A New Regularization of Coulomb
Friction

We present a new regularization of Coulomb’s law of friction that permits a straight-

D. Dane Quinn forwa_rd_incorporatipn pf frictional forces within _e_xist_ing numerical simgla_tions. Similar

) to existing regularizations, the proposed modification to Coulomb friction leads to a
continuous representation of friction and does not require the identification of transitions
between slip and stick. However, unlike more common regularizations, the current refor-
mulation maintains a structure at zero contact velocity that is identical to the classical,
discontinuous form of Coulomb friction. The implementation of this regularization is
presented through two examples in which slip-stick motion induced by sliding friction is of
primary importance. The first is a simple one degree-of-freedom system and illustrates the
existence of nontrivial equilibrium states. The second example is a multi-degree-of-
freedom system in which the present model provides a computationally efficient scheme
for simulating the dissipation arising from sliding friction. For systems in which slip-stick
transitions are important the proposed regularization provides a computationally efficient
scheme to obtain time-accurate simulatiof®Ol: 10.1115/1.1760564
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1 Introduction The predicted response of mechanical systems subject to Cou-
lomb friction is frequently very sensitive to the tuning of the nu-

Frictional contact problems exist in a wide variety of mechani-__ . : e . .
cal systems and give rise to energy dissipation, slip-stick instabi nerical algorithm used within the simulation. Indeed, standard

ties, and even chaotic motioisee for examplégl]). For single echniq_ur?scarei nott)ofri_oqsly .baﬂ at simulatingf the respdonse of sys-
> ; tems with Coulomb friction in the presence of repeated transitions
point contact between two bodies the force of friction, represeri?F- tween stick and slip. Quite oft%n the applicztion of standard

ing the interaction between the bodies in contact, is common . .
, o : Methods(such as Runge-Kutta algorithms or stiff solyeesads to
modeled through Coulomb’s law of friction, which can be rePr umerical chatter in the direction of both the velocity and fric-

sented as: tional force. Instead, numerous specialized numerical algorithms
f=—uNsgnx)f, x#0, and approaches tailored for nonsmooth dynamical systems have

(1)  been developef5—7]. However, their widespread use is limited
[fl<uN, x=0, because of their complexity and the computational requirements

) _ i . . often needed to resolve each transition between sticking and slid-
wheref is the frictional force andat is the.rela}tlve velqcny of the ing [8,9]. Unfortunately, without such specialized routines nu-
points of contact between the two bodies in question. Howevegerical simulations often fail not only to provide time-accurate
for zero contact velocity the inequality can be removed by coRp|utions, but to simply resolve the equilibrium state of the sys-
sidering the frictional force to be a function f;, the value of the tem_. The present work formulates an alternative representation of
friction force necessary to balance the gross force arising from gdction that removes the discontinuity noted above. Although this
other sources: model is developed for planar problems, the results can be directly

_ applied to more general three dimensional contacts.
f=feq, |fed <N,

f X
:MNﬁ, |fed>,uN,
e

Il
o

&) 2 Alternative Friction Models

As an alternative to the development and use of specialized
Therefore, when Eq¢1) and(2) are considered together, the fric-numerical routines, another common approach to simulating me-
tional force is written as a unique function of two quantitieschanical systems with friction is to develop a model of the fric-
namelyx andfgq, although this latter quantity only affects thetional force that reduces the numerical problems associated with
frictional force for x=0. This viewpoint is consistent with the the discontinuities in Coulomb friction at zero velocity. Such
force-balance friction model originally proposed by Karnd@h regularizations provide a modified representation for the force of
The classical definition of Coulomb friction is discontinuous afriction so that the numerical algorithm is no longer required to
x=0, giving rise to difficulties in the numerical simulation ofseparately identify the transitions between sticking and slipping.
mechanical systems with frictionﬂwhen slip-stick behavior plays Bhese regularizations come at the expense of time-accuracy when
central roleg[3,4]. However for|fe;t|=|f/> 1N we note that the compared to the implementation of specialized numerical algo-
discontinuity is only one sided. Fd,<— uN the friction force rithms for the discontinuous model of Coulomb friction. Because

is discontinuous ak=0", that is: the representation of friction has been modified, solutions to the
. . . regularized problem are not identical to those of the original dis-
f(X)[x=0= lim f(x)# lim f(x), continuous system. However, for a well-posed regularization, as
x-0" *=0" some fixed smoothing parameteis decreased, the two solutions
converge.

