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Abstract—We propose a unified manifold learning framework
for semi-supervised and unsupervised dimension reduction by em-
ploying a simple but effective linear regression function to map
the new data points. For semi-supervised dimension reduction, we
aim to find the optimal prediction labels for all the training
samples , the linear regression function � � and the regres-
sion residue � � � � simultaneously. Our new objec-
tive function integrates two terms related to label fitness and man-
ifold smoothness as well as a flexible penalty term defined on the
residue �. Our Semi-Supervised learning framework, referred
to as flexible manifold embedding (FME), can effectively utilize
label information from labeled data as well as a manifold struc-
ture from both labeled and unlabeled data. By modeling the mis-
match between � � and , we show that FME relaxes the hard
linear constraint � � � in manifold regularization (MR),
making it better cope with the data sampled from a nonlinear man-
ifold. In addition, we propose a simplified version (referred to as
FME/U) for unsupervised dimension reduction. We also show that
our proposed framework provides a unified view to explain and
understand many semi-supervised, supervised and unsupervised
dimension reduction techniques. Comprehensive experiments on
several benchmark databases demonstrate the significant improve-
ment over existing dimension reduction algorithms.

Index Terms—Dimension reduction, face recognition, manifold
embedding, semi-supervised learning.

I. INTRODUCTION

I N PAST decades, a large number of dimension reduction
techniques [2], [13], [25], [29], [30], [35] have been pro-

posed. Principal component analysis (PCA) [25] pursues the
directions of maximum variance for optimal reconstruction.
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Linear discriminant analysis (LDA) [2], as a supervised algo-
rithm, aims to maximize the inter-class scatter and at the same
time minimize the intra-class scatter. Due to the utilization of
label information, LDA is experimentally reported to outper-
form PCA for face recognition, when sufficient labeled face
images are provided [2].

To discover the intrinsic manifold structure of the data, non-
linear dimension reduction algorithms such as ISOMAP [23],
locally linear embedding (LLE) [18] and Laplacian eigenmap
(LE) [3] were recently developed. However, ISOMAP and LE
suffer from the so-called out-of-sample problem, i.e., they do
not yield a method for mapping new data points that are not
included in the training set. To deal with this problem, He et
al. [12] developed the locality preserving projections (LPP)
method, in which the linear projection function is used for map-
ping new data points. Wu et al. [27] proposed a local learning
algorithm, referred to as local learning projection (LLP) for
linear dimension reduction. Yan et al. [30] recently demon-
strated that several dimension reduction algorithms (e.g., PCA,
LDA, ISOMAP, LLE, LE) can be unified within a proposed
graph-embedding framework, in which the desired statistical or
geometric data properties are encoded as graph relationships.
Recently, Zhang et al. [34], [35] further reformulated many
dimension reduction algorithms into a unified patch alignment
framework. Based on their patch alignment framework, a
new subspace learning method called Discriminative Locality
Alignment (DLA) was also proposed [34], [35].

While supervised learning algorithms generally outperform
unsupervised learning algorithms, the collection of labeled
training data in supervised learning requires expensive human
labor [8], [38]. Meanwhile, it is much easier to obtain unlabeled
data. To utilize a large amount of unlabeled data as well as a
relatively limited amount of labeled data for better classifica-
tion, semi-supervised learning methods such as transductive
SVM [26], co-training [5], and graph-based techniques [1], [4],
[6], [20], [21], [31], [33], [28], [36], [37] were developed and
demonstrated promising results for different tasks. However,
most semi-supervised learning methods such as [5], [11], [26],
[36], [37] were developed for the problem of classification.
The manifold regularization (MR) method [4], [20], [21] can
be also used for various learning problems. In practice, MR
extended regression and SVM, respectively, to the semi-su-
pervised learning methods Laplacian regularized least squares
(LapRLS) and Laplacian support vector machines (LapSVM)
by adding a geometrically-based regularization term. Recently,
Cai et al. [6] extended LDA to semi-supervised discrimi-
nant analysis (SDA), and Zhang et al. [34] extended DLA to
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semi-supervised discriminative locality alignment (SDLA), for
semi-supervised dimension reduction.

Many dimension reduction algorithms (e.g., PCA, LDA, LPP,
and SDA) use a linear projection function to map the data ma-
trix in the original feature space to a lower dimensional rep-
resentation , namely, . The low dimensional rep-
resentation can then be used for faster training and testing in
real applications, as well as the interpretation of the data. In this
work, we first show that the MR method linear LapRLS (re-
ferred to as LapRLS/L) can also utilize a linear function
to connect the prediction labels and the data matrix by1

. While the linearization techniques pro-
vide a simple and effective method to map new data points, we
argue that such techniques assume that the lower dimension rep-
resentation or the prediction labels lie in the space spanned
by the training samples , which is usually overstrict in many
real applications.

