in Figure 7.25) and
thereby guides the user from room to room to the final destination. Since the

Chapter 7

Results and Evaluation

157

complete building was available as mesh, the 3D model served as overview map as
well (see right image in Figure 7.25).

Unlike its PC-based variant, the PDA-based Signpost 2003 could not rely on
Studierstube, Coin3D and OpenGL. The PC version uses preprocessing to convert the
XML document that encodes the measured building via an XSLT processor into an
OpenInventor scene-graph. The PDA version instead imports all data directly from
the XML file, building a 3D mesh optimized for the custom software renderer on the
fly.

Figure 7.25: Signpost 2003.

Left: Wireframe overlay of building data; Right: Overview map

The application creates a search graph from the portals and cells inside the XML.
At every frame the system selects the cell the user is currently in and calculates the
shortest path to the target. Knowing the portals (doors) that connect the cells, the
arrow can guide the user to the door that leads to the next room.

7.5.2 Signpost 2007

Although both the 2003 and the 2007 version of Signpost serve the same general
purpose, the design of the 2007 version is completely different. The 2007 version was
created from ground up to work in coarsely instrumented and sparsely tracked
environment. For the 2003 version an accurate 3D model of the building plus markers
at every 2 meters on the walls were available. Signpost 2007 instead targets
deployment at conferences, where such infrastructure requirements are unfeasible.

Signpost 2007 uses bitmap maps of buildings, because accurate 3D models of
conference locations usually do not exist or are not available. Another important
aspect to transform the original version into a practical application was reducing the

Chapter 7

Results and Evaluation

158

amount of markers required to run the application. The original version made use of
about 200 markers deployed in an area of 20 by 30 meters, while conference
organizers would typically install about 40-50 markers for an area about two orders of
magnitude larger (see Figure 7.26). We therefore redesigned the application’s
workflow to only sporadically require markers for operation. While 3D building data
can not be meaningfully overlaid anymore in such a case, it is sufficient for displaying
detailed 2D maps.

Figure 7.26: Marker placement for Signpost 2007 at the

MEDC 2007 conference in an area of roughly 100x200 meters.
Red dots mark locations of posters with instructions and markers.

Using 2D map tracking only further reduces requirements on accurate marker
placement accuracy. While the markers for the Signpost 2003 application were
measured at millimeter accuracy for precise overlays, the 2007 version requires only
coarse marker placement: Markers can be stuck onto posters stands that are deployed
quickly on-site. While deploying markers and creating 3D models at the Graz and
Vienna universities took months, setting up the markers for Signpost 2007 at a
conference site usually takes just one or two hours. Signpost can update marker pose
data via an on-site wireless network to allow changing positions and orientations
during the event, which turned out to be a very welcomed feature.

Hence, Signpost 2007 is centered about operating map positions rather than 3D
overlays. From a research point of view this meant a step back from the previous
version, creating a less AR intensive application. From a usability point of view these

Chapter 7

Results and Evaluation

159

changes transformed a mostly unusable research prototype into a practical and highly
successful tool for conference attendees that is easy to deploy and manage.

The most distinguishing new feature in the 2007 version is special support for
data browsing. Targeted as a conference guide, Signpost 2007 includes a complete
schedule that can be browsed using various filters such as per day, per session or full
text indexing. Like the marker positions, the schedule can be updated via WiFi to
reflect latest changes of the event’s schedule. Users can freely navigate maps (see
Figure 7.27) by panning, rotating and zooming in a UI style similar to regular
navigation systems such as TomTom36 or Navigon37.

To operate the map manually (without tracking) the user has to first select
between the different naviation modes (panning, rotating and zooming) and can then
use the cursor cross or stylus to modify the view onto the map. Furthermore the user
can switch between maps, which is necessary for multi-level buildings or events with
multiple non-connected sites.

Figure 7.27: Navigating a conference map. Left and middle: Using the
cursor cross (joystick) to pan a map Right: Currently tracked position

2D User Interface
The numerous features and the focus on 2D interaction required designing a suitable
2D user interface. While this poses no problem on devices with touch screens, the
project also targeted smartphones with button only interfaces.

Most users today are highly familiar in operating devices with touch screens style
user interfaces. Many ATM or point of sales machines today use touch screens, and
the general UI method is very similar to that of using a desktop mouse. Creating user
interfaces for devices that are operated with buttons only is quite hard by comparison.
Instead of just drawing a button on the screen and letting the user touch it, the UI has
to make clear which virtual button on the screen relates to which physical buttons on
the device. Devices that are designed for a single purpose can take advantage of this

36 http://www.tomtom.com
37 http://www.navigon.com

Chapter 7

Results and Evaluation

160

fact by introducing special purpose buttons. For example, players know which
buttons to press on mobile game consoles since the button layout follows well known
conventions. Similarly, users know very well how to operate a phone for the purpose
of calling other people. Applications, which are unusual for a specific device class
though, cannot take advantage of this method.

The Signpost 2007 application targets an open range of Windows Mobile
smartphones with and without touch screens. Although all these devices are
optimized for using them as mobile phones or personal information managers (PIMs)
their physical design varies significantly. Most mobile phones today include many
special purpose buttons such as camera buttons, scroll wheels and applications
launchers. Yet, most of these special purpose buttons are not standardized. Due to the
very different button layouts and mapping of various mobile phones only few buttons
can actually be used on an application that targets unknown and untested devices.

Signpost 2007 therefore only uses the cursor cross, the two screen buttons, the
zero to nine button and character keys in case text input is required (such as for text
search boxes). Although Signpost is a fully graphical, skinned application it tries to
duplicate the standard Windows Mobile GUI elements to give the user a familiar
feeling. Hence, it shows the mappings of the two screen buttons on a bar on the
bottom of the screen (see Figure 7.29). These buttons are always mapped in a way that
the left button cancels or exits an operation, while the right button confirms a
selection.

Figure 7.28: Three different resolutions supported in Signpost 2007.

Left: 320x240, Middle: 240x320; Right: 240x240

All buttons on the screen can be pressed with the stylus on touch screen enabled
devices. On devices without touch screen support the on-screen buttons are mapped

Chapter 7

Results and Evaluation

161

to physical buttons and keys. Text or symbols on the buttons serve as hint, which
physical button to press: Filtering selection is done using the keys from 0-9, which
assures that even devices that have no touch screen and only a T9 keypad can operate
these functions. The user can then switch between sessions using the left and right
directions of the cursor cross. Similarly iterating through talks is done by pressing up
and down. On the bottom bar, two screen areas are mapped to the physical screen-
buttons which are always placed near the bottom left and right corners of the screen.

When deploying mobile phone software to a large number of devices support for
different hardware specifications becomes a major issue. While 3D applications can
usually easily adapt to different screen resolutions, 2D graphical user interfaces
require more work. Figure 7.28 shows the three different resolutions that are
currently supported in Signpost 2007. For each resolution we specifically created a
complete application layout that is specified via an XML file. At start up the
application automatically detects which layout to use.

Manually providing layouts for specific resolutions achieves optimal results for
those resolutions that are supported, but creates scalability problems to the amount of
different devices that can be supported. Currently about ten different screen sizes
ranging from 176x220 to 800x480 are in use, where the highest resolution can display
ten times as much data as the smallest one. More screen sizes are sure to come. The
most promising option in such a case is probably automatic layouting, which we also
plan for the next version of Signpost 2007.

Application Features
Figure 7.29 shows the “Schedule” screen of Signpost 2007 that allows a user to select
from a large number of items. Obviously the amount of data is too large to iterate to
the list item by item. Filtering allows creating a more effective selection, but it
complicates the user interface.

Figure 7.29: Schedule screen of the Signpost 2007 application. Left: Filtering by day;

Middle: No filtering; Right: Filtering using full text indexing.