while for fo> uN the friction force is discontinuous a=0". As
a unique function of these two variables, the form of CoulomB
friction can be represented as shown in Figwith f=|f|).

Karnopp[2] introduced a threshold contact velocity magnitude,
elow which the kinematic degree-of-freedom of the system asso-
ciated with the frictional contact is eliminated—above this critical
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Fig. 1 Representation of Coulomb’s law of friction. The heavy Fig. 3 Velocity-based regularization of the classical law of fric-
line represents the friction force at zero velocity. tion (see Martins and Oden [12])

ing Tan and Rogerfl0], Tariku and Rogerg4], and Leine et al. ajtermative friction models also can be based on physical consid-

[11] to enhance the accuracy and numerical stability of Karnoppstations and may introduce additional internal variables to repre-

original model. However, in each of these reformulations, the frigent experimentally observed frictional phenomena, such as shear

tional force continues to possess discontinuities, particularly in thesistance or relaxatiofi5—17.

transition from slip to stick. ) _ . As an alternative regularization of Coulomb friction, the fol-
Finally, researchers have attempted to remove the dlscontmwwing model is proposed:

ties identified above. Such elimination allows for the force of

friction to be incorporated into standard numerical and analytical uN . .

techniques without the necessity for specialized treatment. One f=- T(X_g)v x={|<e,

such regularization proposed by Martins and OfER takes the ] (49)

form: X— .
" BOES
f=—(uN/e)x, |X|<e, 3) €
=—uNsgrx), [X/>e, where:
wheree is a fixed regularization parameter and the functionsgn (=efegl (uN)), - [feal (wN)|<1, (4b)
gives the sign of its argument. In this model the force of friction is =esgrfeq/(uN))  [feq/ (uN)[>1.

equivalent to a viscous damper near zero contact velogity ( . . .
|<e), saturating atx|=e. As a function of é(:feo) this proposed Althoug_h t_hls is S|_m|_lar in forr_n to Eq3), for x=0 this redu_ce_s to
regularization is shown in Fig. 3. However, the force of frictiorf® description of friction identical to standard Coulomb friction, as
proposed in Eq(3) must vanish at zero contact velocity so that? Ed- (2). Therefore, this modification eliminates the discontinui-
the velocity-limited regularization does not coincide with the cladi€s in the classical definition of friction while maintaining the
sical definition of Coulomb friction fok=0 (cf. Figs. 1 and B In structure of the friction que] at zero contact velouty: In Fig. 4
fact, ase—0, Eq.(3) does not converge pointwise to a descriptiofiS Proposed model of friction is shown as a function of the
of Coulomb friction. relative contact_ve_:locny( andf,q, the force required to bglance
Smooth regularizations, similar in form E), have also been the gro_ss(n_on-frlctlongb_force. In contrast to the velocity-limited
proposed 13,14}, although they suffer from the same discrepanciggularization, the frictional model given in Eqgl) converges
between their value at zero contact velocity and the predictions fffintwise to the classical definition of Coulomb friction @s0
Coulomb friction. Thus, while such regularizations allow one t_gn_d in partlcular the structure of t_hg regularization at zero velocity
easily incorporate friction into computational models, the result$ identical to that of Coulomb friction. ) )
ing behavior can be qualitatively different from that predicted Because the force of friction has been given an analytic repre-

when using the classical definition of Coulomb friction. Finally?emation near zero contact velocity, the solution to dynamical
systems subject to Eq&}) can no longer reach a state of sticking

