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Abstract 
 
Augmented Reality (AR) aims at developing new user interfaces. Although research 
has produced a large number of application prototypes and AR frameworks in the last 
20 years, no project has yet been practical enough to create a mass market success. 

There are many reasons for this. Traditionally, AR researchers have primarily 
created prototypes that aim to solve engineering problems such as maintenance or 
new interfaces for complex environments such as head up displays for navigation and 
battlefield systems. Most researchers still see AR as a basic research area. Developing 
easy to use, practical applications, such as for home users, is therefore usually not a 
goal. Another problem with many Augmented Reality systems is the highly complex 
hardware setup, often including expensive commercial sensors, input devices and 
output devices. These devices are often bulky and fragile, since they were never meant 
to be operated by untrained users. 

 Research at the Vienna University of Technology and the Graz University of 
Technology has aimed at moving Augmented Reality to a mass-market. Instead of 
specialized and expensive hardware, this project targets low cost mobile devices, 
namely mobile phones. In contrast to traditional AR hardware, people already own 
these devices and know how to operate them. Recently, processing capabilities of 
mobile phones have reached a level that makes these devices capable of running 
standalone AR applications and renders them ideal candidates for mass marketed 
Augmented Reality solutions. 

This thesis presents a framework that for the first time allows for the creation of 
practical AR applications on end user-owned devices. The software runs on a broad 
range of devices and has been used for several–some even commercial–applications. 
To prove the applicability of the new platform the author of this thesis has performed 
evaluations with untrained users in real-life environments such as museum 
exhibitions or conferences. 
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Chapter 1  

Introduction 

1.1 Augmented Reality 
Many systems today are too difficult to use because of complex user interfaces. This is 
partially due to a lack of competence in designing user interfaces many engineers 
suffer from. A more important reason is that with the growing computational power 
of modern systems, devices and applications become more complex and integrate 
more features.  Soft- and hardware that was only available to a small amount of 
specialists a few decades ago, is now a well-integrated part of everyone’s daily life. 
Good user interface design is therefore no longer an option but a hard requirement 
for developing highly usable applications. 

Augmented Reality (AR) research aims at developing new human computer 
interfaces. Instead of showing information on isolated displays, it puts data right 
where it belongs: into the real world. AR thereby blurs the distinction between the 
real world and the user interface and combines them in a natural way allowing the 
creation of simple and intuitive user interfaces even for complex applications. 

Until today there is no clear definition of AR. Although first AR-like systems 
were developed in the 1960s, Augmented Reality only separated itself from virtual 
reality and became a research area in its own rights in the beginning of the 1990s. 
Today two main definitions exist that describe Augmented Reality. Due to a lack of an 
official agreement on the term, both are accepted. Following the definition of Azuma 
[3] an AR system has to fulfill the three requirements: 

• Combine the real and virtual 
• Registered in the real world in 3D 
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• Interactive in real time 

The first requirement is a fundamental description of AR in that it combines the 
real world with virtual content. The second requirement separates Augmented Reality 
from the more general concepts of mixed reality or mixed media by requiring that the 
virtual content must be registered in 3D within the real world. Finally “Interactive in 
real time” requires the system to react to the user and update in real time which 
distinguishes AR from all off-line augmentations such as the use of computer 
graphics in movies. 

According to the older Virtuality continuum proposed by Milgram [69] (see 
Figure 1.1), AR is just one possible manifestation of Mixed Reality (MR), which 
brings together real and virtual within a single display. The Virtuality continuum 
juxtaposes AR and Augmented Virtuality (AV). AR is mostly grounded in the real 
world, with a limited set of virtual objects mixed in. The inverse concept, AV, is 
conceived as a Virtual Environment with some real aspects - a recurring example for 
AV are video-textured avatars (showing a live video feed of real people) within a 
Virtual Environment. The boundary between AR and AV is not strictly defined. 

  
Figure 1.1: Milgram's reality-virtuality continuum. 

Augmented reality (AR) is a natural complement to mobile computing research, 
since a mobile AR system can assist the user directly at the workplace instead of 
requiring the user to attend to stationary workstations. There has been a lot of work 
in creating mobile AR setups using mobile personal computer hardware such as 
notebooks. The advantage of those approaches is that hard- and software very similar 
to traditional non-mobile AR systems can be used. While there are many working 
systems composed of a notebook and a head mounted display (HMD), most of these 
setups have been designed as mere proof-of-concept and do not provide a usable form 
factor. Usually wearable prototypes have all their hardware mounted to a large 
backpack, including heavy power supplies for items not designed for mobile use. 
While such backpack/HMD combinations unite superior performance with hands-
free operation, they severely affect dexterity, prevent practical use and are socially 
unacceptable. They are maintenance intensive and lack robustness due to their 
complex hardware setups. Most of the devices used were not designed for mobile 
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deployment and therefore not only require heavy batteries but also use fragile 
connectors and cables. Furthermore, the prohibitive cost of these setups prevents 
deploying them in a commercial market. In addition, the development of HMD 
technology, which is an indispensable part of such an approach to wearable AR, is not 
keeping pace with the advances in computer and sensor technology.  

At the same time, broad consumer interest in very small form factor devices and 
displays, such as cell phones and handheld computers, is dramatically accelerating the 
development in this area. We therefore consider it to be obvious that one of the next 
major steps in mobile AR development will be a shift to smaller and more ergonomic 
devices. 

 
Figure 1.2 Ergonomic considerations for Augmented Reality 

Ideally an AR setup would look like the right image in Figure 1.2: instead of 
carrying specialized, complex and expensive hardware a single pair of glasses would 
be sufficient for video as well as audio augmentations. Of course such a system will 
not be feasible for at least a decade. Instead the work in this thesis concentrated on 
mobile devices that are available today: mobile phones and PDAs, which together 
with Tablet PCs and the so called Ultra Mobile PCs (UMPCs) form the hardware 
basis for handheld Augmented Reality. 

1.2 Handheld Augmented Reality 
Personal digital assistants (PDAs), game handhelds and smartphones have fueled the 
interest in mobile gaming from both a commercial and a scientific perspective. While 
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there is a lot of previous research on pervasive computing, little work has been done 
on mobile multi-user Augmented Reality applications. 

 
Figure 1.3: Form factors of Mobile Augmented Reality systems: 

(a) traditional "backpack" computer & HMD, (b) Tablet PC, (c) PDA, (d) Mobile phone 

In this thesis we define handheld AR as a setup, where the user holds the mobile 
device actively in his hand (b, c and d in Figure 1.3): Handheld AR is different from 
AR using wearable computers with HMDs where users have both hands free (a in 
Figure 1.3). A phone-based AR setups allows the user to use her phone as an AR 
interaction device, although some of the processing or application intelligence might 
not be implemented on the phone itself. 

Each of the device classes in Figure 1.3 above has unique characteristics: 
Backpack setups provide most processing power. Furthermore their HMDs give the 
highest immersion among all four device classes. The digitizer inputs of Tablet PCs 
make it possible to create highly accurate, yet easy to use user interfaces. Their 
processing power is similar to backpacks although these devices have to make 
compromises due to weight and size restrictions. 

PDAs have recently merged with mobile phones. Classic PDAs without phone 
capabilities hardly exist anymore as today most PDAs include networking capabilities 
too. They are typically more powerful than mobile phones, have larger displays and 
touch screens. Mobile phones are the smallest and most ubiquitous device class. In 
contrast to the previously mentioned device classes they are today a fully integrated 
part of most people’s daily life. Most mobile phones have similar screen resolutions as 
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PDAs, but their displays are smaller and most often they are not equipped with touch 
screen input. Naturally they possess the smallest amount of processing power of all 
device classes. 

Besides ergonomic factors and processing capabilities, availability of ready-to-use, 
commercial systems in large numbers is a major factor for practical projects and 
setups. While mobile phones and PDAs usually come as a fully AR-capable package, 
many Tablet PCs require an external camera for video-see through Augmented 
Reality. While this can be easily achieved with minimal technical knowledge, the 
implementation of a back-pack setup is a difficult and non-trivial engineering task. 
The only company known to produce commercial back-pack systems is a_rage1, a 
university spin-off. Their current status and commercial success is unknown. 

Another decisive factor for practical setups is the cost per client device. Tablet 
PCs typically start at ~1000€. The combined hardware costs of backpack setups 
though, including a notebook, HMD and tracking solution usually sums up to several 
1000€. A commercial system can therefore be expected to cost between 5000€ and 
10000€, creating severe problems for mass user deployment. PDAs and mobile 
phones typically cost between 300€ and 600€. Furthermore, most people today 
already own mobile phones, which makes targeting the end users’ personal devices a 
major goal for reducing costs. While only a small number of these phones are today 
capable of running AR applications, their number is constantly increasing. 

1.3 Hypothesis 
This thesis discusses the suitability of mobile phone based Augmented Reality. It 
therefore poses the following hypothesis statements that are examined throughout the 
remainder of this document: 

H1 Augmented Reality on phones can work as well as on personal computers, 
despite the fact that phones are less powerful, have smaller screens and 
inferior input capabilities. 

H2 Using phone based AR, larger mobile Augmented Reality systems than 
previously shown can be built at reasonable costs. 

H3 The phone’s form factor is more suitable for untrained users than HMD-
based setups. 

                                                 
1 http://www.a_rage.com 



 
Chapter 1 

 
Introduction 

 
6

 

 

The statements above are phrased vaguely on purpose and require a more 
detailed explanation in order to not be misunderstood: 

This thesis defines AR on phones as using off-the-shelf mobile phones for AR 
input and output devices. This does not prevent developing systems with backend 
servers for outsourcing tasks, as long as this backend is not perceived as part of the 
user interface. Naturally phones possess inherent weaknesses compared to PC-based 
systems such as inferior processing power. A major part of the work done in the 
course of this thesis therefore concentrated on developing techniques that balance the 
available resources. 

By “size of a system”, this thesis defines the number of parts and people 
interacting or collaborating. A larger system therefore integrates more interactions, 
applications, devices or users. As will be shown in the remainder of this thesis, the 
advantage of low cost in client devices is a major advantage for phone based AR – 
especially compared to backpack setups. The development of such large systems 
requires a toolkit that is easy to use yet capable to support complex requirements of 
large setups, or as Einstein said: “Everything should be made as simple as possible, but 
not one bit simpler.” 

HMD-based setups clearly have the advantage of (potentially) higher immersion 
than handheld mobile AR systems. Yet, they are not well accepted by end users for 
several reasons including cabling, fragility, ergonomic factors and motion sickness. 
This thesis does not present a formal study comparing HMD-based setups versus 
TabletPC and phone based alternatives. Still, our own experiences over many years 
with all three variants clearly show that handheld solutions are most often preferred 
over HMD-based ones. 

The positive reception of handheld AR by end users throughout the many trials 
conducted during this thesis work, confirms a baseline of wide acceptance of 
handheld AR. 

1.4 Contribution 
The contribution of this thesis is the design and development of a fully working 
Augmented Reality framework that works on end-users’ devices and was tested in 
multiple practical applications outside research labs. It is empirical proof of the 
hypothesis formulated above. The system is highly novel in being the first and 
currently only implementation of a complete handheld AR platform. This includes in 
particular: 
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• A fiducial marker tracking library that is suitable for mobile phones and 
PDAs. 

• A scene-graph based render engine for AR applications, specifically targeting 
the restrictions of mobile phones. 

• A communication framework that targets the specific requirements of 
distributed applications with spontaneous connectivity 

• A flexible Augmented Reality framework the combines the back building 
blocks listed above into an easy to use prototyping toolkit. 

• Various applications that explore the possibilities and weaknesses of AR on 
mobile phones and similar devices. 

1.4.1 Marker Tracking System for Phones 

Pose tracking is an integral part of every AR and VR application. The user’s or 
device’s pose must be measured accurately, robustly and in real-time. While there are 
many commercial tracking systems available that perfectly fulfill these requirements, 
these solutions typically target stationary setups. For mobile setups tethered and 
stationary systems are not suitable, which rules out an outside-in tracking approach 
that is the basis for most commercial tracking systems. 

Targeting a lost-cost solution that should run on unmodified mobile phones, 
narrows down the available options considerably. Most mobile phones today are 
equipped with built-in cameras, which naturally lends itself to using computer vision 
based approaches for tracking. Tracking fiducial markers is a common strategy to 
achieve robustness and computational efficiency simultaneously. 

The ARToolKitPlus library developed in this thesis is based on the well known 
open source ARToolKit library. It was ported to the Windows CE environment, 
optimized for the mobile phone platform and heavily extended with features that 
support mobility, such as automatic thresholding or large amounts of markers. The 
very latest version of ARToolKitPlus (also known as Studierstube Tracker) is a 
complete redevelopment that is no longer related to ARToolKit on a source code basis 
and improves several outstanding issues such as memory consumption, tracking 
quality or numerical stability. 

A well working tracking system is the basic foundation of every AR setup. Hence, 
ARToolKitPlus was welcomed by the AR community and is used today in many AR 
applications. The results of the work on ARToolKitPlus have been reported in [113]. 
Details on the developed solutions are given in chapter 3 of this thesis. 
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1.4.2 A scene-graph based render toolkit for mobile phones 

Next to tracking, rendering is the second most important aspect of every AR system. 
Although Augmented Reality does not define rendering as a hard requirement, most 
systems concentrate on graphical augmentations, rather than other feedback such as 
audio, tactical or olfactory. 

While professional solutions for rendering on mobile phones exist, these libraries 
are usually expensive, closed source and not sufficiently general, which makes them 
hard to extend and to use on commercial projects. 

Studierstube Scene-Graph (StbSG) developed in the course of this thesis was 
created to provide a similar flexibility such as well known scene-graph libraries on 
desktop computers. Yet, care was taken to respect the specific restrictions of mobile 
phones including low memory footprint, fast operation and support for native 
renderers such as OpenGL ES and Direct3D. StbSG has been reported in [92]. Details 
are given in chapter 6 of this thesis. 

1.4.3 Communication framework for mobile AR 

While many AR systems today are single-user setups, the full power of phone-based 
AR can only be unleashed in multi-user applications that allow a large numbers of 
users to share the virtual space on their phones introduces them to. There has been a 
large amount of research for distributed VR systems, but only little for AR 
applications. Existing research into this direction commonly assumes a stable 
connection with high powered servers as well as clients. 

For truly mobile and pervasive setups though, connectivity loss is not an 
exception but rather a rule. An ideal multi-user system would run stand-alone when 
no networking is available and instantly make use of spontaneous network 
connectivity. Hence, applications as well as the underlying communication 
framework must target these circumstances in their design. 

The Muddleware communication framework developed in this thesis specifically 
targets these requirements. It is built around a server-hosted XML database that can 
be addressed via XPath queries. The client software is lightweight and allows 
accessing the shared database either explicitly via query commands or by using a 
shared-memory mechanism. Its scripting capabilities support the development of 
data-driven applications. 
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Muddleware is used in several internal projects at the Graz University of 
Technology as well as by other researchers. Details on Muddleware have been 
reported in [114] and are presented in chapter 5 of this thesis. 

1.4.4 Studierstube ES Framework 

The contributions listed above build the basis for a practical, mobile AR system. Yet, 
creating a real application requires tremendous efforts when directly combining these 
basic building blocks. Studierstube ES (StbES) is a framework that integrates these 
components into an easy to use solution than can be adapted to many client devices. 
Details on StbES have been reported in [92] and are given in chapter 6. 

1.4.5 Evaluations in practical Applications 

The Handheld AR system developed in this thesis allows for the first time to build 
large, practical AR systems on phones. In the course of this thesis several applications 
were developed and evaluated. The results of these evaluations and the experiences 
gained are important outcomes for other researchers, who aim to build similar setups. 

Early Handheld AR applications reported in this thesis such as “Kanji Teaching”, 
“Invisible Train”, the “Virtuoso” game and the “MARQ game at Technisches 
Museum Wien” were developed using predecessors of StbES. While these applications 
were based on PDAs with attached cameras, later applications such as “Expedition 
Schatzsuche” or “Signpost 2007” were deployed on unmodified and therefore more 
robust devices. 

The applications developed, experiences gained and evaluations performed have 
been reported in [109], [110], [111], [115] and [116]. Details are given in chapter 7. 

1.5 Results 
This document describes the development and architecture of the handheld AR 

system that was developed as part of this thesis. It mainly concentrates on presenting 
Studierstube ES, which is the latest version of the handheld AR project and the third 
generation of this software. 
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Over the last four years the author has continuously improved the software and 
benefited from the increasing capabilities of newly introduced mobile phones and 
PDAs at the same time. There is reason to believe that handheld AR is now suitable 
for real life usage by regular end users (customers, home users) which is not equally 
true for other variants of AR setups. The work presented in this thesis is based on the 
assumption that handheld AR is suitable as a mass-market interface if it fulfills the 
following requirements: 

• Low cost: A practical solution to be used at anytime and anyplace must be low 
cost and therefore run on off-the-shelf commercial devices. 

• Robust and fool-proof: To be usable by untrained users in unsupervised 
situations, AR system must be robust and fool-proof. This requires soft- and 
hardware that was specifically designed to be used by non-experts. It also 
requires the creation of intuitive user interfaces. 

• Self contained operation and networking support: Support for collaboration 
is fundamental to unleash the full potential of AR applications, which requires 
networking. On the other hand users expect their devices to run at any time 
and any place which demands self contained operation. A successful system 
must therefore be able to run standalone as well as take benefit of networking 
capabilities. 

• Tracking support: Real-time tracking is probably the most fundamental 
requirement to any AR system. While many AR research approaches employ 
high-quality, commercial tracking solutions, a system for the masses must rely 
on simpler solutions that allow taking advantage of built-in device capabilities. 

• Rapid prototyping: Although solutions developed in this thesis target a mass 
market of end users there is still a lot of movement in the actual type and 
design of applications and user interfaces. It is therefore important to support 
the fast creation of new applications to evaluate new concepts. 

• Content creation: After a first “wow-effect” wears off, users demand practical 
benefits which, in the case of AR, require a strong content creation pipeline. 
Other than for pure research it is not enough to get data “somehow” into the 
AR application. Instead a clean chain of tools that relies on industry standards 
is required. 

Building upon the lessons learned in this thesis, researchers can more easily 
evaluate Augmented Reality concepts and applications scenarios in realistic 
environments. Until now, applications only included a small number of users. No 
other mobile setups with more than 3 users have been reported so far. Finally, our 
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system allows creating and deploying applications evaluating the following scenarios 
with real users in real environments: 

• Massive Multi User AR: Augmented Reality can create shared virtual spaces 
that are collocated with the real world. The full potential of these concepts can 
only be exploited with many collaborative or competitive users. Until today the 
high costs of typical AR systems prevented the introduction of AR “to the 
masses”. 

• Evaluating AR applications with real users: So far applications have typically 
been evaluated with test users in test environments (research labs). Bringing 
AR to the people and making it run in their devices allows evaluating usage in 
natural environments and conditions. 

• High quality content: Content creation is an expensive business and only pays 
off if the market is large enough to support it. The number of deployed AR 
capable mobile phones is predicted to reach one billion by 20122 making it 
larger than any console or PC gaming market. The prediction provides a strong 
backup for continuing work on handheld Augmented Reality. 

1.6 Collaboration statement 
This thesis builds upon work done in collaboration with other researchers. The 
following list of publications gives an overview of the people involved in the handheld 
AR project: 

• Schmalstieg, D., Wagner, D., Experiences with Handheld Augmented Reality, 
The Sixth IEEE and ACM International Symposium on Mixed and Augmented 
Reality (ISMAR’07), 2007, Japan  
This paper presents the MARQ Museum Augemented Reality Quest application 
and the Studierstube ES system it builds upon. 

• Wagner, D., Schmalstieg, D., First Steps Towards Handheld Augmented 
Reality. Proceedings of the 7th International Conference on Wearable 
Computers (ISWC 2003), pp. 127-135, 2003, USA  
This paper represents the first publication in the course of thesis and describes the 
Signpost 2003 application. 

• Wagner, D., Schmalstieg, D., ARToolKit on the PocketPC Platform, The 
Second IEEE International Augmented Reality Toolkit Workshop, 2003, Japan 

                                                 
2 Canalys report from Nov. 2006, http://www.canalys.com 
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This publication discusses the predecessor of ARToolKitPlus and hence the first 
real-time 6DOF tracking solution running natively on off-the-shelf  PDAs. 

• Wagner, D., Barakonyi, I., Augmented Reality Kanji Learning, Proceedings of 
the 2nd IEEE/ACM Symposium on Mixed and Augmented Reality (ISMAR 
2003), 2003, Japan  
This publication presents the AR Kanji Teaching application, a simple memory 
game that trains the player in reading Kanji symbols. 

• Wagner, D., Schmalstieg, D., A Handheld Augmented Reality Museum Guide, 
Proceedings of IADIS International Conference on Mobile Learning 2005 
(ML2005), 2005, Malta  
The publication gives an overview of the handheld AR project and its work in the 
area of AR in museums. 

• Wagner, D., Pintaric, T., Ledermann, F., Schmalstieg, D., Towards Massively 
Multi-User Augmented Reality on Handheld Devices, Proceedings of Third 
International Conference on Pervasive Computing (Pervasive 2005), 2005, 
Germany  
The paper presents the Invisible Train application and draws conclusions for the 
suitability of handheld AR for the masses. 

• Wagner, D., Billinghurst, M., Schmalstieg, D., How Real Should Virtual 
Characters Be?, Conference on Advances in Computer Entertainment 
Technology (ACE 2006), 2006, USA  
The paper written during the internship of the first author at the HITLabNZ, 
studies the influence of virtual characters in Augmented Reality. 

• Wagner, D., Schmalstieg, D., Handheld Augmented Reality Displays, 
Proceedings of IEEE Virtual Reality (VR2006), 2006, USA  
This position statement publication gives a broad overview on the latest 
developments in the handheld AR project. 

• Wagner, D., Schmalstieg, D., Billinghurst, M., Handheld AR for Collaborative 
Edutainment, Proceedings of 16th International Conference on Artificial 
Reality and Telexistence (ICAT), 2006, China  
This paper presents a user study that compares the paper, desktop and handheld 
AR variants of a multi-player edutainment game. 

• Wagner, D., Schmalstieg, ARToolKitPlus for Pose Tracking on Mobile Devices, 
Proceedings of 12th Computer Vision Winter Workshop (CVWW'07), 2007, 
Austria  
The paper gives a state of the art report on 6DOF tracking on mobile phones. 

• Wagner, D., Schmalstieg, D., Muddleware for Prototyping Mixed Reality 
Multiuser Games, Proceedings of IEEE Virtual Reality 2007 (VR2007), 2007, 
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USA  
The paper presents Muddleware, the networking middleware developed during 
this thesis. 

The following people deserve specific mentioning, since a considerable part of 
this thesis would not have been possible without them: 

• Istvan Barakonyi of Graz University of Technology co-developed the 
Signpost2007 application and animated the Virtuoso virtual character. He also 
co-developed the idea of learning Kanjis using Augmented Reality and helped 
in translating symbols and finding correct 3D models for the Kanji teaching 
application. 

• Michael Kalkusch of Graz University of Technology and Thomas Psik of 
Vienna University of Technology wrote the Java client implementation of 
Muddleware. 

• Hirokazu Kato of NAIST, Japan and Mark Billinghurst of HITlab New 
Zealand developed the original ARToolKit library that ARToolKitPlus builds 
upon. Mark Billinghurst also co-designed the user study on virtual characters 
and developed most of the conclusions from the evaluation results. 

• Nina Mayer of Landesmuseum Kärnten researched and designed all the 
hotspots for the MARQ application. Together with Uwe Neuhold of Verdandi, 
Nina Mayer moderated the evaluation at the Landesmuseum Kärnten. 

• Thomas Pintaric co-developed the Invisible Train applications, built most of 
the props as well as organized and joined most of the demonstrations that led 
into the evaluation results. He’s also the author of the DSVL Directshow 
Wrapper library that is used for development on the PC.  

• Christian Pirchheim of Graz University of Technology developed the 
graphical user interface creation tool “Thekla” that builds on top of 
Muddleware. 

• Matthias Stifter of Imagination GmbH developed most of the MARQ content 
and extended the first prototype into its final form. 

• Albert Walzer of Graz University of Technology created graphics and videos 
for most of the applications and was an invaluable help for designing game 
concepts. 

The remainder of this thesis discusses how the requirements stated in chapter 1.2 
were met: After related work and state of the art is evaluated in chapter 2, chapter 3 
presents the solution developed for tracking, while chapter 4 describes the rendering 
toolkit. Chapter 5 discusses the requirements on networking for handheld AR 
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applications and describes the “Muddleware” networking middleware developed in 
this thesis. Chapter 6 gives details about the handheld AR framework Studierstube ES. 
It also presents Sphinx, an engine for creating multi-player AR treasure hunt games. 
Chapter 7 reports on applications developed and studies performed during this thesis. 
In chapter 8 conclusions are drawn and guidelines are given for development of 
handheld AR systems. The chapter finishes with an outlook into future research 
directions. The appendix in chapter 9 presents source code examples of simple AR 
applications developed with Studierstube ES. It also contains all questionnaires of the 
studies performed. 
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Chapter 2  

Background and Related Work 
This chapter reports on existing work in all areas that this thesis touches. Since the 
thesis reports on an extensive system design and draws inspiration from many 
areas, only the most relevant aspects are examined here. After looking at general 
aspects of previous work in Augmented Reality in section 2.1, this chapter 
discusses relevant work on 3D user interfaces in section 2.2., followed by the 
related issue of content creation in section 2.3. More technical aspects are 
examined in the rest of the chapter: Section 2.4 discusses pose tracking solutions 
for embedded devices, section 2.5 examined multiuser technology for AR and 
section 2.6 provides background on wireless connectivity technology, which is 
relevant for this work. 

2.1 Augmented Reality 
In 1968 Ivan Sutherland created the first head-mounted display (HMD) [101][102]. 
Due to limited processing power, his application showed only a simple wireframe 
model overlaid onto the real world. Yet, it marks the first application that fulfills the 
definition by Azuma and Milgram (see above). 

The first Augmented Reality applications evolved from basic research, used 
enormously expensive hardware and consequently mostly covered research and 
technical problems only. In his 1995 survey paper Azuma lists six categories for AR 
applications: medical, manufacture and repair, annotation and visualization, robot 
path planning, military aircraft and entertainment. Some seminal works in these areas 
are given in the following. 

Researchers at UNC Chapel Hill conducted first trials of overlaying 3D 
representations of ultra-sound data onto patients [5]. In the “Knowledge-based 
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Augmented Reality for Maintenance Assistance” (KARMA) project Feiner et al. 
created a laser printer maintenance application [24]. Milgram developed the ARGUS 
system [70] to create an easier way for robot path planning. 

With the introduction of powerful portable computers and notebooks, mobile 
AR setups became possible. The Touring Machine [31][30] was among the first to use 
this new hardware platform for mobile systems. A later project of the same research 
group was MARS (Mobile Augmented Reality Systems) [49]. Presented in 1999, it was 
one of the first truly mobile augmented reality setups, which allowed the user to freely 
walk around while having all necessary equipment mounted onto his back. Several 
similar platforms such as BARS [21], Tinmith [77] and Studierstube [56] examined 
various application areas. 

Due to the recent availability of Tablet PCs and UMPCs many researchers use 
these devices to bring existing software to smaller devices. Newman et al. use these 
mobile devices for experiments on wide area tracking [75]. Reitinger uses UMPCs to 
gather data in an urban environment [81]. After starting with backpack setups the 
iPERG project [62] then switched to UMPCs and Tablet PCs due to their lower costs 
and hardware maintenance requirements. The AMIRE3 project used Tablet PCs for a 
museum guide. 

2.1.1 Augmented Reality on Handheld and Embedded Devices 

Even before the success of the smartphones as mass-marketed items, pioneering 
projects started using small displays for custom see-through devices. Many early 
works at least partially outsourced processing tasks to a nearby server via tethered or 
wireless networking. 

As can be seen in Figure 2.1 there are four different levels of outsourcing 
processing tasks to a server: In the ideal case Figure 2.1(a), all work is performed 
natively by the client making it independent of the server and infrastructure. At the 
other extreme, many early handheld AR applications were based on a thin client 
approach with a "video-in/video-out" communication mechanism for receiving 
assistance from a computing server, which is shown as Figure 2.1(d). Such a setup 
does not only require a frame-by-frame communication but also requires sending 
video images in both directions requiring maximum performance of the network 
connection. 

                                                 
3 http://www.amire.net/ 
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Figure 2.1: Different level of outsourcing to a server: 

a) All tasks are run natively by the client, b) Server performs tracking, 
c) Server performs tracking and application logic, d) All work is done by the server 

However, these two solutions are just extreme examples of how work may be 
allocated among a server and handheld client. Depending on circumstances, solutions 
in between these extremes may be useful and necessary. 

If one limits the discussion to a typical AR system which uses a single video 
source for both tracking and video see-through display, the processing pipeline is 
composed of the following main tasks: video acquisition, tracking, application 
computation, rendering, display. Offloading some of these tasks to a computing 
server is an instance of horizontally distributed simulation [65], and it is established 
knowledge that a scalable solution (many clients, many servers etc.) requires cautious 
use of the available network bandwidth [118]. Communication of raw video streams 
in both directions (Figure 2.1c) does not satisfy such bandwidth constraints. A better 
alternative seems to be streaming graphics commands back to the client such as done 
in the Chromium [52] framework. 

The approach depicted in Figure 2.1(b) offloads the tracking task to a computing 
server, which requires upstream communication of pre-processed, compressed video 
for visual tracking purposes, followed by downstream communication of pose 
information. The advantage of this approach is that a very concise, but generic and 
computationally expensive task is offloaded to the server, while all application details 
are handled exclusively by the client, thus dependencies between client and server are 
minimal. For example, while tracking of artificial fiducials can be performed in real-
time on embedded clients now, natural feature tracking can benefit from the greater 
computational power of a server for at least several more years. 

Amselem's work [1] and Fitzmaurice's Chameleon [26] used small tethered LCD 
displays for location based information. Rekimoto's NaviCam [85] used color-coded 
stickers to track objects in the environment. Due to the tethered trackers in these early 
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works, the degree of mobility was rather limited. mPARD [80] is a variant using 
analogue wireless video transmission to replace tethers. The Transvision [83] project 
by Sony CSL introduced handheld AR devices for a shared space. Researchers at 
HITLab later improved this concept [71] with a better user interface and an optical 
tracking solution re-using the camera needed for video see-through. All these works 
use simple tethered displays and cameras for the mobile device and are therefore 
extreme examples of Figure 2.1(d). 

From 2000 on, PDAs with wireless networking were considered suitable for thin-
client solutions outsourcing computationally intensive tasks such as rendering, 
tracking and application to a nearby workstation. The Batportal [54] used non-mixed 
3D graphics using VNC, while the AR-PDA project [35] used digital image streaming 
from and to an application server. Both projects again use the method describe in 
Figure 2.1(d). Shibata's work [95] aims at load balancing between client and server - 
the weaker the client, the more tasks are outsourced to a server. It can therefore vary 
between all situations described in Figure 2.1. ULTRA uses PDA-based AR to support 
maintenance workers, but concentrates on augmenting "snapshot" still images [68]. In 
the absence of real-time tracking for infrastructure independence it performs all tasks 
natively (Figure 2.1a). 

In 2003 the author ported ARToolKit [57] to the PocketPC and developed the 
first fully self-contained PDA AR application [115]. This platform was used in a peer 
to peer game in [111]. Möhring et al. were the first to successfully target a consumer 
smartphone for mobile AR [72]. The scarce processing power of the target platform 
allowed only a very coarse estimation of the object's pose on the screen. Henrysson 
ported ARToolKit to the Symbian platform and created the first two-player AR game 
[45] on current-generation smartphones. 

Summarizing these developments one can conclude that there is no ideal 
solution for systems with scarce processing capabilities. An infrastructure 
independent solution, as developed in the work of this thesis is desirable, but not 
feasible for all situations. E.g. when artificial feature tracking is not an option, 
embedded devices simply do not have the processing capabilities yet. While this will 
certainly change in the future, new more demanding problems will emerge too. 

2.1.2 Handheld Augmented Reality Gaming 

Augmented Reality (AR) as a new user interface technology has yet to see its 
breakthrough into mainstream acceptance - but why? Generally speaking, new user 
interfaces are often employed first in professional applications, where potential gains 
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in productivity can justify high investments and even allow for some user interface 
specific training if the learning curve is not too shallow. In contrast, entertainment 
applications must immediately appeal to a mass audience, need to be self-explanatory 
and do not permit high hardware cost. On the surface it seems that serious 
applications have an edge over gaming as a vehicle for user interface research, but 
actually the opposite may be true: Players of computer games tend to tolerate to 
glitches in software quality that would be deemed unacceptable for professional 
applications, as long as play value and usability of the interface are outstanding. This 
makes games very suitable to test research on user interface technologies such as AR. 

Returning to AR interfaces, the main barrier that has hindered bringing AR 
games to a mass audience is the lack of an inexpensive hardware platform. The advent 
of ARToolKit [57] as a free tracking/graphics starter kit has led to significant growth 
of individuals (most of them not researchers) experimenting with desktop AR. 
However, desktop AR with a stationary camera (webcam) looses a lot of appeal over 
direct viewpoint control with a head-mounted display (HMD), and neither HMDs 
nor high quality mountable cameras are standard peripherals available to a wide 
audience. It is likely that the unavailability of a commercial off-the-shelf device to 
show AR content has severely affected the potential growth of this technology. 

The proliferation of handheld computing devices may bring a solution to this 
problem. Handhelds in the form of tablet PCs, personal digital assistants (PDAs) or 
smartphones are well-engineered, widely available and inexpensive. Using live images 
from their built-in cameras as a video background, they can display video-see through 
AR. This style of interaction is sometimes called magic lens metaphor [15][106]. The 
wide-spread adoption of handhelds allows researchers to draw from a large target 
audience of users already familiar with the general operation of the target device; 
many users may even own handheld devices already. 

Casual games are becoming increasingly popular on cell phones, so that 
handheld AR games are also perceived as socially acceptable, but at the same time 
new and exciting. The expectation that casual games should have short playtimes 
helps researchers to set up satisfactory experiences without having to produce a lot of 
game content. Possible target platforms range from conventional cell phones, on 
which software-only solutions could allow immediate commercial marketing, to high-
end handheld and Tablet PC solutions which are useful for proof-of-concept 
implementations until the lower end of the market has reached sufficient 
performance levels. In the following  some examples are described. 

Penalty Kick [90] (see left and middle image in Figure 2.2) uses a coarsely 
registered 3D marker, which can be printed on a poster or product package. The aim 
of the game is to shot a soccer ball into a goal printed on the product package. The 



 
Chapter 2 

 
Background and Related Work 

 
20

 

 

player can aim where to shot the ball by rotating and tilting the phone. The virtual 
goal keeper will then try to hold the ball. 

 
Figure 2.2: Left and middle: Penalty Kick (images property of Michael Rohs); 

Right: Mosquito Hunt (image property of Siemens) 

Mosquito Hunt (see right image in Figure 2.2) challenges the player to shoot 
mosquitoes. The gun is pointed at the mosquitoes by moving the phone in space. A 
simple pixel flow detection algorithm makes the mosquitoes stay fixed relative to the 
environment. The world is captured by the build in camera acts as a backdrop for the 
game, while the mosquitoes are rendered as 2D sprites on top of that background. 
The game only measures orientation, so that actually only the orientation of the 
device matters, while the position is irrelevant. 

Mobile Maze [22] (see left image in Figure 2.3) goes one step further in the 
direction of pure VR by turning the handheld device into a purely simulated 
handheld maze game. The player has to guide a ball through a maze by tilting the 
physical maze itself. The software visually tracks the phone's orientation using a 
marker, but does not display any video image. Mobile Maze displays the whole maze 
on the screen, so that the impression of a handheld physical maze is suggested. 
Another variant of the same idea, Marble Revolution4 always centers on the Marble, 
while scrolling the game field, which is much larger than the screen. Marble 
Revolution has a physical interface, but otherwise no aspects that qualify as Mixed 
Reality. Instead, the player has to navigate a ball through large, scrolling levels by 
moving and tilting the phone. In contrast to Mobile Maze, Marble Revolution uses 
pixel flow detection to navigate the ball and does therefore not require fiducial 
markers. 

AR Soccer [36] (see middle image in Figure 2.3) shows a virtual soccer goal and 
blends in the handheld's video image in the bottom half of the screen, letting a user 
                                                 
4 http://www.bit-side.com 
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view his own foot in the soccer environment. The aim of the game is to shot a virtual 
ball into a virtual goal. To do that, the player has to kick the ball with his foot, which 
is tracked using an advanced pixel flow detection algorithm. In contrast to simpler 
pixel flow methods such as used by the Mosquito Hunt game, ARSoccer accurately 
detects the edge of the moving foot and can thereby calculate the exact speed and 
direction of the foot hitting the ball. 

 
Figure 2.3: Left Mobile Maze (images property of HitlabNZ); Middle: AR Soccer (image 

property of Siemens); Right: Impera Visco (image property of Michael Rohs). 

Impera Visco [90] (see right image in Figure 2.3) is a typical turn-based (also 
called "hot seat") multiplayer strategy game for cell phones that includes many 
physical elements of classical board games such as dices, pieces and cards. The game 
uses 36 cards that represent different resources and operations. In each game the 
cards are arranged differently, requiring the players to scan the game board with the 
mobile at game start. The mobile phone acts as a game manager rather than a 3D 
graphics display. Since the game is turn-based, only one phone is required, which can 
be passed on to the next player. 

Symball [42] (see left image in Figure 2.4), a multi-player table tennis game for 
Symbian phones was developed in 2005 by Video Processing Team at VTT (Finland). 
The game shows a table tennis game from a player's perspective. Although the table 
and the ball are shared conceptually, no tracking is performed on these and therefore 
no shared space as described above exists. The game tracks the phones movements by 
detecting objects of certain color in the camera's video feed. While the table is painted 
as a static image, the paddle can be moved by tilting the phone. Two players can 
connect their phones via Bluetooth to compete in a game. The disjoint players' spaces 
in Symball theoretically enable remotely playing together, but in practice the short 
range of Bluetooth limits this option. 
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Figure 2.4: Left Symball/Pingis (image property of VTT); 

Right: AR Tennis (image property of HitlabNZ). 

