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A New Regularization of Coulomb
Friction
We present a new regularization of Coulomb’s law of friction that permits a straig
forward incorporation of frictional forces within existing numerical simulations. Simi
to existing regularizations, the proposed modification to Coulomb friction leads
continuous representation of friction and does not require the identification of transit
between slip and stick. However, unlike more common regularizations, the current r
mulation maintains a structure at zero contact velocity that is identical to the class
discontinuous form of Coulomb friction. The implementation of this regularization
presented through two examples in which slip-stick motion induced by sliding friction
primary importance. The first is a simple one degree-of-freedom system and illustrat
existence of nontrivial equilibrium states. The second example is a multi-degre
freedom system in which the present model provides a computationally efficient sc
for simulating the dissipation arising from sliding friction. For systems in which slip-s
transitions are important the proposed regularization provides a computationally effic
scheme to obtain time-accurate simulations.@DOI: 10.1115/1.1760564#
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1 Introduction
Frictional contact problems exist in a wide variety of mecha

cal systems and give rise to energy dissipation, slip-stick insta
ties, and even chaotic motion~see for example@1#!. For single
point contact between two bodies the force of friction, represe
ing the interaction between the bodies in contact, is commo
modeled through Coulomb’s law of friction, which can be rep
sented as:

f52mN sgn~ ẋ! t̂, ẋÞ0,
(1)

ufu<mN, ẋ50,

wheref is the frictional force andẋt̂ is the relative velocity of the
points of contact between the two bodies in question. Howe
for zero contact velocity the inequality can be removed by c
sidering the frictional force to be a function offeq, the value of the
friction force necessary to balance the gross force arising from
other sources:

f5feq, ufequ<mN,

5mN
feq

ufequ
, ufequ.mN,J ẋ50. (2)

Therefore, when Eqs.~1! and~2! are considered together, the fric
tional force is written as a unique function of two quantitie
namely ẋ and feq, although this latter quantity only affects th
frictional force for ẋ50. This viewpoint is consistent with the
force-balance friction model originally proposed by Karnopp@2#.
The classical definition of Coulomb friction is discontinuous
ẋ50, giving rise to difficulties in the numerical simulation o
mechanical systems with friction when slip-stick behavior play
central role@3,4#. However forufeq"t̂u[u f equ.mN we note that the
discontinuity is only one sided. Forf eq,2mN the friction force
is discontinuous atẋ502, that is:

f ~ ẋ!u ẋ505 lim
ẋ→01

f ~ ẋ!Þ lim
ẋ→02

f ~ ẋ!,

while for f eq.mN the friction force is discontinuous atẋ501. As
a unique function of these two variables, the form of Coulom
friction can be represented as shown in Fig. 1~with f 5ufu).
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The predicted response of mechanical systems subject to C
lomb friction is frequently very sensitive to the tuning of the n
merical algorithm used within the simulation. Indeed, stand
techniques are notoriously bad at simulating the response of
tems with Coulomb friction in the presence of repeated transiti
between stick and slip. Quite often, the application of stand
methods~such as Runge-Kutta algorithms or stiff solvers! leads to
numerical chatter in the direction of both the velocity and fr
tional force. Instead, numerous specialized numerical algorith
and approaches tailored for nonsmooth dynamical systems
been developed@5–7#. However, their widespread use is limite
because of their complexity and the computational requireme
often needed to resolve each transition between sticking and
ing @8,9#. Unfortunately, without such specialized routines n
merical simulations often fail not only to provide time-accura
solutions, but to simply resolve the equilibrium state of the s
tem. The present work formulates an alternative representatio
friction that removes the discontinuity noted above. Although t
model is developed for planar problems, the results can be dire
applied to more general three dimensional contacts.

2 Alternative Friction Models
As an alternative to the development and use of speciali

numerical routines, another common approach to simulating
chanical systems with friction is to develop a model of the fr
tional force that reduces the numerical problems associated
the discontinuities in Coulomb friction at zero velocity. Suc
regularizations provide a modified representation for the force
friction so that the numerical algorithm is no longer required
separately identify the transitions between sticking and slippi
These regularizations come at the expense of time-accuracy w
compared to the implementation of specialized numerical al
rithms for the discontinuous model of Coulomb friction. Becau
the representation of friction has been modified, solutions to
regularized problem are not identical to those of the original d
continuous system. However, for a well-posed regularization
some fixed smoothing parametere is decreased, the two solution
converge.