Fig. 2 Threshold contact velocity model as proposed by Kar-
nopp [2], represented in terms of x and feq Fig. 4 Modified friction law proposed in Egs. (4)
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(5) (4th-order Runge-Kutta method, At=0.01). Each inte-
(x(0),x(0))=(2.75,0.00). Note the different scale used

Fig. 5 Numerical simulations of Eq.
gration begins with the initial conditions
in Fig. 5 (c).

in finite times. Instead, such systems exhibit exponential decay3.1.1 Unforced ResponseWe first consider the unforced re-
near the zero contact velocity state. However, the numerigponse(a=0). The system is subject to the initial conditions
implementation of Eqs(4) leads to a stiff system of differential (x(0),x(0))=(2.75,0.00) and the response is shown in Fig. 5.
equations near the sticking state that rapidly approaches ther the initial interval of sliding, each simulation is nearly iden-
asymptotic state, with the possible zero velocity states to whichigal. However, once the trajectory “sticks(that is, reaches a
response can approach being identical to those that exist with $igte for whichx(t) is approximately §) the trajectories diverge.
use of the discontinuous model of Coulomb friction. Because of the discontinuity in the standard definition of Coulomb
friction, the numerical simulation suffers from discretization er-
. . . rors and begins to drift toward the origisee Fig. £)). This can
3 Numerical Simulations be explained by noting that due to the discrete nature of the nu-
The significant advantage in the use of E@8.comes with the merical simulation, the system never exactly satisfies the condi-
numerical simulation of frictional systems by simple, commonlgion x=0. Instead, as the system approaches the equilibrium the
used numerical algorithms. Because the force of friction describ&éttional force jumps erratically betweehl and—1 (force chat-
by Egs. (4) possesses a continuous representation, simulatiaes as the velocity never takes a numerical valuexéctlyzero.
based on fixed step sizes are significantly less sensitive to numeikewise, using Karnopp’s original force-balance modelot
cal error. Moreover, the present regularization does not require tgown the response fails to reach a nonzero equilibrium point.
simulator to resolve the transitions between intervals of stick andSimulating with the regularization presented in HS) the
slip. The model of Eqg(4) shares these features with that given ifnodel no longer possesses nontrivial equilibrium points. There-
Eqg. (3). However, unlike common regularizations of friction, Eqgsfore, the system can never equilibrate at a nonzero displacement
(4) maintains a structure at zero contact velocity that is identicg jljustrated in Fig. &). It suffers the same long-term fate as the
to that described by Coulomb friction, therefore allowing gjirect implementation of Coulomb friction, although because Eq.
straightforward and computationally efficient simulation of sliprg) js continuous the frictional force does not chatter, and the drift
stick behavior. In the numerical studies below, a 4th-order Rung@iyard the origin is smooth.

Kutta method is applied with fixed step size. However, simula- | conirast, using the regularization presented in Eds.the
tions with adgptlve step size as well as stiff integrators exhlbl_tt stem approaches a nontrivial equilibrium &t nue=
same b_ehawo(_e.g., force e_md velocity chatter for the cla_sswa_ 0.750090. This value can be compared with the ex;ét value of
cscontiruous Implementabes shOUT b 11 APPSR o ~0.750000. The numerical ntegration no onger suffers
* from the long-term drift that characterizes the results shown in

3.1 1-dof Oscillator. To illustrate these properties, we firstFigs. %a) and §b) and moreover, since the friction model is con-
consider the numerical simulation of a simple forced harmoniiiuous the simulation does not suffer from force chatter, as illus-

oscillator, subject to the representations of friction given in Eq&ated in Fig. 6.
(1), (2), (3), and(4), that is: Regularization Error As illustrated in the above example, the

