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Abstract

In this thesis, we apply machine learning techniques and statistical analysis towards the learn-
ing and validation of human control strategy (HCS) models. Thiswork has potential impact in
anumber of applications ranging from space telerobotics and real-time training to the Intelli-
gent Vehicle Highway System (IVHS) and human-machine interfacing. We specifically focus
on the following two important questions: (1) how to efficiently and effectively model human
control strategies from real-time human control data and (2) how to validate the performance
of the learned HCS models in the feedback control loop. To these ends, we propose two dis-
crete-time modeling frameworks, one for continuous and another for discontinuous human
control strategies. For the continuous case, we propose and devel op an efficient neural-network
learning architecture that combines flexible cascade neural networkswith extended Ka man fil-
tering. This learning architecture demonstrates convergence to better local minima in many
fewer epochs than alternative, competing neural network learning regimes. For the discontinu-
ous case, we propose and develop a statistical framework that models control actions by indi-
vidual statistical models. A stochastic selection criterion, based on the posterior probabilities

for each model, then selects a particular control action at each time step.

Next, we propose and develop a stochastic similarity measure — based on Hidden Markov
Model (HMM) analysis — that compares dynamic, stochastic control trajectories. We derive
important properties for this similarity measure, and then, by quantifying the similarity
between model -generated control trajectories and corresponding human control data, apply this
measure towards validating the learned models of human control strategy. The degree of simi-
larity (or dissimilarity) between a model and its training data indicates how appropriate a spe-
cific modeling approach is within a specific context. Throughout, the learning and validation
methods proposed herein are tested on human control data, collected through a dynamic,
graphic driving simulator that we have developed for this purpose. In addition, we analyze
actual driving data collected through the Navlab project at Carnegie Mellon University.







Acknowledgments

First, I sincerely thank my advisor Yangsheng Xu for his friendship and intellectual guidance
throughout the years; | cannot imagine a better role model for myself on how to conduct and
coordinate the many duties of a professor. | also thank Yangsheng for giving me the wonderful
and unique opportunity to study in Hong Kong. | thank the other members of my thesis com-
mittee, Dean Pomerleau and Andrew Moore for their valuable and constructive suggestions
throughout. Special thanksto Shumeet Baluja, whose many insightful comments have all been

offered in his recent and short time on my committee.

Thanks to the many, many people who gave of their time to “drive” through my driving simu-
lator. Without their data, it would have been impossible to develop and test the learning meth-
ods and analysis tools developed in this thesis. Specia thanks to “Larry,” “Curly,” “Moe,”

“Groucho,” “Harpo,” and “ Zeppo,” who are acknowledged anonymously below.

| thank Andrew Moore and Jeff Schneider for the use of their memory-based learning and prin-
cipal component analysis software. | thank Scott Fahiman for his advice in using the cascade
learning architecture, and Michael Kingsley and David C. Lambert for their cascade training
software. | thank Doug Baker for sharing his data and learning results for the cascade learning
architecture. | also thank Parag Batavia and the Navlab group for sharing driving data collected

on Pennsylvania roads.

| thank Ofer Barkai for our friendship and our many discussions on Hidden Markov Models.
Likewise| thank Kan Deng for our frequent and interesting discussions on time series analysis.
| thank Jie Yang, whose work on human modeling inspired some of mine. Thanks also go to
Ava Cruse, Marie EIm, Carolyn Ludwig, and Marce Zaragoza for their excellent support over

the years.




In addition, | thank the following people for their friendship, both personal and professional,
throughout my time at CMU: Marcel Bergerman, Fabio Cozman, Andrew Gove, John Han-
cock, Lalit Katragadda, Chris Lee, John Murphy, Mark Ollis, Henry Schneiderman and Harry
Schum. Specia thanks to Geoff and Paula Gordon for housing me during my thesis writing
months in Pittsburgh. Also, thanksto Jingyan Song and Winston Sun for their help and friend-
ship during my time in Hong Kong.

Finally, with great love and respect, | acknowledge the support, love and encouragement of my
family — my parents, my grandmother (“Oma’), Andy, Tom, Christian, and more recently,
Raquel, Stacy and Lyana — without whom | surely would not have reached this stage in my
life. Specia thanksto Tom whose decision to pursue a Ph.D. encouraged my decision to do the

Ssame.



Contents

Abstract I
Acknowledgments v

1 Introduction 1
I R Y/ o 1AV (o o ST 1
1.2 REEIEH WOIK ...ttt ettt et s b e ae e 4
1.2.1  Skill learning through eXploration ... 5

1.2.2 Skill modeling from human data ...........cccoeoeeieieiiieee e 5

1.2.3 Neura NetWOrk [€aIrNING .......ccccoveriririnieieeere e 8

1.2.4 Localy weighted |€arninNg ........ccccceeeerieieiiese e 10

1.3 OVEIVIBIW oottt sttt bbbt b e bt e e et et e et e b ens 11
2 Experimental design 15

Vil



Viii Contents

2.1 MOUVBLION ..ot sr bt n e n e n e 15
2.2 SIMUlEioN ENVIFONMENT ......ooiiieiiieriesie e 17
2.2.1 Dynamic driving SIMUIGLOr .........cccevviieeiiee e 17

2.2.2 RO AESCIIPLIONS .....oeeieeiie ettt s e nneas 19

2.3 MOE CIBSS ...ttt ettt et e 21

3 Cascade Neural Networkswith Kalman Filtering 25
3L IMIOLIVBLION ..ttt et b ettt n e b n e e nenne e 26
3.2 Castade NeUral NEIWOIKS .........ccooiiiiiiriie e 28
3.3 Node-decoupled extended Kalman filtering .......c.cccovevevieesecie s 30
3.3.1 Learning arChiteCture .........cccveiiieiie e 30

3.3.2 Computational COMPIEXITY ......ceeereeiirieeiieiese s 33

3.4 CompariSon EXPENMENTS .....c.ccveiieeieseerieeeeseesteeee e eseeseesreeeesseesreeeesseesseensesseesses 36
341 Problem desCriptions .........cccccieiiiiiieciie e 36

4.2 LEANING FESUITS ..ottt 39

3.4.3 NOISy |€arNING FESUILS ......ccvieiieieiiee et 43

344 DISCUSSION ..oviiiieeiieuieiete sttt ettt e et sb e b st b e bt se e e e e e e e s e b sneenenneens 44

4 HCSModels: Continuous L earning 47
4.1 Cascade with quUICKProp [€arning .........ccccveeereereee e 48

4.1.1 EXperimental dafa@ ........cccooceeiiiiiieiie e 48




Contents iX
4.1.2 Model INPULS aNd QULPULS .....ccveeiieeriieiieesiee e see e see st 48

g G o 1 > 1 o USSR 49
4.1 4 HCSMOUES ..ot 50

4.2 Cascade With NDEKF [€arNING .....ccccccuviiieiie et 50
4.2.1 Model inputs and OULPULS .........cceerieeriereerieeieeeeseeeesee e eae e sseeeesseesseeneens 50

4.2.2  CKITAINING ..ottt et e s eesnesne e ene e 55

4.2.3 HCSMOUES ..coviiiiiieieeee ettt s sae e 56

G T N = £ 56
v 5 R \V oo (= IS 7= o1 LY 56
4.3.2 Learning CONVEIJENCE ......cccueiieiiieeiieeeieesieeeseesteessteessessteessessseesseesnsesssessnns 64
4.3.3  DISCUSSION ..ottt se e r e n e n e en s 65

5 HCSModels: Discontinuous L earning 69
5.1 Hybrid continuous/discontinUOUS CONLIOL .........ccccceieereniesece e 70
511 General statistical frameWOork .........cccooeiiiiniiene s 70
512 ACHON AEfINITIONS ...t 72

5.1.3 Statistical MOdel CNOICE .......ccceeriirriiiirierceee s 73
5.1.4 Prior probabilitiES .......ccoiiiiiiieeeeeee e 75
515 Task-based MOdifiCatioNS .........cceerieiieieiirerere s 76

5.2 EXPerimental FESUITS ........coviieiieie ettt sneens 78
521 MOE trAINING ..ccueieiieieiereeie e 78

522 HCSMOUES ... 79




X Contents

TG T N 7= ST 84
531 Sample Curve CONIOl .........ooiiiiiriiieeiesie s 84

5.3.2 Probability profile ..o 87

5.3.3 MOdeling @XIENSION .......ccoiieiieiie ettt sereenneas 90

6 Model validation 93
6.1 Need for model Validation ... s 94
6.2 StochastiC SIMIlarity MEBSUIE .........ccccciirieieeiierieee e 97
6.2.1 Hidden Markov MOGEIS ..o 98

6.2.2  SIMIlArity MEBSUIE ......ccceeeeeeieeieceeste e ee e sre e te e ae e sneeeas 100

(e T (00 < 1 1 =SSR UPRSSROR 101

6.2.4  DIStANCE MEBSUIE .......oiueiiiiiriirieeie ettt sttt st a b sresne e 104

6.2.5 DatapPrePrOCESSING ...cceecveeeerieeiueieeseeseeaseesseesseseesseessesseessesssssseessesssessessses 106

6.2.6  VECtOr QUANTIZALION ........ocivieiieeiiee ettt e e s sreeene e 113

6.2.7 Discretization COMPENSALION .....ccerueeieieierieriesie et 114

O T o 1\ 0\ =111 e RS 119

7 Human-to-human similarity 123
7.1  Comparing human CONtrol Strat@gies ..........ccceoerererirerineeeeeeee e 123
7.1.1  EXperimental datal .......ccceeeeveeieieese e 123

7.1.2 Classification eXPeriments ........ccccoeeiieiieeiee e s see e eree s 124




Contents Xi

7.1.3 BayesclassifiCalion ........ccccceeiieiiiiieccee sttt 126

7.1.4 Spectral ClassifiCaliOn .........cccoeririeiieiere e 132

7.15 Task-based classifiCation ... 134

7.1.6 Classification with performance drift ... 135

7.2 Comparing Navlab driving data ...........ccceeveiierecie e 137
7.2.1 EXperimental datal ........cccooiiiiieieeeeeeeee e 137

7.2.2 Classification eXPerimENtS .......ccccceeieerieeeereerie e se e se e e e eee e neas 138

RS T N 17 £ TSRS 139
7.3.1 One-sided SiMilarity MEASUIE ........cccceeeeereeieseerieee e e e 139

7.3.2 Bayesclassifier lIMitations .........cccceviieiiieiin e 141

7.3.3 Similarity Measure VariationS ..........ccccceeeereeresieeseeseeseeseesesseesseeseesseesees 143

8 Human-to-model validation 149
8.1 Human-to-model COMPAITSONS .......ccciuieiiiiiiieiie et see et see et se e sree e seeereens 149
8.2 ClassifiCation EXPEITMENT ........cceiiriririereeeeee e e 151
8.3 Model INPUESTEVISITED ..ot 152

9 Conclusion 155
0.1 CONITDULIONS ...ttt bbbt e et b naeens 155

0.2 FULUIE WOIK ..ottt e e e e e e e e e e e e e e e e e e e e e e aaaaaees 156




Xii Contents

Appendix A Human control data 161
N R I TP PRTRR 163
A2 CUMY et n e r e 165
ALB  IMIOB et b e he e n e nae e e n e e ne e e reenneas 167
N A € (01U o 1 o PSPPSR PSP 169
ALD  HAMIO e 171
N A = o oo SR 173

Appendix BHMM Training 175
B.1 Forward-backward algorithm ..........cccoooiiiiiii e 175
B.2 Baum-Welch algorithm (With SCaling) ........cccevvviiieie e 177

Appendix C Author’s Publications 181

Bibliography 183




Chapter 1

| ntroduction

1.1 Motivation

Over the past two decades, rapid advances in computer performance have not been matched
with similar advances in the development of intelligent robots and systems. Although humans
are quite adept at mastering complex and dynamic skills, we are far lessimpressive in formal-
izing our behavior into algorithmic, machine-codabl e strategies. Therefore, it has been difficult
to duplicate the types of intelligent skills and actions, we witness every day as humans, in
robots and other machines. This not only limits the capabilities of individual robots, but also
the extent to which humans and robots can safely interact and cooperate with one another. Nev-
ertheless, human actions are currently our only examples of truly “intelligent” behavior. As
such, there exists a profound need to abstract human skill into computational models, capable

of realistic emulation of dynamic human behavior.

Models of human skill can transfer intelligent control behaviors to robots. This is especially
critical for robots which have to operate in remote or inhospitable environments, which humans
cannot reach. For example, sending humans to operate in space is often expensive, dangerous,
or outright impossible, while sending robots instead is comparatively cheap and involves no

risk to human life. Replacing astronauts with robotsis only feasible, however, if the robots are
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equi pped with sufficient autonomous skill and intelligence; we suggest that arobot can acquire

those necessary capabilities through abstracted models of human skill.

In other robotic applications, we would like robots to carry out tasks which humans have tradi-
tionally performed. For example, the Intelligent Vehicle Highway System (IVHS), currently
being developed through massive initiatives in the United States, Europe, and Japan [25, 26],
envisions automating much of the driving on our highways. The required automated vehicles
will need significant intelligence to interact safely with variable road conditions and other traf-
fic. Modeling human intelligence offers one way of building up the necessary skillsfor thistype

of intelligent machine.

With increased intelligence and sophistication in robotic systems, analysis of human-robot
coordination in tightly coupled human-machine systems will become increasingly relevant. In
IVHS, for example, therewill be ubiquitousinteraction between autonomous vehiclesand their
human drivers/passengers. Moreover, the currently limited application domain for robots may
broaden into other aspects of consumer life, where household and service robots will interact
primarily with non-experts. To ensure safe coordination with humans in a shared workspace,
we must incorporate appropriate model s of human behavior into the world model of the robots.
We can assess the quality of joint human-machine systems by including computational models

of human behavior in the overall system analysis.

Realistic simulation of human behavior is required not only in human-machine systems, but
also inthe burgeoning field of virtual reality. As graphic displays becomeincreasingly life-like,
the dynamic behavior of the virtual world will need to match the increased visual realism. Com-
putational models of human skill can impart the necessary sense of realism to the actions and
behaviors of virtual humans in the virtual world. Consider, for example, a NASCAR video
game. Rather than have preprogrammed behaviors, human driver models, abstracted from dif-
ferent race car drivers, could generate more diverse and human-like driving behaviors in the

simulated competitors.
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Finally, accurate models of human skill can contribute to improved expert training and human-
computer interfacing (HCI). Consider, for example, the tasks of teleoperating robots in remote
environments or learning to fly a high-performance jet. Training for both of these tasksis dif-
ficult, expensive, and time consuming for anovice [83, 104]. We can accelerate learning for the
novice operator by providing on-line feedback from virtual teachersin theform of skill models,
which capture the control strategies of expert operators. Through the use of human skill mod-
els, operator performance can be monitored during training or actual task execution as infor-

mation is displayed through different sensor modalities and layouts.

Thus, models of human skill find application in far ranging fields, from autonomous robot con-
trol and teleoperation to human-robot coordination and human-robot system simulation. Since
scientific understanding of human intelligenceisincompl ete at best, however, models of human
skill cannot be derived analytically. Rather, we have to model human skill through observation,
or learning, of experimentally provided human training data. Current learning paradigms are
not sufficiently rich to model the full range of human skill, from low-level muscle control to
high-level reasoning and abstract thought. As such, werestrict our focus to human control strat-

egy, aparticular subset of human skill discussed below.

Broadly speaking, human skill can be grouped into two categories. (1) action skills, which are
open-loop, and (2) reaction skills, which are closed-loop, and require sensory feedback to suc-
cessfully execute the skill. Tossing or kicking aball isan example of action skill. Driving acar,
on the other hand, is a classic example of reaction skill, where the human closes the feedback
control loop. Human control strategy we study in thisthesisis a subset of thistype of reaction
skill. In terms of complexity, human control strategy lies between low-level feedback control
and high-level reasoning, and encompasses awide range of useful physical tasks with areason-
ably well-defined numeric input/output representation. On the one hand, a control strategy is
not only defined by the “gains’ or parameters in the controller, but also the structure or
approach of the strategy. Consider the skill of driving a car, for example. Figure 1-1 illustrates

applied force profiles over the same road for two different individuals in a driving simulator.
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The distinction between the two driving stylesis a difference in kind rather than merely a dif-
ference in degree, similar to the structural difference between alinear feedback and a variable
structure controller. Each represents a unique control strategy. On the other hand, the demon-
strated skill in Figure 1-1 requires no high-level reasoning or abstract thought. Modeling such
mental processes, of which humans are capable, requires an as-of-yet unavailable understand-

ing of the human traits of self-awareness and consciousness.

1.2 Related work

The field of intelligent control [122] has emerged from the field of classical control theory to
deal with applications too complex for classical control approaches. Broadly speaking, intelli-
gent control combines classical control theory with adaptation, learning, or active exploration.
Methods in intelligent control include fuzzy logic control, neural network control, reinforce-

ment learning, and locally weighted learning for control.

Neural networks are used to map unknown nonlinear functions and have been applied in control
most commonly for dynamic system identification and parameter adaptive control [8, 73, 79].
Locally weighted |earning presents an alternative to neural networks, and maps unknown func-
tions through local statistical regression of the experimental data, rather than through a func-

tional representation [9, 10]. In reinforcement learning, an appropriate control strategy isfound

control strategy #1 control strategy #2
4000 A
[ M o W
2 200 B e P L M e T o B U\ {7 rl J_l "
g o |
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-8000
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Figure 1-1: Control forces applied by two different individuals in a driving simulator for
the same road and simulation parameters.The two control strategies are quite different.
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through dynamic programming of a discretized state space [14]. Below, we describe previous

work relating to each of these methods.

1.2.1 SKill learning through exploration

Learning skill through exploration has become a popular paradigm for acquiring robotic skills.
In reinforcement learning [14, 76, 115, 120], dataisnot given asdirect input/output data points;
rather datais specified by an input vector and an associated (scalar) reward from the environ-
ment. Thisreward represents the reinforcement signal, and is akin to “learning with acritic” as
opposed to “learning with a teacher.” The reinforcement learning algorithm is expected to
explore and learn a suitable control strategy over time. References [43] and [10] give some
examples of reinforcement learning control for a robot manipulator and a simulated car in a
hole, respectively. Schneider [102] learns the open-loop skill of throwing through a search of
the parameter space which defines all possible throwing motions. One of the advantages of
learning human control strategy directly from human control datais that we avoid the need for

this type of state space search to find a suitable control strategy.

Leeand Kim[67] have proposed and verified an inductive lear ning scheme, where control rules
arelearned from examples of perception/action data through hypothesis generation and testing.
Their learning paradigm, Expert Assisted Robot Skill Acquisition (EARSA) [68], consists of
two steps: (1) skill acquisition from human expert rules, and (2) skill discovery or refinement

through hypothesis generation and testing.

1.2.2 Skill modeling from human data

Interest in modeling human control goes all the way back to World War 11, when engineers and
psychologists attempted to improve the performance of pilots, gunners and bombardiers [48].
Early research in modeling human control is based on the control-theory paradigm[72], which
attempts to model the human-in-the-loop as asimple feedback control system. These modeling
efforts generally focussed on simple tracking tasks, where the human is most often modeled as

asimple time delay in the overall human-machine system [105].
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More recently, work has been done towards learning more advanced skills directly from
humans. In fuzzy control schemes [63, 64], human experts are asked to specify “if-then” con-
trol rules, with fuzzy linguistic variables(e.g. “hot,” “cold,” etc.), which they believe guidetheir
control actions. For example, simple human-in-the-loop control models based on fuzzy mod-
eling have been demonstrated for automobile steering [60] and ships helmsmen [116].
Although fuzzy control systems are well suited for simple control tasks with few inputs and
outputs, they do not scale well to the high-dimensional input spaces required in modeling
human control strategy [8].

Robot learning from human experts has al so been applied to adeburring robot. Asada and Yang
[6] derive control rules directly from human input/output data, by associating input patterns
with corresponding output actions for the deburring robot. In [125], Yang and Asada combine
linguistic information and numeric input/output datafor the overall control of the robot. Expert
linguistic rules are acquired directly from a human expert to partition the control space. For
each region, a corresponding linear control law is derived from the numeric demonstration data
by the human expert. In [5, 70, 106], the same deburring robot is controlled through an asso-
ciative neural network which maps process parameter features to action parameters from
human control data. The proper tool feed rateis determined from the burr characteristics of the

current process.

Lee and Chen [66] use feasible state transition graphs through self-organizing data clusters to
abstract skill from human data. Skills are modeled as optimal sequences of one-step state tran-
sitions that transform the current state into the goal state. The approach is verified on demon-
strated human Cartesian teleoperation skill. Yang, et. al. [126, 127] implement adifferent state-
based approach to open-loop skill learning and telerobotics using Hidden Markov Models
(HMMs). HMMsaretrained to |earn both tel erobotic trajectories executed by ahuman operator
and simple human handwriting gestures. Yamato, et. al. [123, 124] also train HMMs to recog-

nize open-loop human actions.
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Friedrich, et. al. [36] and Kaiser [56] review programming by demonstration and skill acquisi-
tion viahuman demonstration for elementary robot skills. Lee [65] investigates human-to-robot
skill transfer through demonstration of task performance in avirtual environments. Voyles, et.
al. [119] program arobot manipulator through human demonstration and abstraction of gesture
primitives. Delson and West [28] and Ude [118] both learn open-loop robot trajectories from
human demonstration. Skubic and Volz [109] transfer force-based assembly skills to robots
from human demonstrations. Iba [53] models open-loop sensory motor skills in humans. Gin-
grich, et. al. [39] argue that learning human performance models is valuable, but offer results

only for simulated, known dynamic systems.

Several approachesto skill learning in human driving have been implemented. In [34, 35], neu-
ral networks are trained to mimic human behavior for a simulated, circular racetrack. The task
essentially involves avoiding other computer-generated cars; no dynamics are modeled or con-
sidered in the approach. Pomerleau [89, 90] implements real -time road-following with data col -
lected from a human driver. A static feedforward neural network with a single hidden layer,
ALVINN, learns to map coarsely digitized cameraimages of the road ahead to a desired steer-
ing direction, whose reliability is given through an input-reconstruction reliability estimator.
The system has been demonstrated successfully at speeds up to 70 mi/h. Subsequently, a sta-
tistical algorithm called RALPH [88] has been devel oped for cal culating the road curvature and
lateral offset from the road median. Neuser, et. al. [82] control the steering of an autonomous
vehicle through preprocessed inputs to a single-layer feed-forward neural network. These pre-
processed inputs include the car’s yaw angle with respect to the road, the instantaneous and
time-averaged road curvature, and the instantaneous and time-averaged lateral offset. Driving
datais again collected from a human operator. In [74], the authors provide a control theoretic
model of human driver steering control. Finally, Pentland and Liu [86] apply HMMs towards

inferring a particular driver’s high-level intentions, such as turning and stopping.

Other, higher level skills have also been abstracted from human performance data. Kang [57],

for example, teaches a robot assembly through human demonstration. The system observes a




8 Chapter 1: Introduction

human performing a given task, recognizes the human grasp, and maps it onto an available
manipulator. In other words, a sequence of camera images, observing the human demonstra-
tion, is automatically partitioned into meaningful temporal segments. Kosuge, et. al. [59] also
abstract high-level assembly skill from human demonstration data. The high-level sequence of
motion is decomposed into discrete state transitions, based on contact states during assembly.
In each state, compliant motion control implements the corresponding low level control. Hov-
land, et. al. [50] encode human assembly skill with Hidden Markov Models. In [85], neural net-

works encode simple pick-and-place skill primitives from human demonstrations.

1.2.3 Neural network learning

Interest and research in neural network-based |earning for control has exploded in recent years.
References|[3, 4, 19, 52, 73, 99] provide good overviews of neural network control over abroad
range of applications. Most often, the role of the neural network in control is restricted to mod-

eling either the nonlinear plant or some nonlinear feedback controller.