Karnopp@2# introduced a threshold contact velocity magnitud
below which the kinematic degree-of-freedom of the system as
ciated with the frictional contact is eliminated—above this critic
relative speed Coulomb friction applies. In terms of the quantit
ẋ and f eq, this model can be represented graphically as see
Fig. 2. This method was extended by several researchers, inc

ion
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ing Tan and Rogers@10#, Tariku and Rogers@4#, and Leine et al.
@11# to enhance the accuracy and numerical stability of Karnop
original model. However, in each of these reformulations, the f
tional force continues to possess discontinuities, particularly in
transition from slip to stick.

Finally, researchers have attempted to remove the discont
ties identified above. Such elimination allows for the force
friction to be incorporated into standard numerical and analyt
techniques without the necessity for specialized treatment.
such regularization proposed by Martins and Oden@12# takes the
form:

f 52~mN/e!ẋ, uẋu<e,
(3)

52mN sgn~ ẋ!, uẋu.e,

wheree is a fixed regularization parameter and the function sgn~•!
gives the sign of its argument. In this model the force of friction
equivalent to a viscous damper near zero contact velocityuẋ
u,e), saturating atuẋu5e. As a function of (ẋ, f eq) this proposed
regularization is shown in Fig. 3. However, the force of frictio
proposed in Eq.~3! must vanish at zero contact velocity so th
the velocity-limited regularization does not coincide with the cla
sical definition of Coulomb friction forẋ50 ~cf. Figs. 1 and 3!. In
fact, ase→0, Eq.~3! does not converge pointwise to a descripti
of Coulomb friction.

Smooth regularizations, similar in form Eq.~3!, have also been
proposed@13,14#, although they suffer from the same discrepan
between their value at zero contact velocity and the prediction
Coulomb friction. Thus, while such regularizations allow one
easily incorporate friction into computational models, the res
ing behavior can be qualitatively different from that predict
when using the classical definition of Coulomb friction. Final

Fig. 1 Representation of Coulomb’s law of friction. The heavy
line represents the friction force at zero velocity.

Fig. 2 Threshold contact velocity model as proposed by Kar-
nopp †2‡, represented in terms of ẋ and f eq
392 Õ Vol. 126, JULY 2004
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alternative friction models also can be based on physical con
erations and may introduce additional internal variables to rep
sent experimentally observed frictional phenomena, such as s
resistance or relaxation@15–17#.

As an alternative regularization of Coulomb friction, the fo
lowing model is proposed:

f 52
mN

e
~ ẋ2z!, uẋ2zu<e,

(4a)

52mN sgnS ẋ2z

e D , uẋ2zu.e.

where:

z5e~ f eq/~mN!!, u f eq/~mN!u<1,
(4b)

5e sgn~ f eq/~mN!! u f eq/~mN!u.1.

Although this is similar in form to Eq.~3!, for ẋ50 this reduces to
a description of friction identical to standard Coulomb friction,
in Eq. ~2!. Therefore, this modification eliminates the discontinu
ties in the classical definition of friction while maintaining th
structure of the friction model at zero contact velocity. In Fig.
this proposed model of friction is shown as a function of t
relative contact velocityẋ and f eq, the force required to balanc
the gross~non-frictional! force. In contrast to the velocity-limited
regularization, the frictional model given in Eqs.~4! converges
pointwise to the classical definition of Coulomb friction ase→0
and in particular the structure of the regularization at zero velo
is identical to that of Coulomb friction.