. ) response of the system with the friction regularization given in
X+ X= friction + @ SiN(w1). () Egs.(4) is qualitatively identical to the closed-form solution of
For this system, the force required to balance the nonfrictiongf. (5). However, the regularization does alter the form of Cou-
forces is simply: lomb friction so that the regularized response, definea &5,

will differ from the exact solutiorxg,(t). s we show below, this
error due to the introduction of the regularized friction model is
In each computation we use a 4th-order Runge-Kutta method wittinimal.

fixed step size ofAt, and with uN=1.00. Unless notedAt Provided the sliding velocity is sufficiently large, the regular-
=0.01. This algorithm is one of the most commonly used methodzed and exact friction force will be identical. Therefore, we com-

foq=X—a sin(wt).

for numerically solving systems of equations.

Finally, in Egs.(3) and (4), we chooses=2At. All variables

are of double precision.

Journal of Vibration and Acoustics

pare the resulting solutions beginning at the point where the fric-
tion models first differ. We consider the response subject to the
initial conditions:
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I NI B W nition of Coulomb friction can be solved in closed form over any
F ] time interval of constant sliding direction. The transition between
05 - E intervals is determined by solving for the time at which the sliding
- E velocity vanishes—the solution to a transcendental equation that

= OF . . ; .
3 ] must be performed numerically. The result is a semi-analytical
I S P E solution for the dynamical behavior of E¢). In what follows
T ] this semi-analytical solution is convergent to the 12th significant
P e digit. We refer to this as the “exact” solution, in contrast to purely
¢ numerical solutions generated by solving Ef) using for ex-

' _ o ample, as in this work, Runge-Kutta methods. With sufficiently
Fig. 6 Force evolution for the proposed friction model (Egs.  small At, each of the friction models considered above can accu-

(4)) near the point of sticking  (cf. Fig. 5(c)). Note that 2.50 <t r5tely resolve the motion of the system, provided the system does
=3.50. The dashed line represents x(1) while the solid line re- ¢ \\ndergo permanent stickings was illustrated in Section
flects f(t), the value of the frictional force as a function of time. 3.1.10. However, the rate at which the predicted response con-
verges to the exact solution varies for each of the models.
The frictional dissipation per unit forcing cycle can be written

. Xo as:
= = —| ———— <
X(0)=Xq, x(0) 2N | 2N 1|<0,
with |Xo| <(uwN—o0(€)). The exact solution can easily be found to 2mlo.
be: | O| D=- X(1) Friction(t) dt.
0
Xex(1) = A cot— ¢) + uN,
with: The value oD is sensitive to the representation of friction and, in
> 5 particular, the behavior of the system at the transitions between
A= \/(x — N2+ € ﬁ—l stick and slip. In Fig. 7 we calculate the percent error in the

0T K 4 | uN frictional dissipation per unit forcing cycle, defined as:

t €

ang= ——. —

Y 9o D~ Do

. D
Therefore, the system comes to rest at a valyg, with: exact

2
P €
Xex = \/(XO_/-LN) +Z

2

+uN for each of the frictional models ast is decreased. The frictional

oscillator was integrated for 49 forcing cycles to remove any tran-
sient dynamics. The frictional dissipation was then calculated on
B , %o~ 4N 4 the following forcing cycle. The exact valuB,,,, iS calculated
=Xote€ W O(e€). from the semi-analytical solution described above.
K In Fig. 7(a), the forcing frequency and amplitude were chosen
Using the regularized friction model, in this interval the frictiorso that the system undergoes a sustained period of sticking during
force becomes: the response, and the response exhibits slip-stick transitions. The
24N regularization tolerance was chosen todse2At. Although this
f=— L)'(Jrfe . regularization leads to a stiff system of equations near the equi-
q libria, the sliding velocities ar€(e) and for this value ok (as a
function of At) numerical instability is not encountered.
As expected, for the proposed model the percent errdd in

Xo
aN

With feq=Xx, in this interval of motion Eq(5) reduces to:

. 2pN, scales asAt)2. In contrast, both the classical implementation of
Xe=— € Xe- Coulomb friction and the velocity limited regularization scale as
N . . At. We note that regularized models vary smoothly, while the
For the above initial conditions the solution becomes: classical implementation varies irregularly due to the discontinu-
Xo— N Xo— N ity in its definition. The_ _classica_l _implementation is also sensitive

X (t)= ( Xo+ €2 _ 2 g~ (2uNlet to, for example, the initial conditions of the system.
4(uN)? 4(uN)? In Fig. 7(b), the forcing frequency and amplitude were chosen

so that the system does not undergo an interval of sticking during

and the system comes to rest at a vatye, with: the response. In this simulation, the regularized models give com-

Xo— uN parable results while the straightforward implementation of the
Xef=Xot+ € 5" classical definition performs best. However, again the results from
4(uN) the regularized models vary smoothly, while the result from the
The error due to the regularizati@= Xeyacts — X 1 IS SiMply: clagsical implementation varies irregularly. Notice that the dissi-
pation error in each model scales ast)?.
Xo— uN
er=—52°—'u2 O(eh). (6) 3.2 n-dof Oscillator. We consider am-degree-of-freedom
4(uN) model composed of an elastic chain of elements on a frictional

Therefore the position error induced by this regularized model §&'face, as illustrated in Fig. 8. This system is a version of the
O(¢€?) for fixed uN. Also, as noted above, the regularized mod&urrldge-Knopﬁ model _usgd to s'gudy earthquake fal_[lllts,;LS_] .
does not come to rest in finite time, as is predicted with the use @fd more recently the dissipation induced by mechanical joints in

Coulomb friction. However, the system does decay exponential rrl:i(lzzf\l:rglrost'))llgrﬁrﬂﬁiznogz;].m?xeerge(;if?etrzlr#gl gzjveebrgzszlcj)ﬁ;i?agon
fast to the equilibrium point, with a decay ratel/e. ; 3 " . Rt -~
d P Y € in which the transitions between stick and slip are explicitly de-

3.1.2 Forced ResponselLike the unforced response, for non-termined.
zero forcing the behavior of E@5) subject to the classical defi- The discrete equations of motion are written as:
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Fig. 7 Percent dissipation error per forcing cycle (n=1). Degyact is the value calculated from the
semi-analytical solution. The proposed friction law is marked with triangles and connected by solid

lines, the classical definition of Coulomb friction is marked with squares and connected by long
dashes, while the velocity-limited friction law is marked with pentagons and connected by short
dashes. In panel b, the proposed and velocity-limited regularizations are almost coincident.

; fy to undergo partial slip for loading amplitudkg<1. The dissipa-

5 U;+n(ug—uy)= . G(1), tion induced by the frictional interface per cycle of the forcing is:

1 . f2 1 27w

U2t n(—up+2u;—ug)= =, D=—HE f Ui(t)fi(t)dt).

i=1\Jo
The dissipation is very sensitive to the representation of the fric-

EU-+n(fu- Ui U, )= E tion force. As in the one degree-of-freedom example, this system
n! -1 oY e is integrated using a 4th-order Runge-Kutta method with fixed

step size ofAt. In the regularized model€Egs. (3) and (4)), we
choosee=10w- At. All variables are of double precision. With

4 £ this value ofe, as the step size approaches zero, each friction
ﬁun+n — §un—l+4un) = _”, regularization converges to the classical definition of Coulomb
friction.