In choosing aneural network |earning architecture, there are several choicesto be made, includ-
ing the (1) type, (2) architecture and (3) training algorithm. Broadly speaking there are two
types of neural networks: (1) feedforward and (2) recurrent networks. Feedforward neural net-
wor ks have connections in only one direction (from inputs to outputs). As such, they are static
maps, which, in order to model dynamic systems, require time-delayed histories of the sensor
and previous control variables asinput. Recurrent networks, on the other hand, permit connec-
tions between units in al directions, including self connections, thereby allowing the neural
network to implicitly model dynamic characteristics (i.e. discover the state) of the system.
Compared to static feedforward networks, the learning algorithms for recurrent networks are
significantly more computationally involved, requiring relaxation of sets of differential equa-
tions[47].Yet, Qin, et. al. [93] show similar error convergence in mapping simple dynamic sys-
tems with feedforward and recurrent networks, respectively. As such, we will restrict the

remainder of this discussion to feedforward models only.
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Research into feedforward neural networks began in earnest with the publication of the back-
propagation algorithm in 1986 [98]. Since then a number of different learning architectures
have been proposed to adjust the structure of the feedforward neural network (i.e. the number
and arrangement of hidden units) as part of learning. These approaches can be divided into (1)
destructive and (2) constructive algorithms. In destructive algorithms, oversized feedforward
models are trained first, and then, after learning has been completed, “unimportant” weights,
based on some relevancy criteria are pruned from the network. See, for example [18, 22, 23,
44,77, 78, 117]. In constructive algorithms, on the other hand, neural networks are initialized
in some minimal configuration and additional hidden units are added as the learning requires.
Ash|[7], Bartlett [13] and Hiroshe[49], for example, have all experimented with adaptive archi-
tectureswhere hidden units are added one at atimein asingle hidden layer asthe error measure
fails to reduce appreciably during learning. Fahlman [31, 32] proposes a cascade learning
architecture, where hidden units are added in multiple cascading layers as opposed to asingle
hidden layer. Cascade learning has a comparative advantage over the other adaptive learning
architectures in that (1) new hidden nodes are not arranged in a single hidden layer, allowing
more complex mappings, and (2) not all weights are trained simultaneously, resulting in faster
convergence. With respect to constructive algorithms, destructive algorithms compare unfavor-
ably, sinceinitially, alot of effort is expended training (by definition) too many weights, and
the pruned networks needs to be retrained multiple times, after each individual weight or unit

has been pruned.

Finally we note that there is a selection of training algorithms available for feedforward neural
networks. As we have already noted, the first of these was the backpropagation algorithm,
which implements local gradient descent on the weights during training in order to minimize
the sum-of-squared residual s. Since thistraining method wasfirst proposed [98], modifications
to standard backpropagation, as well as other training algorithms have been suggested. An
adaptive learning rate [24], as well as an additive momentum term [87] are both somewhat
effective in accelerating convergence of backpropagation in “flat” regions of the error hyper-

surface. Quickprop [31] incorporates local, second-order information in the weight-update
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algorithm to further speed up learning. Kollias and Anastassious [58] propose applying the
Marquardt-Levenberg least squares optimization method, which utilizes an approximation of
the Hessian matrix. Extended Kalman filtering [92, 108], where the weights in the neural net-
work are viewed as states in a discrete-time finite dimensional system, outperform the previ-
ously mentioned algorithmsin terms of learning speed and error convergence [92]. In all cases,
experimental dataisusually partitioned into two random sets— onefor actual training, and the
other for cross validation [47]; training is generally stopped once the error measure on the

cross-validation set no longer decreases.

1.2.4 Locally weighted learning

Neural networks have received great attention for nonlinear learning and control applications.
Another learning paradigm, locally weighted learning, has emerged more recently and has
shown great success for a number of different control applications, ranging from devil sticking
[100] to robot juggling [101]. Atkeson, et. al. [9] offer an excellent overview of locally
weighted learning, while [10] addresses control-specific issues. Locally weighted regressionis
oneinstance of locally weighted learning and issimilar in approachto CMAC [1] and RBF [75]
neural networks in that local (linear) models are fit to nearby data. All the data is explicitly
stored and organized in efficient data structures (such as k-d trees [17] or Bump trees [84], for
example). When the model is queried for the output at a specified input vector, points in the

database near that input vector are used to construct alocal linear map.

Locally weighted regression offers several advantages over global |earning paradigms (such as
neural networks) [10]. First, locally weighted regression results in smooth predicted surfaces.
Second, it automatically linearizes the system around a query point by providing the local lin-
ear map. Third, adding new datato the locally weighted regression model is cheap, asit merely
requiresinserting a new data point in the existing data base. L earning occurs in one-shot, since
all the datais retained for the construction of the local linear models. Fourth, local minimaare
not a problem, as no gradient descent is required for learning the model. Finally, interference

(e.g. the catastrophic forgetting problem) between old and new experiences does not occur.
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Despite these appealing features, locally weighted regression al so suffers from some shortcom-
ings. First, computational and memory costs increase as the size of the dataincreases. Second,
efficient data structures become less efficient as the dimensionality of the input space grows.

Finally, locally weighted learning is very sensitive to a priori representational choices.’

1.3 Overview

The research in modeling skill from human data or human demonstration has thus far not
addressed a number of important issues. Much of the previous work models only open-loop
human action skills, static or quasi-static skills, or higher-level abstractions of human skill (e.g.
assembly). In general, the work has not focussed on abstracting models of dynamic human con-
trol strategies, as defined above. The work that has been done in modeling dynamic human-in-
the-loop control essentially views the human as alow-level feedback transfer function — noth-

ing more than an annoying time delay with particular noise properties.

Therefore, this thesis applies machine learning techniques and statistical analysis towards
abstracting models of human control strategy. It is our contention that such models can be

learned efficiently to emulate complex human control behaviors in the feedback loop.

Thethesisis organized as follows. In Chapter 2, we describe a graphic dynamic driving smu-
lator which we have developed as an experimental platform for collecting, modeling and ana-
lyzing human control data. We argue that such a simulation environment iswell suited for our
purposes, in large measure because it protects the human subjects from injuring or harming
themselves or others during control execution and data collection. We then define the class of

models — static feedforward models — to which we restrict ourselves in thisthes's.

1. We observe that locally weighted learning (including k-nearest neighbor modeling) suffersall these effects
for the human control data in this thesis. First, the human control data sets are large, with approximately
30,000 data points per set. Second, the input space typically has dimensionality between 35 and 100.
Consequently, short of global models, we have found it difficult to generate stable memory-based models,
that run in anything close to real time (except for the most trivial data sets).
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Next, in Chapter 3 we propose and develop an efficient continuous learning framework for
modeling human control strategy that combines cascade neural networks and node-decoupled
extended Kalman filtering. We illustrate that the resulting architecture converges to better local
minima in many fewer epochs than aternative feedforward neural network approaches for

some known function approximation and dynamic system identification problems.

In Chapter 4 we then apply cascade |earning towards abstracting HCS model s from experimen-
tal control strategy data. We compare two training algorithms introduced in the previous chap-
ter — namely, quickprop and NDEKF, and show that cascade/NDEKF converges orders of
magnitude faster than cascade/quickprop for the human control training data. While the cas-
cade models form stable controllers, we observe that they qualitatively fail to match the human
training datawith ahigh degree of fidelity. We observe that the dissimilarity between the human
and model-generated control trajectories is principally caused by switching discontinuitiesin
one of the model outputs, and that, in fact, any continuous modeling framework would suffer

equally in attempting to model that output without high-frequency noise.

Therefore, in Chapter 5 we propose and develop a stochastic, discontinuous modeling frame-
work for modeling discontinuous human control strategies. This approach models different
control actions as individual statistical models, which, together with the prior probabilities of
each control action, combine to generate a posterior probability for each action, given the cur-
rent model inputs. A control decision isthen made stochastically, based on the posterior prob-
abilities. We apply the discontinuous modeling framework towards modeling human control
strategies and observe that the resulting model-generated trajectories appear to be more similar

to the human training data.

In Chapter 6 we then set out to quantify the qualitative observations of model fidelity in Chap-
ters4 and 5. As afirst step in validating the learned models of human control strategy, we pro-
pose and devel op a stochastic similarity measure, based on Hidden Markov Model analysisthat

is capable of comparing multi-dimensional stochastic control trajectories. The goal of thissim-
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ilarity measure isto compare model-generated control trgectories with their respective human

control tragjectories.

Chapter 7 verifies the similarity measure by comparing human control data across different
individuals. By comparison, an aternative statistical technique, the Bayes classifier, and an
alternative Fourier spectral technique achieve significantly worse classification performance.
Finaly, in Chapter 8 we apply the similarity measure as a validation measure for the learned
HCS models in Chapters 4 and 5. We confirm our qualitative analysis of model fidelity and
observe that the discontinuous modeling framework exhibits markedly better similarity with

the human training data than the continuous HCS models.
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Chapter 2

Experimental design

2.1 Motivation

Human control strategy, as we have defined the term, encompasses a large set of human-con-
trolled tasks. It isneither practical nor possibleto investigate all of thesetasksin afinite amount
of time. In thisthesis, we therefore look towards a prototypical control application — the task

of human driving — to collect and model control strategy data from different human subjects.

Within the driving domain, we have a choice between simulated driving (i.e. driving through a
simulator) and real driving. For our purposes, the ideal control task should embody several
desirable qualities. First, during the execution of the control task, the human subject must not
be injured or harmed in any way (short of wounded pride). Second, the human subject should
have prior experiencesthat will help him complete the control task successfully. Third, the con-
trol task should pose a significant challenge to the human controller. Finally, the task should be

complex enough that it allows for variations in strategy across different individuals.

Let usexaminereal driving in the context of thesefour criteria(safety, prior experience, control
difficulty and control strategy variations). First, unless we ask individuals to drive very conser-
vatively, itisdifficult to guarantee the safety of our human subjectsin real driving experiments.

If we do ask them to drive conservatively, however, the control task will not be very challeng-

15
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ing; moreover, variations between individuals will be somewhat muted. Finally, with respect to

prior experience, real driving measures up to the qualities we seek in our control task.

Simulated driving, on the other hand, differs from real driving in a number of important
respects. Most importantly, the human subject poses no threat to himself or otherswhile driving
in the simulator, no matter how recklessly he chooses to drive. Consequently, unlike in real
driving, we can challenge individuals to drive near the edge of their abilities. This produces
driving control strategiesthat arericher and more complex than their real counterparts. Because
of thisincreased complexity, the demonstrated control strategieswill potentially exhibit greater
variations from one individual to the next. Finally, while human subjects may not be familiar
with respect to a specific driving simulator prior to testing, they can, as experienced drivers,

transition from real driving to ssimulated driving with relative ease and efficiency.

Table 2-1 summarizes the above discussion. With respect to our goal of comparing and model-
ing human control strategies, smulated driving embodies more of the qualities which we
desire. Thus, we choose simulated driving as our primary control task. We emphasize that in
choosing simulated driving, we do not suggest that ssmulation isin general better than reality
for experimentation.! We only suggest that since the focus of this thesis is the human control

strategies themselves, a simulated task can be appropriateif it bears substantial resemblance to

Table 2-1: Simulated vs. real driving

Category Smulated driving Real driving

Safety Low

Prior experience

Control difficulty

Control strategy variations

1. There are aspects of areal task that cannot be modeled well in a simulation environment. These include
measurement and sensor noise, variable road conditions, etc.
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acomparablereal task. We believe that our driving simulation environment, which we describe

in detail in the following section, does meet that criterion.

2.2 Simulation environment

2.2.1 Dynamic driving smulator

Figure 2-1 shows the real-time, dynamic, graphic driving simulator which we have devel oped
for collecting and analyzing human control strategy data. In the interface, the human operator
has full control over the steering of the car (mouse movement), the brake (left mouse button)
and the accelerator (right mouse button); the middle mouse button correspondsto slowly easing
off whichever pedal is currently being “pushed.” The vehicle dynamics are given in (2-1)
through (2-19) below (modified from [46]):

Figure 2-1: Our driving simulator generates a perspective view of the road for the user,
who has independent control over steering, braking, and acceleration (gas).
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& = (1;@3+1(Fg—1,Fg,)/
Ve = (9;0+Fg +FEr)/m—vnoo—(sgnvE)ch§

Vi = (@5 + @ —Fg0)/m+ve - (sgnv, )cpvg

X cos® sinB 0] | Ve
y| = |-sin® cosb 0 v
5 0 0 1|

(2-1)

(2-2)

(2-3)

(2-4)

where {X, y, 6} describe the Cartesian position and orientation of the car; v; is the latera

velocity of the car; vy is the longitudinal velocity of the car; and w isthe angular velocity of

the car. Furthermore,

Fe = HF (8 — (sand)a2/3 + 63/ 27),/1— @2/ (WF z)2 + @/ cZ, kO {f,1} , (2-5)

oy = o/ (UF,), kO{f,r},

a; = fronttiredipangle = d—(l;w+vg)/v,,

a, = reartireslipangle = (Irw—vz)/vn,

Fi = (mgl, —(@f +@)h)/ (I +1,),

Fy = (mglg + (@ + @ )h)/ (I +1,),

& = body-relative lateral axis, n = body-relative longitudinal axis

C¢, C, = cornering stiffness of front, rear tires = 50000N/rad, 64000 N/rad

Cp = lumped coefficient of drag (air resistance) = 0.0005m ™"

K = coefficient of friction = 1,

(2-6)

(2-7)

(2-8)

(2-9)

(2-10)

(2-11)

(2-12)

(2-13)

(2-14)
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Fik = frictional forces, j U{¢, 2 , kO{f,r} (2-15)

. . 0 ¢ >0
¢, = longitudinal force on rear tires = %( 9 <0.k 0.34 (2-16)
bPf ¢; <0,ky = 0.

m = 1500kg, | = 2500kg-m2, |, = 1.25m, | = 15m, h = 0.5m. (2-17)
The controls are given by,

—0.2rad < 5 < 0.2rad (2-18)

—8000N < @ = ¢; < 4000N (2-19)

where 9 is the user-controlled steering angle, and @ is the user-controlled longitudinal force
on the front tires. Note that the separate brake and gas commands for the human are, in fact, the

single @ variable, where the sign indicates whether the brake or the gasis active.

Because of input device constraints, the force (or acceleration) control ¢ islimited during each
1/50 second time step, based on its present value. If the gas pedal is currently being applied
(9> 0), then the human operator can either increase or decrease the amount of applied force
by a user-specified constant Ag, or switch to braking. Similarly, if the brake pedal is currently
being applied (¢ < 0) the operator can either increase or decrease the applied force by asecond
constant Ag, or switch to applying positive force. Thus, the Ag, and A, constants definethe
responsiveness of each pedal. If we denote @(k) as the current applied force and @(k + 1) as

the applied force for the next time step, we can write in concise notation,
@(k + 1) O { e(k), min(e(k) + Ag,, 4000), max(p(k) —Ag, 0), -A@} @ (k) =20 (2-20)
@(k + 1) O { @(k), max(¢(k) — Ag,, —8000), min(@(k) + A, 0),A(pg} @ (k) <0 (2-21)

2.2.2 Road descriptions

In the simulator, we define roads as a sequence of randomly generated segments of the form

{1, 0} (straight-line segments), and {r, B} (curves), connected in a manner that ensures con-
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tinuous first derivatives between segments. Here, | is the length of a given straight line seg-
ment, r istheradius of curvature of acurved segment, and 3 isits corresponding sweep angle,

defined to be negative for left curves, and positive for right curves.

In order to make the driving task challenging, we place the following constraints on the indi-

vidual segments:
100m <1 <200m, 100m < r £ 200m, and 20° < |B| < 180°. (2-22)

No segment may be followed by a segment of the same type; a curve is followed by a straight
line segment with probability 0.4, and an opposite curve segment with probability 0.6. A
straight line segment isfollowed by aleft curve or right curve with equal probability. Roads are
defined to be 10m wide (the car is 2m wide), and the visible horizon is set to 100m. For nota-

tional convenience, let dE denote the car’s lateral offset from the road median.

Figure 2-2(a), (b) and (c) shows roads #1, #2 and #3, respectively, the three 20km roads over
which we collected human driving control data. Figure 2-3(a) shows road #4, the 20km road
which we used as a cross-validation road for each modeling approach. Finally, Figure 2-3(b)

shows road #5, the 20km road which we reserve for testing each of the modeling approaches.?

(@ (b) (©)

Figure 2-2: Data collection roads: (a) road #1, (b) road #2, (¢) road #3.

2. The precise meaning of the terms cross-validation road and test road will be explained for each modeling
approach separately.
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WW"

(@ (b)

Figure 2-3: (a) Cross-validation road #4 and (b) test road #5.

2.3 Model class

We restrict the class of models we look at in this thesis to static (as opposed to dynamic) map-
pings between inputs and outputs. Because human control strategy is dynamic, we must map

that dynamic system (i.e. the human control strategy) onto a static map.

In general, we can approximate any dynamic system through the difference equation [79],

ak+1) =

r[ock), a(k—1), ...,a(k—n, + 1), x(k),x(k— 1), ... ,.x(k—n, + 1) ,z(k)] (2-23)

where ' ( ) issome (possibly nonlinear) map, t(k) isthe control vector, x(k) isthe system
state vector, and z(k) isavector describing the external environment at time step k. The order
of the dynamic systemisgiven by the constants n, and n, , which may beinfinite. Thus, astatic
model can abstract a dynamic system, provided that time-delayed histories of the state and

command vectors are presented to the model asinput, asillustrated in Figure 2-4.

For the case of the driving simulator, the HCS model will require, in general, (1) current and
previous state information X = [VE v, (@T, (2) previous control information O = [5 (aT,

and a description of the road z, visible from the current car position and orientation, where,

z= |:I’X(1) rx(2) rx(nr) ry(l) ry(2) ry(nr)} ,3 (2_24)

isa 2n, -length vector of equivalently spaced, body-relative (x, y) coordinates (r,, ry) of the
visible view of the road (median) ahead.

3. This representation is reasonable, since computer vision algorithms such as RALPH [88] can abstract a
very similar representation from real cameraimages.
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environment e ©
human control
(a) system state
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Figure 2-4: In modeling human control strategy (HCS), we want to replace the human
controller (a) by a HCS model (b).




2.3 Model class 23

For notational convenience, we will denote the HCS model’sinput space for the driving Simu-

lator as,
{vgs, vz ", 8™, @, rergt , n20,10{1,2,..,7, (2-25)

where at time step Kk,

x=n+1) o x(=D x| XO{Ve ¥y 0.8,
- ) . (2-26)
Ix(@) . x(n=1) x(np)] XO{ryry

Thus, the total number of inputs n, , is given by,

.
N, = .Zlni : (2-27)

We omit X™ from the list in equation (2-26) if n; = 0. For example, {83 130 rJ% denotesa
model whose input space consists of the previous three steering commands and a view of the
road ahead, discretized to 10 body-relative coordinates. Unless otherwise noted, each time step
kist = 1/50sec long. Finally, when n; = n, = ng, n, = ng, and ng = n,, we use the
short-hand notation,

{)—(nx’ Unu’ znr} = {V?X’ Vrr_]]x’ wnx’ 6nu’ (pnu’ rQr , r{;r} , ns’ nc’ n

20, (2-28)
n, = 3n,+2n,+2n, (2-29)

to denote the input space in equation (2-25).
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Chapter 3
Cascade Neural Networkswith Kalman Filtering

Here, we develop a continuous learning architecture for modeling human control strategies,
based on neural networks. Unfortunately, most neural networks used today rely onrigid, fixed-
architecture networks and/or slow, gradient descent-based training algorithms (e. g. backprop-
agation). In this chapter, we propose a new neural network learning architecture to counter
these problems. Namely, we combine (1) flexible cascade neural networks, which dynamically
adjust the size of the neural network as part of the learning process, and (2) node-decoupled
extended Kalman filtering (NDEKF), afast converging alternative to backpropagation. As we
shall see later, for reasons of computational complexity, the resulting learning architecture is
limited to applications where the number of correlated outputs are few. Generally, thisis not a
significant restriction in modeling human control strategies, since for such models, the number

of outputs — namely, the human controls — are typically few in number.

Thus, inthis chapter wefirst review how learning proceedsin cascade neural networks. Wethen
show how NDEKF fits seamlessly into the cascade | earning framework, and how cascade learn-
ing addresses the poor local minima problem of NDEKF reported in [92]. We analyze the com-
putational complexity of our approach and compare it to fixed-architecture training paradigms.
Finally, we report learning results for real-valued function approximation and dynamic system

identification — results which show substantial improvement in learning speed and error con-

25
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vergence over aternative neural network training methods. In Chapter 4, we will then investi-

gate the proposed learning architecture for abstracting HCS models.

3.1 Motivation

In recent years, artificial neural networks have shown great promise in identifying complex
nonlinear mappings from observed dataand have found many applicationsin robotics and other
nonlinear control problems[8, 73, 79]. As such, they have received a great deal of attentionin
the learning community. Despite significant progress in the application of neural networks to
many real-world problems, however, the vast majority of neural network research still relieson
fixed-architecture networks trained through backpropagation or some other slightly enhanced
gradient descent algorithm. There are two main problems with this prevailing approach. First,
the “appropriate” network architecture varies from application to application; yet, it is difficult
to guess this architecture — the number of hidden units and number of layers— a priori for a
specific application without some trial and error. Even within the same application, functional
complexity requirements can vary widely, as might be the case in modeling human control
strategies from different individuals. Second, backpropagation and other gradient descent tech-
niques tend to converge rather slowly. Since the backpropagation a gorithm adjusts one weight
at atime, the current weight change in the network frequently contradicts one or more of the
previous weight adjustments, leading to oscillatory behavior and convergence to poor local
minima[31, 47].

To address the problem of fixed architecturesin neural networks, we look towards flexible cas-
cade neural networks [32, 33]. In cascade learning, the network topology is not fixed prior to
learning, but rather adjusts dynamically as a function of learning, as hidden units are added to
an initially minimal network one at atime. This not only frees us from an a priori choice of
network architecture, but also allows new hidden units to assume variable activation functions
[80, 81]. That is, each hidden unit’s activation function no longer need be confined to just asig-
moidal nonlinearity. A priori assumptions about the underlying functional form of the mapping

we wish to learn are thus minimized.
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To address the second problem — slow convergence with gradient-descent training algorithms
— we look towards extended Kalman filtering (EKF) [2], previously confined to the area of
optimal filtering. What makes EKF algorithms attractive is that, unlike backpropagation, they
explicitly account for the pairwise interdependence of the weightsin the neural network during
training. By viewing the training of feedforward neural networks as an identification problem
for a nonlinear dynamic system, Singhal and Wu [108] were the first to show how the EKF
algorithm can be used for neural network training. While converging to better local minimain
many fewer epochs than backpropagation, their global extended Kalman filtering (GEKF)
approach, carries a heavy computational toll. GEKF's computational complexity is O(n2),
where n,, isthe number of weightsin the neural network. This is prohibitive, even for moder-

ately sized neural networks, where the weights can easily number in the thousands.

To address this problem, Puskorius and Feldkamp [92], propose node-decoupled extended Kal-
man filtering (NDEKF), which considers only the pairwise interdependence of weightsfeeding
into the same node, rather than the interdependence of all the weights in the network. While
this approach is computationally tractable through a significant reduction in the computational
complexity, the authorsreport that NDEKF tendsto converge to poor local minima, for network

architectures not carefully selected to have little redundancy (i.e. few excess free parameters).

In this chapter we show that combining cascade neural networkswith NDEKF solves the prob-
lem of poor local minimareported in [92], and that the resulting learning architecture substan-
tially outperforms other neura network training paradigms in learning speed and/or error
convergence for learning tasks important in control problems. Below, we first describe how
learning proceeds in cascade neural networks. We then show how NDEKF fits seamlessly into
the cascade learning framework, and how cascade learning addresses the poor local minima
problem of NDEKF. We analyze the computational complexity of our approach and compare
it to fixed-architecture training paradigms. Finally, we report learning results for continuous
function approximation and dynamic system identification. In the following chapter, we then

apply the learning architecture proposed here towards modeling human control strategies.
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3.2 Cascade neur al networ ks

In learning human control strategies, we wish to approximate the functional mapping between
sensory inputs and control action outputs which guide an individual’ s actions. Function approx-
imation, in general, consists of two parts: (1) the selection of an appropriate functional form,
and (2) the adjustment of free parameters in the functional model to optimize some criterion.
For most neural networks used today, the learning process consists of (2) only, since a specific
functional form is selected prior to learning; that is, the network architecture is usually fixed

before learning begins.

We believe, however, that both (1) and (2) above have aplace in the learning process. Thus, for
modeling human control strategy, we look towards the flexible cascade learning architecture
[33], which adjusts the structure of the neural network as part of learning. The cascade learning
architecture combines the following two notions: (1) a cascade architecture, in which hidden
units are automatically added one at atimeto aninitially minimal network, and (2) the learning
algorithm which creates and installs new hidden units asthe learning requiresin order to reduce

the RMS error (egy,s) between the network’s outputs and the training data.

