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Abstract

We illustrate several recent results on efficient estimation for semiparametric
time series models with two types of AR(1) models: having independent and cen-
tered innovations, and having general and conditionally centered innovations. We
consider in particular estimation of the autoregression parameter, the stationary
distribution, the innovation distribution, and the stationary density.

1 Introduction

The purpose of this paper is to illustrate a number of recent results on efficient estimation
for semiparametric time series models in the context of a linear autoregressive process
of order one, Xi = ϑXi−1 + εi. In addition, we sketch the construction of efficient
estimators in this context. Historically, it was first assumed that the innovations εi are
i.i.d. with zero mean. We call this model I. For many applications, especially in the
recent econometrics literature, independence of the innovations is considered too strong
an assumption and is replaced by the weaker condition that the εi may depend on the
previous observation, with E(εi | Xi−1) = 0. We call this model II. It can be described
as a nonparametric Markov chain model fulfilling the constraint E(Xi | Xi−1) = ϑXi−1.
Structurally, the two models are quite different. Model I is very close to an i.i.d. model,
and efficient estimation of ϑ in particular has a long history. Efficient estimation of the
stationary law and of the law of the innovations is more recent. Model II is closer to the
full nonparametric Markov chain model, for which efficient estimation was considered in
the last decade only. Nevertheless, in certain respects model II is simpler than model
I because it has less structure. The full nonparametric Markov chain model has just
one (infinite-dimensional) parameter, the transition kernel. Model II is described by the
transition kernel and the parameter ϑ in the model for the conditional mean. This is
not a parametrization, because the transition kernel and the parameter in the constraint
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on the transition kernel do not vary independently. Model I has two parameters: the
innovation law and the autoregression parameter.

This paper does not follow the order of the historical development. Instead, we
follow the order of nesting of these models: Sections 2 to 4 treat first the full nonpara-
metric Markov chain model, then model II, and finally model I. We will only sketch the
arguments and refer the reader to the literature for details.

2 Nonparametric efficiency

of the least squares estimator

We begin by recalling some results on efficient estimation for general Markov chain
models: local asymptotic normality, characterizations of efficient and regular estimators,
and efficiency of empirical estimators. Let X0, . . . , Xn be observations from a real-
valued stationary Markov chain with transition kernel Q(x, dy). Let π, P = π ⊗ Q
and P (n) denote the laws of X0, (X0, X1) and (X0, . . . , Xn), respectively. Write Ph =∫
h(x, y)P (dx, dy) for the expectation of h(X0, X1), and Qxh =

∫
h(x, y)Q(x, dy) for

the conditional expectation of h(X0, X1) given X0 = x.

Local asymptotic normality. To describe asymptotic variance bounds and charac-
terize efficient estimators, we introduce a local model through (Hellinger differentiable)
perturbations Qnv(x, dy)

.
= Q(x, dy)(1+n−1/2v(x, y)). For Qnv to be a transition kernel,

the local parameter v must be in the space

V = {v ∈ L2(P ) : Qv = 0}.

This is the tangent space of the full nonparametric model. Write πnv, Pnv and P
(n)
nv for

the corresponding laws if Qnv is true. We have local asymptotic normality

log
dP

(n)
nv

dP (n)
(X0, . . . , Xn) = n−1/2

n∑
i=1

v(Xi−1, Xi)−
1

2
Pv2 + oP (n)(1),

n−1/2

n∑
i=1

v(Xi−1, Xi) ⇒ (Pv2)1/2N under P (n),

with N a standard normal random variable. Proofs under increasingly weaker conditions
are given by Roussas (1965), Höpfner, Jacod and Ladelli (1990), Penev (1991) and
Höpfner (1993a, 1993b).

