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Abstract

A block graph is a graph in which every block is a complete graph. Let G be a

block graph and let A be the adjacency matrix of G. We first obtain a formula for the

determinant of A over reals. It is shown that A is nonsingular over IF2 if and only if

the removal of any vertex from G produces a graph with exactly one odd component.

A formula for the inverse of A over IF2 is obtained, whenever it exists. We obtain some

results for the adjacency matrices over IF2, of claw-free block graphs, which are the same

as the line graphs of trees, and for the adjacency matrices of flowers, which are block

graphs with only one cut-vertex.
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1 Introduction

We consider undirected graphs with no loops or parallel edges. We refer to [11] for graph

theoretic preliminaries. Recall that a block in a graph is a maximal connected subgraph that

has no cut-vertex ([11],p.15). The complete graph with n vertices is denoted by Kn. A block

graph is a graph in which each block is a complete graph. A block graph whose blocks are

K2,K2,K3,K4 and K5 is shown below.
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We consider the adjacency matrix of a block graph over the field of reals as well as over

the two-element field {0, 1}, which we denote as IF2. For basic definitions concerning matrices

associated with graphs, see [1].

A graph is said to be nonsingular over reals if its adjacency matrix is nonsingular over

reals. Similarly, a graph is said to be nonsingular over IF2 if its adjacency matrix is nonsin-

gular over IF2. It is well-known that a tree is nonsingular over reals if and only if it has a

perfect matching. Moreover, when a tree is nonsingular over reals, there is a formula for its

inverse in terms of alternating paths, see [3],[4], and the references contained therein. These

two results motivated this work. Since a tree is a block graph, it is natural to investigate

the adjacency matrix of a general block graph.

We now describe the contents of this paper. Let G be a block graph and let A be the

adjacency matrix of G. In Section 2 we obtain a formula for the determinant of A over reals.

As a corollary we obtain a sufficient condition for the determinant to be an even integer.

In Sections 3,4 and 5 we work over IF2. In Section 3 we consider the adjacency matrix of a

block graph over IF2, It is shown that A is nonsingular over IF2 if and only if the removal of

any vertex from G produces a graph with exactly one odd component. A formula for the

inverse of A over IF2 is obtained, whenever it exists. In the final two sections we illustrate

applications of our results to two special classes of block graphs. In Section 4 we obtain

some results for the line graph of a tree, which is a block graph in which every cut-vertex is

incident to at most two blocks. A flower, which is a block graph with only one cut-vertex is

considered in Section 5.
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2 Adjacency matrix of a block graph over reals

A pendant vertex is a vertex of degree 1. A block is called a pendant block if it has only

one cut-vertex or if it is the only block in that component. A graph is called even (odd) if

it has an even (odd) number of vertices. An isolated vertex in a graph is considered to be

a block of the graph. The vertex set of the graph G is denoted by V (G). The transpose of

the matrix A is denoted A′. Let G be a block graph and let B1, . . . , Bk be the blocks of G.

If S ⊂ {1, . . . , k}, then GS will denote the subgraph of G induced by the blocks Bi, i ∈ S.
We first prove a preliminary result.

Lemma 1 Let G be a block graph with n vertices. Let B1, . . . , Bk be the blocks of G where

Bi is the complete graph with bi vertices, i = 1, . . . , k. Let (α1, . . . , αk) be a k-tuple of

nonnegative integers satisfying the following conditions:

(i)
k∑
i=1

αi = n

(ii) for any nonempty S ⊂ {1, . . . , k}, ∑
i∈S

αi ≤ |V (GS)|. (1)

If Bi is a pendant block, then αi equals either bi or bi − 1.

Proof: Clearly by (1), with S = {i}, we must have 0 ≤ αi ≤ bi. Setting S = {1, . . . , k} \ {i}
in (1) we see from (i) and (ii) that α1 + · · · + αn − αi = n − αi ≤ n − bi + 1, and hence

αi ≥ bi − 1. That completes the proof.

In the next result, which is the main result of this section, we obtain a formula for the

determinant of the adjacency matrix of a block graph over reals.