The prior work [1], [33] employed a regression residue term
to relax the hard constraint for binary classification.
Inspired by their work [1], [33], we propose a new manifold
learning framework for dimension reduction in multi-class
setting and our framework naturally unifies many existing
dimension reduction methods. Specifically, we set the prediction
labels as , where is a regression function
for mapping new data points and is the regression residue
modeling the mismatch between and . With this model,
we propose a new framework, referred to as flexible manifold
embedding (FME), for semi-supervised dimension reduction.
In practice, we aim to find the optimal prediction labels , the
linear regression function and the regression residue of
our new objective function simultaneously, which integrates two
terms related to the label fitness and the manifold smoothness
as well as a flexible penalty term . FME can effectively
utilize label information from labeled data as well as the
manifold structure from both labeled and unlabeled data. We
also show that our FME relaxes the hard linear constraint

in LapRLS/L. With this relaxation, FME can better
deal with the samples which reside on a nonlinear manifold.
We also propose a simplified version, referred to as FME/U,
for unsupervised manifold learning. It is worth mentioning
that FME and FME/U are linear methods, which are fast and
suitable for practical applications such as face, object and
text classification problems.

The main contributions of this paper include the following.
• We propose a unified framework for semi-supervised and

unsupervised manifold learning, which can provide a map-
ping for new data points and effectively cope with the data
sampled from the nonlinear manifold.

• Our proposed framework provides a unified view to explain
and understand many semi-supervised, supervised, and un-
supervised dimension reduction techniques.

• Our work outperforms existing dimension reduction
methods on five benchmark databases, demonstrating
promising performance in real applications.

The rest of this paper is organized as follows. Section II gives
a brief review of the related dimension reduction methods. We
will introduce our proposed framework for semi-supervised and

1Here we ignore the bias term of the linear regression function in LapRLS/L.

unsupervised dimension reduction in Sections III and IV, re-
spectively. Discussions with other related work are presented in
Section V. Comprehensive experimental results are reported in
Section VI. Section VII gives conclusive remarks.

II. BRIEF REVIEW OF THE PRIOR WORK

We briefly review the prior semi-supervised learning
work: local and global consistency (LGC) [36], Gaussian
fields and harmonic functions (GFHF) [37], manifold reg-
ularization (MR) [4], [20], [21] and semi-supervised dis-
criminant analysis (SDA) [6]. We denote the sample set
as , where

and are labeled and unlabeled data, respec-
tively. For labeled data , the labels are denoted as

, where is the total number of classes. We
also define a binary label matrix with
if has label , otherwise. Let us de-
note as an undirected weighted graph with
vertex set and similarity matrix , in which
each element of the symmetric matrix represents the
similarity of a pair of vertices. The graph Laplacian matrix

is denoted as , where is a diag-
onal matrix with the diagonal elements as .
The normalized graph Laplacian matrix is represented as

, where is
an identity matrix. We also denote as a vector
with all elements as 0 and a vector with all elements as 1,
respectively.

A. LGC and GFHF

LGC [36] and GFHF [37] estimate a prediction label matrix
on the graph with respect to the label fitness (i.e.,

should be close to the given labels for the labeled nodes) and
the manifold smoothness (i.e., should be smooth on the whole
graph of both labeled and unlabeled nodes). Let us denote
and as the th row of and . As shown in [36]–[38], LGC
and GFHF minimize the objective function and ,
respectively

(1)

where the coefficient balances the label fitness and the man-
ifold smoothness, and is a very large number such that

, or [38]. No-
tice that the objective functions and in (1) share
the same formulation

(2)

where is a (normalized) graph Laplacian matrix
and is a diagonal matrix.

In LGC [36], is the normalized graph Laplacian matrix
and is a diagonal matrix with all elements as . In GFHF [37],

and is also a diagonal matrix with the first and the
rest diagonal elements as and 0, respectively.
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B. Manifold Regularization

The MR [4], [20], [21] extends many existing algorithms,
such as ridge regression and SVM to their semi-supervised
learning methods by adding a geometrically based regular-
ization term. We take LapRLS/L as an example to briefly
review MR methods. Let us define a linear regression function

, where is the projection matrix
and is the bias term. LapRLS/L [21] minimizes
the ridge regression errors and simultaneously preserves the
manifold smoothness, namely

(3)

where the two coefficients and balance the norm of ,
the manifold smoothness and the regression error.