AR Tennis [45] (see right image in Figure 2.4), developed in 2005 at HIT Lab 
New Zealand also lets two players share a game of tennis but uses markers to establish 
a shared space for the players. The phone itself is used as a paddle to hit the ball, 
which requires a lot of physically movement with the device. Each phone can be fitted 
with a marker on the back so that it can be detected by the opponent’s phone for 
visual feedback. 

2.1.3 Augmented Reality for Edutainment 

AR as a new medium is attractive for education institutions such as museums aiming 
at increasing the interest in their traditional exhibits through technology. The 
incorporation of AR enhanced exhibits can range from a single high-performance AR 
display [18] to an entire exhibition realized using Mixed Reality special effects [98]. 
On the one hand, stationary AR exhibits allow the use of technology without 
compromising the experience with respect to form factor or power consumption. On 
the other hand, mobile AR technology can offer an attractive replacement for the 
traditional audio-tape tour guide. 

Tour guides are a recurring application theme for mobile AR research, partially 
because they show the strength of mobile AR, namely to present useful information 
registered to static locations in the real world, such as historic edifices. Some examples 
of outdoor AR guides are Situated Documentaries [48], ArcheoGuide [107], GEIST 
[50] and Signpost [87]. Work on mobile indoor AR has specifically targeted museum 
environments, for example the Guggenheim Bilbao museum [39] or Sweet Auburn 
[67]. 
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Also relevant in a broader sense are mobile multimedia tour guides that do not 
use AR displays, but provide location-based interaction with the environment. 
Prominent examples are CyberGuide [64], Lighthouse [20], MIT's Mystery at the 
Museum [58] and the phone guide at Senckenberg Museum [32]. 

2.1.4 Virtual Characters 

Aiming at developing intuitive and easy to use user interfaces, this thesis also 
evaluates the use of virtual characters, which are today a standard mechanism for 
tutorials and guides in many applications including games. Virtual characters guiding 
unfamiliar users have a long tradition in computer research and applications. The 
most prominent, yet suboptimal examples are the office assistants such as the well 
known paper clip in Microsoft’s Office until version 2003. 

The work presented in thesis evaluates character representation and particularly 
the presentation of virtual characters in an augmented reality setting. For the first 
time, AR technology allows virtual characters to exist in the same real space as the 
user. Despite this, the use of AR characters has also not been well studied.  

In the Welbo system [2] an animated virtual robot assists an HMD equipped user 
in setting up virtual furniture. Welbo has speech synthesis capabilities and can 
understand simple instructions. It is aware of the user’s actions and movement and 
reacts to commands by moving furniture or pointing to objects. 

In one of the first examples of an AR character, Balcisoy et. al. [6] created a 
virtual agent that could play checkers with a person in the real world. The agent didn’t 
have any conversational ability, nor was it able to respond to a real user’s speech and 
gesture commands. Simply by appearing in the same space as a real user, the authors 
say it creates a strong sense of presence. However, Balcisoy also did not report on any 
formal user studies exploring how the user’s felt about the agent. 

In the AR Puppet project Barakonyi studied how animated characters improve 
the man-machine communication in AR applications. In his work he focuses on the 
interaction of virtual characters with their virtual as well as physical environment. In 
the AR game MonkeyBridge [9] two players have to help their autonomous agents in 
form of monster-like characters to cross a river. The characters are not scripted but 
intelligently decide which virtual and physical objects to use in order to accomplish 
the task. The AR Lego [8] application employs two agents: a physical robot and a 
virtual animated repairman to assist an untrained user in assembling and maintaining 
a LEGO Mindstorms robot. 



 
Chapter 2 

 
Background and Related Work 

 
24

 

 

Augmented Reality interaction with mobile devices is inheritably different from using 
HMDs or projection systems. As discussed in the next chapter using mobile displays 
allows new types of AR applications. These mobile applications typically use the touch 
screen or devices buttons rather than data gloves or 3D pointing devices as traditional 
AR setups do. Furthermore since the AR system itself is extremely small it allows new 
ways of shared applications, for example by passing the display from person to person. 

Most real life applications can not be operated with a typical AR interface that 
uses 3D user I/O only. Instead, many applications require 2D interfaces, which are a 
natural strength of devices such as mobile phones over HMDs or projection-based 
systems. 

2.2 3D User Interfaces 
3D user interfaces seem to be the most natural UI method for AR applications. In the 
past much research concentrated on using data gloves in VR and AR setups, on 
gesture recognition [47] and object manipulation [63]. While data gloves can be used 
to create natural and fully 3D user interfaces [103], they usually do not allow accurate 
selection and manipulation and suffer from supporting complex action sequences and 
extensive tool or command sets. 

Augmented Reality using tracked displays mandates the design inherently 
different user interfaces. The magic lens metaphor afforded by handhelds imposes 
very specific constraints to interaction design. The device must be held at a distance of 
about 50cm, with the camera normally tilted downwards, to allow for prolonged use 
without significant fatigue and also to let the user focus on the screen. The field of 
view defined by the small handheld screen is therefore very limited. This means that 
the amount of content that can be displayed - both world-registered and screen-
registered - is rather constrained. 

It also implies that in order to observe a physically large environment, the device 
needs to be frequently moved or rotated. Ergonomic constraints and the necessity to 
keep a line of sight to the display limit the type and amount of possible movements of 
the handheld. While rotation and movement with the supporting arm are quick, 
moving the device through physical walking is more disrupting since it is often 
difficult to keep the screen in view while physically navigating the environment. 

Many application designs will therefore aim to minimize such physical 
movements. For example, devices that feature a touch-screen can be held still while 
interacting with the environment using the stylus. A similar approach may be taken 
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using the miniature joysticks often found on cell phones. However, the author 
observed that the enjoyment of physically navigating the environment is one of the 
key contributions to the appeal of handheld AR applications in general and games 
specifically. Of course a part of this success must be attributed to the fact that a larger, 
navigable environment is specifically prepared to support the application. The 
discussion will return to the issue of complex infrastructure below. 

 
Figure 2.5: Left the screen of the handheld represents the AR display; 

Right: the handheld itself represents the AR display. 

The handhelds' small field of view introduces some ambiguity when trying to 
assess AR applications with respect to the Virtuality continuum: A user will typically 
focus on the handheld's screen, but simultaneously perceive context from the real 
environment around the handheld. The handheld is so small that it can be interpreted 
as a kind of "cursor" into the physical environment. Therefore, there are two possible 
interpretations of an "Augmented Reality display": 

• The screen of the handheld represents the AR display: This interpretation is 
most meaningful if the handheld display superimposes computer graphics on 
top of a video stream from the built-in camera. In this case the physical 
environment is duplicated in miniature format on the display, and becomes a 
conceptual part of the application. A handheld or Tablet PC with a slightly 
larger display and a stylus is likely to strongly bind the user's attention to the 
device, while diminishing the user's perception of the surrounding. The left 
image in Figure 2.5 shows an example of this concept. 

• The handheld itself represents the AR display (in this case, more an MR 
display): The handheld display shows exclusively virtual content, but this 
content is still fully registered to the physical environment. Moving the device 
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in reality also moves the position (viewpoint) in the virtual world. In this case 
the handheld itself is the AR display, since the display content must be 
interpreted together with the surrounding real world. One could say that the 
handheld is at the same time an AR display and a tangible interaction device. 
This definition is more in line with Benford's "shared space" approach towards 
mixed reality [14] which is much broader than the Virtuality continuum. The 
right image in Figure 2.5 shows an example of this concept. 

Some designs take a relaxed approach concerning registration and utilize only 
the rotational degrees of freedom from the device pose, which allows using weak 
tracking methods such as pixel flow detection. This decouples the virtual world from 
the real world, since the focus of interaction is no longer important and rotational 
changes are measured incrementally. Examples for this form of interaction are the 
Mosquito Hunt, Mobile Maze and Marble revolution games which are covered in 
chapter 2.1.2 of this thesis. All three games use optical flow detection interpreted as 
rotational movement. 

Even when the real and virtual worlds are fully registered, the use of the real 
world may be purely to navigation mechanics, but have nothing to do with the 
application semantics. A popular approach for instant AR is the placement of a 
marker on a table, which is then tracked by the handheld's camera. While the virtual 
content will remain registered to the real world while the handheld is moved, the 
marker itself has no meaning other than defining a coordinate system for interaction. 
The location of the marker is arbitrarily chosen by the user and has no influence on 
the application unless it is moved. An interesting variety of using tracked objects such 
as markers is that if multiple such objects are used, their identity and placement can 
be used to manipulate the application with a tangible user interface. In particular, 
tracked objects can be moved while the handheld remains relatively stationary. 
Examples for this type of interaction include AR Kanji Teacher [109] as well as the AR 
soccer game referenced in chapter 2.1.2. 

Another aspect of UI design is how applications share the virtual space. The 
following list considers multiplayer games to outline various possibilities: 

• Sharing a single device: The simplest form of multiplayer sharing is the 
sharing of the handheld device itself. While this obviously has the disadvantage 
that no simultaneous interaction is possible, it suits turn-taking games very 
well and is also popular in desktop games. Technically, the advantage of device 
sharing is that only one device with suitable software is required, which 
obliterates the need for software installation or networking, and is very suitable 
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for instant, casual play. A game using this interaction paradigm is Impera 
Visco [90]. 

• Co-located simultaneous interaction: Simultaneous AR gameplay using 
multiple networked devices can either be constructed from multiple individual 
AR spaces, i.e., one per user, or by constructing a shared space jointly observed 
by the players. Disjoint AR spaces are technically simpler and work for users 
who are in different locations. A shared space has more stringent requirements 
concerning technical issues such as tracking accuracy or network latency, but 
has the unique appeal of combining computer games with physically playing 
together, being able to engage in a lively conversation and observing the 
opponent's reactions. We have found these social aspects to be a strong factor 
of motivation and enjoyment in AR games. The Symball [42] game uses this 
principle to share a static and non-registered virtual ping-pong table. 

• 3D registered shared space: A shared space can be defined by a generic object 
such as a marker as done in the AR Tennis [45] game. In a minimalist setting 
no further real world aspects are considered. Larger instrumented 
environments typically have room for multiple players, as was implemented it 
in the Virtuoso game (see chapter 7.2). 

• Large area shared space: In the extreme the game space can encompass a large 
area (e.g. a campus), supporting both face to face and remote gameplay at the 
same time. This option is extremely compelling, since the immersion in the 
"game world" is paid back in heightened excitement of the players. Nevertheless, 
one must consider the effort involved in preparing such a larger, navigable 
environment to support the gameplay, which is definitely not reconcilable with 
instant, casual gaming. While placing a game board shipped with an AR game 
on a tabletop may be straightforward, a game that involves physical museum 
exhibits is only playable in exactly the museum it was designed for. Such a 
complex environment will likely be designed for a larger number of concurrent 
players, and will make the collaboration between the players more complex.  
The “Schatzsuche” museum game (see chapter 7.3) is currently the only 
representative of this kind of application we know of. 

2.3 Augmented Reality Authoring 
Content creation, also known as authoring describes the part of software development 
that is not focused on programming but on content creation. For practical content-
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rich applications content creation is a major topic. While small projects can survive 
using a complex chain of authoring tools, large applications require a smoothly 
working content development pipeline. This issue is not unique to AR applications, 
but has become a special problem in the area of professional game development. 

Many research projects use the Virtual Reality Modeling Language (VRML)5, a 
powerful 3D scene description language with an OpenInventor-like6 syntax. While 
tools exist that allow creating simple scenes without programming, it is not an 
authoring tool in the classic sense. Although VRML has been superseded by the XML-
based X3D standard7 it is still one of the most widely used graphics formats. 

The Designers Augmented Reality Toolkit (DART) [66] specifically targets non-
programmers. Based on Macromedia Director8 it provides a user interface that is well 
known to graphics artists and designer. The timeline concept allows the creation of 
non-linear content in an intuitive graphical way. Another project targeted at non-
programmers is the MARS authoring toolkit [40]. Similar to DART, the custom 
developed editor uses a timeline to author media that are linked in a hypermedia 
fashion. The Authoring Mixed Reality (AMIRE) [39] project focuses on combining 
basic building blocks, called Gems into a mixed reality application. Developers can 
use a visual editor to connect and configure the Gems. Yet, the authoring, rather than 
application development aspect itself is only minimally present in AMIRE. APRIL 
[60] is an XML-based scripting language that uses the Studierstube framework and 
adds high level concepts on top of it. APRIL uses a finite state machine (FSM) to 
create non-linear stories and provides abstraction mechanisms to describe the needs 
of the specific application that are then automatically mapped to the available hard- 
and software. 

Other projects use in situ modeling where the authoring editor itself is an AR 
application. While such an approach is definitely not optimal for every type of 
application it allows editing AR content in place, which is especially useful for mobile 
scenarios. The Tinmith-Metro system uses the mobile Tinmith AR setup to provide 
content developers with tools for creating virtual content directly in place using the 
mobile setup. Predefined virtual objects can be dropped into the real environment 
and modified using a tracked glove. Güvem et al. [41] use a mobile device to create 
and edit hyperlinked situated media on-site. They explore several novel interaction 
paradigms to work with these linked annotations. Lee et al. use tangible AR for 

                                                 
5 http://www.w3.org/MarkUp/VRML 
6 http://oss.sgi.com/projects/inventor 
7 http://www.web3d.org/x3d 
8 http://www.adobe.com/products/director 
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“immersive authoring” [61] that enables the user to create virtual scenes and script 
simple commands directly in the AR environment. 

The tools mentioned above can be classified into two main categories: authoring 
in the AR runtime itself and authoring using professional toolkits. Both are not 
optimal for phone-based AR: The reduced input and processing capabilities of mobile 
phones make these devices unattractive to be used as platform for complex authoring 
applications. Furthermore, the typically employed vision based tracking systems do 
not allow working accurately. Using professional toolkits such as in the DART system 
raises the problem of deploying the corresponding runtime on the target platform. 
For the example of DART, no Adobe Shockwave runtime exists for mobile phones. 
Hence the author of this thesis decided to develop a custom authoring solution as 
presented in chapter 6.2. 

2.4 Pose Tracking 
Any Augmented Reality system requires some kind of tracking the user’s or display’s 
pose in order to register it in respect to the real world. Pose tracking must run in real-
time, typically requiring solutions that estimate poses in less than 50 milliseconds. 
Furthermore it must be robust under many conditions such as varying lighting. In 
case tracking is lost, the system must be able to recover quickly. 

Much work in mobile AR has focused on wide-area tracking. Most commercial 
solutions such as optical or infrared trackers cover only a limited work area, so 
researchers have aimed at using e. g., GPS [34], inertial sensors [4], and vision [88] for 
tracking. The Bat System [54] from AT&T allows building-wide accurate tracking of 
people and objects outfitted with badges that are tracked by a 3D ultrasonic location 
system, but at the cost of deploying a building-wide electronic infrastructure. 

2.4.1 Natural Feature Tracking 

Recently processing power has reached a level that allows natural feature tracking in 
real time. Some recent examples are: Bleser [19] uses a 3D CAD model to initialize the 
tracking process. The system can then extend its model of the environment 
automatically and even adapt to changes. Reitmayr [86] uses textured 3D models of 
the real environment to track in urban outdoor environments. Pilet tracks and 
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augments predefined deformable objects [78] in real time. Vacchetti combines edge- 
and textured-based tracking for realtime pose estimation [105]. 

The tracking methods mentioned above are state of the art and therefore not 
suitable for handheld or embedded devices due to limited processing and video 
capturing capabilities. Natural feature tracking using optical flow has been 
successfully implemented on these devices though. Among the first applications to 
use pixel flow detection on mobile phones was the Mosquito Hunt game on the 
Siemens SX-1 phone. Since then more mobile phones games have used this tracking 
method. Wang recently released an open source pixel flow tracking library called 
TinyMotion [108]. 

2.4.2 Marker Tracking 

If limited computational resources do not permit robust markerless tracking, fiducial 
marker tracking is often used in AR applications. One of the first projects using 
camera-based 6DOF tracking of artificial 2D markers was Rekimoto's 2D Matrix 
Code [82] in 1996. It pioneered the use of a square planar shape for pose estimation 
and an embedded 2D barcode pattern for distinguishing markers. In 1999 Kato used a 
similar approach to develop ARToolKit [57], which was released under the GPL 
license and therefore became enormously popular among AR researchers and 
enthusiasts alike. Since then, many similar square tracking libraries have emerged 
among which the most prominent ones are ARTag [25], Cybercode [84], the SCR 
marker system [117] and the IGD marker system used in the Arvika project [33]. 

ARToolKit is the basis for several projects concentrating on 6DOF tracking on 
handheld devices. It uses black and white square marker that can be easily detected 
even under low lighting conditions. Furthermore a single marker is sufficient for full 
6DOF pose estimation. The author’s port of ARToolKit to Windows CE [112] led to 
the first self-contained handheld AR application [115] in 2003. This work evolved 
later into the ARToolKitPlus library [113] detailed in Chapter 3. In 2005 Henrysson 
[45] created a Symbian port of ARToolKit partially based on the ARToolKitPlus 
source code. 

Other researchers tried making best use of the restricted resources of low to mid-
range mobile phones by using simpler models with very restricted tracking accuracy. 
In 2004 Möhring [72] created a tracking solution for mobile phones that tracks color-
coded 3D markers. At the same time Rohs created the Visual Code system for 
smartphones [89]. Both techniques provide only simple tracking in terms of position 
on the screen, rotation and a very coarse distance measure. VTT developed a marker 
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system [96] very similar to Rohs’ Visual Codes that does not provide pose estimation 
though. 

2.5 Multiuser Systems 
Over the last decade multiplayer gaming has become extremely popular and today 
represents the part of PC-based gaming where the highest revenue is made. Early 
multiplayer games used peer-to-peer network topologies with a limited number of 
clients. Today's multi-player games typically use client-server techniques, which allow 
for better scalability and also an improved separation of concerns in the overall 
system architecture. Despite a massive amount of research in the area of designing 
and implementing massive multiplayer services, they still represent a challenging 
endeavor. 

As mobile devices are becoming increasingly available, shared spaces that were 
previously bound to desktop computers within a fixed infrastructure are now moving 
to handhelds such as cell phones or PDAs. Mobile applications and services are not 
simply a trend towards a more convenient platform, but a fundamental paradigm 
shift. For example, mobile games have the potential to combine wireless networking 
with location based computing. The resulting Mixed Reality Games [98] bring the 
game play out of the virtual world and back into the real world. Hence, the 
requirements for MR and AR games are inherently different from conventional 
online games. 

This chapter analyzes the most common problems of mobile, multi-user 
Augmented Reality applications, which were addressed with the Muddleware system, 
before it then looks in detail at solutions developed in previous research projects: 

• Communication is not guaranteed to be always available. When relying on 
wireless communication such as WiFi or GPRS, high-quality, poor or no 
communication at all may be available depending on the current location of 
the device. Hence, the system must support both strongly as well as loosely 
coupled connections. Loosing network connection during application 
execution is not an exception but rather a rule. Users, thus, must be able to 
enter and leave sessions at any time and even continue despite being 
temporarily disconnected [10]. These special circumstances affect the design 
space for applications and are therefore best made explicit in the networking 
middleware. 
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• Heterogeneity in the client platform is common for situated Augmented 
Reality applications. AR clients differ significantly in their performance, user 
interface capabilities, and mobility. Making the best use of this diversity can be 
an important aspect of AR game design rather than an unwanted side effect. 
For example, users of mobile and stationary clients can exploit their 
complementary capabilities for collaborative problem solving. Moreover, 
games that leverage the player's location in the real world for gameplay – for 
example, by requiring a player to perform certain actions at a specific location 
– require the game platform to interface with a large variety of sensing devices 
and other input/output facilities in the real world. All this diversity makes it 
unreasonable to expect the deployment of heavy-duty AR and networking 
packages on client devices. Software for game and non-game clients must be 
lightweight, highly modular and available for a very wide variety of platforms, 
so that a client can participate in the shared space with only a minimum of 
required software. 

• Persistence of application content and state becomes an increasing concern as 
the level of heterogeneity and distribution increases in Augmented Reality 
applications. Like online role-playing games, AR games are situated in a 
persistently evolving universe – however, in case of AR, this is the real world. 
Since predictable behavior or even reachability of clients in the real world 
cannot be expected, all important application data reflecting the real and 
virtual parts of the application world must be stored persistently in a reliable 
database. The difference to conventional online databases is that the structure 
of the database must reflect the diversity of the real-world entities, and can 
usually not be limited to just a few artificial object categories without severely 
compromising the design space of the application or game. 

• Rapid prototyping becomes increasingly important since there are no 
established design practices or genre standards for Augmented Reality 
applications or games as there are for their desktop counterparts. AR games are 
currently mostly developed by small teams in academic or commercial research 
labs. While this situation may evolve over time into a more traditional 
development process, in the near future the possibility to quickly change game 
database content and game protocols is of prime importance. From a technical 
perspective, this means that network communication between the distributed 
application components should be accessible via loosely typed, interpreted 
scripting. 
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Virtual Reality researchers have long ago started working on distributed systems 
and tele-presence, allowing non-colocated users to share virtual environments. 
Among the first projects is the work done by Benford [12], Zyda [119] and Snowdon 
[97] in the early 1990s. While CORBA9 is a well established solution for distributed 
systems, many researchers favor more specialized approaches such as distributed 
scene-graphs [74][46][104]. Although a tremendous amount of work has been put 
into these systems, they have not been widely successful, although developers of 
massive multi-user games nowadays benefit from these works. 

In contrast to Virtual Reality, only few AR projects tackled the problem of 
distributed systems. Among these is DWARF [11], a component-based distributed 
AR framework. These systems are similar to those developed in the area of ubiquitous 
computing since they share the same problems: They deal a lot with research 
allocation and management as well as service discovery. Yet, most multi-user AR 
systems allow just either ad-hoc or stationary networking. Consequently the number 
of concurrent users in these systems is generally very low. 

To address these specific needs for AR middleware for many users in unreliable 
and spontaneous networked environments, the author of this thesis has developed a 
communication framework called Muddleware. It is originally inspired by the 
concept of a Tuplespace [37], an associative memory that stores a collection of tuples. 
The name Muddleware refers to a complex “pile” of data tuples. Tuplespaces are 
sometimes also called Blackboards or Whiteboards. They are the theoretical 
foundation for Linda [38], a programming language for parallel algorithms. The idea 
is still popular in modern implementations such as IBM TSpaces [53] and JavaSpaces 
[27]. 

While a classic Tuplespace is a very general data structure that is hard to 
implement efficiently the approach described in this thesis is specialized for the use of 
multi-user setups. Another projects that is based on the concept of a Tuplespace is 
LIME [73] (Linda in a Mobile Environment), extends the original Tuplespace concept 
by transiently sharing Tuplespaces among multiple clients. The Tuplespace is broken 
up into many partial Tuplespaces, each one permanently associated to and stored on a 
specific client unit. When a new client connects to the federation of Tuplespaces, its 
current content is merged into the shared space by making it available to all other 
clients. While all clients can query tuples from all other clients and even add new 
tuples, all individual Tuplespaces remain on their original client. When a client leaves 
the federation it takes all its content with it, which is then no longer available for the 
other clients. The transient sharing makes LIME very dynamic, but is inappropriate 

                                                 
9 http://www.corba.org 
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for deterministic application state since the availability of essential data cannot be 
guaranteed. 

In contrast, the Event Heap [55] was very influential for the development of 
Muddleware. The Event Heap is an extended Tuplespace for synchronous groupware. 
It allows sharing events among multiple users, applications and devices in a 
distributed, interactive workspace. The Event Heap replaces the event queue 
commonly used in operating systems, which was found inappropriate for distributed 
groupware setups. The Event Heap extends the original Tuplespace concept with new 
capabilities such as non-destructive reading of data, a lifetime property for tuples to 
realize a kind of garbage collection, and a publish-subscribe mechanism for reliable 
causally ordered communication. Among the key techniques useful for interactive 
applications demonstrated in the Event Heap is the use of Tuplespace-style queries 
for filtering events that are interesting to a client without the need for explicit 
producer-consumer network channels. 

The Enchantment Whiteboard [23] developed in the MIThrill project uses a 
Tuplespace like system as a central hub for data exchange between various wearable 
components in a Body Area Network. It extends the Tuplespace idea by allowing 
clients to subscribe to portions of the whiteboard to automatically receive updates 
when changes occur. To support concurrency, clients can lock parts of the whiteboard 
before posting updates. Furthermore the Enchantment Whiteboard supports 
symbolic links to other whiteboard servers allowing transparently referring data 
across the network. 

Another system that specifically addresses the problems of unreliable wireless 
network connections was developed for the Battlefield Augmented Reality System 
(BARS) [21], an Augmented Reality application that superimposes battlefield 
information for soldiers directly onto the environment. In the BARS project Brown et 
al. “Event-Based Data Distribution Mechanism” based on replicated databases and 
custom network protocols. 

Several generic middleware solutions for massive multi-player online gaming 
exists, such as the Distributed-organized Information Terra (DoIT) platform [51] and 
the Internet Communication Engine (ICE) [44]. ICE represents a light-weight 
alternative to CORBA with advanced features such as grid computing, persistence 
services and encryption. BigWorld Technology10 is a commercial MMO suite that 
covers the complete development process from server application to 3D client 
libraries. All these commercial multiplayer solutions can be categorized as message-
passing or remote procedure call platforms. The ADAPTIVE Communication 

                                                 
10 http://www.bigworldtech.com 
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Environment (ACE) [93] is a network programming library that is used intensively in 
Muddleware. 

For Muddleware, the Tuplespace-inspired approach was chosen over more 
conventional message passing for very similar reasons as stated by the creators of the 
Event Heap and Enchantment Whiteboard. A Tuplespace allows data-driven 
prototyping, flexible communication patterns and implicit persistence. While the 
Muddleware approach shares those virtues with previous work, its implementation 
differs in the choice of system characteristics and increased expressive power of the 
communication primitives. 

2.6 Wireless Connectivity 
As outlined in the introduction of this thesis, network connectivity is a fundamental 
requirement to exploit the full potential of handheld augmented reality. Especially for 
gaming applications – collaborative or competitive as well – a shared virtual space is 
essential. 

An ideal network solution would allow connecting mobile clients in a peer-to-
peer fashion as well as to stationary servers. Of course such a solution should provide 
coverage over a large area with a sufficient bandwidth and response time. Finally this 
network infrastructure should have low costs for deployment as well as for permanent 
usage. Of course such a solution does not exist and one has to choose between the 
strength and drawbacks of those networking technologies that are available right now. 
The following list analyzes all these systems. While it would be preferable to give a 
clear preference of a most suitable solution for handheld AR, the applicability of all 
systems strongly depends on the actual application. 

• GPRS is a mobile data service based on the widely spread GSM phone network. 
As a consequence GPRS service has the highest coverage of all available 
systems. Other than UMTS or WiFi it is available basically everywhere in 
Europe. Its major disadvantage is extremely low response times of usually 
around a second which renders it unsuitable for live data exchange for many 
applications. Since GPRS is usually lower prioritized than speech the GSM 
service, quality can vary enormously over time. It is most suitable for single 
user applications that only require connectivity to download missing data such 
as 3D models or annotations. Another current disadvantage that probably 
disappears in the future is the high costs of transmitting data. 
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• UMTS is a 3rd generation mobile phone network. Other than with GSM, data 
services are fully integrated rather than added on top of it later on. Although 
UMTS is marketed as high performance network, in practice network 
performance and signal quality vary heavily. UMTS requires a much higher 
density of base stations than GPRS which means that even in the long term 
future, high performance networking via UMTS will probably only be available 
in populated areas. Response times are typically around 200ms and therefore a 
lot lower than when using GPRS. 

• WiMAX is a high performance wide area network that provides data service 
only. As such it compares to WiFi rather than UMTS. Other than WiFi it 
requires licenses to operate and therefore creates provider/client partnerships 
similar to UMTS and GRPS though. WiMAX is specified to provide up to 
70MBit/sec at short range and 10MBit/sec at long distance (10km). Since 
WiMAX is a very new technology coverage and number of providers are still 
very low. 

• Bluetooth is a standard short range (so called personal) network for up to 7 
client devices. Its primary purpose is to wirelessly connect multiple devices of a 
single user such as notebook, mouse and head-set. While the connectivity 
range class 3 devices is only about one meter, class 1 devices can transmit data 
up to a hundred meters. The Bluetooth standard is constantly improved. The 
upcoming revision 3.0 will allow full USB 2.0 speed at 480 MBits/sec, but 
current devices max out at 700kBit/sec only. Being a personal, local network 
solution there are no costs of running the network. Due to its inherent 
restrictions such as maximum number of client devices or the short range 
Bluetooth requires other hardware and software infrastructure to cover an area 
as large as a building or campus. 

• WiFi (also known as wireless LAN or WLAN) is the wireless counterpart to 
regular tethered networking. Its technology is fully compatible to regular 
Ethernet systems including routing and switching. Its range of operation is 
typically room or building wide. While projects such as Funkfeuer11 cover 
complete cities they rely on stationary setups with large, accurately placed 
antennas which prohibits this technology in mobile applications. Practical 
bandwidth is around 20MBit/sec and response times are of usually below 10 
milliseconds which renders WiFi an ideal solution for live data streaming and 
exchange. A disadvantage is that spontaneous peer-to-peer networking is 
usually not possible. Instead base stations have to be used to cover specific 
areas. 

                                                 
11 http://graz.funkfeuer.at 
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From the solutions described above WiFi will be preferred, for most purposes. 
Once a network is deployed the costs of running it are very low as there are no fees as 
opposed to GPRS, UMTS and WiMAX. The performance of WiFi is best among all 
available options. A disadvantage is the small area of network coverage though. As 
soon as wide are networking is required other solutions have to be used. 

Many smartphones or similar devices do not support WiFi though. For short 
area networking Bluetooth can be a competitive alternative. Installing WiFi base 
stations equipped with Bluetooth USB sticks can be used to create a building network 
wide Bluetooth clouds that are interconnected via the WiFi network. More details on 
this technique can be found in chapter 7.4.1. 

2.7 Discussion 
This chapter presented a large body of state of the art in Augmented Reality from a 
wide range of different research topics with the aim of justifying the various different 
solutions developed in the course of this thesis, despite the many existing solutions 
published before. The next four chapters present technology developed for mobile 
phones based AR and several applications. Although previous work on each of these 
categories exists, we found these to be insufficient for the specific requirements and 
hypothesis of this thesis: 

• Pose tracking (Chapter 3): No previous system was capable running at a 
meaningful performance on mobile phones and similar devices. Hence, porting 
existing and development of new solutions was mandatory. 

• 3D rendering (Chapter 4): While professional 3D rendering solutions for 
mobile phones exist, we decided to develop a solution specifically tailored to 
the requirements of AR applications. 

• Distributed computing (Chapter 5): Previous work on multi-user applications 
mostly assumes fast and reliable network connections, which is not the case in 
mobile computing. The solution described in Chapter 5 fulfills these 
requirements plus the need for a portable thin client module and support for 
rapid prototyping. 

• AR framework (Chapter 6): The introduction of completely new building 
blocks as described above requires the development of a new framework that 
combines these into an optimal solution. 
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Chapter 3  

Pose Tracking 
This chapter introduces the concepts of fiducial marker tracking and presents 
ARToolKitPlus, a  solution for marker tracking on mobile phones. It gives details on 
the phone specific features and presents performance measurements on typical 
devices. 

Augmented Reality (AR) and Virtual Reality (VR) require real-time and accurate 
6DOF pose tracking of devices such as head-mounted displays, tangible interface 
objects, etc. Pose tracking must be inexpensive, work robustly in changing 
environmental conditions, support a large working volume and provide automatic 
localization in global coordinates. However a guaranteed level of accuracy is generally 
not required. 

Solutions that fail to address these requirements are not useful for VR and AR 
applications. In particular for mobile AR applications, all the requirements must be 
met while working with very constrained technical resources. The typical mobile AR 
configuration involves a single consumer-grade camera mounted on a head-worn or 
handheld device. The video stream from the camera is simultaneously used as a video 
background and for pose tracking of the camera relative to the environment. This 
inside-out pose tracking needs to execute in real-time with the limited computational 
resources of a mobile device. 

Tracking fiducial markers is a common strategy to achieve robustness and 
computational efficiency simultaneously. While the visual clutter resulting from the 
fiducial markers is undesirable, the deployment of black-and-white printed markers is 
inexpensive and quicker than accurate off-line surveying of the natural environment. 
By encoding unique identifiers in the marker, a large number of unique locations or 
objects can be tagged efficiently. These fundamental advantages have led to a 
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proliferation of marker-based pose tracking despite significant advances in pose 
tracking from natural features. 

Today, tracking rectangular fiducial markers is one of the most widely used 
tracking solutions for video see-through Augmented Reality applications. This 
chapter describes ARToolKitPlus, an open source marker tracking library developed 
by the author of this theses and designed as a successor to the open source ARToolKit 
library [57], which is the by far most successful marker tracking library. 
Unfortunately ARToolKit was designed to run on standard PCs only. ARToolKitPlus 
is unique in that it performs extremely well across a wide range of inexpensive devices, 
in particular ultra-mobile PCs (UMPCs), personal digital assistants (PDAs) and 
smartphones (see Figure 3.1). 

 
Figure 3.1: Devices running ARToolKitPlus: Ultra Mobile PC, PDA, Smartphone 

3.1 Camera calibration 
Before camera-based 6DOF tracking can be performed, the camera must be 

calibrated once in a pre-processing step. The results of this step are a perspective 
projection matrix as well as the image distortion parameters of the camera. These 
include the principal point, which defines the center of projection and is usually not 
exactly in the center of the image of a real camera. Furthermore the intrinsic 
parameters include the focal length and radial distortion parameters. The latter 
describe the lens’ distortion using a radial model centered at the principal point, 
which represents a good approximation for most real cameras. Usually this distortion 
is rather low near the principle point of the image and increases at the corners. An 
extreme case of radial distortion can be seen in the left picture in Figure 3.2. All these 
parameters together form the “intrinsic camera parameters” and are saved in a 
calibration file that is loaded later on during the start-up phase of the tracking system. 
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ARToolKitPlus provides two methods for camera calibration. Users can use the 
ARToolKit camera calibration tool that requires holding a printout of 6x4 black dots 
in various poses in front of the camera (see left picture in Figure 3.2). For each pose, 
the user has to manually select all dots. When enough poses have been registered, the 
calibration tool estimates the camera’s parameters. A complete calibration of a camera 
typically takes ~15 minutes. 

 
Figure 3.2: ARToolKitPlus camera calibration. Left: Using the ARToolKit calibration 

pattern. Right: Using the MATLAB checker board pattern. 

Alternatively, ARToolKitPlus introduces calibration based on the freely available 
MATLAB camera calibration toolbox12. While this requires the user to own a license 
of the MATLAB software, it is more convenient, faster and produces more accurate 
results. Furthermore it allows calibrating cameras of devices such as mobile phones 
that are not capable to run the calibration software directly. For this calibration 
method the user has to take multiple pictures (usually between 5 and 20) of a checker 
board (see right picture in Figure 3.2). Since the image acquisition stage is decoupled 
from the calibration stage, any type of camera of can be calibrated. 

The MATLAB camera calibration toolbox then loads the previously acquired 
images. First the user specifies basic settings such as the size of the checker board. 
Calibration can work in two modes: in automatic mode the toolbox tries to find all 
corners of the board autonomously, while in manual mode the user has to select the 
outer four corners of the checker board by clicking on them. In case the automatic 
mode fails on an image, it falls back to manual mode. The whole procedure typically 
takes 5 minutes. 

                                                 
12 http://www.vision.caltech.edu/bouguetj/calib_doc/ 
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3.2 Runtime Tracking Pipeline 
The runtime tracking pipeline is executed for every new camera image and results in a 
set of zero or more estimated poses, depending on the number of markers identified 
in the image. It consists of the five basic steps symbolized as shaded rectangles in 
Figure 3.3. These steps are outlined in detail in the following chapters 3.2.1 to 3.2.5. 

 
Figure 3.3: ARToolKitPlus runtime tracking pipeline 

3.2.1 Fiducial Detection 

In the sense of image based tracking, fiducials are objects or parts of objects in an 
image that are of interest to the tracking system. The natural first step is therefore to 
detect these fiducials so that they can be used for further processing in later steps of 
the tracking pipeline. 

In ARToolKitPlus, fiducials are black rectangular markers that must be 
positioned in front of a bright background. Typically these markers are printed onto 
white paper. While the markers can be cut out of the paper, it is important to keep a 
white border around the marker to ensure that it can be robustly detected. A 
disadvantage of this method is that printer ink is highly reflective. Areas which are 
black can therefore appear as white in the camera image. For better results it is 
therefore suggested to create the dark marker regions using self-adhesive velvet foil, 
which does not reflect light under any circumstances and therefore results in more 
robust marker detection. 
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ARToolKitPlus uses a very simple fiducial detection system that is based on edge 
following: As a first step ARToolKitPlus searches line by line (“scanlines”), left to 
right for edges. There are multiple ways to define an edge. ARToolKitPlus uses 
constant thresholding for this operation: Pixels with a luminance value below a 
certain threshold are treated as dark and those above the threshold as bright. An edge 
of a black marker in a scanline is then defined as dark pixels that follow after bright 
pixels. When such a sequence of dark-right-of-bright pixels is found, it is considered 
as a candidate for a marker’s border. The software then follows this edge until it either 
closes the loop back to the start pixel or until it reaches the border of the image. Due 
to the finite resolution of pixel images these are the only two outcomes of contour 
following. All pixels that have been visited are marked as processed in order to 
prevent following edges more than once. In case of a closed loop, the contour is stored 
as a poly-line and considered for further processing. In the other case the edge is 
simply discarded. 

 
Figure 3.4: Fiducial Detection in ARToolKitPlus. Left: Source image; Middle: Threshold 

image; Right: Three closed polygons as candidates for rectangle fitting. 

Figure 3.4 points out the workflow of the process described above: The left 
picture show the source image (as grayscale). The middle picture shows the binarized 
version of the left picture, thresholded with a constant value of 80. The right picture 
shows three candidates which are used for further processing. All other contours were 
discarded since they are not closed or too small. 