Because the force of friction has been given an analytic rep
sentation near zero contact velocity, the solution to dynam
systems subject to Eqs.~4! can no longer reach a state of stickin

Fig. 3 Velocity-based regularization of the classical law of fric-
tion „see Martins and Oden †12‡…

Fig. 4 Modified friction law proposed in Eqs. „4…
Transactions of the ASME
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Fig. 5 Numerical simulations of Eq. „5… „4th-order Runge-Kutta method, DtÄ0.01…. Each inte-
gration begins with the initial conditions „x „0…, ẋ „0……Ä„2.75,0.00…. Note the different scale used
in Fig. 5 „c….
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in finite times. Instead, such systems exhibit exponential de
near the zero contact velocity state. However, the numer
implementation of Eqs.~4! leads to a stiff system of differentia
equations near the sticking state that rapidly approaches
asymptotic state, with the possible zero velocity states to whic
response can approach being identical to those that exist with
use of the discontinuous model of Coulomb friction.

3 Numerical Simulations
The significant advantage in the use of Eqs.~4! comes with the

numerical simulation of frictional systems by simple, common
used numerical algorithms. Because the force of friction descri
by Eqs. ~4! possesses a continuous representation, simulat
based on fixed step sizes are significantly less sensitive to num
cal error. Moreover, the present regularization does not require
simulator to resolve the transitions between intervals of stick
slip. The model of Eqs.~4! shares these features with that given
Eq. ~3!. However, unlike common regularizations of friction, Eq
~4! maintains a structure at zero contact velocity that is ident
to that described by Coulomb friction, therefore allowing
straightforward and computationally efficient simulation of sli
stick behavior. In the numerical studies below, a 4th-order Run
Kutta method is applied with fixed step size. However, simu
tions with adaptive step size as well as stiff integrators exhibit
same behavior~e.g., force and velocity chatter for the classic
discontinuous implementation! as shown below. In Appendix A
the pseudo-code is given for the numerical evaluation of Eqs.~4!.

3.1 1-dof Oscillator. To illustrate these properties, we firs
consider the numerical simulation of a simple forced harmo
oscillator, subject to the representations of friction given in E
~1!, ~2!, ~3!, and~4!, that is:

ẍ1x5 f friction1a sin~vt !. (5)

For this system, the force required to balance the nonfrictio
forces is simply:

f eq5x2a sin~vt !.

In each computation we use a 4th-order Runge-Kutta method
fixed step size ofDt, and with mN51.00. Unless noted,Dt
50.01. This algorithm is one of the most commonly used meth
for numerically solving systems of equations.

Finally, in Eqs.~3! and ~4!, we choosee52Dt. All variables
are of double precision.
ation and Acoustics
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3.1.1 Unforced Response.We first consider the unforced re
sponse~a50!. The system is subject to the initial condition
(x(0),ẋ(0))5(2.75,0.00) and the response is shown in Fig.
For the initial interval of sliding, each simulation is nearly ide
tical. However, once the trajectory ‘‘sticks’’~that is, reaches a
state for whichẋ(t) is approximately 0!, the trajectories diverge
Because of the discontinuity in the standard definition of Coulo
friction, the numerical simulation suffers from discretization e
rors and begins to drift toward the origin~see Fig. 5~a!!. This can
be explained by noting that due to the discrete nature of the
merical simulation, the system never exactly satisfies the co
tion ẋ50. Instead, as the system approaches the equilibrium
frictional force jumps erratically between11 and21 ~force chat-
ter! as the velocity never takes a numerical value ofexactlyzero.
Likewise, using Karnopp’s original force-balance model~not
shown! the response fails to reach a nonzero equilibrium poin

Simulating with the regularization presented in Eq.~3! the
model no longer possesses nontrivial equilibrium points. The
fore, the system can never equilibrate at a nonzero displacem
as illustrated in Fig. 5~b!. It suffers the same long-term fate as th
direct implementation of Coulomb friction, although because E
~3! is continuous the frictional force does not chatter, and the d
toward the origin is smooth.

In contrast, using the regularization presented in Eqs.~4!, the
system approaches a nontrivial equilibrium atxeq,num5
20.750090. This value can be compared with the exact valu
xeq,exact520.750000. The numerical integration no longer suffe
from the long-term drift that characterizes the results shown
Figs. 5~a! and 5~b! and moreover, since the friction model is co
tinuous the simulation does not suffer from force chatter, as ill
trated in Fig. 6.