Characterization of efficient estimators. Consider now a submodel, described by a
subset of the transition kernels. Its tangent space is obtained by perturbing Q within
the submodel. The tangent space is a subset of V , say V∗, which we take to be (closed
and) linear. A real-valued functional s(Q) is differentiable at Q with gradient g if g ∈ V
and

n1/2(s(Qnv)− s(Q))→ P [gv] for all v ∈ V∗.
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The canonical gradient g∗ is the projection of g onto V∗. An estimator ŝ of s is regular
at Q with limit L if L is a random variable such that

n1/2(ŝ− s(Qnv))⇒ L under P (n)
nv for all v ∈ V∗.

The convolution theorem says that L = (Pg2
∗)

1/2N + M in distribution, with random
variable M independent of N . This justifies calling a regular estimator ŝ efficient for s
at Q if L = (Pg2

∗)
1/2N in distribution.

An estimator ŝ is asymptotically linear for s at Q with influence function w if w ∈ W
and

n1/2(ŝ− s(Q)) = n−1/2

n∑
i=1

w(Xi−1, Xi) + oP (n)(1).

An asymptotically linear estimator is regular if and only if its influence function is a
gradient, and a (regular) estimator is efficient if and only if it is asymptotically linear
with influence function equal to the canonical gradient. The convolution theorem is due
to Hájek (1970). For the characterizations of regular and efficient estimators we refer to
Bickel, Klaassen, Ritov and Wellner (1998, Section 3.3).

Efficiency of empirical estimators. We return to the full nonparametric Markov
chain model. Suppose the chain is geometrically ergodic. Let h(x, y) be P -square-
integrable. We want to estimate the linear functional s(Q) = Ph = Eh(X0, X1). By a
perturbation expansion, see Kartashov (1985a, 1985b, 1996),

n1/2(Pnvh− Ph)→ P [Ah · v] for all v ∈ V,

where A is a projection from L2(P ) onto V , defined by

Ah(x, y) = h(x, y)−Qxh+
∞∑
j=1

(Qj
yh−Qj+1

x h). (2.1)

Hence Ph is differentiable at Q with canonical gradient Ah. On the other hand, the
empirical estimator 1

n

∑n
i=1 h(Xi−1, Xi) has the martingale approximation

n−1/2

n∑
i=1

(h(Xi−1, Xi)− Ph) = n−1/2

n∑
i=1

Ah(Xi−1, Xi) + oP (n)(1). (2.2)

This approximation has been found independently by several authors, in particular
Gordin (1969), Maigret (1978), Dürr and Goldstein (1986) and Greenwood and We-
felmeyer (1995). The approximation says that the empirical estimator is asymptotically
linear with influence function Ah. Hence the estimator is regular and efficient. This
was first proved by Penev (1991) without using the martingale approximation. The
above proof is due to Greenwood and Wefelmeyer (1995). A shorter proof, not using
the perturbation expansion, is obtained if one parametrizes the chain by the joint law
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P rather than the transition kernel Q; see Bickel (1993) and Bickel and Kwon (2001).
The approach is convenient for submodels given by constraints on P rather than Q. For
a discussion we refer to Greenwood, Schick and Wefelmeyer (2001). We use the above
approach because our submodels will be described in terms of the transition kernel of
the chain.

Efficiency of the least squares estimator in the full nonparametric model.
Write τ 2 =

∫
x2π(dx) = EX2

0 for the stationary second moment. The least squares
functional

ϑ(Q) = τ−2

∫
xy P (dx, dy) = E[X0X1]/EX2

0 (2.3)

is the minimizer in ϑ of∫
(y − ϑx)2 P (dx, dy) = E[(X1 − ϑX0)2].