3.2.2 Rectangle Fitting 

As a next step all closed polygons need to checked for actually being rectangles. For 
this purpose a rectangle is defined as a 2D structure with 4 mostly straight lines that 
intersect in 4 corner points. Since a physical marker might not be perfectly flat and 
because the radial distortion can warp the camera image a considerably, it is necessary 
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to use a relaxed method instead of searching for perfect straight line. An obvious 
choice would be line fitting, but this method is not feasible since the closed contours 
found in the previous step can consist of only four points (the corner points) which is 
unsuitable for line fitting. Furthermore the algorithm would not only have to estimate 
the line but also detect which points belong to the line and which do not. 

Instead ARToolKitPlus uses an iterative process that incrementally detects more 
and  more corners along the contour until either no more corners can be found or 
more than four corners were detected. In the latter case ARToolKitPlus discards the 
contour as not being a rectangle. Only if exactly four corners were detected the 
contour is identified as rectangle and stored for further processing. 

To find corners, ARToolKitPlus guesses a first corner by selecting a contour 
point that lies at the maximum distance to an arbitrary point of the contour. For the 
case of a rectangle – even in the case of distortions – this operation always detects 
corner points. ARToolKitPlus then calculates the centre of mass of all edge points and 
creates a line through the first corner and this centre position. It then finds one corner 
on each side of the line by searching for those points that have the largest distance to 
this line. Having found three corners, ARToolKitPlus uses the same method to find 
more corners on further lines that are formed by already detected corners. 

ARToolKitPlus uses the length of lines for selecting thresholds that determine 
how far points must be apart from the line to be treated as a corner. If a point falls 
below this threshold it is treated as part of the line rather than a corner. Finally 
ARToolKitPlus calculates the area of the rectangle as a second check that discards 
markers which are too small. 

 
Figure 3.5: Example for fitting a rectangle to a polygon. 

Figure 3.5 shows the process described above using an example rectangle. In the 
left picture, ARToolKitPlus selects an arbitrary point x and determines the point that 
with the largest distance from x, which must be a corner point labeled c0. It calculates 
the centre of mass from all edge points and creates a line through c0 and this new 
point (blue line in middle picture of Figure 3.5). It then finds those points which are 
most left and right of this line and labels them corner points c1 and c2. By building 
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more lines using the points c0, c1 and c2. it recursively determines more corner points. 
In the example above only one more point is found and labelled as c3. Creating new 
lines from c2 to c3 and c3 to c1 reveals that no more corners exist. Finally the corner 
indices are sorted into clockwise order. 

The rectangle fitting step runs purely in simple integer arithmetic (mostly 
multiplications, almost no divisions). It is therefore very fast and requires only a small 
percentage (~1-2%) of the overall performance on mobile phones. 

For comparison, a different method for finding rectangles is using a line based 
approach, such as done by ARTag [25]. Instead of specifically searching for begins of 
contours and following them to check if they are closed, ARTag finds all pixels that 
contribute to edges independently and then groups those edge pixels into lines. An 
advantage of this approach is that it can tolerate partially occluded markers by 
allowing lines to be disconnected but still forming rectangles. A downside of this 
approach is that its performance strongly depends on the amount of lines visible in 
the camera image. Tests done by the author of ARTag reveiled that scenes with highly 
structured backgrounds create severe performance bottlenecks for rectangle detection 
on mobile phones. 

3.2.3 Pattern Checking 

After ARToolKitPlus successfully detected polygons with four corners and a 
suitable size it needs to check if these quadrilaterals are valid markers. To do this it 
first unprojects the markers’ interior regions into a normalized arrays of pixels. For 
perspectively correct unprojection ARToolKitPlus calculates the homography matrix 
using the markers’ corner point coordinates in the image and the knowledge that the 
marker must be regular rectangles with 90° angles in the 3D world (see left image in 
Figure 3.6). The homography matrix is then used to sample pixels (see middle image 
in Figure 3.6) from the image which are then written into a pattern structure (see 
right image in Figure 3.6). The size of the sampled patterns is arbitrary and depends 
on the pattern checking method used next. 
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Figure 3.6: Unprojecting the marker content. Left: Interior area defined by corner points; 

Middle: sampling grid for unprojection; Right: Unprojected interior marker area. 

ARToolKitPlus currently supports four different pattern checking methods. For 
applications that need to use arbitrary marker images, users can select ARToolKit 
template matching (see left picture in Figure 3.7), which checks the pattern area 
against a database of images using cross correlation. It thereby calculates the sum of 
squared differences between all pixels in the sampled and the database patterns. The 
disadvantage of this method is that it is computational expensive and scales badly 
with large numbers of known patterns: Each marker must be checked at four rotation 
steps. N visible and M known markers therefore require 4*M*N template matching 
operations. 

 
Figure 3.7: Marker types in ARToolKitPlus. Left: Template markers; 

Middle: ID-markers; Right: DataMatrix markers. 

Alternatively users can select to use ID-based patterns (see middle picture in 
Figure 3.7). In contrast to template patterns, the black and white pixels in the 
unprojected pattern are directly interpreted as bit code from which a marker ID can 
be calculated. ARToolKitPlus’ simple-ID patterns use simple four-fold redundancy 
and can encode nine bits in a 6x6 pattern image. Alternatively ARToolKitPlus’ BCH 
(Bose, Ray-Chaudhuri, Hocquenghem) code patterns use cyclic redundancy checks 
(CRC) which require less redundancy for similar robustness. BCH markers can 
therefore store 12 bits in the 6x6 pattern image. 
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Detection of ID-markers is always faster than for template-markers since no 
image matching using cross correlation is required. Currently ARToolKitPlus 
supports up to 4096 id-markers. More markers could be supported at the cost of 
decreasing the id-detection robustness. ID-markers offer several more advantages 
over template markers (besides better performance): Although ARToolKit allows the 
user to choose almost any image for marker patterns, most users still choose their 
patterns out the small set of markers that comes with the ARToolKit distribution. 
With id-markers, the user does not have to provide marker images, but can freely 
choose any marker from a fixed set of 4096 patterns. In contrast to template markers, 
the user is not required to train ARToolKitPlus with new patterns since any valid 
marker is implicitly known to the system. The encoded id is highly redundant and is 
therefore robust against 90° rotation steps, which is a natural problem with square 
template markers. 

Recently a fourth pattern type was introduced to ARToolKitPlus: Using 
DataMatrix13 codes (see right picture in Figure 3.7), markers can encode complete 
URLs or small binary data sets. The DataMatrix ISO standard defines patterns up to 
144x144 pixels that are able to store 1558 bytes or 2335 characters. Such large patterns 
are not suitable for tracking though since they’d only be correctly decoded with high 
camera resolutions and under small perspective distortions. 

3.2.4 Lens undistortion 

Before an identified marker can be used for pose estimation it must be undistorted 
using the intrinsic camera parameters that were estimated during the offline camera 
calibration step. 

ARToolKitPlus does not undistort the complete image but only the coordinates 
of those points that are required for pose estimation. ARToolKitPlus has two different 
methods for calculating the exact position of marker corners: The original ARToolKit 
marker detector uses line fitting along the markers’ borders to intersect the lines for 
corner estimation. Consequently all points along the borders must be undistorted. 
ARToolKitPlus introduced corner estimation using Harris corner refinement. Based 
on pixel-accurate corner positions that were detected during rectangle fitting (see 
chapter 3.2.2) it uses the Harris corner detection algorithm for sub-pixel accurate 
refinement. Consequently only these refined coordinates are then undistorted. 

                                                 
13 http://datamatrix.kaywa.com 
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3.2.5 Pose Estimation 

When markers have been identified in the camera’s image and undistorted corner 
points are available, the final step is to estimate the camera’s pose with respect to the 
markers. ARToolKitPlus can select from various pose estimators, which all use the 
same basic conecpt: First an initial guess is created that estimates the marker’s coarse 
position and orientation relative to the camera. This first estimate is then refined 
iteratively until specific quality criteria are met or the maximum number of iterations 
is reached. 

ARToolKitPlus supports tracking of independent markers as well as sets of 
markers which form a static 3D setup. The latter so called multi-markers have the 
advantage that the set’s pose can be estimated as soon as a single marker is visible, but 
the pose estimation quality improves as more markers are detected within the image. 
For doing multi-marker tracking, ARToolKitPlus first estimates the poses of all visible 
markers independently. The combined pose is then refined by creating a “super-
marker” who’s “corners” are built from all visible markers of the set. Considering a 
typical case where 5-10 markers of such a multi-marker are visible, the estimated pose 
from 20-40 corners is therefore highly accurate and stable. 

The original ARToolKit single- and multi-marker pose estimators give good 
results but suffers from jitter which is inherent to the used algorithm that tends to 
converge against different minima spontaneously. Although ARToolKit never aimed 
at accurate pose estimation, the effect of converging against different solutions 
introduces jitter into the resulting pose which is very noticeable. The "Robust Planar 
Pose Tracking" (RPP) algorithm [94] by Schweighofer et al. provides improved pose 
estimation quality with less jitter and improved robustness. RPP takes into account 
that two local minima exist for the pose estimation error function and specifically 
deals with these two errors to always find the optimal solution. The RPP algorithm 
was ported to C++ and added to ARToolKitPlus' set of pose estimators, running well 
on standard PCs. Unfortunately, due to the high numerical precision requirements of 
the algorithm, a fixed point port suitable for mobile devices seems currently not 
feasible. 

Recently, the author of this thesis introduced a new pose estimation algorithm 
that uses non-linear refinement (Gauss-Newton iteration) to ARToolKitPlus 
(respective to StbTracker). It is implemented in pure fixed point and therefore highly 
suitable for mobile phones. The algorithm starts by calculating an initial pose from 
the previously calculated homography (see chapter 3.2.3). Although this initial pose 
could be used for tracking, it is coarse and jitters heavily. The refinement step uses the 
algorithm described in appendix 6 (Iterative Estimation Methods) of [43]: 
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The algorithm aims at refining the 6 parameters (3 for position and 3 for 
rotation) that make up the pose of the camera. In each iteration step it first calculates 
the Jacobian matrix (the matrix of all first-order partial derivatives) for the current 
parameter values. It then uses the following formula to calculate a difference vector: 

 
JT J d = -JT ε0 

 
In the formula above, J is the Jacobian matrix; JT is the transpose of the Jacobian; d 

is the difference vector and ε0 is the error vector (difference between optimal and 
reprojected 2D points). Since JTJ is a symmetric positive-definite matrix, the equation 
can be efficiently solved using the Cholesky decomposition. The resulting difference 
vector is then added to the parameters from the previous step. In case the refined pose 
does not meet the precision requirements yet (estimated by reprojection), another 
iteration step is executed. See chapter 9.2 in appendix for source code. 

3.3 Advanced Features 
The following sections list the features that were added to ARToolKitPlus to improve 
its suitability for mobile devices in general and cell phones specifically. Most of these 
features were introduced into more than one step of the runtime tracking pipeline, 
which is why they are listed here separately. 

Fixed point 
The lack of an FPU is probably the single, most important issue for floating point 
intensive software on mobile phones and PDAs. To determine the time spent on 
floating point operations, custom code instrumentation was applied to reveal the 
most prominent bottlenecks. Tests showed that floating-point usage slowed down 
especially the pose estimation part of ARToolKit on mobile devices. Replacing the 
native C float data-type with a system-wide C++ class (emulating all operations with 
fixed point arithmetic) failed due to strongly varying requirements on precision and 
numeric range along the pipeline. Instead many functions had to be re-implemented 
using hand-written fixed point code after determining local range and precision 
requirements. 
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Pixel formats 
Supporting the native pixel formats of phone cameras is crucial for high performance 
tracking. Converting to a common format costs too much performance, especially 
due to the severe memory bandwidth limitations on these devices. Some camera 
formats already provide data in a format that is ideal for tracking, such as the YUV12 
format common on phones. YUV12 stores luminance (Y) at full resolution (8-bits), 
followed by two chrominance components (UV) at half resolution (effectively 2-bits 
each). Naturally 8-bit luminance images provide a suitable format for pose tracking 
from back-and-white markers while minimizing memory footprint. In contrast, 
formats such as RGB565 require the use of lookup tables for fast format conversion. 

Automatic thresholding 
In stationary setups lighting can often be controlled to provide well balanced 
brightness throughout the complete environment of interest. In mobile setups, which 
can easily span several rooms, floors or even combined indoor/outdoor areas, 
tracking must adapt to changing lighting conditions. Although many cameras possess 
auto-gain features today, the final image brightness can still vary heavily which causes 
severe problems with constant threshold values. Global thresholding, the typical 
solution for this problem, is computationally too expensive and therefore not suitable 
for embedded platforms. 

 
Figure 3.8: Automatic thresholding for tracking in extremely dark environments. 

Instead ARToolKitPlus includes a simple, yet very effective heuristic for 
automatic thresholding (see Figure 3.8) which imposes no measurable performance 
loss. Instead of looking at the whole image, only the last seen marker is considered. 
After a marker was found, the median of all extracted marker pixels is calculated and 
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used as a threshold for the next image to process. If the heuristic fails because no 
marker is found, ARToolKitPlus randomizes the threshold in such a case for every 
new frame until a new marker is detected. Empirical tests show that after a marker 
gets lost it takes only a few frames to find a new, working threshold. 

Vignetting 
Some cameras in mobile phones today exhibit strong vignetting (see left image in 
Figure 3.9). Thresholding such an image with an image-wide constant value results in 
an image as can be seen in the middle picture of Figure 3.9. If a marker is close to the 
border in such an image, it will overlap with the dark areas that were classified as 
black and the marker would therefore not be detected anymore. To prevent this, 
ARToolKitPlus provides a simple vignetting compensation feature: The user can 
specify a radial fall-off from the centre of the image to the corners. This fall-off is 
specified numerically rather than using an image mask in order to minimize memory 
bandwidth usage. After activating vignetting compensation even strongly tampered 
images are thresholded correctly (see right picture in Figure 3.9). Vignetting 
compensation adds only a minimal performance penalty. 

 
Figure 3.9: Vignetting. Left: original camera image. Middle: constant thresholding. 

Right: thresholding with vignetting compensation. 

Portability 
Today's mobile phones run a wide variety of system software. Hence, portability is of 
high concern. ARToolKitPlus does not include code for camera access or 3D 
rendering. Its only interfaces for data I/O are a pixel buffer for image input and 4x4 
floating point matrices (compatible with the OpenGL matrix format) for tracking 
results output. It is therefore only limited by the amount of supported input pixel 
formats. ARToolKitPlus is implemented in pure C++ and is consequently highly 
portable. Currently Windows XP, Windows CE, Symbian (experimental) and Linux 
are supported which covers the majority of today's development and target devices. 
While a Java port would extend the range of supported mobile devices considerably, 
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our informal experiments have shown that the performance of Java on today's mobile 
phones does not allow sufficiently interactive frame rates. 

Custom memory management 
Memory is not just a scarce hardware resource on mobile devices but often restricted 
even further due to deficiencies in mobile operating systems. It is therefore crucial to 
provide application developers with maximum control over memory de/allocation. 
Hence all memory management in ARToolKitPlus can be customized by the 
developer. On most platforms ARToolKitPlus uses the standard memory 
de/allocation functions per default. On Windows CE ARToolKitPlus' memory 
manager allocates memory outside the process' memory slot thereby keeping this 
scarce resource available for DLLs and unmanaged memory allocations. Since 
ARToolKitPlus' memory footprint is fixed and known at compile-time, the 
requirements for such a custom memory manager are minimal. 

Improved Lens Undistortion Performance 
Precise lens undistortion is usually computationally expensive since it requires 
evaluating non linear functions. ARToolKitPlus uses lookup tables to speed up this 
process at runtime. Since even the generation of this lookup table can take up to 10 
seconds on low-end devices, it can cache the table using the phone’s file storage. 
When ARToolKitPlus searches for the cached lookup table at startup, it either loads it 
or automatically creates and stores it for the next startup. Since lens distortion 
functions are usually continuous, it is adequate to create the lookup table at a smaller 
resolution than of the camera’s input image and to linearly interpolate values. 

3.4 Performance measurements 
Over the years, many optimizations were applied to ARToolKitPlus. Besides rewriting 
major parts of floating point intensive code with fixed point counterparts, 
ARToolKitPlus makes heavy usage of inline expansion and pre-processor techniques. 
E.g. the pre-processor is used to generate separate functions for each supported pixel 
format, which allows switching between those formats at runtime with no 
performance penalty. 

ARToolKitPlus uses lookup tables wherever possible. The pose estimation 
algorithm intensively uses trigonometric functions that were accelerated with sine 
and cosine lookup tables. The lens undistortion method of ARToolKitPlus is specified 



 
Chapter 3 

 
Pose Tracking 

 
52

 

 

using higher order polynomials which introduce high computational costs at runtime 
and were therefore replaced by a lookup table too. Matrix fitting requires perspective 
projection, including (fixed point) divisions which are not implemented in hardware 
on most ARM CPUs. Replacing these divisions with another lookup table resulted in 
further significant speedups. Lookup tables can usually not provide the same exact 
results as algorithmic methods. Special care was taken to always provide enough 
accuracy so that final results are indistinguishable. 

To test ARToolKitPlus' performance for practical applicability, benchmarks on 
several handheld devices were performed. These tests compare tracking performance 
with different numbers of visible markers, which is the only criterion that makes a 
difference in tracking speed. Contrary to expectation, the size of the marker does not 
influence the tracking speed. The reason for this is that the edge following step 
generally adds only very little to the overall calculation time. 

ARToolKitPlus is primarily CPU bound. So even though all test devices run 
Windows CE, they represent a good overview of what is currently available on the 
market. Additionally the benchmarks were run on a PC as a comparison of the 
processing power on handhelds to a typical PC-based setup. Since several of these 
devices are available under different brands, list also contains the OEMs' code names. 
All builds were created using the Microsoft ARM and x86 compilers with full 
optimization activated (/Ox). Where possible the Intel compiler suite was used to 
compare different compilers. Benchmarks were performed on the following devices: 

• i-mate SP5 (codename HTC Tornado) is a typical smartphone with a 200 MHz 
Texas Instruments OMAP850 CPU. 

• HTC MTeoR (codename HTC Breeze) is a fast smartphone device with a 
300MHz Samsung S3C2442 CPU. 

• HTC TyTN (codename HTC Hermes) is a PocketPC phone with a 400MHz 
Samsung S3C2442 CPU. 

• Gizmondo is a mobile gaming console with an nVidia GoForce 4500 3D chip 
(not used in the benchmark), a built-in camera and a Samsung S3C2440 400 
MHz CPU. 

• T-Mobile MDA Pro (codename HTC Universal) is a high-end PocketPC 
phone with an Intel XScale PXA270 CPU running at 520MHz. 

• Dell Axim X51v is a high-end PocketPC PDA with an Intel 2700G 3D chip 
(not used in the benchmark) and an Intel XScale PXA270 CPU running at 
624MHz. 

• Intel 2 GHz Core Duo represents a standard  PC-based setup. On this device 
ARToolKitPlus was executed with regular floating point code. 
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Three different scenarios were evaluated: one using single marker tracking and 
two using multi-marker tracking. In ARToolKit and ARToolKitPlus multi-marker 
tracking is implemented by first tracking all markers separately, then combining all 
tracking results and finally optimizing for the complete set. Because of the last step, 
tracking a multi-marker set with N visible markers is considerably slower than 
tracking N independent markers. 

 
 Single Marker Multi Marker (4 markers) Multi Marker (10 markers) 

Device MS Intel MS Intel MS Intel 
i-mate SP5 14.8 ms 13.3 ms 66.4 ms 78.4 ms 234.1 ms 273.8 ms 

HTC MTeoR 10.2 ms n/a 44.6 ms n/a 153.3 ms n/a 
Gizmondo 8.5 ms n/a 34.5 ms n/a 122.7 ms n/a 
HTC TyTN 8.3 ms n/a 34.9 ms n/a 128.1 ms n/a 
MDA Pro 6.2 ms 6.0 ms 24.1 ms 29.5 ms 83.4 ms 99.1 ms 
Dell X51v 5.4 ms 5.1 ms 20.7 ms 23.25 ms 69.8 ms 81.2 ms 

PC 0.55 ms 0.43 ms 6.26 ms 2.77 ms 17.53 ms 8.3 ms 

Table 3.1: Benchmarks performed on images with one, four and ten markers. 
The latter two images were tracked with a multi-marker set of 12 markers of which 

four and ten were visible. 

Due to the aforementioned optimizations, the current version of ARToolKitPlus 
is roughly 50 times faster on mobile devices than the initial port. Consequently, as can 
be seen in Table 3.1, single marker tracking represents no major bottleneck on any of 
the tested devices. It is interesting to notice that with single marker tracking the Intel 
compiler gains some speed advantage over the Microsoft compiler on those CPUs 
which can run that code. (Non-Intel CPUs required disabling some optimization flags 
of the Intel compiler or the generated code would not run). 

Multi-marker tracking puts a severe burden on the processing power of today's 
mobile devices. While tracking a multi-marker set with four visible markers still 
performs satisfactory on most devices, the cost for tracking ten visible markers is too 
high for acceptable frame-rates - considering that tracking is only a one small part of a 
practical application. It is interesting to notice that on all embedded devices the code 
generated with the Intel compiler performs worse than the code generated with the 
MS compiler, which is in contrast to the results of single marker tracking. The reason 
for this behaviour is not revealed yet. Earlier tests with the Intel compiler revealed 
though that some code, such as the Klimt library (see chapter 4.1) performs generally 
worse with the Intel than with the MS compiler. 

Almost all smartphones and PDAs today use ARM based CPUs. Furthermore, 
ARToolKitPlus is almost fully CPU bound and hardly memory-bandwidth bound at 
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all. Hence it is not surprising that the tracking performance on the devices in this 
benchmark increases linear with the CPUs' clock rates. As can be seen in Figure 3.10, 
all devices process 31.12 (+/- 1.76) frames per second at a normalized speed of 100 
MHz. 

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

160,00

180,00

200,00

SP5 MTeoR Gizmondo TyTN MDA Pro X51v

fra
m

es
 p

er
 s

ec
on

d

fps at full speed
fps at 100MHz

 
Figure 3.10: Frames per second for single marker tracking on embedded devices. 

3.5 Discussion 
This chapter presented a solution for tracking of fiducial markers on mobile 

phones and similar devices. Tracking is a basic building block of every Augmented 
Reality application. ARToolKitPlus is therefore an important contribution for any AR 
system running on mobile phones, since it allows regular, unmodified phones to 
estimate their pose in respect to objects of interest. Taking the limited requirements 
on performance and accuracy into account, ARToolKitPlus on the phone performs 
comparable to tracking systems on the PC, thereby contributing to fulfilling argument 
H1 of the hypothesis in chapter 1.3. 

Studies in this thesis (see Chapter 7) show that deployment of fiducial markers is 
reasonably accepted. Yet we see fiducial marker tracking only as an intermediate step 
to the long term goal of augmented everything and everywhere, consequently 
requiring natural feature tracking. Today, most PC-based AR applications today also 
use fiducial markers due to their unparalleled tracking robustness and performance. 

An advantage of fiducial marker tracking is the fast and easy deployment which 
makes it more practical than natural feature tracking in certain applications, as 



 
Chapter 3 

 
Pose Tracking 

 
55

 

 

presented in chapter 7.5.2 on the Signpost 2007 application. For robust location 
estimation in large areas, natural feature tracking inherently requires models of the 
real environment (“model based tracking”), which are far more work intensive to 
create than deploying fiducial markers. Deployment of commercial 6DOF tracking 
systems is usually not affordable for wide areas too. Hence, also hypothesis H2 
benefits from the work presented in this chapter, since it clearly supports building 
larger AR applications. 

Even if natural feature tracking is available, in some application areas, such as 
advertisement, markers can serve as practical hints for users to activate an AR 
application on their phone and aim it towards the marker. We therefore believe that a 
next step will be the combined use of fiducial and natural marker tracking, combining 
the strengths of both techniques. 
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Chapter 4  

Rendering 
Although AR is not exclusively focusing on visuals, most research focuses on 
graphics augmentations, making rendering the second important aspect after 
tracking, which was described in the previous chapter. This chapter first outlines 
graphics concepts and then presents solutions for 2D and 3D graphics developed 
in the course of this thesis. 

Computer graphics researchers are accustomed to working with standardized low-
level APIs such as OpenGL. On small mobile platforms like PDAs and cell phones 
there exists no built-in 3D graphics subsystem as of yet, and no widespread general 
purpose commercial solutions currently exist. Although OpenGL ES is on its way to 
become a solid base for 3D on mobile devices, most existing portable 3D applications 
rely on OpenGL rather than OpenGL ES. Furthermore the AR framework developed 
in this thesis, generally strives for a higher level of abstraction than OpenGL and 
similar libraries provide. 

An alternative solution to rendering natively on the handheld device is remote 
rendering. In this scenario, a powerful server takes over the image generation task and 
sends final images to the mobile device. For example, Lamberti et al. successfully 
streamed mobile graphics using an MPEG video feed [59], assuming a fast network 
connection. Such an approach is probably the only viable solution when graphics that 
go far beyond the client’s capabilities have to be displayed. At the downside this 
method scales badly with the amount of clients and becomes unpractical in low 
bandwidth or low quality network situations. The handheld AR project therefore 
concentrated on native rendering only. 

This chapter describes graphics solutions that the author either developed for or 
ported to mobile platforms. Some of them, such as Klimt have mostly historical value 
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anymore since it have been superseded with the wide availability of OpenGL ES 
implementations. 

4.1 Immediate Mode Rendering 
In immediate mode rendering, also known as low level rendering, the user has full 
control over the rendering process. Graphical objects are described on a vertex level 
and retransmitted every frame. Immediate mode rendering is the basis and lowest 
level for every current rendering system. The most common immediate mode 3D 
APIs are OpenGL and Direct3D, of which the latter is only available on Windows 
platforms and therefore of minor applicability for our purposes. Hence, OpenGL is 
traditionally strongly represented in research and professional applications. It was 
therefore important for the handheld AR project to have OpenGL or OpenGL ES 
implementations available as the basis for all higher level 3D rendering libraries. Yet, 
since some Windows CE devices with hardware 3D acceleration come with Direct3D 
drivers only, support for this API was recently added in StbES too. 

Figure 4.1 shows the OpenGL render pipeline as defined by the OpenGL 1.5 
specification. Application data enters from the left. Programmers can either directly 
manipulate pixel data using pixel operations or pass in vertex data. All 
aforementioned operations can be recorded and played back using display lists. In the 
rasterization stage, primitives are converted to frame buffer addresses called fragment, 
which are then manipulated using per-fragment operations and finally written into 
the frame buffer. 

Since OpenGL implements the most complete pipeline among all widely used 
immediate mode graphics toolkits today, it is used to compare it against the pipelines 
of OpenGL ES, Direct3D Mobile, Klimt and KlimtES in the next chapters. 
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Figure 4.1: The OpenGL render pipeline. 



 
Chapter 4 

 
Rendering 

 
58

 

 

4.1.1 OpenGL ES 

OpenGL ES was designed by the Khronos14 group as a light-weight 3D API for 
mobile devices. It is a powerful low-level API that is very similar to that of OpenGL 
and provides most of OpenGL’s functionality. Khronos used the chance to clean up 
the OpenGL API and solve many long outstanding issues such as window bindings. 

It is available in hardware and/or software on all mobile key platforms. Hybrid 
Graphics, a commercial vendor created a software implementation called Rasteroid15 
that is free for non-commercial use. Vincent16 is a free open source implementation. 
Both libraries use run-time code generation for the pixel pipeline: Instead of 
including a fixed rasterizer that would have to efficiently handle all possible pixel 
operation combinations, these libraries create machine code at runtime that optimally 
implements the currently specified combination of raster operations. Since this is an 
extremely low level approach, supporting different CPU architectures poses a 
considerable amount of work. Unlike Rasteroid, Vincent therefore only supports 
ARM CPUs and consequently does not run on PCs. For development purposes a 
reference implementation of OpenGL ES that wraps an underlying OpenGL 
implementation is available by Khronos. 

Reduced Feature Set 
A major design decision for OpenGL ES is that it provides no functionality that 

can not be mapped directly to the underlying implementation in order to simply 
driver development and reduces the driver’s code size. Furthermore all redundancy of 
the OpenGL API was removed (see Table 4.1). Consequently there is no 
glBegin/glEnd since programmers are advised to use the more efficient vertex array or 
vertex buffer functions instead. No major 3D implementation today has native 
support for primitive types other than points, lines and triangles. Hence, OpenGL ES 
does not support quads or n-sided polygons. Instead of requiring the driver to 
triangulate these primitive types this job is left to the programmer. 

Many rarely used high level functions such as the GLU functions, evaluators, 
picking or display lists have been removed too. Since these functions are not 
implemented in hardware anyway, it was decided to leave the implementation to the 
application programmer when needed. The overall effect of these streamlining efforts 
is a heavily simplified graphics API as well as smaller, easier to implement and more 
robust drivers. Looking at Figure 4.1, OpenGL ES misses the display list, evaluator 

                                                 
14 http://www.khronos.org 
15 http://www.hybrid.fi 
16 http://sourceforge.net/projects/ogl-es 
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and most of the pixel operation stages. As a consequence of the reduced feature set, a 
full OpenGL ES 1.x software implementation can easily fit into a binary of a few 
hundred kilobytes size. 

 
 OpenGL OpenGL ES 1.x 

glBegin/glEnd yes no, except SC profile 
Primitive Types all no quads & polygons 

Data Types float, double, int, etc. float, fixed 
glDraw/Read Pixels yes glReadPixels only 

Textures 1D,2D,3D,cube 2D 
Stencil yes optional 

Window Bindings WGL, GLX, etc. EGL 

Table 4.1: Comparing OpenGL versus OpenGL ES. 

Fixed Point 
OpenGL ES targets primarily embedded systems, which usually do not have 

floating point units. On these CPUs floating-point usage has to be emulated in 
software, which is roughly 50 times slower than using native data types. Hence, 
OpenGL ES adds fixed-point as a new data type over OpenGL. Floating point uses 
separate representations for exponent and precession, while fixed-point stores both in 
a single integral value. Fixed point can therefore be based on regular integral values 
and most arithmetic operations can therefore be performed in hardware. While any 
integral type can be used for representing fixed point data, the usage of two’s 
complement is most common, since it is the native integral data type of many modern 
CPU architectures, including ARM and x86. 

OpenGL ES defines a 15.16 fixed point format for its API, which uses 15 bits 
before and 16 bits after the radix point. Consequently a numeric range of -32768 to 
+32767 can be expressed at a precision of 1/64k or 0,0000153. Despite its advantage of 
allowing effectively implementation without floating point units, fixed point often 
creates problems with the small numeric range resulting in numeric overflows. 

Window Bindings 
OpenGL ES defines a new window binding called EGL that mostly solves the platform 
dependency issues of the OpenGL windows bindings such as WGL, GLX or AGL, 
which are completely platform specific. 

EGL specifies platform independent functions and handles for most operations. 
Only minimal set of handles such as for device contexts or bitmaps is platform 
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dependent. Due to platform specific type definitions, these types are automatically 
resolved at compile time though, posing no extra work for the developer. 

EGL knows three different kinds or render targets. An implementation is free to 
implement only a subset of them. Window surfaces are usually stored in video 
memory, while PixMap surfaces are always stored in system memory. Furthermore 
PBuffer surfaces allow off-screen rendering. It is due to the renderer to decide 
whether to put them in system or video memory. A hardware implementation will 
usually not support PixMap surfaces since this would require a full software based 
renderer implementation too. The main advantage of using PixMap surfaces is the 
access to the pixel data, which not possible using Window surfaces. 

4.1.2 Direct3D Mobile 

Direct3D Mobile was introduced by Microsoft with Windows CE 5.0 and is therefore 
part of Windows Mobile since version 5 (also known as 2005). Its API is COM17 
(Component Object Model) based, a Microsoft interface model, which is also the 
basis for ActiveX. Consequently, the API is object oriented rather than procedural 
such as the C-API of OpenGL ES. 

Similar to OpenGL ES being a reduced version of OpenGL, Direct3D Mobile is a 
subset of Direct3D. Direct3D Mobile is based on Direct3D 8, but it also incorporates a 
few elements and behaviors of Direct3D 9. The differences become obvious when 
comparing the number of classes of both APIs : While Direct3D contains 16 classes, 
Direct3D Mobile has only 8 classes. Direct3D Mobile misses support for shaders, 
texture formats other than 2D (such as 1D, cube and volume textures) and stage block 
(for applying many render state changes at once). Most functionality of Direct3D 
Mobile is gathered in the IDirect3DMobileDevice “god-class”. 

Although the APIs of Direct3D and OpenGL ES 1.x are very different the 
underlying concepts and the feature set are very close since they target exactly the 
same class of hardware. Like OpenGL ES, Direct3D Mobile does not include the 
display list, evaluator and most of the pixel operation stages from Figure 4.1. 

Being even closer to metal than OpenGL ES, Direct3D Mobile does not allow 
specifying vertex data via simple array pointers, but requires specifying a Flexible 
Vertex Format (FVF), that defines the structure of vertex data passed to the graphics 
driver. Unlike OpenGL ES, vertex data must always be interleaved, packing all 

                                                 
17 http://www.microsoft.com/com 
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components of a vertex such as position, normal, etc. closely together, which is closer 
to how a GPU processes these elements than OpenGL ES does. 

4.1.3 Immediate mode rendering with Klimt 

When the Handheld AR project started in 2002, no suitable 3D rendering library was 
available to fulfill the requirements of an Augmented Reality application. There have 
been previous attempts to create libraries similar to OpenGL, such as PocketGL and 
TinyGL, but these projects were either tailored to the specific needs of computer 
games or have not reached sufficient maturity. The author of this thesis therefore 
chose to implement a custom software renderer, called Klimt18, as an open-source 3D 
library targeted for PDAs and mobile phones. 

 
 Klimt OpenGL ES 1.x Direct3D Mobile 

glBegin/glEnd concept yes no, except SC profile no 
Display Lists yes no No 

Primitive Types all no quads & polygons no quads & polygons 
Data Types float, double, int, etc. float, fixed float, fixed 

Frame buffer access yes reading only device specific 
Textures 1D,2D,3D,cube 2D 2D 
Stencil yes optional yes 

Window Bindings EGL, WGL, GLX, etc. EGL Windows 

Table 4.2: Comparing feature set of Klimt, OpenGL ES and Direct3D Mobile. 

In contrast to these previously existing render libraries for mobile phones or 
PDAs, Klimt is flexible enough to fulfil the requirements of an AR application such as 
off-axis camera support required for tracking (see Figure 4.2). Its API is very similar 
to that of OpenGL and OpenGL ES, although it would not pass official conformance 
tests. For example, Klimt can be used as the low-level graphics toolkit for Coin19, an 
OpenInventor-compatible scene-graph rendering library which was used in the 
Handheld AR project at that time (see more about Coin in chapter 4.2.1). 

Unlike OpenGL ES, Klimt has a full display list stage that can record most of the 
GL render commands. Since rarely required it does not implement evaluators or most 
of the pixel operations. Yet, being a pure software renderer, it provides full access to 

                                                 
18 http://studierstube.org/klimt 
19 http://www.coin3d.org 
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the frame buffer. In this sense, the pixel operation stage from Figure 4.1, is mainly a 
pass-through in both directions. 

  
Figure 4.2: Textured avatar "Caleb" rendered on top of an 

ARToolKit fiducial marker using Klimt. 

Software Design 
Klimt is implemented as a collection of C++ classes with a C wrapper for 

OpenGL API compatibility. As a means to optimize runtime performance Klimt 
makes heavy use of templates and inline functions. Klimt can be configured to use any 
kind of native (e.g. 32 bit integer…) data type for internal processing. Because of the 
lack of floating-point units in current mobile devices, Klimt by default performs all 
internal operations using fixed-point math. Klimt is built from two main components, 
the render context and the rasterizer (see execution layer in Figure 4.3). 

The rasterizer is purely software-based and implements the pixel pipeline. It 
renders RGB565 only, which is the native pixel format of most of modern mobile 
phones and PDAs. Nevertheless, it provides most of the features supported by 
OpenGL and OpenGL ES, such as gouraud-shading, texturing, transparency, alpha 
blending, fog, z-buffering or any combination of them. Although only this rasterizer 
has been implemented it would be easy to create other implementations with different 
pixel formats or even hardware support. 

The Context component keeps track of the current render context's state and 
implements the complete vertex pipeline including transformation, lighting and 
clipping, as well as important OpenGL concepts such as attribute stacks, display lists 
and vertex arrays. 
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Figure 4.3: Klimt software architecture. 

A general problem when creating a high performance implementation for a 
standard such as OpenGL with a highly configurable render path is the development 
of fast per-pixel routines. OpenGL allows modifying the per-pixel operations in many 
ways through texturing, shading, blending, etc. Additionally to specifying how the 
output color is created OpenGL allows setting a variety of visibility tests such as z-
buffering, clipping, alpha tests, stencil tests, etc. A naïve implementation would check 
on a per-pixel basis which operations to apply. Since this chain of commands contains 
about 10 operations, such an implementation would be extremely slow. 

An early version of Klimt used compile-time code generation to generate the 
most important combinations of these pixel operations. A Python script generated 
735 combinations of scanline function setups which where then expanded using the 
compiler’s pre-processor. For all other operations a slow general purpose 
implementation was available as fall back. While this resulted in a very fast rasterizer, 
the resulting binary (DLL) was between 1 and 2 megabytes in size (depending on 
compiler settings), which created a serious problem for distributing and deploying the 
software onto mobile devices. 

A later, revised version performed these operations not per pixel but per scanline. 
A triangle’s scanline was first shaded, then textured, etc. To make optimal use of early 
z-tests, all visibility operations are performed first for the whole scanline and the 
results are stored in a run-length encoded list that allows skipping these pixels quickly 
for other pixel operations. Since a single scanline fits easily into the processor’s cache 
there is only minimal overhead over the previous implementation. The resulting 
binary is only a few hundred kilobytes large and therefore fits the requirements of 
mobile devices. 
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Since Klimt is internally implemented as a set of C++ classes it requires wrappers 
to comply with the standard C APIs (see wrappers layer in Figure 4.3). Klimt includes 
wrappers for OpenGL and OpenGL ES as well as WGL and EGL window bindings. 