Regularization Error. As illustrated in the above example, th
response of the system with the friction regularization given
Eqs. ~4! is qualitatively identical to the closed-form solution o
Eq. ~5!. However, the regularization does alter the form of Co
lomb friction so that the regularized response, defined asxe(t),
will differ from the exact solutionxex(t). s we show below, this
error due to the introduction of the regularized friction model
minimal.

Provided the sliding velocity is sufficiently large, the regula
ized and exact friction force will be identical. Therefore, we co
pare the resulting solutions beginning at the point where the f
tion models first differ. We consider the response subject to
initial conditions:
JULY 2004, Vol. 126 Õ 393
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x~0!5x0 , ẋ~0!5
e

2mN S x0

mN
21D,0,

with ux0u,(mN2o(e)). The exact solution can easily be found
be:

xex~ t !5A cos~ t2f!1mN,

with:

A5A~x02mN!21
e2

4 S x0

mN
21D 2

tanf5
e

2mN
.

Therefore, the system comes to rest at a valuexeq,f , with:

xex,f5A~x02mN!21
e2

4 S x0

mN
21D 2

1mN,

5x01e2
x02mN

8~mN!2
1O~e4!.

Using the regularized friction model, in this interval the frictio
force becomes:

f 52
2mN

e
ẋ1 f eq.

With f eq5x, in this interval of motion Eq.~5! reduces to:

ẍe52
2mN

e
ẋe .

For the above initial conditions the solution becomes:

xe~ t !5S x01e2
x02mN

4~mN!2 D 2e2S x02mN

4~mN!2D e2~2mN/e!t,

and the system comes to rest at a valuexe, f , with:

xe, f5x01e2
x02mN

4~mN!2
.

The error due to the regularizationer5xexact,f2xe, f is simply:

er52e2
x02mN

4~mN!2
1O~e4!. (6)

Therefore the position error induced by this regularized mode
O(e2) for fixed mN. Also, as noted above, the regularized mod
does not come to rest in finite time, as is predicted with the us
Coulomb friction. However, the system does decay exponenti
fast to the equilibrium point, with a decay rate;1/e.

3.1.2 Forced Response.Like the unforced response, for non
zero forcing the behavior of Eq.~5! subject to the classical defi

Fig. 6 Force evolution for the proposed friction model „Eqs.
„4…… near the point of sticking „cf. Fig. 5 „c……. Note that 2.50 Ït
Ï3.50. The dashed line represents x „t … while the solid line re-
flects f „t …, the value of the frictional force as a function of time.
394 Õ Vol. 126, JULY 2004
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nition of Coulomb friction can be solved in closed form over a
time interval of constant sliding direction. The transition betwe
intervals is determined by solving for the time at which the slidi
velocity vanishes—the solution to a transcendental equation
must be performed numerically. The result is a semi-analyt
solution for the dynamical behavior of Eq.~5!. In what follows
this semi-analytical solution is convergent to the 12th signific
digit. We refer to this as the ‘‘exact’’ solution, in contrast to pure
numerical solutions generated by solving Eq.~5! using for ex-
ample, as in this work, Runge-Kutta methods. With sufficien
small Dt, each of the friction models considered above can ac
rately resolve the motion of the system, provided the system d
not undergo permanent sticking~as was illustrated in Section
3.1.1!. However, the rate at which the predicted response c
verges to the exact solution varies for each of the models.

The frictional dissipation per unit forcing cycle can be writte
as:

D52E
0

2p/v

ẋ~ t ! f friction~ t !dt.

The value ofD is sensitive to the representation of friction and,
particular, the behavior of the system at the transitions betw
stick and slip. In Fig. 7 we calculate the percent error in t
frictional dissipation per unit forcing cycle, defined as:

%E5
D2Dexact

Dexact

for each of the frictional models asDt is decreased. The frictiona
oscillator was integrated for 49 forcing cycles to remove any tr
sient dynamics. The frictional dissipation was then calculated
the following forcing cycle. The exact value,Dexact, is calculated
from the semi-analytical solution described above.

In Fig. 7~a!, the forcing frequency and amplitude were chos
so that the system undergoes a sustained period of sticking du
the response, and the response exhibits slip-stick transitions.
regularization tolerance was chosen to bee52Dt. Although this
regularization leads to a stiff system of equations near the e
libria, the sliding velocities areO~e! and for this value ofe ~as a
function of Dt) numerical instability is not encountered.