Asoriginaly formulated in [33], cascade neural network training proceedsin several steps. Ini-
tialy, there are no hidden units in the network, only direct input-output connections. These
weights are trained first, thereby capturing any linear relationship between the inputs and out-
puts. With no further significant decrease in the RMS error between the network outputs and
the training data (egy,g), afirst hidden unit is added to the network from a pool of candidate
units. Using the quickprop agorithm [31] — an improved version of the standard backprop
algorithm — these candidate units are trained independently and in parallel with different ran-

dom initial weights.

Again, after no more appreciable error reduction occurs, the best candidate unit is selected and

installed in the network. Once installed, the hidden-unit input weights are frozen, while the
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weights to the output units are retrained. By freezing the input weights for all previous hidden
units, each training cycle is equivaent to training a three-layer feedforward neural network
with a single hidden unit. This allows for much faster convergence of the weights during train-
ing than in a standard multi-layer feedforward network where many hidden-unit weights are
trained simultaneously. The processis repeated until the algorithm succeeds in reducing ey, g
sufficiently for the training set or the number of hidden units reaches a specified maximum
number. Figure 3-1 below illustrates, for example, how a two-input, single-output network
grows as two hidden units are added. Note that a new hidden unit receives asinput connections
from theinput unitsaswell asall previous hidden units (hence the name “ cascade’). A cascade
network with n,, input units (including the bias unit), n,, hidden units, and n, output units,

has n,, connections where,

Ny = NN + NR(Ny, +ng) + (ny—=1)n,/ 2 (3-1)

Recent theorems by Cybenko [27] and Funahashi [37], which hold that standard layered neural
networks are universal function approximators also hold for the cascade network topology,
since any multi-layer feedforward neural network with k hidden units arranged in m layers,
fully connected between consecutive layers, is a special case of acascade network with k hid-

den units and some weight connections equal to zero.

O

N Biasunit O Inputunit O 1sthiddenunit © 2nd hidden unit @ Output unit

Figure 3-1: The cascade learning architecture adds hidden units one at a time to an
initially minimal network. All connections in the diagram are feedforward.
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Thus, the cascade architecture relaxes a priori assumptions about the functional form of the
model to belearned by dynamically adjusting the network size. We can relax these assumptions
further by allowing new hidden units to have variable activation functions [80, 81]. In fact,
Cybenko [27] shows that sigmoidal functions are not the only possible activation functions
which allow for universal function approximation. There are other nonlinear functions, such as
sine and cosine for example, which are complete in the space of n-dimensiona continuous
functions. In the pool of candidate units, we can assign adifferent nonlinear activation function
to each unit, rather than just the standard sigmoidal function. During candidate training, the
algorithm will select for installment whichever candidate unit reduces eg,, g for the training
datathe most. Hence, the unit with the most appropriate activation function at that point during
training is selected. Typical aternatives to the sigmoidal activation function are the Gaussian

function, Bessel functions, and sinusoidal functions of various frequency [80].

3.3 Node-decoupled extended Kalman filtering

While quickprop isan improvement over the standard backpropagation algorithm for adjusting
the welghtsin the cascade network, it can still require many iterations until satisfactory conver-
genceisreached [31, 108]. Thus, we modify standard cascade learning by replacing the quick-
prop agorithm with node-decoupled extended Kalman filtering (NDEKF), which has been
shown to have better convergence properties and faster training times than gradient-descent
techniques for fixed-architecture multi-layer feedforward networks [92]. As we demonstrate
later, the combination of cascade learning and NDEKF alleviates critical problems that each

exhibits by itself, and better exploits the main strengths of both algorithms.

3.3.1 Learning architecture

In general extended Kalman filtering (GEKF) [108], an n,, x n,, conditional error covariance
matrix P, which stores the interdependence of each pair of n, weightsin agiven neural net-
work, is explicitly generated. NDEKF reduces this computational and storage complexity by
— as the name suggests — decoupling weights by node, so that we consider only the interde-

pendence of weights feeding into the same unit (or node). This, of course, is a natural formu-
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lation for cascade learning, since we only train the input-side weights of one hidden unit and
the output units at any one time; we can partition the weights by unit into n, + 1 groups— one
group for the current hidden unit, n, groups for the output units. In fact, by iteratively training
one hidden unit at atime and then freezing that unit’s weights, we minimize the potentially det-

rimental effect of the node-decoupling.

Denote w), as the input-side weight vector of length ni, at iteration k, for unit
i1d{0,1,...,n} , where i = O corresponds to the current hidden unit being trained, and
i0{1,...,n} correspondsto theith output unit, and,

. . +n,—1 i =0
ni = Jhin ™ . (3-2)
iy + Ny 10{1 ...,n4

The NDEKF weight-update recursion is then given by,
Weq = 0 +{(WHTAEO | (3-3)

where &, is the n,-dimensional error vector for the current training pattern, Y|, is the n,-
dimensional vector of partial derivatives of the network’s output unit signal s with respect to the

ith unit’s net input, and,

@ = Pilk (3-4)
N, -1

A = {l + 5 {0 e} W IL(qui()T]} (3-5)
i=0

Pk+1 = Pk={ (W) (AW} b [ (@)T] + Ng! (3-6)

Py = (1/np)! (3-7)

where | isthe nl, -dimensional input vector for the ith unit, and P} isthe n}, x n!, approxi-

mate conditional error covariance matrix for the ith unit. We include the parameter n 0 in(3-
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6) to aleviate singularity problems for error covariance matrices [92]. In (3-3) through (3-6),

{}'s, ()’s, and []'s evaluate to scalars, vectors and matrices, respectively.

The Y|, vector iseasy to compute within the cascade framework. Let O; be the value of theith
output node, I be its corresponding activation function, net; be its net activation, I, be
the activation function for the current hidden unit being trained, and net,; beits net activation.
Then,

00,

| _ . . _
onet; 0. =] (3-8)
00; . ,
Snet = Mo(nety), i 0{1,...,n} (3-9
00,

where wy,; isthe weight connecting the current hidden unit to the ith output unit.

Throughout the remainder of the paper, we will use the short-hand notation explained in Table

3-1 for different neural network training methodologies.

Table 3-1: Notation

Symbol Methodol ogy Training algorithm
Fqg Fixed architecture® quickprop
Cq Cascade learning? quickprop
Fk Fixed architecture NDEKF
Ck Cascade learning NDEKF

a. All weights are trained simultaneously.
b. Hidden units are added and trained one at atime.
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3.3.2 Computational complexity

The computational complexity for cascade learning with NDEKF is,
n
O o
om3+ Y (n )%. (3-11)
0° zo "0

The O(n2) computational complexity caused by the matrix inversion in (3-5) restricts this
approach to applications where the number of outputsis relatively few. Below, we compare the
computational complexity of the proposed |earning architecture to two other regimes:. (1) lay-
ered feedforward neural networks trained with backpropagation (pattern-wise update), and (2)
NDEKF aone (i.e. used on fixed-architecture networks).

First, consider the computational cost (per training pattern) in Ck of training one candidate unit

for anetwork with n;,, input units, (i —1) hidden units, and n_ output units:

cost(A™1) (n, % n, symmetric matrix inversion), (3-12
2nZ(n, + 1) + 4n,n, + n3 + 4n2 + 7n,— 2 multiplications, (3-13)
(nZ(ny+1) +n(9n, + 7) + 2n2 + 4n,— 16)/ 2 additions, (3-14)
3n, + 1 function evaluations, (3-15)

wheren, = n;, +i.

For comparison with backpropagation, we look at the computational cost (per training pattern)
for atwo-layered neural network with n;, input units, n,/2 hidden unitsin both hidden lay-

ers, and n, output units:

(5/4)ng +ny(2n,,+1) + n (5/2ny + 1) multiplications, (3-16)

nj + (3/2)nyn;, + n,(2n,—2) additions, and (3-17)
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2(ny +ny) function evaluations. (3-18)

To arrive at acomposite cost for each method, we weigh multiplications and additions by afac-
tor of 1.0, and function evaluations by a factor of 5.0. In addition, we multiply the composite
cost for the cascade/NDEKF method by n, = 8, atypical number for the pool of candidate
units and average the cost over al i O{1,2,...,n} . Lety o, denote the average computa-
tional cost per training pattern for the Ck method, and let ygp denote the computational cost
per training pattern for training the two-layered network with backpropagation. We are inter-
ested in theratio,

P = Yck/Vep (3-19)

for equivalently sized neural networks. By equivalently sized, we mean neural networks with

approximately the same final number of weights, such that,

n, = NNy +Np(Njp +ng) + (Ny—=1)n,/2 = n; (ny/2) +ng/4+n,(ny/2)  (3-20)

w

In general, therefore, n,#ny,. Figure 3-2, for example, plots o for
n, = {150, ...,450,50C , 10<n, <100, and n, = 1. We note that for n,>20 and
n;, <400, theratio is upper bounded by p < 100. In other words, if Ck reducesthe number of

epochs by a factor of 100 over standard backpropagation, our approach will be more efficient

250 n
in/= 500 no =1
200
150
p
100
50
—
ol ——

20 40 60 80 100 N,

Figure 3-2: Ratio of computational costs per training pattern (between backpropagation
and Ck) for various network sizes and one output unit. Higher curves reflect ratios for
larger number of inputs.
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even for very large input spaces. Moreover, for small input spaces, amere factor of 5 reduction

in the number of epochs will result in increased computational efficiency.

Second, we consider the difference in computational cost between the proposed approach (Ck)
and using NDEKF alone (FK). Let yCk denote the cost per epoch of training theith hidden unit;
let y©k denote the total cost of training the Ck network (n, final hidden unitsand n, candidate
units per hidden unit); let ek denote the number of epochs required to train theith hidden unit;
and let ek denote the total number of epochs. Also, let yEk denote the cost per epoch of train-
ing the Fk network; let yFk denote the total cost of training the Fk network (n,, total hidden

units); and let €FK denote the total number of epochs for training the Fk network. Thus,

yok = z eCkyCk = nz L (eClyeh) (3-21)
i=1 i=1 ©
yFk = gFkyFk (3-22)
Now, we assume that,
gfk=eCk, i, ] (3-23)

so that (3-21) becomes,
(3-24)

Our experience justifies the approximation in (3-23), which states that all hidden units require
approximately the same number of epochs. Furthermore, neglecting differences in derivative

cal cul ations between methods Ck and Fk, we assume that,

1
vER= Y =y (3-25)
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We can now get arelationship between €k and £FK corresponding to equivalent costs between
methods Ck and Fk. Setting (3-21) and (3-22) equal to each other and using approximations (3-
23) and (3-25), we get that,

gFkyFk=n ?.C_kyFk (3-26)
€ C nh €
n
gCk = F]DEFk (3-27)

C
In other words, using the cascade/NDEK F (CK) algorithm, we can use approximately n,/n. as

many epochs as for NDEKF alone (FK) for the same computational cost.

3.4 Comparison experiments

3.4.1 Problem descriptions

In this section, we present learning results for five different problems in continuous function
approximation and dynamic system modeling. For the first problem (A), we want to approxi-

mate the following 3-to-2 smooth, continuous-valued mapping,

fi(x,y,2) = zsin(my) + X (3-28)
f (% y,2) = 22+ cos(Txy) — Y2 (3-29)

intheinterval -1 < x,y, z<1. Thetraining set consists of 1000 random points; the cross vali-
dation set consists of an additional 1000 random points; and our test set consists of another

2000 random points.

Our second problem (B) is taken from [33]. We want to approximate the following 1-to-1 non-

smooth, continuous-valued mapping (see Figure 3-3),

f(x) = almin[0.1x2 Cmax(0.5sin2x, sinx), x Cmax(sinx, cos?x)] —b (3-30)
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Figure 3-3: Nonsmooth, continuous function for problem (B).

fora = 1/34.55386,and b = 0.027099. Our training, cross validation, and test setsareiden-
tical to thosein [33] and consist of the following: (1) 4000 evenly spaced points are generated
intheinterval 0< x<20; (2) 968 of those points are randomly chosen for the training set; (3)
968 are randomly chosen from the remaining 3032 points for the cross validation set; and (4)

the remaining 2064 points make up the test set.
Our third problem (C) istaken from [79, 92]. We want to model the following dynamic system,
u(k+1) = flu(k), u(k—1), u(k-2),x(k),x(k—1)] (3-31)

where,

FIXq, X5, Xg, X4, X5] = (3-32)

1+ x5+ X3
and theinput x(k) israndomly generated in theinterval —1 < x(k) <1.We use a 2500-length
sequence for training, another 2500-length sequence for cross validation, and another 5000-

length sequence for testing. The variables u(0), u(-1) and u(-2) areinitialized to zero.

Finally, our last two problems are taken once again from [33]. Here, we want to predict the cha-

otic Mackey-Glass time series [71], widely studied in the literature and described by,
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o alX(t-1)
X(t) = ———~ —b IK(t 3-33
M) = Txoom PO (3-33)
fora = 02,b = 0.1,and 1 = 17.Whilethe Mackey-Glass differential equation hasinfinite
degrees of freedom (due to the time delay 1), it's stationary trgjectory lies on a low-dimen-

sional attractor, as shown in Figure 3-4. We present,
{x(t—18), x(t—12), x(t - 6), x(t)} (3-34)

as the four inputs to the neural network, while the goal of this task is to predict x(t + k) for
kO{6,84 .Wewill referto k = 6 asproblem (D) and k = 84 asproblem (E). Our training,
cross validation, and test sets are once again identical to those in [33]. The training set consists
of the 500 data pointsfromtimet = 200 tot = 699; the cross validation set consists of the
500 data points fromtime t = 1000 to t = 1499; and the test set consists of the 500 points
fromtimet = 5000 tot = 5499.

For problems (A) and (C) above, we train over 25 trials to 15 hidden units for each method
{Cq, Fk, CK . By fixing the network architecture prior to training for Fk, it is not possible to
assign variable activation functions to each hidden unit; the space of all possible permutations
of variable activation functionsistoo large to explore. Therefore, wetry two different networks
for method Fk — one with sigmoidal activation functions, and the other with sinusoidal activa-

tion functions. In [80], we have shown that neural networkswith sinusoidal activation functions

0.06}

0.04

002t /)
8 0 "‘/J
(%Y ("‘ “‘ il
-0.02} i
-0.04¢

-0.06 A ——~
0.4 0.6 08y(t) 1 12

Figure 3-4: Phase plot of the Mackey-Glass time series — (D), (E).
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perform approximately as well as those with variable activation functions. Both have been

shown to outperform sigmoidal networks for continuous function approximation.

For problems (B), (D), and (E), taken from [33], we follow the same procedure in training with
methods { Fk, CK} , asFahlman, et. al., follow in training with methods { Fqg, Cq} .1n[33], Cq
neural networks are alowed to grow to a maximum of 50 hidden unitsin 15 separate trials for
each problem. For each trial, the best RM S error over thetest set isrecorded. Equivalently sized
Fqg networks are also trained, for up to 60,000 epochs per trial. The 60,000 figure is chosen to
be approximately three times the maximum number of epochs required for any of the Cq train-
ing runs. Again, the best RM S error for the test set is recorded for each trial.

For the learning results in this chapter involving NDEKF, we use the following parameter set-

tings throughout:
Ng = 0.0001, np = 0.01 (3-35)

In Ck, we upper-bound the number of epochs to 10 per hidden unit, while for Fk, we upper-
bound the total number of epochs to 150. Finally, for the cascade methods { Cq, Ck} , we use

eight candidate units, the same asin [33].

3.4.2 Learning results

Table 3-2 below reports the average RMS error (eg),g) over the test sets for problems (A)
through (E). We note that in al cases, our cascade/NDEKF (CK) approach outperforms the
other three methods. Figure 3-5 reports the percentage difference in ey, between our

approach and competing training regimes.

Method Fq (fixed-architecture/quickprop) shows by far the worst performance, yet we use 120
times fewer epochs for Ck (approximately 500 for problems (B), (D), and (E)). Using Figure
3-2 as an approximate guide to the computational difference between Ck and Fq, we see that,

for a 50-hidden unit network with relatively few inputs, a Ck epoch is no more than 10 times
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Table 3-2: Average RMS Error over test sets?

Ck ( x107%) Fk ( x107°)P Cq ( x107) Fq( x107%)
(A) 42.1(4.2) 127.1(37.3) 94.5 (6.2) N/A
(B) 7.4 (2.0) 124 (3.2) 14.5 (4.0 65.0 (18.2)¢
(@) 15.6 (1.5) 20.7 (4.8)¢ 29.9 (2.0) N/A
(D) 4.6 (0.6) 10.2 (4.0) 9.4 (2.7) 16.7 (2.2)
(E) 42.0 (5.9) 60.5 (3.1) 72.6 (16.3) 90.3 (8.3)

a. Standard deviations are in parentheses. Shaded cells are results taken from [33].

b. For the Fk results we report the better of the sinusoidal or sigmoidal networks (in al cases, the sinusoidal
networks did better on average).

c. A fixed-architecture/backprop network failed to converge for this problem, despite many experiments
with different learning parameters [33].

d. Thisis comparable to the result of 0.03 in [92] for a network with an equal number of parameters.

as computationally expensive as an Fq epoch. Hence, not only does our cascade/NDEKF
approach generate better learning results, it is a'so more efficient than the fixed-architecture/

quickprop approach.

Method Fk also performs worse than our Ck approach, despite allowing Fk to compute as much

astwice aslong as Ck. For problems (A) and (C), for example, the number of epochs required

[ ] % differencein RMSerror between Ck and Fk
250 [7] % differencein RMSerror between Ck and Cq
B % differencein RMSerror between Ck and Fq

778%

200

150

100 —

50—

0 B |

(A (B) © (D) (E)

N/A
N/A

Figure 3-5: Cascade/NDEKF significantly outperforms the other learning methods for
each problem.




3.4 Comparison experiments 41

0.25

0.2

[ ] minimum RMSerror over 25 trials
0.15 [[] mean RMSerror over 25 trials

o B maximum RMSerror over 25 trials
¥ 01
o
0.05
0
Cq Fk Fk Ck
(sine) (sigmoid)

Figure 3-6: Fk can get stuck in bad local minima, as witnessed by the large maximum
RMS errors observed for problem (A) (for 15-hidden-unit networks).
to train to 15 hidden units for Ck is approximately 140. Since we use eight candidate units, a

roughly equivalent number of epochsin terms of computational cost for Fk is (from (3-27)),

n 8
Fk =~ __E Ck = — = -
k= e 15(140) =75 (3-36)

Yet, we alow Fk to compute as much as twice that amount — 150 epochs.

Onereason, Fk showsworse performanceisits susceptibility to getting stuck in bad local min-
ima. As the authors of the NDEKF algorithm note, “NDEKF at times requires a small amount
of redundancy in the network in terms of the total number of nodesin order to avoid poor local
minimafor certain problems, which [they attribute] to high effective learning rates at the onset
of training [92].” Consider, for example, Figure 3-6. While the minimum eg,,5 for the Fk net-
work is below that of the Cq network, its maximum eg,, 5 is much worse than either Ck or Cq.
On the other hand, Ck avoids the bad local minima problem by iteratively training only a small

number of weightsin the network at once.

Finally, we look at the difference between the Ck and Cq methods. First, we note that Cq

requires about 15 to 25 times as many epochs as does Ck. Since each Cq epoch is much less
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computationally expensive, however, Cq consumes only about 2/3 the time as Ck for the prob-
lems studied here. On the other hand, Ck is able to achieve local minima comparable to Cq's
with fewer hidden units, and therefore requires significantly lesstime than Cq to reach the same
average RMS error. Consider, for example, Figure 3-7. At the onset of training, ey, for Ck
and Cq training is approximately equal (4% difference). As hidden units are added, however,
we see that eg,,g diverges for the two training algorithms. Since each hidden unit receives
input from all previous hidden units, the input-side weights of the hidden units becomeincreas-
ingly correlated. Figure 3-8, for example, plots,

p = _z_|Pij|/Z|Pii| (3-37)

EF [

(i.e. theratio of off-diagonal termsto diagonal termsin the error covariance matrix P) for one
trial in problem (C). By explicitly storing the interdependence of these weights in the condi-
tional error covariance matrix, cascade/NDEKF copes better with this increasing correlation

than does the cascade/quickprop algorithm.

0.06
0.05
0.04
% Caq
Z 003 N
D
Ck
0.02
I —
0.01L
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# hidden units

Figure 3-7: Ck converges to approximately the same avg. RMS error with 6 hidden units
(63 weights) as Cq does with 15 hidden units (216 weights) for problem (C).
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Figure 3-8: Ratio of off-diagonal terms to diagonal terms in the covariance matrix as
hidden units are added to the cascade network for one trial in problem (C).

3.4.3 Noisy learning results

Theresults of Section 3.4.2 demonstrate that Ck outperforms competing neural network learn-
ing architectures for noise-free mappings. In this section, we explore the Ck algorithm’s perfor-

mance when we introduce noise to the learning task.

We once again look at problems (A) through (E) defined in Section 3.4.1, only now, we add
Gaussian noise with standard deviation o to both the inputs and outputs of the training, cross-
validation and test data sets. Since these results no longer compare with thosein [33], wefollow
the training regime for problems (A) and (C) in the previous section (rather than for problems
(B), (D) and (E)). In other words, we train over 25 trials to 15 hidden units for each method
{Cq, Fk,CK .

Figure 3-9 plots the percent difference in the average RMS error of the test set over 25 trias
between (1) the Ck and Fk and (2) the Ck and Cq learning algorithms as afunction of theinput/
output Gaussian noise. For all noise levels, the Ck algorithm performs significantly better than
the Fk algorithm. To a lesser degree and with the exception of problem (B), cascade/NDEKF
also outperforms the cascade/quickprop algorithm as the level of noiseisincreased. For small

o, thedifferenceremainsrelatively large, whilefor large 0 = 0.05 (approximately 10% error)
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Figure 3-9: When noise is added to the learning task, Ck, to a lesser degree,
outperforms Fk and Cq for problems (A), and (C) through (E).

the difference shrinks substantially. Nevertheless, the Ck algorithm still achieves marginally

better results.

3.4.4 Discussion

From the above results, we make several observations. Firgt, for the test problems studied here,
we see a significant improvement in learning times and/or error convergence with cascade/

NDEKF over the other methods. Moreover, we see that incremental cascade |earning and node-
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decoupled extended Kaman filtering complement each other well by compensating for each
other’'s weakness. On the one hand, the idea of training one hidden unit at a time and adding
hidden unitsin acascading fashion offersagood aternative to the ad hoc selection of anetwork
architecture. Quickprop and other gradient-descent techniques, however, become less efficient
in optimizing increasingly correlated weights as the number of hidden unitsrises. Thisiswhere
NDEKF can perform much better through the conditional error covariance matrix. On the other
hand, NDEKF can easily become trapped in bad local minimaif a network architecture is too
redundant. Cascade learning accommodates this well by training only a small subset of all the

weights at one time.

Second, we note that throughout, we used the identical parameter settings for training cascade
networks with NDEKF (3-35). This stands in sharp contrast to more ad hoc methods such as
Cqg and Fq, for which the various learning parameters were tuned for each particular problem

in order to achieve good results [33]. The weight-update recursion,
Whyq = 0 +{WHTAE N L (3-38)

can be thought of as an adaptive learning rate, which lessens the need for parameter tuning in
NDEKF. Thus, we need spend little time tuning either learning parameters or network architec-

tures in this approach.

Finally, while our approach performswell for the problems studied, it is clearly impractical for
applications which have either alarge number of inputs or alarge number of correlated outputs.
This, for example, tends to exclude vision-based tasks, where the input space and/or output
space aretypically greater than 1000. Applications with inputs numbering in the low hundreds,

however, are not excluded.

Thus, in this chapter we have developed a new neural network |earning methodology for real-
valued function approximation and dynamic system identification. We have shown that incre-

mental cascade learning and NDEKF complement each other well by compensating the other’s
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weakness, and that the combination forms a flexible, powerful learning architecture, which
records quicker convergence to better local minimathan related neural-network training para-
digms. In the next chapter, we reinforce these results as we investigate how cascade learning

— gpecifically Cq and Ck — perform in modeling human driving control strategies.