Chapter 7

Results and Evaluation

162

For large conferences with lots of presentations even the aforementioned two-
step filtering via days and sessions can be too difficult since attendees often don’t
know which session a talk is held in. In Signpost, pressing the ‘0’-button activates the
full text filter that shows only those entries that contain the specified string (see right
picture in Figure 7.29).

Figure 7.30: Navigating maps in Signpost 2007.

Left: selecting an action with the in-place menu; Middle: Switching maps;
Right: View finder while no marker is visible in tracking mode.

Navigating a 2D map is a common UI concept for mobile navigation systems.
These devices usually rely on touch screens or special purpose buttons. Signpost 2007
demands more operations that the typical zoom, pan and rotate map as well as switch
between maps (see left image in Figure 7.30).

Tracking of fiducial markers only works, when markers are visible in the view of
the camera. Aiming at markers with the mobile device’s camera is easy as long the
camera’s image is visible on the screen, such as the video background in video see-
through AR setups. While Signpost 2007 does include a “regular” AR mode, users
mostly operate it in the “tracked map mode” that shows a correctly panned and
rotated map, but no video background (see right image in Figure 7.27). We therefore
automatically blend in the camera image (see right image in Figure 7.30) as a view
finder, when the camera looses sight of markers to support the user in finding a
marker again. To keep the user interface consistent the view finder image is smoothly
faded in and out instead of just popping up.

While the first version of Signpost 2007 allowed only a single map, with the
introduction of support for multi-level buildings the problem arose of how to make
people aware of their current location within the building. Showing their 2D location
on the map was not enough anymore. We therefore added 3D building models that
are simple enough to be quickly created, yet sufficient to show the user’s current
location in a building.

Chapter 7

Results and Evaluation

163

Other than in the 2003 version, these 3D models are not meant to be accurately
overlaid on the real environment, yet in tracked mode the building model is correctly
rotated help the user find her target location. The left image in Figure 7.31 shows a
screenshot of the tracked 3D building. On this screen the user is informed about her
current location and the target location, which other than in 2D map mode can span
multiple building levels. The currently active map is highlighted.

Figure 7.31: Left: Tracked 3D building; Middle: AR objects (Easter eggs) in

Signpost 2007; Right: Configuration screen to solve camera driver bugs

To go beyond a pure data browsing and mapping application we also added a
small AR treasure hunt game that can be used for marketing. Each marker holds an
arbitrary virtual object (“Easter egg”, see middle image in Figure 7.31). To find these
items, the user has to switch into the game mode of the application which brings up
the video background in full screen. Whenever the user points the device to a marker
it shows the attached Easter egg. After the user collected all different objects, he can
register to win a price.

The Signpost 2007 application targets any Windows Mobile 2005 or later devices.
Unfortunately, typical problems with these devices include camera drivers bugs.
Devices tend to report wrong video modes or return camera images in wrong
orientations. To overcome this issue, we added a camera setup tool to Signpost 2007
that allows the user to override the camera’s reported settings in order to adapt the
application to driver bugs (see right picture in Figure 7.31).

7.5.3 Evaluation Results

We performed an evaluation on Signpost 2007 at the MEDC 2007 conference.
Although about 150 attendees tried the application, only 34 participated in the
evaluation. The reason for this is that we required the users to find all Easter eggs,
which – in the first version of the application – turned out to be a too demanding task

Chapter 7

Results and Evaluation

164

in terms of time required finishing the game. For later versions we changed the game
mode to not require visiting all markers.

Participants were mostly native English speakers. The vast majority was male and
no subject had seen the application before. All participants of the study answered the
following nine questions (see Chapter 9.3.4 for the original questionnaire) by marking
on a Likert scale from 1 (I strongly disagree) to 7 (I strongly agree):

• Q1: Signpost was easy to use
• Q2: Signpost was more useful than a conventional map
• Q3: Those black-and-white markers disturbed me
• Q4: I'd like to see the other users' positions on my device too
• Q5: I think Signpost2007 can be used by novice PDA or Smartphone users
• Q6: I was able to quickly access and understand the information (schedule and

map) I searched for
• Q7: I enjoyed using Signpost2007
• Q8: Signpost2007 improved my location awareness
• Q9: Signpost2007 should be used on other events too

As can be seen in Figure 7.32, all answers were very consistent with only minimal
standard deviation.

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9
Figure 7.32: Results of the questions Q1 to Q9 of Signpost 2007 evaluation at MEDC 2007

Attendees found Signpost consistently easy to use (Q1) and more useful than the
conventional conference map (Q2) that was part of the printed conference guide.
Since MEDC is a conference targeting expert users and developers we specifically
asked for their opinion about suitability to novice users. Even though we received
reports that Signpost does not follow the standard UI conventions enough, attendees

Chapter 7

Results and Evaluation

165

rated it suitable for novice users (Q5). Most users were able to quickly access the
information presented on their device (Q6) and experienced improved location
awareness (Q8).

Users consistently enjoyed the application (Q7) giving it an average score of 6.6
out of 7. Furthermore the attendees strongly believed that Signpost should be used at
other conferences too (Q9) giving a score of 6.5 out of 7 for this question.

In Question Q4, which asked about seeing other users on their screen created we
noticed the highest diversity among the answers. It was also only question that
received answers from both extremes “I strongly agree” to “I strongly disagree”.
Talking to users confirmed our expected concerns about privacy issues that many
users have with such a feature.

Using fiducial markers in natural environments outside research labs always
raises concern for acceptance of the introduced visual clutter. Yet, most attendees did
not complain (Q3) about the deployed ARToolKitPlus markers giving it a score of
only 1.7 at a range from 1 to 7, thereby disagreeing to the statements that they felt
disturbed by the markers. A probable reason this is that conference areas are generally
visually polluted with posters and projection screens, making the fiducial markers less
eye-catching than in other environments.

From the results above we can conclude that Signpost 2007 is highly accepted –
at least by technology savvy audiences. Most of the problems we experienced at the
MEDC conference could be solved for the later TechEd conference, though some new
issues were introduced with those changes. At MEDC it turned out that marker
locations as well as the event’s schedule could not be fixed before conference start. We
therefore created new distributions on a daily basis, which allowed new users to work
with the latest settings, but users that previously downloaded Signpost did usually not
update. Fortunately, only minor changes aroused. This issue was solved for the
TechEd event making Signpost able to download updates instead of requiring
updating the whole application.

For the TechEd conference we added many new features such as multiple map
support, full text search, downloading updates and configuring the built-in camera,
which created a rather complex user interface cluttered with features and introduced
problems to new users. We therefore plan to redesign the complete user interface and
make it more standard conform as well. Due to the enormous success of the Signpost
application at the MEDC and TechEd conferences, Microsoft asked for deployment
on a number of more conferences.

The example of the Signpost 2007 application shows that AR technology can be
used effectively for ubiquitous non-AR applications. The system can be easily adapted
to new environments, requiring only a map of the target site for preparation.

Chapter 7

Results and Evaluation

166

Tracking based on computer vision further reduces the costs since it only requires
placing a few posters with marker at the site. It is therefore preferable over alternative
tracking methods such as infrared or Bluetooth beacons, which require active devices
and give less precise localization. Furthermore allowing users to experience the
application on their own mobile phones improves acceptance from the attendees and
at the same time reduces costs for client devices to zero.

7.6 Discussion
The applications presented in this chapter demonstrate the practical usability and
deployability of phone-based Augmented Reality applications. While first prototypes
such as Signpost2003 and the Invisible Train were created mostly for demonstration
purposes and have been shown only inside our labs or at research conferences, later
developments such as Signpost2007 and MARQ are practical applications that have
been deployed into “real” target environments and used by many inexperienced users
including children.