4.1.4 Immediate mode rendering with KlimtES 

With the advent of mobile phones and PDAs with hardware 3D support a pure 
software-based Klimt implementation is no longer a competitive solution. While 
Klimt can be extended to support hardware accelerated rasterization these devices 
usually come with a complete OpenGL ES implementation. Instead of just using an 
underlying OpenGL ES support for rasterization purposes only it makes more sense 
to take advantage of the already implemented vertex stage too. Although OpenGL ES 
can be used directly a lot of existing code relies on OpenGL instead. The author of this 
thesis therefore created a wrapper that restores functionally missing in OpenGL ES. 

KlimtES exposes almost the same OpenGL compatible API as Klimt and 
therefore allows to run many existing software packages that rely on OpenGL features 
without modification. At startup KlimtES searches for an existing OpenGL ES DLL. It 
supports the common as well as common-lite profiles of OpenGL ES. In the latter 
case, which does not support floating point, the data type conversion is performed by 
KlimtES. 

KlimtES implements the glBegin/glEnd clause by internally storing the specified 
vertices in vertex arrays that are handed over to the OpenGL ES driver when the 
arrays are full or the primitive type is changed. Furthermore KlimtES allows using 
quads, quad-strips and polygons by internally triangulating these into vertex arrays. 
The most crucial missing feature is floating point support though since OpenGL does 
not include fixed point functions at all. While it is simple to convert from floating 
point to fixed point these operations are very slow and therefore degrade performance 
seriously. It is therefore advised to rewrite higher level applications or libraries to 
directly use fixed point as was done with Coin ES (see chapter 4.2). Other OpenGL 
features provided by KlimtES include support for WGL window binding, integer 
index types and state queries missing in OpenGL ES. 

Like Klimt, KlimtES is implemented in C++ and therefore requires C-wrappers 
to conform to the OpenGL and OpenGL ES APIs. From an application point of view, 
KlimtES completely replaces the OpenGL and OpenGL ES implementations. It 
therefore wraps (pass-through) even those functions that are not modified in their 
behavior. 
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4.1.5 Software vs. Hardware Rendering 

While both hardware and software implementations of OpenGL ES and Direct3D 
mobile provide the same feature set, their performance characteristics are highly 
different. Besides pure software and hardware implementations, mixed approaches 
are common. Similar to the beginning of hardware 3D support on desktop PCs in the 
1990s, many mobile designs today only implement the pixel stage in hardware, 
running the vertex stage in the driver and therefore on the CPU. 

Hardware rendering obviously has the advantage of providing much more raw 
processing power than software rendering, which usually removes the need to 
carefully reduce the vertex count of 3D meshes. Furthermore texturing is typically as 
fast as gouraud shading, making texturing a free option to select. Unfortunately, these 
GPUs, which are primarily targeting games, are not fast in transferring textures, 
which poses a severe problem for efficient rendering of the video background. 

While pure hardware implementations are usually well balanced, smaller designs 
often implement only the rasterization stage in hardware. Pure software renderers 
typically suffer from bottlenecks in the pixel pipeline, but mixed designs are more 
often vertex limited. The Intel 2700G as well as the nVidia Goforce Go 4500 GPUs are 
typical examples for this category. 

 
 Pure Software Mixed S/W-H/W Pure Hardware 

Vertex Stage Software Software Hardware 
Pixel Stage Software Hardware Hardware 

Typical Limits Pixels Vertices - 
Framebuffer Access Yes No No 

Fast Texturing No. Yes Yes 

Table 4.3: Comparing software, hardware and mixed implementations. 

The main bottleneck of pure software renderers is typically the pixel pipeline, 
especially when intensively making use of texturing. As a unique advantage, these 
implementations usually allow direct frame buffer access, which enables copying the 
video background directly into frame buffer, thereby by-passing slow texture 
mapping routines. Furthermore, since the frame buffer of these designs is always in 
system memory, this copy operation is extremely fast. Under specific circumstances 
such as when rendering simple 3D graphics in Studierstube ES on the Gizmondo 
(powered by a Goforce Go 4500 GPU), a pure software OpenGL ES implementation 
can outperform the built-in graphics chip. 
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A high level toolkit such as Studierstube ES is therefore required to implement 
multiple render paths for making optimal use of the strengths of each kind of 
renderer. Studierstube ES contains different routines for 2D graphics operations, such 
as drawing video background or buttons. When running on hardware 3D, direct 
frame buffer access is not possible, and StbES therefore relies on texturing to draw 
bitmaps onto the screen. In the software rendering case though, these bitmaps are 
copied directly into the frame buffer. 

4.2 Retained mode rendering 
Retained mode rendering describes a high level rendering concept on top of the lower 
level immediate mode presented in the previous chapters. In retained mode, objects 
and their relationships are described as a whole rather than on per-vertex basis. 
Retained mode introduces the concept of a scene that is made up of objects which 
together form a virtual environment. While immediate mode requires procedural 
programming, retained mode has a more descriptive flavor: instead of telling the 
graphics subsystem how to render an image, users specify objects and leave the actual 
rendering task to the rendering middleware, which is free to apply suitable rendering 
strategies and optimizations. 

Today, scene-graphs are the most common concept for retained mode rendering 
and especially popular in research and for prototyping. A scene-graph structures 
objects hierarchically and describes their interrelations as well as properties such as 
materials, rendering styles or priorities. 

4.2.1 Scene-graph Rendering with Coin ES 

Coin3D, developed by Systems in Motion20, is a high-level scene-graph rendering 
library that implements the OpenInventor API [99]. Instead of having to work 
directly with low level APIs such as OpenGL or OpenGL ES, Coin3D allows 
application developers to concentrate on high level tasks such as application design 
and data flow. Among the large number of scene-graph libraries, OpenInventor is 
probably the most flexible one and therefore ideally suited for prototyping graphical 
data-driven applications. On the other side this flexibility comes with the price of 
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lower performance and a non-deterministic real-time behavior. The Studierstube 
team around Prof. Schmalstieg has a long history of using OpenInventor and Coin3D 
which made it a natural choice for the handheld AR project too. 

Coin3D integrates a vast number of features. Its roughly 500 C++ classes provide 
support for loading various file formats such as VRML and 3ds as well as its native 
Inventor (.iv) file format. Furthermore it has support for 3D audio and modern 
texturing functions such as 3D textures, multi-textures, huge textures and bump-
mapping. It can output not only to video memory but to Postscript as well. Coin3D 
can read a large number of texture sources including JPEG, PNG, GIF, TGA and 
many more. Naturally this packet carries a heavy weight - VRML support alone 
increases the overall size of Coin3D considerably. While this is not an issue on a PC, it 
is too big for embedded platforms such as mobile phones or PDAs. 

It was therefore mandatory to remove unnecessary functionality and to optimize 
the performance for handheld devices as well. Besides minor modifications that make 
Coin3D run with Klimt and KlimtES functionality was removed that is not required 
for handheld AR such as draggers, manipulators, VRML and Postscript support. 
Instead of the heavy weight window bindings that provide highly comfortable viewers, 
a custom lean window binding was developed that only runs in full screen and has 
minimal mouse and keyboard support. Further removing support for unnecessary 
texture source formats resulted in a binary with roughly half of the original size. Yet, a 
binary library with integrated support for loading JPEGs, PNGs and many other 
image formats is still almost 3 Mbytes in size. 

Although Coin3D runs on top of Klimt and KlimtES with only minimal 
modifications, its performance was still unsatisfactory. Targeting high-end 
applications on powerful workstations and VR systems, Coin3D’s memory 
consumption is enormous for mobile devices. Therefore a custom memory manager 
was added to overcome virtual memory restrictions under Windows CE21. Coin3D 
naturally uses floating point as its internal data format. While Klimt can automatically 
convert this data to fixed point, doing this on a per-frame basis for mostly static 
models is a huge waste of processing power. Hence, the Coin3D primitive cache was 
extended to support fixed point natively and thereby only have to convert data once. 

A general problem of Coin3D is the large overhead of traversing the scene-graph. 
Due to the way OpenInventor handles internal changes to the graph structure and 
fields, the complete scene-graph can be traversed many times per frame. Large and 
complex scene-graphs therefore pose a serious performance problem for low end 
platforms. It is therefore of utter importance that the application designer carefully 
constructs the scene-graph and optimizes it for minimal size. While the binary file 
                                                 
21 http://msdn2.microsoft.com/en-us/library/ms836325.aspx 
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size and memory consumptions are still enormous for embedded platforms, the 
resulting rendering performance of a well designed scene-graph is close to direct 
rendering using Klimt or KlimtES. 

4.2.2 Scene-graph rendering with StbSG 

While Coin3D is a powerful library and very suitable for developing AR applications 
on the PC, it is still too big to be practical for mobile devices – even after our efforts of 
reducing its feature set and size. Larger applications such as Studierstube 4 on the 
PDA continued to run out of memory. Furthermore it is unrealistic to ask end-users 
to install applications of many Megabytes in size of their phones. 

Hence, the design decision was made to not rely on components anymore that 
would prevent a practical deployment on end-user devices. Unfortunately there are 
very few high level rendering libraries that support OpenGL ES directly and that were 
specifically designed and implemented for mobile devices. A notable exception is the 
Mobex3D22 game engine, which is available for Windows Mobile, Windows XP and 
MacOS. Mobex3D has many advanced features such as particle systems, skeletal 
animation and exporters for 3dsMAX, but it is expensive for commercial use. The free 
version is very limited and allows only scripting, but no native C++ development. 

Software Design 
Studierstube ES therefore comes with its own custom scene-graph library called 

StbSG (Studierstube Scene Graph) and optimized it for the specific requirements of 
handheld Augmented Reality applications. StbSG is an integral part of Studierstube 
ES rather than a separate library. Its design is similar to that of OpenInventor which 
makes it easy for experienced Studierstube developers to migrate to Studierstube ES. 
StbSG works on top of OpenGL ES and Direct3D Mobile and does therefore not 
require an external wrapper such as KlimtES. It is optimized to work as a thin layer 
between the application and OpenGL ES or Direct3D Mobile. Consequently it does 
not expose graphical features that can not be mapped to the underlying graphics 
toolkit implementation such as quad or polygon primitives. 

StbSG has most of the typical features of scene-graph libraries. Before a node can 
be used in the scene-graph it has to be registered to the scene-graph database that 
stores the reflection information of all nodes and allows searching scene-graphs by 
node types and names. This registration process is especially important for the 
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loading and saving mechanisms of StbSG. For all internal nodes this happens 
automatically during startup. For custom nodes, developers have to call the 
corresponding class methods manually. This mechanism allows developers to extend 
StbSG with arbitrary new nodes that can even be loaded and instantiated from 
different binary files at runtime. 

Scene-graph Nodes 
A scene-graph can hold an arbitrary number of cameras that are automatically 

activated, when traversed. StbSG comes with implementations for orthographic, 
perspective and general purpose camera models. The latter one can be freely 
configured providing a projecting matrix and is therefore suitable for accurately 
overlaying video backgrounds using off-axis projection. 

Geometry can be specified in various ways. Using SgGeometry nodes provides 
most flexibility since it only (optionally) stores indices and is not responsible for 
providing per vertex data. These data sets are typically defined by other nodes such as 
SgGeometryVertices, SgGeometryNormals, SgGeometryColors or 
SgGeometryTexCoords. As an advantage of splitting up the data into different nodes, 
data dependency is reduced. Consequently other nodes can also provide per-vertex 
data such as the SgAnimatedGeometryVertices node, which defines animated vertices. 

The geometry-related nodes described above all store their data in text form in 
the XML scene-file. While this allows maximum flexibility, it increases file sizes and 
loading times. StbSG therefore also contains a SgStaticMesh node that loads its data 
from an external binary file. The node supports storing and loading data at full 
precision in fixed-point and floating-point as well as in reduced precision, which 
results in a file size reduction of roughly 60% at no noticeable quality loss. 

The third type of geometry node is SgProgressiveMesh which allows progressive 
streaming and rendering of polygonal data. Objects can be streamed via network and 
rendered as soon as a few triangles are available. When more data is accessible, the 
mesh is incrementally refined. Furthermore, the mesh can reduced for usage as fine 
grained continuous level of detail (LOD). 

Often animations on a per-vertex level are not required. Instead complete objects 
can be animated by modifying their position and rotation via keyframe sampling 
using the SgPoseAnimator node. 

The appearance of objects can be influenced via SgTexture nodes that define 
single- or multi-texturing. SgDirectionalLight and SgMaterial nodes specify how light 
influences objects. SgDrawingStyle can modify front facing of triangles, depth mode, 
stenciling, as well as depth buffering and blending. 
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SgRenderAction allows introducing more procedural approaches by clearing the 
render target’s depth, color or stencil buffer, thereby enabling multi-pass rendering. 
For more specialized render commands, developers can use SgCallback nodes that 
invoke client code when traversed. 

At the moment of writing this thesis, StbSG contains 37 node classes, which are 
listed by category in Table 4.4. 

 
 Nodes 

Camera SgCamera, SgMatrixCamera, 
SgOrthographicCamera, SgPerspectiveCamera 

Geometry 
SgCube, SgGeometry, SgGeometryColors, SgGeometryNormals, 

SgGeometryTexCoords, SgGeometryVertices, SgLineSet, 
SgProgressiveMesh, SgStaticMesh 

Transformation SgMatrixTransform, SgPoseAnimator, 
SgTransform, SgTransformSeparator 

Appearance SgDirectionalLight, SgDrawingStyle, SgLight, SgMaterial, 
SgProgressiveTexture, SgTexture, SgTextureSeparator 

Animation SgAnimatedGeometryVertices, SgAnimator 

State Specific SgGLStateModifier, SgLightSeparator, 
SgRenderAction, SgRenderOnce 

AR Specific SgBackground 

Non-Graphical SgCallback., SgFileNode, SgMultiSwitch, 
SgNode, SgScene, SgSwitch 

Table 4.4: List of all nodes in StbSG. 

Low Level Graphics Toolkit Abstraction 
For optimal platform support, StbSG supports OpenGL ES as well as Direct3D 

Mobile for those devices that do not come with OpenGL ES drivers. The abstraction 
of the underlying rendering toolkit is implemented using the two classes Renderer 
and GeometryBuffer, which are implemented for both toolkits. Stacks for state 
variables and querying values of state variables are important operations for scene-
graph libaries. Since neither OpenGL ES nor Direct3D support stacks or queries for 
most state variables such blending, depth sorting or matrices, all stacks are 
implemented in the Renderer class. 

GeometryBuffer abstracts passing geometrical data to the graphics toolkit. When 
multiple options are available it automatically decides whether to store vertex data in 
system or video memory. The two implementations of GeometryBuffer effectively 
hide the differences between specifying vertex buffers in OpenGL ES and Direct3D. 
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Especially under Direct3D, the manual definition of the data structures for the 
Flexible Vertex Format (FWF) is cumbersome and error prone. 

Developers can use separator nodes to limit the effect of specific nodes such as 
transformations, lighting or textures to certain sub-trees in the graph. After a sub-
graph has been traversed, the separator node undoes all changes of the GL states that 
it protects. 

Reflection 
Similar to OpenInventor, StbSG uses fields to store attributes. Before a field can 

be used, its type and valid values must be defined. StbSG includes fields for many 
types such as integer, float, vector or matrix types, as well as enumerations. A field’s 
type and values are defined using c-macros when the field’s owner (typically a node) 
is registered. 

StbSG make use of reflection to allow querying any node’s list of fields. Every 
field has a name, a type and a default value. A system of C-macros automatically 
implements a complete type system including reflection of all fields a node owns 
Figure 4.4. Fields of compatible types can be connected via field connections to let 
data flow across the graph or to connect data streams from outside into the graph. For 
example, Studierstube ES uses this mechanism to stream live tracking data from the 
tracking subsystem directly into transformation nodes of the scene-graph. 

 
Figure 4.4: Example field registrations. 

Figure 4.4 presents several examples for registering fields. The first line registers 
an integer-valued field with name stencilRef and a default value of 1. The second and 
third lines of code register a 3D vector and a color, while the fourth line registers a tri-
state field. Tri-states are important for flags that can either enable, disable or keep 
targets unchanged. Finally, the last line shows how an enumeration value with three 
possible values is registered. 

Field connections are always updated before graph traversal. A dirty flag 
indicates if a field has changed, which is used for caching such as for transformation 

REGISTER_FIELD_TYPE(FieldTypeInt, stencilRef, 1); 
 

REGISTER_FIELD_TYPE(FieldTypeVec3, translation, Vec3(0,0,0)); 
 

REGISTER_FIELD_TYPE(FieldTypeVec4, ambient, Color4(0.2f, 0.2f, 0.2f, 1.0f)); 
 

REGISTER_FIELD_TYPE(FieldTypeTriState, colorWrite, TRI_UNDECIDED); 
 

REGISTER_FIELD_TYPE_ENUM(frontMode, FRONT_NO_CHANGE,  
        ENUMS_3(FRONT_NO_CHANGE,FRONT_CW,FRONT_CCW)); 
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matrices: Only when the transform’s position, rotation or scale values have changed 
the matrix is recomputed. 

StbSG uses XML for saving and loading of scene-graphs. Nodes are mapped to 
XML elements and fields are mapped to XML attributes. Pure data fields such as 
vertex arrays are mapped to XML text section. Every node must implement methods 
for creation as well as for loading from and saving to XML files. Most work for 
loading and saving is performed automatically. Figure 4.5 shows a code snippet from 
the SgTransform.cpp file that creates a transform node (if not done yet from the super 
class factory method) and then reads three fields from the element’s list of attributes. 
Due to StbSG’s reflection capabilities a single call to readAttribute() is enough to 
decide the field’s type and its default value in case the attribute is stored in the 
element. Finally the factory function calls the factory function of the node’s base class 
in order to read more attributes. 

 
Figure 4.5: Code sample to load an SgTransform node from an XML file. 

Field connections reference the name of target fields which must therefore be 
unique across a scene. StbSG uses a two pass approach for loading scene-graph files: 
In the first pass the complete graph is instantiated, while in the second pass all field 
connections are resolved. 

Nodes can be added to the scene graph multiple times by adding it once and 
referencing it via its name. Since every attribute has a well known default value, only 
fields with non-default values have to be stored in the XML file. See chapter 9.1 for 
example scene-graph XML files. 

To keep the file size and memory footprint at a minimum, StbSG itself has no 
capabilities to import from other data sources than its own XML file format. 
Studierstube ES includes with a VRML reading tool on the PC though that imports 
VRML files and creates a corresponding StbSG instance. StbSG’s regular file saving 
capability is then used to store the converted scene. While VRML is an old and mostly 

SgNode* 
SgTransformFactory::readNode(TiXmlElement* nElement, StringVector& nAttrToIgnore, SgNode* nNode)
{ 
 if(nNode && !nNode->isOfType(SgTransform::getClassType())) 
  return NULL; 
 
 SgTransform* transform = nNode ? reinterpret_cast<SgTransform*>(nNode) : 
                                          SgTransform::create(); 
 
 readAttribute(nElement, transform->translation); 
 readAttribute(nElement, transform->rotation); 
 readAttribute(nElement, transform->scaleFactor); 
 
 return callBaseReadNode<SgTransform>(nElement, nAttrToIgnore, transform); 
} 
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outdated format, it provides all features required to create content suitable for mobile 
phones, including support for per-vertex as well per-object animations. Unlike many 
other file formats, high quality VRML exporters for all major graphics editors exist. 

StbSG can clearly not compete with large established scene-graph libraries such 
as Coin3D, OpenSceneGraph or OpenSG. Yet, neither of these libraries is optimized 
for running on mobile phones. While for some of these libraries ports to OpenGL ES 
exist, these ports naturally loose a lot of performance due to inherent design 
differences (e.g. floating point vs. fixed point). Furthermore, none of these libraries 
runs on top of Direct3D Mobile, which turned out to be an important aspect for 
StbSG. 

On the other side there are high quality, commercial 3D libraries such as EdgeLib 
and Mobex3D that specifically target mobile phones. These libraries provide high 
performance and many more features related to professional content creation such as 
skeletal animation. Yet, their closed source nature and high licensing costs reduce 
their suitability for deployment in academic as well as commercial environments at 
the same time. 

4.3 3D Animations using the FPK library 
The lack of processing and graphics power on mobile devices prevents the use of 
traditional character animation techniques. For example most existing animation 
libraries make heavy use of floating-point operations which are not available in 
hardware on today's PDAs. Many of today’s state-of-the-art animation techniques 
such as skeletal animations or vertex skinning are not suitable for embedded devices 
due to the lack of processing power and missing dedicated hardware support. While 
these techniques have been used for a long time in offline rendering, only their recent 
support by graphics hardware introduced them to real-time graphics on desktop 
computer. 

A computationally less expensive method for animating polygonal meshes is 
keyframe-based animation. Other than the previously mentioned approaches that 
deform a single mesh on-the-fly with respect to an underlying bone-structure, 
keyframe-based animation relies on playing back and interpolation of pre-calculated 
(3D) animations. A keyframe is a specific point on the time-line for which a complete 
deformed version of the animated mesh is stored. Keyframes are often sampled in 
regular intervals, which facilitates the creation and playback of the animation. More 
advances approaches analyze before-hand, which parts of the animation are more 
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active than others and therefore require denser keyframe intervals. Consequently the 
number of keyframes required can be reduced considerably. 

Another decisive factor for the quality of playback is the method of interpolation, 
also called “tweening” (for “in between”). Since keyframes are sampled at a much 
lower rate than playback interpolation is required for smooth animations. The 
simplest and least computationally expensive method is linear interpolation, which 
results in jerky animations if the keyframes are sampled sparsely. Advanced methods 
use more sample points such as cubic spline interpolation or even derivatives as in the 
case of Hermite interpolation, which result in much smoother animations. Naturally 
these methods are computationally more demanding. 

In the course of this thesis there was a demand for a simple character animation 
solution with minimal computational costs. The author of this thesis therefore 
developed an animation package called FPK (Fixed Point Keyframe) that makes best 
use of the particular restrictions of mobile devices. FPK supports only linear 
interpolation and restricts texture coordinates to remain unchanged during 
animation which further reduces the computational overhead. 

 
Figure 4.6: Virtual character animated using FPK 

Coordinates are stored in 16-bit fixed-point with values a 5.10 precision. While 
this restricts models to a size of -32 to 32 units, it give millimeter accurate results and 
a large working volume when selecting meters for the units. Instead of storing 
normals directly, only an index to 16-bit a lookup table is kept. All together a single 
vertex requires only 8 bytes of memory per frame. Compared to storing a complete 
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vertex including texture coordinates in floating point the memory load is thereby 
reduced by 75%. Keyframes are interpolated linearly using pure fixed-point math for 
highest play-back performance. 

As a result, playing back an animated textured and lit 3D character (see Figure 
4.6) on a mobile device causes almost no noticeable overall performance drop. FPK 
includes tools to import data from the Quake2 MD223 character format as well as the 
popular open source Cal3D24 skeletal animation package. Furthermore a Maya plug-
in that allows rigging and exporting a character directly into FPK files is under 
development. 

FPK includes a high level scripting layer on top of the low level keyframe 
animation API. The higher layer exposes a simple scripting interface via a proprietary 
XML dialect. Using this XML dialect authors can create complex sequences of 
animations including precise timings for audio dubbing and subtitle rendering such 
as in Figure 4.6. 

 
Figure 4.7: A short sample script of the Virtuoso application. 

Figure 4.7 shows a short excerpt of the script that animates the 3D character in 
the Virtuoso application. The script begins by defining the keyframe and texture files 
to load for the animation. It then continuous by defining actions that can be triggered 
by the application. Due to space reasons, Figure 4.7 shows only a single action that 
                                                 
23 http://tfc.duke.free.fr/coding/md2-specs-en.html 
24 http://cal3d.sourceforge.net/ 

<Actor> 
  <Setup geometry="mr_virtuoso.fpk" texture="mr_virtuoso.jpg" /> 
  <Action name="GeVenus" next="Idle"> 
    <Animation name="WalkToTable" speed="5.0" /> 
    <Animation name="Explain1" speed="4.0" /> 
    <Animation name="Explain2" speed="4.0" /> 
    <Animation name="Explain1" speed="4.0" /> 
    <Animation name="WalkToBook" speed="4.0" /> 
    <Subtitle language="german" time-from="6" time-to="18" text="Diese kleine…" /> 
    <Subtitle language="german" time-from="18.2" time-to="31.0" text="..ist wie.." /> 
    <Subtitle language="english" time-from="6.0" time-to="18.0" text="This female…"/> 
    <Subtitle language="english" time-from="18.2" time-to="31.0" text="..as always" /> 
    <Audio language="german" file="venus_german.ogg" time="6.0" /> 
  </Action> 
<Actor> 
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includes the German voice over and sub titles for explaining the Venus item. Since the 
audio dubbing have different timings for each language, different animation and sub 
title timings are required too. In the sample above, The action starts by making the 
character walk to the table and then plays back several animations while Mr. Virtuoso 
is talking. At the end the character walks back to the book and another action called 
“Idle” is automatically invoked. While the animations are played back, the script 
player starts sub titles and audio playback according to the specified languages. 

4.4 2D graphics and animations 
with Adobe Flash 

As a final building block, 2D graphics solutions suitable for handheld devices will be 
considered. Practical, large and content-rich AR applications typically require not 
only 3D, but also 2D content such as 2D user interfaces or short animated movies. 
The Synchronized Multimedia Integration Language25 (SMIL) is an open standard 
defined by the W3C committee and open source implementations exist. 
Unfortunately though the standard is very complex, limited in its practical features 
and no high quality open source players exist. Finally SMIL plays a negligible role 
outside academia; most graphics artists are used to Adobe Flash instead, which is the 
most widely established format due to its high quality tools for creating and playing 
back multimedia content. 

The Adobe Flash plug-in26 was therefore integrated, which is available for the 
Windows and Windows Mobile platforms, into our framework. An AR application 
can switch between full screen AR and Flash modes at any time. Flash applications 
can use the built-in scripting language ActionScript to communicate with the AR 
framework. Examples of the integration of 3D AR and Flash will be given in chapter 
7.3.2. 

4.5 Discussion 
This chapter presented solutions for rendering graphics 3D and 2D content on mobile 
phones. The solutions developed are flexible and powerful enough for typical AR 
                                                 
25 http://www.w3.org/AudioVideo/ 
26 http://www.adobe.com/products/flash/ 



 
Chapter 4 

 
Rendering 

 
77

 

 

applications and facilitate the creation of graphical user interfaces, thus contributing 
to fulfilling argument H1 of the hypothesis of chapter 1.3. 

A scene-graph library allows rapid prototyping of graphic intensive applications 
and is therefore preferable over immediate mode graphics programming (OpenGL ES, 
Direct3D Mobile). Consequently development time is reduced which supports 
hypothesis H2 for building larger AR systems. 

Despite their small screen size, the resolution of today’s mobile phones is similar 
to that of typical PC and console games in the mid 1990s. It is therefore sufficient for 
the creation of intuitive 3D und 2D user interfaces, which is explored in more detail 
in Chapter 7. The smaller screen size (rather than resolution) reduces the 
requirements on graphical content and hence makes it more economic to create large 
applications with many AR hotspots (see chapter 7.4 on the Schatzsuche game). 

A natural advantage of AR over VR (and classical computer games) is that the 
area between points of interest does not have to be modeled, since it already exists in 
the real world. 
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Chapter 5  

Distributed System 
This chapter presents Muddleware a middleware for prototyping multi-user 
applications. It outlines the design rationales that led to the development of 
Muddleware and presents example applications that are built on Muddleware. 

Today's game server technology was designed for high-performance scalable 
communication between desktop clients and game servers. Many technical aspects 
concerning clients (fast Windows PCs or consoles), servers (clusters hosted in 
compute centers), user interface (keyboard/mouse/screen) and networks (broadband) 
are chosen to match the underlying business model. Performance considerations will 
often lead to even more inflexibility, making multiplayer middleware solutions 
specific to a single game genre. For example, “instanced dungeons” in role-playing 
games (i.e., a copy of the game world exclusively for a small group of collaborating 
players) are necessary not only for increased player satisfaction but also for cluster 
load balancing. 

Unfortunately, all these restrictions and optimizations make established 
multiplayer middleware rather unsuitable for developing Augmented Reality 
applications or games. Instead, it is more fruitful to borrow techniques and practices 
from research areas such as ubiquitous or wearable computing, who also deal with 
similar problems. To address the specific needs for AR middleware, a communication 
framework called Muddleware was developed. It is loosely inspired by Tuplespaces 
[28] – the name Muddleware hints at the diversity of the unstructured data managed 
by the framework. 
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5.1 Muddleware, a middleware for 
multi-user applications 

Muddleware extends the traditional Tuplespace idea with advanced concepts such as 
publish-subscribe patterns and state-driven application logic. It uses XML to provide 
a modern and lightweight scriptable application programmer's interface. Although 
designed as a prototyping tool it provides enough performance and stability for large 
games with hundreds of clients. To our knowledge, Muddleware is the first multi-user 
middleware specifically designed for mobile Augmented Reality applications. 

In designing Muddleware [114], the author of this thesis strove for creating 
highly functional software within a short period of time by re-using existing and 
reliable technology. Another important requirement was a platform-agnostic 
approach which allows for a wide variety of target devices. However, a large body of 
existing software in Studierstube research group builds on C++, which was also 
favoured for performance reasons. This ruled out a pure Java based approach, which 
was adopted in other platforms such as T-Spaces or the Event Heap. 

5.2 Built on XML Technology 
A key observation towards our current design was that the most widely established 
data model for network computing is the Extensible Markup Language, XML27. XML 
elements with named attributes can be seen as a specific representation of a tuple. Of 
course the most important difference between a conventional Tuplespace and an 
XML Document Object Model (DOM) is that the latter represents a hierarchical data 
model. A DOM permits a recursive definition of a tuple, which has child tuples as 
attributes of parent tuples. This extended definition of a Tuplespace as a DOM for 
favored for its increased expressive power, its elegant match to many typical data 
structures such as spatial hierarchies in the real or virtual world, and its use of mature 
existing technology, namely XML. 

Muddleware was thus designed to adopt XML technologies for data storage, 
addressing and retrieval of data. XML fits our requirements for several reasons: 

• XML is a self-documenting format that describes its structure as well as data 
types and meanings of values. 

                                                 
27 http://www.w3.org/XML 
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• XML is simultaneously human- and machine-readable. 
• XML is able to present many basic data structures such as lists, trees and 

records. 
• XML’s weak type system (when not enforcing a schema or DTD) supports 

quick changes in data structures and thereby assists rapid prototyping. 
• XML structures can be addressed using well known methods such as XPath28. 
• High-quality open source implementations for many XML technologies exist 

and are freely available. 
• High-quality tools for creating, modifying and validating XML documents are 

available. 

In contrast to our approach, many existing servers use SQL for persistence. 
Muddleware uses XML plus XPath over SQL for several reasons: SQL is ideal for huge 
amounts of data in flat structures (tables). In the case of mixed reality games, data for 
all the heterogeneous devices, locations etc. usually requires less space but is highly 
structured which is a natural strength of XML. Furthermore due to XML’s self-
describing nature, existing structures can easily be extended with new attributes and 
child elements without breaking existing code. 

Care was taken to keep the system as simple as possible and yet make it modular. 
The concept of sharing information via a high-performance database that acts as a 
distribution hub is easy to understand and easy to program: a minimal application 
requires only three lines of Muddleware specific C++ code. 

 
Figure 5.1 gives a short example on how to manipulate data on the server. The first 
line of code creates a connection object. The next command connects to the server, in 
this case on the same machine. Naturally, in practice a developer would check if the 
connection attempt succeeded. Finally the last command updates an XML attribute of 
a node addressed by the specified XPath with the new value “13”. 

XPath addressing is similar to hierarchical file systems, except that qualifiers can 
be used along the path to select between alternatives. In the example in  
Figure 5.1, the command addresses an attribute called ‘age’, which is owned by an 
element called ‘Client’. The ‘Client’ element is a child element of a root element called 
‘Application’, which is qualified by having an attribute called ‘name’ with the value 
“MyApp”. If the specified attribute(s) or element(s) can not be found the operation 
fails returns an error description. 

                                                 
28 http://www.w3.org/TR/xpath.html 
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Figure 5.1: Code excerpt to update an attribute on the server 
using the Muddleware Single-Operation-API 

5.3 Database Server 
The core of Muddleware is a “real-time” XML database that provides persistence and 
that can be addressed associatively using XPath. The database server is extended by 
several extension modules such as an XML based scripting language (Muddleware 
Script, see section 5.4) and a server-side state machine (Muddleware Controller, see 
section 5.5) that reacts on specific database changes and adds an independent thread 
of control to the server. All server components run under Windows as well as Linux. 
An arbitrary number of clients can connect to the server (see Figure 5.2) by using one 
of four currently available APIs: Immediate C++, Shared Memory C++, Java and 
Muddleware Script. 

Database 
File (XML)

Clients [1..n] Server

Muddleware
Client

Application Persistence
Service

XML Database

Read/Write

Muddleware 
Controller

(State Machine)

Script Queries

Query Results

XML Queries

Script Queries

Query Results

 
Figure 5.2: Muddleware components 

The real-time XML database is the core of Muddleware. All data elements are 
stored as nodes of an XML DOM, using a modified version of the TinyXML29 library. 
Clients can store arbitrary messages in the database in the form of XML fragments. As 
a query language, clients use XPath to specify query or update operations. No schema 
is enforced on the database, which facilitates rapid prototyping of communication 
patterns and improves performance. 

                                                 
29 http://sourceforge.net/projects/tinyxml 

MUDDLEWARE::Connection* connection = MUDDLEWARE::Connection::create();  
connection->init("localhost"); 
connection->updateAttribute("/Application[@name=’MyApp’]/Client/@age", "23"); 
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Besides basic update and query operations, Muddleware supports atomic 
conditional operations: An update can be restricted to be performed only in case the 
value to be updated is identical to one of a list sent with the update operation. This 
can be used for locking of specific elements which is required for most non-trivial 
applications, essentially implementing a lightweight transaction protocol. 
Furthermore batched operations can be chained: Subsequent operations are only 
executed if previous ones were positively evaluated. 

5.3.1 Update Notifications using Watchdogs 

In addition to immediate databases operations, Muddleware allows clients to 
register Watchdogs (observers) for updates: as soon as an observed node changes, the 
client is informed about the update. This removes the need for polling and provides a 
simple, yet powerful publish/subscribe mechanism that can be used to create specific 
communication channels between clients. Two kinds of watchdogs are available: 
synchronous and asynchronous watchdogs. When an XML element addressed by an 
asynchronous watchdog is modified the server immediately sends a notification 
message to the client which causes a callback invocation. In contrast, synchronous 
watchdogs piggyback the notification to a regular message exchange between server 
and client. While the asynchronous variant is ideal for clients that talk to the server 
sporadically, the synchronous counterpart is suited for setups that rely on continuous 
frame-by-frame communication. 

Naïve use of watchdogs can cause performance problems for the server, since for 
every update received by the server, all registered watchdogs need to be evaluated. In 
practice, clients are only interested in the updates concerning a few specific elements 
or issued by a few specific clients. In order to exploit this limited scope for better 
scalability, Muddleware allows the creation of so called interest groups [13]. When an 
element is modified, only those watchdogs that are in the same groups of interest as 
that client that caused the modification are evaluated. This allows splitting watchdog 
evaluation into (potentially) overlapping groups of clients and scales with the number 
of interest groups rather than the number of elements or clients. 

Figure 5.3 shows a communication sequence of two clients sharing data via the 
Muddleware server. Upon start, both clients create an asynchronous watchdog 
observing the same XML element in the database. Immediately after one client 
updates that element, the other client receives the updated data. 
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ClientA Server

Update Operation

ClientB

Result (incl. Watchdog Notification)
Watchdog Notification

Update Operation

Result (incl. Watchdog Notification)
Watchdog Notification

Register Watchdog
Register Watchdog

 
Figure 5.3: Two clients sharing data using an event channel 

Muddleware uses the TinyXML DOM as a memory-mapped database. For 
session handling, which is the performance critical portion of a distributed system the 
ACE30 Proactor was chosen. Its implementation handles all I/O operations internally, 
calling asynchronous system functions (such as for file reading or network 
communication). The user written handler only reacts to finished I/O operations, 
effectively allowing a single thread handle hundreds of clients concurrently. ACE 
provides multiple platform dependent implementations for the Proactor pattern: On 
each platform it uses highest performance APIs; such as asynchronous I/O and 
completion ports for Windows XP. The APIs are usually difficult and error prone to 
program, but effectively hidden behind the Proactor API. Using only a single thread 
removes the need for thread synchronization and thereby avoids overhead. 

At short intervals a background thread dumps the complete database to disk; 
later versions may use a professional database management system for storage. ACE 
and TinyXML were chosen for best performance and portability: TinyXML offers 
only a minimal XML feature set and is therefore easily portable to any platform. ACE 
on the other hand is a complex framework, but is available on all major platform 
including Windows, Mac OSX and most UNIX variants. The Muddleware client can 
optionally run without ACE making it possible to port the client-parts of applications 
to platforms not supported by ACE, such as Symbian OS. 

                                                 
30 ACE toolkit: http://www.cs.wustl.edu/~schmidt/ACE.html 
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5.3.2 Queries with XPath 

XPath is a simple language for addressing elements and attributes of an XML 
document. It was originally designed for usage in XSLT and XPointer, but many 
independent XPath parsers are available which made it an interesting choice for 
Muddleware. XPath uses a compact, non-XML syntax which applied to an XML 
graph results in a list of zero or more elements. XPath is a pure declarative language 
and does not include constructs such as for-loops, which makes XPath easy and fast 
to implement. 

In contrast to XPath, XQuery31 allows writing procedural programs that are 
executed upon an XML document. XQuery includes all standard language constructs 
such as for-loops and if-then-else clauses. Consequently XQuery is highly complex. 
Furthermore, XQuery is a very new standard and only a small number of 
implementations exist so far. 

Since Muddleware does not require the full power of XQuery, it was decided to 
build upon XPath and instead add specific features such as update operations on 
elements or attributes ourselves. 