Theorem 2 Let G be a block graph with n vertices. Let B1, . . . , Bk be the blocks of G. Let

A be the adjacency matrix of G. Then

detA = (−1)n−k
∑

(α1 − 1) · · · (αk − 1) (2)

where the summation is over all k-tuples (α1, . . . , αk) of nonnegative integers satisfying the

following conditions:

(i)
k∑
i=1

αi = n

(ii) for any nonempty S ⊂ {1, . . . , k}, ∑
i∈S

αi ≤ |V (GS)|. (3)
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Proof: We prove the result by induction on k. Note that the result is true for a block

graph with one block, since the adjacency matrix of the complete graph Kp has determinant

(−1)p−1(p − 1). Assume the result to be true for a block graph with at most k − 1 blocks

and proceed. We consider two cases.

Case (i): The graph G has a pendant block with exactly 2 vertices.

Let B1 = K2 be a pendant block in G. Let the vertices of B1 be 1 and 2, where 1 is

pendant. We assume that the vertex 2 is in blocks B1, . . . , Bp and we further assume that

among these blocks, the first q blocks B1, . . . , Bq are equal to K2. It is possible that q = 1.

Let G1 = G \ 1. The matrix A has the form

A =



0 1 0 · · · 0

1 0 · · ·
0
...

... A1

0


, (4)

where A1 is the adjacency matrix of G2 = G1 \ 2. It follows from (4) that detA = −detA1.

The graph G2 has k − q blocks given by Ci, i = q + 1 . . . , k, defined as follows: Ci =

Bi \ 2, i = q + 1, . . . , p and Ci = Bi, i = p+ 1, . . . , k.

First consider the case when q > 1 and that there is at least one pendant block among

B2, . . . , Bq. let us assume, without loss of generality, that B2 is a pendant block. We also

assume that V (B2) = {2, 3}. Then the first and the third columns of A are identical and

detA = 0. Also if (α1, . . . , αk) is a k-tuple of nonnegative integers satisfying the conditions

in the Theorem, then at least one of α1 or α2 must equal 1 and hence the summation in (2)

is zero. Therefore the result is proved in this case. We therefore assume that none of the

blocks among B2, . . . , Bq is pendant.

Consider

(−1)n−k
∑

(α1 − 1) · · · (αk − 1) (5)

where the summation is over all k-tuples (α1, . . . , αk) of nonnegative integers satisfying the

following conditions:

(i)
k∑
i=1

αi = n

(ii) for any nonempty S ⊂ {1, . . . , k}, ∑
i∈S

αi ≤ |V (GS)|. (6)

By Lemma 1, α1 equals either 1 or 2. If α1 = 1, then the corresponding term in (5) is

zero, so we assume α1 = 2. Then it follows from (ii) that none of α2, . . . , αq can be 2. For
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example, if α2 = 2, then α1 + α2 = 4, whereas the graph induced by blocks B1 and B2 has

3 vertices, thus violating (6). Thus each of α2, . . . , αq is either 0 or 1, and again we may

assume that α2 = · · · = αq = 0. In view of these observations (5) equals

(−1)n−k(−1)q−1
∑

(αq+1−1) · · · (αk−1) = −(−1)n−2−(k−q)
∑

(αq+1−1) · · · (αk−1). (7)

The summation in (7) is over all (k − q)-tuples (αq+1, . . . , αk) of nonnegative integers satis-

fying the following conditions:

(i)
k∑

i=q+1

αi = n− 2

(ii) for any nonempty S ⊂ {q + 1, . . . , k},∑
i∈S

αi ≤ |V (GS)|. (8)

By the induction assumption, the right side of (7) equals −detA1 and since detA =

−detA1, it follows that detA equals (5). Therefore the proof is complete in this case.

Case (ii): The graph G does not have a pendant block with exactly 2 vertices.

Let B1 be a pendant block of G and let V (B1) = {1, . . . , b1}, b1 ≥ 3. Let b1 be the cut

vertex in B1. Let H = G\{B1 \ b1} be the block graph with n− b1 +1 vertices having blocks

B2, ..., Bk and let A1 be the adjacency matrix of H.

After a suitable relabeling of the vertices in G we may write

A =

(
D C

C ′ A1

)
(9)

where D is the adjacency matrix of the subgraph induced by the vertex set V (B1 \ b1), C

is a (b1 − 1) × (n− b1 + 1) matrix with cij = 1 if j = b1 + 1, and cij = 0 otherwise. Thus

D = J − I where J is the matrix of all ones and C has the form
1 0 · · · 0
...

...
...

1 0 · · · 0

 .

Note that the first row of A1 corresponds to the vertex b1.