The evaluations described in this chapter show that Augmented Reality on
phones is well accepted and allows creating user interfaces that are easy to understand
and navigate. A more focused discussion on the importance of these results on the
hypothesis (especially hypothesis H3) as stated in chapter 1.3 is postponed to the next
chapter.

Chapter 8

Conclusions and Guidelines

167

Chapter 8

Conclusions and Guidelines
In this chapter we analyze how the hypothesis stated in the introduction chapter
was fulfilled. We discuss how each requirement was met; give guidelines on
creating handheld AR applications and finish with an outlook to future work.

In the previous chapters solutions developed in the handheld AR project were
presented that resulted in a fully working and practical framework for Augmented
Reality applications on mobile phones. While it is unique in being the only complete
AR solution for mobile phones today, it also goes beyond many other AR frameworks
currently available in terms of supported features. Applications based on the
presented framework have been used by thousands of users. While first creations such
as the Invisible Train required providing specific hardware units for demonstration
purposes, the latest applications were used by hundreds of users on their own devices.
Following, we discuss how each statement of the hypothesis in chapter 1.3 was met:

Hypothesis H1 Augmented Reality on phones can work as well as on personal
computers, despite the fact that phones are less powerful, have smaller screens and
inferior input capabilities:

The solutions presented in the chapters 3-6 resulted in a framework that allows
the rapid creation of practical AR application on mobile phones. Processing
capabilities of mobile phones are an order of magnitude or two lower than on PCs.
Yet, benchmarks presented in this thesis demonstrate that performance and features
similar to that of average PC-based AR setups can be achieved. Typical frame rates are
in the range of 10-20Hz, which is below the cinematic standard of 24 Hz, but
empirically sufficient for interactive applications, especially on small screens.

The small screen size and reduced input capabilities of mobile phones raise
concerns for their suitability for applications that go beyond typical PIM (personal

Chapter 8

Conclusions and Guidelines

168

information management) tools such as calendar and contact management. Yet,
despite these restrictions, the feedback on the applications and evaluations presented
in chapter 7 shows that practical AR applications and games can be created.

Most classic game concepts can not be effectively transported to the mobile
phone platform due to its tiny screen size and bad input capabilities. Hence, despite
the enormous amount of deployed client units, a large and profitable game market
has not developed yet for this platform. In contrast, AR offers a “point and shoot”
style interaction, thus using the phone and its position in space as an input capability.
It thereby overcomes the limitations of T9 and similar input concepts. By using the
Magic Lens metaphor, the phone’s screen is virtually extended and can easily be
navigated.

Hypothesis H2 Using phone based AR, larger mobile Augmented Reality systems than
previously shown can be built at reasonable costs:

The extremely low cost per unit of AR on mobile phones (especially if pre-owned
by the user) is a unique selling point. While any application or game presented in this
thesis could be created using traditional hardware such as Tablet PCs or backpack
setups, their prohibitive costs, increased weights, etc. prevented the development of
any mobile AR system with more than three users so far.

Furthermore, when selecting the user’s private mobile phone as target device, the
per-unit costs go down to zero as demonstrated with the Signpost 2007 application:
The costs for the event organizer were restricted to providing a few files for download
on a web server. This allowed hundreds of concurrent users to experience the AR
conference guide, which is about two orders of magnitude beyond any other AR
application deployed so far.

Hypothesis H3 The phone’s form factor is more suitable for untrained users than
HMD-based setups:

Backpack setups with HMDs have the advantage of providing high processing
power and immersion. While HMDs have clear advantages in application areas that
require stereoscopic augmentations or hands-free interaction, they did not succeed in
mass markets. The high costs HMDs themselves prevent a commercial success in a
mass market, but is only one factor that reduces their suitability for untrained, private
users. The aim of HMD producers to reduce the HMDs’ weight, while still keeping
the costs at a reasonable level resulted in highly fragile devices that easily break, even
when handled carefully by expert users. Before usage, an HMD needs to be put on
and calibrated at least coarsely by the user, which are both complex tasks and
therefore difficult for inexperienced users.

Chapter 8

Conclusions and Guidelines

169

In contrast to HMDs, most people today know very well how to operate a mobile
phone. The usage of phones as Magic Lenses is highly intuitive, requires no
calibration and is easily understood even by small children as our experiences show.
We therefore conclude that despite the higher potential of HMDs in certain (expert-)
domains, phones are more suitable AR devices for untrained users. Consequently
HMD- and phone-based systems are rather complementary than competitive.

We now summarize how the system developed in this thesis fulfills the

requirements on a practical AR setup as stated in chapter 1.5:

• Low cost: The Signpost 2007 application was used by hundreds of conferences
attendees on their own mobile devices. Users were able to install the
applications on their Windows Mobile phones reducing the costs for
conference organizers to hosting a few files for download on already deployed
the intranet web server.

• Robust and fool-proof: In the last year of this thesis we developed several
demo applications that were sent out by email to users. Untrained users were
able to install, understand and use the applications on their own in natural
unsupervised conditions.

• Self contained operation and networking support: The way how an
application uses the networking and communication capabilities strongly
depends on the actual application. Based on Studierstube ES we developed
applications that run fully self-contained and require no networking at all
(such as Signpost2007 or various small demos), applications that sporadically
use networking (such as the MARQ treasure hunt game) as well as applications
that require networking at all time (e.g. the Invisible Train or Virtuoso games).

• Tracking support: As outlined in Chapter 3, tracking with fiducial markers
performs well in various lighting conditions even on low-end smartphones.

• Rapid prototyping: All applications presented in this thesis were developed
with only one or two developers and graphics artists, which is a minimal staff
compared to typical commercial productions. Details on how applications can
be developed with Studierstube ES are given in Chapter 9.

• Content creation: The Schatzsuche and Virtuoso games are both heavy on
content and benefited a lot from a clear content creation pipeline that supports
direct import of well known and supported multimedia file formats.

We therefore conclude that handheld Augmented Reality is suitable for mass
market audiences. The increasing interest we receive from commercial entities such as
from industry or marketing companies in AR on mobile phones supports this claim.

Chapter 8

Conclusions and Guidelines

170

Developing for mobile devices such as cell phones is fundamentally different
from creating applications for desktop computers. For good reasons creators of
operating systems for these platforms publish style guides on how to design, develop
and deploy applications for these devices. Yet, these documents usually cover only
aspects common for typical mobile phone applications such as organizers or date
books.

The following chapter summarizes the experiences gathered in the last five years
in the handheld AR project. These guidelines are grouped into two areas: the chapter
on applicability lists typical pitfalls that researchers are confronted with when creating
commercial handheld Augmented Reality applications. The guidelines on
performance offer advice how to make optimal use of those target devices that are
always short on resources.

8.1 Guidelines on Applicability
There is a strong difference between research prototypes and practical applications
with commercial grade quality. Often it is not possible to transform a prototype into a
practically deployable application. Even if it is, it usually takes longer than creating
the prototype itself. While it is enough for a research prototype to just run “somehow”
on the target device, applications for end users must run always and be intuitive to use
and behave “nicely”, which are requirements that researchers are not are used to. In
the following we list our experiences, partially learned the way in creating commercial
grade AR applications for end users:

• Deployment: Developers have to provide fool-proof methods for distributing
and installing an application. This usually includes writing multiple installers
including those that can run directly on the mobile device and those that can
be run from a desktop computer.

• Resources: Mobile phones and PDAs are always scarce on resources. Users will
not tolerate applications that use up most of their file space or take long to start
up.