We restrict the external loading to be harmonic, of the form In Fig. 9 we show the dissipation per forcing cycle as the nu-
G(t)= a sin(wt). The description of the friction forcé follows Mmerical step size is varied. In the calculationdfwe begin the
from the appropriate model of frictiofEgs. (1), (2), (3), or (4)). Simulation with zero initial conditions and integrate for three forc-
Likewise, foq; represents the force required to impose zero accéld cycles to remove any transient dynamid@sumerically we
eration on theith element. For exampléf,eq; and fq, can be find that for the low forcing frequencies considered, the dissipa-
written as: tion per cycle settles down after the second forcing cyclée
5 value of D shown is then determined from the fourth forcing

feqi=n“(uy—Uy) +nG(1), cycle. For each model of friction, the dissipation per cycle con-
verges toD;=0.0105 asAt is decreased. However, as seen in the
figure, asAt is increased, the implementation of both the classical
As the number of blocks increases, the computational requirgefinition of friction as well as the velocity-limited friction model
ments necessary to solve the exact problem, that is, to explicigxhibit significant errors. In contrast, the dissipation calculated
identify the transitions of each block between stick and slip, intsing the proposed model given in E@4) remains much more
crease significantly and one could recast this system into the foemcurate over several orders of magnitiide to At=0.01 is this
of a Linear Complementarity Problef2]. Instead, we apply the simulatior). Note that unlike the single degree-of-freedom ex-
regularization presented above, allowing us to solve this systeimple described above, the application of a semi-analytical solu-
using a straightforward, fixed step size algorithm, without alteringon for this problem is, although possible, computationally
the formulation of the problem. intensive.

For this system, the lowest natural frequency of the chain ap-

proaches unity as— . Also, the chain of oscillators is expected_ 3-3 Multiple Frictional Contacts.  In the examples of Secs.
3.1 and 3.2, the gross fordg, across each interface is uniquely

determined by the configuration of the system. However, for prob-

lems in which multiple frictional contacts occur on the same rigid
puN1 [pN2 pN; uNy body the forcef ., at each contact necessary to balance the remain-

ing forces on that body depends on the state of the remaining

feqz=N?(— U1+ 2Uy—Ug),

G(t) N contactg(slip vs. stick. Karnopp overcame this by separately for-
- [ | | : mulating different sets of equations depending on the state of the
R T contacts[2]. Similarly, with the current regularization described

by Egs.(4), e must be determined in a way consistent with the

U1 Us U, Un, contact statef22,23.
Determiningfeq is particularly straightforward if the equations
Fig. 8 n-dof discrete model. We consider uniform normal of motion can be partitioned into those variables associated with
loads, with uN;=1. states of potential sticking, including near-sticking, and those de-
Journal of Vibration and Acoustics JULY 2004, Vol. 126 / 395
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+ o g Fig. 10 Multiple frictional contacts. The lower block rests on a
- surface moving with velocity — u(t).
102l = A
E o sl 5 sl 00 o , , .
10-5 10-4 10-3 10-2 while if the upper interface is near a state of stickifigp(<e):
At . 1 .
== (f1+ KkXy—Xq).
Fig. 9 Friction-induced dissipation for the n-dof chain (n 2.4 2( 1+ X X)

=32, a=0.25, »=0.50) as the numerical step size At is varied.

The proposed friction law is marked with triangles and con- We emphasize that for the lower interface, the forgg, depends

nected by solid lines, the classical definition of Coulomb fric- on f,, which is only equal td;, ¢ if the second interface is also
tion is marked with squares and connected by long dashes, '_sticking. If instead the second interface is undergoing slip with
while the velocity-limited friction law is marked with pentagons Z,>¢€, thenf, takes on its sliding friction value. A similar state-
and connected by short dashes. ment holds for the force at the upper interface. With the values of

foq Specified, the actual frictional forces used in E@8.are de-
termined by the proposed regularization. A numerical simulation

scribing sliding motiongincluding all nonfrictional contacjsFor of the stick-slip motions that this system can undergo is shown in

a system withn frictional contacts, the equations for the relativ{;ﬁ]l' 1;tf(r)égt(ta)1r1:d5|trll(ggos)t.em thésrasrlnrgltjcla?gOgr:?i(;rt]ezl?ﬁktﬁlseIrf]il_ure
motion across the interfaces can be written as: y Y P 9

caption. Figure 1(b) shows the relative velocities across each
Ri1 Rp interface and one can clearly see substantial intervals of sticking
R21 R22

across both interfaces. Finally, these results are indistinguishable
from simulations performed using the classical definition of Cou-

whereZzg;,e R’ represents the acceleration variables that are cdemb friction.