5.4 Muddleware Script 
Muddleware Script is a simple XML dialect for expressing data-driven queries. Clients 
can create scripts and register these at the server. Each script is precompiled into 
tokenized form for fast execution and identified by a unique name that is used for 
execution later on. The scripting language allows invoking all available database 
actions such as adding, removing and querying elements and attributes. Multiple 
actions can be hierarchically combined using Boolean operations and functional 
composition – results of one query can be used as input for another query. Results are 
passed on from deeper nested actions to their respective parent nodes in the XML 
graph. An XML schema helps developers to create only valid script files. 

Muddleware script exposes only few actions: ActionAnd and ActionOr are used 
to combine the result of multiple actions into a new single result. ActionEqual can be 
used to compare a result to a specific value and returns a Boolean value. 

The most flexible action is ActionExecute, which executes database operations on 
the server. Via its ‘operation’ attribute, the developer can define which operation to 
execute, while the ‘xpath’ attribute specifies the items to operate on. As always in 
                                                 
31 http://www.w3.org/TR/xquery 
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Muddleware, the user is free to address more than one element or attribute at once via 
the XPath. In such a case the operation is executed on all these items. Since this is not 
always what the user wants, there’s a special attribute ‘only-first-xpathitem’. Finally 
ActionExecute allows specifying a new value or a new name for the target item. The 
actions that can be executed are: getElement, addElement, addElements, 
removeElement, getElementExists, getAttribute, updateAttribute, addAttribute and 
removeAttribute. 
Figure 5.4 shows a short sample action that checks if a dragon was defeated. The 
sample also demonstrates the strength of XPath’s associative addressing: Qualifiers 
for attributes can be specified along the path through the DOM graph down to the 
target item. In this example the developer wants to check if two attributes hold 
specific values: only if both attributes hold the correct value the action 
“checkGameWon” returns true. 

To achieve this, the script reads those attributes from the server database using 
ActionExecute commands. Both these commands return their results to their 
respective parent elements, which compare these results to the specified values. The 
Boolean results are then handed over to the ActionAnd element, which only returns 
true, if both sub-commands return true too. 

 
 

Figure 5.4: Sample Muddleware script code sequence 

A GUI-enhanced client tool (see Figure 5.5) to invoke Muddleware Scripts makes 
it easy to configure the XML database for testing and run-time re-configuration 
during the prototyping phase. Muddleware script is also used by the controller (see 
below) to execute complex commands as reactions to database events. 

<ActionAnd name="checkGameWon”> 
   <ActionEqual value="3"> 
      <ActionExecute operation="getAttribute"  
              xpath="/Game[@name='Dungeon']/Level/@id"/> 
   </ActionEqual> 
   <ActionEqual value="dead"> 
      <ActionExecute operation="getAttribute" 
              xpath="/Game[@name='Dungeon']/Enemy[@name=’Dragon’]/@state"/> 
   </ActionEqual> 
</ActionAnd> 
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Figure 5.5: Muddleware Script GUI 

5.5 Muddleware Controller 
For most real-world Augmented Reality applications a purely passive database server 
is not sufficient. An AR game needs to advance even if the players are inactive. For 
example, it may be necessary to enforce time-outs for certain parts of the game. Such 
overall game or application logic may not depend on the clients that may be 
unreliable. Instead, this requirement is better addressed by a server-side component 
with an independent thread of execution that can be loaded with application-specific 
code to perform all the housekeeping. 

The Muddleware controller is such a server component that observes the 
database and reacts to changes based on internal interpretation of custom logic. The 
controller is shielded from outside influences in a kind of sandbox since it only 
communicates with the world by reading from and writing to the XML database (see 
Figure 5.2). This makes the controller free of side-effects and thus simplifies 
debugging and behavior analysis. 

The controller connects to the XML database as a regular client, which allows 
isolating controller and database on separate machines. The controller's internal logic 
is built on a hierarchical finite state machine (FSM) with guards. FSMs are frequently 
used in nonlinear story-driven applications, but are suitable for a wide variety of 
application and user interface logic. They are very expressive and can be programmed 
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by the purely data driven approach of specifying the state/transition graph (see Figure 
5.6). 

The FSM can run multiple paths in parallel. Each path starts at a specific entry 
state. Actions, expressed as Muddleware scripts, are executed upon entry and exit of 
states. Each state can have one or more transitions to other states. A transition is only 
taken if the transition's guard condition holds. Transition guards refer to conditions 
on elements in the XML database, updated by Muddleware script actions. Likewise all 
actions triggered by the controller are implemented using Muddleware Script. The 
controller writes its own state into the XML database, which allows monitoring and 
influencing the state machine remotely. 

entry/Reset

Round Start

entry/PutDetectorIntoInventory

Has Detector

Player Start

entry/TeamScores

Bomb Defused

Finds Detector
[checkPlayerFoundDetector]

entry/MarkBombOnMap

Found Bomb

Defuses Bomb
[checkBombDefused]

Player in Basecamp
[checkPlayerAtCampPosition]

Time-out
[checkBombTime]

Time-out
[checkBombTime]

Finds Bomb
[checkPlayerFoundBomb]

 
Figure 5.6: Example state graph for the Muddleware controller 

The controller’s state graph is supplied as an UML state chart, encoded as an 
XMI file. The XML dialect XMI can easily be parsed in an XML framework and the 
controller can directly operate on the resulting DOM. This type of state chart was 
originally designed for software engineering, and high quality graphical editors (e. g., 
Poseidon for UML32) exist for visual programming. Consequently game designers can 
program the controller without any knowledge in programming languages or even 
XML. 

A simple state graph for a typical AR game scenario is shown in Figure 5.6. States 
are represented as rectangles, each having an entry action that is executed when the 
state is activated. Arrows illustrate transitions. Each transition has a name (in bold 
letters) and a guard (in square brackets) that links to a Muddleware script action. The 
graph starts with the initial state (marked as black disk) and immediately jumps into 

                                                 
32 http://www.gentleware.com 
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the state “Round Start”. The first task for the player is to find the detector which in 
succession allows finding the bomb. Finally the player has to defuse the bomb to score 
for her team. If the player is to slow the bomb will explode which automatically 
restarts the round. 

5.6 Muddleware Client 
Muddleware provides a choice of four client-side APIs to target a broad audience. 
While the C++ immediate API allows fine graded communication with the server it 
also requires most effort in programming. In contrast, the C++ shared memory API 
sits on top of the immediate API and provides an easy high-level mechanism to access 
specific elements on the server. Consequently it is the preferred solution in most cases 
for C++ clients. In many situations, such as games running on mobile phones or web 
browsers, C++ is not the tool of choice. To target these platforms a pure Java 
implementation was created with an API similar to the C++ immediate API. Finally, 
clients can use the aforementioned Muddleware script for communication with the 
server from any client that is able to send and receive XML strings. The wide choice of 
client-side APIs enables quick integration of a wide variety of existing applications 
with Muddleware, which is a necessity to instrument an existing environment for a 
mixed reality game: 
 

C++ Immediate Client API 
The C++ immediate API provides lowest-level access to client-side Muddleware 

and is implemented as a toolbox of C++ classes. Programmers have the choice 
between two different approaches: 

• With the single operation API they can invoke simple methods such as 
getElement(), updateAttribute(), etc.   
Figure 5.1 shows a minimal code sample of updating an attribute in the XML 
database. After creating the connection object and connecting to the server, a 
single line of code is enough to write the new value “Peter” into an existing 
attribute. The disadvantage of such a simple API is that all calls that invoke 
database operations use blocking I/O and will halt the thread of execution until 
the server's reply arrives. While this is sufficient for applications that query the 
database only upon user actions (e.g. a chat client), most interactive 
applications would suffer severely from this. 
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• Alternatively programmers can use the multi operation API which differs in 
that operations are stored in a request object which is then sent to the server. 
The advantage is that multiple operations can be batched and the creation of 
operations is uncoupled from the actual sending/receiving process. 
Furthermore the process of sending and receiving packets is uncoupled from 
the main thread which allows the client to perform useful work while waiting 
for the server’s reply. Figure 5.7 shows an example of the multi operation API. 
All four operations are stored in the request object and then sent together to 
the server. After calling send()the client the time until the reply arrives for 
other tasks that are independent of the result. Alternatively the client could 
have used sendAndReceive() which blocks until the reply is available. 

 
Figure 5.7: Code excerpt using the Multi-Operation API 

performing 4 operations at once 

A simple GUI tool (see Figure 5.8) allows developers to create and test operations 
interactively before committing the communication statements to actual source code. 

MUDDLEWARE::Request* request = MUDDLEWARE::Request::create(); 
MUDDLEWARE::Reply* reply = MUDDLEWARE::Reply::create(); 
 

request->updateAttribute("/MyApp/Owner/@name", "Peter"); 
request->removeAttribute("/MyApp/Owner/@address"); 
request->addElement("/MyApp/User", "<User name='John' age='35' />"); 
request->removeElement("/MyApp/User[name='Fritz']"); 
 

connection->send(*request); 
// 
// …other application code independent of the reply goes here… 
// 
connection->receive(*request, *reply); 
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Figure 5.8: Muddleware Client GUI 

C++ Shared Memory API 
Manually sending updates and receiving query results is often tedious in application 
level code. Although it provides finest graded control, such a level of control is not 
always required. Remote object libraries are more convenient since they allow 
accessing server data via proxy objects that behave like local data objects. The proxies 
take care of transparently synchronizing all access with the remote database: 
Whenever the client changes an object's value, this change is forwarded, and changes 
by other clients are automatically incorporated. Even when sharing data is not the 
goal such a mechanism can be used for persistence, which is especially interesting for 
clients that have no storage capabilities or lack required robustness. 

 
Figure 5.9: Usage of a C++ shared-memory class 

MW_SHARED_DECLARE_ELEMENT_3_ATTRIBUTES( 
BossEnemy, "/MyApp/Boss", 
String, name, 
Integer, healthpoints, 
Boolean, active 
); 
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The C++ shared memory API implements such a feature set and is therefore the 
preferred C++ client API for most applications. A programmer can declare a C++ 
data structure directly in C++ source, which is then automatically implemented by 
usage of macros and internal tool methods (see Figure 5.9). No interface compiler 
such as used by CORBA is required. 

 
Figure 5.10: Usage of a C++ shared-memory class 

as declared in Figure 5.9 

Figure 5.9 shows an example declaration of a structure called 'BossEnemy' that is 
linked to an XML element addressed with '/MyApp/Boss'. BossEnemy has three 
member variables: a string called 'name', a numeric value called 'healthpoints' and a 
Boolean value called 'active'. After declaration, the client programmer can then use 
the class like a regular C++ structure (see Figure 5.10). The proxy objects have 
overloaded access operators that transparently forward all updates to the server. 

Java Client API 
The Java client API is a pure Java implementation of the Immediate API. It was 
developed for using Muddleware with PC-based Java games and applications, web 
browser games and Java-enabled mobile phones. Its feature set and API are very 
similar to that of its C++ counterpart. 

XML Client API 
Instead of using the C++ or Java client API to batch database operations, client 
developers can also write Muddleware script. A script file is loaded by the client API, 
sent to the server which registers all embedded actions. Clients can then invoke an 
arbitrary number of operations with a single call to a registered XML action. This 
technique reduces the network load and provides a more data-driven approach than 
writing C++ code.   
Figure 5.4 shows a short example script excerpt. 

BossEnemy theBoss; 
theBoss.setConnectionManager(manager); 
 
std::string boss_name = theBoss.name; 
theBoss. healthpoints = 100; 
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5.7 Graphical User Interface Generation 
A recent extension to the Muddleware system called Thekla allows the easy 
generation of graphical user interfaces (GUI). Using the Qt Designer33, application 
developers can build user interfaces without any programming. Thekla automatically 
pushes the states of all GUI elements (“widgets”) onto the Muddleware server, which 
are then forwarded to the application via a Watchdog notification. 

A special Thekla module for the OpenInventor scene-graph library allows 
creating connections between scene-graph attributes (“fields”) and Qt widgets 
without writing a single line of source code. Figure 5.11 shows a simple Qt user 
interface controlling an OpenInventor application using Thekla. The controls on the 
right side of the application window directly control data of the scene-graph. In this 
figure, the Inventor rendering output is embedded into the Qt application's user 
interface. Alternatively, due to Muddleware's networking capabilities, the controlling 
GUI and the 3D rendering application could also run on different screens and 
computers. 

Thekla was developed by Christian Pirchheim in the course of his master thesis 
and is used in combination with Muddleware in various research projects. More 
information on Thekla can be found in [79]. 

 
Figure 5.11: A Qt GUI controlling an OpenInventor application using Thekla 

                                                 
33 QT: http://www.trolltech.com/products/qt 
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5.8 Performance 
XML encoding and decoding as well as XPath decoding is known to be a 
computationally intensive task. To prove that the Muddleware server is capable of 
serving many clients some benchmarks were performed on a Windows XP machine 
with 1 GB of RAM and a Pentium 4 processor at 3.0 GHz: 

A simple benchmark showed that the XML server can easily handle thousands of 
complex requests per second. To test Muddleware with a more practical example the 
server’s CPU and network load was measured while running 50 instances of a pre-
recorded 4-player Virtuoso game (see chapter 7.2) in parallel. The server’s CPU load 
with 200 concurrent clients is ~60% while the 100 Megabit network was operating at a 
capacity of just 4%. 

5.9 Discussion 
This chapter presented Muddleware, a solution for creating distributed mobile AR 
applications. Chapter 7 presents various applications such as Virtuoso and MARQ 
that were built using Muddleware. In the number of interacting parts and users these 
applications go beyond previously created mobile AR applications. We actually 
noticed more collaboration between the users than on PC-based systems as shown in 
the study on collaborative edutainment in chapter 7.2.2, hence supporting hypothesis 
H1 of this thesis. 

The blackboard mechanism of Muddleware is well known in pervasive 
computing and makes prototyping easy. It is very forgiving for design flaws in the 
protocol, which is further improved by the self-describing nature of XML. The 
decoupling of sender and receiver simplifies changing communication patterns later 
on. 

Other than with directly connected communicating entities which result in up to 
N2 relationships, the centralized blackboard mechanism requires only N relationships 
and therefore scales well with the number of clients (see chapter 5.8 on performance). 

Of course the use of Muddleware is not limited to AR on phones, but certainly a 
contribution to hypothesis H2. 
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Chapter 6  

Software Architecture 
This chapter presents the system architecture of our handheld AR client. It also 
presents the Sphinx engine, a solution specialized for creating multi-player AR 
treasure hunt games. 

6.1 Studierstube ES 
Our Handheld AR framework, called Studierstube ES34 (StbES, ES for embedded 
subset), was created with portability and lightweight footprint in mind. StbES is the 
third generation of our software for Augmented Reality on small mobile devices. 
While previous versions of our handheld AR software aimed at maintaining 
compatibility with the PC-based Studierstube software, StbES has been rewritten from 
ground up as a legacy-free design without compromises related to compatibility 
concerns. It runs cross-platform on Windows CE (the target platform), Windows XP 
(as a development or high-performance client platform) and also partially on Linux. 
For the future a Symbian port is planned and prepared, but currently the main focus 
is on Windows CE. 

Our system runs smoothly on smartphones, PDAs, UMPCs and Tablet PCs. In 
all configurations all processing is done natively on the client, which proved to be 
more efficient than outsourcing computing tasks to a server. Typical frame rates for 
the StbES applications running on smartphones are in the order of 10-20 fps, 
depending on the actual application, tracking setup and target device. 

For multi-user message passing, the client maintains a constant connection to 
the Muddleware server if available, but it can run fully stand-alone too. The 
                                                 
34 http://studierstube.org/handheld_ar/stbes.php 
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combination of self-sufficient, low cost clients together with a single server that can 
easily handle a large number of clients makes this a scalable system. 

Hardware
(CPU, GPU, Display, Touchscreen, Buttons, Audio, Camera, Wifi, Bluetooth)

Hardware Abstraction
(Windowing, Rendering, Audio, Video, User Input, File System)

Studierstube ES

Studierstube ES
Application

Scene
Graph Tracking MultimediaGUI Networking

Studierstube ES
Application

Studierstube ES
Application

Muddleware
Client

Rendering 
Toolkit

(OpenGL ES,
Direct3D Mobile)

ARToolKitPlus

 
Figure 6.1: Component based-design of the Handheld AR framework 

A component based client software architecture (see Figure 6.1) was created to 
accelerate the task of developing, porting and deploying collaborative applications. 
The main component is the Studierstube ES framework that allows running multiple 
concurrent networked applications. Its feature set can be reduced at compile time to 
minimize the footprint for setups that do not require all available capabilities. 

Hardware specifications of mobile devices vary far more than on desktop 
computers. For example, while there exist basically no desktop camera that delivers 
video feed in portrait mode, both variants, portrait as well as landscape format are 
common on mobile phones. Unfortunately the camera’s aspect ratio often does not 
follow the screen’s format, which means that on some devices full screen video 
background is not possible. Consequently configurability is of high concern for a 
handheld AR system. During the design phase of Studierstube ES care was taken to 
plan for all circumstances that became apparent after studying the development 
guidelines of Windows Mobile and Symbian devices. 
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Boot Strapping 
Studierstube ES uses a tiny boot loader (see top of Figure 6.2) that is only a few 
kilobytes in size and contains only minimal features. The advantage over a single, 
large executable is that the minimal boot loader can check the runtime conditions 
before the full framework runs into problems during start-up. For example, a specific 
issue under Windows CE is that the OS does not report which DLLs are missing, but 
simply complains that an application could not be started. To work around this 
problem and show the user meaningful error messages, the boot loader tries to load 
all required DLLs manually, thereby keeping control which DLLs could be loaded and 
which failed. 

Studierstube ES (StbES.dll)

Bootloader (StbESPro.exe)

Checking Startup 
Path

DLLs Checking & 
Preloading

Execute StbES 
Kernel

Mount 
Bootstrapping 

Containers
Load Config File

Initialize
Logger & Profiler

Create
Window
Binding

Initialize Global 
Memory Manager

Initialize
Renderer
Context

Initialize
Scene-graph 

Renderer

Initialize Camera 
Capturing

Initialize Tracking

Load Root SceneInitialize Widget 
Manager

Initialize Audio 
Manager

Initialize 
Application 

Manager & Load 
Applications

Start MainloopInitialize Network 
Manager

Preload 
Applications

Import Kernel 
Entrypoint

 
Figure 6.2: Chain of actions while bootstrapping Studierstube ES. 

After all DLLs have been preloaded, the boot loader imports the kernel’s entry-
point and executes the kernel. In some version of the framework the boot loader 
checks for updates over the network. In such a case the boot loader, which rarely 
changes, can download new versions of the framework before executing them. 
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The kernel (see bottom of Figure 6.2) begins its start-up by initializing the global 
memory manager. Many objects that are used system-wide such as the file system or 
the renderer are implemented as singletons. Some embedded operating systems, such 
as Symbian, do not allow writing to static global data. StbES therefore uses a global 
memory manager that holds the internal data of these singletons and stores it in 
thread local storage instead of static variables. 

As a next step StbES mounts bootstrapping containers. Containers can hold files 
and are implemented as plain or encrypted ZIP files. Using the StbES file reading and 
writing classes makes working with plain files or files in containers completely 
transparent. Developers can mount and unmount containers at any time, but in order 
to put fundamental files such as the configuration file or the root scene into a 
container (e.g. to protect against modifications), StbES must mount that encrypted 
container early during start-up. Hence the name and key for this boot-strapping 
container are hard-wired at compile time. 

StbES then loads the configuration file, which determines the rest of the start-up 
phase. It then initializes the logging and profiling capabilities, which also include 
memory logging to debug memory bottlenecks. Special conditions which are unique 
to Windows CE can create problems when loading DLLs at a late point of the process 
start-up (see chapter 4.2.1 for details). Developers can therefore decide to have their 
application DLL preload early in the start-up phase. 

The kernel then runs the window manager, which creates a render target 
(window) either for rendering in system or in video memory, as specified in the 
configuration file (see chapter 4.1.5 on a discussion on software vs. hardware 
rendering). Next the render manager, which abstracts the basic rendering toolkit 
(either OpenGL ES or Direct3D Mobile) is initialized and creates the render context. 

The tracking manager then creates all tracking subsystems such as the 
ARToolKitPlus tracker and initialized them. After this the video subsystem connects 
to the camera and starts retrieving video frames. In the next step the scene-graph 
renderer is instantiated, which loads the root scene to which applications attach their 
own scene-graphs to. The widget manager then creates font objects for 2D text output 
and prepares for creating and rendering widgets. The audio manager initializes and 
waits for applications to request audio support. After an optional network connection 
to the Muddleware server is created, the Application Manager starts loading and 
executing applications. Finally the kernel starts the main loop, which is outlined in the 
next section. 
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Main Loop 
The StbES main loop is executed as a callback of the windowing system and is 
therefore independent of the underlying operating system. Figure 6.3 gives an 
overview of all the steps that Studierstube ES executes for generating a single frame. 
The following list describes each step in detail 

 
Figure 6.3: Workflow for processing a single frame in Studierstube ES. 

• Update Profiler and Timings: Studierstube ES automatically profiles most of 
the following steps in order to give developers feedback on where the scarce 
processing time is spent. Furthermore this step initializes as per-frame timings 
and thereby creates global, framework-wide consistent timing information, 
such as used for animations or for interpolation and extrapolation of tracking 
data. 

• Reset Rendering State: This action resets the OpenGL ES or Direct3D 
rendering state by setting it to well defined default values. 

• Call update() on all Applications: Every active application’s update() method 
is called. Application can use this to invoke actions before rendering starts, 
which is an optimal point in time to perform updates to the scene-graph. 
Applications can also queue requests for the Muddleware server, which will be 
available later in the same frame. 

• Send out Requests to the Muddleware Server: All requests queued so far our 
sent out to the Muddleware server. Requests are only sent out, but not required 
to return instantly, which gives the server enough time to process the messages 
and send them back without stalling the client. 
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• Retrieve Video from Camera: StbES queries the camera for a new frame. In 
case a new frame is available, all objects that registered as VideoUsers are 
notified and handed over the new camera image. 

• Update Tracking: The tracking subsystem calls all active tracking modules 
such as the ARToolKitPlus or FTW (a proprietary gyroscope tracker connected 
via Bluetooth) tracker. The resulting tracking data is stored in fields for later 
use. 

• Traverse and Render Scene-graph: The scene-graph renderer updates all field 
connections and traverses the scene-graph for rendering. 

• Render 2D Widgets: Studierstube ES’ widget manager now draws all widgets 
such as buttons, images, etc. onto the screen, on top of previous 3D renderings. 

• Receive Replies from the Muddleware Server: Replies from the Muddleware 
server are expected to have arrived by now. Otherwise Studierstube ES goes 
into a blocking wait. Most time consuming tasks such as video retrieval, 
tracking and rendering are executing in the slot between sending requests and 
receiving replies. The typical StbES frame duration is ~80 milliseconds, which 
gives the server enough time to react. 

• Display Debug Information and Performance Data: StbES optionally 
displays debug information such as network errors, visible markers and 
performance data (e.g. frames per second). 

• Call render2D() on all Applications: Each application is notified that the 
scene-graph traversal has finished and 2D data can be rendered on top of it 
now. Furthermore the applications can retrieve results for queries to the 
Muddleware server that have been queued in the update() method. Since each 
request was tagged with the application’s id, it is guaranteed that every 
application receives only its own replies. 

• Finish Frame: In the last step the renderer presents the just created frame 
buffer on the screen. 

Configuration 
StbES can be configured in many ways using XML config files. The following we 

list presents the most important configuration parameters: 

• Logging is a highly valuable tool for debugging hard crashes. While on a 
desktop computer usually only the problematic application crashes, the same 
program can easily take the mobile phone down with it during malfunction. 
Logging allows checking for errors after rebooting the device. Since file logging 
can slow down the system considerably, StbES provides several log levels for 
fine adjustment. 
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• Render Target: Since many devices today do not include graphics chips yet, 
software rendering is still rather the rule than exception. While both software 
and hardware rendering produce the same results, they require different 
strategies (render paths) to achieve optimal performance. StbES therefore 
creates off-screen render targets (“PixMap” surfaces) for software rendering, 
which allow direct video memory access, and on-screen render targets for 
accelerated hardware rendering. 

• Window bindings define how the application interacts with the operating 
system’s screen and video memory management. StbES support two different 
window bindings: Windows for PixMap render targets can blit the off-screen 
image onto the screen. When using EGL window bindings, OpenGL ES 
handles the buffer management itself. In the case of PixMap windows StbES 
can rotate also the render target in 90° steps to adapt to users that hold the 
devices in non-standard ways. 

• Video capturing is of major importance for handheld AR. StbES supports 
various video APIs including proprietary ones such as for the Gizmondo device. 
Developers can choose to use full automatic mode selection: StbES will then 
use heuristics to find a suitable video mode that best fits the screen’s resolution: 
StbES then tries to scale and crop the video image in case it doesn’t fit onto the 
screen in original size. Naturally, operations that change the original image as 
little as possible are preferred. Alternatively developers can manually select a 
specific video mode and configure cropping, zooming and format conversion. 

• Font support in StbES is currently rudimentary since only pixel fonts are 
supported. Yet the font type and size can be freely configured to adapt to 
various screen resolutions. 

• Tracking is an integral part of any AR application. While ARToolKitPlus is 
currently the major tracking system used in the handheld AR project, StbES 
allows integrating arbitrary tracking libraries. 

• Containers and encryption can be important features when distributing 
applications to an open, unknown audience. In such a case a developer can put 
sensitive data into encrypted containers to protect the data as well as the 
application against misuse. Furthermore assembling lots of small files into 
fewer larger one simplifies application deployment. 
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6.2 Sphinx 
For multimedia applications content creation, also known as authoring, is a major 
topic. While small projects can get by with using just a few simple tools, large 
applications require a carefully orchestrated content development pipeline. This issue 
is not unique to AR applications, but has also been recognized as a major problem in 
the area of professional game development. 

Content creation for Augmented Reality is different from typical game 
development processes. While today’s content in console games is usually a lot more 
extensive and complex compared to that of Augmented Reality, developing AR 
applications requires not only creating and managing virtual content, but physical 
content too. Typical Augmented Reality demonstrations work with small data sets 
that have been entered manually and do not require data management. Naturally this 
approach is not feasible for larger applications. 

Even small projects suffer from basic problems such as getting content from 
graphical editors into the AR software. Larger applications have additional problems 
that are similar to professional game development: After content has been imported 
into the AR framework, it must be managed and put to use, which turns out to be a 
major problem in its own right as soon as the amount of data grows beyond a certain 
measure. 

The Sphinx engine that was developed for a museum treasure hunt game (see 
chapter 7.4) specifically targets these problems of large AR applications. A large 
application such as a museum-wide game cannot be developed efficiently by creating 
custom code for every interaction throughout the game. It was therefore decided to 
create a custom game engine, Sphinx, on top of Studierstube ES and Muddleware. It 
serves as a basis for all interactive exhibits called hotspots that players can interact 
with. This engine must fulfill several requirements to be practical not only during the 
time frame of the research project, but after the project's end as well. 

A primary concern is the efficient creation of new content for the interactive 
exhibits. The museum game that motivated the development of Sphinx targets a 
number of roughly forty hotspots, so the amount of development work per hotspot 
had to be kept at a minimum. Due to ongoing changes in the exhibitions it is 
furthermore important that existing hotspots can be edited by the museum personnel 
themselves, i.e., by users with limited technical knowledge. This requires simple to use, 
graphical tools that can be operated by non-programmers. Since it is out of the scope 
of the project to develop these tools ourselves it was mandatory relying on existing 
software instead. 
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For a multi player game, where teams collaborate in solving a common goal it 
would be desirable that each player has a unique experience while contributing a 
small amount to the overall task. In practice though, creating unique content for each 
player increases work for content creation enormously. E.g. a game by 10 players for 
20 minutes of active game play equals 200 minutes of unique game play. 

Consequently the game allows reconfiguring the setup to arbitrary numbers and 
sizes of teams. Each team plays the complete game independent of the other teams. 
The team that finishes the game first or solves most tasks wins the game. When a 
small group of users plays the game they can be split into just two teams competing 
against each other while larger groups can be divided into more teams. 

The Sphinx engine is focused on creating and running adventure style 
augmented reality games. Like in traditional adventure games such as pioneered by 
Lucasarts35 in the 1980s, most game logic can be reduced to standard user interface 
metaphors such as taking or giving items or combining items to create new ones. 
Consequently the majority of the game content can be scripted, using a simple 
interpreted control language, requiring custom C++ code only for those parts of the 
game that go beyond the capabilities of the engine. 

  
Figure 6.4: Sphinx client/server system layout 

Sphinx consists of a server and a client part. The Sphinx server runs on a PC and 
interfaces only with a Muddleware server, usually running on the same machine (see 
Figure 6.4). For each team and hotspot the Sphinx server spawns a finite state 
machine (FSM) in a separate thread.  Each FSM listens to specific elements on the 
XML server, such as waiting for clients to register at the hotspot. After a client 
registers, the FSM starts sending actions to the client by putting commands or state 
updates into the Muddleware database and waiting for the client to confirm. These 
actions range from showing dialog boxes to starting AR applets (see below). 

                                                 
35 http://www.lucasarts.com 
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6.2.1 Sphinx Server 

All intelligence controlling the hotspots is located in the finite state machines at the 
Sphinx server whereas the client mostly just reacts to the commands from the server. 
This restricts hotspots to locations where network connectivity is available. However, 
it improves robustness since it is primarily the mobile clients that are likely to fail due 
to malfunction, such as software problems, battery outage or misuse. In case of a 
client malfunction it is sufficient to restart the handheld for recovery since the 
complete game state is stored in the XML server. 

The Sphinx server is an extended version of the Muddleware controller (see 
chapter 5.5), but more focused on the task of controlling a multi player adventure 
game. Both are similar in that they interact only with the Muddleware server directly. 
Yet, while the Muddleware controller executes Muddleware script commands, the 
Sphinx server executes C++ code, which allows going beyond the capabilities of 
Muddleware script. 

 
Command Description 

CLIENT_ShowDialog(DIALOGNAME, 
AUDIONAME) 

Opens a dialog and optionally starts 
playing an audio file 

CLIENT_StartAudio(AUDIONAME) Starts playing an audio file 

CLIENT_StartModule(MODULENAME) Loads a module (DLL) and starts 
the AR applet (see next chapter) 

CLIENT_StopModule(MODULENAME) Stops an applet and unloads the module 
CLIENT_ModuleCommand(COMMANDNAME, 

PARAMS) 
Sends a command and 

optional parameters to a module 
CLIENT_StartTimer(TIMERNAME, 

DURATION) 
Creates a named timer with a 

specified time-out value. 
CLIENT_ActivatePhotoMode() Activates the photo mode 

CLIENT_DeactivatePhotoMode() Deactivates the photo mode 
CLIENT_ShowActionAR(NAME) Executes a scripted AR action (animation) 

CLIENT_ActivateTools(TOOL1, TOOL2, ...) Activates one or more tools 
in the inventory 

CLIENT_DeactivateTools(TOOL1, TOOL2, ...) Deactivates one or more tools 
in the inventory 

CLIENT_LeaveContext(CONTEXTNAME) Tells the client to leave the context  
DB_InventoryStore(ITEMNAME) Put an item into the player’s inventory 

DB_CloseContext(CONTEXTNAME) Closes a context (hotspot) 

DB_ValueSet(VARIABLENAME, VALUE) Sets a new value for variable 
(used for inter-hotspot communication) 

Table 6.1: List of all commands executed on the Sphinx server. 
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While a Sphinx server purely based on the Muddleware controller would 
probably be feasible, it was decided to develop a custom tailored server with a more 
focused API, which in consequence facilitates the development of the hotspot state 
charts. Therefore, instead of requiring the application developer to write Muddleware 
scripts that deal with the XML database, the Sphinx server exposes game specific 
commands. 

Table 6.1 gives an overview of all commands executed on the Sphinx server. 
These commands are executed when entering or leaving a state. All CLIENT_ 
commands are written into the command node which the client listens to via a 
watchdog and result in an immediate action executed on the client. The DB_ 
commands read and write values from the Muddleware database with only indirect 
influence on the client (for example, DB_InventoryStore will make the client show an 
icon in the inventory, but only because the client has a watchdog on the complete 
inventory). All these commands still only interact with the Muddleware database, but 
the streamlined, focused API of the Sphinx server makes the development and 
maintenance of hotspots much easier than using the Muddleware controller. 

 
Command Description 

CLIENT_Action(ACTIONNAME) The client send a message named 
ACTIONAME 

CLIENT_AudioFinished(AUDIONAME) The client finished playing an audio file 
name AUDIONAME 

CLIENT_TimerFinished(TIMERNAME) A timer named TIMERNAME ran out 
DB_InventoryFull() The client’s inventory is full 

DB_InventoryNotFull() The client’s inventory is no full 

DB_InventoryIs(ITEMNAME) The client’s inventory contains an item 
name ITEMNAME 

DB_MarkerVisible(MARKERNAME) The a specific marker is visible for the 
currently registered client 

DB_MarkerNotVisible(MARKERNAME) The a specific marker is not visible for the 
currently registered client 

DB_ValueIs(VARIABLEBNAME, VALUE) Checks if a variable has a specific value 
DB_PlayerRegistered() A client is registered at the context 

Table 6.2: Guards for transitions between states. 
A guard returns true if the described condition is met. 

Table 6.2 shows all guards of the Sphinx server. Only when a guard evaluates to 
true, the state machine takes the corresponding transition into the next state. 
CLIENT_ guards wait for the client to send specific messages, such as that an audio 
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file finished playing or an action occurred (e.g. the user pressed a button in a dialog). 
DB_ guards on the other hand, check for states in the database. 

Since each state machine runs in a separate thread, every hotspot is generally 
completely independent of all other hotspots. Only each FSM's graph decides if a 
hotspot can be played at any time or if it is activated only after specific conditions are 
met, such as another hotspot being already finished. 

State machines are frequently used in nonlinear story-driven games, but are 
suitable for a wide variety of application logic. A natural strength of state machines is 
that they can be created and edited without programming skills such as writing source 
code. Instead game designers can use graphical editors for visual programming and 
use basic building blocks provided by the engine to modify the state or react onto 
state changes. 

entry / CLIENT_ShowDialog(BridalCoupleDialog,BridalCoupleDialog)

Initials Wedding Couple

Show flat iron
do / CLIENT_ShowActionAR(IronAR)

Wrong Answer
do / CLIENT_ShowDialog(Wrong,Wrong)

Ask for saving
entry / CLIENT_ShowDialog(Save,Save)

entry / CLIENT_ShowDialog(Intro,Intro)

Intro Text

Inventory Full
entry / CLIENT_ShowDialog(InventoryVoll)

Cancel, Save?
entry / CLIENT_ShowDialog(Abbrechen)

Cancel?
entry / CLIENT_ShowDialog(Abbrechen)

Save flat iron
entry / DB_InventoryStore(Iron)
do / CLIENT_StartAudio(right)

Hotspot inactiv
do / CLIENT_LeaveContext()

Start Hotspot?
do / CLIENT_ShowDialog(StartHotspot)
exit / CLIENT_ShowDialog()

Close Hotspot
exit / DB_CloseContext()

Check Inventory

Begin

End

Choices:
"U+E"
"N+K"
"I+H"

 [CLIENT_Action(OK)]

 [CLIENT_AudioFinished(right)]

 [CLIENT_Action(U+E)]

 [CLIENT_Action(Cancel)]

 [CLIENT_Action(Cancel)]

 [CLIENT_Action(N+K)]

 [CLIENT_AudioFinished(Wrong)]

 [CLIENT_Action(OK)]

 [CLIENT_Action(Cancel)]

 [DB_PlayerRegistered()]

 [DB_InventoryFull()]

 [CLIENT_Action(OK)]

 [CLIENT_Action(OK)]

 [CLIENT_AudioFinished(Intro)]

 [CLIENT_Action(Cancel)]

 [CLIENT_Action(I+H)]

 [DB_InventoryNotFull()]

 [CLIENT_Action(IronAR)]

 [DB_MarkerNotVisible()]  [CLIENT_Action(Cancel)]

 [CLIENT_Action(OK)]

 [CLIENT_Action(Cancel)]

 [CLIENT_Action(Cancel)]

 [CLIENT_AudioFinished(Save)]

 
Figure 6.5: Finite state machine of the "Trachtengürtel" 

(a traditional belt in Carinthia) hotspot 

Similar to the Muddleware controller, the Sphinx server's state graph is supplied 
as an UML state chart (see Figure 6.5) encoded in XMI format. Sphinx parses the 
open XML-based XMI format using TinyXML and the state machine can directly 
operate on the resulting Document Object Model (DOM). As can be seen in Figure 
6.5, hotspots typically start in an "inactivate" state where the FSM resides until a client 
registers or jumps back to if the player cancels or something goes wrong. The player is 
then usually introduced to the hotspot via a dialog box combined with an audio 
message. At the hotspot in the Figure above the user has to answer a multiple-choice 
question (state "Initials Wedding Couple"). If the player answers correctly he is 
rewarded with an item. In this case, a 3D model of a flat iron flies from the real 
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environment (a tailor's workshop) onto the handheld and falls into the player 
inventory. Finally the FSM closes down the hotspot. 

Figure 6.6 shows a screenshot of the Qt-based user interface of the Sphinx server 
that runs the state machines. The Sphinx server's GUI allows a game designer to 
browse the full game state at any time. For each hotspot the current state and all its 
transitions leaving from there can be viewed which is an important tool during 
development and debugging. Single hotspots or all hotspots can be reset to restart or 
replay them. The interface also lists all currently connected clients and shows their 
current position and inventory items. Via the use of the Muddleware scripting 
interface the corresponding context and client properties in the database can be 
altered in any way, like placing or removing specific items in the client inventory.  
This gives the operator the possibility to fulfill prerequisites for playing a hotspot and, 
therefore, assist players if they require help at a hotspot. 

  
Figure 6.6: Sphinx server user interface based on Qt 

(team specific log history of state transitions and events are hidden) 

The user interface can be reconfigured to adapt it to the game designer’s needs, 
such as docking various team lists or log messages together. The number of teams and 
clients per team are configured in the Muddleware database, beside the definitions of 
the station-contexts where all of the game content is specified. 
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6.2.2 Sphinx Client 

The Sphinx client runs as an AR application on top of Studierstube ES (see Figure 6.4). 
During startup it connects to the Muddleware server and retrieves a list of all available 
hotspots. When the handheld detects a marker it asks the user if he wants to play that 
hotspot. The client application then registers at the XML server which triggers the 
aforementioned finite state machine on the Sphinx server. The Sphinx engine 
currently supports four different types of hotspots (or a combination of them). The 
list below presents these types in the order of increasing technical complexity: 

• Pure 2D GUI: At these hotspots, only simple 2D GUI based interaction is 
available. This can be multiple-choice questions or asking the player to use a 
specific item already found or still required to find. These hotspots are very 
simple to create as they typically only require a short script and a few images to 
be shown in a dialog box. 