• Supporting different devices: Support for a practical range of target devices is
probably the most critical issue for any mobile phone software developer.
While typical PIM (personal information manager) applications can easily
adapt to various devices, application that require low level OS and hardware
access quickly run into problems such as driver bugs or unexpected hardware
platforms (such as screen and camera image layouts). In personal discussions

Chapter 8

Conclusions and Guidelines

171

mobile game developers reported managing more than hundred build targets.
One can find roughly ten different screen resolutions on today’s mobile phones
– writing an application that supports screen resolutions of 160x120 as well as
480x640 pixels is therefore a non-trivial task. CPU power can vary in the range
of an order of magnitude too.
Accurate pose tracking requires calibrating for specific camera types.
Unfortunately, device series and brands can often not be reliably detected in
practice, which prevents automatic usage of calibration files for known devices.

• Sticking to UI conventions: While it is tantalizing to create unique user
interfaces that are optimal for the specific applications, it is more important to
stick to the user interface conventions of the target device. As learned the hard
way during development and deployment of the Signpost 2007 application,
users prefer well known UI concepts over more optimized, but not standard
conform alternatives.

• Behaving nicely: Applications must behave nicely, which includes not taking
over full control of the target device and reacting to device specific events. E.g.
users will not tolerate missing phone calls, due to an application that did not
pass through notification messages. Some devices have special features such as
automatically rotating screen content when a keyboard is slides out. Naturally
users expect applications to follow this behavior – even if it is of low usage for
the actual application.

• Driver issues: Today, AR applications are still untypical for mobile phones,
which includes that these applications use the hardware differently than most
other applications do. A major problem often involves accessing the built-in
camera. While these cameras often have compelling specs, the built-in
applications are usually they only ones actually using the camera.
Unfortunately this means that drivers are often buggy and device creators use
proprietary methods to take full advantage of the camera. Therefore, in
practice many devices do not deliver the full potential or behave erroneously
when using the standard APIs.

• Considering non-optimal environments: Researchers usually know very well
under which circumstances AR software runs fine and where it performs poor.
In contrast, end users will run applications in unpredictable situations and still
expect it to function as promised.

• Developing on the PC, final testing on the device: Debugging on embedded
devices is cumbersome and on some platforms such as Symbian not possible
without expensive tools. Doing as much work as possible on the PC should be

Chapter 8

Conclusions and Guidelines

172

preferred since it results in faster development cycles and often even cleaner
code due to the increased portability requirements.

8.2 Guidelines on Performance
Despite the many advantages mobile phones offer as a platform for mobile
Augmented Reality, the poor processing capabilities demand special care during
application development. From our experience of developing multiple applications
for broad range of mobile devices we arrived at the following set of guidelines of how
to achieve optimal performance:

• Sequential vs. parallel: Even though ARM CPUs usually do not have parallel
execution units, many operations such as reading the camera or network
communication can be successfully accelerated using multi-threading because
they are I/O rather than CPU bound.

• Camera resolution: Some high-end phones can deliver video streams at
resolutions up to 640x480 pixels. In practice these videos are limited in camera
quality. Unlike high quality PC cameras, there is only a minimal improvement
in tracking quality. The reasons for this are the low quality lenses and camera
sensors with high noise levels.

• Multi-marker tracking: Using high quality cameras on PCs allows stable single
marker tracking. Larger markers can sometimes compensate for the lower
image quality of mobile phone cameras, but user interface designs often
prevent this. Multi-marker tracking provides highly stable tracking - at the
expense of higher computational costs though.

• Id-based markers: With a growing number of markers known to the tracking
system, the process of template matching can seriously degrade overall
performance. Id-based markers do not share this weakness and are always
faster to detect than template markers.

• Camera pixel formats: While on the PC applications tend to read camera
frame in convenient standard formats, such as RGB, this is not the case on
mobile phones, which often expose lower quality and stronger compressed
format. Some of these formats, such as YUV12 store the luminance values
image data in a separate block, which is ideal for vision based tracking.

• Compilers: As shown in chapter 3.4 some compilers can increase tracking
speed in certain situations. In older versions of ARToolKitPlus which
contained more floating point code we noticed speedups up to 70%.

Chapter 8

Conclusions and Guidelines

173

Unfortunately these compilers are often expensive and generated code, which
only works on specific CPUs. Furthermore we also noticed slowdowns, such as
when compiling Klimt with the Intel compiler.

8.3 Future Work
While the current Augmented Reality framework supports the creation of practical
AR setups, the resulting applications are usually still far from perfect. A major topic
for future research will be tracking. Although robust tracking on mobile phones is
possible today, the necessity for fiducial markers hinders deployment to an even
broader range of applications.

In many environments attaching markers is not an option. This includes large
areas, such as for city-wide games and applications as well as environments where
attaching markers is not allowed or impractical.

Therefore, a next major step will be moving from marker tracking to natural
feature tracking. Other than marker tracking, natural feature tracking is still a hot
topic even on high performance platforms. The low processing capabilities of mobile
phones therefore provide hard preconditions for this task. While we do not expect
mobile phone CPUs to improve a lot in the next years, other processing units are
currently being integrated into these devices, such as signal processors (DSPs),
graphics processing units (GPUs) and multi-media units.

Due to the strong request for graphical applications and games on phones, the
usage of GPUs for general purpose processing seems to be a promising approach. The
current generation of GPUs with its fixed function pipelines (OpenGL ES 1.x) is only
suitable for rendering. The next generation though will introduce freely
programmable pixel shaders and therefore will allow outsourcing simple general
purpose calculations.

Another topic for future research is massive multi user AR applications. The
foundation for such applications has been laid in this thesis, making it possible to
practically target applications with thousands of users. However, a significant amount
of research will have to go into designing new user interface concepts for such
scenarios.

When targeting the aforementioned multi user applications, content creation will
become an even more important issue. While many commercial game companies
currently set their hopes on developments such as COLLADA, it is unclear, how well
these developments suit the requirements of Augmented Reality applications.

Chapter 8

Conclusions and Guidelines

174

Similarly, content distribution will become another hot topic. Years of research has
gone into data streaming on desktop and VR platforms, but little work has targeted
mobile phones.

The solutions developed in the course of this thesis have created interest from
commercial entities. While in its infancy these solutions have been only used by
project partners, Studierstube ES is currently in the process of transitioning from a
research prototype into a commercially available and supported AR framework. The
author of this thesis therefore believes that in the near future Augmented Reality will
become a viable user interface for a wide, public audience.

Chapter 9

Appendix

175

Chapter 9

Appendix

9.1 Studierstube ES Example Applications

9.1.1 Minimal Example

The following code excerpts show how to write a minimal Studierstube ES application.
This example renders a virtual cube on top of a marker. We do not require any C++
code to implement such an application with StbES. Hence, we only require a
configuration file (see Figure 9.1) that sets up StbES and a scene file (see Figure 9.2)
that contains the field connections to the tracking system and the cube itself.

Chapter 9

Appendix

176

Figure 9.1: Config file for Windows CE for a minimal application that does not require

loading an “application file” (DLL).

Chapter 9

Appendix

177

Figure 9.2: Commented scene file for a minimal application

that renders a virtual cube on a marker

9.1.2 Model Viewer Application

This example is an extended version of the simple application. It loads an actual
model file and displays it on the marker. Furthermore it allows the user to rotate the
model and optionally start/stop animations. To achieve this, writing a short C++
application is required. A single class is implemented that derives from
StbES::Application (as all StbES applications do) and from StbES:: IRawInputListener
to register for key presses. The C++ header (see Figure 9.3) and source files (see
Figure 9.4) are listed here. The configuration and scene files are almost identical to
the minimal example above and therefore skipped.

Chapter 9

Appendix

178

Figure 9.3: Header file of the model viewer application.

Chapter 9

Appendix

179

Chapter 9

Appendix

180

Figure 9.4: Source file of the model viewer application.

Chapter 9

Appendix

181

9.2 Pose Refinement

Source code for refining a given pose using Gauss-Newton iteration (optimizePose()
implements one refinement step). Source code provided by Gerhard Reitmayr and
uses the TooN numeric library.