rently sliding with[ zg;,]; > €, andzgicce R™ denotes those that are

near sticking so thdtzg;q];<e. Heree again represents the regu-4  Discussion

larization parameter and+m=n. Also, ue R’ is the sliding  The proposed regularization of Coulomb’s law of friction al-
friction force at each slipping contact while= R™ is the regular- |ows for a straightforward incorporation of friction within exist-
ized frictional force for those contacts with incipient slip. Thang, commonly used numerical algorithms. The frictional model is
termsf,, contain all non-frictional forces partitioned according t continuous function of the system stétee contact velocity and
the slip and stick variables. With this formulatidigue K™ is de-  the force required to instantaneously impose zero acceleyation

7
fr

fex,slip _

Zslip
Zstick

fex,stick

termined by settingg;=0, so that: and therefore does not exhibit numerical chatter near transitions
foom Ry (o i Rog o) between stick and slip for sufficiently small step sizes. In addition,
eq— 22 Uexstick™ 21" this reformulation allows for nontrivial equilibrium states without

Oncef,,is determined the proposed friction regularization can dbe need to separately identify these transitions between states of
used and the dynamic equations of motion remain continuous.slip and stick within the numerical algorithfd].

As an example of multiple contacts, we consider the systemThe computational requirements associated with Edsare
shown in Fig. 10, consisting of two blocks resting one on thalmost identical to both the classical definition of Coulomb fric-
other. The lower block then rests on a moving belt and each mdis as well as velocity-limited representations, as in 4. The
is connected to the ground by a linear spring. The nondimensioalculation off from Eqs.(4) requires a single additional calcula-
equations of motion for this system can be written as: tion of the quantityZ (c.f., Eq.(4)). In the examples considered,
the use of constant step size algorithms, without the need to ex-
plicitly identify the transitions between slip and stick, more than
(7o) compensates for this minimal cost. Finally, as evidenced in Fig. 9,

one can often use step sizes that are orders of magnitude larger
where f, represents the friction force between the belt and th@an in simulations with alternative friction laws.
lower surface, whild, is the friction force acting between the two  The proposed regularization does not seek to develop a more
blocks. The coefficient of friction between the two blocksuis  fundamental, physics-based model of frictidlike those using
while the coefficient of friction between the lower block and thenternal variables nor does it attempt texactly represent the
belt is ;. In terms of the relative velocities across the frictionjiscontinuous Coulomb models do many complementarity-
interfaces: based formulations Instead, it provides a computationally effi-
cient model that converges to Coulomb friction as the regulariza-
tion parametek is decreased, which does not suffer from many of
the equations for the relative accelerations across the interfagges numerical problems seen in other, more commonly used regu-
are: larizations(primarily near the equilibrium valugsFor problems
1 —1] in which slip-stick transitions play a central role, the proposed
[ a8 model may be used with minimal additional effort by the simula-
-1 2 |[f2 tor and to obtain reasonable quantitative accur@gpending on

If the lower surface is at or near a sticking state, so thdtse, €.
then the gross force can easily be determined as:

X1 +x=1,—f,, (7a)

Xo+ kX, =15,

z1=X1-U(t), Zp=Xp—Xq,

U+x,
KX2_X1

Z
Z,

As for any regularization technique, the parametshould be
chosen with care. Examining E¢B), e should be chosen so that
f1eq=(U+xy)+f5, the quantitye/(uN) is small to minimize the regularization error.
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Fig. 11 Stick-slip dynamics generated with multiple frictional contacts with K=2, pq

=0.50, u,=0.25, u(t)=sin(0.50t). In each panel the lower block (x;,z;) is indicated by the
solid line while the response of the upper block (x,,2,) is dashed.
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