Chapter 4
HCS Models: Continuous L earning

In the previous chapter, we developed a general learning architecture that combines cascade
neural networkswith node-decoupled extended Kalman filtering (NDEKF). Here we apply cas-
cade learning to the problem of modeling human control strategies. We first report results for
cascade/quickprop (Cq) neura networks. We then compare those results to the cascade/
NDEKF (CK) learning architecture. This comparison exposes the weakness of gradient-descent
techniques in modeling input-output mappings with correlated inputs, such as HCS models
with time-delayed state and control inputs (Figure 2-4). Although the test-set error decreasesin
Cqg as multiple hidden units are added to the neural networks over thousands of training epochs
— indicating astrong linear aswell as nonlinear component in the overall human control strat-
egy being modeled — these modeling results are quite deceptive. We show that, in fact, Ck con-
verges to equivalent or lower errors over the same training data in less than one training epoch
of alinear model. Moreover, the linear networks show markedly greater stability over awider

range of initial and environmental conditions.

Since the accel eration control of the ssimulated car involves (discontinuous) switching between
positive and negative applied force (i.e. the gas and the brake, respectively), however, theselin-
ear models, while abstracting convergent strategies, qualitatively bear little resemblance to the
origina human control strategy. We argue that thisis not only a shortcoming of our neural-net-

work function approximators, but that, in fact, any continuous function approximator is

47
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doomed to fail in asimilar manner when attempting to model control strategiesthat involvedis-
continuous switching. Chapter 5 follows up this discussion by developing a novel, statistical,

discontinuous framework for successfully modeling discontinuous human control strategies.

4.1 Cascade with quickprop learning

Here, we present modeling resultsfor the cascade/quickprop (Cq) learning architecture. In sub-

sequent sections, we will compare these results to cascade/NDEKF learning (CK).

4.1.1 Experimental data

Appendix A describes driving control data from six different individuals — (1) Larry, (2)
Curly, (3) Moe, (4) Groucho, (5) Harpo and (6) Zeppo across three different roads, roads #1,
#2 and #3 in Figures 2-2(a), (b) and (c), respectively. For notational convenience, let X(. 1),
10{1,23,4,5,6, j0{1, 2,3, denote the run from person (i) on road #j, sampled at
50Hz.

4.1.2 Model inputs and outputs

We defer to Section 4.2.1 a detailed discussion of the input space choices made for the HCS
model s described in this section. Thisisnecessary in part because our input selection procedure
is dependent on the cascade/NDEKF learning results. For now, we ssimply note what the
choices are for each model. In Table 4-1, n,, n, and n,, as defined in equation (2-28), com-
pletely characterize the input space for the results presented below. As we shall see later (Sec-
tion 4.2.1), model performance remains similar over a wide range of input spaces, especially
once a sufficient number of inputs are given. Here, “sufficient number” means that there are
enough time-delayed values of each state and control variable such that the model is able to
build necessary derivative dependencies between the inputs and outputs. The outputs of each

model are, of course, the next steering angle and acceleration command { d(k + 1), @(k + 1)} .
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4.1.3Cqtraining

For each model " (i 1) | we process the training data as follows. First, we excise from the com-
plete run X(.1) those segments where the human operator temporarily runs off the road
(dg >5m). Let [t,t+1] denotean interval of time, in seconds, that a human operator veers
off the road. Then, we cut the data corresponding to timeinterval [t—1,t +t] fromthetrain-
ing data. In other words, we not only remove the actual off-road data from the training set, but
also the second of data leading up to the off-road interval. This ensures that the HCS model

does not learn control behaviors that are potentially destabilizing.

Next, we normalize each input dimension of the HCS model, such that no input in the training
data falls outside the interval [—1, 1] . Finally we randomize the input-output training vectors
and select half for training, while reserving the other half for testing. All the runs X(. 1) are
approximately equal to or longer than 10 minutesin length. Thus, at 50Hz, typical training and
testing data sets will consist of approximately 15,000 data points each.

Training proceeds until the RM S error in the test data set no longer decreases. We use eight can-
didate units, and allow up to 500 epochs for candidate as well as for output training. Table 4-1

reports the final number of hidden units n,, for the models presented bel ow.

Table 4-1: Input space for each Cq model

Input space
Run? ny,° Figure
n, = n, n,
Larry's second X(1.2) 3 10 12 Figure 4-1
Moe's first X3 1) 3 10 14 Figure 4-2
Groucho’sfirst X4 1) 6 10 19 Figure 4-3
Harpo’s second X(5.2) 5 10 9 Figure 4-4

a. See Appendix A for a detailed description of each human control data set.
b. Number of hidden unitsin final Cq model.
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4.1.4HCS models

Figures4-1, 4-2, 4-3 and 4-4 illustrate some representative Cq learning resultsfor four different
runs: X(1.2) (Larry’s second run), X3 1) (Moe's first run), X(#1) (Groucho's first run), and
X(5.2) (Harpo's second run). Part (a) of each Figure plots the original human control data,
while part (b) of each Figure plots the corresponding model control over the test road (#5 in
Figure 2-3(b)).

Before comparing these results to Ck, we make the following two observations. First, the dis-
continuous switching in the acceleration control ¢ induces substantial high frequency noisein
the Cqg model control. This noise is especially evident in Larry’s and Groucho’'s models (Fig-
ures4-1 and 4-3, respectively). Second, Harpo's Cg model does not converge to a stable control

strategy, as it loses complete track of the road after less than 5 seconds.

4.2 Cascade with NDEKF learning

4.2.1 Mode inputsand outputs

For the neural networks trained in this chapter, we follow a simple experimental procedure for
selecting the input space of each HCS model. Let model I{- 1) correspond to a HCS model

trained with Ck on training datafrom run X0 1) (i.e. person (i) on road #) and with input space,
(= ok 2%  kO{1,2,...,20} , (4-1)
as defined in equation (2-28). Also let,

max(df\))), k0{1,2, ..., 20} (4-2)

denote the maximum lateral offset for model I 1) over the 20km validation road (#4) shown
in Figure 2-3(a). Then, we select model (1) for testing over the 20km testing road (#5)
shown in Figure 2-3(b)* such that,

1. We note that roads #4 and #5 (Figure 2-3) are different from the data collection roads#1, #2 and #3 (Figure
2-2), but share similar statistical attributes.
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Figure 4-1: Larry’s (a) training data and (b) corresponding Cq model data.




52 Chapter 4: HCS Models: Continuous Learning

)

0
0 100 200 300 400 500 600
t (sec)

v (mi/h)
v (mi/h)

dg (M)

dg (m)

ol Il | ) HI}I I h hN‘ Mm “ i‘l\
TR WNW I W\ L 'ﬂ “

e, °
-~ NI W | I
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Figure 4-3: Groucho’s (a) training data and (b) corresponding Cqg model data.
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max (df))) < max(d{,))), Ok #1. (4-3)

In other words, we choose the model with the largest stability margin over the validation road.
Figure 4-5 plots max(df\))) asafunction of k for the runslisted in Table 4-1. We observe that
for k= 3, model performance, as measured by the maximum lateral offset, does not change sig-
nificantly. Thus, when the model is presented with enough time-delayed values of each state
and control variable, the model is able to build what appear to be necessary derivative depen-

dencies between model inputs and outputs { 0(k + 1), @(k + 1)} .

4.2.2 Ck training

For each model {1}, we process the training data as described in Section 4.1.3. Training for
a particular Ck neural network proceeds until the RMS error in the test data set no longer
decreases. We use one candidate unit, and allow up to 5 epochsfor candidate as well asfor out-
put training. After some experimentation, we settled on the following training parameter

choices when training on human control data:

No = 0.0, np = 0.000001 (4-4)
1 3 56 10 15 20
12}
T e R A —— Larry
gu S Moe
s 8T T 1 11 Groucho
\ oy
é . ,"“‘L\\ ___________________________________ _ Harpo
LA N y———— Tty
A
4 \\ 1 e _—/7"“ ————————————
1 3 56 10 15 20
n,=n

Figure 4-5: Maximum lateral offset dE over validation road #4 as we vary the size of the
input space.
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4.2.3HCS models

Figures4-6, 4-7, 4-8 and 4-9 illustrate representative Ck learning results for the same four runs
for which we report Cq results — namely, X(1.2) (Larry’s second run), X3 1) (Mog's first
run), X(4 1) (Groucho'sfirst run), and X(52) (Harpo’s second run). Once again part (a) of each
Figure plotsthe original human control data, while part (b) of each Figure plotsthe correspond-
ing model control over the test road (#5).

We note that the model control trgjectoriesin Figures 4-6 through 4-9 arefor linear Ck models;
that is, models with no hidden units. Despite the discontinuous accel eration command @, these
linear models are able to abstract convergent control strategies— even for Harpo's data— that
keep the simulated car on the test road at approximately the same average speed and lateral dis-
tance from the road median as the corresponding human controllers. At the same time, we

should point out that the linear Cq networks do not form stable controllers.

Because the Ck models are linear, they do not exhibit the type of high-frequency noise that we
observed in the nonlinear Cg models. Only when we allow the Ck models to add nonlinear hid-
den units, will high-frequency noise manifest itself in the Ck models. Figure 4-10, for example,
illustrateswhat happensto Larry’s Ck model control when one hidden unit (ssigmoidal) isadded
to the linear model. Thus, in general, the linear Ck models do not benefit from the addition of
nonlinear hidden units. In the next section, we discuss in much greater detail the implications
of this result on the stability of the HCS models, the convergence properties of the Cq algo-
rithm, the models’ fidelity to the source training data, and the capacity of continuous function

approximators to model switching control behaviors.

4.3 Analysis

4.3.1 Model stability

In this section, we experimentally assess the stability of our Ck and Cq HCS models. Whilewe

have already seen one example of instability (Harpo’'s Cq model), we would like to determine
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Figure 4-6: Larry’s (a) training data and (b) corresponding linear model data.
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A

Figure 4-10: Larry’s Ck model control with one hidden unit added. Note that the
additional hidden unit causes significant (not really beneficial) high-frequency noise.
for what range of initial conditions and road curvatures each model is stable (i.e. stays on the
road). To do thisfor a given HCS model, we record the maximum lateral offset for that model
(max(d;) ) asit attemptsto negotiate the s-curve shown in Figure 4-11 for different radii r and
initial velocities v; ;. Figures 4-12, 4-13, 4-14 and 4-15 plot these stability profiles for Larry,
Moe, Groucho and Harpoz, respectively, where 90m<r <250m and
20mi/h < v, .. <100mi/h.

init =

Figure 4-11: This s-curve test road is used to generate stability profiles for the human
control strategy models, as v;,;; and r are varied.

2. From Harpo'sstability profile, it becomes apparent why his Cq model fails on road #5. Road #5 beginswith
an s-curve whose radii are 117m and 123m, respectively.
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Figure 4-12: Larry’s stability profiles through the s-curve for (a) the Cqg model and (b)
the Ck model (lighter colors are better).
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Figure 4-13: Moe’s stability profiles through the s-curve for (a) the Cqg model and (b) the
Ck model (lighter colors are better).
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Figure 4-14: Groucho’s stability profiles through the s-curve for (a) the Cqg model and
(b) the Ck model (lighter colors are better).
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Figure 4-15: Harpo's stability profiles through the s-curve for (a) the Cqg model and (b)
the Ck model (lighter colors are better).
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From these Figures, we observe that, in general, the Ck models behave in a stable manner for
a greater range of initial and environmental conditions than do the Cq models. Moreover, the
Thus, the
Cg models, with their many additional hidden units, do not appear to learn anything beneficial

control behaviors of the Ck models vary more smoothly with changesinr and v, ;; .

with the increased nonlinearity of the larger models.

4.3.2 L earning conver gence

Now, we examinethe differencein learning convergence between the Cq and Ck learning archi-
tectures. As we have noted previously, the linear Ck networks converge in less than one epoch
to approximately the same RMS error as the Cq networks after thousands of epochs and mul-
tiple hidden units. Consider Figures 4-16 and 4-17, for example. In Figure 4-16, we show how
the RMS error over Groucho'’s entire training and test data sets decreases in the first epoch of
the Ck algorithm. Even though the entire training set consists of approximately 15,000 input-
output patterns, the Ck algorithm converges very closeto the final RMS error after only 1/3 of
the training data set is presented once. By contrast, Figure 4-17 illustrates the convergence of
the Cq algorithm for Groucho’s data. Note that itslinear convergence as measured by the RM S
error is substantially worse than Ck’slinear convergence, and that Cq requires about 12 hidden
unitsand 11,000 epochs before converging to an equivalent test RM S error. Thisistrue despite
repeated attempts to optimize the learning parameters for the Cq algorithm.

05
0.25

-0.25
.05/ ||
-0.75

Ck training data
Ck test data

logegms

-1.25

0 1000 2000 3000 4000 5000

training pattern

Figure 4-16: Error convergence per training pattern for Groucho’s linear Ck model.
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Figure 4-17: Error convergence for Groucho’s Cq model. Vertical lines indicate the
addition of a new hidden unit.

It is apparent that the Cq algorithm encounters significant convergence problems when pre-
sented with the correlated, time-delayed inputs of our HCS models. This becomes even more
apparent if we increase n, and n, beyond the values in Table 4-1. As an example, consider
Harpo’s model. Figure 4-18 plots the stability profile for the Ck model, where n, = n, = 20.
Although the dimensionality of the input space is increased from 45 inputs (n, = n, = 5,
n, = 10) to 120 inputs, the Ck algorithm preserves the stable control strategy of the original
model. The Cq algorithm on the other hand, does not converge to a stable control strategy for

any values r [1[90m, 250m] , v, .. [1[20mi/h, 100mi/h] .

init

Thus, although the reduction of eg,,s as hidden units are added to the Cq models suggests that
substantial nonlinear modeling isoccurring, thisisnot the case, since virtually all the reduction
in egys can be captured by alinear Ck model. In fact, any training algorithm that does not
explicitly factor in the interdependence of weightsin the neural network model is doomed to a
similar fate, dueto the correlated nature of the time-delayed state and control inputs, aswell as

the correl ation between visible road coordinates.

4.3.3 Discussion

While thus far we have argued that the Ck algorithm shows better convergence to stabler HCS
models, we have not yet addressed how closely each of the learned models approximates its
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Figure 4-18: Harpo’s stability profiles through the s-curve for the Ck model with

n, = n, = 20.The Cq model is unstable for all r, v;;;-

corresponding training data. Examining Figures 4-1 through 4-4 and Figures 4-6 through 4-9
we make the qualitative observation that none of the models’ control strategies closely mirror
those of the corresponding human data.® Neither the Cq nor the Ck learning algorithm appears
to be able to model the driving control strategies with a high degree of fidelity to the source

training data.

The principal source of thisinability appears to be the discontinuous switching of the acceler-
ation control @. To better appreciate why thisis the case, we would like to visualize how dif-
ferent input vectors in the training data map to different acceleration outputs @(k + 1) . Asan
example, consider Groucho's control strategy dataand let n, = n, = 6, n, = 10 as before.
For these input space parameters, the input training vectors (k) are of length 50. Since it is
impossible to visualize a 50-dimensional input space, we decompose each of the input vectors
¢(K) in the training set into the principal components (PCs) [91] over Groucho’s entire data
set, such that,

3. We will formalize this qualitative observation in Chapter 8.
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{(k) = cky, +chy,+ ...cKyysp, (4-5)

where y; isthe principal component corresponding to theith largest eigenvalue o; . Now, for

Groucho's control data we have that,

|o,/04| = 044,|0,/0,/<0.05,i0{3,4,...,50, (4-6)
so that we coarsely approximate the input vectors (k) as,

(k) = cky, +cky,. (4-7)

By plotting the PC coefficients (ck, cX) in 2D space, we can now visualize the approximate
relative location of theinput vectors { (k) . Figure 4-19(a) and (b) show theresultsfor @(k) <0
(brake), and @(k) = 0 (gas), respectively. In each plot, we distinguish points by whether or not
¢(k + 1) indicates adiscontinuity (i.e. a switch between braking and accelerating) such that,

@(k) <0 and @(k + 1) >0 [Figure 4-19(a)] (4-8)
@(k) >0 and @k + 1) <0 [Figure 4-19(b)] (4-9)

Those points that involve a switch are plotted in black, while a representative sample (20%) of

the remaining points are plotted in grey.
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Figure 4-19: Switching actions (black) significantly overlap other actions (grey) when
the current applied force is (a) negative (brake), and (b) positive (gas).
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Weimmediately observe from Figure 4-19 that — at least in the low-dimensional projection of
the input vectors — the few training vectors that involve a switch overlap the many other vec-
torsthat do not. In other words, very similar inputs (k) can lead to radically different outputs
@(k + 1) . Conseguently, Groucho’s accel eration control strategy may not be easily expressible
in a functional form, let alone a smooth functional form. This poses an impossible learning
challenge not just for cascade neural networks, but any continuous function approximator. In
theory, no continuous function approximator will be capable of modeling the switching of the

acceleration control ¢ (Figure 4-20).

In summary, we note that while we limit the volume of results presented to representative
examples, the conclusions we draw with regards to the Cq and Ck algorithms have been con-
firmed for other human control data sets and over countless and repeated learning trials. Thus,
this chapter has shown that (1) the Ck algorithm converges faster and more reliably than Cqin
modeling human control strategies; (2) the Ck models exhibit stability over a greater range of
initial and environmental conditions; (3) aslong as sufficient datais provided asinput, the pre-
cise input representation affects performance only marginally; and (4) the continuous Ck and
Cq agorithms abstract control strategies that are qualitatively dissimilar to the original human
control strategies. In Chapter 5, we derive an alternative, discontinuous modeling framework

which attempts to overcome this limitation.

Output space

Input space { (K) ¢(k+1)

Figure 4-20: Switching causes very similar inputs to be mapped to radically different
outputs.




Chapter 5

HCS Models. Discontinuous L earning

In the previous chapter, we investigated the capacity of cascade neural networks to abstract
models of human control strategy, by mapping environmental inputs and time-delayed histories
of state and previous control variablesto control action outputs. As we observed, the resulting
models, while abstracting convergent, stable control strategies, do not appear to exhibit a high
degree of fidelity to the source human training data. This isin no small measure due to the
acceleration command @. While the steering control & tends to vary more continuously with
model inputs, the acceleration control ¢ involves discrete switching decisions between the gas
and brake pedal s that introduce discontinuitiesin the input-output mapping. Consequently very

similar input spaces are mapped to radically different outputs.

To adequately model such control behavior, in this chapter we propose a stochastic, discontin-
uous learning algorithm. The proposed algorithm models possible control actions asindividual
statistical models. During run-time execution of the algorithm, a control action is then selected
stochastically, as a function of both prior probabilities and posterior evaluation probabilities.
We show that the resulting controller overcomes the shortcomings of continuous modeling
approachesin modeling discontinuous control strategies, and that the resulting model strategies

appear to exhibit a higher degree of fidelity to the human training data.

69
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5.1 Hybrid continuous/discontinuous control

Figure 5-1 provides an overview of the proposed modeling approach. As before, we use a Ck
model for the steering control &. Now, however, we model the acceleration control ¢ inadis-
continuous, statistical framework. The following sections describe this framework in much
greater detail.

5.1.1 General statistical framework

First, let usderive ageneral statistical framework for faithfully modeling discontinuous control
strategies. For now, we make the following assumptions. First, assume a control task where at
each time step k, there is a choice of one of N different control actions A, i O {1, ..., N} .
Second, assume that we have sets of input vector training examples { Z,J} 1 0{L,2,...,n},
where each J leadsto control action A; at the next time step. Finally, assume that we can train

statistical models A, , which maximize,

n

|_i|P()\i|Zij), i0{1,...,N}. (5-1)

i=1

Given an unknown input vector ZUJ, we would like to choose an appropriate, corresponding

control action AL Since model A; corresponds to action A; , we define,

P((Ha)=PIn). (52)
By Bayes Rule,
} PHA)P(A
P(Ai|ZEb — (Z ‘ |) ( |) (5_3)

JC I

where,

N
P =y PAHA)PA), (5-4)

i=1
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5.1 Hybrid continuous/discontinuous control
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Figure 5-1: Overall hybrid discontinuous/continuous controller. Steering is controlled as before by a cascade model,
while the discontinuous acceleration command is controlled by the HMM-based, stochastic framework (shaded box).
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serves as a normalization factor, P(A,) representsthe prior probability of selecting action A,
and P(A | ¢D) representsthe posterior probability of selecting action A, givenin theinput vec-
tor 0.

We now propose the following stochastic control strategy for AL Let,
A = A, with probability P(AZD), (5-5)

so that, at each time step k, the control action AUl is generated stochastically as a function of

the current model inputs (ZD) and the prior likelihood of each action.

5.1.2 Action definitions

Aswe point out in equations (2-20) and (2-21), the acceleration command @ islimited at each
time step k to the following actions. When @(k) = 0 (the gasis currently active),

A o(k+1) = (k) (5-6)
Ayt g(k+1) = min(g(k) + Agy, 4000), (5-7)
Az @(k+1) = max(p(k) —Agy, 0), (5-8)
Aok +1) = —Ag,, (5-9)

and when @(k) <0 (the brake is currently active),

As: o(k+1) = @(k) (5-10)
Ag: o(k+1) = max(@(k) —Ag,, —8000), (5-11)
As: ok +1) = min(@(k) + Ag,, 0), (5-12)

Ag: o(k+1) = Ay, (5-13)
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Actions A; and Ag correspond to no action for the next time step; actions A, and Ag corre-
spond to pressing harder on the currently active pedal; actions A; and A, correspond to easing
off the currently active pedal; and actions A, and Ag correspond to switching between the gas
and brake pedals. The constants Ag, and A, are set by each human operator to the pedal
responsivenesslevel he or she desires. Table 5-1 below lists those choicesfor our four test indi-

viduals.
Table 5-1: Pedal responsiveness choices

Individual Ag, (N) A, (N)
Larry 100 1000
Moe 100 300
Groucho 100 200

Harpo 1000 1000

5.1.3 Statistical model choice

In part because of our familiarity with Hidden Markov Models (see Section 6.2.1), and because
of the capacity of HMMsto model arbitrary statistical distributions, we choose discrete-output
HMMsto bethetrainable statistical models A; of Section 5.1.1. Consequently, we must convert

the multi-dimensional, real-valued model input space to discrete symbols.

For aparticular data set X let,

— T
L0 = [vpr vl e g g ry e (5-14)

denote the normalized model input vector at time step k corresponding to control action
@(k + 1), where { v¢*, v,r]‘X, w™, oM, @M, rr, r;‘r} are defined in equation (2-26). Also, let V be
amatrix, whose rows are the { (k) vectors. Using the LBG VQ agorithm [69], we generate a
codebook Q, of size L that minimizesthe quantization distortion D(V, Q, ) defined in equa-
tion (6-67). To complete the signal-to-symbol conversion, the discrete symbols o(k) corre-

sponding to the minimum distortion of (k) are given by,
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o(k) = TVo(L(K), Q). (5-15)

where T\‘;Q( ) isdefined in equation (6-69). Finally, let us define the observation sequence
O(k) of length ng to be,

O(k) = {o(k—ng+1), o(k—ng +2), ..., 0(K)} . (5-16)

Now, suppose that we want to provide the Hidden Markov Models A; with m time-delayed val-
ues of the state and control variables as input. There are at least two ways to achieve this. We
caneither (1) letn, = n, = m,ny = 1,0r (2 letn, = n, = 1, ng = m.Inthefirst case,
we vector quantize the entire input vector into a single observable, and base our action choice
on that single observable. This necessarily forces the HMMs A, to single-state models, such
that each model is completely described by its corresponding output probability vector B, .
Alternatively, we can vector quantize shorter input vectors but provide a longer sequence of

observables n5 > 1 for HMM training and eval uation.

While in theory both choices start from identical input spaces, the single-observable, single-
state case works better in practice. There are two primary reasons for this. Because the amount
of data we have available for training comes from finite-length data sets, and is therefore nec-
essarily limited in length, we must be careful that we do not overfit the models A; . Assuming
fully forward-connected, |eft-to-right models A;, increasing the number of states from ng to
(ng+ 1) increasesthe number of free (trainable) parametersby ng + L, where L isthe number
of observables. Thus, having too many states in the HMMs substantially increases the chance
of overfitting, since there may be too many degrees of freedom in the model. Conversely, by

minimizing the number of states, the likelihood of overfitting is minimized.

A second reason that the single-observable, single-state case performs better relates to the vec-
tor quantization process. To understand how, consider that each input vector Z(k) minimally
includes 2n, road inputs {rg, rJ} . If welet n, = 10, then for n, = n, = 1, 80% of the
input dimensions will be road-related, while only 20% will be state related. Thus, the vector
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guantization will most heavily minimize the distortion of the road inputs, while in comparison
neglecting the potentially crucial state and previous command inputs. With larger valuesof n, ,
and n,,, the vector quantization process relies more equally on the state, previous control and
road inputs, and therefore forms more pertinent feature (prototype) vectors for control.