By the Schur complement formula ([1],p.4) we have

detA = detD · det(A1 − C ′D−1C). (10)

We note the following simple facts:

(i) detD = (−1)b1−2(b1 − 2)
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(ii) D−1 = 1
b1−2J − I

(iii) The matrix C ′D−1C has all entries zero except the entry in the first row and the first

column, which is (−1)b1 b1−1
detD .

Let M be the adjacency matrix of H \ b1. Thus M is the submatrix of A1 formed by its

last n− b1 rows and columns. It follows from (i)-(iii) that

det(A1 − C ′D−1C) = detA1 −
b1 − 1
detD

detM. (11)

From (10),(11) we have

detA = (detD)
(

detA1 − (−1)b1
b1 − 1
detD

detM
)

= (detD)(detA1)− (−1)b1(b1 − 1) detM

= (−1)b1−2(b1 − 2) detA1 − (−1)b1(b1 − 1) detM. (12)

We assume that b1 is in blocks B1 and B2, . . . , Bp. If there are any blocks equal to K2

containing b1, then we enumerate them as B2, . . . , Bq. The remaining blocks, which do not

contain b1 are Bp+1, . . . , Bk. If there are no blocks equal to K2 containing b1, then we set

q = 1.

The graph H \ b1 has k − q blocks given by Ci, i = q + 1 . . . , k, defined as follows:

Ci = Bi \ b1, i = q + 1, . . . , p and Ci = Bi, i = p+ 1, . . . , k.

Consider ∑
(−1)n−k(α1 − 1) · · · (αk − 1) (13)

where the summation is over all k-tuples (α1, . . . , αk) of nonnegative integers satisfying the

following conditions:

(i)
k∑
i=1

αi = n

(ii) for any nonempty S ⊂ {1, . . . , k}, ∑
i∈S

αi ≤ |V (GS)|. (14)

By Lemma 1, α1 equals either b1 or b1 − 1. If α1 = b1, then each of α2, . . . , αq must be

either 0 or 1. For example, if α2 = 2, then α1 + α2 = b1 + 2, whereas the graph induced by

blocks B1 and B2 has b1 + 1 vertices, thus violating (6). If αi = 1 for some i ∈ {2, . . . , q},
then the corresponding term in (13) is zero and hence we assume α2 = · · · = αq = 0. Then

it can be seen by the induction hypothesis, that the sum of the terms in (13) corresponding

to α1 = b1 equals −(−1)b1(b1 − 1) detM.
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Similarly, by the induction hypothesis, the sum of the terms in (13) corresponding to

α1 = b1 − 1 equals (−1)b1−2(b1 − 2) detA1. It follows that the sum in (13) equals

(−1)b1−2(b1 − 2) detA1 − (−1)b1(b1 − 1) detM,

which is detA by (12). That completes the proof.

As noted in the introduction, it is well-known that a tree is nonsingular over reals if and

only if it has a perfect matching. We now derive this result from Theorem 2.

Corollary 3 Let T be a tree with n vertices and let A be the adjacency matrix of T. Then

A is nonsingular over reals if and only if T has a perfect matching.

Proof: First suppose that A is nonsingular. Then at least one term in the summation in (2)

must be nonzero. If (α1, . . . , αn−1) is an (n− 1)-tuple of nonnegative integers satisfying (i)

and (ii) of Theorem 2 and if the corresponding term in (2) is nonzero, then each αi is either

0 or 2. Moreover if two edges have a common vertex, then the corresponding α’s cannot both

be nonzero, in view of (ii). Thus there must be a perfect matching in T and αi = 2 if and

only if the corresponding edge is in the matching.

Conversely, suppose T has a perfect matching. As noted in the first part of the proof,

a nonzero term in the summation in (2) corresponds to a perfect matching. We invoke the

elementary fact, easily proved by induction, that if a tree has a perfect matching then it

must be unique. Thus there must be precisely one nonzero term in the summation in (2)

which renders detA nonzero. Thus A is nonsingular over reals and the proof is complete.

Characterizing block graphs, other than trees, which are nonsingular over reals seems to

be an interesting open problem. One example of a singular block graph is a tree with no

perfect matching. There are other examples. The following block graph is singular since the

adjacency matrix has two identical columns corresponding to the pendant vertices.
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In the following corollary we identify a class of graphs whose determinant is even. The

result will be used in the next section when we consider the adjacency matrix over IF2.
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Corollary 4 Let G be a connected block graph with n vertices. Let v be a vertex of G and

let H1, . . . ,H` be the components of G \ v. Let us suppose that among |V (Hi)|, i = 1, . . . , `,

at least two integers are odd. Then detA is even.