C. Semi-Supervised Discriminant Analysis

Cai et al. extended LDA to SDA [6] by adding a geomet-
rically-based regularization term in the objective function of
LDA. The core assumption in SDA is still the manifold smooth-
ness assumption, namely, nearby points will have similar rep-
resentations in the lower-dimensional space. We define

as the data matrix of labeled data, and denote
the number of the labeled samples in the th class as . Let
us denote two graph similarity matrices , where

. The corresponding Lapla-
cian matrices of are represented as and , respec-
tively. According to [30], the intra-class scatter and the inter-
class scatter of LDA can be rewritten as

, and
, where is the mean of the labeled samples

in the th class and is the mean of all the labeled samples. The
objective function in SDA is then formulated as

(4)
where is the graph Laplacian matrix for both labeled
and unlabeled data, and and are two parameters to balance
three terms.

III. SEMI-SUPERVISED FLEXIBLE MANIFOLD EMBEDDING

It is noteworthy that existing MR work [1], [4], [20], [21],
[33] are mainly on binary classification and regression problems
only. In this paper, we focus on dimension reduction problems
in multi-class setting. We firstly discuss the connection between
LapRLS/L and LGC/GFHF. And then we propose a new man-
ifold learning framework, referred to as FME, for semi-super-
vised dimension reduction.

A. Connection Between LapRLS/L and LGC/GFHF

LGC [36] and GFHF [37] were proposed based on the moti-
vations of label propagation and random walks, and LapRLS/L
[21] was initially proposed as a semi-supervised extension for
ridge regression. LGC/GFHF do not present a method for map-

ping new data points, and LapRLS/L can provide a mapping for
unseen data points through the linear regression function .
While LGC/GFHF and LapRLS/L are proposed from different
motivations, we show that LapRLS/L is a varied out-of-sample
extension of LGC/GFHF.

Proposition 1: LapRLS/L is a varied out-of-sample extension
of LGC/GFHF, when a graph Laplacian matrix
satisfying and is used.

Proof: Suppose that the solution of LGC/GFHF is lo-
cated in the linear subspace spanned by , i.e.,

, where is the project matrix,
is the bias term, then the objective function (2) in LGC/GFHF
can be reformulated as

(5)

Then we add a regularization term in (5) and
set , and the first and the rest diagonal elements
of the diagonal matrix as and 0, respectively, it
becomes

(6)
which is equal to . So we have Proposition
1.

B. Flexible Manifold Learning Framework

From Proposition 1, we observe that the prediction labels in
LapRLS/L are constrained to lie within the space spanned by all
the training samples , namely . While this
linear function can be used to map new data points that are not
included in the training set, the number of parameters in does
not depend on the number of samples. Thereafter, this linear
function may be overstrict to fit the data samples from a non-
linear manifold. To better cope with this problem, we relax this
hard constraint by modeling the regression residue. As shown in
Fig. 1, we assume that ,
where is the regression residue modeling the mis-
match between and . FME aims to find the optimal pre-
diction labels , the regression residue , and the linear re-
gression function simultaneously

(7)

where the two coefficients and are parameters to balance
different terms, and is the Laplacian matrix and

is the diagonal matrix. Note that similar idea was
also discussed in the prior work [1], [22], [24], [33] for binary
classification problems. Here, we extend this idea for dimension
reduction in multi-class setting, in which the class dependency
can be captured by the extracted features.

Similarly as in LGC, GFHF, and LapRLS/L, the first two
terms in (7) represent the label fitness and the manifold smooth-
ness, respectively. Considering that it is meaningless to enforce
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Fig. 1. Illustration of FME. FME aims to find the optimal prediction labels � ,
the linear regression function ����, and the regression residue � simultane-
ously. The regression residue � measures the mismatch between � and ����.

the prediction labels and the given labels of different
samples (i.e., ) to be close, we set the matrix as the
diagonal matrix with the first and the rest diagonal
elements as 1 and 0, respectively, similarly as in LapRLS/L. In
addition, the matrix should be set as the graph Laplacian ma-
trix in order to utilize the manifold structure (i.e., should be
as smooth as possible on the whole graph) in semi-supervised
learning. While it is possible to construct the Laplacian ma-
trix according to different manifold learning criterions (e.g.,
[30] and [32]). Similarly as in GFHF and LapRLS/L, we choose
the Gaussian function to calculate , namely, ,
where is a diagonal matrix with the diagonal elements as