SE3 optimizePose(const SE3& initialPose, const vector<Vector<3> >& points,
 const vector<Vector<2> >& observations)
{
 // jacobian an error variables, we build these directly,
 // therefore less storage requirements!
 Matrix<6> JTJ;
 Vector<6> JTE;
 Zero(JTJ);
 Zero(JTE);

 // build jacobian and error vector
 for(int i = 0; i < points.size(); ++i){
 Matrix<2,6> Jacobian; // the jacobian of the parameters for this one point
 Matrix<2,3> Jacobian_Point; // the jacobian with respect to point parameters

 // computes all the jacobians and the point projection in one go :)
 // much more efficient than the above stuff
 Vector<2> projectedPoint = initialPose.transform_and_project(points[i],
 Jacobian_Point,
 Jacobian);
 // add local part to JTJ
 // JTJ += Jacobian.T() * Jacobian;
 // faster version avoiding temporary in += evaluation
 add_product(Jacobian.T(), Jacobian, JTJ);
 // add local part to JTE, this is JT * error
 // JTE += Jacobian.T() * (observations[i] - projectedPoint);
 add_product(Jacobian.T(), observations[i] - projectedPoint, JTE);
 }

 // compute inverse with Cholesky decomposition
 Cholesky<6> chol(JTJ);

 // compute inverse * error with backwards substitution
 Vector<6> delta = chol.inverse_times(JTE);

 // left multiply to the initialPose to create new SE3
 return SE3::exp(delta) * initialPose;
}

Chapter 9

Appendix

182

9.3 Questionnaires

9.3.1 Virtuoso – Survey on Realism of the Virtual Character

The following three pages contain the questionnaires handed out for the user study
performed at HitLAB New Zealand in March 2006.

Chapter 9

Appendix

183

Chapter 9

Appendix

184

Chapter 9

Appendix

185

Chapter 9

Appendix

186

9.3.2 Virtuoso – Survey of Collaboration with Handheld AR

The following eight pages contain the questionnaire used in the study performed in
2006 at the Graz University of Technology. The evaluation compared the handheld
AR version of Virtuoso against a desktop version, implemented using Adobe Flash
and a paper version of the game.

Chapter 9

Appendix

187

Chapter 9

Appendix

188

Chapter 9

Appendix

189

Chapter 9

Appendix

190

Chapter 9

Appendix

191

Chapter 9

Appendix

192

Chapter 9

Appendix

193

Chapter 9

Appendix

194

Chapter 9

Appendix

195

9.3.3 Questionnaire of the MARQ Evaluation
at Technisches Museum Wien

The following 4 pages contain the questionnaire handed out to all visitors who played
the Mobile Augmented Reality Quest game at Technisches Museum Wien in 2006.

Chapter 9

Appendix

196

Chapter 9

Appendix

197

Chapter 9

Appendix

198

Chapter 9

Appendix

199

9.3.4 Evaluation of Signpost 2007

The following page contains the questionnaire handed out to all users who fully
played through the game built into the Signpost 2007 application. The evaluation was
performed at the Microsoft embedded developers conference (MEDC) in Las Vegas,
USA in 2007.

Chapter 9

Appendix

200

Chapter 10

Bibliography

201

Chapter 10

Bibliography
[1] Amselem, D., A window on shared virtual environments. Presence, Vol. 4, No. 2, pp.

130-145, 1995

[2] Anabuki, M., Kakuta, H., Yamamoto, H., Tamura, H., Welbo: An Embodied
Conversational Agent Living in Mixed Reality Space, CHI 2000, pp. 10-11, 2000, The
Netherlands

[3] Azuma, R.: A Survey of Augmented Reality. In SIGGRAPH '95 Proceedings, Course
Notes #9: Developing Advanced Virtual Reality Applications (1995), 1-38

[4] Bachmann, E., Duman I., Usta, U., McGhee R., Yun, X., Zyda, M., Orientation
tracking for Humans and Robots Using Inertial Sensors. International Symposium on
Computational Intelligence in Robotics & Automation (CIRA 99), pp. 187-194, 1999,
USA

[5] Bajura, M., Fuchs, H., Ohbuchi, R., Merging Virtual Reality with the Real World:
Seeing Ultrasound Imagery Within the Patient, In ACM SIGGRAPH Computer
Graphics, Volume 26, Issue 2, pp. 203-210 1992, USA

[6] Balcisoy, S., Torre, R., Ponder, M., Fua, P., Thalmann, D., Augmented Reality for
Real and Virtual Humans. IEEE Computer Graphics International, pp. 303-308, 2000

[7] Barakonyi, I., Fahmy, T., Schmalstieg, D., Kosina, K.: Collaborative work with
volumetric data using augmented reality videoconferencing, In Proceedings of the
2003 International Symposium on Mixed and Augmented Reality (ISMAR 2003), pp.
333–334, 2003 Japan

[8] Barakonyi, I., Psik, T., Schmalstieg, D.: Agents That Talk And Hit Back: Animated
Agents in Augmented Reality, IEEE and ACM International Symposium on Mixed and
Augmented Reality 2004 (ISMAR'04), pp. 141-150, 2004, USA

[9] Barakonyi, I., Weilguny, M., Psik, T., Schmalstieg, D., MonkeyBridge: Autonomous
Agents in Augmented Reality Games, ACM SIGCHI International Conference on
Advances in Computer Entertainment Technology (ACE'05), pp. 172-175, 2005, Spain

Chapter 10

Bibliography

202

[10] Barkhuus, L., Chalmers, M., Tennent, P., Hall, M., Bell, M., Sherwood, S., Brown B.,
Picking Pockets on the Lawn: The Development of Tactics and Strategies in a Mobile
Game, UbiComp 2005, pp. 358-374, 2005, Japan

[11] Bauer, M., Bruegge, B., Klinker, G., MacWilliams, A., Reicher, T., Riß, S., Sandor, C.,
Wagner M., Design of a Component-Based Augmented Reality Framework, In
Proceedings of The Second IEEE and ACM International Symposium on Augmented
Reality (ISAR'2001), pp. 45-54, 2001, USA

[12] Benford, S., A distributed architecture for large collaborative virtual environments,
IEEE Colloquium on Distributed Virtual Reality, pp. 9/1-9/7, 1993

[13] Benford, S., Fahlén, L., A Spatial Model of Interaction in Large Virtual Environments,
3rd European Conference on Computer Supported Cooperative Work (ECSCW '93),
pp. 109-124, 1993, Italy

[14] Benford, S., Greenhalgh, C., Reynard, G., Brown, C., Koleva, B.: Understanding and
Constructing Shared Spaces with Mixed-Reality Boundaries, In ACM Transactions on
Computer-Human Interaction, Vol. 5, No. 3, pp. 185-223, 1998

[15] Bier, E.A., Stone, M.C., Pier, K., Buxton, W., DeRose, T.D.: Toolglass and magic
lenses: The see-through interface, In: Proceedings of the 20st Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH 1993), pp. 73-80, 1993

[16] Billinghurst, M., Cheok, A.D., Prince, S., Kato, H.: Real world teleconferencing. In
IEEE Computer Graphics and Applications Volume 22, Issue 6, pp. 11–13, 2002

[17] Billinghurst, M., Kato, H., Poupyrev, I.: The magicbook: a transitional ar interface.
Computers & Graphics 25 (2001) 745–753

[18] Bimber, O., Fröhlich, B., Schmalstieg, D., and Encarnação, L.M. , The Virtual
Showcase. IEEE Computer Graphics & Applications, vol. 21, no.6, pp. 48-55, 2001

[19] Bleser, G., Wuest, H., Stricker, D., Online camera pose estimation in partially known
and dynamic scenes, In Proceedings of International Symposium on Mixed and
Augmented Reality (ISMAR’06), pp. 56-65, 2006, USA