Proof: Let us list the blocks of G as follows. Let Bi1, . . . , B
i
mi

be the blocks of Hi ∪ v, i =

1, . . . , `. Let αi1, . . . , α
i
mi
, i = 1, . . . , ` be integers satisfying the conditions of Theorem 2. Let

Bij have pij vertices, i = 1, . . . , `; j = 1, . . .mi. Then
mi∑
j=1

αij ≤ |V (Hi)|+ 1, i = 1, . . . , `. (15)

It follows that ∑̀
i=1

mi∑
j=1

αij ≤
∑̀
i=1

(|V (Hi)|+ 1), i = 1, . . . , `. (16)

Also ∑̀
i=1

mi∑
j=1

αij = n =
∑̀
i=1

(|V (Hi)|+ 1)− (`− 1). (17)

If among the ` inequalities in (15) some two are equalities, then it will violate the condition

in Theorem 2 (by considering Hi ∪Hj ∪ v for those i, j.) If all the ` inequalities in (15) are

strict, then we get a contradiction as follows. If
mi∑
j=1

αij ≤ |V (Hi)|, i = 1, . . . , `, (18)

then ∑̀
i=1

mi∑
j=1

αij ≤
∑̀
i=1

(|V (Hi)|+ 1)− `. (19)

From (18) and (19) we get ` ≤ `− 1, a contradiction. For a similar reason, in any inequality,

the deficiency is 1. We conclude that among the ` inequalities in (15), ` − 1 must be strict

(with deficiency 1) and one must be equality. Without loss of generality, we assume
m1∑
j=1

α1
j = |V (H1)|+ 1, (20)

and
mi∑
j=1

αij = |V (Hi)|, i = 2, . . . , `. (21)

According to our assumption, among |V (Hi)|, i = 1, . . . , `, at least two integers are odd

and hence, in view of (20),(21), there exists s ∈ {2, . . . , `} such that
ms∑
j=1

αsj = |V (Hs)| = 1 mod 2. (22)

Therefore at least one integer among αs1, . . . , α
s
ms

must be odd and the corresponding

term in the summation in Theorem 2 is even. Thus each term in the summation in Theorem

2 is even and the result follows.
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3 Adjacency matrix of a block graph over IF2

We first prove a preliminary result.

Lemma 5 Let G be a graph with n vertices and let A be the adjacency matrix of A over

reals. If n is odd, then detA is an even integer. In particular, A is singular over IF2.

Proof: We have

detA =
∑
σ

(−1)ε(σ)a1σ(1) · · · anσ(n), (23)

where ε(σ) is 1(−1) if σ is even(odd), and where the summation is over all permutations σ of

1, . . . , n. Consider a permutation σ for which a1σ(1) · · · anσ(n) is nonzero. Since the diagonal

elements of A are zero and since n is odd, in the cycle decomposition of σ, there must be

an odd cycle of length greater than one. Thus if τ = σ−1, then τ 6= σ and a1τ(1) · · · anτ(n)

is nonzero as well. Therefore we may group the nonzero terms in the summation in (23) in

pairs and hence detA is even.

Theorem 6 Let G be a graph with n vertices and let A be the adjacency matrix of G. Then

A is nonsingular over IF2 if and only if n is even and for all u ∈ V (G), G \ u has exactly

one odd component.

Proof: First suppose that A is nonsingular over IF2. By Lemma 5, n is an even integer. Also

if there exists u ∈ V (G) such that G \u has at least two odd components, then by Corollary

4, detA, over reals, is an even integer and hence A must be singular over IF2, which is a

contradiction. This proves the “only if” part of the Theorem.

We turn to the “if” part. The proof will be by induction on the number of blocks. The

result is easily verified when G has a single block. Let G be a graph with k blocks. Assume

the result to be true for a graph with at most k−1 blocks and proceed. Let G have n vertices

where n is even and suppose that for all u ∈ V (G), G \ u has exactly one odd component.

Let B be a pendant block in G with cut-vertex t. We distinguish two cases.