Thus, for aVQ codebook Q, , input vector M n,=n,=m,n =10,andny = 1,

u

o0 =1 = TY(ZH Q). and (5-17)

P(A|ZD) = P(A[0D) OP(OOA)P(A) = b(I),P(A), (5-18)

where b(l), denotesthelth elementinthe A; model’s output probability vector B; . If weinter-
pret the codebook vectors ; asstates S, then the discontinuous controller can be viewed asa

learned stochastic policy that maps states S to actions A, , where,

N
P(A[S) = b(1)P(A)/ 5 b(1);P(A). (5-19)
i=1

5.1.4 Prior probabilities

In order to calculate P(A, | S) . we need to assign values to the prior probabilities P(A;) . One
approachisto estimate P(A,) by the frequency of occurrence of action A; inaparticular con-
trol dataset X. For @(k) =0,

P(A) = %ni/z‘k‘zlnk i0{1,23,4 (5.20
" i0{56,7,8 "

where n; denotes the number of times action A, was executed in the data set X; similarly, for
o(k) <0,

i0{1,2 3 4

/Zﬁ= 5k i0{5,6,7,8 (5-21)
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5.1.5 Task-based modifications

While the assignment of priorsin equations (5-20) and (5-21) are the best estimates for P(A,;)

from the data X, they are sometimes problematic when dealing with marginally stable training
data. Consider, for example, Figure 5-2, where we plot a small part of Groucho’s first run. We
observe that Groucho’strajectory takes him close to the edge of the road; what keeps him from
driving off the road is the switch from the gas to the brake at time t. Now, because the action
selection criterion in equation (5-5) is stochastic, it is possible that the stochastic controller will
only brake at time t, + T, even if it correctly models that time t, is the most likely time for a
control switch. Braking at time t¢ + T, however, may betoo late for the car to maintain contact
with the road.

Consequently, we would like to improve the stability margins of the stochastic control model.
The stability of the system (i.e. the simulated car) is directly related to the kinetic energy T
being pumped into the system,

TO Z(p(k) : (5-22)
so that the expected value of T, E[T] , is proportional to,

E[T] O ZE[(P(k)] : (5-23)

actual human
control trajectory e

actual switchto
braking (ts)

= if model braking happens
- too late (tg+ T).

Figure 5-2: Instability can result if the stochastic controller switches to braking too late.
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Hence, for increased stability margins, we want to adjust the stochastic model to generate
@(k), where,

E[@(K)] <E[o(k)] (5-24)

We can realize condition (5-24) by dight increasesin the priors for those actions that decrease
E[@(k)] — namely, A; or A,. To stay within probabilistic constraints, we offset these
changes by slight decreasesin the priors A, or A, , respectively, so that the modified priors are

given as either,
P'(Ag) = P(A3) +&; and P'(A,) = P(A,) —¢g,or (5-25)
P'(A;) = P(A)) +e;and P'(A)) = P(A)) —¢, (5-26)

where £,> 0 determines the degree to which we decrease E[ ¢ (k)] . Aswe shall observe |ater,
for some human control data P(A;) = 0. Inthat case we choose modification (5-26), so as not
to introduce a control action that was never observed in the human control strategy. When

P(A;) issubstantial, then we choose modification (5-25).

While instability is a common faillure mode of the unmodified stochastic controller, another
very rare failure mode leads to exactly the opposite: the brake is engaged too long by the sto-
chastic controller and the simulated car comesto a screeching halt. Thisproblemisvery similar
to theinstability problem, inthat aswitch — in this case from braking to accel erating — occurs
too late. Once the car is stopped, the distortion for the vector-quantized input vector (k) is
large for all VQ codebook vectors g, . It will be smallest, however, for those codebook vectors
where the previous accel eration commands @ arelessthan zero. Hence, oncethe car is stopped,
the brake remains engaged for along time. Although the stochastic selection criterion in (5-5)
ensures that eventually the smulated car will once again switch from braking, we would like
to prevent the car from stopping altogether. Unlike the instability problem, thisis significantly
easier to monitor, sincethe velocity v directly predicts when a stopping event is about to occur.

Consequently, we modify the statistical controller so that,
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P(Ag|V<Vyin) = 1, P(A[V<Vyp) = 0,i0{1,2 ..., 7%, (5-27)

min

where v,;, ischosento reflect the range of velocitiesin the human control data. Over repeated

trials, condition (5-27) isinvoked on average approximately one time per 20km test run.

5.2 Experimental results

5.2.1 Mode training

In order to make afair comparison of the HCS modelsin this chapter with those of Chapter 4,
we select the same input space parameters n, , n, and n, asthoselisted in Table 4-1. Further-
more, welet ny = ng = 1, sothat the HMMs A; are single-state models. As we have already
argued, we get significantly better performance from the more constrained models than we do
if welet ng>1 and n > 1. We vector quantize thetraining datafor eachrunto L = 512 lev-
els. Also, for each run we choose the stabilization parameter € to ensure stability over the val-
idation road #4 (Figure 2-3(a)), and then test the resulting modified controller over test road #5
(Figure 2-3(b)). Table 5-2 summarizes the stabilization parameter and minimum velocity
choices for each model. Finally, for the steering control &, we select the same linear Ck asin
Chapter 4.

Table 5-2: Hybrid controller design choices

Individual | v, (mi/h) £ P(A,) modified
Larry 50 0.010 {P(A,), P(A3)}
Moe 45 0.005 {P(A), P(Ap}
Groucho 40 0.005 {P(A), P(A}
Harpo 40 0.005 {P(A), P(A}
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5.2.2 HCS models

Figures5-3, 5-4, 5-5 and 5-6 illustrate representative hybrid controller resultsfor the same four
runs for which we report cascade network results — namely, X(1.2) (Larry’s second run),
XB1) (Moe'sfirst run), X(4 1 (Groucho'sfirst run), and X(5.2) (Harpo’s second run). Once
again part (a) of each Figure plotsthe original human control data, while part (b) of each Figure

plots the corresponding model control over the test road (#5).1

Comparing these modeling results to the Cq and Ck resultsin Figures 4-1 through 4-4 and 4-5
through 4-9, respectively, we ask ourselves, which controller, the continuous cascade network
controllers, or the discontinuous stochastic controllers, perform better? The answer to that

guestion depends on what precisely is meant by “better.”

If we evaluate the two modeling strategies based on absolute performance criteria, such as
range of stability, the cascade network controllers probably perform better. Whereas the linear
model controllersrarely, if ever, run off the road, the hybrid controllers temporarily run off the
test road more often (for w = 10m). Simply put, thelinear controllers appear more stable than

their hybrid counterparts.

If, on the other hand, we evaluate the two modeling approaches on how closely they approxi-
mate the corresponding operator’s control strategy, then the verdict likely changes. Aswe have
already noted, the Ck models' control trgjectories do not ook anything like their human coun-
terparts’ trgectories, due to the continuous models’ inability to faithfully model the discontin-
uous acceleration command ¢. Qualitatively, the hybrid continuous/discontinuous controllers

appear to approximate more closely their respective training data.

1. Note that for these results, the trgjectories that are shown are but one example of the discontinuous
controller’s strategy over road #5, since the control action selection criterion in (5-5) is stochastic.
2. Once again, we will formalize this qualitative observation in Chapter 8.
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Figure 5-3: Larry’s (a) training data and (b) corresponding hybrid controller data.
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Figure 5-5: Groucho’s (a) training data and (b) corresponding hybrid controller data.
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Figure 5-6: Harpo’s (a) training data and (b) corresponding hybrid controller data.
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5.3Analysis

5.3.1 Sample curve control

Here, we examine the control behavior of the hybrid models in somewhat greater detail —
through a road sequence composed of (1) a 75m straight-line segment, and (2) a subsequent
150m-radius, 120° curve. Since, this particular road sequence appears in road #1 (Figure 2-
2(c)), we can directly compare the actual human control strategy with the corresponding

hybrid-model control.

Figures 5-7, 5-8, 5-9 and 5-10 plot the driving control for Larry, Moe, Groucho and Harpo and
their respective hybrid models. In each Figure, the vertical linesindicate the start of the turn for
the human (dashed) and the corresponding hybrid-model control data (solid).
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Figure 5-7: Larry’s (dashed) and his hybrid model’s (solid) control through a given turn.
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Figure 5-8: Moe’s (dashed) and his hybrid model’s (solid) control through a given turn.
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Figure 5-10: Harpo’s (dashed) and his hybrid model’s (solid) control through a given
turn.

From these Figures we make a few general observations. First, each hybrid model completes
the curvein almost exactly the sametime asits respetive human. The largest differencein com-
pletion times — 2.5% (0.34 sec) — occurs for Harpo; in two of the other cases (Larry and

Groucho), the time difference between the actual and hybrid controls is less than 0.5%.

Second, since the models' steering is handled through alinear, continuous mapping, the steer-
ing o profilesfor the modelsvary more smoothly than their human counterparts. Consequently,
the lateral offset from the road median (dj ) also differs between the model and human control
trajectories’.

3. Although lateral offset from the road median isan important criterion for distinguishing between driversin
real driving, we shall seelater that in our type of simulated driving, drivers pay little attention to d; aslong
as they maintain contact with the road. Since drivers areinconsistent in their lateral lane position from one
curve to the next, we cannot expect that amodel will very closely track lateral lane position in any specific
instance.
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Finally, whilethe applied force ¢ profiles between the humans and corresponding hybrid mod-
elsare not identical, they are, in fact, similar. For Larry, the hybrid model’s initial brake head-
ing into the curve occurs approximately 1/2 second after Larry’sinitial brake. Thus, the model
is dlightly faster when first braking; to compensate for the higher speed, the model brakes
dightly harder, and thereafter tracks Larry’s applied force profile closely.

Groucho’'s caseissimilar to Larry’s. Theinitial brake for the model occurs approximately 1/4
second after Groucho'sinitial brake. In this case, however, the model compensates not by brak-
ing harder, but by braking longer. Thereafter, the main difference between Groucho’s control
and the model isaquick brake maneuver whilein the turn to compensate for the model’s some-
what larger acceleration in the turn. Harpo’'s model aso initially brakes after Harpo (by about
1 second), and consequently is also forced to brake more while in the turn to compensate for

the higher speed going into the turn.

Moe is perhaps the most interesting of the four cases. This time, the model initially brakes
approximately 1/2 second before Moe himself does, albeit with somewhat |ess force than Moe.
Thereafter, the hybrid model closely emulates Moe's strategy of rapid switching between the

brake and the accelerator while in the turn.

In summary, we observe that each hybrid controller, while not replicating the human’s control
strategy exactly, does a good job of emulating its respective human’s turn maneuver. The fol-

lowing section examines the underlying reason for this success.

5.3.2 Probability profile

The most important reason behind the success of the hybrid controller isthat it is able to suc-
cessfully model the switching behavior between the gas and brake pedals as a probabilistic
event, since the precise time that a switch occurs is not that important (as we observed in the
previous section). What is more important is that the switch take place in some time interval

around the time that the human operator would have executed the switch. Consider, for exam-
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ple, Figure 5-11, which plots the posterior probabilities P(A, | O) for asmall segment of Grou-
cho’shybrid model control. We see that switches between the gas and brake pedals (actions A,

and Ag), while never very likely for any individual time step, are modeled as intervals where,
P(A4|O) = p>0,o0r P(A8|O) = p>0. (5-28)

The probability that a switch will occur after m time steps given the constant probability p is
given by,

1-(1-pm (5-29)

Figure 5-12 plots this probability as afunction of time (at 50 Hz) for p = 0.1 and p = 0.05.
Thus, we see that even for small values of p, the likelihood of a switch rises quickly as afunc-

tion of time.

Because we train separate models A; for each action A, , the hybrid modeling approach does
not encounter the same one-to-many mapping problem, illustrated in Figures 4-19 and 4-20,
that the continuous cascade networks encounters. The relatively few occurrences of switching
in each control data set are sufficient training data, since the switching models A, and Ag see
only that data during training. Including the priors P(A;) in the action selection criterion (5-5)

then ensures that the model is not overly biased towards switching.
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Figure 5-12: Probability of a switch after t seconds (at 50 Hz) when the probability of a
switch at each time step is p.
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5.3.3 Modeling extension

Suppose the acceleration control @ were not constrained by equations (2-20) and (2-21), and
thus were not as readily expressible through discrete actions. For example, suppose that the
separate gas and brake commands could change by an arbitrary amount for each time step, not

just by A(pg and A@, . How would this change the proposed control framework?

Figure 5-13 suggests one possible solution. Initially, we train two separate continuous control -
lers, thefirst corresponding to @(k) = 0, and the second corresponding to @(k) < 0. Sincethese
controllerswould not be required to model switches between braking and accel erating, the con-
trol outputs will vary continuously and smoothly with model inputs; hence a continuous func-

tion approximator should be well suited for these two modeling tasks.

Then, wetrain four statistical models )~\i , corresponding to actions Ai ,10{1,2,3,4 ,where
actions Al and ,5\2 correspond to no switch at the next time step for @(k) =0 and @(k) <O,
respectively, and actions Ag and A4 correspond to a switch at the next time step for @(k) =0
and @(k) <0, respectively. This discontinuous action model would then regulate which of the

continuous models is active at each time step k. Although the discontinuous controller’s func-

o(k) = 0
1
(k) <0 - 2-to-1
Itipl o
_ 5 _ multiplexer {U}
(%3 1

= Discontinuous
model selector

Figure 5-13: Alternative architecture for discontinuous strategies.
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tion in this schemeis reduced, it does preserve the critical role of the discontinuous controller
in properly modeling the switching behavior, without the introduction of high-frequency noise.
In fact, Figure 5-13 offersamodeling architecture which is applicable whenever discrete events

or actions disrupt the continuous mapping from inputs to outputs.

Of course, the proposed statistical framework does have some limitations in comparison to
functional modeling approaches. Because we vector quantize the input space, the stable region
of operation for the hybrid controller is strictly limited to the input space spanned by the VQ
codes. In fact, we observe from the modeling results that the continuous Ck models are more
stable than the hybrid discontinuous/continuous models. A second limitation of the approach
is the inclusion of the prior probabilities P(A;) in the stochastic selection criterion (5-5). By
including the priors, we are assuming environmental conditions similar to the training environ-
ment. Radically different environmental conditions during testing presumably change the val-

ues of the priors, and therefore make the action selection criterion less appropriate.

In summary, we have developed a discontinuous modeling framework for abstracting discon-
tinuous human control strategies, and have compared the proposed approach to competing con-
tinuous function approximators. Which control approach is preferred ultimately depends on the
specific application for the HCS model. If the model is being devel oped towards the eventual
control of areal robot or vehicle, then the continuous modeling approach might be preferred as
a good starting point. Continuous models extrapolate control strategies to a greater range of
inputs, show greater inherent stability, and lend themselves more readily to theoretical perfor-
mance analysis. If, on the other hand, the model is being developed in order to ssimulate differ-
ent human behaviors in a virtual reality ssmulation or game, then the discontinuous control
approach might be preferred, since fidelity to the human training data and random variationsin
behavior would be the desired qualities of the HCS model. Thus, depending on the application,
we believe aneed exists for both types of modeling approaches.
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In the next several chapters, we develop a stochastic similarity measure as the first step in a
post-training model-validation procedure. In Chapter 8, we then use this similarity measure to
guantify our previous qualitative observations about the level of similarity (or dissimilarity)

between the original human control data and the model-generated trajectories.




Chapter 6
M odel validation

In previous chapters, we investigated different machine learning techniques for abstracting
models of human control strategy. Each of these methods learns, to varying degrees, stable
HCS models from the experimental data. As we observed, however, the different modeling
techniques— Cq, Ck and discontinuous learning — generate control trgjectoriesthat are qual-
itatively quite different from one another, despite training from identical human control data.
Thisistrue not only because the modeling capacity of each approach differs, but also because
modeling errors can feed back on themselves to generate state and command trajectories that
are uncharacteristic of the source process. Therefore, for feedback control tasks, such ashuman
driving, we suggest that post-training model validation is not only desirable, but essential to
establish the degree to which the human and model-generated trajectories are similar.

In this chapter, wefirst demonstrate the need for model validation with some illustrative exam-
ples. We then propose a stochastic similarity measure — based on Hidden Markov Model anal-
ysis — for comparing stochastic, dynamic, multi-dimensional trgjectories. This similarity
measure can then be applied towards validating alearned model’ s fidelity to itstraining data by
comparing the model’s dynamic trajectories in the feedback |oop to the human’s dynamic tra-
jectories. Finally, we derive and demonstrate some general properties of the similarity measure
for known stochastic systems. In Chapter 7, we will test the similarity measure by comparing

human control strategies acrossdifferent individuals, and will show that the proposed similarity
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measure outperforms the more traditional Bayes classifier in correctly grouping driving data
from the same individual. Chapter 8 then applies the similarity measure towards comparing the

HCS models learned in the previous chapters to their respective human control data.

6.1 Need for model validation

The main strength of modeling by learning, is that no explicit physical model is required; this
also represents its biggest weakness, however. On the one hand, we are not restricted by the
limitations of current scientific knowledge, and are able to model human control strategies for
which we have not yet developed adequate biological or psychological understanding. On the
other hand, the lack of scientific justification detracts from the confidence that we can show in
these learned models. Thisis especially true when the unmodeled processis (1) dynamic and
(2) stochastic in nature, asisthe case for human control strategy. For adynamic process, model
errors can feed back on themselves to produce trajectories which are not characteristic of the
source process or are even potentially unstable. For a stochastic process, a static error criterion
(such as RMS error), based on the difference between the training data and predicted model
outputsisinadequate to gauge the fidelity of alearned model to the source process. Yet, for the
static modeling techniques studied in thisthesis, some static error measure usually servesasthe
test of convergence. While this measure is very useful during training, it offers no guarantees,
theoretical or otherwise, about the dynamic behavior of the learned model in the feedback con-

trol loop.

Toillustrate this problem, we consider two examples. In thefirst example, supposethat wewish

to learn a dynamic process represented by the simple difference equation,
u(k+1) = 0.75u(k) + 0.24u(k — 1) + x(k) (6-1)

where u(k), x(k) represent the output and input of the system, respectively, at time step k. For
the input/output training datain Table 6-1, at least three different linear models yield the same
RMS error (6.16 x 10-3) over the training set:
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Table 6-1: Sample input-output training data

I nput Output
utk-1) u(k) x(k) u(k+1)
-0.1 0.1 04 0.349
0.1 0.1 0.5 0.599
-0.3 0.2 0.3 0.123
0.3 0.2 04 0.673
0.2 0.0 0.5 0.650
0.0 0.2 0.3 0.348
#1: u(k+1) = 0.76u(k) + 0.25u(k — 1) + x(k) (6-2)
#2: u(k+1) = 0.76u(k) + 0.23u(k —1) + x(k) (6-3)
#3: u(k+1) = 0.74u(k) + 0.23u(k — 1) + x(k) (6-4)

The dynamic trajectories for these models, however, differ markedly. As an example, consider

the time-dependent input,
x(k) = 0.1sin(kr/ 100) (6-5)

andinitial conditionsu(-1) = u(0) = 0. Figure6-1 plotsthe system aswell asthe model tra-
jectories for 0 < k< 300. We see that model #1 diverges to an unstable trgjectory; model #3
remains stable, but approximates the system with significantly poorer accuracy; and model #2
matches the system’s response very closely. These responses are predicted by the dominant
pole for each difference equation (Table 6-2). Except for the unstable model (#1), each model’s

dominant pole lies inside the unit circle, thus ensuring stability.

Table 6-2: Dominant poles for each difference equation

system model #1 model #2 model #3

(0.992,0) | (1.008,0) | (0.992,0) | (0.976,0)




96 Chapter 6: Model validation
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Figure 6-1: The three models result in dramatically different (even unstable)
trajectories.

It is apparent from this example that a biased estimator of a marginally stable system may well
result in an unstable model, despite RM S errors which appear to be equivalent to those of better
models. Not only biased models are a problem, however. Static models of the type shown in
Figure 2-4 can achieve deceptively low RMS errors by confusing causation with correlation
between the model’ sinput and output spaces. In our second example, weillustrate this problem

with some human driving data collected from Groucho.

In the driving ssmulator (Figure 2-1), we ask Groucho to drive over road #1 shown in Figure 2-
2(a). We ssimplify the problem by fixing the acceleration command at @ = 300N, keeping the
velocity around 40mph, and requiring only control of the steering angle &. Now, we train two
linear models I"; and I, with input representations {ri% and {5 3} , respectively. Note that

model I, receives no road information asinput, and is therefore guaranteed to be unstable.

For I, , the RMSerror over the data set convergesto 9.70 x 103, whilefor I, , the RMSerror
convergesto 0.71 x 103, an order of magnitude smaller. All that the ', model has “learned,”
however, is acorrelation between the previous values of & and the next value of 8. In fact, the
full model,

5(k+1) = 0.99975(K) + 0.66473(k — 1) — 0.66555(k — 2) (6-6)

simplifies to (approximately),
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o(k+1) = o6(k) (6-7)

Despite the larger RM S error over the training data, model I, , on the other hand, convergesto
astable control strategy, asisshown in Figure 6-2. It learned a causal relationship between the
curvature of the road ahead and the steering command d(k + 1) .

The two examples above are the extremes. Not all models will be either agood or an unstable
approximation of the human control data. In general, similarity between model-generated tra-
jectories and the human control data will vary continuously for different models, from com-
pletely dissimilar to nearly identical. Furthermore, for stochastic systems (such as humans),
one cannot expect equivalent trgjectories for the system and the learned model, given equiva-
lent initial conditions. Therefore, we require a stochastic similarity measure, with sufficient

representational power and flexibility to compare multi-dimensional, stochastic tragjectories.

6.2 Stochastic ssimilarity measure

Similarity measures or metrics have been given considerable attention in computer vision [12,
20, 121], image database retrieval [54], and 2D or 3D shape analysis[62, 107]. These methods,
however, generally rely on the special properties of images, and are therefore not appropriate

for analyzing sequential trajectories.

3 3

25 25

2 2
—

E1s 15
MJS

] 1

05! (a) 05! (b)
0 200 400 600 800 1000 0 200 400 600 800 1000
t (sec) t (sec)

Figure 6-2: Lateral offset (e.g. distance from road median) over time, for (a) Groucho’s
control strategy, and (b) the first model’s control trajectory.
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Many parametric methods have been developed to analyze and predict time-series data. One of
the more well known, autoregressive-moving average (ARMA) modeling [21], predicts the
current signal based on a linear combination of previous time histories and Gaussian noise
assumptions. Since we have aready observed in Chapter 4 that alinear model isinsufficient to
gualitatively replicate switching, nonlinear control strategies, ARMA models may form a poor
foundation upon which to develop asimilarity measure. Other work hasfocussed on classifying
temporal patternsusing Bayesian statistics[30], wavel et and spectral analysis[114], neural net-
works (both feedforward and recurrent) [47, 112], and Hidden Markov Models (see discussion
below). Much of this work, however, analyzes only short-time tragjectories or patterns, and, in
many cases, generates only abinary classification, rather than a continuously valued similarity
measure. Prior work has not addressed the problem of comparing long, multi-dimensional, sto-
chastic trgjectories, especially of human control data. Thus, we propose to evaluate stochastic
similarity between two dynamic, multi-dimensional trgectories using Hidden Markov Model
(HMM) analysis.

6.2.1 Hidden Markov Models

Rich in mathematical structure, HMMs are trainable statistical models, with two appealing fea-
tures: (1) no a priori assumptions are made about the statistical distribution of the data to be
analyzed, and (2) adegree of sequential structure can be encoded by the Hidden Markov Mod-
els. As such, they have been applied for avariety of stochastic signal processing. In speech rec-
ognition, where HMMs have found their widest application, human auditory signals are
analyzed as speech patterns [51, 94]. Transient sonar signals are classified with HMMs for
ocean surveillance in [61]. Radons, et. al. [96] analyze 30-electrode neuronal spike activity in
amonkey’s visual cortex with HMMs. Hannaford and Lee [45] classify task structure in tele-
operation based on HMMs. In[123, 124], HMMs are used to characterize sequential images of
human actions. Finally, Yang and Xu apply Hidden Markov Models to open-loop action skill
learning [126] and human gesture recognition [127].
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A Hidden Markov Model consists of a set of n states, interconnected through probabilistic tran-
sitions; each of these states has some output probability distribution associated with it.
Although algorithms exist for training HMMs with both discrete and continuous output prob-
ability distributions, and athough most applications of HMMs deal with real-valued signals,
discrete HMMs are preferred to continuous or semi-continuous HMMs in practice, dueto their
relative computational simplicity (orders of magnitude more efficient) and lesser sensitivity to
initial random parameter settings[95]. In Section 6.2.5 bel ow, we describe how we use discrete
HMMs for analysis of real-valued signals by converting the data to discrete symbols through
pre-processing and vector quantization. Section 6.2.7 follows with methods for minimizing the
detrimental effects of discretization.