As expected, for the proposed model the percent error inD
scales as (Dt)2. In contrast, both the classical implementation
Coulomb friction and the velocity limited regularization scale
Dt. We note that regularized models vary smoothly, while t
classical implementation varies irregularly due to the disconti
ity in its definition. The classical implementation is also sensit
to, for example, the initial conditions of the system.

In Fig. 7~b!, the forcing frequency and amplitude were chos
so that the system does not undergo an interval of sticking du
the response. In this simulation, the regularized models give c
parable results while the straightforward implementation of
classical definition performs best. However, again the results f
the regularized models vary smoothly, while the result from
classical implementation varies irregularly. Notice that the dis
pation error in each model scales as (Dt)2.

3.2 n-dof Oscillator. We consider ann-degree-of-freedom
model composed of an elastic chain of elements on a frictio
surface, as illustrated in Fig. 8. This system is a version of
Burridge-Knopff model used to study earthquake faults@18,19#
and more recently the dissipation induced by mechanical joint
structural systems@20,21#. Berger et al.@9# have formulated a
similar problem using a mixed differential-algebraic formulatio
in which the transitions between stick and slip are explicitly d
termined.

The discrete equations of motion are written as:
Transactions of the ASME
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Fig. 7 Percent dissipation error per forcing cycle „mÄ1…. Dexact is the value calculated from the
semi-analytical solution. The proposed friction law is marked with triangles and connected by solid
lines, the classical definition of Coulomb friction is marked with squares and connected by long
dashes, while the velocity-limited friction law is marked with pentagons and connected by short
dashes. In panel b, the proposed and velocity-limited regularizations are almost coincident.
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ü21n~2u112u22u3!5
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,
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We restrict the external loading to be harmonic, of the fo
G(t)5a sin(vt). The description of the friction forcef i follows
from the appropriate model of friction~Eqs.~1!, ~2!, ~3!, or ~4!!.
Likewise, f eq,i represents the force required to impose zero ac
eration on theith element. For example,f eq,1 and f eq,2 can be
written as:

f eq,15n2~u12u2!1nG~ t !,

f eq,25n2~2u112u22u3!,

As the number of blocks increases, the computational requ
ments necessary to solve the exact problem, that is, to expli
identify the transitions of each block between stick and slip,
crease significantly and one could recast this system into the f
of a Linear Complementarity Problem@22#. Instead, we apply the
regularization presented above, allowing us to solve this sys
using a straightforward, fixed step size algorithm, without alter
the formulation of the problem.

For this system, the lowest natural frequency of the chain
proaches unity asn→`. Also, the chain of oscillators is expecte

Fig. 8 n -dof discrete model. We consider uniform normal
loads, with mNiÄ1.
ration and Acoustics
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to undergo partial slip for loading amplitudesuau,1. The dissipa-
tion induced by the frictional interface per cycle of the forcing

D52
1

n (
i 51

n S E
0

2p/v

u̇i~ t ! f i~ t !dtD .

The dissipation is very sensitive to the representation of the f
tion force. As in the one degree-of-freedom example, this sys
is integrated using a 4th-order Runge-Kutta method with fix
step size ofDt. In the regularized models~Eqs.~3! and ~4!!, we
choosee510v•Dt. All variables are of double precision. With
this value ofe, as the step size approaches zero, each fric
regularization converges to the classical definition of Coulo
friction.

In Fig. 9 we show the dissipation per forcing cycle as the n
merical step size is varied. In the calculation ofD we begin the
simulation with zero initial conditions and integrate for three for
ing cycles to remove any transient dynamics.~Numerically we
find that for the low forcing frequencies considered, the dissi
tion per cycle settles down after the second forcing cycle.! The
value of D shown is then determined from the fourth forcin
cycle. For each model of friction, the dissipation per cycle co
verges toD050.0105 asDt is decreased. However, as seen in t
figure, asDt is increased, the implementation of both the classi
definition of friction as well as the velocity-limited friction mode
exhibit significant errors. In contrast, the dissipation calcula
using the proposed model given in Eqs.~4! remains much more
accurate over several orders of magnitude~up to Dt50.01 is this
simulation!. Note that unlike the single degree-of-freedom e
ample described above, the application of a semi-analytical s
tion for this problem is, although possible, computationa
intensive.