, and , if (or
) is among nearest neighbors of (or ); , other-

wise.
The last two terms in (7) control the norm of projection ma-

trix and the regression residue . In the current formulation
of , the regression function and the regression residue

are combined. In practice, our work can naturally map the
new data points for dimension reduction by using the function

. The regression residue can model the mismatch be-
tween the linear regression function and the pre-
diction labels . Compared with LapRLS/L, we do not force the
prediction labels to lie in the space spanned by all the samples

. Therefore, our framework is more flexible and it can better
cope with the samples which reside on the nonlinear manifold.
Moreover, the prior work [14] on face hallucination has demon-
strated that the introduction of a local residue can lead to better
reconstruction of face images.

Replacing with , we have

(8)

From then on, we refer to the objective function in (8) as
. First, we prove that the optimization problem in (8)

is jointly convex with respect to , and .
Theorem 1: Denote

. If the matrices and are positive semi-def-
inite, and , then

is
jointly convex with respect to , and .

Proof: In function , we remove the constant term
, then can be rewritten in matrix form as

where

Thus in order to prove that is jointly convex with
respect to , and , we only need to prove that the matrix
is positive semi-definite.

For any vector , where
, and is a scalar, we have

So if and are positive semi-definite, and ,
then for any , and thus is positive semi-definite.
Therefore, is jointly convex with respect to ,
and .

To obtain the optimal solution, we set the derivatives of the
objective function in (8) with respect to and equal to zero.
We have

(9)

where and
is used for centering the data by subtracting the mean of the data.
With and , we rewrite the regression function
in (8) as

(10)

where . Replacing and to (8),
we arrive at

By setting the derivative of this objective function with respect
to as 0, the prediction labels are obtained by

(11)

Using and
, the term
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in (11) can be rewritten as
or .

Then, we have

(12)

By defining , we can also calculate the prediction
labels by

(13)

where .

Algorithm 1: Procedure of FME

Given a binary label matrix and a sample set
, where and

are labeled and unlabeled data, respectively.

1: Set as the graph Laplacian matrix , and
as the diagonal matrix with the first and

the rest diagonal entries as 1 and 0, respectively.
2: Compute the optimal with (13).
3: Compute the optimal projection matrix with (9).

IV. UNSUPERVISED FME

We propose a simplified version for unsupervised learning by
setting the diagonal elements of matrix in (8) equal to 0. We
also aim to solve for the projection matrix , the bias term
and the latent variable simultaneously

(14)

where is set as is an identity matrix, and the coefficients
and are two parameters to balance different terms.
In unsupervised learning, the variable can be treated as the

latent variable, denoting the lower dimensional representation.
Similar to prior work (e.g., LE [3] and LPP [12]), we constrain
that after centering operation lies in a sphere (i.e.,

) to avoid the trivial solution , where we set .
Beside unsupervised learning, the formulation in (14) is a gen-
eral formulation, which can be also used for supervised learning
by using different matrices and . Again, FME/U naturally
provides a method for mapping new data points through the
regression function . Compared with
the prior linear dimension reduction algorithms (such as PCA,
LDA, LPP), the hard mapping function in these
methods is relaxed by introducing a flexible penalty term (i.e.,
regression residue ) in (14).

Similarly, by setting the derivatives of the objective function
in (14) with respect to and to zero, and can be calcu-
lated by (9). Substituting and back in (14), then we have

(15)

According to (12), we rewrite (15) as

(16)

where .
This objective function can be solved by generalized eigenvalue
decomposition [30].

Algorithm 2: Procedure of FME/U

Given the unlabeled sample set as
.

1: Set as the graph Laplacian matrix .
2: Compute the optimal with (16) by generalized

eigenvalue decomposition.
3: Compute the optimal projection matrix with (9).

V. DISCUSSIONS WITH THE PRIOR WORK

In this section, we discuss the connection between FME
and semi-supervised algorithms LGC [36], GFHF [37], and
LapRLS/L [21]. We also discuss the connection between
FME/U with graph embedding framework [30] and spectral
regression [7].

A. Connection Between FME and Semi-Supervised Learning
Algorithms

Example 1: LGC and GFHF are two special cases of FME.
Proof: If we set , then the objective function of FME

in (8) reduces to (2), which is a general formulation for both
LGC and GFHF. Therefore, LGC and GFHF are special cases
of FME.