• Flash-based applets: For these hotspots the Sphinx engine starts an Adobe 
Flash movie that can take over full control of the device and communicate with 
the Sphinx server. Using Flash allows incorporating existing high-quality 
design tools which graphics and web designer are used to. Via ActionScript, 
Flash applets can talk to the Sphinx server such as waiting for new events or 
sending results. 

• Scripted AR hotspots: These hotspots make use of the AR interaction features 
of the Sphinx engine. They typically require the player to interact with the 
environment in a simple way such as using a game related virtual tool (e.g. the 
lens for virtually looking in more detail at an exhibition item) or applying a 
previously found item to the current hotspot. 

• AR applets: By programming custom C++ code, more complex and unique 
interactions that go beyond the scripting capabilities of Sphinx can be created. 
Multiple AR applets can be grouped into DLLs that are loaded automatically 
on request. An example for such a hotspot is the "Silent Piano" (see chapter 7.4) 
where the user has to watch the handheld virtually playing a piece of music on 
the real piano and then repeat it. 

6.2.3 Offline State Machine 

The Sphinx engine was originally planned to run in an area that is mostly covered via 
a wireless network that includes all the locations of interactive exhibits. After running 
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first tests in the museum and presenting the results to the museum staff, the museum 
management decided that it would be too expensive to outfit all required areas with 
permanent wireless connectivity. 

Hence, the Sphinx engine was extended to also run the state machines “offline” 
on the client. The local state machine was designed to expose the very same API as on 
the Sphinx server so that existing state machines designed for the server remain 
unchanged. In offline mode network communication with the client is not mediated 
via the network but directly from the state machine to the client’s communication 
management class. 

Since the games based on Sphinx are still multiplayer games, network 
connectivity is still required at some point. The client searches permanently for 
network connections. As soon at is succeeds in connecting to the server both 
exchange data to provide updates into both directions. As a result the server is able to 
integrate the latest actions of the player into the overall game state and the client gets 
instantly receives this up to date overall game state. Chapter 7.4.1 presents the actual 
setup of the redesigned of team base that shows an overview map. 

6.3 Performance 
To prove that the system developed in this thesis is highly suitable for AR on phones, 
several benchmarks were run that reproduce typical situations on a series of devices 
ranging from a low-end smartphone to a brand new device with hardware accelerated 
graphics. The following list gives an overview of the devices used in the benchmarks 
(see Figure 6.7): 

• HTC Tornado: The Tornado is a small, low end smartphone, with a 240x320 
pixels screen in a typical phone form factor with a T9 keypad. Its Texas 
Instruments OMAP 850 CPU running at 200MHz is common for this device 
class. The camera delivers images in YUV12 format at 320x240 pixels 
landscape format and 15Hz. Since the screen is in portrait format, only the 
overlapping 240x240 pixels can be used as video background AR.  
This phone is branded under the names: O2 XDA IQ, O2 XDA Orion, 
Swisscom XPA v1240, T-Mobile SDA US, Vodafone VDA II, Vodafone v1240, 
Qtek 8300, Qtek 8310, Dopod 586W, Dopod 577W, I-Mate SP5 

• HTC Excalibur: The Excalibur is a typical smartphone with a landscape screen 
of 320x240 and a full QWERTZ keyboard below the screen – a form factor that 
became popular due to the success of the Blackberry devices. It is based on the 
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same Texas Instruments OMAP 850 200MHz CPU as the Tornado, hence 
similar performance measurements are to be expected. Its camera delivers 
images in 320x240 in YUV12 format at 15Hz.  
This phone is branded under the names: Orange SPV E600, T-Mobile MDA 
Mail, T-Mobile Dash, Dopod C720W, O2 XDA Cosmo, HTC S620 

• Palm Treo700W: The Treo was the first Windows Mobile powered device 
released by Palm. Its screen is square at a resolution of 240x240 pixels. The 
camera delivers images at 320x240 pixels in YUV12 at unusual 28Hz. It 
possesses a full QWERTZ keyboard. The Treo uses an Intel XScale CPU that 
runs at 312MHz, but can be overclocked to 520MHz. 

• Motorola Q: The “MotoQ” has the same form factor as the HTC Excalibur: A 
full QWERTZ keyboard is available below a 320x240 pixels screen. The camera 
delivers images in 320x240 at 15Hz in YUV12 format. Its Intel XScale CPU 
runs as 312MHz. 

• Motorola Q9:  The “Q9” is the successor to the MotoQ. Although it has the 
same form factor, it incorporates completely different hardware: Its Texas 
Instruments OMAP 2420 CPU has hardware 3D support for the vertex as well 
as pixel stage and even includes a floating point co-processor. The camera 
delivers images at 320x240 pixels in RGB565 format at 15Hz. Unfortunately, 
the Q9 does not come with an OpenGL ES driver, but only a Direct3D Mobile 
driver. Furthermore the floating point unit (FPU) is deactivated and requires 
low-level programming to be accessible. To futher compare the influence of 
hardware accelerated rendering, the Q9 was benchmarked with and without 
GPU support. 

 
Figure 6.7: Mobile phones used for benchmarking StbES. Left to right: HTC Tornado, 

HTC Excalibur, Palm Treo700W, Motorola Q, Motorola Q9. 
(images property of www.pdadb.net) 
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Benchmarks 
On each phone several tests were run to benchmark the various parts of the 

StbES mainloop. Every subsequent test adds more features of the AR pipeline: 

• Empty Frame: This test runs a mostly disabled pipeline to benchmark the 
overhead of StbES when not performing any AR related duties. All features 
listed below are activated. 

• Video Capture: This benchmark adds video capturing to the previous test. 
Video is read from the DSVideoCE DirectShow wrapper library and converted 
into the RGB565 format, if required, but not rendered. 

• Video Render: This test adds video background rendering. In the cases of 
software only rendering, this results in a simple memory copy operation, while 
for hardware rendering a texture has to be loaded and rendered. 

• Tracking: In this test tracking of a single ARToolKitPlus marker is added to 
the pipeline. The mainloop performs all common actions, except that the 
scene-graph does not contain drawable objects. Hence, this test shows the top 
performance a device can deliver, if 3D rendering is not taking into account. 

• Cube: This benchmark renders a lit cube with a 256x256 pixel sized texture on 
top of the marker (see left image in Figure 6.8). Due to the extremely low 
triangle count, it mainly tests the performance of the pixel stage. 

• Venus: This test renders a detailed, textured model of the Venus of Willendorf 
on top of a marker (see middle image in Figure 6.8). The 3D model consists of 
870 vertices in 2625 triangles (stored as a single triangle strips) and a 256x256 
pixel texture. 

• Car: This test rendered a highly detailed, lit, untextered model of a car on top 
of a marker (see right image in Figure 6.8). The model consists of 12 meshes 
and materials. In sum the model contains 25652 vertices and 27219 triangles. 

 
Figure 6.8: Test models rendered for benchmarking. Left: Textured cube; Middle: Venus 

of Willendorf; Right: Model of a car. 
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All tests were performed on all devices listed above. The Treo700W was 
benchmarked at 312MHz, as well as 520MHz to estimate the influence of pure clock 
rate. Table 6.3 shows the results of the tests. The table lists only frames per second 
(fps) values. For comparing the effect of specific stages, measurements in milliseconds 
would be preferred, but the tests showed that several stages influence each other: On 
all devices, capturing the video from the camera runs in a separate thread that 
competes for processing time with the main thread. On hardware accelerated devices 
the GPU runs in parallel too, making it extremely hard to estimate exact timings. 
Therefore only timings of the complete mainloop are reported. 

 
 Empty Video 

Capture 
Video 

Render Tracking Cube Venus Car 

Tornado 221,6 fps 62,4 fps 49,8 fps 27,3 fps 16,3 fps 13,2 fps 3,7 fps 
Excalibur 147,0 fps 37,3 fps 29,6 fps 17,7 fps 11,2 fps 9,2 fps 2,6 fps 

Treo @ 312Mhz 318,8 fps 106,6 fps 79,4 fps 40,2 fps 23,6 fps 19,9 fps 5,7 fps 
Treo @ 520MHz 326,4 fps 128,2 fps 92,8 fps 48,6 fps 30,6 fps 26,5 fps 8,0 fps 

MotoQ 167,3 fps 69,7 fps 53,3 fps 33,2 fps 19,4 fps 16,6 fps 4,9 fps 
Q9 H/W 239,1 fps 201,6 fps 72,4 fps 45,2 fps 40,4 fps 36,4 fps 14,3 fps 
Q9 S/W 145,6 fps 114,7 fps 82,5 fps 31,7 fps 19,5 fps 15,7 fps 4,2 fps 

Table 6.3: Benchmarks of Studierstube ES on different mobile phones. 
Higher fps (frames per second) values are better. 

Discussion 
As can be seen in the first row, every device performed extremely well with the 

“empty” mainloop that renders an empty (black) rendering on the screen, but does 
not include video capture, video background, tracking and 3D rendering. As can be 
seen, the overhead of StbES is negligible: even on the slowest devices it sums up to less 
than 7 milliseconds. 

Video capture introduces highly different workload to the phones: While the Q9 
hardly looses any performance, all other devices suffer enormously from this task. 
The main reason for this is that the Q9 delivers images in RGB565 directly, while the 
other devices have to convert from YUV12 to RGB565. Although StbES contains 
optimized code for the format conversion, it still slows down the overall performance 
considerably. Yet, some devices such as the Excalibur loose more performance than 
others. 

Rendering the video background creates inversed results to the retrieval of the 
video images: Here the Q9 looses most performance, which is to be expected, since it 
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has to upload the video into a texture and then render that texture. The other devices, 
running software rendering only, can directly copy the camera image into the frame 
buffer. Hence, the Treo outperforms the Q9, even when not overclocked. 

The next task added to the mainloop is tracking. Again the Q9 and Treo are far 
above the rest. Yet, even the Excalibur still performs at 17,7 frames per second. Taking 
the difference in timing between this and the previous test, one can estimate that 
tracking takes 22,3 milliseconds on the slow Excalibur and only 9,8 milliseconds on 
the overclocked Treo. As already outlined in chapter 3.4 the tracking performance 
scales mostly linear with the clock rate, independent of the CPU manufacturer. 

The remaining three benchmarks run the full mainloop including rendering of 
3D objects. All devices perform similar on the cube as well as on the Venus, despite 
the considerably larger polygon count of the Venus model. Obviously the 870 vertices, 
grouped efficiently in a single triangle strip create no big bottleneck for the software-
implemented vertex stage. 

Finally the car model creates a noticeable burden on all devices, including the 
hardware accelerated Q9. While the Excalibur and Tornado run at frame rates which 
are below of what is considered as real-time in AR, the other devices keep up 
interactive rates at least. Only the Q9 runs at almost 15 fps, which is maximum frame 
rate the camera can deliver. 

The general performance trends become clearer when plotting all results into a 
chart (see left chart in Figure 6.9). As can be seen, the overall performance goes down 
quickly as more and more features of the AR pipeline are added. For a better 
comparison between the various devices, the right chart in Figure 6.9 shows the data 
in logarithmic scale. 

All phones have enough processing power to blit the screen at 150 frames per 
second or more. Hence, other than a few years ago this step does not pose a noticeable 
bottleneck anymore on smartphones. For most devices the first big performance drop 
occurs when capturing video capturing to the pipeline. Yet, as already mentioned 
above, converting pixel formats from YUV12 to RGB565 demands lots of processing 
power which results in a clear performance drop on all devices that have to perform 
this task. 
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Figure 6.9: Absolute performance results. Left: Linear scale; Right: Logarithmic scale. 

While the hardware accelerated Q9 could keep up very well so far it drops heavily 
when video background rendering is added. Here, the hardware accelerated version 
performs worse then using software rendering on the same device. Adding tracking 
costs most devices similar performance as when rendering a simple model. Only the 
H/W accelerated Q9 hardly looses performance with rendering, except for the car 
model with its extremely high polygon count. 
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Figure 6.10: Performance results normalized to per 100Mhz CPU clock rate. 

Figure 6.10 shows the same chart as Figure 6.9, except that this time all 
measurements are normalized to 100MHz. It is interesting to notice that some devices 
have a lot faster video memory access than other. Especially the Treo and Tornado 
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devices perform far beyond all others in this category. As soon as other tasks are 
added, all devices perform very similar with respect to a normalized clock rate – 
except for the Q9 which benefits from the RGB565 video format as well as from its 
GPU. The chart shows clearly that without these two advantages, the Q9’s CPU 
possesses no performance gain over the other, considerably older GPU designs. 

Our tests show that even devices with similar specs can expose highly different 
performance characteristics. Unlike when using synthetic benchmarks that cover only 
a single task as reported in chapter 3.4, the performance of real life applications varies 
heavily. The Q9 draws a lot of performance from its hardware accelerated rendering 
and the 330MHz CPU. Both the MotoQ and the Treo possess an XScale processor 
which is well known for good performance. Yet, the Treo surpasses the MotoQ 
considerably in all tests. The smaller screen size of the Treo alone can not explain this 
difference in performance. A similar situation happens with the Tornado and the 
Excalibur phones. The older Tornado is almost 50% faster in all tests. 

Probably the most interesting device of these benchmarks is the Motorola Q9, 
since it is the only one with hardware 3D acceleration, a feature that is expected to be 
available in most new phones released in 2008 and later. The tests show that although 
the video background via texturing does cost a lot of performance, it is countervailed 
by the enormous power when rendering high detailed 3D models. 

6.4 Discussion 
This chapter described Studierstube ES, a framework that combines the basic building 
blocks ARToolKitPlus, StbSG and Muddleware that were presented in the previous 
chapters of this thesis. Studierstube ES is optimized for running on mobile phones, 
but also works on PC-based setups too. This enables developers doing most of their 
work on powerful PCs, leaving only final tests to be performed on the actual client 
device, which speeds up development cycles enormously. 

Furthermore, the Sphinx game engine for mobile AR adventure style games was 
introduced, which is the basis for the MARQ game, presented in the next chapter 
among other applications. 

The Studierstube ES framework is equally powerful for developers as 
Studierstube (PC version), DWARF and Tinmith, etc. in the kind of applications that 
can be built. While this is a subjective measure, it is supported empirically by the 
applications presented in the next chapter and therefore a proof for hypothesis H1 
and H2. 
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Chapter 7  

Results and Evaluation 
This chapter presents applications that have been developed and evaluated over 
the course of the handheld AR project, ranging from classical single user 
applications such as Signpost to content-rich multi-user programs such as the 
Schatzsuche game. 

To demonstrate the applicability of the handheld AR approach and to evaluate the 
statements postulated in the beginning of the thesis, several applications have been 
developed and evaluated in various user studies. While the Invisible Train game was 
studied only informally, the feedback from its roughly 5000 users makes it as 
important as the formal studies run on the Virtuoso and Signpost2007 applications. 
The test runs of the “Schatzsuche” game, performed at the Landesmuseum Kärnten, 
was led by professional pedagogues who have many years of experience in creating 
and evaluating museum exhibitions. 

7.1 The Invisible Train 
The Invisible Train, developed 2003, is one of the first applications in the handheld 
AR project. Hence, our main concern was in evaluating the suitability of handheld AR 
for mass users. We therefore designed a simple multi-player game, in which players 
steer virtual trains on a real wooden miniature railroad track (see Figure 7.1). These 
virtual trains are only visible to players through their handheld’s video see-through 
display, since they do not exist in the physical world. 
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Figure 7.1: Invisible Train game board. 

While it would have been possible to draw inspiration from a number of marker-
based augmented reality applications published by other researchers, none of those 
met all of our requirements or made use of the unique possibilities gained by bringing 
marker-based AR to handheld devices. Naturally, we were looking for an interactive 
application that would allow its users to participate in a collaborative or concurrent 
task. The application should be distributed, synchronizing state between multiple 
clients through wireless networking. Many marker-based AR applications that have 
so far been presented make heavy use of fiducials as tangible interface components, 
allowing their users to flip through the pages of marker-enhanced “magic books” [17], 
to use markers as cards in an augmented memory game [111], or to use markers for 
positioning various objects such as design elements or video surfaces in the user’s 
workspace [16][7].  

In contrast to these applications, which focus on the use of fiducial markers as 
moveable, dynamic parts of the application, we decided to employ the handheld’s 
tracked display itself as the tangible, dynamic interaction element. Therefore, we 
decided to focus on pen-based touch-screen input as the main interaction technique. 

An important requirement was that the application should be sufficiently 
spatially distributed to give an impression of the properties of our tracked display 
surface with respect to panning and zooming interactions — users should be required 
to move in closely to the environment to discover important details, and to move the 
perspective away from the setting in order to gain an overview of the scene. This 
differs from other applications such as the magic book, which are designed to be fully 
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visible within the field of view of the user, and therefore require no navigational 
actions from the user. 

We specifically chose the game genre because we expected its playful nature of 
engaging in cooperative tasks would encourage users to participate in our evaluation. 
We deliberately left the decision whether the game should be collaborative or 
competitive open. As a result, the game can be played either collaboratively (trying to 
avoid a collision between trains for as long as possible) or competitively (attempting 
to crash into the other player’s train). Since we anticipated people would use the 
application for about a minute each, we omitted a scoring mechanism and left the 
decision whether to cooperate or compete to the players. 

Figure 7.2 shows the game’s user interface elements, as seen from a player’s 
perspective. Users are offered two types of actions: operating track switches and 
adjusting the speed of their virtual trains, both of which are triggered in response to a 
tap on the PDA’s touch screen. There are two different kinds of track junctions: three-
way (Y-shaped) and four-way (X-shaped) interconnections. Both are visualized 
through semi-transparent graphical icons floating above the physical junction 
element. These track switch icons serve as clickable buttons and indicate their current 
state and effect on train routes by their visual appearance (see Figure 7.3). 

 
Figure 7.2: User interface and graphical features. 
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Figure 7.3: Track switch icons and their effect on train routes. 

Whenever users activate a track switch, its icon turns fully opaque for one second, 
during which other track switch buttons become unclickable. This mechanism was 
primarily intended to provide users with visual feedback, but will also prevent “race 
conditions” where multiple users rapidly try to operate the same track switch. Users 
need not exercise great precision when aiming at their touch-screens: a ray-casting 
algorithm automatically selects the appropriate track switch depending on the closest 
virtual track being pointed at. Virtual trains can ride at two different speeds, which 
can be controlled via two dedicated buttons in the upper right screen corner. The 
active button is shown in color while the inactive button is grayed out. During the 
game, application state is constantly synchronized between all participants via 
wireless networking. Whenever a collision occurs, the game ends. 

7.1.1 Evaluation 

In order to assess the practical deployability and usability of our framework, we 
considered it imperative to conduct a field test in which as large a number of users as 
possible would be asked to try their hand at a PDA-based AR application. Ideally, 
most participants would not have had prior experience with AR interfaces. The 
application that we presented to end users in the evaluation was chosen according to 
several criteria: first and foremost, the application should expose our framework's 
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major features and key properties to the end user while simultaneously allowing us to 
draw early conclusions about the practical value of our developments. We 
consecutively deployed the Invisible Train at ten different locations: 

• SIGGRAPH 2004 computer graphics convention in Los Angeles (USA). 
• An orientation day for incoming freshmen at Vienna University of Technology 

(Austria). 
• A career information event for secondary school students (Austria). 
• Inside the Ars Electronica Center’s (AEC) “Museum of the Future” in Linz 

(Austria). 
• ISMAR 2004 conference in Arlington (USA). 
• Imagina 2005 Trade Show in Monte Carlo (Monaco). 
• LEARNTEC 2005 (Germany). 
• Virtual Reality 2005 conference in Bonn (Germany). 
• Pervasive 2005 in Munich (Germany). 
• Wired NextFest 2005 in Chicago (USA). 

Over the course of these exhibitions, we gradually moved from expert audiences, 
who were familiar with AR technology, to a general public (see Figure 7.4) with little 
or no previous exposure to AR. An estimated five to six thousand visitors have 
engaged in playing the Invisible Train game during the four evaluation cycles, one of 
which lasted for over four weeks and was partially unsupervised (with occasional 
maintenance work done by AEC museum staff). To our knowledge, these quantities 
lie at least an order of magnitude above comparable informal field tests of mobile AR 
system, denoting the first time a mobile AR application has successfully withstood a 
field-test of sizeable proportions. 

 
Figure 7.4: Visitors playing the Invisible Train. 
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7.1.2 Results 

Although we did not perform a formative user study, we solicited user feedback 
through informal, unstructured (i.e. no specific or predetermined sets of questions 
were asked) interviews and conducted a summative evaluation of user performance 
and behavior, which led to small iterative refinements of the game’s user interface. 
More importantly, however, we successfully completed a rigorous stress-test of our 
system architecture’s overall robustness. Several of our empirical observations, some 
of which were directly comparable to our past experience involving HMD-equipped 
“backpack”-style setups, confirmed our assumption that handheld devices are 
generally more accessible to a general public, and exhibit better learning curves than 
traditional mobile AR systems: We found that visitors had little to no reservations 
towards using our system. Several participants figured out how to play the Invisible 
Train on their own by simple trial and error, others would learn the gameplay by 
looking over another player’s shoulder while awaiting their turns — some children 
would intuitively grasp the concept and outperformed even seasoned computer 
science professionals. 

Consequently, our supervision overhead was considerably lower than 
administrators of traditional mobile AR application would normally experience. On 
many occasions, we could observe unsupervised user experience in which visitors 
would pass around the PDAs while explaining the game to each other. Most 
participants would play at least a single game (averaging roughly 60 seconds) before 
handing their PDA to the next visitor. In contrast to our past experiences with 
“backpack” setups, we experienced almost no hardware-related failures, with the 
exception of a small number of application crashes, whenever users removed the add-
on camera from its SDIO slot. These incidents have only further confirmed our 
observation that wearable devices intended for public deployment must resemble 
robust monolithic units without any loosely attached parts. According to user 
feedback, our application was considered sufficiently responsive for the intended type 
of spatial interaction: only a negligibly small fraction of players felt their PDA’s 
display update rate and delay would impair their ability to play the game. We 
measured our system’s average performance at 7 frames per second (on devices 
equipped with Intel’s XScale PXA263 processor clocked at 400MHz, and an add-on 
SDIO camera from Spectec Computer Ltd), while wireless network latency was 
measured at about 40-50ms. Camera blur caused loss of registration during rapid 
movements, but was not considered a major problem. 
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7.2 The Virtuoso Arts History Game 
Using a predecessor of our Studierstube ES handheld AR platform, we implemented 
Virtuoso, a collaborative educational game for up to four players. The players' 
objective is to sort a collection of artworks according to their date of creation along a 
timeline drawn on a wall-mounted billboard (see left picture in Figure 7.5). 

Every marker on the timeline carries one of the artworks, which are only visible 
through the player's AR PDA (see right picture in Figure 7.5). Initially the artworks 
are in random order. A player can pick up any artwork with his or her PDA, by 
clicking on the artwork on the display and drop it on a free position by clicking on an 
empty marker on the display. While an item is located on the PDA, the player can 
access explanations about it. 

 
Figure 7.5: Timeline of the Virtuoso game. 

Left: players using their PDAs; Right: screenshot of a player’s device. 

 
A virtual animated character called Mr. Virtuoso (see Figure 7.6) can provide 

help for players that are stuck. By placing the artwork on Mr. Virtuoso's desk, Mr. 
Virtuoso will then be prompted to provide his expertise on the subject through the 
use of text, audio playback and animation. The user can then take the item back, 
hopefully knowing by then, where to put it onto the timeline. After an artwork is 
placed onto its correct position on the timeline, it cannot be moved again. 
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Figure 7.6: Mr. Virtuoso giving details about an historical object. 

 
Besides the hints from Mr. Virtuoso, the game engine can provide even more 

help in several ways: It can show arrows pointing "left" and "right" next to the artwork 
if it should be placed earlier or later on the timeline (see right picture in Figure 7.5). 
Furthermore the game engine can display an item's date of creation when the item is 
placed on the timeline. There are three configurable levels of difficulty by choosing 
where and when the exact date of creation of an artwork will be revealed: 

• Beginner’s level: all dates are always shown. 
• Intermediate level: date is shown when an artwork is put into ist final position. 
• Advanced level: dates are only revealed when all artworks are correctly placed 

If the timeline is very long (more than 10 items) players can easily loose oversight. 
To prevent that, the game can display the timeline as a series of icons on the bottom 
of the PDAs' screens. The game master can enable and disable any of these options at 
any time during the game. 

The art history application features an overall selection of 20 artworks from 
which the game master can select a subset for play. The game features textured, 
animated 3D models, multimedia background material and pre-recorded audio 
narration in three languages (English, German and Spanish). A graphical user 
interface for the game master allows runtime configuration of all game features. 
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7.2.1 Virtual Characters in Handheld AR 

We tested different virtual character representations in the Virtuoso game to evaluate 
the influence of a humanoid avatar on the personal experience and learning effect of 
the user [110]. The key research question we were exploring was how realistic does a 
virtual character need to be for the user to feel engaged with it and enjoy the 
application, and what benefit can be derived from using AR characters. 

The original art history game can be played collaboratively by up to four players. 
Since we wanted the subjects to focus on the learning part and the virtual character 
rather than on collaboration with other players, we created a modified version that 
was played by a single player. All help options such as arrows pointing into the 
direction of an item's correct spot on the timeline were turned off. 

In order to explore the effect of the virtual character representation we 
conducted an experimental evaluation with five experimental conditions: 

A Text only: The virtual character is just represented by text windows appearing 
on the screen (Figure 7.7a). 

B Text and Audio: As in condition A, but in addition an audio voice over was 
played (Figure 7.7a). 

C 2D Image: As in condition B, but in addition a 2D image representing the 
character was shown on the screen (Figure 7.7b) 

D 3D Character: As in condition B, but in addition a 3D animated virtual 
character was shown on the screen. The character was fixed to the screen as a 
TV moderator (Figure 7.7c) 

E AR Character: As in condition D, but the 3D virtual animated character 
appears fixed in space in the real world (Figure 7.7d). 

Condition A includes an absolute minimum presence of the virtual character. 
Conditions add progressively more and more realistic cues, while condition E (right-
most picture in Figure 7.7) is the only case where the virtual character is seen as part 
of the user's physical environment, and so it is the only true AR condition. It should 
also be noted that the virtual head shown in condition C is not animated, unlike 
conditions D and E. 
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Figure 7.7: The five cases of Mr.Virtuoso: left-most picture (A/B): text and/or audio only; 

picture 2 (C): 2D image of Mr.Virtuoso’s head; picture 3 (D): screen aligned and 3D 
animated; right-most picture (E): fully 3D registered 

For the experiment, users played the game once in each condition, trying to 
correctly arrange four artworks each time. They were told to ask Mr. Virtuoso to learn 
as much as possible about the art works as they would be tested on their knowledge 
after each condition. The emphasis was on learning about the art rather than correctly 
arranging the artworks in the shortest amount of time. The order of presentation of 
the conditions and the artworks for each condition were changed to prevent order 
effects in the results. 

For each condition we measured the time taken to complete the task, and we 
asked the users a number of questions relating to how much they enjoyed playing the 
game, how real they thought the character was and how much they learnt. Subjects 
were also asked a number of multi-choice questions about the artworks, asked to 
rearrange pictures of the artworks and interviewed about the experience. 

 
The key questions we were looking to answer include: 

• Is there a relationship between the character representation and perceived 
realism? 

• Is there a relationship between character representation and enjoyment of the 
experience? 

• Is there a relationship between character representation and how much people 
felt they learnt? 

Knowing the answers to these questions may help developers create more 
effective virtual character based entertainment experiences in the future and also 
better understand how AR technology can be used to develop new types of characters. 
Chapter 9.3.1 includes the original questionnaires that where handed out to the 
participants. 
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Results 
There were 13 participants of which 9 were male and 4 were female, aged 20 to 33 
years. Most of the participants were native English speakers. None of them knew the 
game before. The experiment lasted about 40 minutes per subject including a short 
concluding discussion. Data analysis was performed using SPSS version 13. The main 
effect was tested with repeated ANOVA. If a main effect was found, pair-wise post-
hoc comparisons using the Bonferroni adjustment for multiple comparisons were 
performed. 

Subjects used Mr. Virtuoso heavily, Table 7.1 showing the average number of 
times used per condition. There were four artworks shown per condition, so the agent 
was used almost once per artwork to discover more information about art. 

 
Cond. A B C D E 

Asked # 3.3 3.6 3.5 3.6 3.9 

Table 7.1: Average Number of Times Mr. Virtuoso used 

ANOVA shows no significant difference (F(4,60) = 0.26, P = 0.90) between 
conditions in the time taken to arrange the art works in the correct order with. Table 
7.2 shows the time players played each condition. There was no significant difference 
across these measurements. 

 
Cond. A B C D E 

Time (s) 248.5 230.0 236.2 237.3 252.7 

Table 7.2: Time to perform task 

Table 7.3 shows the average results that users got right on the four multi-choice 
test questions on the artwork after each condition. No significant differences were 
found (F(4,45) = 1.01, P = 0.41).´ 

 
Cond. A B C D E 

Score 3.0 2.8 2.5 2.3 2.6 

Table 7.3: Average Number of Questions Correct 
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Subjects were asked to mark on a Likert scale of 1 to 7 how much they agreed or 
disagreed with a number of statements, where 1 = Strongly Disagree and 7 = Strongly 
Agree. There were a number of questions about the game and ease of use of the 
interface, including (see Chapter 9.3.1 for the original questionnaires): 

Q1: I enjoyed playing the art history game 
Q2: The PDA interface was easy to use 
Q3: The task was easy to solve 
Q4: I felt I learned new facts about art items from the game 

Table 7.4 shows the average results for each of these questions. As can be seen 
there is little difference between conditions for these results. ANOVA tests found no 
significant differences for the user survey scores for these questions. 

 
Condition A B C D E 

Q1 5.46 5.85 5.92 5.85 5.85 

Q2 6.08 5.92 5.92 6.08 6.15 

Q3 5.69 5.69 5.84 6.00 5.92 

Q4 5.39 5.85 5.92 5.84 6.15 

Table 7.4: Subjective Survey Scores 

A second set of questions related to the virtual character: 

Q5: Mr. Virtuoso seemed real to me 
Q6: Mr. Virtuoso was helpful for completing the task 
Q7: Mr. Virtuoso improved the overall experience 
Q8: I found Mr. Virtuoso to be friendly 
Q9: Mr. Virtuoso seemed to be part of the real world 

There was a significant difference between the results for all of these questions. 
Figure 7.8 shows the average results for Q5: Mr. Virtuoso seemed real to me. As the 
virtual character exhibits more visual and audio cues the subjects felt that it was real. 
An analysis of variance was conducted with type of virtual character (A - E) as the 
within-subjects factor. Doing this we found a significant difference between 
conditions (F(4,48) = 11.18, P < 0.001). Post-hoc found that Mr. Virtuoso in 
conditions E  (P < 0.001) and D (P < 0.001) was rated as significantly more real that in 
condition A.  Condition D was also rated significantly higher than condition A 
(P<0.01). There were no other significant differences between conditions. 
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Figure 7.8: How real Mr. Virtuoso was (Q5) 

Table 7.5 shows the average results for Q6, Q7 and Q8. An ANOVA on Q6: Mr. 
Virtuoso was helpful for completing the task showed a significant difference across 
conditions (F(4,48) = 8.186, P < 0.001). Post-hoc comparisons between conditions 
found a significant difference between conditions D and E and condition A (P<0.05). 
Similarly, an ANOVA on Q7: Mr. Virtuoso improved the overall experience produced 
a significant difference across conditions (F(4,48) = 5.22, P < 0.01). Finally an 
ANOVA on Q8: I found Mr. Virtuoso to be friendly produced a significant difference 
across conditions (F(4,36) = 12.322, P < 0.001). Post-hoc comparisons found a 
significant difference between conditions D and E and condition A (P<0.01), and 
conditions B and A (P<0.05). In all cases the score of the condition without audio 
(condition A) was lower than the other conditions, while the two conditions with 3D 
graphics (conditions D and E) were the highest. 

 
Cond. A B C D E 

Q6 3.46 4.92 4.85 5.69 5.85 

Q7 3.23 4.69 4.31 5.15 5.39 

Q8 2.10 4.50 3.90 5.20 5.20 

Table 7.5: Helpfulness, Experience, and Friendliness 

As the quality of the character representation increased it also seemed to be more 
part of the real world. Figure 7.9 shows a graph of the average response to question 9: 
Mr. Virtuoso seemed to be part of the real world.  An ANOVA showed a significant 
difference across conditions (F(4,36) = 6.46, P < 0.001). Post-hoc comparisons found 
a significant difference between conditions C and A (P<0.05), conditions D and A 
(P<0.05), and conditions E and A (P<0.05). As before the 3D virtual characters (D, E) 
are significantly different from the text-only condition (A). 
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In addition to providing subjective survey responses, subjects were also asked to 
rank each of the conditions in order according to the following criteria. For each 
criteria 1 = lowest, 5 = highest. 

R1: How real Mr. Virtuoso seemed 
R2: How much fun it was 
R3: How much you learnt 
R4: How helpful was Mr. Virtuoso 
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Figure 7.9: How much Mr. Virtuoso seemed part of the real world. 

 
The rankings for R1 and R2 are significantly different across conditions. An 

ANOVA for R1 finds (F(4,44) = 67.42, P < 0.001). Post-hoc comparisons show 
significant difference (P<0.02) between all conditions except B and C. In fact, all of 
the subjects except one ranked the AR condition as most real. Similarly, an ANOVA 
for R2 found F(4,48) = 30.25, P < 0.001. All but two of the subjects ranked the AR 
condition either highest or second on how fun it was. Figure 7.10 shows the results for 
rankings R1 and R2. In this case, when users where forced to chose, as the virtual 
character had more realistic characteristics they thought it was more real and 
correspondingly more fun.  

However there was no significant difference between rankings on R3: How much 
you learnt. An ANOVA finds (F(4,32) = 0.80, P = 0.53). This is consistent with the 
survey results for Q4 and the multi-choice question results. Table 7.6 shows the 
average rankings. 
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Figure 7.10: Average ranking on realism and fun 

For ranking R4: How helpful Mr. Virtuoso was, an ANOVA produced a 
significant difference across conditions (F(4,36) = 3.78, P < 0.01). Post-hoc 
comparisons confirm that this is because of the difference between the condition with 
no audio (Condition A) and the other conditions. 

 
Cond. A B C D E 

R3 2.54 3.67 3.19 2.55 2.91 
R4 1.93 3.15 3.50 3.23 3.23 

Table 7.6: Ranking of Learning and Helpfulness 

Interviews 
In the interviews with the subjects several consistent themes emerged. Although we 
emphasized before and during the game that time was of no importance, 4 out of 12 
users complained afterwards that they felt slowed down by Mr. Virtuoso, particularly 
in condition E where they needed to wait for his walking animation to finish. The 
main reason for this that Mr. Virtuoso presented information in his own speed and 
could not be interrupted. 

Most subjects pointed out that they were very aware of the fact that the more 
feature-rich versions of Mr. Virtuoso did not provide more information then the 
other versions. Still they usually liked the AR version more because they felt it looked 
more natural and realistic. However many subjects pointed out the importance of Mr. 
Virtuoso's voice feature as being critical.  

Three subjects complained that Mr. Virtuoso did not make eye contact with 
them while speaking which made them feel uncomfortable or even offended them. 
Condition D (screen-aligned) did not have this problem since the screen-aligned 
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character implicitly looked in the player's direction. Those three subjects generally 
preferred condition D over E. 

One subject did not like the AR version because he had the feeling that he was 
interrupting Mr. Virtuoso from his other actions when asking him for assistance. This 
was not an issue with the screen-aligned version because Mr. Virtuoso in this 
situation walks into the screen from the right side and is therefore not visible before. 

Finally, two players felt that the animated character distracted them from reading 
the text and listening to the voice. 

Discussion 
The main focus of our study has been to explore the effect of different virtual 
character representations on user engagement, enjoyment and educational outcomes 
in a learning task. The objective measures of time to complete the task and number of 
correct test questions did not vary significantly across conditions, showing that the 
various character representations did not have any effect on the educational outcomes. 
Similarly when the users were asked their subjective opinion of the different 
conditions there was no difference in how much they enjoyed each condition or how 
difficult they found the task and how much they felt they learnt. However, when 
forced to rank the conditions in order, as the virtual character became more realistic 
the users felt the condition was more fun (Figure 7.10). 

This is not too surprising since users were engaged in a relatively short task and 
as the virtual character representation becomes increasingly realistic it did not 
provide additional educational content, such as gesturing to specific parts of the 
virtual artwork.  If the task had a greater spatial learning element (such as learning 
how an engine is taken apart) the more realistic characters could have an impact on 
the learning outcomes. 

The increasing enjoyment ranking when forced to make a choice may be due to 
the novelty factor; AR characters are more novel than a disembodied voice over and 
so relatively more fun. 

The subjective results in response to the character did show significant 
differences across conditions. When asked how real Mr. Virtuoso seemed and how 
much he seemed to be part of the real world, the main differences was between 3D 
and non-3D representations of the character and audio vs. non-audio. In all cases the 
non-audio condition rated lowest while the 3D character was the highest, but there 
was no difference between AR and screen aligned characters. 

It is interesting to note the effect that adding audio can have on the user's 
perception, causing a large jump in average scores between conditions A and B, while 
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there was no additional benefit of adding a 2D representation to the audio. If the 2D 
character had been animated this may have had a greater effect. 

Players did not rate the AR version more realistic than the screen-aligned 3D 
virtual version and it was not perceived to be more helpful or friendly than the 3D 
virtual version. Only when forced to choose did subjects rank the AR version more 
realistic and more fun. 