A discrete HMM is completely defined by the following triplet [94],

A ={A B, (6-8)

where A is the probabilistic ng x ng state transition matrix, B is the L x ng output probability
matrix with L discrete output symbols | 0 {1, 2, ...,L} , andrt is the n-length initial state
probability distribution vector for the HMM. Figure 6-3, for example, represents a 5-state
HMM, where each state emits one of 16 discrete symbols.

We define the notion of equivalent HMMs for two HMMs A; and A, such that,

A, OA,,iff. P(O]A;) = P(O|A,), OO (6-9)

M h\\.x\.x\\\m H‘,‘xh.HW ‘HH,.,HM H ‘HH,.,H‘I H
T

Figure 6-3: A 5-state Hidden Markov Model, with 16 observable symbols in each state.
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Notethat A, and A, need not beidentical to be equivalent. The following two HMMs are, for
example, equivalent, but not identical:

_4d Trad , _ Ho505 (10 gl ]
Ay = E[l]a 0.5 05| ,[1]%, Ay = 5[0_5 0.5}, [0 J [05 05| 0 (6-10)

Finally, we note that for an observation sequence O of discrete symbols and an HMM A, we
can locally maximize P(A|O) using the well-known Baum-Welch algorithm (see Section
6.2.8) [94, 16]. We can also evaluate P(O|A) using the computationally efficient forward-
backward algorithm.

6.2.2 Similarity measure

Here, we derive a stochastic similarity measure, based on discrete-output HMMs. Assume that
we wish to compare observation sequences from two stochastic processes ', and I',. Let
O = {0}, kO{1,2,...,n} ,i0{1, 2 , denote the set of n; observation sequences of
discrete symbols generated by process I'; . Each observation sequenceis of length T (¥, so that
the total number of symbolsin set O; isgiven by,
n;
T, = Z TR, i0{12 . (6-11)

k=1

Also let )\j = {Aj, Bj,nj} , 1 0{1,2 , denote a discrete HMM locally optimized with the

Baum-Welch agorithm to maximize,
n;
P()\j|(_)j) = |_| P(}\j|01(k)), j0{1,2, (6-12)
k=1

and let,

P(Gi[A)) = hP(oi<k>|Aj) (613
k=1
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P; = PGA)YT,i,j0{12 (6-14)

denote the probability of the observation sequences O; given the model A i normalized with
respect to the sequence lengths T, *.

Using the definition in (6-14), Figure 6-4 illustrates our overall approach to evaluating similar-
ity between two observation sequences. Each observation sequence is first used to train a cor-
responding HMM; this allows us to evaluate P,; and P,,. We then cross-evaluate each
observation sequence on the other HMM (i.e. P(O1|A,), P(Oz|A,) ) toarriveat Py, and Py, .
Given, these four normalized probability values, we define the following similarity measure

between O; and O,:

—_ P,.P
0(04,05) = /P21—Plz (6-15)
11P2

6.2.3 Properties

In order for the similarity measure to obey certain important properties, we restrict the HMMs

A, and A, to have the same number of states such that,

o (o & & &) [p
1 EEEE]L
T~
A P21 -
0(04, Oy)
(o & & &) |p
sisRelisRelic
— L T
O, )\ P2

N

Figure 6-4: Four normalized probability values make up the similarity measure.

1. In practice, we cdculate Py as 109" T to avoid problems of numerical underflow for long
observation sequences.
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N1 = Ns 2 (6-16)

where ng i j 0{1,2 denotesthe number of statesin modelA i
Now, let us assume that the P;; are global (rather than just alocal) maxima?. We define model

A; to beaglobal maximumif and only if,

P(Oi|)\i) > P(Oi|)\), OA, ng = Ng i (6-17)
where ng isthe number of statesin model A . With this assumption, we have that,

1/L<P;,and (6-18)

0<P, <P, 3 (6-19)

[

The lower bound for P;; in (6-18) is realized for single-state discrete HMMs, and a uniform
distribution of symbolsin O;. From (6-15) to (6-19), we derive the following properties for
0'(61, C_)z) .

Property #1: 0(04, O) = 0(Oy, O4) (by definition) (6-20)
Property #2: 0<0(04, 05) < 1 (6-21)
Property #3: 6(O, O,) = 1if (8) A, 0N, or (b)) O; = O, (6-22)

Below, we illustrate the behavior of the similarity measure for some simple HMMs. First, for

the class of single-state, discrete HMMs given by,

2. Theoretically, the Baum-Welch algorithm guarantees that P,; isalocal maximum only. In practice, thisis
not a significant concern, however, since the Baum-Welch algorithm converges to near-optimal solutions
for discrete-output HMMs, when the algorithm is initialized with random model parameters [94, 95]. We
have verified this near-optimal convergence property experimentally in two ways. First, for a given set of
observation sequences O, we trained n different HMMs {\;, A, ...,A} from different initial random
parameter settings. We then observed that the probabilities P(O[A,), i 0{1,2,...,n} , were approximately
equivalent. Second, for agiven model A , we generated a set of observation sequences O . We then trained
asecond Hidden Markov Model A (withinitial random model parameters) on O . Finally, we observed that
P(O|A)/P(O|A) = 1 provided that O is sufficiently large. Both procedures suggest that the Baum-Welch
agorithm does indeed converge to optimal or near-optimal solutionsin practice.

3. Note that without condition (6-16), equation (6-19) does not necessarily hold.
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A= {A BT} = 5[1], by by, ... ijT, [ﬂg, (6-23)

O

the similarity measure reduces to?,

ﬂ’ (b —bay)
1
0(0,,0,) = |‘| g2 (6-24)

EbZk
which reaches a maximum when b, = b, , or smply, B; = B,, and that maximum is equal
to one. Figure 6-5 shows a contour plot for, B; = |:p1 1- pl]T, B, = [pz 1- pz]T, and
0<pg py<l.

0 0.2 0.4 Py 0.6 0.8 1

Figure 6-5: Similarity measure for two binomial distributions. Lighter colors indicate
higher similarity.
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Second, we give an example of how the proposed similarity measure changes, not as afunction
of different symbol distributions, but rather as a function of varying HMM structure. Consider
the following Hidden Markov Model,

l1+a 1-a
2
+

N

AMa) =

o
IA
Q
N
[ERN

(6-25)

=
|

Q

=

a

: [; ﬂ, [05 05|

] o [
Ooooooo

I\)|

2

and corresponding observation sequences, O(a), stochastically generated from model A(a).
Forall a 000, 1), O(a) will have an equivalent aggregate distribution of symbols0and 1 —

namely 1/2 and 1/2. As a increases, however, O(a) will become increasingly structured. For

example,
U T [l ) ) .
M0) = O1) [05 0.5 [1]0 (equivalent to unbiased coin toss) (6-26)
0 0
lim O(c) = {.1,1,1,0,0,0,...0,00 1.1 1.} (6-27)
a -

Figure 6-6 graphs o[O(a,), O(a,)] asacontour plot for 0< a4, o, <1, where each obser-
vation sequence O(a) of length T = 10, 000 isgenerated stochastically from the correspond-
ing HMM A(a) . Greatest similarity is indicated for a, = a,, while greatest dissimilarity

occursfor (a; - 1,a,=0),and (a; =0,a, - 1).

6.2.4 Distance measure

In some cases, it may be more convenient to represent the similarity between two sets of obser-
vation sequences through a distance measure d(O4, O,), rather than a similarity measure.

Given the similarity measure 6(O;, O,) , such ameasure s easily derived. Let,

5. This procedure only approximates our similarity measure definition, since A(0t) is only optimal for
O(a) asT — .
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0 oy 1

Figure 6-6: The similarity measure changes predictably as a function of HMM structure.

d(y, Oy) = ~10ga(Oy, Oy) = 3[10g(Py;Py,) ~10g(PyyP1y) (6-28)
such that,

d(04, 0z) = d(Oy, 0Oy), (6-29)

d(01,0,) 20, (6-30)

d(Oy,0,) = 0if (@) A, O, or (b) Oy = Oy. (6-31)

The distance measure d(O4, O,) between two sets of observation sequences defined in (6-28)
is closely related to the dual notion of distance between two Hidden Markov Models, as pro-
posed in [55].

Let O; denote aset of random observation sequences of total length T; generated by the HMM
Ai,and let,
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P = PO ANYVT (6-32)

Then, [55] defines the following distance measure between two Hidden Markov Models, A
and ;\22

~ ~ 1 ~ ~ ~ ~
d(A1,A2) = §[|09(P11P22) —log(P21P12)] (6-33)

Unlike the observation sequences O; , the sequences O; are not unique, since they are stochas-
ticaly generated from Ai. Hence, d(A1, A2) is uniquely determined only in the limit as
Ti - oo. Likewise for d(Oy, O,), the HMMs A; and A, are not unique, since P,; and P.,
arein general guaranteed to be only local, not global maxima. Hence, d(O4, O,) is uniquely

determined only when P, and P,, represent global maxima.

While in generd, d()A\l, )A\z) and d(O4, O,) are not equivalent, the discussion above suggests
sufficient conditions for which the two notions — distance between HMMs and distance
between observation sequences — do converge to equivalence. Specificaly,
d(01,0,) = d(As, A2 if,

(1) Ay OALA , OAz, (6-34)

(2) P44, P», areglobal maxima, and (6-35)

R) Ti - . (6-36)
6.2.5 Data preprocessing

Assume that we wish to analyze the similarity of N control data sets, each of which iseither a
human control data set or a model-generated data set. Denote these data sets as
Xn = [7(5' X0 ... xg} ,n0{1,2, ...,N} , where,

.
%] = [Xrlwd X3, ... X{i‘d} ,d0{1,2,...,D} (6-37)
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denotes the dth t,,-length column vector for data set X". Since we use discrete-output HMMs
in our similarity measure, we need to convert these multi-dimensional, real-valued data sets to
sequences of discrete symbols O, . We follow two stepsin this conversion: (1) data preprocess-
ing and (2) vector quantization, as illustrated in Figure 6-7. The primary purpose of the data
preprocessing (described below) is to extract meaningful feature vectors for the vector quan-
tizer. For our case, the preprocessing proceeds in three steps: (1) normalization, (2) spectral
conversion, and (3) power spectral density (PSD) estimation.

In the normalization step, we want to scal e the columnsin each data set, so that each dimension
takes on the same range of values, namely [—1, 1] . Note that the scale factor for agiven dimen-

sion has to be the same across data sets X". Let,

U = N™(X,8) = [(%/5) (%/S,) -.. (%/p)) (6-38)

define a matrix-to-matrix normalization transform for at x D matrix X and a D-length scale

Vector,

T
5 = [51 S, ... So} ,54>0,d0{1,2,...,D} . (6-39)
To perform the normalization on our data sets X", we choose the S vector,

s¢ = max|xfy| ,dO0{1,2..,D}, (6-40)
On,t

such that the normalized datasets UM,

un = NM(XN,8) = [uff 0y ... UB} n0{L,2 ....N}, (6-41)
_ T
ug = |:u5_]d uf21d utf?di| ,dO{1,2,...,D}, (6-42)

satisfy,

ufy/ <1, On,d,t. (6-43)
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2nd dimension of human control data
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Figure 6-7: Conversion of multi-dimensional human control data to a sequence of
discrete symbols.
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After normalization, we perform spectral conversion on the columns of the normalized data
sets UN. For each column, we segment the data into possibly overlapping window frames, and
apply either the Discrete Fourier Transform (DFT) or the Discrete Walsh Transform (DWT) to

each frame®.

The Discrete Fourier Transform TY (' ) maps ak-length real vector y = [yl Yo ... yk}T to

ak-length complex vector z and is defined as,

z=TE®Y) = [Fo(y) F(y) ... Fk_l(y)}T,Where (6-44)
k-1

Fo(9) = 5 Yq182™P¥%, p0O{0,1,... k=1 . (6-45)
q=0

Prior to applying the Fourier transform, we filter each frame through a Hamming window in
order to minimize spectral leakage caused by the data windowing [91]. The Hamming trans-

}T to ak-length real vector h and

form TY,( O) mapsak-lengthreal vector y = [Y1 Yo - Yk

is defined as,

h = TH() = [Hyy, Hypy, - Hyy, where (6-46)

21(p-1)

Hp = 054-0.46c0s) T 25

] pO{12 ...,k (seeFigure6-7) (6-47)

For notational conveniencelet TY,-(y) = TE[TY (V)] .

Instead of sinusoidal basis functions, the Discrete Wal sh Transform decomposes asignal based
on the orthonormal Walsh functions [97]. The first eight Walsh-ordered Walsh functions are
shown in Figure 6-8(a). In Figure 6-8(b), we show an example of human control datawhich can

be characterized better through the Walsh transform, rather than the Fourier transform, due to

6. In practice, we calculate the DFT and DWT through the fast Fourier transform (FFT) and the fast Walsh
transform (FWT), the O(klogk) algorithmic counterparts of the DFT and DWT, respectively. Thisrestricts
k tobeof theform 2™, mO{1,2,..} .
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Figure 6-8: (a) The first eight Walsh-ordered Walsh functions, and (b) some sample

human control data.

its discontinuous profile. Consider, for example, the power spectral densities (PSDs) for the

sguare wave in Figure 6-9(a). The Walsh PSD in Figure 6-9(b) is a more concise feature vector

than the corresponding Fourier PSD in Figure 6-9(c).

The Discrete Walsh  Transform (DWT) Ty, ( O)

maps a k-length real vector

y = [yl Y, ... yk}T to ak-length real vector w and is defined as,

_ T
Tw(y) = [Wo(y) W(Y) ... wk(yﬂ , where, (6-48)
k-1
W(X) = Z Yq+19(a, p), PO{O 1, ....k=1}, (6-49)
q=0
k-1 0
5o(q.k—1)b(p,0)+Z[b(q.k—i)+b(q,k—i—1)]b<p.i)u
w(g, p) = (-1)" 7, and (6-50)
' @ | . (b) | 05 ©
a - C
05 0.8 04
0.6 03
0 04 0.2
Al () () () () () Ote T ! ! * !
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Figure 6-9: (a) Sample square wave and it's corresponding (b) Walsh and (c) Fourier

PSD’s.
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b(p, i) istheith bit in the binary representation of p.

(6-51)

Now, let us define the power spectral density (PSD) estimates for the Hamming-Fourier
(TY=( O)) and Walsh transforms (TY,( 0)). For f = T4(y) = [fo . fk_JT, the

Fourier PSD is given by,
Phe(f) = [PHFO(F) Pre,(F) - PHF(k/Z)(f‘)} , where,
- 1
Pheo(f) = H—Ss|fo|2,

L1
Prep(f) = 5= (T2 +[f_?). PO{L 2, ... . k/2-T,
SS
F) = 2 [f |2, and
Prra2)(T) = = [fa)l® a0
SS

k
Hss =k Z HI%
q=1
Forw = Ty(y) = [Wo Wy ... Wk_JT,theWaIsh PSD is given by,
P (W) = |Pyo(T) Py (W) ... Pyyz)(W)| , where,
PWp(\Tv) = |W2p_l|2+|W2p|2, p0{12,..,k/2-1},

Pwk/2)(W) = [We 2|2
Finally, for notational convenience, define two unity transforms,
PE(Y) = TE(Y) =Y,

and let,

(6-52)

(6-53)

(6-54)

(6-55)

(6-56)

(6-57)

(6-58)

(6-59)

(6-60)

(6-61)
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) T
Ve = [V Yoo oo Vhord) (6-62)

be the k-length segment, beginning at element 1, for the t-length vector y. Using equation (6-
62), let us define the vector-to-matrix transform TE’qT[kl, k] )( ),

_P¥{ Ty (Yo, kg B

T k() = PotTeUer 1l | g 0gr, HR, W G (6-63)
PI{TE (Viak, + 1,1k B

Furthermore, given amatrix U = [ul U, ... O d} , let us define the matrix-to-matrix transform
AT SR

T k) (U) = [T(Vqr)'l[kl, ) (80) T(& t ) (U2) - TG 1, kzl)(UD)i|’

6= [0 0, ... 0p| 04O{F, HF, W, G ,d0{12,...,D} (6-64)
The spectral conversion and PSD estimation can now be concisely expressed as,
Vn = T(r%r,n[Kl, Kz'l)(Un), (6'65)

where the input matrix U" has dimensions t, x D, and the output matrix V" has dimensions
T,xK,

T, = roorﬁLKl+ Ok = (K,/2+1)+F K (6-66)
p = floorg——+15, K = 5 (K > Ki

2 ¢a O {F, HF, W} 6a=G
Theinteger constants K, = K, > 0, define the length of each window frame as k; and the win-
dow overlap as K, — K . Furthermore, the transformation vector ¢ selects which transform to
apply to each dimension of the control data. Generally, we select the Fourier PSD for state tra-
jectories, and the Walsh PSD for command trajectories, since these tragjectories tend to be non-

smooth and, in part, discontinuous (see Appendix A).
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6.2.6 Vector quantization

In the previous section, we define the transformation from the data sets X" to the feature matri-
cesVN. Let, V = {v} ,t0{1,2,...,T},n0{12,...,N} , denote the set of al feature
vectors, where V! is the jth row of the ith feature matrix. In order to apply discrete-output
HMMs, we now need to convert the feature vectors V to L discrete symbols, where L isthe
number of output observables in our HMM models. In other words, we want to replace the

many v{' with L prototype vectors Q, = {q} , | {1, 2, ...,L} , known as the codebook,

such that we minimize the total distortion D(V, Q,),

Initialization:
LO 1
QU {ay .

0 =YWy,
n,t n

#1

Y

Centroid splitting:
QU {g+&qg-g "'
10{1,2,...,}
LO 2L

Recompute centroids:

q = Z \‘/t“/nﬂt B

#2 [}

Y

wic
#4
Y no
Classify v{', Un, t into class Convergence test:
C, such that — AD(V, Q) <5
D(V,Q) V°
yes

#3

y

no (I’erml nation test:

End

[\

K L = Lyy?

| yes

Te =g ... s]T

*n, isthetotal number of ¥ inclass C; .

Figure 6-10: The LBG VQ algorithm generates VQ codebooks of increasing size.
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D(V,Q)) = z miln d(vl, q,), whered(v,q,) = (q,—V{) q,—-V)"), (6-67)
nt

over al feature vectors. We choose the well known LBG vector quantization (VQ) algorithm
[69] to perform this quantization. Figure 6-10 illustrates the algorithm, which generates code-
booksof size L = 2™, m1{0, 1, 2, ...} , and can be stopped at an appropriate level of dis-
cretization given the amount of available data and the complexity of the system trajectories. For
our data, we set the split offset € = 0.0001 and the convergence criterion 6VQ = 0.017. With
these parameter settings, the centroids { ¢} usually converge within only afew iterations of
the #3-#4 loop in Figure 6-10. As an example, Figure 6-11 illustrates the LBQ vector quantiza-
tion for some random 2D dataand L 0 {1, 2,4, 8, 16,32} , while Figure 6-11 illustrates the
quick convergence of the algorithm after centroid splitting for the same dataand L = 4.

Given atrained VQ codebook Q, , we convert the feature vectors V" to a sequence of discrete
symbols O, = {of,03,...,07},
On = TV Q) = {TVo(V], Q). TVo(V3, Q). ..., TVo(VR , Q. )} , where, (6-68)
of = T\‘;Q(\‘/t”, Q) = index[mlin d(v, q,)] (6-69)

This compl etes the conversion from the multi-dimensional, real-valued data sets X" to thedis-
crete observation sequences O,, = {of, o, ..., o?n} . Combining equations (6-40), (6-65) and

(6-68), we can summarize the signal-to-symbol conversion of the data sets X" as,
Op = TUL{ TN,y [NT(X" 9], Q} = T (X" 8,8, [Ky, K], Q) (6-70)

6.2.7 Discretization compensation

We have stated previously that we choose to use discrete-output HMMs in our similarity anal-

ysis because they involve significantly less computation in training than either continuous-out-

7. These parameters are selected to achieve low distortion levels, while minimizing the number of iterations
of theVQ algorithm. After the last split of the codebook L = L., , we set &, - 8o/ 10.
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Figure 6-11: The LBG vector quantization for some random 2D data, as L equals 1, 2,
4,8,16 and 32.

C}
2

Figure 6-12: For a given codebook size L, the LBG algorithm converges in only a few
iterations after centroid splitting.
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put or semicontinuous-output HMMs. While computationally efficient, discretization of the
output space, can have some negative consequences when analyzing real-valued data. Consider

the following example.

Assume that we want to determine the similarity between two control data sets, X1 and X2.
We follow the signal-to-symbol conversion procedure described in the previous two sections,

and convert the data sets to discrete observation sequences O, and O,
O, ={0o8 ,t0{L2, .., T ,kO{12. (6-71)

We also train corresponding n-state HMMs, A; and A, , where

afy af, ... af, bk(1) bk(1) ... bK(1) Y
Ak = a|2(1 aIZ(Z alz(n ’Bk = bll((z) b|2((2) bh(Z) , TG = T[|2( ,kD{l, 2} (6-72)
ag; afp - an, bf(L) b5(L) ... by(L)] |

Now suppose that symbol | appearsin the O, observation sequence (say at t = 1), but does

not appear in the O, observation sequence. Thiswill force,
bj2(l) =0,j0{12,..,n, (6-73)

during thetraining of A, . Consequently, when wetry to evaluate P(Ol|)\2) using the forward
algorithm (Appendix B.1), we get,

al(j) = {Z aT_l(i)aﬁ}ij(or) = {Z dT_l(i)aiZj}ij(l) =0,j0{L,2,...,r} (6-74)
i=1 i=1
n T

4 N O O
c, = 1/52 @ (i)~ o, P(O1]};) = 1/5|‘| o~ 0, Py, -~ 0 (6-75)
=1 =1

06(0,, 0,) = 0. (6-76)
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Thus, the presence of a single observable | present in one observation sequence but not the
other will force the similarity measure to be O, even if the two observation sequences are iden-
tical in every other respect. Thisisnot desirable, sincethe rogue observable | might be an event
that is observed only rarely, or might even be the result of a measurement error or unintended
control action on the part of the process that generated control trajectory X1. Below, we con-
sider two parameterized post-training solutions to this singularity problem within the context

of discrete-output HMMs: (1) flooring and (2) semicontinuous eval uation.

Flooring [94] definesthe common practice of replacing nonzero elementsinthetrained HMMs
by some small value p > 0 and then renormalizing the rows of A and the columns of B to sat-
isfy the probabilistic constraints in equations (6-87) and (6-88). If there are m zero elementsin
a probability vector (i.e. a row of A or a column of B), this methods redistributes

(pm)/ (1 + pm) of the total probability mass to the zero elements.

Semicontinuous evaluation [51] redefines the forward algorithm. Let O = {o} denote adis-
crete observation sequence that has been vector quantized from a sequence of real vectors
V={v},t0{1,2,..,T} ,ardaVQcodebook Q = {q} , 1 0{1,2,...,L} . For discrete
evaluation on aHidden Markov Model A, P(O|A) iscomputed using the forward algorithm,

a,(i) = mbi(o,), i 0{1,2 ...,n} (6-77)

a, (i) = [Z at(i)aij}bj(oHl),tD{l, 2, T-1,j0{12 ....n (6-78)
i=1

P(OA) = ax(i) (6-79)

i=1

Semicontinuous evaluation proceeds amost identically, except that the bj(ot) terms are
replaced by b;(v,) terms,
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L
bi(w) = 3 P(%|Cby(1). (6-80)
=1

P(%|CY) = o] —5(6-%) (g, - )] (6-81)

where p(V; | C,) representsthe estimated conditional probability density function that vector v,
belongsto class C,, corresponding to the codebook vector g, and o is auser-defined smooth-
ing parameter. Thus, in semicontinuous evaluation, we view the codebook vectors as the peaks
of Gaussian distributionswith uniform variances g2 . The complete forward algorithm (without

scaling) is given by,

ay(i) = mhi(vy),i0{L2, ...,r} (6-82)

a, (i) = {Z at(i)aij}f)j(\‘/Hl),tD{l, 2., T-1,j0{1,2 ....n (6-83)
i=1

P(V[A) = 3 ar(i), where lim P(V[A) = P(O|). (6-84)

i=1

Asan example, consider asingle-state HMM A with the discrete-output probability matrix B,

B = (0005030200 - (6-85)

Also, let the discrete symbols | correspond to real-valued numbers v,

IN

"?1 V<l 10{1,2,3,4,5 (6-86)

ol —

Figure 6-13 illustrates how the discrete probability density function (pdf) p(v|A) encoded by B is
modified through flooring and semicontinuous evaluation, for specific vaues p = 0.01 and
02 = 0.01, respectively. Flooring of course maintains the discrete structure of the HMM, while

semicontinuous eval uation smoothes between output classes.