Example 2: LapRLS/L is also a special case of FME.
Proof: If we set and (i.e.,

) in (8), we have . Replacing to (8), then
we have a new formulation for FME

(17)

If we further set and the first and the rest
diagonal elements of the diagonal matrix in (17) as
and 0, respectively, then is equal to
in (3). That is LapRLS/L is also a special case of FME.
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B. Connection Between FME/U and Graph Embedding
Framework

Recently, Yan et al. [30] proposed a general graph-embedding
framework to unify a large family of dimension reduction algo-
rithms (such as PCA, LDA, ISOMAP, LLE, and LE). As shown
in [30], the statistical or geometric properties of a given algo-
rithm are encoded as graph relationships, and each algorithm
can be considered as direct graph embedding, linear graph em-
bedding, or other extensions. The objective function in direct
graph embedding is

(18)

where is another graph Laplacian matrix (e.g., the centering
matrix ) such that and .

While direct graph embedding computes a low-dimensional
representation for the training samples, it does not provide
a method to map new data points. For mapping out-of-sample
data points, linearization and other extensions (e.g., kerneliza-
tion and tensorization) are also proposed in [30]. Assuming a
hard linear mapping function , the objective
function in linear graph embedding is formulated as

(19)

Example 3: Direct graph embedding and its linearization are
special cases of FME/U.

Proof: If we set in (14) as 0, then the objective function
of FME/U reduces to the formulation of direct graph embedding
in (18).

When and in (14), then we have
. Replacing to (14) then the objective function

of FME/U reduces to the formulation of linear graph embedding
in (19).

Therefore, direct graph embedding and its linearization are
special cases of FME/U.

Note that one recently published semi-supervised dimension
reduction method, transductive component analysis (TCA) [15]
is closely related to our proposed FME/U. However, TCA is
a special case of graph embedding framework [30], in which
the matrix is a weighted sum of two matrices and ,
i.e., , where is a tradeoff parameter
to control the importance between the two matrices. The first
matrix models two terms related to
the manifold regularization and the embedding [similarly as in
(14)], where is a parameter to balance two terms. The
second matrix models the average margin criterion of the
distance constraints for labeled data. Moreover, the prediction
label matrix is constrained as . In comparison, the
proposed FME and FME/U do not constrain on
the prediction labels or the lower-dimensional representation.
For semi-supervised setting, (13) in FME can be solved by a
linear system, which is much more efficient than solving the
eigenvalue decomposition problem as in TCA and many other
dimension reduction methods [2], [6], [12].

C. Connection Between FME/U and Spectral Regression (SR)

Cai et al. [7] recently proposed a two-step method, referred to
as SR, to solve the projection matrix for mapping new data
points. First, the optimal solution of (18) is solved. Then, the
optimal projection matrix and the bias term are computed
by solving a regression problem:2

(20)

Example 4: SR is also a special case of FME/U.
Proof: When and (i.e., ) in

(14), then (14) reduces to (18), namely, we need to solve at
first. Then, the objective function in (14) is converted to (20) to
find the optimal . Note that the optimal of the objective
function of SR [i.e., (20)] is ,
which is equal to from FME/U [See (9)]. Therefore, spectral
regression is also a special case of FME/U.

D. Discussion

The relationships of our FME framework with other related
methods are shown in Fig. 2. Direct graph embedding [30] has
unified a large family of dimension reduction algorithms (e.g.,
ISOMAP, LLE, and LE), and LGC [36] and GFHF [37] are
two classical graph-based semi-supervised learning methods.
When is set as 0, the objective function of FME (respectively,
FME/U) reduces to the general formulation of LGC/GFHF (re-
spectively, direct graph embedding) [30]. In this case, the whole
regularization term related to the weighted sum of the regres-
sion residue and is missing such that LGC/GFHF (re-
spectively, direct graph embedding) cannot map new data points
that are not included in the training set.

While the objective function of LapRLS/L (respectively,
linear graph embedding) in not in the objective function of
FME (respectively, FME/U), they are still special cases of
our framework by using different paraments and (or ).
When and (respectively,
and ), the objective function of FME (respectively,
FME/U) reduces to the formulation of LapRLS/L [21] (respec-
tively, linear graph embedding [30]). In this case, we have a
hard linear constraint . While the projection
matrix can be used to cope with the out-of-sample problem
for LGC/GFHF and direct graph embedding, we argue that the
assumption that the prediction labels or the lower-dimension
representation lies in the space spanned by the training sam-
ples is usually over-strict in the real applications. Similarly
as in LapRLS/L (respectively, linear graph embedding), FME
(respectively, FME/U) can find the embedding for the unseen
data points. Moreover, FME (respectively, FME/U) can better
cope with the data points sampled from the nonlinear manifold
because it relaxes the hard linear constraint in LapRLS/L
(respectively, linear graph embedding) by explicitly modeling
the regression residue in the objective function.