Case 1. |V (B)| is odd. Note that the graph G \ (B \ t) also satisfies the conditions of the

theorem. After a suitable relabeling of the vertices in G we may write

A =

(
D C

C ′ A1

)
(24)

where D is the adjacency matrix of the subgraph induced by the vertex set V (B \ t) and

C is a (t− 1) × (n− t+ 1) matrix with cij = 1 if j = t + 1, and cij = 0 otherwise. Thus

D = J − I where J is the matrix of all ones and C has the form
1 0 · · · 0
...

...
...

1 0 · · · 0

 .
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Note that the first row of A1 corresponds to the vertex t. Perform the following row and

column operations on A: Add the first t−1 columns (rows) to the column (row) t. Then the

resulting matrix Ã has the form

Ã =

(
D 0

0 A1

)
. (25)

Note that D = J − I being of even order, is nonsingular over IF2. Since G \ (B \ t) also

satisfies the conditions of the theorem, by the induction hypothesis, its adjacency matrix A1

is nonsingular over IF2. It follows from (25) that Ã is nonsingular over IF2. Since Ã and A

have the same determinant, it follows that A is nonsingular over IF2.

Case 2. |V (B)| is even. Note that the graph G \ B also satisfies the conditions of the

theorem. After a suitable relabeling of the vertices in G we may write

A =

(
D C

C ′ A1

)
(26)

where D = J− I is the adjacency matrix of B, A1 is the adjacency matrix of G\B, and C is

a t× (n− t) matrix with cij = 0 if i = 1, 2, . . . , t− 1. Perform the following row and column

operations on A: Add the first t− 2 columns (rows) to the column (row) t− 1. Evaluate the

determinant of the resulting matrix by Laplace expansion with respect to column t, followed

by Laplace expansion with respect to row t. Then it is seen that detA = detA1. Since G \B
satisfies the conditions of the theorem, by the induction hypothesis, its adjacency matrix A1

is nonsingular over IF2. It follows that A is nonsingular over IF2 and the proof is complete.

We record the following consequence of Theorem 6.

Corollary 7 Let G be a graph, let B be a pendant block of G, and let t be the cut-vertex in

B. If |V (B)| is odd, then G is nonsingular over IF2 if and only if G \ (B \ t) is nonsingular.

If |V (B)| is even, then G is nonsingular over IF2 if and only if G \B is nonsingular.

Proof: We first consider the case when |V (B)| is odd. Let G be nonsingular. By Theorem

6, for any u ∈ V (G), G \ u has exactly one odd component. We claim that for any u ∈
V (G \ (B \ t)), the graph (G \ (B \ t)) \ u has exactly one odd component. Consider two

subcases.

Subcase (i), u = t: If (G \ (B \ t) \ t has more than one odd components, they continue

to be odd components of G \ t, which is a contradiction.

Subcase (ii), u 6= t: If (G \ (B \ t)) \ u has more than one odd components, denote two

such components by O1 and O2. If t 6∈ O1 ∪ O2, then O1 and O2 are odd components of

G \ t, which is a contradiction. If t ∈ O1, then again O1 ∪B and O2 are odd components in

G \ u, which is a contradiction. A similar conclusion holds if t ∈ O2.
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Thus the claim is proved and by Theorem 6, G \ (B \ t) is nonsingular. This completes

the proof of the “only if” part. Conversely, suppose G \ (B \ t) is nonsingular. Then for any

u ∈ V (G \ (B \ t)), the graph (G \ (B \ t)) \ u has exactly one odd component. Using a

similar argument as before, we can show that for any u ∈ V (G), G \ u has exactly one odd

component, and by Theorem 6, G is nonsingular.

We omit the proof in the case when |V (B)| is even, since it is similar.

As noted in Corollary 3, a tree is nonsingular over reals if and only if it has a perfect

matching. Since the determinant over reals of the adjacency matrix of a tree is either 0 or

±1, it follows that a tree is nonsingular over IF2 if and only if it has a perfect matching. It

may be instructive to note the connection between existence of a perfect matching in a tree

and the hypothesis in Theorem 6. Let T be a tree with a perfect matching. Let v ∈ V (T ) be

of degree k, and let it be adjacent to v1, . . . , vk. Let T1, . . . , Tk be the components of T \ v,
containing v1, . . . , vk respectively. Since T has a perfect matching, there exists a unique

i ∈ {1, . . . , k} such that the edge vvi is in the matching. Then for any j 6= i, Tj has a perfect

matching and must be an even component. Thus Ti is the unique odd component in T \ v
and the hypothesis in Theorem 6 holds.