6.2 Stochastic similarity measure 119

We note that the smoothing of the output pdf achieved by semicontinuous evaluation is done
so at asignificant computational cost, in comparison to discrete evaluation. Assuming L output
classes (i.e. symbols) and K dimensions for the v, vectors, the computation of Bj(\‘/t) is
O(LK), while b;(0,) requires only one table lookup. Consequently, for typical values of L
and K, the evaluation of P(V|A) will be orders of magnitude slower than the evaluation of
P(OJA).

For the experimentsin the next chapter, the similarity measure achieves roughly equivalent dis-
crimination results with semicontinuous evaluation as with flooring. Therefore, because of the
substantial computational burden of semicontinuous evaluation, unless otherwise noted, we
choose flooring rather than semicontinuous evaluation to avoid the singularity problem, with
p = 0.0001. For the HMMsiin this thesis, this value of p redistributes less than 0.1% of the
probability massin the state transition matrices A, and less than 0.5% probability massin the

output probability matrices B.

6.2.8 HMM training

Thelast step of the similarity analysisinvolvestraining Hidden Markov Models A correspond-
ing to each observation sequence O . To do thiswe use theiterative Baum-Wel ch algorithm (see

Appendix B). Throughout this thesis, we initialize the Baum-Welch algorithm by setting the

25F
p =001
B L L R e
o2 = 0.01
,\1'5' p=
<
=1
o .
| \
05/ / 4
/// \\
Obm=="—+ ‘ ‘ e
0 0.2 04 V 06 0.8 1

Figure 6-13: To avoid the singularity problem, the initial discrete pdf (p = 0) can be
modified either through flooring p = 0.01 or semicontinuous evaluation g2 = 0.01.
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Hidden Markov Model parameters to random, nonzero values, subject to the necessary proba-

bilistic constraints,

Ng

Y a;=1,i0{12..,n}, (6-87)
j=1

L
ij(l) =1,j0{142,...,n}, (6-88)
=1
where &, J- isthe probability of transiting from state i to state j, and b J- (1) isthe probability of
observing symbol | instate j, and ng isthe number of HMM statesthat we choose for the mod-
els A. Let A(K) denote the HMM A after k iterations of the Baum-Welch algorithm, and let

A(M denote the current iteration of Baum-Welch. Then, we stop training if,

P(O|A(K) — P(O[Ak=D)
P(O|A()

<6HMM,kD{m,m_1,...,m_4} y (6'89)

where 4,y = 0.000001. Thistype of stringent convergencetest isrequired, becausein prac-
tice, the Baum-Welch algorithm frequently stalls over consecutive iterations. Figure 6-14, for
example, plots —_Tl_log P(O|A () for some typical human data. We must be careful that we do
not stop training on these types of plateausif further improvements can be achieved. Otherwise,
the assumption that the P;; , defined in (6-14), represent near-optimal global maxima would be
violated, along with properties #2 and #3 in equations (6-21) and (6-22), respectively.
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175¢

15;

1.25¢

~Z10gP(O[A¥)
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Figure 6-14: The Baum-Welch algorithm can stall over several iterations, until further
improvements are realized.
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Chapter 7

Human-to-human similarity

In this chapter we test the similarity measure proposed in Chapter 6 by comparing human con-
trol strategies across different individuals. We contrast the human-to-human classification
results with the well-known Bayes classifier and simple spectral processing, and show that the
similarity measure achieves significantly better performance than either of the alternative meth-

ods. These results confirm the similarity measure’'s usefulness as a model validation tool.

7.1 Comparing human control strategies

7.1.1 Experimental data

Appendix A describes driving control data from six different individuals — (1) Larry, (2)
Curly, (3) Moe, (4) Groucho, (5) Harpo and (6) Zeppo across three different roads, roads #1,
#2 and #3 in Figures 2-2(a), (b) and (c), respectively. For notational convenience, let X(. 1),
10{1,23,4,5,6, j0{1, 2,3, denote the run from person (i) on road #j, sampled at
50Hz.

Figure 7-1 plots the means and standard deviations for the two dimensions — the velocity v
and the acceleration control ¢ — with the greatest variance between runs (see TableA-1). From
thisdiagram, we observe that thereis significant overlap in the datafor runsfrom different indi-

viduals. Appendix A offers a more complete picture of each person’s control data, where the

123



124 Chapter 7: Human-to-human similarity

velocity v, the lateral offset from the road median dy , the steering control 6 and the accelera-

tion control ¢ over time are plotted for all 18 runs.

7.1.2 Classification experiments

Here, we investigate how well the similarity measure is able to classify the driving data X(i- 1)

belonging to the same individual, while discriminating driving data from different individuals.

Let sl = [Si Sh ... s%] , Where,

sh = rgf‘f|xt(5’j)|’ dO{1,2,..,D},jO{123 . (7-1)
Also let,

ViD= Tam G INMXED, 89T, 0{1,2,...,6, ,k0{1,2,3, (7-2)

be the feature vectors corresponding to data set X(:1) and scale vector 8¢; let Q) bean L-
length VQ codebook trained on { V(1 1)} , i 0{1,2,...,6 ; and e,

80

ol I Y (N Larry
G [ 1 Curly
§ soozzze---- e Moe
E e0 | Groucho
= - Harpo

— Zeppo
50
N
a0l ®(N) 7
-2000 0 2000 4000 6000

Figure 7-1: There is significant overlap between runs from different individuals.
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Ok ;) = OGi, j, k) = Tou(X( 1), 88, [ky, k], QF), 1 0{L,2,....6 ,
i kO{1,23 . (7-3)

We view the observation sequences O{‘i, k) &s labeled data, which has already been collected
and processed without any prior information about O{‘i’ i) j k. Each O{‘i’ k) represents a
known class for individual i. Similarly, we view the observation sequences 05, i) jzk as
unlabeled data which needs to be classified as belonging to one individual. This emulates the
common classification scenario, where we have |abel ed data from which we define our classes
(represented here by the sequences 05, K) ), and unknown or unlabeled data to which we wish
to assign alabel (represented here by the sequences 05, i) j ZK).

We now use our similarity measure o to perform this classification, where we consider O{i’ B
to be classified correctly if and only if,
0[O, iy O, ] >0, . Of pl » B # ki 1#1) (7-4)

In other words, we expect that two runs from the same individual will yield a higher similarity

measure than two runs from two different individual.

The system trajectory for the driving task is defined by the three state trajectories { v, Vs o}

and the two control trajectories { 3, @ . Hence, we let,
X(i0) = [‘7& v, mg;ﬂ("”, i0{1,2...6,j0{123. (7-5)

We select the following parameters:

.
o= [HFHF HF W W] %Ky =167k, =K/2,L = 1283 ng = 8. (7-6)

1. Aswe have noted before, the Walsh PSD is chosen for the command variables { 3, ¢ , due their nonsmooth
and discontinuous profile.

2. Thetransform length k, = 16 represents alength of 0.32 seconds for our recording frequency of 50Hz.

3. The vector quantization level L ischosen so that the number of nonzero parametersin the trained Hidden
Markov Models A is much larger than thelength T ; ;, of each observation sequence.




126 Chapter 7: Human-to-human similarity

Tables 7-1, 7-2, and 7-3 report the similarity results for O{i, k) » k{1, 2,3 , respectively.
Note that the largest similarity value is highlighted in each row, and that the similarity measure

infact classifiesall 36 Of , j #k, correctly.

Since the similarity measure achieves 100% correct classification, we would like to see the
degree to which we can discriminate between individuals when — rather than include all five
dimensions ({ vg, v, &} and {6,¢} ) inthe similarity analysis — we give the algorithm only
a single dimension off which to classify the driving data. Figure 7-2 plots the correct-classifi-
cation percentages for each dimension, aswell as d; , the lateral offset from the road median.
The |ateral offset d; — for these data sets — does not discriminate nearly as well as the state
and control variables included in the similarity analysis above. From qualitative observations
of the smulated driving runs, we observed that individuals payed relatively little attention to
their lateral position aslong as they maintained contact with the road; it is therefore not unex-
pected that lateral road position would be a poor discriminator between individuals. Conse-

guently, we chose not include this dimension in the similarity analysis.

7.1.3 Bayes classification

A legitimate question of courseiswhether or not asimpler statistical technique, like the Bayes

optimal classifier [30], can achieve similar positive results. Let class C; ),

100

90+

80+t

70¢

60|

Vg vV, @ 0 (0] dg

Figure 7-2: Single-dimensional correct classification percentages (36 classifications).
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Table 7-1: Similarity results for road #1 data
o 01,11 | 0(2,1,1) | O3,1,1) 04,11 | O5,1,1 W O,1,1)
0(1,2,1) 0.800 0.288 0.399 0.325 0.125 0.034
0(1,3,1) 0.720 0.234 0.397 0.391 0.152 0.015
0(2,2,1) 0.272 0.729 0.131 0.102 0.090 0.326
0(2,3,1) 0.277 0.531 0.098 0.082 0.047 0.254
03,2,1) 0.381 0.220 0.849 0.368 0.288 0.013
03,31 0.376 0.160 0.754 0.402 0.273 0.009
0(4,2,1) 0.253 0.233 0.445 0.863 0.364 0.016
0(4,3,1) 0.152 0.149 0.224 0.756 0.368 0.010
0G5, 2,1) 0.044 0.076 0.207 0.302 0.672 0.006
0G5, 3,1) 0.040 0.061 0.168 0.346 0.651 0.005
0O(6, 2, 1) 0.003 0.036 0.003 0.003 0.004 0.357
0(6, 3,1) 0.027 0.085 0.008 0.009 0.009 0.580
Table 7-2: Similarity results for road #2 data
o 01,22 | 02,22 | 03,22 04272 | 065,272 | OB,2,2)
01, 1,2 0.812 0.338 0.390 0.257 0.046 0.002
0, 3,2 0.774 0.192 0.317 0.336 0.076 0.002
0(2, 1,2 0.285 0.731 0.223 0.257 0.079 0.034
0(2, 3,2 0.289 0.733 0.151 0.113 0.011 0.054
03, 1,2 0.423 0.152 0.850 0.412 0.182 0.003
0@, 3,2 0411 0.104 0.784 0.325 0.161 0.002
04, 1,2 0.338 0.127 0.359 0.817 0.298 0.003
0(4,3,2 0.163 0.065 0.152 0.673 0.253 0.003
05, 1,2 0.135 0.093 0.307 0.368 0.652 0.007
0(5, 3,2 0.044 0.017 0.136 0.282 0.689 0.001
0(6, 1, 2) 0.027 0.321 0.013 0.018 0.006 0.419
0(6, 3,2) 0.022 0.170 0.011 0.011 0.002 0.540
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Table 7-3: Similarity results for road #3 data
o 0(1,3,3) | 0(2,3,3) | 03,33 | 04,33 | 05,33 | 0,3, 3)
0(1,1,3) 0.671 0.339 0.396 0.169 0.054 0.029
0(1, 2, 3) 0.782 0.298 0.424 0.174 0.049 0.030
0(2, 1, 3) 0.228 0.578 0.174 0.138 0.069 0.091
0(2, 2, 3) 0.175 0.739 0.091 0.068 0.024 0.168
03,1, 3) 0.422 0.108 0.793 0.241 0.170 0.010
0(3, 2, 3) 0.357 0.114 0.768 0.176 0.149 0.011
0(4,1,3) 0.392 0.091 0.384 0.696 0.344 0.011
04, 2, 3) 0.365 0.113 0.381 0.652 0.309 0.016
0(5,1,3) 0.171 0.061 0.311 0.314 0.604 0.013
0(5, 2, 3) 0.091 0.012 0.178 0.290 0.690 0.002
0(6, 1, 3) 0.013 0.320 0.008 0.014 0.011 0.608
0O(6, 2, 3) 0.001 0.082 0.001 0.007 0.003 0.631
Chg = CUK) = {Hi 1 Zg ot »10{1,2,....68 ,k0O{1 23, (7-7)
correspond to run X(K), where p; |, isthe mean vector for,
U@k = T, K2])[Nm(X(i*j), 9], (7-8)

and Z; 4y is the covariance matrix for U(-K). Now, for each vector G{}) and each class
Ca. j # k, we can calculate [30],

P(Cq, k[0 )) =

p(af" j)|C(|, k))P(C(L k))

zk,

(7-9)

p(afi- 1)
(i-e. the probability that vector 0"} belongs to class C; ), where P(C; ) is the prior
probability of class C, .,

6
p(aft- 1) = Z p(af j)|C(|,k))P(C(|,k)), (7-10)
k=1
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isjust a normalization factor, and,

p(@-D|Cy ) =

1 ) Ts-1 (g i) - (1)
(ZH)DQ'Z(Lk)|1/2eXI0[—§(Ut R (R ARZ T 'S _U(I,k))}
Given eguation (7-9), we define the Bayes classification measure,
- 1 PP
Lol XE] = mZP(C(I,k)M("J))’ i#k, (7-12)

for run X(:)). The measure {; |, gives the probability of class C; , given U 1), averaged

over all vectors 0f- ). We consider run X(-1) classified correctly if and only if,
L ilUED > o [UEDT, T £k, 1 £1). (7-13)

Tables 7-4, 7-5, and 7-6 report Bayes classification results analogous to the similarity measure

resultsin Tables 7-1, 7-2 and 7-3, respectively, for,

6=[ceeGq K=K =1, (7-14)

assuming equal priors P(C(l, I()). Note that the Bayes classifier misclassifies 9 out of 36, or
25% of al runs. An alternate Bayes classification criterion, which measures the percentage of
vectors 0"+ ) that fall into class C, |, performs even worse, misclassifying 13 of 36, or 36%
of al runs. The similarity measure (with 0% error) compares quite favorably to both these

results.

Providing additional inputsto the Bayes classifier in the form of time histories k; > 1 does not
help its performance. Consider, for example, X(32) and X(3.3)  which are badly misclassified

as C(y 1) ratherthan C 5 ;). Let A,

[fnaX(Z(Lk)[U(i’j)])D
A, = - ' _ i, 7-15
= 9w 19
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Table 7-4: Bayes classification results for road #1 data

Z c(L1l) | Cc21) | c31) | C41 | C51 | C@61
X(1, 2) 0.297 0.165 0.189 0.122 0.146 0.081
X(1, 3) 0.294 0.142 0.197 0.158 0.158 0.051

0.210 0.223 0.119 0.059 0.116 0.273

0.217 0.219 0.114 0.069 0.096 0.286

0.241 0.165 0.201 0.122 0.212 0.061

0.248 0.143 0.211 0.153 0.201 0.043

X(4, 2) 0.167 0.112 0.178 0.327 0.175 0.040
X(4, 3) 0.114 0.072 0.143 0.468 0.180 0.023
X(5, 2) 0.139 0.156 0.149 0.188 0.288 0.079
0.119 0.109 0.147 0.292 0.286 0.046
X(6, 2) 0.030 0.194 0.021 0.011 0.059 0.685
X(8, 3) 0.081 0.217 0.056 0.050 0.072 0.524

Table 7-5: Bayes classification results for road #2 data

4 C(1, 2 C(2, 2 C@3, 2 C(4, 2 C(5, 2 C(6, 2
X(1, 1) 0.297 0.244 0.207 0.133 0.111 0.009
X(1, 3) 0.323 0.168 0.207 0.172 0.127 0.003
X(2, 1) 0.194 0.344 0.167 0.082 0.145 0.068
X(2, 3) 0.187 0.356 0.135 0.070 0.068 0.185
X3, 1) 0.252 0.164 0.237 0.178 0.167 0.003

0.270 0.153 0.246 0.170 0.160 0.002
X4, 1) 0.196 0.096 0.177 0.345 0.184 0.002
X(4, 3) 0.133 0.057 0.125 0.463 0.221 0.001
X(5, 1) 0.177 0.192 0.208 0.141 0.280 0.001
X(5, 3) 0.141 0.097 0.165 0.278 0.319 0.000
X(6, 1) 0.053 0.260 0.051 0.042 0.146 0.448
X(6, 3) 0.045 0.206 0.047 0.052 0.077 0.572
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Table 7-6: Bayes classification results for road #3 data

Z C(1,3 | C23 | C@B33 | C43) | Cb53 | C@®63
X(1, 1) 0.248 0.281 0.225 0.084 0.104 0.059
0.262 0.269 0.237 0.081 0.104 0.048
X(2, 1) 0.155 0.333 0.181 0.058 0.140 0.133
X(2, 2) 0.134 0.362 0.154 0.037 0.093 0.220
X(3, 1) 0.249 0.152 0.274 0.125 0.171 0.028
X(3, 2) 0.242 0.172 0.290 0.090 0.171 0.034
X(4, 1) 0.231 0.082 0.214 0.267 0.194 0.011
X(4, 2) 0.213 0.094 0.209 0.269 0.199 0.016
X(5, 1) 0.196 0.159 0.243 0.107 0.288 0.007
X(5, 2) 0.178 0.114 0.220 0.142 0.345 0.001
X(6, 1) 0.025 0.231 0.031 0.021 0.121 0.572
X(6, 2) 0.004 0.154 0.005 0.002 0.013 0.823

define a discrimination measure, where A, <0 indicates misclassification, while A; >0 indi-
cates correct classification. Figure 7-3 plotsthismeasurefori = 3, j0{2,3} andk = 1,as
afunction of time history lengths (k; = K,) {1, 2,3} . We see that providing time histories

actually hurts, rather than helps performance.

0.2t
0 L — — N R
-0.2¢
~ -04
<
-0.6+
-0.8¢

X(3,2) X(3,3)

Figure 7-3: Providing time histories to the Bayes classifier hurts, rather than help
performance.
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7.1.4 Spectral classification

Another legitimate question is whether or not simple spectral processing on the data sets, such
asthe FFT, can achieve classification results as good asthe HMM-based similarity measure. As

an example let,

N S
XHi0) = [>‘<1D>'<ZD>‘<35>‘<4D>‘<qu = !VE n @ Eﬁ i0{1,2,..,6,
i0{12 3 (7-16)

bea 216 x 5 matrix, where the upper ti, j)*5 submatrix istheith person’s run on road #j, and

the [2%6—t,; ;)] x 5 lower submatrix is the zero matrix. Furthermore let,
Ut = Nm(XO D, ), (7-17)

where the scale vector s is taken over al data sets X)) (similar to (7-1)). Then define
v 1) | such that,

_ - P _ T
vk D = T (25, 216])[Nm(XEKI’J)' 9,6 = [F FFF F] : (7-18)

In other words, vLIi: 1) jsa 216 x 5 vector of FFT PSD coefficientsfor the normalized columns
of X1.1), The original data runs X(i: 1) are padded with ending zeros, so that each X' 1) |
and consequently each vl 1) s of equal dimension. This allows us to define the following

spectral distance measure,

—— v 1) —ydp o)y v ) — ye.a)
dg(vlih D), yOP @) = /\/[ ]212[3 ] ’ (7-19)
and corresponding spectral similarity measure,
GS(\_/[[i' j), vdp Q)) = 10—ds(‘75i'j)y viIP-@) ] (7-20)

Tables 7-7, 7-8 and 7-9 report spectral classification results— based on o, — analogousto the
HMM-based similarity results (o) in Tables 7-1, 7-2 and 7-3, respectively. Note that the spec-
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Table 7-7: Spectral similarity results for road #1 data

o y11) vz 1) vs. 1) vd4 1) v5s 1) v6.1)
v11.2) 0.689 0.673 0.654 0.653 0.584 0.631
vJ1.3) 0.696 0.653 0.656 0.681 0.593 0.606

0695 @ 0691 @ 0645 | 0656 | 0576 | 068l
vJ23) 0.690 0.693 0.634 0.644 0.561 0.663
v(13.2) 0.635 0.639 0.644 0.616 0.581 0.582
VECE) 0.670 0.638 0.671 0.646 0.602 0.581
v(14.2) 0.636 0.630 0.633 0.654 0.586 0.596
yJ4.3) 0.626 0.593 0.602 0.665 0.574 0.564
vi35.2) 0.540 0.549 0.557 0.558 0.566 0.517

0.573 0.560 0.597 0.588 0.590 0.514
v(16.2) 0.630 0.616 0.568 0.585 0.494 0.690
vlJ6.3) 0.593 0.589 0.549 0.581 0.490 0.661

Table 7-8: Spectral similarity results for road #2 data

o ydL2) y122) y13.2) y14.2) y15.2) y16.2)
0.689 0.695 0.635 0.636 0.540 0.630

0.675 0.683 0.639 0.654 0.563 0.604

vz 1) 0.673 0.691 0.639 0.630 0.549 0.616
v12.3) 0.689 0.731 0.620 0.632 0.524 0.681
0.654 0.645 0.644 0.633 0.557 0.568

0.667 0.651 0.657 0.637 0.561 0.564

0.653 0.656 0.616 0.654 0.558 0.585

0.622 0.614 0.597 0.638 0.557 0.554

0.584 0.576 0.581 0.586 0.566 0.494

0.572 0.558 0.586 0.585 0.555 0.486

yJ6.1) 0.631 0.681 0.582 0.596 0.517 0.690

v, 3) 0.592 0.638 0.537 0.574 0.481 0.697




134 Chapter 7: Human-to-human similarity

Table 7-9: Spectral similarity results for road #3 data

o yIL3) y12.3) y13.3) y14.3) y15.3) y16.3)
vaL 1) 0.696 0.690 0.670 0.626 0.573 0.593
0.675 0.689 0.667 0.622 0.572 0.592
v321) 0.653 0.693 0.638 0.593 0.560 0.589
v2.2) 0.683 0.731 0.651 0.614 0.558 0.638
v33:2) 0.656 0.634 0.671 0.602 0.597 0.549
vlI3.3) 0.639 0.620 0.657 0.597 0.586 0.537
0.681 0.644 0.646 0.665 0.588 0.581

0.654 0.632 0.637 0.638 0.585 0.574

0.593 0.561 0.602 0.574 0.590 0.490

0.563 0.524 0.561 0.557 0.555 0.481

0.606 0.663 0.581 0.564 0.514 0.661

y[16.3) 0.604 0.681 0.564 0.554 0.486 0.697

tral similarity measure misclassifies 15 out of 36, or 42% of all runs. Since these results are not
competitive with either the Bayes classifier or the HMM-based similarity measure, we do not

consider this method further in this chapter.

7.1.5 Task-based classification

Here we present results for task-based classification. We first divide data sets X(.1),
jO0{1,2,3 , into the set of left-hand maneuversa () and the set of right-hand maneuvers
B0, i0{1, 2, ...,6 containedinruns X(: 1) Wethen split each set a(), B() into two sets,

al), B, kO{1,2, (7-21)

sothat half themaneuversareinsets a{!), B{"), whilethe remaining maneuversarein sets a ",
BL), respectively.
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Table 7-10: Left-turn similarity classification

o aft) aft) agh) afd ald agd)
af? 0.751 0.338 0.365 0.364 0.063 0.014
af? 0.265 0.462 0.095 0.064 0.020 0.329
af? 0.358 0.155 0.722 0.209 0.138 0.008
af? 0.103 0.098 0.157 0.611 0.175 0.013
a® 0.016 0.030 0.110 0.293 0.573 0.006
al? 0.013 0.124 0.009 0.016 0.008 0.694

Table 7-11: Right-turn similarity classification

o B{Y BLY By BiY BsH BEY
B{2 0.625 0.200 0.353 0.375 0.071 0.025
Bg) 0.277 0.451 0.085 0.069 0.010 0.387
B 0.344 0.141 0.710 0.267 0.152 0.012
B§? 0.201 0.114 0.269 0.612 0.275 0.015
BE) 0.031 0.035 0.120 0.253 0.638 0.003
&) 0.019 0.087 0.007 0.012 0.003 0.737

Using the parameters given in (7-6), Tables 7-10 and 7-11 report the similarity results for
olaf), all] anda [B{), BSI], O, j . Similarly, Tables 7-12 and 7-13 report analogous results

for the Bayes classifier. We see once again that the similarity measure classifiesall 12 setsa{)

BS) correctly, while the Bayes classifier misclassifies 4 out of 12, or 33%.