Moreover, our framework also reveals that the previously un-
related methods are in fact related. For example, linear graph
embedding and SR [7] seem to be unrelated from their objec-
tive functions, while both methods aim to find the optimal linear

2The biased term � is not used in [17].
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Fig. 2. Relationship of our FME Framework and other related methods.

projection matrix for mapping new data points. However, they
are both special cases of FME/U. Specially, FME/U reduces to
linear graph embedding, when and . FME/U
reduces to SR, when and (i.e., ).

Finally, our framework can be also used to develop new di-
mension reduction algorithms. For example, similar as in SR
[7], it is also possible to use our FME framework to develop a
two-step approach for semi-supervised learning by setting

and .

VI. EXPERIMENTS

In our experiments, we use three face databases UMIST [10],
CMU PIE [19], and YALE-B [9], one object database COIL-20
database [16], and one text database 20-NEWS.

Face Databases: The UMIST database [10] consists of 575
multi-view images of 20 people, covering a wide range of poses
from profile to frontal views. The images are cropped and then
resized to 28 23 pixels. The CMU PIE database [19] contains
more than 40 000 facial images of 68 people. The images were
acquired over different poses, under variable illumination con-
ditions, and with different facial expressions. In this experiment,
we choose the images from the frontal pose (C27) and each sub-
ject has around 49 images from varying illuminations and facial
expressions. The images are cropped and then resized to 32 32
pixels. For the YALE-B database [9], 38 subjects are used in this
work, with each person having around 64 near frontal images
under different illuminations. The images are cropped and then
resized to 32 32 pixels. In this work, gray-level features are
used for face recognition. For each face database, ten images
are shown in Fig. 3.

Fig. 3. Ten randomly selected image samples in each image database (From
top to bottom: UMIST, YALE-B, CMU PIE, and COIL-20).

Object Database: The COIL-20 database [16] consists of
images of 20 objects, and each object has 72 images captured
from varying angles at intervals of five degrees. We resize each
image to 32 32 pixels, and then extract a 1024 dimensional
gray-level feature for each image. Ten images are also shown in
Fig. 3.

Text Database: The 20-NEWS database3 is used for text cat-
egorization. The topic rec which contains autos, motorcycles,
baseball, and hockey was chosen from the version 20-news-
18828. The articles were preprocessed with the same proce-
dure as in [36]. In total, we have 3970 documents. We extract a
8014-dimensional token frequency-inverse document frequency
(tf-idf) feature for each document.

A. Semi-Supervised Learning

We compare FME with LGC [36], GFHF [37], TCA [15],
SDA [6], LapRLS/L [21] and MFA [30] for real recogni-
tion tasks. For dimension reduction algorithms TCA, SDA,
LapRLS/L, MFA, and our FME, the nearest neighbor classifier
is performed for classification after dimension reduction. For
LGC and GFHF, we directly use the classification methods pro-
posed in [36] and [37] for classification. For GFHF, LapRLS/L,
TCA, SDA, and our FME, we need to determine the Lapla-
cian matrix (or ) beforehand. We choose the Gaussian
function to calculate or , in which the graph similarity
matrix is set as , if (or ) is
among nearest neighbors of (or ); , otherwise.
For LGC, we used the normalized graph Laplacian matrix

, as suggested in [36]. For fair
comparison, we fix and set according to the method in
[17]. For LGC, GFHF and LapRLS/L, the diagonal matrix is
determined according to [36], [37], [21], respectively. For our
FME, we set the first and the rest diagonal elements
of the diagonal matrix as 1 and 0, respectively, similarly as
in LapRLS/L.

In all the experiments, PCA is used as a preprocessing step
to preserve 95% energy of the data, similarly as in [12], [30]. In
order to fairly compare FME with TCA, SDA, LapRLS/L, and
MFA, the final dimensions after dimension reduction are fixed
as . For SDA, LapRLS/L, TCA, and FME, two regularization
parameters (i.e., and in FME, and in LapRLS/L,
and in SDA and TCA) need to be set beforehand to balance
different terms. For fair comparison, we set each parameter to

, and then we report the
top-1 recognition accuracy from the best parameter configura-
tion.