A natural estimator is the empirical version of the functional, the least squares estimator

ϑ̂LS =

∑n
i=1 Xi−1Xi∑n
i=1 X

2
i−1

. (2.4)

This is the minimizer in ϑ of
∑n

i=1(Xi − ϑXi−1)2, i.e. the solution of the estimating
equation

n∑
i=1

Xi−1(Xi − ϑXi−1) = 0. (2.5)

The least squares estimator is the ratio of two empirical estimators. Since continuously
differentiable functions of efficient estimators are efficient, ϑ̂LS is efficient in the full
nonparametric model. We have

n1/2(ϑ̂LS − ϑ) =
n−1/2

∑n
i=1 Xi−1(Xi − ϑXi−1)
1
n

∑n
i=1 X

2
i−1

= τ−2n−1/2

n∑
i=1

Xi−1(Xi − ϑXi−1) + oP (n)(1). (2.6)

Hence, by the martingale approximation (2.2), ϑ̂LS is asymptotically linear with influence
function

w = τ−2AhLS, where hLS(x, y) = x(y − ϑx). (2.7)

The martingale central limit theorem implies that its asymptotic variance is

τ−4E[X2
0ε

2
1] + 2τ−4

∞∑
j=2

E[X0ε1Xj−1εj] (2.8)

with εj = Xj − ϑXj−1. We note that since ϑ̂LS is efficient and regular, its influence
function τ−2AhLS must be the canonical gradient of ϑ in the full nonparametric model.
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3 Linear autoregression

Let X0, . . . , Xn be observations from a Markov chain fulfilling the following constraint:
There is a number ϑ such that

E(X1 | X0 = x) =

∫
y Q(x, dy) = ϑx. (3.1)

This is model II. It is a submodel of the full nonparametric Markov chain model of
Section 2 and can be written as

Xi = ϑXi−1 + εi,

where the εi are martingale increments, i.e.

E(ε1 | X0) = E(X1 − ϑX0 | X0) = 0.

Asymptotic variance of the least squares estimator. The estimating equation (2.5)
for ϑ̂LS is now a martingale estimating equation since, in model II, Xi− ϑXi−1 are mar-
tingale increments. This simplifies the influence function and the asymptotic variance of
ϑ̂LS. The expansion (2.6) now says that ϑ̂LS has influence function hLS(x, y) = x(y−ϑx)
and asymptotic variance

τ−4PhLS = τ−4E[X2
0ε

2
1] = τ−4E[X2

0ρ
2(X0)],

where

ρ2(x) = E(ε2
1 | X0 = x) =

∫
(y − ϑx)2 Q(x, dy)

is the conditional variance of the innovation given that the previous observation is x.
By the characterization of regular estimators, hLS is a gradient of ϑ in model II.

Weighted least squares estimators. We will now see that the least squares estimator
is not efficient in model II. A large class of alternative estimators in model II is obtained
as solutions ϑ̂W of martingale estimating equations

n∑
i=1

Wϑ(Xi−1)(Xi − ϑXi−1) = 0 (3.2)

with predictable weights Wϑ(Xi−1). A Taylor expansion argument gives

n1/2(ϑ̂W − ϑ) = −E[Wϑ(X0)X0]−1n−1/2

n∑
i=1

Wϑ(Xi−1)(Xi − ϑXi−1) + oP (n)(1).

Hence ϑ̂W has asymptotic variance

E[Wϑ(X0)X0]−2E[Wϑ(X0)2ρ2(X0)].
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By the Cauchy–Schwarz inequality, the asymptotic variance is minimized for

W∗(x) = ρ−2(x)x.

Since ρ depends on the unknown transition kernel, the weight function W∗ cannot be
used in the estimating equation (3.2). Suppose we replace ρ by a consistent (kernel)
estimator ρ̂. The resulting estimating equation

n∑
i=1

ρ̂−2(Xi−1)Xi−1(Xi − ϑXi−1) = 0 (3.3)

leads to a weighted least squares estimator

ϑ̂II =

∑n
i=1 ρ̂

−2(Xi−1)Xi−1Xi∑n
i=1 ρ̂

−2(Xi−1)X2
i−1

(3.4)

with influence function M−1µ and asymptotic variance M−1, where

µ(x, y) = ρ−2(x)x(y − ϑx) and M = Pµ2 = E[ρ−2(X0)X2
0 ]

play the roles of score function and Fisher information for ϑ. The variance M−1 is
smaller than the asymptotic variance of the least squares estimator ϑ̂LS unless ρ happens
to be constant. Hence ϑ̂LS is not efficient in model II, in general.