3.3 Multiple Frictional Contacts. In the examples of Secs
3.1 and 3.2, the gross forcef eq across each interface is unique
determined by the configuration of the system. However, for pr
lems in which multiple frictional contacts occur on the same rig
body the forcef eq at each contact necessary to balance the rem
ing forces on that body depends on the state of the remain
contacts~slip vs. stick!. Karnopp overcame this by separately fo
mulating different sets of equations depending on the state of
contacts@2#. Similarly, with the current regularization describe
by Eqs.~4!, f eq must be determined in a way consistent with t
contact states@22,23#.

Determiningfeq is particularly straightforward if the equation
of motion can be partitioned into those variables associated w
states of potential sticking, including near-sticking, and those
JULY 2004, Vol. 126 Õ 395
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scribing sliding motions~including all nonfrictional contacts!. For
a system withn frictional contacts, the equations for the relativ
motion across the interfaces can be written as:

F z̈slip

z̈stick
G1F fex,slip

fex,stick
G5FR11 R12

R21 R22
G Fmfr

G
wherez̈slipPR, represents the acceleration variables that are
rently sliding with@ żslip# i.e, andz̈stickPRm denotes those that ar
near sticking so that@ żstick# j<e. Heree again represents the regu
larization parameter and,1m5n. Also, mPR, is the sliding
friction force at each slipping contact whilefrPRm is the regular-
ized frictional force for those contacts with incipient slip. Th
termsfex contain all non-frictional forces partitioned according
the slip and stick variables. With this formulation,feqPRm is de-
termined by settingżstick[0, so that:

feq5R22
21~ fex,stick2R21"m!.

Oncefeq is determined the proposed friction regularization can
used and the dynamic equations of motion remain continuous

As an example of multiple contacts, we consider the sys
shown in Fig. 10, consisting of two blocks resting one on
other. The lower block then rests on a moving belt and each m
is connected to the ground by a linear spring. The nondimensi
equations of motion for this system can be written as:

ẍ11x15 f 12 f 2 , (7a)

ẍ21kx25 f 2 , (7b)

where f 1 represents the friction force between the belt and
lower surface, whilef 2 is the friction force acting between the tw
blocks. The coefficient of friction between the two blocks ism2
while the coefficient of friction between the lower block and t
belt is m1 . In terms of the relative velocities across the frictio
interfaces:

ż15 ẋ12u̇~ t !, ż25 ẋ22 ẋ1 ,

the equations for the relative accelerations across the interf
are:

F z̈1

z̈2
G1F ü1x1

kx22x1
G5F 1 21

21 2 G F f 1

f 2
G .

If the lower surface is at or near a sticking state, so thatuż1u<e,
then the gross force can easily be determined as:

f 1,eq5~ ü1x1!1 f 2 ,

Fig. 9 Friction-induced dissipation for the n -dof chain „n
Ä32, aÄ0.25, vÄ0.50… as the numerical step size Dt is varied.
The proposed friction law is marked with triangles and con-
nected by solid lines, the classical definition of Coulomb fric-
tion is marked with squares and connected by long dashes,
while the velocity-limited friction law is marked with pentagons
and connected by short dashes.
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while if the upper interface is near a state of sticking (uż2u<e):

f 2,eq5
1

2
~ f 11kx22x1!.

We emphasize that for the lower interface, the forcef 1,eq depends
on f 2 , which is only equal tof 2,eq if the second interface is also
sticking. If instead the second interface is undergoing slip w
ż2.e, then f 2 takes on its sliding friction value. A similar state
ment holds for the force at the upper interface. With the values
f eq specified, the actual frictional forces used in Eqs.~7! are de-
termined by the proposed regularization. A numerical simulat
of the stick-slip motions that this system can undergo is shown
Fig. 11 foru(t)5sin(0.50t). In this simulation each block is ini-
tially at rest and the system parameters are listed in the fig
caption. Figure 11~b! shows the relative velocities across ea
interface and one can clearly see substantial intervals of stic
across both interfaces. Finally, these results are indistinguish
from simulations performed using the classical definition of Co
lomb friction.