3Available at http://people.csail.mit.edu/jrennie/20Newsgroups/.
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TABLE I
TOP-1 RECOGNITION PERFORMANCE (MEAN RECOGNITION ACCURACY � STANDARD DEVIATION %) OF MFA [30], GFHF [37], LGC [36], TCA [15], SDA [6],

LAPRLS/L [21], AND FME OVER 20 RANDOM SPLITS ON FIVE DATABASES. FOR EACH DATASET, THE RESULTS SHOWN IN BOLDFACE ARE SIGNIFICANTLY

BETTER THAN THE OTHERS, JUDGED BY T-TEST (WITH A SIGNIFICANCE LEVEL OF 0.05). THE OPTIMAL PARAMETERS ARE ALSO SHOWN IN PARENTHESES (�
AND � IN FME, � AND � IN LAPRLS/L, � AND � IN SDA AND TCA). NOTE THAT WE DO NOT REPORT THE RESULTS FOR MFA WHEN ONLY ONE SAMPLE

PER CLASS IS LABELED BECAUSE AT LEAST TWO LABELED SAMPLES PER CLASS ARE REQUIRED IN MFA. CONSIDERING THAT LGC AND GFHF CAN NOT COPE

WITH THE UNSEEN SAMPLES, THE RESULTS FOR LGC AND GFHF ON THE TEST DATASET ARE NOT REPORTED
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Fig. 4. Recognition accuracy variation with different parameter � for FME. The two rows show the results on the unlabeled dataset and unseen test dataset,
respectively. Three labeled samples per class are used in UMIST, and COIL-20 databases, and 30 labeled samples per class are used in 20-NEWS database. (a)
UMIST, (b) COIL-20, (c) 20-NEWS, (d) UMIST, (e) COIL-20, (f) 20-NEWS.

We randomly select 50% data as the training dataset and use
the remaining 50% data as the test dataset. Among the training
data, we randomly label samples per class and treat the other
training samples as unlabeled data. The above setting (referred
to as semi-supervised setting) has been used in [6] and it is
also a more natural setting to compare different dimension
reduction algorithms. For UMIST, CMU PIE, YALE-B, and
COIL-20 databases, we set as 1, 2, and 3, respectively. For
the 20-NEWS text database, we set as 10, 20, and 30, respec-
tively, because each class has much more training samples in
this database. All the training data are used to learn a subspace
(i.e., a projection matrix) or a classifier, except that we only use
the labeled data for subspace learning in MFA [30]. We report
the mean recognition accuracy and standard deviation over
20 random splits on the unlabeled dataset and the unseen test
dataset, which are referred to as Unlabel and Test, respectively,
in Table I. In Table I, the results shown in boldface are signifi-
cantly better than the others, judged by t-test with a significance
level of 0.05. We have the following observations.

1) Semi-supervised dimension reduction algorithms TCA,
SDA, and LapRLS/L outperform supervised MFA in terms
of mean recognition accuracy, which demonstrates that
unlabeled data can be used to improve the recognition
performance.

2) When comparing TCA, SDA, and LapRLS/L, there is no
consistent winner on all the databases. Among the three
algorithms, we observe TCA achieves the best results on
UMIST and COIL-20 databases, LapRLS/L is the best on
YALE-B and 20-NEWS databases, and SDA is generally
better on CMU PIE database, in terms of mean recognition
accuracy.

3) The mean recognition accuracies of LGC and GFHF are
generally better than TCA, SDA, and LapRLS/L on the

unlabeled dataset of UMIST, COIL-20, and 20-NEWS
databases, which demonstrate the effectiveness of label
propagation. But we also observe that the recognition
accuracies from LGC and GFHF are much worse than
TCA, SDA, and LapRLS/L on the unlabeled dataset of
CMU PIE and Yale-B databases, possibly because of the
strong lighting variations of images in the two databases.
The labels may not be correctly propagated in this case,
which significantly degrades the performances of LGC
and GFHF.

4) Our method FME outperforms MFA and semi-supervised
dimension reduction methods TCA, SDA, and LapRLS/L
in all the cases in terms of mean recognition accuracy.
Judged by t-test (with a significance level of 0.05), FME is
significantly better than MFA, TCA, SDA, and LapRLS/L
in 20 out of 30 cases. On unlabeled dataset, FME signifi-
cantly outperforms GFHF and LGC in 9 out of 15 cases.
While GFHF/LGC is significantly better than FME in one
case on COIL-20 database, LGC and GFHF cannot cope
with the unseen data.