Efficiency of the best weighted least squares estimator. We show that the
weighted least squares estimator ϑ̂II defined in (3.4) is efficient in model II. To cal-
culate the canonical gradient for ϑ in model II, we determine the tangent space of the
model. A perturbed transition kernel Qnv must also fulfill the constraint on E(X1 | X0),
possibly with perturbed parameter ϑnt = ϑ+ n−1/2t:∫

y Qnv(x, dy) = ϑntx for some x ∈ R.

This means that the tangent space VII of model II is the union of the affine spaces

Vt = {v ∈ V :

∫
yv(x, y)Q(x, dy) = tv}.

For t = 0 this is the tangent space when ϑ is known. Since v(X0, X1) is conditionally
centered, we can write V0 as

V0 = {v ∈ V :

∫
(y − ϑx)v(x, y)Q(x, dy) = 0}.

The orthogonal complement of V0 in VII is spanned by the function `(x, y) = ρ−2(x)x(y−
ϑx).
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The canonical gradient of ϑ is obtained as the projection of the gradient hLS(x, y) =
x(y − ϑx) onto VII . It must lie in the orthogonal complement of the tangent space V0

for known ϑ. Hence it must be of the form cµ(x, y), with constant c determined by
P [(hLS − cµ)µ] = 0, i.e. c = M−1. Therefore, the canonical gradient of ϑ in model II is
M−1µ. This equals the influence function of the best weighted least squares estimator
ϑ̂II defined in (3.4), which is therefore efficient. For generalizations of this result we
refer to Wefelmeyer (1996, 1997) and Müller and Wefelmeyer (2002a, b).

Improved empirical estimators. We have seen in Section 2 that the empirical esti-
mator 1

n

∑n
i=1 h(Xi−1, Xi) is efficient for Eh(X0, X1) in the full nonparametric model.

We will now construct better, efficient, estimators in the smaller model II, using the
constraint (3.1). We follow a heuristic plug-in principle, consisting of two steps. First
we consider model II with known ϑ and construct an efficient estimator of Eh(X0, X1)
for each ϑ. Then we replace ϑ by an efficient estimator ϑ̂. Under appropriate condi-
tions, the resulting estimator for Eh(X0, X1) will be efficient in model II with unknown
ϑ. This construction principle will resurface later in the paper. For general results on
the plug-in principle we refer to Müller, Schick and Wefelmeyer (2001a) and Klaassen
and Putter (2002).

Suppose first that ϑ is known. We have seen in (3.3) that the constraint E(ε1 |
X0) = 0 leads to new estimators for ϑ. It also leads to new estimators of Eh(X0, X1),
constructed by adding a correction term to the empirical estimator,

1

n

n∑
i=1

(
h(Xi−1, Xi)− c(Xi − ϑXi−1)

)
. (3.5)

By the martingale approximation (2.2), they have influence function Ah(x, y)−c(y−ϑx)
and asymptotic variance

∫
(Ah(x, y) − c(y − ϑx))2 P (dx, dy). By the Cauchy–Schwarz

inequality, this variance is minimized for

c∗(ϑ) = τ−2

∫
(y − ϑx)Ah(x, y)P (dx, dy).

Since c∗ depends on the unknown joint distribution of the Markov chain, it cannot be
used in (3.5). We replace c∗ by a consistent estimator ĉ∗, which does not change the
asymptotic variance, and obtain the best improved empirical estimator

1

n

n∑
i=1

(
h(Xi−1, Xi)− ĉ∗(ϑ)(Xi − ϑXi−1)

)
. (3.6)

An explicit construction of ĉ∗ is in Müller, Schick and Wefelmeyer (2001b).
We have seen in Section 2 that Eh(X0, X1) has gradient Ah. The canonical gradient

in model II with known ϑ is obtained by projecting Ah onto V0. This amounts to finding
c such that

∫
(Ah(x, y)−c(y−ϑx))2 P (dx, dy) is minimized, a problem we already solved

when we determined the improved empirical estimator (3.6). It follows that the canonical
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gradient equals the influence function of the estimator (3.6). Hence this estimator is
efficient in model II when ϑ is known.