4 Discussion
The proposed regularization of Coulomb’s law of friction a

lows for a straightforward incorporation of friction within exis
ing, commonly used numerical algorithms. The frictional mode
a continuous function of the system state~the contact velocity and
the force required to instantaneously impose zero accelera!
and therefore does not exhibit numerical chatter near transit
between stick and slip for sufficiently small step sizes. In additi
this reformulation allows for nontrivial equilibrium states witho
the need to separately identify these transitions between stat
slip and stick within the numerical algorithm@4#.

The computational requirements associated with Eqs.~4! are
almost identical to both the classical definition of Coulomb fr
tion as well as velocity-limited representations, as in Eq.~3!. The
calculation off from Eqs.~4! requires a single additional calcula
tion of the quantityz ~c.f., Eq. ~4!!. In the examples considered
the use of constant step size algorithms, without the need to
plicitly identify the transitions between slip and stick, more th
compensates for this minimal cost. Finally, as evidenced in Fig
one can often use step sizes that are orders of magnitude la
than in simulations with alternative friction laws.

The proposed regularization does not seek to develop a m
fundamental, physics-based model of friction~like those using
internal variables! nor does it attempt toexactly represent the
discontinuous Coulomb model~as do many complementarity
based formulations!. Instead, it provides a computationally effi
cient model that converges to Coulomb friction as the regular
tion parametere is decreased, which does not suffer from many
the numerical problems seen in other, more commonly used re
larizations~primarily near the equilibrium values!. For problems
in which slip-stick transitions play a central role, the propos
model may be used with minimal additional effort by the simu
tor and to obtain reasonable quantitative accuracy~depending on
e!.

As for any regularization technique, the parametere should be
chosen with care. Examining Eq.~6!, e should be chosen so tha
the quantitye/(mN) is small to minimize the regularization erro

Fig. 10 Multiple frictional contacts. The lower block rests on a
surface moving with velocity u̇ „t ….
Transactions of the ASME
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Fig. 11 Stick-slip dynamics generated with multiple frictional contacts with kÄ2, m1
Ä0.50, m2Ä0.25, u „t …Äsin „0.50t …. In each panel the lower block „x 1 ,ż1… is indicated by the
solid line while the response of the upper block „x 2 ,ż2… is dashed.
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However, the regularization constant should be chosen la
enough so that numerical instability associated with the discr
zation of the stiff equations near the equilibria does not occur
this work, e52Dt. More generally, the optimal choice depen
on the problem to be solved.

The proposed form of the frictional force is composed of affi
functions ~see Fig. 4!. This model could easily be modified t
meet any necessary smoothness requirements, similar in spi
the quadratic velocity-limited friction model of Oden and Marti
@13#. If the regularization is non-Lipschitz near the equilibriu
state~for examplef 2 f eq;( ẋ)1/3), the analytic response will stick
in finite time, qualitatively similar to the response of a syste
subject to the classical definition of Coulomb friction. The pr
posed regularization of friction leads to analytic solutions t
undergo exponential decay to the equilibrium. With finite pre
sion computations this exponential decay is indistinguisha
from finite time sticking~see Fig. 6!. Finally, the frictional force
away from ẋ50 could be modified to include static and kinet
coefficients of friction, as well as dependence on contact veloc
internal state variables@15,24#, and normal loads~see@13# and the
references therein!.
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A Pseudo-Code for Eq.„4…
The modified frictional law is easily implemented into existin

numerical models. The pseudo-code for Eq.~4! can be given as:
xdot: contact velocity,ẋ;
feq: force required to balance the gross force,f eq;
muN: frictional intensity,mN;
eps: regularization parameter,e;
f: resulting frictional force,f;
if ~abs~feq!.muN!

zeta5sgn~feq/muN!;
else

zeta5feq/muN;
endif
if ~abs~xdot2eps*zeta!.eps!

f52muN*sgn~xdot2eps*zeta!;
else

f52muN* ~xdot/eps2zeta!;
endif
The variable f is subsequently used in the numerical routine

the frictional force.
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