[20] Brown, B., MacColl, I., Chalmers, M., Galani, A., Randell, C., Steed, A., Lessons from
the lighthouse: collaboration in a shared mixed reality system, Proceedings of the
SIGCHI conference on Human factors in computing systems, pp. 577-584, 2003, USA

[21] Brown, D. G., Julier, S. J., Baillot, Y., Livingston, M. A., Rosenblum, L. J., Event-
based data distribution for mobile augmented reality and virtual environments,
Presence - Teleoperators and Virtual Environments, Vol. 13(2), pp. 211-221, 2004

[22] Bucolo, S., Billinghurst, M., Sickinger, D.: Mobile maze: a comparison of camera
based mobile game human interfaces, Proceedings of the 7th international conference
on Human computer interaction with mobile devices & services (MobileHCI'05) pp.
329-330, 2005, Austria

Chapter 10

Bibliography

203

[23] DeVaul, R., Sung, M., Gips, J., Pentland, A., MIThril 2003: Applications and
Architecture, Proceedings of the 7th IEEE International Symposium on Wearable
Computers (ISWC), pp. 4-11, 2003

[24] Feiner, S., MacIntyre, B., Seligmann, D., Knowledge-based augmented reality, In
Communications of the ACM, Volume 36, Issue 7, pp. 52-62, 1993

[25] Fiala, M., ARTag, a Fiducial Marker System Using Digital Techniques, In Proceedings
of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR'05) - Volume 2, pp. 590-596, 2005

[26] Fitzmaurice, G. W. Situated Information Spaces and Spatially Aware Palmtop
Computers, Communications of the ACM, Vol.36, Nr.7, pp 38-49, 1993

[27] Freeman, E., Hupfer, S., Arnold, K., JavaSpaces Principles, Patterns, and Practice,
Pearson Education, ISBN 0201309556, 1999

[28] Gelernter, D., Generative communication in Linda, ACM Transactions on
Programming Languages and Systems (TOPLAS), Vol. 9(1), pp. 80-110, 1985

[29] Greenhalgh C., Izadi S., Rodden T., Benford S.: The EQUIP Platform: Bringing
Together Physical and Virtual Worlds. Technical Report, University of Nottingham,
2001. http://www.crg.cs.nott.ac.uk/~cmg/Equator/Downloads/docs/equip-platform.pdf

[30] Feiner, S., MacIntyre, B., and Höllerer, T., Wearing it out: First steps toward mobile
augmented reality systems. In Proceedings of ISMR’99, pp. 363- 377, 1999, Japan

[31] Feiner, S., MacIntyre, B., Höllerer, T., Webster, A.: A touring machine: Prototyping 3d
mobile augmented reality systems for exploring the urban environment. Proceedings of
the First International Symposium on Wearable Computers (ISWC), pp. 74-81, 1997,
USA

[32] Föckler, P., Zeidler, T., Brombach, B., Bruns, E., Bimber, O., PhoneGuide: Museum
Guidance Supported by On-Device Object Recognition on Mobile Phones, Proceedings
of International Conference on Mobile and Ubiquitous Computing (MUM'05), pp. 3-10
2005, New Zealand

[33] Friedrich, W., ARVIKA - augmented reality for development, production and service.
Proceedings of International Symposium on Mixed and Augmented Reality (ISMAR),
pp. 3-4, 2002, Germany

[34] Gabber, E., Wool, A. How to prove where you are: tracking the location of customer
equipment, In Proceedings of the 5th Conference on Computer and Communications
Security, pp. 142-149, 1998, USA

[35] Gausemeier, J., Fruend, J., Matysczok, C., Bruederlin, B., Beier, D., Development of a
real time image based object recognition method for mobile AR-devices, Proceedings
of the 2nd International Conference on Computer Graphics, Virtual Reality,
Visualisation and Interaction in Africa (Afrigraph 2003), pp. 133-1392003, Africa

[36] Geiger, C., Paelke, V., Reimann, C., Mobile Entertainment Computing, In Lecture
Notes in Computer Science, Vol. 3105 / 2004, Springer Verlag, pp. 142-147, 2004

Chapter 10

Bibliography

204

[37] Gelernter, D., Generative communication in Linda, ACM Transactions on
Programming Languages and Systems (TOPLAS), Vol. 9(1), pp. 80-110, 1985

[38] Gelernter, D., Carriero, N., Coordination Languages and their Significance, In
Communications of the ACM, Vol. 35, No. 2, 1992

[39] Grimm P., Haller M., Paelke V., Reinhold S., Reimann C., Zauner J., AMIRE -
Authoring Mixed Reality, In Proceedings of The First IEEE International Augmented
Reality Toolkit Workshop, 2002, Germany

[40] Güvem, S., Feiner, S., Authoring 3D hypermedia for wearable augmented and virtual
reality. In Proceedings of the 7th International Symposium on Wearable Computers
(ISWC), pp- 118-126, 2003, USA

[41] Güven, S., Feiner, S., Oda, O., Mobile Augmented Reality Interaction Techniques for
Authoring Situated Media On-Site, In Proceedings of Mixed and Augmented Reality,
pp. 235-236, 2006, USA

[42] Hakkarainen, M.; Woodward, C.: Symball-Camera Driven Table Tennis for Mobile
Phones, Poster at ACM SIGCHI International Conference on Advances in Computer
Entertainment Technology (ACE 2005), pp. 321-324, 2005, Spain

[43] Hartley, R., Zisserman, A., Multiple View Geometry in Computer Vision (2nd Edition),
Cambridge Pres,s 2003

[44] Henning M., Massively Multiplayer Middleware, ACM Queue, Vol. 1 (10), pp. 40-45,
2004

[45] Henrysson, A., Billinghurst, M., Ollila, M., Face to Face Collaborative AR on Mobile
Phones. Proceedings International Symposium on Augmented and Mixed Reality
(ISMAR’05), pp. 80-89, 2005, Austria

[46] Hesina, G., Schmalstieg, D., Fuhrmann, A., Purgathofer, W., Distributed open
inventor: A practical approach to distributed 3D graphics.” In Proceedings of the ACM
symposium on Virtual reality software and technology (VRST'99), pp. 74–81. 1999,
UK

[47] Heumer, G., Amor, H.B., Weber, M.; Jung, B., Grasp Recognition with Uncalibrated
Data Gloves - A Comparison of Classification Methods, In Proceedings of Virtual
Reality Conference (VR'07), pp. 19-26, 2007, USA

[48] Höllerer, T., Feiner, S., Pavlik, J., Situated Documentaries: Embedding Multimedia
Presentations in the Real World, Proceedings of ISWC '99 (Third Int. Symp. on
Wearable Computers), pp. 79-86, San Francisco, CA, 1999

[49] Höllerer, T., Feiner, S., Terauchi, T., Rashid, G., and Hallaway, D. Exploring MARS:
Developing Indoor and Outdoor User Interfaces to a Mobile Augmented Reality
System. Computers and Graphics, 23(6), Elsevier Publishers, Dec. 1999, pp. 779-785,
1999

[50] Holweg D., Jasnoch U., Kretschmer U.: GEIST - Outdoor Augmented Reality in an
Urban Environment, Computer Graphics Topics, pp. 5-6, June 2002

Chapter 10

Bibliography

205

[51] Hsiao, T.-Y., Yuan S.-M.. Practical middleware for massively multiplayer online
games, IEEE Internet Computing, Vol. 9(5): pp. 47–54, 2005

[52] Humphreys, G., Houston, M., Ng, R., Frank, R., Ahern, S., Kirchner, P. D., Klosowski,
J. T., Chromium: a stream-processing framework for interactive rendering on clusters,
ACM Transactions on Graphics, Volume 21, Issue 3, pp. 693-702, 2002