Now suppose that ϑ is unknown. The plug-in principle says that

ÊIIh =
1

n

n∑
i=1

(
h(Xi−1, Xi)− ĉ∗(ϑ̂II)(Xi − ϑ̂IIXi−1)

)
(3.7)

is efficient for Eh(X0, X1) in model II. A version of this result for nonlinear regression
is in Müller and Wefelmeyer (2002a).

4 Independent innovations

Let X0, . . . , Xn be observations from the AR(1) model Xi = ϑXi−1 + εi, where the
innovations εi are now i.i.d., with mean zero and finite variance σ2, and |ϑ| < 1 to
ensure geometric ergodicity. This is model I.

Adaptivity. The transition kernel of model I is parametrized by ϑ and by the density,
say f , of the innovations:

Q(x, dy) = f(y − ϑx) dy.

The tangent space of model I will therefore be expressed in terms of perturbations
ϑnt = ϑ+n−1/2t and (Hellinger differentiable) perturbations fnu(z)

.
= f(z)(1+n−1/2u(z)).

Since f has mean zero, the functions u vary in

U = {u ∈ L2(f) : Eu(ε) = E[εu(ε)] = 0}.

The transition density is then perturbed as

fnu(y − ϑntx)
.
= f(y − ϑx)

(
1 + n−1/2

(
u(y − ϑx) + tx`(y − ϑx)

))
with ` = −f ′/f . The function ` is the score function for location of the innovation
distribution and very different from the score function µ in Section 3. We obtain that
the tangent space of model I is

VI = {u(y − ϑx) + tx`(y − ϑx) : u ∈ U, t ∈ R}.

Since Xi and εi = Xi − ϑXi−1 are independent in this model, the decomposition of VI
into functions u(y − ϑx) and the linear span of the function x`(y − ϑx) is orthogonal.
Note that the functions u(y−ϑx) form the tangent space for fixed ϑ, while the multiples
of x`(y − ϑx) are the tangent space for fixed f . Because they are orthogonal, ϑ can be
estimated adaptively with respect to f in the sense that the variance bound does not
increase if we do not know f .
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Estimating the autoregression parameter. Since ϑ is adaptive with respect to f ,
its canonical gradient can be calculated in the model with fixed f . Hence it is of the
form t∗x`(y − ϑx) with t∗ determined by

n1/2(ϑnt − ϑ) = t
!

= t∗t

∫
x2`(y − ϑx)2 P (dx, dy) = t∗tτ

2J,

where J = E[`(ε)2] is the Fisher information for location of the innovation distribution.
The solution of the above equation is t∗ = τ−2J−1. Hence a regular and efficient esti-
mator for ϑ in model I has influence function τ−2J−1x`(y − ϑx). It can be constructed
as one-step improvement of a n−1/2-consistent initial estimator, for example the least
squares estimator ϑ̂LS:

ϑ̂I = ϑ̂LS + τ̂−2Ĵ−1 1

n

n∑
i=1

Xi−1
ˆ̀(Xi − ϑ̂LSXi−1), (4.1)

where τ̂ , Ĵ and ˆ̀ are appropriate estimators of τ , J and `, respectively. For construc-
tions in more general autoregressive models see Kreiss (1987a, b), Jeganathan (1995),
Drost, Klaassen and Werker (1997), Koul and Schick (1997) and Schick and Wefelmeyer
(2002b).

Of course, in model I the asymptotic variance of the best weighted least squares
estimator ϑ̂II cannot be smaller than the asymptotic variance of ϑ̂I . Indeed, since
ρ(x) = σ in model I, the asymptotic variance of ϑ̂II and of the ordinary least squares
estimator ϑ̂LS both become τ−2σ2, while the asymptotic variance of ϑ̂I is τ−2J−1. Since
E[ε`(ε)] = 1, the Cauchy–Schwarz inequality gives σ2 ≥ J−1, with equality only if ε is
proportional to `(ε), i.e. for normal errors.