If A is an n × n matrix, we denote by A(i|j), the submatrix obtained by deleting row i

and column j. Similarly, A(i, j|i, j) will denote the submatrix obtained by deleting rows i, j

and columns i, j.

Theorem 8 Let G be a graph with n vertices and let A be the adjacency matrix of G. Let

A be nonsingular over IF2 and let B = A−1. Then bii = 0, i = 1, . . . , n. Moreover, if i 6= j

are vertices of G, then the following conditions are equivalent:

(i) bij = 1

(ii) detA(i|j) = 1

(iii) detA(i, j|i, j) = 1

(iv) G \ {i, j} is nonsingular over IF2

(v) For any vertex k, not equal to i, j, G \ {i, j, k} has exactly one odd component.

Proof: Since A is nonsingular over IF2, by Lemma 5, n is even. For any i, G\{i} has an odd

number of vertices and hence it is singular over IF2 by Lemma 5. Therefore detA(i|i) = 0

and hence bii = 0, i = 1, . . . , n.

The equivalence of (i), (ii) is obvious, and so is the equivalence of (iii) and (iv). By

Theorem 6, (iv) and (v) are equivalent. It remains to show the equivalence of (ii) and (iii).

We recall the well-known identity (which is a special case of Sylvester’s identity, see [9],p.22):

If A is an n× n matrix, then for any i 6= j,

detA(i|i) detA(j|j)− detA(i|j) detA(j|i) = (detA) detA(i, j|i, j). (27)

11



In particular, in the present situation, A is a matrix over IF2, detA(i|i) = 0 for all i,

and detA = 1. Hence it follows from (27) that detA(i|j) = detA(i, j|i, j) and therefore

detA(i|j) = 1 if and only if detA(i, j|i, j) = 1. Thus (ii) and (iii) are equivalent. That

completes the proof.

4 Line graph of a tree

Let T be a tree with V (T ) = {1, . . . , n} and E(T ) = {e1, . . . , en−1.} Let L(T ) be the line

graph of T. Thus L(T ) has vertex set E(T ) and two vertices are adjacent if the corresponding

edges of T have a vertex in common. It can be seen that L(T ) is a block graph with the

additional property that any cut-vertex is in at most two blocks. Conversely, a connected

block graph in which any cut-vertex is in at most two blocks is the line graph of a tree. Let

K1,3 be the complete bipartite graph with the two parts having 1 and 3 vertices, respectively.

Recall that a graph is said to be claw-free if it does not contain K1,3 as an induced subgraph.

Then it can be seen that a block graph is the line graph of a tree if and only if it is claw-free.

The next result is a simple consequence of Theorems 6 and 8.

Theorem 9 Let G be a claw-free block graph with n vertices and let A be the adjacency

matrix of G. Then A is nonsingular over IF2 if and only if n is even. Moreover let B = A−1

in case A is nonsingular. Then bii = 0, i = 1, . . . , n, and for 1 ≤ i 6= j ≤ n, bij = 1 if and

only if L(T ) \ {i, j} has no odd component.

Proof: If n is odd, then by Lemma 5, A is singular. So suppose n is even. Since G is a block

graph in which any cut-vertex is in at most two blocks, G \ {i} has at most two components

for any vertex i of G. Since G has an even number of vertices, G \ {i} must have exactly one

odd component, and by Theorem 6, A is nonsingular over IF2.

If B = A−1, then by Theorem 8, bii = 0, i = 1, . . . , n. Moreover, bij = 1 if and only

if G \ {i, j} is a nonsingular graph over IF2. Since each component of G \ {i, j} is the line

graph of a tree, by the first part, G \ {i, j} is nonsingular over IF2 if and only if it has no odd

component. That completes the proof.

Theorem 10 Let G be a claw-free block graph with n vertices and let Let A be the adjacency

matrix of G. If n is even, then A is nonsingular over IF2. If n is odd, then A has nullity 1

over IF2.

Proof: If n is even, then since G is claw-free, it readily follows from Theorem 6 that A is

nonsingular.