[53] IBM TSpaces, http://www.almaden.ibm.com/cs/TSpaces, 2000

[54] Ingram, D., Newman, J., Augmented Reality in a Wide Area Sentient Environment,
Proceedings of the 2nd IEEE and ACM International Symposium on Augmented
Reality (ISAR 2001), p. 77-86, 2001, USA

[55] Johanson, B., Fox, A., Hanrahan, P., Winograd, T., The Event Heap: A Coordination
Infrastructure for Interactive Workspaces, IEEE Workshop on Mobile Computing
Systems and Applications (WMCSA), pp. 83-93, 2002

[56] Kalkusch, M., Lidy, T., Knapp, M., Reitmayr, G., Kaufmann, H., Schmalstieg, D.
Structured Visual Markers for Indoor Pathfinding, Proceedings of the First IEEE
International Workshop on ARToolKit (ART02), 2002

[57] Kato, H., Billinghurst, M., Marker Tracking and HMD Calibration for a video-based
Augmented Reality Conferencing System, In Proceedings of the 2nd International
Workshop on Augmented Reality (IWAR 99), pp. 85-94, 1999, USA

[58] Klopfer, E., Perry, J., Squire, K., Jan, M., Steinkuehler, C., Mystery at the Museum - A
Collaborative Game for Museum Education, CSCL (Computer Supported Cooperative
Learning) 2005, pp. 316-320, 2005, Japan

[59] Lamberti, F., Sanna, A., A Streaming-Based Solution for Remote Visualization of 3D
Graphics on Mobile Devices, In IEEE Transactions on Visualization and Computer
Graphics, Vol. 13, No. 2, Marc/April 2007

[60] Ledermann, F., Schmalstieg, D., APRIL: A High-level Framework for Creating
Augmented Reality Presentations, In Proceedings of Virtual Reality, pp. 187-194, 2005,
Germany

[61] Lee, G.A., Nelles, C., Billinghurst, M., Kim, G.J., Immersive Authoring of Tangible
Augmented Reality Applications, In Proceedings of the Third IEEE and ACM
International Symposium on Mixed and Augmented Reality (ISMAR'04), pp. 172-181,
2004, Austria

[62] Lindt, I., Ohlenburg, J., Pankoke-Babatz, U., Ghellal, S., A report on the crossmedia
game epidemic menace, Computers in Entertainment (CIE), Volume 5, Issue 1, Section
on Pervasive gaming, ACM Press, 2007

[63] Liu, Y.; Wan, G., Techniques for Selecting and Manipulating Object in Virtual
Environment Based on 3-DOF Trackers and Data Glove, In Proceedings of Conference
on Artificial Reality and Telexistence (ICAT '06), pp. 662-665, 2006, China

[64] Long, S., Aust, D., Abowd, G. D., Atkeson, C., Cyberguide: Prototyping Context-
Aware Mobile Applications. Proceedings of the CHI '96, pp. 293-294, 1996, USA

Chapter 10

Bibliography

206

[65] MacIntyre B., Feiner S., A Distributed 3D Graphics Library. In Proceedings of
International Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH’98), Annual Conference Series, pp. 361-370, 1998

[66] MacIntyre, B. Gandy, M., Prototyping applications with DART, the designer's
augmented reality toolkit. In Proceedings of STARS 2003, pp 19-22, 2003, Japan

[67] MacIntyre, B., Bolter, J.D., Moreno, E., Hannigan, B., Augmented Reality as a New
Media Experience, International Symposium on Augmented Reality (ISAR 2001), p.
197, 2001, USA

[68] Makri, A., Arsenijevic, D., Weidenhausen, J., Eschler, P., Stricker, D., Machui, O.,
Fernandes, C., Maria, S., Voss, G., Ioannidis N., ULTRA: An Augmented Reality
System for Handheld Platforms, Targeting Industrial Maintenance Applications,
Proceedings of 11th International Conference on Virtual Systems and Multimedia
(VSMM'05), 2005, Belgium

[69] Milgram P., F. Kishino: A taxonomy of mixed reality visual displays. EICE
Transactions on Information Systems, Vol E77-D, No.12 December 1994

[70] Milgram, P., Zhai, S., Drascic, D., Grodski, J., Applications of augmented reality for
human-robot communication, In Proceedings on Intelligent Robots and Systems (IROS
'93), volume 3, pp. 1467-1472, 1993, Japan

[71] Mogilev, D., Kiyokawa, K., Billinghurst, M., Pair, J., AR Pad: an interface for face-to-
face AR collaboration, Conference on Human Factors in Computing Systems (CHI'02)
Extended abstracts on Human factors in computer systems, pp. 654-655, 2002, USA

[72] Möhring, M., Lessig, C., Bimber, O., Video See-Through AR on Consumer Cell
Phones. Proceedings of International Symposium on Augmented and Mixed Reality
(ISMAR'04), pp. 252-253, 2004, USA

[73] Murphy, A.L, Picco, G.P., Roman, G, LIME: A Middleware for Physical and Logical
Mobility, International Conference on Distributed Computing Systems (ICDCS), pp.
524-541, 2001

[74] Naef, M., Lamboray, E., Staadt, O., Gross, M., The blue-c distributed scene graph, In
IEEE Proceedings on Virtual Reality (VR'03), pp. 275-276, 2003, Switzerland

[75] Newman, J., Schall, G., Barakonyi, I., Schürzinger, A., Schmalstieg, D., Wide-Area
Tracking Tools for Augmented Reality, In Proceedings of the 4th International
Conference on Pervasive Computing, 2006, UK

[76] Piekarski, W., Thomas, B., Tinmith-Metro: New Outdoor Techniques for Creating City
Models with an Augmented Reality Wearable Computer, In Proceedings of 5th
International Symposium Wearable Computers (ISWC'01), pp. 31-38, 2001,
Switzerland

[77] Piekarski, W., Thomas, B., Tinmith evo5 - An Architecture for Supporting Mobile
Augmented Reality Environments. 2nd International Symposium on Augmented
Reality (ISAR), pp. 177-178, 2001, USA

Chapter 10

Bibliography

207

[78] Pilet, J., Lepetit, V., Fua, P., Augmenting Deformable Objects in Real-Time, In
Proceedings of International Symposium on Mixed and Augmented Reality (ISMAR
2005), pp. 134-137, 2005 Austria

[79] Pirchheim, C., Visual Programming of User Interfaces for Distributed Graphics
Applications, Master Thesis at Graz University of Technology,
http://studierstube.icg.tu-graz.ac.at/stb-thesis.php

[80] Regenbrecht, H.T., Specht, R., A Mobile Passive Augmented Reality Device - mPARD.
Proceedings of ISAR, pp. 81-84, 2000, Germany

[81] Reitinger, B., Zach, C., Karner, K., Schmalstieg, D., Automated Model Acquisition
using 3D Reconstruction for Urban Planning, Demo at the ISMAR 2006 symposium,
2006, USA

[82] Rekimoto, J., Matrix: A Realtime Object Identification and Registration Method for
Augmented Reality. Proceedings of Asia Pacific Computer-Human Interaction
(APCHI) 1998, pages 63-68, 1998, Japan

[83] Rekimoto, J., TransVision: A Hand-held Augmented Reality System for Collaborative
Design, Proceedings of Virtual Systems and Multi-Media (VSMM '96), pp. 18-20,
Gifu, Japan, 1996

[84] Rekimoto, J., Ayatsuka, Y., CyberCode: Designing Augmented Reality Environments
with Visual Tags, Proceedings of DARE 2000, pp. 1-10, 2000, Denmark

[85] Rekimoto, J., Nagao, K. The World through the Computer: Computer Augmented
Interaction with Real World Environments, User Interface Software and Technology
(UIST '95), pp. 29-38, 1995