Estimating the innovation distribution. Estimators of functionals of the innovation
distribution can be based on residuals, i.e. on estimated innovations ε̂i = Xi − ϑ̂Xi−1.
Consider for example a linear functional Eh(ε) =

∫
h(z)f(z) dz, where h is f -square-

integrable. A simple estimator is the empirical estimator 1
n

∑n
i=1 h(ε̂i) based on the

residuals. It will not be efficient in model I since it uses neither independence nor
centeredness of the innovations. To obtain an efficient estimator for Eh(ε), we use again
the plug-in principle employed in Section 3 for efficient estimation of Eh(X0, X1). If ϑ is
known, we can observe the innovations. They are independent with mean zero density
f . Similarly as in Section 3, we can use the constraint Eε = 0 to introduce modified
empirical estimators

1

n

n∑
i=1

(h(εi)− cεi).

Their asymptotic variance is E[(h(ε) − Eh(ε) − cε)2]. The variance is minimized for
c∗ = σ−2E[εh(ε)]. The minimal variance is E[h(ε)2]−E[h(ε)]2− σ−2E[εh(ε)]2. It is not
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changed if we replace c∗ by a consistent estimator ĉ∗, for example a ratio of empirical
estimators. With this choice, the best modified empirical estimator for Eh(ε) is

1

n

n∑
i=1

(
h(εi)−

∑n
i=1 εih(εi)∑n

i=1 ε
2
i

εi

)
. (4.2)

This estimator is efficient in model I with known ϑ. The result goes back to Levit (1975).
The plug-in principle now says that

1

n

n∑
i=1

(
h(ε̂i)−

∑n
i=1 ε̂ih(ε̂i)∑n

i=1 ε̂
2
i

ε̂i

)
(4.3)

is efficient for Eh(ε) in model I if an efficient estimator ϑ̂I for ϑ is used in the residuals
ε̂i = Xi − ϑ̂IXi−1. This result is due to Wefelmeyer (1994). For generalizations to
nonlinear autoregression and to invertible linear time series see Schick and Wefelmeyer
(2002a, b). Generalizations to nonparametric autoregression models Xi = r(Xi−1) + εi,
with unknown regression function r, are also possible, even though r cannot be estimated
at the parametric rate n−1/2. See Akritas and Van Keilegom (2001) and Müller, Schick
and Wefelmeyer (2002) for corresponding results in nonparametric regression.

Estimating the stationary distribution. The simplest estimator for the expectation
Eh(X0) of a π-square-integrable function h is the empirical estimator discussed in Section
2. It will not be efficient in model I since it uses neither independence nor centeredness
of the innovations. The condition EX0 = 0 could be used just as for Eh(ε) in (4.2). To
make use of the independence of the innovations, we observe that for |ϑ| < 1 the AR(1)
process is invertible and has a moving average representation

X0 =
∞∑
j=0

ϑjε−j =
∞∑
j=1

ϑj−1εj

in distribution. Hence

Eh(X0) = Eh(S) with S =
∞∑
j=1

ϑj−1εj.

This is approximated by

Eh(S(m)) with S(m) =
m∑
j=1

ϑj−1εj

if m increases with n. To estimate Eh(X0), we will again use the plug-in principle.
Assume first that ϑ is known. Then we can observe the innovations εi = Xi − ϑXi−1,
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and we can estimate Eh(S(m)) by a U-statistic defined as follows. Let Φ denote the set
of one-one functions ϕ from {1, . . . ,m} into {1, . . . , n}. For ϕ ∈ Φ set

Sϕ(ϑ) =
m∑
j=1

ϑj−1εϕ(j) =
m∑
j=1

ϑj−1(Xϕ(j) − ϑXϕ(j)−1).