One of the reasons for this could be that the AR character did not exhibit any 
more communication cues than the screen-aligned 3D virtual character that would 
make it seem more real. Although he walks around the real table, the AR version of 
Mr. Virtuoso did not give any spatially related information on the objects such as 
pointing to specific spots on items as a real person would do while explaining. 
Furthermore a realistic person is expected to behave politely and to look at the people 
he is talking too. 

7.2.2 Collaborative Edutainment 

Handheld Augmented Reality is expected to provide ergonomic, intuitive user 
interfaces for untrained users. Yet until now only few comparative studies have 
evaluated these assumptions against more traditional user interfaces. We therefore 
compared the suitability of our Virtuoso arts history learning game against its non-
AR variants on paper and on a desktop PC [116]. 

 
Figure 7.11: Three variants of the Virtuoso game: Augmented Reality, desktop and  paper 

The desktop PC version was programmed in Macromedia Flash (see middle 
image in Figure 7.11). Players can move artworks on the timeline displayed on the 
screen using drag and drop operations with the mouse. Consequently the PC version 
can only be operated by one player at the time. While this restricts the user interface 
of the game, it provides a realistic example of typical PC-based edutainment 
applications or museum installations. As usual, when an item is located at its final 
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position its date of creation is displayed below of it and the item can no longer be 
moved. Moving an item to the left-top pane provides basic information, while the 
animated Mr. Virtuoso on the top-right pane provides detailed explanations in text 
and audio. Items can be directly dragged from one slot on the timeline onto another. 

For the paper version of the game we printed pictures of the artworks on playing 
cards (see right image in Figure 7.11). On the front, the playing cards show the 
introductory text, while on the back more detailed descriptions by Mr. Virtuoso are 
provided. Players are only allowed to hold one playing card at a time and must only 
put it back into a free position. While the computer can enforce the game rules for the 
AR and desktop version we introduced a human game master to the paper version 
who takes care that the game's rules are not violated. The game master will also reveal 
an item's date of creation when an item is located on its correct position on the 
timeline. Consequently this version of the game has the same functional 
characteristics as the handheld AR and desktop PC versions. 

Experimental Evaluation 
We compared our collaborative AR application with the two non-AR variants of the 
game (the desktop PC and paper-based version).  In the experiment participants were 
grouped into teams of four. In each game, players had to sort seven items on the 
timeline. After a team finished its task they filled out a questionnaire about the game 
they just played including detailed art history questions about the items they just 
arranged, and how they felt about the game interface. Then all teams moved on to 
another version of the game. After the participants played all three versions of the 
game they filled out another questionnaire asking to rank the conditions in several 
categories.  The introductory instructions to the participants emphasized the focus on 
collaboration and the need to learn about the artwork items. Users should learn rather 
than completing the task as fast as possible. To further motivate cooperation between 
players, players were told, that the goal of the game was to get a high team score, 
rather than personal scores on the arts history questions they had to answer. 

There were 48 participants 26 female and 22 male, aged from 20 to 43. 25 people 
stated that they had never used a PDA before. The experiment lasted about one hour 
for each subject including introduction and a short finishing discussion. Data analysis 
was performed by using SPSS version 13 and the main effect was tested with repeated 
ANOVA. If a main effect was found, pair-wise post-hoc comparisons using the 
Bonferroni adjustment for multiple comparisons were performed.  The questions the 
participants had to answer after each game can be grouped into four main categories: 
collaboration, easiness of the task, learning effect and fun factor. Subjects were asked 
to mark on a Likert scale of 1 to 7 how much they agreed or disagreed with a number 
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of statements (1 = Strongly Disagree and 7 = Strongly Agree. Chapter 9.3.2 includes 
the original questionnaires that were handed out to the participants. 

Results 
We asked two questions about the way people collaborated: 

• Q1: I collaborated intensively with my team members. 
• Q2: I knew exactly what the others were doing. 

Table 7.7 shows the average results for each of these questions. Subjects felt that 
they collaborated more in the Paper and PDA versions; an ANOVA test found a 
significant difference for Q1 (F(2,94)=3.94, P<0.023) and a post-hoc comparison 
found a significant difference between the PC game and the other two variants. 
Similarly, an ANOVA for Q2 found a significant difference between how well subjects 
felt they knew what the others were doing: F(2,94)=6,13, P<0.003. A post-hoc 
comparison found a significant difference between the PDA condition and the PC 
and paper versions of the game. 

 
Condition Paper PC PDA 

Q1 5.71 5.00 5.61 
Q2 5.67 5.75 4.73 

Table 7.7: Average results on collaboration 

In the category ease of the task we asked the following five questions: 

• Q3: I always had a good overview of the timeline 
• Q4: I had sometimes problems with the user interface 
• Q5: The game was sometimes confusing 
• Q6: The user interface was easy to use 
• Q7: The task was easy to solve 

Table 7.8 shows the average results. As can be seen, there is little difference for 
the conditions of the questions Q3, Q4 and Q5. An ANOVA test found significant 
differences for Q6: The user interface was easy to use (F(2,94)=5.27, P<0.007). A post-
hoc comparison showed that the paper variant was rated significantly lower than the 
PC version and there was no difference between the PC and PDA conditions. For Q7: 
The task was easy to solve, ANOVA found significant differences (F(2,94)=3.52, 
P<0.034), and a post-hoc comparison showed that the PC version was rated 
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significantly easier than the PDA version, but there was no significant difference 
between the other conditions. 

 
Condition Paper PC PDA 

Q3 5.10 5.27 4.81 
Q4 2.27 2.21 2.69 
Q5 2.56 1.98 2.65 
Q6 5.38 6.27 5.86 
Q7 5.60 5.94 5.44 

Table 7.8: Average results for ease of use. 

To measure if people felt a learning effect we asked the question: 

• Q8: I believe I learned something about those artworks 

Performing an ANOVA on Q8 did not find any significant differences. The last 
group of questions we asked after each game was about how much people liked the 
game and how much it would fit into a museum setting: 

• Q9: I enjoyed playing the game 
• Q10: Playing the game was a great experience 
• Q11: This game would fit well into a museum exhibition 
• Q12: I would like to play this game in a museum 

Figure 7.12 shows the average results for each of these questions. There were 
significant differences between the results for all of these questions. As can be seen for 
every question the PDA version scored highest while the paper version was rated 
lowest. An ANOVA was conducted and Q9: I enjoyed playing the game resulted in 
F(2,94)=5.472, P<0.006. Post-hoc analysis found that the PDA version was rated 
significantly higher than the paper version. An ANOVA for Q10: Playing the game 
was a great experience resulted in F(2,94)=32.916, P<0.001. Post-hoc analysis showed 
that the results for all three conditions were significantly different. For question Q11: 
This game would fit well into a museum exhibition the PC and PDA version got very 
similar ratings. An ANOVA (F(2,94)=25.713, P<0,001) including a post-hoc analysis 
showed significant differences between the paper and the other two conditions but no 
differences between the PC and PDA conditions. Finally for Q12: I would like to play 
this game in a museum, an ANOVA resulted in F(2,94)=30.716, P<0.001. Post-hoc 
analysis found all three versions of the game were significantly different. 
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In general subjects thought the PDA version provided a greater experience than 
the other two conditions and they would like to play this in a museum more than the 
other two games. 
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Figure 7.12: Average results for Questions Q9 - Q12 

In addition, subjects were also asked to rank each of the conditions in order 
according to the following criteria. For each criteria 1 = lowest, 3 = highest. 

• R1: How easy the game was to play 
• R2: How much you learnt 
• R3: How good the overview of the timeline was 
• R4: How much you collaborated 
• R5: How much fun the game was 
• R6: How much the game would improve a museum exhibition 

Condition Paper PC PDA 
R1 1.89 2.25 1.86 
R2 1.82 2.09 2.09 

Table 7.9: Average results for rankings R1 and R2 

The rankings for R1 and R2 did not produce significantly different results. As 
can be seen in Table 7.9, all conditions were ranked very closely. However, for 
ranking R3: How good the overview of the timeline was, an ANOVA found 
F(2,90)=4.723, P<0.011. A post-hoc analysis showed that the PC and PDA conditions 
were significantly different giving the PC version the best score of overview of the 
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timeline (see Table 7.10). Interestingly, ranking R4: How much you collaborated, 
resulted in exactly the opposite ratings. Here the PC version scored significantly lower, 
while the paper and PDA conditions were rated almost equally well. An ANOVA plus 
post-hoc comparisons resulted in F(2,88)=4.006, P<0.022 and found significant 
differences between the PC condition and the other two conditions. 

 
Condition Paper PC PDA 

R3 1.89 2.35 1.76 
R4 2.15 1.67 2.13 

Table 7.10: Average results for rankings R3 and R4 

Finally, R5: How much fun the game was and R6: How much the game would 
improve a museum exhibition produced the results shown in Table 7.11. An ANOVA 
found F(2,92)=43.607, P<0.001 for R5 and F(2,88)=31.253, P<0.001 for R6. For both 
R5 and R6 post-hoc comparisons showed that all results were significantly different 
resulting in the PDA version being ranked as the most fun and most appropriate for a 
museum exhibition. 

 
Condition Paper PC PDA 

R5 1.36 1.89 2.75 
R6 1.36 2.00 2.64 

Table 7.11: Average results for rankings R5 and R6 

Interviews 
We interviewed the participants after each condition and several consistent themes 
emerged. For the paper version, subjects felt that they needed to organize themselves 
to prevent chaos, which was not a problem in the electronic versions of the game 
where strict rules were implicit. While many players said that it felt good to have a 
physical object in their hands they also added that the paper version was very "old 
school". In general subjects felt the paper version was less appealing. 

Although most participants rated the PC version as providing the best overview 
of the timeline in the questionnaires, some participants complained that too many 
items crowded the screen which confused them. Interestingly, the same audio 
recordings for Mr. Virtuoso's voice-over was used in the PC and PDA version, but 
several users commented that the PC version's virtual character sounded more 
pleasing. We assume the reason for this is the low quality of the PDAs' built-in 
speakers. Subjects told us that collaboration was most difficult with the PC version 
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because there was only one mouse to use and every action had to be first discussed 
with the other players. Players sitting more distant from the PC screen usually 
participated the least. 

Some subjects said that the PDAs' touch-screens were more difficult to use than 
the mouse interface which is expected since most subjects had never used a PDA 
before, and people were afraid to break the PDA, especially due to the attached 
camera. All participants complained that Mr. Virtuoso should speak louder which is a 
well known problem with PDA speakers. Participants noted that the small screens 
could not be seen by the other players so collaboration was more difficult than with 
the paper version. Mr. Virtuoso was identified as a bottleneck for the game progress 
because other players would have to wait until Mr. Virtuoso had finished describing 
the artwork. People thought the user interface and the graphics in general were very 
appealing although some participants argued that it was difficult to explore the 3D 
artworks on the small screen. As most users had only minimal computer science 
experience, they were very excited due to the high-tech feeling of the PDA game and 
commented that the handheld AR concept was "innovative" and "ingenious". 

Discussion 
Although we tested three different game conditions, there was no difference in the 
educational outcomes. This could be because the learning task was essentially a 
memory task that wasn't dependent on effective collaboration or the ease of use of the 
interface. However, there were significantly different user subjective results as a 
consequence of the different characteristics of each condition.  

One of the most obvious differences between the conditions is in how space was 
used. In both the AR PDA case and the paper interface the art pieces were spread out 
in physical space allowing the four users to work on the game in parallel. This shows 
one of the advantages of AR, namely that it allows virtual content to move from the 
screen and into the real world. In contrast, with the PC interface the users are 
working on a much smaller screen with only a single input device. In this case it was 
impossible for users to manipulate objects at the same time. Thus users felt that both 
the AR PDA interface and the paper version allowed them to collaborate more 
effectively than the PC interface. 

Another key difference between the interfaces was in how much awareness they 
provided of what the others were doing. In the PC and paper versions all of the users 
could see all of the art pieces on the timeline at the same time. When a player moves a 
piece of artwork, everyone is aware of it. In contrast, in the AR PDA application, each 
of the users had a personal view of the virtual content, and unless they shared their 
PDA, they were not aware of which players had picked up which art pieces. One of 



 
Chapter 7 

 
Results and Evaluation 

 
138

 

 

the challenges of designing collaborative AR systems is providing independent views 
of virtual data while at the same time creating shared group awareness. 

Despite the different interface conditions, there was not a significant difference 
in usability. Although the users had never used an AR PDA interface before, in 
general they found it relatively easy to use; as easy as using the mouse-based PC 
interface and manipulating real cardboard pictures. This is unusual for first time users 
of a novel interface, but is due to using an intuitive interface metaphor. In this case a 
magic lens metaphor in which the AR PDA becomes a virtual window on the real 
world. Users are able to view the virtual scene as easily as if they were using a real 
handheld lens. 

Users ranked the PDA interface as the most enjoyable of the three conditions and 
the one that they would most like to see in a museum. The fun factor may be due to 
both the novelty and visually appealing nature of the AR interface. The AR condition 
provided 3D virtual imagery, animation, sound and text.  

From these results we can infer several design guidelines for handheld AR 
interfaces that can inform future applications: 

• Allow the user to experience the virtual content in space. 
• Use an appropriate interface metaphor, such as a lens input metaphor. 
• Seamlessly integrate 3D virtual imagery with animation, 2D images and text to 

create a multi-sensory experience. 

In general, in a face to face collaborative AR interface, key elements of normal 
human face to face must be considered. This includes providing a mechanism for 
sharing user views to establish shared understanding, enabling users to work in 
parallel, and preserving the ability to share verbal and non-verbal face to face 
communication cues. 

 
 

7.3 Museum Augmented Reality Quest at 
Technisches Museum Wien 

Before we created the “Schatzsuche” game at the Landesmuseum Kärnten (see chapter 
7.4) we developed a prototype that was situated in the permanent exhibition 
medien.welten at Technisches Museum Wien (TMW). The theme of this exhibition is 
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the history of media storage and transmission. The exhibition illustrates how different 
media were preserved and transmitted since antiquity. 

Museum Augmented Reality Quest (MARQ) encompasses a selection of exhibits 
and links them into an exciting story. The objective of the game is to solve a quest 
composed of puzzles and other tasks associated with the exhibits. The target groups 
are classes of teenagers at the age of 12 to 16. 

Tasks vary widely depending on the nature of the exhibit and the kind of 
knowledge to be mediated. Interactions with mobile AR applications are 
supplemented by simpler techniques, like displaying classical 2D interfaces on the 
PDA. This allows integrating classical e-learning methods such as multiple choice 
questions, which are more rapidly produced.  

A noteworthy type of mixed reality task is interaction with the instrumented 
hands-on exhibits. These exhibits are tangible interfaces, specifically designed to 
explain certain technologies: For example, the Morse exhibit (see left and middle 
pictures in Figure 7.15) allows a user to input a character using an old-style push 
button, and displays the corresponding letter if one is recognized. These hands-on 
exhibits are computer controlled and can be set to present a certain task or operating 
mode when approached by a MARQ player. In that way, the environment is 
responsible to the player in ways beyond the through-the-lens AR experience. 

A first version of the game focused on three exhibits which have been embedded 
in a small espionage story set in World War II. The exhibits have to be visited by the 
players in a certain sequence to achieve the game objectives. They start from the 
checkpoint, where the quest is introduced and the PDAs are handed out (see left 
image in Figure 7.13). A group of players with one PDA usually consists of two or 
three students. 

The screens of the checkpoint and PDAs show a map of the exhibition, 
highlighting the relevant task locations. The map also indicates the current position of 
the players and lists already solved and remaining tasks. 

7.3.1 MARQ Hotspots 

The first task is a radio direction finder used at wartime to detect and record 
radio messages from mobile transceivers. The operator had to manually turn the 
antenna to home in on the signal and then follow it to record it. A special electronic 
guide was aiding this task by producing characteristic sounds when turning the 
antennas near the exact signal direction. 
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Figure 7.13: Left: Checkpoint, where the quest starts; 

Right: Recording the message at the radio finder 

The radio finder game (see right picture in Figure 7.13) developed for MARQ 
uses an AR application running on a PDA. The PDA has to be physically moved 
around the exhibit to find and hold the exact signal direction. Looking through the 
PDA the players see a virtual compass superimposed onto the lower platform of the 
real exhibit (see left image in Figure 7.14). The PDA also plays sounds indicating the 
deviation from the exact signal direction. The sound depends on the direction and the 
angle of deviation. The interval between beeps gets shorter when the PDA gets closer 
to the signal location. When entering a small angular interval around the exact signal 
direction the characteristic beeps of a Morse message are played, that are easily 
distinguishable form the homing sounds. Once the players have found this window 
the PDA must stay in it until the entire message has been received. A progress bar on 
the PDA shows the percentage of recorded data. 

 
Figure 7.14: In-game screenshots. Left: Radio Finder hotspot; Middle: Morse hotspot; 

Right: Translating the Morse code at the Enigma hotspot. 

The game story explains that the message was sent in Morse code. Thus for the 
next task the players must visit the hands-on exhibit presenting the history of Morse 
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codes. It features a tangible interface - a replica of an old-fashioned telegraph 
pushbutton for typing Morse codes (see left and middle pictures in Figure 7.15).  

The players are asked to translate the Morse code received at the radio direction 
finder into text. For that purpose the Morse exhibit is automatically switched to input 
mode: Every character input via the pushbutton is immediately translated into the 
corresponding letter on the terminal's screen (see middle image in Figure 7.14). 

 
Figure 7.15: Left: Translating the Morse code at the Morse station, an interactive exhibit 

of the museum; Middle: The tangible interface of the Morse station, an old-style push 
button; Right: The virtual show case containing the Enigma 

A Flash application on the PDA shows the previously recorded Morse code. The 
interface also contains a play button replaying the Morse code, and a virtual keyboard 
for entering the translation. The message has to be translated letter by letter. The 
player can listen several times to the sound of the actual Morse code. Once they have 
identified the combination of short and long beeps, one student types them into the 
interactive exhibit with the pushbutton interface and then reads the translated letter 
from the display. The person operating the PDA uses the virtual keyboard to enter the 
letter, and then the next Morse code is presented. This process is intended to 
encourage the collaboration between the players. 

When the players have completed this task, they learn that the translated message 
makes no sense at all but looks like a random gibberish of letters. This is because the 
message was encrypted by the Enigma machine. 

They have to move to the Enigma hands-on exhibit (see right picture in Figure 
7.15) to decrypt the message. The Enigma was used by the Germans during World 
War II to encrypt messages prior to transmission. The exhibit shows a real Enigma 
embedded in a Virtual Showcase [18], a mixed reality display combining real artefacts 
(in this case, a real Enigma machine) with projected imagery through mirror optics 
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Using a trackball interface, the visitors can operate the virtual overlaid Enigma 
without touching the real one. 

When the team arrives at this exhibit the Enigma exhibit switches to free 
decryption mode (normal visitors have to run through a story, where fixed messages 
have to be decrypted). The players first have to set the day key on the Enigma as 
instructed by the PDA. Then they decrypt the message letter by letter. One player 
operates the Enigma while another types in the plaintext into the PDA using a virtual 
keyboard (see right image in Figure 7.14). The two user operation corresponds to the 
way an Enigma was actually operated in the field. 

After solving all assigned tasks or running out of time, the quest game is over and 
the players return to the checkpoint, where the results of their performance are 
displayed. The screen shows where mistakes occurred and the percentage of the 
message that was revealed. 

7.3.2 Integrating of Hands-on Exhibits 

Figure 7.16 shows the integration of hands-on exhibits and embedded terminal PCs 
(“Checkpoint Terminal”) into the MARQ game at the Technisches Museum Wien. 
Flash is used intensive on various parts of the distributed application: On the mobile 
clients it drives the 2D parts of the game (see next chapter), while on the terminal PCs 
it shows the team’s overview map and game state. 

XML Database

Muddleware Client

Proxy

Flash Gateway

Muddleware Client

Flash Controller

Muddleware
Controller

Checkpoint 
Terminal Map

Exhibit Software

Studierstube

Exhibit Controller

Muddleware 
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Task Application
(AR / loadable)

Flash Gateway

Task Application 
(AR / loadable)

PDA [1..n]

Flash Controller

Checkpoint Terminal

Hands-on Exhibit [1..n]

 Task Application
(Flash / loadable)

 Task Application
(Flash / loadable)

 
Figure 7.16: Integration of terminal PCs and hands-on exhibits 

into the MARQ prototype developed for the Technisches Museum Wien 
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On the handhelds it is integrated into Studierstube. It communicates with 
Studierstube using an the “Flash Controller” an ActionScript class that talks to the 
“Flash Gateway”, implemented as an application inside Studierstube, which directly 
executes local commands and forwards the remaining operations to the Muddleware 
server. 

The “Checkpoint Terminals” are PCs integrated into the museum that usually 
run the Museum’s information browser. For the game the terminals were modified to 
run the server as well as another Flash application showing the team’s overview map 
and game state. Again this Flash application uses the Flash Controller and Flash 
Gateway to talk to the Muddleware server. 

Hands-on exhibits are installations that are controlled by PCs and allow users to 
interact with the exhibition items. Other than the terminal PCs, the PCs of the hands-
on exhibits are already prepared to put the exhibits into a special “free” mode. It was 
therefore sufficient to develop a Muddleware client that acts as a bridge between the 
game server and these PCs. 

7.3.3 2D User Interface in MARQ 

Besides the story-driven tasks, MARQ also features a number of multiple choice 
questions related to real exhibits or AR exhibits (see Figure 7.17), which can be 
included in the game, but are mostly unrelated to the espionage story. Multiple choice 
questions are implemented in Flash and consist of three parts, introduction, question 
and evaluation. The multiple choice application is data driven and can be configured 
purely by entering text associated with an exhibit in the XML database. A marker next 
to an exhibit triggers the display of the question once observed by the user's PDA. 

 
Figure 7.17: Left: Radio finder task introduction; Middle: Multiple choice question; 

Right: Overview map showing current position of team members 
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The right picture in Figure 7.17 shows the overview map on the player’s client 
device. Furthermore, users can see which hotspots have already been played by the 
team and which are still available. 

7.3.4 Evaluation 

The evaluation of MARQ consisted of an front-end evaluation, to find out about 
user interests and expectations, and a survey of the acceptance of the game, as well as 
a formative evaluation to test the system and gain feedback for the game design and 
development. 

MARQ was tested by eight groups from different schools (encompassing 19 
persons, aged 12-15) and has been evaluated by carrying out observation studies, 
supplemented by quantitative logging data and analyzing semi-structured interviews 
concerning handling and experience. The result of the survey has been qualitatively 
analyzed and the feedback was used for ongoing improvements in user interface and 
the conceptual formulation of the task descriptions. The changes were made after 
evaluation of group 4. See chapter 9.3.3 for the original questionnaires. 

 
Interview Question Assessment [1..5] 

Experience with PDA 1,29 
Motivation by use of PDA 4,29 

Mark for the game 4,29 
Extend game whole exhibition 4,2 

Table 7.12: Average values of interviews rating from 1 to 5(=best) 

Almost none of the subjects stated to have any experience with a PDA before. 
Only one person had seen and held a PDA once at least in his hands before (see Table 
7.12). Cross-checking with a nominal question (yes/no) about experience with other 
mobile devices showed, that all of them were familiar with mobile telephones and 
some with portable game consoles. 

The duration of the quest game was limited to 15 minutes, beginning from the 
moment the game has started. A single task was limited to 5 minutes absolute. If the 
task was interrupted or cancelled and chosen from another group, only the remaining 
time was available for solving it. The average task duration time (see Table 7.13) 
analyzed from logging data showed, that it was below the 5 minute time limit. 
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Quest Application Average duration Average Score 
Radio Detection Finder 1:44 min 9 of 9 

Morse Telegraph 3:01 min 7 of 9 
Enigma 3:33 min 9 of 9 

All quests 2:44 min - 

Table 7.13: Result of statistical analysis from the logging data 

The game time limit was not exceeded except for the first group, which had 
severe difficulties in navigating the exhibition space without help. However, 
observation left the impression that the total game time was almost too short, because 
of the distances between task locations and the time needed to comprehend the task. 

The interviews revealed that subjects demand having "more PDAs", "more 
action", "longer messages to decode" and "more adventure" in the game. Only in one 
case students were not convinced that the game should be extended to the whole 
exhibition. As their main reason they mentioned the complexity of the tasks, which 
turned out to be caused by insufficient instructions. As a consequence the 
descriptions and the user interface have been improved. 

The first tasks were found to be the most demanding for inexperienced users, 
who had no previous experience with marker tracking and therefore needed a certain 
time for familiarisation. We consider introducing a tutorial task at the beginning, 
which just demonstrates how to use AR interaction with markers. 

The quest which incorporates the Morse exhibit seems to be more difficult to 
solve correctly than the other two. This is emphasized by the high average duration 
time on this exhibit and the least correct answers. Interestingly the Morse quest was 
found to be most enjoyable. The two main reasons given by the subjects were: using 
the tangible interface in combination with the PDA and playing the sounds of real 
Morse signals. 

Qualitative analysis of the survey data assumes that the overall acceptance of the 
game was fairly good, and it was perceived better by male students than female 
students, probably due to their acquaintance with portable game consoles. In contrast 
to the technical affinity of male students, female students left the impression that they 
had faster insight in understanding the task. 

One of the main results of the observation shows that playing the quest must not 
be interrupted by interface complexity. Motivation is high, if the technology and the 
interaction works out fine, but frustration can quickly arise, if the user feels 
uncomfortable or experience malfunctions. 
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7.4 Expedition Schatzsuche  
Based on the Sphinx engine described in detail in Chapter 6, we created a large 
situated game called "Expedition Schatzsuche" (Expedition Treasure Hunt). Although 
it is a direct successor to the quest developed for Technisches Museum Wien 
presented above, it is based on completely redeveloped software designs and game 
concepts, making best use of the lessons that we learned during creation of its 
predecessor. 

The game was developed together with Imagination GmbH and Landesmuseum 
Kärnten and is hosted in the very same museum. For the first version that we 
evaluated, we developed 16 hotspots. All hotspots have been selected and described by 
the pedagogical staff of the museum, who also wrote all the texts and designed the 
tasks the players have to master. At each hotspot a player can experience what the 
exhibited item was used for. The museum staff used the chance to focus on items that 
look especially unspectacular in the showcase, items that are likely to be missed when 
walking through the museum without a guided tour. 

Most hotspots are connected into sequences of events that require them to be 
played in a specific order. At the end of each sequence the player receives a piece of 
the treasure map. Early user tests revealed that especially children do not enjoy 
reading text on the small screen. Consequently we took care that all written texts in 
the game are just a few words long. Instead, there are multiple voice recordings for 
every hotspot, spoken by professional actors. While some of the sequences described 
below might appear unconnected, the well designed story and professional audio 
recordings convincingly link the hotspots together. In the following we describe two 
complete sequences, the photo tasks and the teams’ base camps. The game starts at 
the base stations where the players can deposit map pieces or retrieve special tasks 
such as searching for an answer in the museum or photographing a specific exhibition 
item. 

Due to the nature of the museum, the context of many exhibits is difficult to 
understand without participating in a guided tour. During the design phase the game, 
the museum staff decided explicitly to make use of AR for these exhibits: 

• Placement of the "Stimmbogen" at the "Wiener Horn": The virtual crook is 
positioned at the horn (where it is missing in reality), to illustrate where to 
connect it to adjust the pitch of the horn. 

• Illustration of the heating process of a flat iron: At the tailors' workshop the 
player's attention is attracted to the heating action - without electricity - of a 
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flat iron by putting it into an oven. This principle could be easily missed by 
visitors, because only the wooden grasp remains visible of the plugged flat iron. 

• Playing the "silent piano": Playing a key with no audible sound illustrates the 
mode of operation of this training device. Electrified headphone systems have 
since then replaced the need for dummy pianos. 

• Lifting bellows of an organ: The two flat bellows on the back side of the 
museum's organ are easily missed by visitors and it is difficult to imagine their 
inflated state during operation. Inflation is necessary to blow air into the organ 
which causes the typical sound of the instrument. The aim is to explain the 
working principle: One of the bellows has to always go down blowing air into 
the organ allowing the pianist to play. 

Chain of hotspots: “Brauchtum” 
This sequence about old traditions in Carinthia incorporates three hotspots. The story 
of this sequence is about a wedding and customs related to this topic. At the first 
hotspot (see left picture in Figure 7.18) the player has to look at a traditional belt and 
find initials of a wedding couple on it. If he succeeds he retrieves a flat iron of that 
time. 

 
Figure 7.18: Hotspots of sequence "Brauchtum. Left: the player retrieves the flat iron for 
finding out the initials of the wedding couple; Middle: the player puts the iron into the 

tailors' oven; Right: the player learns about the wedding rider and finishes the sequence. 

The flat iron serves as a hint to go to the old tailor's workroom where he learns 
how a tailor's everyday work life looked like (second image in Figure 7.18). Since the 
tailors are currently missing an iron the player can help out by providing the flat iron 
he just got. Gratefully the tailors reward the player with a wedding suit. In the next 
room the player finds a picture of a wedding rider (right picture in Figure 7.18). The 
handheld device continues with the story, telling that the wedding rider is missing his 
wedding suit without which he cannot invite all the families to the wedding. After the 
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player delivers the wedding suit, the rider thankfully presents a piece of the treasure 
map. 

Chain of hotspots: “Music” 
This sequence contains four hotspots (see Figure 7.19) of which two - the silent piano 
and the organ - are implemented as AR applets. The music sequence starts with a 
silent piano that was used by novice pianists to practice without disturbing others. 
The handheld invites the player to learn a short piece of music. First only one note is 
played by highlighting it on the real keyboard, which the user has then to play too. 
Consecutively more and more keys have to be pressed until the user can play a 
complete short sequence. As a result the player receives a sheet of music. At the 
Mandora (a bass lute) showcase the player is asked to present some notes to hear a 
composition played on the instrument. In return the user receives a "Stimmbogen" 
(crook), which is used to modify the resonance characteristic of a horn. 

 
Figure 7.19: Hotspots of sequence "Music": Left: playing the silent piano; Second: listening 
to the Mandora; Third applying the "Stimmbogen" to the horn; Right: keeping the organ 

playing by pumping up the bellows. 

At the "Wiener Horn" the player learns that the horn can play a large range of 
notes when applying different Stimmbögen. After applying the Stimmbogen the horn 
starts playing a song and the user receives a bellow. The bellow belongs to an organ in 
the very same room. To play the organ a second person always had to keep one of the 
two bellows moving or the music would stop. At this hotspot the player takes over the 
role of this second person in an arcade style mini game: He has to keep the virtual 
bellows blowing or the music will stop. To do this the player has to quickly select one 
bellow and press the “play button” of the Gizmondo continuously as fast as possible 
to pump it up. After providing air pressure for a short piece of music he receives a 
part of the treasure map and thereby finishes the sequence. 

Answering questions using the Photo mode 
Several hotspots require the players to answer questions (see second picture in Figure 
7.20). Alternatively to presenting a list of possible choices, some of these hotspots put 
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the mobile device into photo mode (see third picture in Figure 7.20). To solve the task 
the players have to take pictures of specific items they have to find in the museum. 
The players can take up to three pictures and must then return to the base camp for 
reward. After taking pictures of the correct item, an audio narration explains the story 
of the object. In case of questions concerning music instruments, an original piece of 
music is played as well. 

 
Figure 7.20: Left: Virtual diamonds telling the state of a hotspot (green: free, yellow: in use, 

red: already solved); Second: virtual questions marks use the same color codes as the 
diamonds; Third: Solving a task by taking a picture of the wanted item; Right: map of the 

museum showing all hotspots and their availability. 

The Team’s Base Camp 
These hotspots serve as base camps and meeting points for the expedition teams in 
the museum. The players are told to bring all pieces of the treasure map to this station. 
On a big screen at a central location in the museum (in front of the stairway) the 
progress of the game is shown to the teams. A map displays the current state of the 
hotspots (see right picture in Figure 7.20): Available, currently in-use or already 
solved. After solving the quest and delivering the last piece of the map, the client 
device displays another map that reveals the location of the secret treasure in the 
museum. 

7.4.1 Museum Integration 

We selected the Gizmondo gaming console (see Figure 7.21) as the mobile device for 
our first prototype. The Gizmondo is a Windows CE 4.2 based gaming console with a 
400MHz ARM CPU, 64MB of RAM, GoForce 4500 GPU, a screen size of 320x240 
pixels, Bluetooth and GPS. Via its SD Card slot the Gizmondo's storage capabilities 
can be extended far beyond our requirements. The robust and well known form factor 
of a game console makes the Gizmondo an ideal device for our purposes. 
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Figure 7.21 shows a picture of the mobile client device running the Sphinx client 
engine Since the device itself has been designed for games the large number of 
physical buttons compensates for the lack of a touch screen. On top of the screen the 
name of the currently active hotspot is displayed. Even before a player activates a 
hotspot he can see the hotspots state by a colored diamond (see left picture in Figure 
7.20) rotating on top of the marker: green means that the hotspot is free to play, while 
yellow denotes a hotspot already being played by another member of the team.  

  
Figure 7.21: Client user interface 

Finally a finished and closed hotspot is marked with a red diamond. Since there 
is network connectivity at hotspots this information is always up to date. The state 
and position of all hotspots can also be explored by every player and at any time by 
bringing up the 2D map (see right picture in Figure 7.20) using the home button, the 
left most button in the "button bar" at the top of the device. 

At the bottom of the device's screen a ring menu lets the user browse all tools and 
items he is currently carrying. Each entry of the ring menu is symbolized with a white 
bubble that can hold one item. If the user wants to take a closer look at a scene he can 
activate the lens, or if he wants to switch the device into photo-mode, he can activate 
the camera tool. Early in-house user tests revealed that players wanted to have visual 
feedback when the device detected a marker, which was implemented using a red 
frame around the screen. 

Figure 7.21 shows the mobile device asking the player to identify initials on a 
traditional belt. The question is posed using an audio message accompanied by a 
short on-screen text. All dialog boxes are defined and stored as templates on the client 
device, which allows re-layouting the GUI on-the-fly for different clients devices. To 
show a dialog, the state machine on the server asks the client to load a specific 
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template and then fills the template's items (buttons, text fields and images) with 
content. Furthermore dialogs can be animated by updating the items in a timed 
sequence allowing "PowerPoint"-like presentations, which are typically used to 
introduce the player to the story of a hotspot. 

A wireless network was installed in the museum to support the mobile devices. 
Our mobile devices only have Bluetooth, so we distributed Linux based WiFi base 
stations throughout the museum that can be extended with Bluetooth capabilities. 
These base stations act as bridges relaying incoming Bluetooth signals to the WiFi 
network providing a cost effective solution for an untethered, building-wide 
Bluetooth network (see Figure 7.22). One station can typically serve a Bluetooth cloud 
for two or three rooms, depending on the layout of the rooms and the mounting of 
the Bluetooth emitter. 

We created a graph structure that models the neighborhood of Bluetooth access 
points and allows clients to quickly roam between Bluetooth connections. Since the 
MAC addresses of all Bluetooth stations are known at start-up the lengthy Bluetooth 
device discovery procedure can be skipped and the mobile clients can directly connect 
to new hotspots, which usually takes only a fraction of a second. 

  
Figure 7.22: Museum network structure 

Yet, after first test runs the museum management decided to save costs by not 
outfitting the museum with wireless network, which required extending the Sphinx 
engine to run the already designed state machine graphs on the client devices too (see 
chapter 6.2.2). 

The network topology was therefore redesigned to only include a single 
Bluetooth cloud at a central meeting point in the staircase. A large high-resolution TV 
screen permanently shows the overview map of the game as well as the list of all 
players. Icon show how many map of pieces each player already found. 
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Figure 7.23: Overview map and list of player on the big screen 

at the central meeting point. 

7.4.2 Evaluation 

The field evaluation was conducted as a participant observation and half-structured 
interviews afterwards, with support of the education department of the museum. Two 
runs of six simultaneous players (12 high school pupils, six male and six female, at the 
age of 12 years) have been carried out. Each of the test persons has been given their 
own Gizmondo to play the game. 

While the interaction with the game interface and the comprehension of the 
game tasks posed no problems for the test subjects, the aspects of tracking and 
augmentation were new to them. The mechanism of activating a hotspot by aiming at 
it and pressing a button while the hotspot is being detected by the tracking system was 
intuitively accepted by the users.  

Observation and analysis of video recordings showed that the users understood 
and used the visual feedback of the red frame that appears on the screen when the 
tracking subsystem detects a marker. 

In the interviews the users rated playing the AR mini-games as more difficult 
than the conventional tasks, which is backed up by our observations. Players stated 
that they had no problem with playing the "silent piano" after finding out 'how to' and 
'what to do'. The time critical task of operating the organ's bellows on the other hand 
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demanded their full attention. Consequently some players stopped aiming the camera 
at a marker while playing (which had no negative effect except for incorrect 
augmentation). To improve this, the users should be given more time for getting 
acquainted to AR interaction. 

Following, we summarize our key observations of the test run. 
 

What went right: 

• AR animations were experienced as exciting and interesting: "the station with 
the flat iron was cool" 

• The mechanism of tracking was easy to understand: "that was quick to 
comprehend" and "has been all illustrated" 

• Collaboration and cooperative use of the client device: Three of the users were 
sharing two devices, after one device crashed due to hardware problems. 

• The on-device overview map was used extensively for localization of the 
hotspots: "look we are here - we have to go there". 

• The players spontaneously formed groups playing together as well as split up 
and played individually. 

• The users rated playing is highly motivating: "Not only answering questions, 
but also playing … like the piano and the organ." and "to learn and to play [at 
the same time]" 

• Playing the game was perceived as fun and learning at the same time: 
"…although one is learning" and "I haven't known that the music instruments 
are so old." (referring to the oldest conserved Mandora in the world). 

• Solving questions by taking pictures of the answers has been perceived as 
intuitively and easy to handle. When the players found the right answers, audio 
explanations are given. 

• Although the first hotspot of a sequence was not specially marked and 
therefore took some time to figure out, the test persons stated the concept of 
solving one station to make the next station playable as very motivating: "the 
combination 'thing' was very good" and "… that you have to move around and 
search … like a detective"  

What went wrong: 

• Augmentations were intuitively comprehended, but players had sometimes 
difficulties with aiming the camera at markers, especially when distracted by 
interactions. 
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• When players formed groups they often operated all client devices 
simultaneously, which resulted in playing multiple audios at the same time. 
Especially voices were hard to understand in such a case. 