[86] Reitmayr, G., Drummond, T., Going out: Robust, Model-based Tracking for Outdoor
Augmented Reality, In Proceedings of International Symposium on Mixed and
Augmented Reality (ISMAR’06), pp. 109-118, 2006, USA

[87] Reitmayr, G., Schmalstieg, D., Collaborative Augmented Reality for Outdoor
Navigation and Information Browsing, Geowissenschaftliche Mitteilungen (Proc. 2nd
Symposium on Location Based Services and TeleCartography), pp. 53-62, Vienna
University of Technology, 2003

[88] Ribo, M., Lang, P., Ganster, H., Brandner, M., Stock, C., Pinz, A., Hybrid tracking for
outdoor augmented reality applications, In Computer Graphics and Applications
(CG&A) 2002 Vol.22, No.6, pp. 54-63, Nov. 2002

[89] Rohs, M., Gfeller, B., Using Camera-Equipped Mobile Phones for Interacting with
Real-World Objects. Advances in Pervasive Computing, Austrian Computer Society
(OCG), pp. 265-271, 2004, Austria

[90] Rohs, M.: Marker-Based Embodied Interaction for Handheld Augmented Reality
Games, In Proceedings of the 3rd International Workshop on Pervasive Gaming
Applications (PerGames) at PERVASIVE 2006, 2006, Ireland

Chapter 10

Bibliography

208

[91] Schall, G., Newman, J., Schmalstieg, D., Rapid and Accurate Deployment of Fiducial
Markers for Augmented Reality, In Proceedings of the 10th Computer Vistion Winter
Workshop (CVWW’05), 2005, Austria

[92] Schmalstieg, D., Wagner, D., Experiences with Handheld Augmented Reality, The
Sixth IEEE and ACM International Symposium on Mixed and Augmented Reality
(ISMAR’07), 2007, Japan

[93] Schmidt, D. C., Huston, S. D., C++ Network Programming: Systematic Reuse with
ACE and Frameworks, Addison-Wesley Longman, 2003

[94] Schweighofer, G., Pinz, A., Robust Pose Estimation from a Planar Target, IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 12, pp. 2024-
2030, 2006

[95] Shibata, F., Mobile Computing Laboratory, Department of Computer Science,
Ritsumeikan University, Japan, http://www.mclab.ics.ritsumei.ac.jp/research.html

[96] Siltanen, S., Hyväkkä, J., Implementing a natural user interface for camera phones
using visual tags, In Proceedings of the 7th Australasian User interface conference -
Volume 50, pp. 113-116, 2006, Australia

[97] Snowdon, D. N., West, A. J., AVIARY: Design Issues for Future Large, Scale Virtual
Environments, In Presence, Teleoperators and Virtual Environments, 3(4), pp. 288-308,
1994

[98] Stapleton, C.B., Hughes, C.E., Moshell, J.M., MIXED FANTASY: Exhibition of
Entertainment Research for Mixed Reality, CM International Symposium on Mixed
and Augmented Reality (ISMAR 2003), pp. 354-355, 2003, Japan

[99] Strauss, P. S., Carley, R., An Object-Oriented 3D Graphics Toolkit, In Proceedings of
the 19th annual conference on Computer graphics and interactive techniques
(SIGGRAPH`92), pp 341-349, 1992, USA

[100] Sunblad, O., Sundblad, Y.,. OLGA - a Multimodal Interactive Information Assistant.
Proceedings of the conference on Human Factors in Computing Systems (CHI 98), pp.
183-184, 1998, USA

[101] Sutherland, I., The Ultimate Display, In Proceedings of International Federation of
Information Processing, Spartan Books, pp. 506-508, 1965

[102] Sutherland, I., A Head-Mounted Three Dimensional Display, In Proceedings of Fall
Joint Computer Conference, pp. 757-764, 1968, USA

[103] Thomas, B. H., Piekarski, W., Glove Based User Interaction Techniques for
Augmented Reality in an Outdoor Environment. Virtual Reality: Research,
Development, and Applications, Vol. 6, No. 3, 2002

[104] Tramberend, H., Avocado: A distributed virtual reality framework. In Proceedings of
IEEE Virtual Reality (VR'99), pp. 14–21, 1999, USA

Chapter 10

Bibliography

209

[105] Vacchetti, L., Lepetit, V., Fua, P., Combining Edge and Texture Information for Real-
Time Accurate 3D Camera Tracking. In Proceedings of International Symposium on
Mixed and Augmented Reality (ISMAR'04), pp. 48-57, 2004, USA

[106] Viega, J., Conway, M. J., Williams, G., Pausch, R.: 3D magic Lenses, In Proceedings
of the 9th annual ACM symposium on User interface software and technology, pp. 51-
58, 1996

[107] Vlahakis, V., Ioannidis, N., Karigiannis, J., Tsotros, M., Gounaris, M., Stricker, D.,
Gleue, T., Daehne, P., Almeida, L., Archeoguide: An Augmented Reality Guide for
Archaeological Sites, IEEE Computer Graphics and Applications, V.22 N.5, pp. 52-60,
2002

[108] Wang, J. Zhai, S., Canny, J., Camera Phone Based Motion Sensing: Interaction
Techniques, Applications and Performance Study, In ACM UIST 2006, 2006, pp. 101-
110, Switzerland

[109] Wagner, D., Barakonyi I.: Augmented Reality Kanji Learning, In Proceedings of the
2nd IEEE/ACM Symposium on Mixed and Augmented Reality (ISMAR 2003), pp.
335-336, 2003, Japan

[110] Wagner, D., Billinghurst, M., Schmalstieg, D., How Real Should Virtual Characters
Be?, Conference on Advances in Computer Entertainment Technology (ACE 2006),
2006, USA

[111] Wagner, D., Pintaric, T., Ledermann, F., Schmalstieg, D., Towards Massively Multi-
User Augmented Reality on Handheld Devices, Proceedings of the 3rd International
Conference on Pervasive Computing (PERVASIVE 2005), pp. 208-219, 2005,
Germany

[112] Wagner, D., Schmalstieg, D., ARToolKit on the PocketPC Platform, The Second IEEE
International Augmented Reality Toolkit Workshop, 2003, Japan

[113] Wagner, D., Schmalstieg, ARToolKitPlus for Pose Tracking on Mobile Devices,
Proceedings of 12th Computer Vision Winter Workshop (CVWW'07), 2007, Austria

[114] Wagner, D., Schmalstieg, D., Muddleware for Prototyping Mixed Reality Multiuser
Games, Proceedings of IEEE Virtual Reality 2007 (VR2007), 2007, USA

[115] Wagner, D., Schmalstieg, D. First Steps Towards Handheld Augmented Reality.
Proceedings of the 7th International Conference on Wearable Computers (ISWC 2003),
pp. 127-135, 2003, USA

[116] Wagner, D., Schmalstieg, D., Billinghurst, M., Handheld AR for Collaborative
Edutainment, Proceedings of 16th International Conference on Artificial Reality and
Telexistence (ICAT), 2006, China

[117] Zhang, X., Fronz, S., Navab, N., Visual Marker Detection and Decoding in AR
Systems: A Comparative Study, Proceedings of the International Symposium on Mixed
and Augmented Reality (ISMAR’02), pp. 97-108, 2002, Germany

Chapter 10

Bibliography

210

[118] Zyda, M., Gossweiler, R., Morrison, J., Singhal, S., Macedonia, M., Panel: Networked
Virtual Environments, In Proceedings of the Virtual Reality Annual International
Symposium, VRAIS '95, pp. 230-231, 1995

[119] Zyda, M., Macedonia, M., Special Issue on Networked Virtual Environments.
Presence: Teleoperators and Virtual Environments, 3(4)