We estimate Eh(S(m)) by the average over these sums, the U-statistic

U(ϑ) =
(n−m)!

n!

∑
ϕ∈Φ

h(Sϕ(ϑ)).

If m is fixed, and if the stationary distribution is unrestricted, U(ϑ) is efficient for
Eh(S(m)). Schick and Wefelmeyer (2002c) show that U(ϑ) is also efficient for Eh(X0) if
m increases with n at an appropriate rate.

The only constraint on the stationary distribution is EX0 = 0. This constraint can
be used to improve the empirical estimator, similarly as in (3.5) and (4.2): Consider

U(ϑ, c) = U(ϑ)− c 1

n

n∑
i=1

(Xi − ϑXi−1).

Now note that by the Hoeffding decomposition, U(ϑ) is asymptotically linear with in-
fluence function w(y − ϑx), where

w =
∞∑
j=1

wj with wj(z) = E(h(S) | εj = z)− Eh(S).

The asymptotic variance of U(ϑ, c) is therefore minimized for

c∗(ϑ) = σ−2E[ε1w(ε1)].

The asymptotic variance is not changed if we replace c∗ by a consistent estimator, e.g.
by

ĉ∗(ϑ) =

∑n
i=1(Xi − ϑXi−1)

∑m
j=1 Hji(ϑ)∑n

i=1(Xi − ϑXi−1)2

with

Hji(ϑ) =
(n−m)!

(n− 1)!

∑
ϕ∈Φ,ϕ(j)=i

h(Sϕ(ϑ)).

If m increases at an appropriate rate, U(ϑ, ĉ∗(ϑ)) is therefore efficient for Eh(X0) in
model I with ϑ known. The plug-in principle now says that U(ϑ̂I , ĉ∗(ϑ̂I)) is efficient in
model I. This result is proved in Schick and Wefelmeyer (2002c) for general causal and
invertible linear processes.
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Estimating the stationary density. There is a rich literature on kernel estimators
for the stationary density of time series: see e.g. Chanda (1983), Yakowitz (1989) and
Tran (1992). Such estimators converge more slowly than the parametric rate n−1/2,
depending on the smoothness of the density. For linear processes one can however
use the independence of the innovations to obtain density estimators with convergence
rate n−1/2. This was first observed by Saavedra and Cao (1999, 2000). They write
the stationary density d of a moving average process Xi = εi + ϑεi−1 with innovation
density f in the convolution representation d(x) =

∫
f(x − ϑy)f(y) dy and estimate

d(x) by plugging in a kernel estimator f̂ for f . The resulting plug-in estimator d̂(x) =∫
f̂(x − ϑ̂y)f̂(y) dy converges at the parametric rate n−1/2. Schick and Wefelmeyer

(2002d) show that d̂(x) is efficient if an efficient estimator for ϑ is used, and Schick and
Wefelmeyer (2002e) prove functional convergence of such estimators for general MA(q)
processes. In the i.i.d. case, related plug-in estimators for other smooth functionals of
densities and regression functions have been studied before: see e.g. Hall and Marron
(1987), Bickel and Ritov (1988) and Birgé and Massart (1995) for nonlinear integral
functionals of densities and their derivatives, and Goldstein and Messer (1992) and
Samarov (1993) for analogous results in regression models.

By definition, the stationary density, say k, of our model I also has a convolution
representation:

k(x) =

∫
f(y − ϑx)k(y) dy.

We therefore obtain a n1/2-consistent density estimator

k(x) =

∫
f̂(y − ϑ̂x)k̂(y) dy

for appropriate choices of k̂, f̂ and ϑ̂. Such an estimator will however not be efficient,
since it does not use the assumption of independent innovations to its full extent. To get
an efficient estimator, one would again need to exploit the moving average representation
X0 =

∑∞
j=1 ϑ

j−1εj (in distribution) and approximate the density k by the density of

S(m) =
∑m

j=1 ϑ
j−1εj for m increasing with n at an appropriate rate.
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