• One device failed due to problems with a slow memory card containing the 
client-side game content. One of the groups had to restart their game several 
times until we removed the device from the game. 

• The extremely strong walls of the ancient museum building requires a lot more 
WiFi access points than anticipated and resulted in changes of the overall game 
play (see chapter 7.4.1). 

• Showcases that are situated opposite to windows can suffer from strong 
reflections. While the human brain can easily compensate this effect, the 
tracking quality can be reduced considerably. 

7.4.3 Lessons learned 

Using the ARToolKitPlus markers for tracking is a non-trivial task in a museum. 
Placement of markers is restricted, since they cannot be directly attached to historical 
artifacts, yet need to be of reasonable size and in view of the camera. Understandably, 
the museum staff would like to place markers in a way so that they are not noted by 
the visitor, which is in contrast though to the technical requirements of marker 
tracking. 

More tracking problems are caused by the dim light. Many exhibits are very old 
and may only be presented under severely restricted lighting conditions. Some 
interesting areas in the exhibition could not be integrated due to improper 
illumination or the inability of proper market placement. 

The fact that typically only teachers will be available for supervision puts 
extraordinary requirements on the robustness and ease of use of the client devices. 
We aimed at making the user interface as intuitive as possible, and provide detailed 
task descriptions at any time. Still it turned out that some tasks need to be explained 
in more detail to be fully understood - especially those that go beyond the usual 
interaction mechanisms, notably the AR applets. 

The task of keeping track of markers with the video camera works well while 
consuming AR enriched animations, but turned out being too difficult for some users 
while playing fast-paced AR games. It is therefore essential to integrate better tracking 
technologies. A preferred solution would natural feature tracking, which sounds 
reasonable, considering that in a museum application typically only small and well 
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know areas with constant lighting conditions around exhibition items need to be dealt 
with. 

7.5 Signpost 
There is a long history of the Signpost applications in the group around Prof. Dieter 
Schmalstieg. The idea of the Signpost application is to guide a user through an 
unfamiliar building: The user selects a target location and the system shows the way 
until the user reaches this destination. 

The first incarnation was created as an undergraduate project by Michael 
Kalkusch et. al [56] in 2002 (see left and middle image in Figure 7.24). The project 
mainly focused on wide area tracking using the ARToolKit library [57] and required 
distributing dozens of markers on the walls. Using the application, a member of the 
faculty would be guided to the institute's library and directed to a previously selected 
book. Naturally, a back-pack setup is not a practical means for selecting a book from a 
library. Yet, the project set a milestone in wide area, low-cost indoor tracking. 

The concept was later improved by Gerhard Reitmayr [87] who extended the 
system to work outdoors. In this application tourists equipped with a back-pack AR 
system are guided through a city. When they approach an object of interest, the 
system augments spatially registered graphical information onto the view of the user. 
Targeting outdoor usage, Reitmayr extended the tracking system with GPS and 
inertial tracking. 

 
Figure 7.24: Signpost on the PC. Left and middle: Signpost 2002 for indoor tracking; 

Right: The World In Miniature (WIM) interface. 
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In 2003 Michael Knapp improved the indoor application with his work on 
Signpost II, which introduced the BAUML (Building AUgmentation Markup 
Language) XML dialect for creating, storing and retrieving building data. The WIM 
(World in Miniature Model, see right image in Figure 7.24), allows a  user to get a 
better overview of his current location. A marker-allocator application systematically 
targeted the problem of repeating the limited number of markers in a large area. 

From 2005 on Schall worked on self-surveying [91] in order to reduce the 
deployment times for Signpost-like systems in large buildings. The software 
developed in this project imports measurement data from a Leica Total Station, a tool 
commonly used for high precision indoor and outdoor 3D measurements. Based on 
the multiple sets of measured data, a graph of inter-relationships is created, optimized 
for minimal error and finally converted into a BAUML representation. 

The author of this thesis contributed to this series of applications with the 
development of Signpost 2003 and Signpost 2007. Although the 2007 version is the 
successor to the Signpost 2003 application, the original application had several 
features that were not reimplemented in the new version. Both applications mark the 
very first and the last developments performed during this thesis. It is therefore of 
interest to first introduce the original application before presenting its successor. 

7.5.1 Signpost 2003 

Development of Signpost 2003 started in end of 2002 with the beginning of the 
handheld AR project. Due to the early stage of the handheld AR project and our 
minimal experience with PDAs at that time no high quality content was available. 
Signpost 2003 used a custom renderer, which later evolved into the Klimt library (see 
chapter 4.1.3) and displayed most 3D graphics in wireframe (see Figure 7.25). 

The complete application, including user interface was optimized to use 
permanent tracking due to the vast amount of markers deployed at the institute at the 
Vienna University of Technology. While such a setup is unrealistic for practical 
applications and led to significant design changes for the 2007 version, it was easily 
justified for an early research proof-of-concept demonstration. 

Signpost 2003 acts as a guide that routes a visitor through an unfamiliar building. 
At startup the user selects a target room. The application uses a cell and portal system 
to guide the user room by room to the target location. A 3D arrow shows the user the 
direction to go: It points to the next door to take (see left image in Figure 7.25) and 
thereby guides the user from room to room to the final destination. Since the 
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complete building was available as mesh, the 3D model served as overview map as 
well (see right image in Figure 7.25). 

Unlike its PC-based variant, the PDA-based Signpost 2003 could not rely on 
Studierstube, Coin3D and OpenGL. The PC version uses preprocessing to convert the 
XML document that encodes the measured building via an XSLT processor into an 
OpenInventor scene-graph. The PDA version instead imports all data directly from 
the XML file, building a 3D mesh optimized for the custom software renderer on the 
fly. 

 
Figure 7.25: Signpost 2003. 

Left: Wireframe overlay of building data; Right: Overview map 

The application creates a search graph from the portals and cells inside the XML. 
At every frame the system selects the cell the user is currently in and calculates the 
shortest path to the target. Knowing the portals (doors) that connect the cells, the 
arrow can guide the user to the door that leads to the next room. 

7.5.2 Signpost 2007 

Although both the 2003 and the 2007 version of Signpost serve the same general 
purpose, the design of the 2007 version is completely different. The 2007 version was 
created from ground up to work in coarsely instrumented and sparsely tracked 
environment. For the 2003 version an accurate 3D model of the building plus markers 
at every 2 meters on the walls were available. Signpost 2007 instead targets 
deployment at conferences, where such infrastructure requirements are unfeasible. 

Signpost 2007 uses bitmap maps of buildings, because accurate 3D models of 
conference locations usually do not exist or are not available. Another important 
aspect to transform the original version into a practical application was reducing the 
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amount of markers required to run the application. The original version made use of 
about 200 markers deployed in an area of 20 by 30 meters, while conference 
organizers would typically install about 40-50 markers for an area about two orders of 
magnitude larger (see Figure 7.26). We therefore redesigned the application’s 
workflow to only sporadically require markers for operation. While 3D building data 
can not be meaningfully overlaid anymore in such a case, it is sufficient for displaying 
detailed 2D maps. 

 
Figure 7.26: Marker placement for Signpost 2007 at the 

MEDC 2007 conference in an area of roughly 100x200 meters. 
Red dots mark locations of posters with instructions and markers. 

Using 2D map tracking only further reduces requirements on accurate marker 
placement accuracy. While the markers for the Signpost 2003 application were 
measured at millimeter accuracy for precise overlays, the 2007 version requires only 
coarse marker placement: Markers can be stuck onto posters stands that are deployed 
quickly on-site. While deploying markers and creating 3D models at the Graz and 
Vienna universities took months, setting up the markers for Signpost 2007 at a 
conference site usually takes just one or two hours. Signpost can update marker pose 
data via an on-site wireless network to allow changing positions and orientations 
during the event, which turned out to be a very welcomed feature. 

Hence, Signpost 2007 is centered about operating map positions rather than 3D 
overlays. From a research point of view this meant a step back from the previous 
version, creating a less AR intensive application. From a usability point of view these 
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changes transformed a mostly unusable research prototype into a practical and highly 
successful tool for conference attendees that is easy to deploy and manage. 

The most distinguishing new feature in the 2007 version is special support for 
data browsing. Targeted as a conference guide, Signpost 2007 includes a complete 
schedule that can be browsed using various filters such as per day, per session or full 
text indexing. Like the marker positions, the schedule can be updated via WiFi to 
reflect latest changes of the event’s schedule. Users can freely navigate maps (see 
Figure 7.27) by panning, rotating and zooming in a UI style similar to regular 
navigation systems such as TomTom36 or Navigon37. 

To operate the map manually (without tracking) the user has to first select 
between the different naviation modes (panning, rotating and zooming) and can then 
use the cursor cross or stylus to modify the view onto the map. Furthermore the user 
can switch between maps, which is necessary for multi-level buildings or events with 
multiple non-connected sites. 

 
Figure 7.27: Navigating a conference map. Left and middle: Using the 
cursor cross (joystick) to pan a map Right: Currently tracked position 

2D User Interface 
The numerous features and the focus on 2D interaction required designing a suitable 
2D user interface. While this poses no problem on devices with touch screens, the 
project also targeted smartphones with button only interfaces. 

Most users today are highly familiar in operating devices with touch screens style 
user interfaces. Many ATM or point of sales machines today use touch screens, and 
the general UI method is very similar to that of using a desktop mouse. Creating user 
interfaces for devices that are operated with buttons only is quite hard by comparison. 
Instead of just drawing a button on the screen and letting the user touch it, the UI has 
to make clear which virtual button on the screen  relates to which physical buttons on 
the device. Devices that are designed for a single purpose can take advantage of this 
                                                 
36 http://www.tomtom.com 
37 http://www.navigon.com 
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fact by introducing special purpose buttons.  For example, players know which 
buttons to press on mobile game consoles since the button layout follows well known 
conventions. Similarly, users know very well how to operate a phone for the purpose 
of calling other people. Applications, which are unusual for a specific device class 
though, cannot take advantage of this method. 

The Signpost 2007 application targets an open range of Windows Mobile 
smartphones with and without touch screens. Although all these devices are 
optimized for using them as mobile phones or personal information managers (PIMs) 
their physical design varies significantly. Most mobile phones today include many 
special purpose buttons such as camera buttons, scroll wheels and applications 
launchers. Yet, most of these special purpose buttons are not standardized. Due to the 
very different button layouts and mapping of various mobile phones only few buttons 
can actually be used on an application that targets unknown and untested devices. 

Signpost 2007 therefore only uses the cursor cross, the two screen buttons, the 
zero to nine button and character keys in case text input is required (such as for text 
search boxes). Although Signpost is a fully graphical, skinned application it tries to 
duplicate the standard Windows Mobile GUI elements to give the user a familiar 
feeling. Hence, it shows the mappings of the two screen buttons on a bar on the 
bottom of the screen (see Figure 7.29). These buttons are always mapped in a way that 
the left button cancels or exits an operation, while the right button confirms a 
selection. 

 
Figure 7.28: Three different resolutions supported in Signpost 2007. 

Left: 320x240, Middle: 240x320; Right: 240x240 

All buttons on the screen can be pressed with the stylus on touch screen enabled 
devices. On devices without touch screen support the on-screen buttons are mapped 
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to physical buttons and keys. Text or symbols on the buttons serve as hint, which 
physical button to press: Filtering selection is done using the keys from 0-9, which 
assures that even devices that have no touch screen and only a T9 keypad can operate 
these functions. The user can then switch between sessions using the left and right 
directions of the cursor cross. Similarly iterating through talks is done by pressing up 
and down. On the bottom bar, two screen areas are mapped to the physical screen-
buttons which are always placed near the bottom left and right corners of the screen. 

When deploying mobile phone software to a large number of devices support for 
different hardware specifications becomes a major issue. While 3D applications can 
usually easily adapt to different screen resolutions, 2D graphical user interfaces 
require more work. Figure 7.28 shows the three different resolutions that are 
currently supported in Signpost 2007. For each resolution we specifically created a 
complete application layout that is specified via an XML file. At start up the 
application automatically detects which layout to use. 

Manually providing layouts for specific resolutions achieves optimal results for 
those resolutions that are supported, but creates scalability problems to the amount of 
different devices that can be supported. Currently about ten different screen sizes 
ranging from 176x220 to 800x480 are in use, where the highest resolution can display 
ten times as much data as the smallest one. More screen sizes are sure to come. The 
most promising option in such a case is probably automatic layouting, which we also 
plan for the next version of Signpost 2007. 

Application Features 
Figure 7.29 shows the “Schedule” screen of Signpost 2007 that allows a user to select 
from a large number of items. Obviously the amount of data is too large to iterate to 
the list item by item. Filtering allows creating a more effective selection, but it 
complicates the user interface. 

 
Figure 7.29: Schedule screen of the Signpost 2007 application. Left: Filtering by day; 

Middle: No filtering; Right: Filtering using full text indexing. 
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For large conferences with lots of presentations even the aforementioned two-
step filtering via days and sessions can be too difficult since attendees often don’t 
know which session a talk is held in. In Signpost, pressing the ‘0’-button activates the 
full text filter that shows only those entries that contain the specified string (see right 
picture in Figure 7.29). 

 
Figure 7.30: Navigating maps in Signpost 2007. 

Left: selecting an action with the in-place menu; Middle: Switching maps; 
Right: View finder while no marker is visible in tracking mode. 

Navigating a 2D map is a common UI concept for mobile navigation systems. 
These devices usually rely on touch screens or special purpose buttons. Signpost 2007 
demands more operations that the typical zoom, pan and rotate map as well as switch 
between maps (see left image in Figure 7.30). 

Tracking of fiducial markers only works, when markers are visible in the view of 
the camera. Aiming at markers with the mobile device’s camera is easy as long the 
camera’s image is visible on the screen, such as the video background in video see-
through AR setups. While Signpost 2007 does include a “regular” AR mode, users 
mostly operate it in the “tracked map mode” that shows a correctly panned and 
rotated map, but no video background (see right image in Figure 7.27). We therefore 
automatically blend in the camera image (see right image in Figure 7.30) as a view 
finder, when the camera looses sight of markers to support the user in finding a 
marker again. To keep the user interface consistent the view finder image is smoothly 
faded in and out instead of just popping up. 

While the first version of Signpost 2007 allowed only a single map, with the 
introduction of support for multi-level buildings the problem arose of how to make 
people aware of their current location within the building. Showing their 2D location 
on the map was not enough anymore. We therefore added 3D building models that 
are simple enough to be quickly created, yet sufficient to show the user’s current 
location in a building. 
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Other than in the 2003 version, these 3D models are not meant to be accurately 
overlaid on the real environment, yet in tracked mode the building model is correctly 
rotated help the user find her target location. The left image in Figure 7.31 shows a 
screenshot of the tracked 3D building. On this screen the user is informed about her 
current location and the target location, which other than in 2D map mode can span 
multiple building levels. The currently active map is highlighted. 

 
Figure 7.31: Left: Tracked 3D building; Middle: AR objects (Easter eggs) in 

Signpost 2007; Right: Configuration screen to solve camera driver bugs 

To go beyond a pure data browsing and mapping application we also added a 
small AR treasure hunt game that can be used for marketing. Each marker holds an 
arbitrary virtual object (“Easter egg”, see middle image in Figure 7.31). To find these 
items, the user has to switch into the game mode of the application which brings up 
the video background in full screen. Whenever the user points the device to a marker 
it shows the attached Easter egg. After the user collected all different objects, he can 
register to win a price. 

The Signpost 2007 application targets any Windows Mobile 2005 or later devices. 
Unfortunately, typical problems with these devices include camera drivers bugs. 
Devices tend to report wrong video modes or return camera images in wrong 
orientations. To overcome this issue, we added a camera setup tool to Signpost 2007 
that allows the user to override the camera’s reported settings in order to adapt the 
application to driver bugs (see right picture in Figure 7.31). 

7.5.3 Evaluation Results 

We performed an evaluation on Signpost 2007 at the MEDC 2007 conference. 
Although about 150 attendees tried the application, only 34 participated in the 
evaluation. The reason for this is that we required the users to find all Easter eggs, 
which – in the first version of the application – turned out to be a too demanding task 
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in terms of time required finishing the game. For later versions we changed the game 
mode to not require visiting all markers. 

Participants were mostly native English speakers. The vast majority was male and 
no subject had seen the application before. All participants of the study answered the 
following nine questions (see Chapter 9.3.4 for the original questionnaire) by marking 
on a Likert scale from 1 (I strongly disagree) to 7 (I strongly agree): 

 

• Q1: Signpost was easy to use 
• Q2: Signpost was more useful than a conventional map 
• Q3: Those black-and-white markers disturbed me 
• Q4: I'd like to see the other users' positions on my device too 
• Q5: I think Signpost2007 can be used by novice PDA or Smartphone users 
• Q6: I was able to quickly access and understand the information (schedule and 

map) I searched for 
• Q7: I enjoyed using Signpost2007 
• Q8: Signpost2007 improved my location awareness 
• Q9: Signpost2007 should be used on other events too 

As can be seen in Figure 7.32, all answers were very consistent with only minimal 
standard deviation. 
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Figure 7.32: Results of the questions Q1 to Q9 of Signpost 2007 evaluation at MEDC 2007 

Attendees found Signpost consistently easy to use (Q1) and more useful than the 
conventional conference map (Q2) that was part of the printed conference guide. 
Since MEDC is a conference targeting expert users and developers we specifically 
asked for their opinion about suitability to novice users. Even though we received 
reports that Signpost does not follow the standard UI conventions enough, attendees 
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rated it suitable for novice users (Q5). Most users were able to quickly access the 
information presented on their device (Q6) and experienced improved location 
awareness (Q8). 

Users consistently enjoyed the application (Q7) giving it an average score of 6.6 
out of 7. Furthermore the attendees strongly believed that Signpost should be used at 
other conferences too (Q9) giving a score of 6.5 out of 7 for this question. 

In Question Q4, which asked about seeing other users on their screen created we 
noticed the highest diversity among the answers. It was also only question that 
received answers from both extremes “I strongly agree” to “I strongly disagree”. 
Talking to users confirmed our expected concerns about privacy issues that many 
users have with such a feature. 

Using fiducial markers in natural environments outside research labs always 
raises concern for acceptance of the introduced visual clutter. Yet, most attendees did 
not complain (Q3) about the deployed ARToolKitPlus markers giving it a score of 
only 1.7 at a range from 1 to 7, thereby disagreeing to the statements that they felt 
disturbed by the markers. A probable reason this is that conference areas are generally 
visually polluted with posters and projection screens, making the fiducial markers less 
eye-catching than in other environments. 

From the results above we can conclude that Signpost 2007 is highly accepted – 
at least by technology savvy audiences. Most of the problems we experienced at the 
MEDC conference could be solved for the later TechEd conference, though some new 
issues were introduced with those changes. At MEDC it turned out that marker 
locations as well as the event’s schedule could not be fixed before conference start. We 
therefore created new distributions on a daily basis, which allowed new users to work 
with the latest settings, but users that previously downloaded Signpost did usually not 
update. Fortunately, only minor changes aroused. This issue was solved for the 
TechEd event making Signpost able to download updates instead of requiring 
updating the whole application. 

For the TechEd conference we added many new features such as multiple map 
support, full text search, downloading updates and configuring the built-in camera, 
which created a rather complex user interface cluttered with features and introduced 
problems to new users. We therefore plan to redesign the complete user interface and 
make it more standard conform as well. Due to the enormous success of the Signpost 
application at the MEDC and TechEd conferences, Microsoft asked for deployment 
on a number of more conferences. 

The example of the Signpost 2007 application shows that AR technology can be 
used effectively for ubiquitous non-AR applications. The system can be easily adapted 
to new environments, requiring only a map of the target site for preparation. 
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Tracking based on computer vision further reduces the costs since it only requires 
placing a few posters with marker at the site. It is therefore preferable over alternative 
tracking methods such as infrared or Bluetooth beacons, which require active devices 
and give less precise localization. Furthermore allowing users to experience the 
application on their own mobile phones improves acceptance from the attendees and 
at the same time reduces costs for client devices to zero. 

7.6 Discussion 
The applications presented in this chapter demonstrate the practical usability and 
deployability of phone-based Augmented Reality applications. While first prototypes 
such as Signpost2003 and the Invisible Train were created mostly for demonstration 
purposes and have been shown only inside our labs or at research conferences, later 
developments such as Signpost2007 and MARQ are practical applications that have 
been deployed into “real” target environments and used by many inexperienced users 
including children. 

The evaluations described in this chapter show that Augmented Reality on 
phones is well accepted and allows creating user interfaces that are easy to understand 
and navigate. A more focused discussion on the importance of these results on the 
hypothesis (especially hypothesis H3) as stated in chapter 1.3 is postponed to the next 
chapter. 
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Chapter 8  

Conclusions and Guidelines 
In this chapter we analyze how the hypothesis stated in the introduction chapter 
was fulfilled. We discuss how each requirement was met; give guidelines on 
creating handheld AR applications and finish with an outlook to future work. 

In the previous chapters solutions developed in the handheld AR project were 
presented that resulted in a fully working and practical framework for Augmented 
Reality applications on mobile phones. While it is unique in being the only complete 
AR solution for mobile phones today, it also goes beyond many other AR frameworks 
currently available in terms of supported features. Applications based on the 
presented framework have been used by thousands of users. While first creations such 
as the Invisible Train required providing specific hardware units for demonstration 
purposes, the latest applications were used by hundreds of users on their own devices. 
Following, we discuss how each statement of the hypothesis in chapter 1.3 was met: 

 
Hypothesis H1 Augmented Reality on phones can work as well as on personal 
computers, despite the fact that phones are less powerful, have smaller screens and 
inferior input capabilities: 

The solutions presented in the chapters 3-6 resulted in a framework that allows 
the rapid creation of practical AR application on mobile phones. Processing 
capabilities of mobile phones are an order of magnitude or two lower than on PCs. 
Yet, benchmarks presented in this thesis demonstrate that performance and features 
similar to that of average PC-based AR setups can be achieved. Typical frame rates are 
in the range of 10-20Hz, which is below the cinematic standard of 24 Hz, but 
empirically sufficient for interactive applications, especially on small screens. 

The small screen size and reduced input capabilities of mobile phones raise 
concerns for their suitability for applications that go beyond typical PIM (personal 
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information management) tools such as calendar and contact management. Yet, 
despite these restrictions, the feedback on the applications and evaluations presented 
in chapter 7 shows that practical AR applications and games can be created. 

Most classic game concepts can not be effectively transported to the mobile 
phone platform due to its tiny screen size and bad input capabilities. Hence, despite 
the enormous amount of deployed client units, a large and profitable game market 
has not developed yet for this platform. In contrast, AR offers a “point and shoot” 
style interaction, thus using the phone and its position in space as an input capability. 
It thereby overcomes the limitations of T9 and similar input concepts. By using the 
Magic Lens metaphor, the phone’s screen is virtually extended and can easily be 
navigated. 

 
Hypothesis H2 Using phone based AR, larger mobile Augmented Reality systems than 
previously shown can be built at reasonable costs: 

The extremely low cost per unit of AR on mobile phones (especially if pre-owned 
by the user) is a unique selling point. While any application or game presented in this 
thesis could be created using traditional hardware such as Tablet PCs or backpack 
setups, their prohibitive costs, increased weights, etc. prevented the development of 
any mobile AR system with more than three users so far. 

Furthermore, when selecting the user’s private mobile phone as target device, the 
per-unit costs go down to zero as demonstrated with the Signpost 2007 application: 
The costs for the event organizer were restricted to providing a few files for download 
on a web server. This allowed hundreds of concurrent users to experience the AR 
conference guide, which is about two orders of magnitude beyond any other AR 
application deployed so far. 

 
Hypothesis H3 The phone’s form factor is more suitable for untrained users than 
HMD-based setups: 

Backpack setups with HMDs have the advantage of providing high processing 
power and immersion. While HMDs have clear advantages in application areas that 
require stereoscopic augmentations or hands-free interaction, they did not succeed in 
mass markets. The high costs HMDs themselves prevent a commercial success in a 
mass market, but is only one factor that reduces their suitability for untrained, private 
users. The aim of HMD producers to reduce the HMDs’ weight, while still keeping 
the costs at a reasonable level resulted in highly fragile devices that easily break, even 
when handled carefully by expert users. Before usage, an HMD needs to be put on 
and calibrated at least coarsely by the user, which are both complex tasks and 
therefore difficult for inexperienced users. 
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In contrast to HMDs, most people today know very well how to operate a mobile 
phone. The usage of phones as Magic Lenses is highly intuitive, requires no 
calibration and is easily understood even by small children as our experiences show. 
We therefore conclude that despite the higher potential of HMDs in certain (expert-) 
domains, phones are more suitable AR devices for untrained users. Consequently 
HMD- and phone-based systems are rather complementary than competitive. 

 
We now summarize how the system developed in this thesis fulfills the 

requirements on a practical AR setup as stated in chapter 1.5: 

• Low cost: The Signpost 2007 application was used by hundreds of conferences 
attendees on their own mobile devices. Users were able to install the 
applications on their Windows Mobile phones reducing the costs for 
conference organizers to hosting a few files for download on already deployed 
the intranet web server. 

• Robust and fool-proof: In the last year of this thesis we developed several 
demo applications that were sent out by email to users. Untrained users were 
able to install, understand and use the applications on their own in natural 
unsupervised conditions. 

• Self contained operation and networking support: The way how an 
application uses the networking and communication capabilities strongly 
depends on the actual application. Based on Studierstube ES we developed 
applications that run fully self-contained and require no networking at all 
(such as Signpost2007 or various small demos), applications that sporadically 
use networking (such as the MARQ treasure hunt game) as well as applications 
that require networking at all time (e.g. the Invisible Train or Virtuoso games). 

• Tracking support: As outlined in Chapter 3, tracking with fiducial markers 
performs well in various lighting conditions even on low-end smartphones. 

• Rapid prototyping: All applications presented in this thesis were developed 
with only one or two developers and graphics artists, which is a minimal staff 
compared to typical commercial productions. Details on how applications can 
be developed with Studierstube ES are given in Chapter 9. 

• Content creation: The Schatzsuche and Virtuoso games are both heavy on 
content and benefited a lot from a clear content creation pipeline that supports 
direct import of well known and supported multimedia file formats. 

We therefore conclude that handheld Augmented Reality is suitable for mass 
market audiences. The increasing interest we receive from commercial entities such as 
from industry or marketing companies in AR on mobile phones supports this claim. 
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Developing for mobile devices such as cell phones is fundamentally different 
from creating applications for desktop computers. For good reasons creators of 
operating systems for these platforms publish style guides on how to design, develop 
and deploy applications for these devices. Yet, these documents usually cover only 
aspects common for typical mobile phone applications such as organizers or date 
books. 

The following chapter summarizes the experiences gathered in the last five years 
in the handheld AR project. These guidelines are grouped into two areas: the chapter 
on applicability lists typical pitfalls that researchers are confronted with when creating 
commercial handheld Augmented Reality applications. The guidelines on 
performance offer advice how to make optimal use of those target devices that are 
always short on resources. 

8.1 Guidelines on Applicability 
There is a strong difference between research prototypes and practical applications 
with commercial grade quality. Often it is not possible to transform a prototype into a 
practically deployable application. Even if it is, it usually takes longer than creating 
the prototype itself. While it is enough for a research prototype to just run “somehow” 
on the target device, applications for end users must run always and be intuitive to use 
and behave “nicely”, which are requirements that researchers are not are used to. In 
the following we list our experiences, partially learned the way in creating commercial 
grade AR applications for end users: 

• Deployment: Developers have to provide fool-proof methods for distributing 
and installing an application. This usually includes writing multiple installers 
including those that can run directly on the mobile device and those that can 
be run from a desktop computer. 

• Resources: Mobile phones and PDAs are always scarce on resources. Users will 
not tolerate applications that use up most of their file space or take long to start 
up. 

• Supporting different devices: Support for a practical range of target devices is 
probably the most critical issue for any mobile phone software developer. 
While typical PIM (personal information manager) applications can easily 
adapt to various devices, application that require low level OS and hardware 
access quickly run into problems such as driver bugs or unexpected hardware 
platforms (such as screen and camera image layouts). In personal discussions 
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mobile game developers reported managing more than hundred build targets. 
One can find roughly ten different screen resolutions on today’s mobile phones 
– writing an application that supports screen resolutions of 160x120 as well as 
480x640 pixels is therefore a non-trivial task. CPU power can vary in the range 
of an order of magnitude too.  
Accurate pose tracking requires calibrating for specific camera types. 
Unfortunately, device series and brands can often not be reliably detected in 
practice, which prevents automatic usage of calibration files for known devices. 

• Sticking to UI conventions: While it is tantalizing to create unique user 
interfaces that are optimal for the specific applications, it is more important to 
stick to the user interface conventions of the target device. As learned the hard 
way during development and deployment of the Signpost 2007 application, 
users prefer well known UI concepts over more optimized, but not standard 
conform alternatives. 

• Behaving nicely: Applications must behave nicely, which includes not taking 
over full control of the target device and reacting to device specific events. E.g. 
users will not tolerate missing phone calls, due to an application that did not 
pass through notification messages. Some devices have special features such as 
automatically rotating screen content when a keyboard is slides out. Naturally 
users expect applications to follow this behavior – even if it is of low usage for 
the actual application. 

• Driver issues: Today, AR applications are still untypical for mobile phones, 
which includes that these applications use the hardware differently than most 
other applications do. A major problem often involves accessing the built-in 
camera. While these cameras often have compelling specs, the built-in 
applications are usually they only ones actually using the camera. 
Unfortunately this means that drivers are often buggy and device creators use 
proprietary methods to take full advantage of the camera. Therefore, in 
practice many devices do not deliver the full potential or behave erroneously 
when using the standard APIs. 

• Considering non-optimal environments: Researchers usually know very well 
under which circumstances AR software runs fine and where it performs poor. 
In contrast, end users will run applications in unpredictable situations and still 
expect it to function as promised. 

• Developing on the PC, final testing on the device: Debugging on embedded 
devices is cumbersome and on some platforms such as Symbian not possible 
without expensive tools. Doing as much work as possible on the PC should be 
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preferred since it results in faster development cycles and often even cleaner 
code due to the increased portability requirements. 

8.2 Guidelines on Performance 
Despite the many advantages mobile phones offer as a platform for mobile 
Augmented Reality, the poor processing capabilities demand special care during 
application development. From our experience of developing multiple applications 
for broad range of mobile devices we arrived at the following set of guidelines of how 
to achieve optimal performance: 

• Sequential vs. parallel: Even though ARM CPUs usually do not have parallel 
execution units, many operations such as reading the camera or network 
communication can be successfully accelerated using multi-threading because 
they are I/O rather than CPU bound.  

• Camera resolution: Some high-end phones can deliver video streams at 
resolutions up to 640x480 pixels. In practice these videos are limited in camera 
quality. Unlike high quality PC cameras, there is only a minimal improvement 
in tracking quality. The reasons for this are the low quality lenses and camera 
sensors with high noise levels. 

• Multi-marker tracking: Using high quality cameras on PCs allows stable single 
marker tracking. Larger markers can sometimes compensate for the lower 
image quality of mobile phone cameras, but user interface designs often 
prevent this. Multi-marker tracking provides highly stable tracking - at the 
expense of higher computational costs though. 

• Id-based markers: With a growing number of markers known to the tracking 
system, the process of template matching can seriously degrade overall 
performance. Id-based markers do not share this weakness and are always 
faster to detect than template markers. 

• Camera pixel formats: While on the PC applications tend to read camera 
frame in convenient standard formats, such as RGB, this is not the case on 
mobile phones, which often expose lower quality and stronger compressed 
format. Some of these formats, such as YUV12 store the luminance values 
image data in a separate block, which is ideal for vision based tracking. 

• Compilers: As shown in chapter 3.4 some compilers can increase tracking 
speed in certain situations. In older versions of ARToolKitPlus which 
contained more floating point code we noticed speedups up to 70%. 
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Unfortunately these compilers are often expensive and generated code, which 
only works on specific CPUs. Furthermore we also noticed slowdowns, such as 
when compiling Klimt with the Intel compiler. 

8.3 Future Work 
While the current Augmented Reality framework supports the creation of practical 
AR setups, the resulting applications are usually still far from perfect. A major topic 
for future research will be tracking. Although robust tracking on mobile phones is 
possible today, the necessity for fiducial markers hinders deployment to an even 
broader range of applications. 

In many environments attaching markers is not an option. This includes large 
areas, such as for city-wide games and applications as well as environments where 
attaching markers is not allowed or impractical. 

Therefore, a next major step will be moving from marker tracking to natural 
feature tracking. Other than marker tracking, natural feature tracking is still a hot 
topic even on high performance platforms. The low processing capabilities of mobile 
phones therefore provide hard preconditions for this task. While we do not expect 
mobile phone CPUs to improve a lot in the next years, other processing units are 
currently being integrated into these devices, such as signal processors (DSPs), 
graphics processing units (GPUs) and multi-media units.  

Due to the strong request for graphical applications and games on phones, the 
usage of GPUs for general purpose processing seems to be a promising approach. The 
current generation of GPUs with its fixed function pipelines (OpenGL ES 1.x) is only 
suitable for rendering. The next generation though will introduce freely 
programmable pixel shaders and therefore will allow outsourcing simple general 
purpose calculations. 

Another topic for future research is massive multi user AR applications. The 
foundation for such applications has been laid in this thesis, making it possible to 
practically target applications with thousands of users. However, a significant amount 
of research will have to go into designing new user interface concepts for such 
scenarios. 

When targeting the aforementioned multi user applications, content creation will 
become an even more important issue. While many commercial game companies 
currently set their hopes on developments such as COLLADA, it is unclear, how well 
these developments suit the requirements of Augmented Reality applications. 
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Similarly, content distribution will become another hot topic. Years of research has 
gone into data streaming on desktop and VR platforms, but little work has targeted 
mobile phones. 

The solutions developed in the course of this thesis have created interest from 
commercial entities. While in its infancy these solutions have been only used by 
project partners, Studierstube ES is currently in the process of transitioning from a 
research prototype into a commercially available and supported AR framework. The 
author of this thesis therefore believes that in the near future Augmented Reality will 
become a viable user interface for a wide, public audience. 
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Chapter 9  

Appendix 

9.1 Studierstube ES Example Applications 

9.1.1 Minimal Example 

The following code excerpts show how to write a minimal Studierstube ES application. 
This example renders a virtual cube on top of a marker. We do not require any C++ 
code to implement such an application with StbES. Hence, we only require a 
configuration file (see Figure 9.1) that sets up StbES and a scene file (see Figure 9.2) 
that contains the field connections to the tracking system and the cube itself. 
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Figure 9.1: Config file for Windows CE for a minimal application that does not require 

loading an “application file” (DLL). 
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Figure 9.2: Commented scene file for a minimal application 

that renders a virtual cube on a marker 

9.1.2 Model Viewer Application 

This example is an extended version of the simple application. It loads an actual 
model file and displays it on the marker. Furthermore it allows the user to rotate the 
model and optionally start/stop animations. To achieve this, writing a short C++ 
application is required. A single class is implemented that derives from 
StbES::Application (as all StbES applications do) and from StbES:: IRawInputListener 
to register for key presses. The C++ header (see Figure 9.3) and source files (see 
Figure 9.4) are listed here. The configuration and scene files are almost identical to 
the minimal example above and therefore skipped. 
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Figure 9.3: Header file of the model viewer application. 
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Figure 9.4: Source file of the model viewer application. 
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9.2 Pose Refinement 

 
Source code for refining a given pose using Gauss-Newton iteration (optimizePose() 
implements one refinement step). Source code provided by Gerhard Reitmayr and 
uses the TooN numeric library. 

 
 
 

SE3 optimizePose(const SE3& initialPose, const vector<Vector<3> >& points, 
                 const vector<Vector<2> >& observations) 
{ 
    // jacobian an error variables, we build these directly, 
    // therefore less storage requirements! 
    Matrix<6> JTJ; 
    Vector<6> JTE; 
    Zero(JTJ); 
    Zero(JTE); 
 
    // build jacobian and error vector 
    for(int i = 0; i < points.size(); ++i){ 
        Matrix<2,6> Jacobian; // the jacobian of the parameters for this one point 
        Matrix<2,3> Jacobian_Point; // the jacobian with respect to point parameters 
 
        // computes all the jacobians and the point projection in one go :) 
        // much more efficient than the above stuff 
        Vector<2> projectedPoint = initialPose.transform_and_project(points[i], 
                                                                     Jacobian_Point, 
                                                                     Jacobian); 
        // add local part to JTJ 
        // JTJ += Jacobian.T() * Jacobian; 
        // faster version avoiding temporary in += evaluation 
        add_product(Jacobian.T(), Jacobian, JTJ); 
        // add local part to JTE, this is JT * error 
        // JTE += Jacobian.T() * (observations[i] - projectedPoint); 
        add_product(Jacobian.T(), observations[i] - projectedPoint, JTE); 
    } 
 
    // compute inverse with Cholesky decomposition 
    Cholesky<6> chol(JTJ); 
 
    // compute inverse * error with backwards substitution 
    Vector<6> delta = chol.inverse_times(JTE); 
 
    // left multiply to the initialPose to create new SE3 
    return SE3::exp(delta) * initialPose; 
} 
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9.3 Questionnaires 

9.3.1 Virtuoso – Survey on Realism of the Virtual Character 

The following three pages contain the questionnaires handed out for the user study 
performed at HitLAB New Zealand in March 2006. 
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9.3.2 Virtuoso – Survey of Collaboration with Handheld AR 

The following eight pages contain the questionnaire used in the study performed in 
2006 at the Graz University of Technology. The evaluation compared the handheld 
AR version of Virtuoso against a desktop version, implemented using Adobe Flash 
and a paper version of the game. 
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9.3.3 Questionnaire of the MARQ Evaluation 
at Technisches Museum Wien 

The following 4 pages contain the questionnaire handed out to all visitors who played 
the Mobile Augmented Reality Quest game at Technisches Museum Wien in 2006. 
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9.3.4 Evaluation of Signpost 2007 

The following page contains the questionnaire handed out to all users who fully 
played through the game built into the Signpost 2007 application. The evaluation was 
performed at the Microsoft embedded developers conference (MEDC) in Las Vegas, 
USA in 2007. 
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