Finally, we plot the recognition accuracy variation with dif-
ferent parameter for FME in Fig. 4, in which three labeled
samples per class are used in UMIST and COIL-20 databases,
and 30 labeled samples per class are used in 20-NEWS database.
We observe that FME is relatively robust to the parameter
when is small (i.e., ). We have similar observations
on other databases as well as with different number of labeled
samples. It is also interesting to observe that the results of FME
are the best when using small values for and when LGC or
GFHF performs well (see some cases on UMIST and COIL-20
databases). For these cases, the terms related to label fitness and
manifold smoothness are more important and therefore small
values for and can lead to the best performances for FME.
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Fig. 5. Top-1 recognition rates (%) with different feature dimensions on the UMIST, YALE-B, and CMU PIE databases. (a) UMIST, (b) YALE-B, (c) CMU PIE.

TABLE II
TOP-1 RECOGNITION PERFORMANCE (MEAN RECOGNITION ACCURACY � STANDARD DEVIATION %) OF PCA [25], LPP [12], LPP-SR [7], AND FME/U OVER 20

RANDOM SPLITS ON THREE FACE DATABASES. FOR EACH DATASET, THE RESULTS SHOWN IN BOLDFACE ARE SIGNIFICANTLY BETTER THAN THE OTHERS,
JUDGED BY T-TEST (WITH A SIGNIFICANCE LEVEL OF 0.05). NOTE THE LAST NUMBERS IN PARENTHESES ARE THE OPTIMAL DIMENSIONS AFTER DIMENSION

REDUCTION. THE FIRST NUMBER IN LPP-SR IS THE OPTIMAL � AND THE FIRST TWO NUMBERS IN FME/U ARE THE OPTIMAL PARAMETERS � AND �

However, the best results of FME are obtained by using small
value and large value in some cases on YALE-B and CMU
PIE databases when LGC/GFHF performs poor. For these cases,
the term related to the regression residue which models the mis-
match between and becomes more
important. However, it is still an open problem to determine the
optimal parameters for FME, which will be investigated in the
future.

B. Unsupervised Learning

We also compare FME/U with the unsupervised learning
algorithms PCA [25] and LPP [12] on three face databases
UMIST, CMU PIE and YALE-B. We also report the results from
LPP-SR, in which the Spectral Regression method [7] is used
to find the projection matrix in the objective function of LPP.
The nearest neighbor classifier is used again for classification
after dimension reduction. Five images per class are randomly
chosen as the training dataset and remaining images are used
as the test dataset. Again, PCA is used as a preprocessing step
to preserve 95% energy of the data in all the experiments. The
optimal parameters and in FME/U are also search from the
set , and we report the
best results from the optimal parameters. For LPP-SR, we use
a more dense set for the parameter

and report the best results. For PCA, LPP, LPP-SR, and
FME/U, we run all the possible lower dimensions and choose
the optimal dimensions corresponding to the best recognition
accuracies. We also report the mean recognition accuracy and
standard deviation over 20 random splits in Table II. Fig. 5
plots the recognition accuracy with respect to the number of
features.

We have the following observations.
1) LPP outperforms PCA on CMU PIE and YALE-B

databases, which is consistent with the prior work [12].

We also observe that LPP is slightly worse than PCA on
UMIST database, possibly because the limited training
data cannot correctly characterize the nonlinear manifold
structure in this database.

2) When comparing LPP and LPP-SR, there is no consistent
winner on all three databases.

3) Our work FME/U achieves the best results in all the cases,
which demonstrates that FME/U is an effective unsuper-
vised dimension reduction method.

VII. CONCLUSION

In this paper, we propose a unified manifold embedding
framework for both semi-supervised and unsupervised learning,
and most of existing dimension reduction methods are also
unified under the proposed framework. For semi-supervised di-
mension reduction, FME can provide mappings for unseen data
points through a linear regression function and effectively cope
with the data sampled from the nonlinear manifold by modeling
the regression residue. FME also utilizes the label information
from the labeled data as well as the manifold smoothness from
both labeled and unlabeled data. A simplified version referred
to as FME/U is also proposed for unsupervised dimension
reduction. The comprehensive experiments on five benchmark
databases clearly demonstrate that FME and FME/U outper-
form existing dimension reduction algorithms. In the future,
we plan to extend FME and FME/U to kernel FME and kernel
FME/U by using kernel trick as well as examine how to choose
optimal parameters for and .
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