Now assume that n is odd. Let x be the incidence vector of the vertices i such that

G \ {i} has no odd component. We first show that x satisfies Ax = 0. Let i be a vertex of

G with degree r and let i be adjacent to vertices i1, . . . , ir. We further assume that G \ {ij}
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has no odd component if and only if j = 1, . . . , s. By the hypothesis, G \ {ij} has at most

two components and we set Cj to be the component, which may be vacuous, that does not

contain i, j = 1, . . . , r. Note that Cj and C` are disjoint if j 6= `. Therefore

n = |C1|+ · · ·+ |Cr|+ r + 1. (28)

It follows from (28) that n has the same parity as s + 1. Since n is odd, s must be even.

Thus i is adjacent to an even number of vertices j such that G \ {j} has no odd component.

It follows that the coordinate of Ax indexed by i is zero. Since i is arbitrary we conclude

that Ax = 0.

We now turn to the uniqueness of the null vector. Let y be a vector over IF2 such that

Ay = 0. If y 6= x, then z = x+y is a nonzero vector such that Az = 0. Moreover, there exists

i such that xi = 1 and zi = 0. Then A(i|i) has a nonzero null vector and hence it must be

singular. However G \ {i} has at most two components, both of which must be nonsingular

by Theorem 9. This contradiction shows that y = x and hence x is the unique null vector of

A.

It was shown by Gutman and Sciriha [8] that over the reals, the line graph of a tree is

either singular or has zero as a simple eigenvalue. Thus the nullity of the line graph of a tree

over the reals is at most one. An alternative proof of the result and some related results were

proved in [10]. An easier proof of the same result and some extensions were recently proved

in [2],[6]. It may be remarked that in view of Theorem 10, the nullity of the line graph of a

tree is at most one over IF2 as well. This observation is a special case of a result obtained

by Doob [5, Theorem 2.9] and can also be derived easily from some results in [7]. Also, the

first part (n even) of Theorem 10 is contained in [7, Fact 22].

5 Flower

A block graph is called a flower if it has at most one cut vertex. By F (b1, . . . , bk) we denote

a flower with k blocks of sizes b1, . . . , bk. If k = 1, then F is a complete graph. Although the

results in this section apply to this case, we implicitly assume in the proofs that k ≥ 2, so

that F has exactly one cut-vertex. A flower with blocks of sizes 2, 2, 3, 4 is shown below.

◦

@@@@@@@ ◦

�������

◦ ◦

�������

@@@@@@@ ◦

◦

@@@@@@@ ◦

�������

◦
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Theorem 11 Let F be a flower with n vertices and with k blocks of sizes b1, . . . , bk. Let A

be the adjacency matrix of F. Then

detA = (−1)n−k

k k∏
i=1

(bi − 2) +
k∑
i=1

∏
j 6=i

(bj − 2)

 . (29)

Proof: Note that n =
∑n
i=1 bi − k + 1 =

∑k
i=1(bi − 1) + 1. Thus if (α1, . . . , αk) is a k-tuple

of nonnegative integers satisfying the conditions (i), (ii) of Theorem 2, then αi = bi for some

i and αj = bj − 1, j 6= i. The result now follows easily from Theorem 2.

Theorem 12 A flower is nonsingular over IF2 if an only if it has exactly one even block.

Proof: The result may be proved using Theorem 11. It is also an easy consequence of

Theorem 6.

In the final result we determine the nullity of a flower.

Theorem 13 Let F be a flower with ` even blocks. Let A be the adjacency matrix of F.

Then the nullity of A over IF2 is |`− 1|.

Proof: Let F have n vertices and k blocks of sizes b1, . . . , bk. Then n =
∑k
i=1(bi − 1) + 1.

First suppose ` = 0. Then n is odd and by Lemma 5, A is singular. If we delete a vertex,

other than the cut-vertex, from one of the blocks, then the resulting graph is a flower with

exactly one even block, and is nonsingular by Theorem 12. Thus rank A = n− 1 and hence

the nullity of A is 1. Now let ` ≥ 1. Remove one vertex from any ` − 1 of the even blocks.

The resulting graph is nonsingular by Lemma 5 and hence the rank of A is at least n− `+ 1.

Since A is symmetric, its rank is r if and only if it has a nonsingular principal submatrix of

order r. Thus in order to complete the proof we need to show that if we remove any ` − 2

vertices from F, the resulting graph is singular. Let H be the graph obtained from G by

removing some `− 2 vertices. If the cut-vertex is not among the deleted vertices, then H is

a flower with at least two even blocks and is singular by Theorem 12. If the cut-vertex is

among the deleted vertices, then H must have at least one odd component and again H is

singular by Lemma 5. That completes the proof.
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