7.1.6 Classification with performance drift

Finally, we examine classification performance for control data where a single individual

slowly improves over time. For this experiment, we ask Groucho to drive over the same road

(road #1 in Figure 2-2) on two different days, twice each day. This generatesatotal of four runs
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Table 7-12: Left-turn Bayes classification

2 « | | e | ap | ap | ap
o 0443 | 0127 | 0145 @ 0134 | 0105 | 0047
0287 | 019 | 0074 @ 0038 | 0053 | 0353

0309 @ 0135 | 0253 | 0133 | 0138 | 0031

e 0090 @ 0073 @ 0125 | 0517 | 0182 | 0013
- 0113 | 0108 | 012 | 0320 | 0311 | 0022
o 0049 | 0187 | 002 | 0041 | 0051 | 0647

Table 7-13: Right-turn Bayes classification

4 B{Y pLY LY B§Y LY LY
B 0387 | 0107 | 0173 | 0158 | 0123 | 0051
0251 | 0178 @ 0097 | 0075 | 0079 | 0319
B 0252 | 0118 | 0271 | 0145 | 0170 | 0043
B 0128 | 0069 | 0144 | 0412 | 0230 | 0017
B 0101 | 0115 | 0149 | 0230 | 08391 | 0013
B 0056 | 0202 | 0029 | 0045 | 0075 | 0594

(#1, #2, #3 and #4). Because the runs are recorded on the same road, Groucho improves his
control strategy relatively quickly over the four runs, raising his average speed per run from
65.9 mi/h to 71.9mi/h from run #1 to run #4.

Next, we take two additional data sets over the same road from Curly and Moe, respectively.
Figure 7-4 plots the mean and standard deviation for the velocity v and acceleration control ¢
for al six runs. Note that Curly’s and Moe€'s runs share some similar aggregate statistics with

at least some of Groucho'’s runs.
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Table 7-14: (a) Similarity measure classification results

o Curly Groucho #4 o Moe Groucho #4
0.572 0528 | Groucho#l = 0315 0.616
Groucho #2 0.435 0.540 Groucho #2 0.495 0.603
Groucho #3 0.258 0.728 Groucho #3 0.550 0.760

Table 7-14: (b) Bayes classification results

4 Curly Groucho #4 14 Moe Groucho #4

Groucho #1 0.609 0.391 Groucho #1 0.569 0.431
Groucho #2 0.589 0.411 Groucho #2 0.663 0.337
Groucho #3 0.416 0.583 Groucho #3 0.567 0.433

Now we run six classification experiments. First, we classify Groucho’sfirst three runs as more
similar to either Groucho’s fourth run or Curly’s run. Second, we classify Groucho'sfirst three
runs as more similar to either Groucho’s fourth run or Mog€'s run. Using the parameters given
in (7-6)*, Table 7-14(a) reports the similarity measure results for these comparisons. Similarly,
Table 7-14(b) reports analogous results for the Bayes classifier. We observe that the similarity
measure misclassifies one out of six (17%), while the Bayes classifier misclassifies five out of

Six (83%) experiments, some quite badly.

7.2 Comparing Navlab driving data

7.2.1 Experimental data

Finally, we present classification results for real road-driving data, collected as part of an on-
going research effort geared towards the devel opment of autonomous vehiclesat Carnegie Mel-
lon University. Data was collected from seven drivers of both genders, ranging in age from 21
to 50 in Navlab 8, aminivan equipped with RALPH, avision-based lateral-position estimation
system [15]. Each driver was asked to drive from Carnegie Mellon University, Pittsburgh, PA,

4. Hereweonly use L = 64 VQ codes, since we are comparing fewer data sets.
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Figure 7-4: Groucho’s average speed improves over time; Curly’s and Moe’s runs are
statistically close.

to Grove City, PA, 50 miles north of Pittsburgh and back, while data was being recorded at
16Hz; hisher data was then split into two runs — X(:1) (going north) and X(:2) (going
south), i 0 {1, 2, ..., 7} . Since the route consists primarily of two and three lane traffic, each
one-way trip took approximately 40 to 45 minutes. Throughout, drivers received no coaching

or instructions other than to drive safely.

7.2.2 Classification experiments

Thefollowing state dimensions are availablein each dataset X(11): (1) dg , thelateral position
of the vehicle, (2) v, the velocity of the vehicle, and (3) w the angular velocity of the vehicle.

Using these variables as input,

x(i.]) = [az aﬂ(i’j) (7-22)

<l

we select the same similarity parameters as in equation (7-6), except that we let,

o=[cag . (7-23)
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while, for the Bayes classification, weuse (7-23) and k; = K, = 1. Now we perform two sets
of experiments. In the first set, we classify each of the south-bound runs X(-2) as similar to
one of the north-bound runs XU:1) i, jO{1, 2, ..., 7} . Table 7-15 reports these classification
results for the similarity measure o, while Table 7-16 reports analogous results for the Bayes
classifier. We observe that the similarity measure classifies al seven X(:2) runs correctly,

while the Bayes classifier misclassifies 2 out of 7, or 29%.

In the second set of experiments, wefirst select two runs, X(1: 1) and X(P.9) | i # p. Wethen try
to classify the other runs from driver i and driver p as belonging to either of the classes repre-
sented by X(: 1) and X(P.9), Thisallows usto conduct 7 x 6 x 2 = 84 separate comparisons.
The similarity measure correctly classifiesall 84 of these comparisons, while the Bayes classi-
fier misclassifies 9 out of 84, or 11%. Thus, for the real driving datain this section, as well as
the simulated driving data in the previous sections, the HMM-based similarity measure again

outperforms the Bayes classifier.

7.3 Analysis

In the discussion below, we first justify the similarity measure definition in greater detail. We
then specifically address why the Bayes classifier failsin some cases, where the similarity mea-
sure succeeds. Finally, we consider the similarity measure’s performance as a function of the

signal-to-symbol preprocessing and the number of HMM states.

7.3.1 One-sided similarity measure

The definition of the similarity measure in equation (6-15) requiresthat one HMM A istrained
for each control trgectory. In practice, this means that whenever we wish to compare an
unknown control trajectory to a bank of known models, we first have to train an HMM on the
unknown control trgjectory, thus hurting potential on-line (i.e. real-time) performance. Why

don’'t we avoid this problem by defining the following one-sided similarity measure o,

(Mg, Oy) = Py /Py 0r G(A,, O1) = Pp/Pyy? (7-24)
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Table 7-15: Similarity results for real driving data

o X(1L1) | X2 | X3 | X@41) | XG1) | X611 | X71)

X(1,2) 0.606 0.522 0.112 0.190 0.068 0.062 0.128

X(2,2) 0.356 0.747 0.405 0.637 0.325 0.299 0.536

X(3,2) 0.167 0.487 0.743 0.385 0.619 0.381 0.281

X(4,2) 0.372 0.689 0.359 0.758 0.342 0.432 0.563

X(5,2) 0.275 0.343 0.364 0.186 0431 0.279 0.109

X(6,2) 0.155 0.374 0.255 0.612 0.309 0.683 0.553

X(7,2) 0.112 0.409 0.153 0.668 0.158 0.442 0.799

Table 7-16: Bayes classification results for real driving data

Z X(L1) | X2 | XB1) | X@1) | XG1) | X661 | X7

X(1,2) 0.334 0.218 0.093 0.102 0.083 0.033 0.079

X(2,2) 0.107 0.156 0.139 0.137 0.140 0.087 0.129

X(3,2) 0.097 0.151 0.220 0.098 0.178 0.090 0.084

0.106 0.146 0.138 0.135 0.133 0.106 0.121

0.216 0.199 0.118 0.089 0.139 0.093 0.068

X(6,2) 0.043 0.094 0.096 0.152 0.123 0.169 0.162

X(7,2) 0.043 0.106 0.083 0.166 0.110 0.146 0.182

The short answer isthat is does not work as one might expect. Specifically, 0 no longer obeys
properties #1, #2 and #3 in equations (6-20) through (6-22). Consider the following simple

example. Let,

o, ={0001,1,1,1,1,1,1} ,and (7-25)
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0,={01,1,1,1,1,1,1,1,1} . (7-26)

The corresponding single-state HMMs A, and A, are given by,

- -
Recall that P;; = 10'°97CIN/ T Thys,

P,, = 10/09[(0.7)(0.3)/10 = 0,643 (7-28)

Py = 10/09[(0.3%)(0.7)] /10 = (543 (7-29)

P, = 10109[(097)(0.1%)]/10 = (.466 (7-30)

P,, = 10109[(01)(0.99]/10 = 0,722, (7-31)
Consequently,

a(A, Oy) = 0.643/0.543 = 1.185, and (7-32)

a(A,, Op) = 0.466/0.722 = 0.644. (7-33)

Not only do we lose the nice properties of the original similarity measure, we also get mixed
classification results for the human driving data. Tables 7-17, 7-18 and 7-19, for example,
report one-sided classification results analogous to the similarity measure resultsin Tables 7-1,
7-2 and 7-3, respectively. Note that 4 out of 36 comparisons (11%o) are misclassified by the one-

sided similarity measure.

7.3.2 Bayes classifier limitations

Here, we examine why the Bayes classifier performs more poorly than the HMM-based simi-
larity measure. Figure 7-5(a) plots the distribution (over v and @) for Moe's data, and the cor-

responding Gaussian approximation of that distribution. Likewise, Figure 7-5(b) and (c) plot
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Table 7-17: One-sided similarity results for road #1 data

o A A2t Az Aag A5y Ae1
0(1,2,1) 0.784 0.343 0.278 0.141 0.057 0.022
0(1,3,1) 0.579 0.518 0.265 0.057 0.051 0.160
0(2,2,1) 0.345 0.964 0.185 0.125 0.098 0.797
0(2,3,1) 0.290 1.100 0.152 0.076 0.061 0.896
0(3,2,1) 0.590 0.252 0.909 0.325 0.183 0.029
0(3,3,1) 0.569 0.251 0.883 0.120 0.137 0.081
04, 2,1) 0.547 0.304 0.523 0.824 0.373 0.030
04, 3,1) 0.588 0.311 0.590 0.752 0.445 0.123
05,2, 1) 0.166 0.191 0.351 0.347 0.742 0.057
0(5,3,1) 0.195 0.150 0.329 0.325 0.700 0.140
0(6, 2, 1) 0.012 0.114 0.004 0.003 0.003 1.563
0(6, 3, 1) 0.006 0.159 0.003 0.002 0.002 0.966

Table 7-18: One-sided similarity results for road #2 data

o A1 A2 Az As s A2
0(1, 1,2 0.912 0.264 0.268 0.174 0.081 0.068
0(1, 3,2 0.704 0.705 0.311 0.066 0.046 0.216

0.310 0.551 0.078 0.044 0.044 0.806
0(2, 3,2 0.148 1.133 0.062 0.020 0.018 0.988
0(3,1,2 0.674 0.226 0.767 0.207 0.178 0.034
0(3,3,2 0.523 0.327 0.815 0.076 0.082 0.059
0(4,1,2 0.578 0.437 0.542 0.847 0.349 0.088
04, 3,2 0.569 0.467 0.540 0.657 0.310 0.129
0(5, 1,2 0.049 0.064 0.195 0.251 0.603 0.013
0(5, 3,2 0.098 0.013 0.180 0.246 0.636 0.008
0(6, 1, 2 0.001 0.002 0.000 0.000 0.000 0.158
0(6, 3,2 0.000 0.014 0.000 0.000 0.000 0.320
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Table 7-19: One-sided similarity results for road #3 data

o A 13 A 23 A 33 A 43 A 53 A 63
0(1, 1, 3) 0.877 0.246 0.328 0.208 0.107 0.028
0(1, 2, 3) 0.927 0.266 0.316 0.202 0.075 0.005
0(2, 1, 3) 0.178 0.277 0.031 0.017 0.011 0.582

0.125 0.498 0.030 0.018 0.007 0.792
0(3, 1, 3) 0.640 0.250 0.699 0.237 0.231 0.030
0(3, 2, 3) 0.620 0.203 0.785 0.225 0.154 0.005
04,1, 3) 0.586 0.447 0.603 0.839 0.476 0.155
04, 2, 3) 0.592 0.373 0.530 0.813 0.419 0.169
0(5, 1, 3) 0.062 0.115 0.260 0.337 0.721 0.057
0(5, 2, 3) 0.058 0.052 0.272 0.330 0.843 0.039
0(6, 1, 3) 0.006 0.011 0.001 0.001 0.001 0.475
O(6, 2, 3) 0.004 0.034 0.001 0.001 0.000 1.454

similar comparisons for Groucho’s second run and Groucho’s fourth run, respectively. From
these plots, it isclear that the Bayes classifier isdoomed to fail, since the human datais distrib-
uted in a decidedly non-Gaussian manner. The similarity measure, on the other hand, succeeds
because the HMMs are trained on the underlying distributions of the data sets, and make no a

priori assumptions about each individual’s distribution.

We a'so note that despite repeated attempts at improving the Bayes classifier’s performance —
by only classifying on a subset of the vector [VE Vyy 0 bo} @T — we have yet to identify an

example where the Bayes classifier succeeds and the similarity measure fails.

7.3.3 Similarity measure variations

Finally, we consider the similarity measure’s performance as a function of (1) the signal-to-
symbol preprocessing and (2) the number of HMM states. Let us first define a discrimination

measure, with which we can evaluate the similarity mesure’s performance. Let,
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max; | (0O, j), Of 1))

531,k = NELS (7-34)
’ a[Of, 1y Of ]
88 hg) = —log[8{- -], (7-35)

define a discrimination measure corresponding to row O(i, j, k) of Tables 7-1, 7-2 and 7-3,
wherei 0{1,2,...,6 , j,k0{1, 2,3, ] #k. This measure takes the maximum off-diago-

nal element over the self-similar element in each row. Thus, & > 0 indicates that sequence

o, log

Of, j) isclassified correctly. Next define,
1

A, = —log szag'ivb i 10{1,2,....,6 ,j,k0{1,2,3 ,N =36, (7-36)
|

izk

where A, simply averages the discrimination measure in equation (7-34) over al rows in
Tables 7-1, 7-2 and 7-3 and takes the logarithm, so that A ; > 0 indicates better classification,
while A < 0 indicates worse classification. We are now in a position to evaluate the similarity

measure's performance as we vary different design parametersin the similarity analysis.

First, we show how the similarity measure changes when no spectral preprocessing is per-
formed, such that,

05,1) = O(I’ J!k) = Ta||(X(i’j)a _Sk,¢,[K1, Kz],Qlﬁ), [ D{l, 2, ,6} s

j,kO{1,2,3 ,where, (7-37)

X(@i.1) = [‘7& v, mg;ﬂ("”, i0{12...6,j0{123 , and, (7-38)
T

$=[ccceqg ,L=128,n=8. (7-39)

We consider two cases, K; = K, = 1,and K; = 2K, = 16.
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Figure 7-6: The discrimination performance worsens with no preprocessing.

With eight-state HMMs, and no spectral preprocessing, A, = 0.276 for k; = K, = 1,
A, = 0.016 for k; = 2K, = 16, whilefor Tables7-1, 7-2and 7-3, A; = 0.345. Figure 7-6
plotstheworst discrimination example 8¢ 1%), for k U {1, 2, 3} , corresponding to each table.
Notethat for k = 1 andk; = 2K, = 16, weactually get two misclassifications. Thus, signal

preprocessing prior to vector quantization contributes positively to the discrimination capacity
of the similarity measure.

Second, we examine how the similarity measure changes as a function of the number of HMM
statesin our HMM models A . Let the signal-preprocessing parameters be given by (7-6), and
repeat the similarity analysis for Tables 7-1, 7-2 and 7-3 as the number of HMM states n, is
varied from 1 to 10. Figure 7-7 plots the discrimination measure A ; as a function of ng. We
seethat as ng isincreased initially, A, improves sharply. As n, becomes larger, however, dis-
crimination beginsto level off and eventually declinesfromng, = 9 to ng = 10. At that point,
for k; = 2k, = 16, and sampling period T = 0.02sec, common aspects of control strategies
from different individuals begin to dominate the unique features of each strategy.

From these results, we suggest the following three reasons — in order of importance — for the

success of our similarity measure: (1) no a priori distribution of the datais assumed, asHMMs
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Figure 7-7: Sequential structure adds to the discrimination capacity of the similarity

measure.

are capable of encoding arbitrary statistical distributions; (2) spectral preprocessing extracts

useful features from the control strategy data; and (3) HMMs in part capture the sequential

structure of the control strategy data.

In summary, this chapter has shown that the proposed similarity measure correctly classifies

control strategy data from the same individual, while discriminating driving control data from

different individual s in human-to-human comparisons, both for ssmulated as well asreal driv-

ing data. It isthese resultsthat now justify applying the similarity measure as avalidation mea-

sure in human-to-model comparisons. Chapter 8 will do just that, thereby quantifying the

qualitative observations of HCS model fidelity in Chapters 4 and 5.
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Chapter 8

Human-to-model validation

In Chapter 7, we verified the performance of the similarity measure ¢ in human-to-human
comparisons. Now, we will apply the proposed similarity measure as ameans of validating the
control tragjectories of the different HCS models presented in Chapters 4 and 5. In other words
we will quantify our previous qualitative observations about the similarity between the learned

models and their respective human control training data.

8.1 Human-to-model comparisons

We once again select the following parameters for our similarity analysis:

.
% = [HF HF HF W W] Xy = 16, K, = K4/2,L = 128, ng = 8, (8-1)

so that for acontrol trajectory XU = [\—,E v, @ 3 _‘ﬂ , the corresponding observation sequence

OU will be given by,
OU= T, (XUs,8,[Ky, K], Qp), (8-2)

where the scale vector s is chosen and the VQ codebook Q, istrained over al control trajec-
toriesinthe similarity analysis. Note that the parametersin equation (8-1) are the same asthose
that we used through most of Chapter 7.
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Table 8-1 and Figure 8-1 report the resulting human-to-model similarity measures o, for Larry,
Moe, Groucho and Harpo, and their respective Cq, Ck and hybrid HCS models. In addition, we
provide similarity results for the hybrid HCS models, where we | et the statistical models A; be
uniform, such that equation (5-19),

N
P(AS) = b(1);P(A)/ S b(1)iP(A), (8-3)
i=1
reducesto,
P(A|S) = P(A). (8-4)

In other words, the choice of control action at each time step depends strictly on the priors

P(A,), whenthe A; are uniform.

Table 8-1: Human-to-model similarity?

Individual | Dimensions Cq Ck Just P(A;) b Hybrid
{x o © 0.100 0.161 od 0.450

Larry
{a € 0.128 0.432 od 0.657
{x, G 0.087 0.088 0.046 0.555

Moe
{a} 0.117 0.146 0.187 0.594
{x, 0.101 0.096 0.014 0.457

Groucho

{4} 0.319 0.172 0.132 0.561
{x, G od 0.003 0.012 0.578

Harpo
{G} od 0.003 0.024 0.609

a. Each individual’s run is compared to the model trajectory over road #5.
b. Models A; are uniform over the entire input space. Condition (5-27) is enforced.
c. All state and control variables are included for the similarity analysis.

d. Model is unstable over road #5.

e. Only the control variables {3, ¢ areincluded in the similarity analysis.
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Figure 8-1: Human-to-model similarity for different modeling approaches and { X, G} .

From Table 8-1, we make several observations. First, the Cq and Ck models exhibit roughly the
same similarity to each model’s corresponding human control data. These similarity valuesare,
however, rather low, especially when compared to the human-to-human similarity results in
Chapter 7. Therefore, neither the Cq nor the Ck learning algorithm is able to model the driving
control strategies with a high degree of fidelity to the source training data.

In comparison, we note that the hybrid controllers have much more in common with the source
training data than do either the Cq and Ck models. In fact, the similarity values for the human-
to-model comparisons in Table 8-1 approach those of the self-similar human-to-human com-
parisonsin Chapter 7. Finally, we observe that without models A, , the hybrid control strategies
degenerate, and are no longer representative of the human’s control strategy. This confirms that
the statistical models A; impart useful information to the hybrid control strategies, and that the
improved fidelity of the hybrid controllersin not smply due to random thrashing about of the

acceleration command @.

8.2 Classification experiment

Asan additional validation check, we now show that a particular individual’s hybrid model not
only closely matches the control data for that individual, but also exhibits a lesser degree of

similarity with other individual’s control data. Table 8-2 reports the similarity of each individ-
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Table 8-2: Hybrid model-to-human matching

o Larry Moe Groucho Harpo
Larry's model 0.450 0.329 0.315 0.069
Moe's model 0.126 0.555 0.338 0.217
Groucho’s model 0.152 0.377 0.457 0.206
Harpo’'s model 0.013 0.134 0.127 0.578

Table 8-3: Ck model-to-human matching

o Larry Moe Groucho Harpo

0.161 0.166 0.118 0.157
Moe's model 0.056 0.088 0.063 0.041
Groucho’s model 0.056 0.066 0.096 0.040

Harpo's model 0.006 0.008 0.012 0.003

ual’smodel with each individual’s control strategy for the hybrid HCS models. We observe that

the highest degree of similarity occurs between a specific individual and hismodel. In contrast,
we observe from Table 8-3, that the Ck models do not necessarily exhibit the highest degree of

similarity (however low) with their respective training data.

8.3 Modd inputsrevisited

In Section 4.2.1, we described amethod for selecting agiven model’sinput representation (n,,
n, ) based on the performance of the Ck models on the cross validation road #4 (Figure 2-3(b)).
Here we revisit the problem of model input selection, within the context of the similarity mea-

sure o.

From Figure 4-5, we made the observation that Ck model performance does not appear to vary
significantly for n,, n, > 3, asjudged by the maximum deviation from the road median. Alter-

natively, we can look at,
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d(rg-d, ri,i)=dog », o)), k0{1,2,...,1% , (8-5)

where d( O) indicates the distance measure defined in equation (6-28), Of"-1) denotes an
observation sequence converted from the control trajectory of model I"{""1) over validation
road #4, and model I"{-1), as before, corresponds to a Ck mode! trained from run X0 1) (i.e.
person (i) on road #), with input space,

{xk ok 219  kO{1,2,...,20} . (8-6)

Figure 8-2, for example, plots d(I",, ', , ;) as k variesfrom 1 to 19 for Groucho’s Ck model.

Once again, we observe that model performance does not vary significantly for k> 3.

For the Ck models, we could not look at the similarity between the models and their respective
training data as a robust indicator, since the similarity measure o evaluatesto very low values.
For the hybrid models, however, the similarity measures appear to be more robust. Hence for

these models, we can look directly at the human-to-model similarity,
d(x@.0, rg-0) = d(od. ), of D). (8-7)

Figure 8-3, plots d(X, I',) as k variesfrom 1 to 6.1 We observe that for each person the min-

imumislocated at k = 3. It appearsthat no matter what modeling approach we take, when the

1234567 8 910111213141516171819
0.08
0.06

0.04

d(Me Mes 1)

0.02

ol HEIEIEIERIE DDDDQDDDDDSE

2345678 910111213141516171819 K

Figure 8-2: Model distance for Groucho’s run as the size of the input space is varied.

1. We stop at k = 6 due to the increased distortion in the VQ codebook for the hybrid models as the
dimensionality of the input space increases.
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Figure 8-3: Human to model similarity over test road #5 as we vary the size of the input
space.

model is presented with enough time-delayed values of each state and control variable, the
model is able to build what appear to be necessary derivative dependencies between model

inputs and outputs { &(k + 1), @(k + 1)} .

In summary, we have demonstrated that the hybrid models exhibit greater fidelity to the human
training data than the either of the cascade network-based modeling approaches. Which learn-
ing approach — continuous or hybrid — is preferred may ultimately depend on the specific
application for the HCS model. If the model is being developed towards the eventual control of
area robot or vehicle, then the continuous modeling approach might be preferred as a good
starting point. Continuous models extrapolate control strategies to a greater range of inputs,
show greater inherent stability, and lend themselves more readily to theoretical performance
anaysis. If, on the other hand, the model is being developed in order to simulate different
human behaviors in a virtual reality ssimulation or game, then the discontinuous control
approach might be preferred, since fidelity to the human training data and random variationsin
behavior would be the desired qualities of the HCS model. Thus, depending on the application,
we believe aneed exists for both types of modeling approaches.




Chapter 9

Conclusion

9.1 Contributions

In this dissertation, we present a coherent framework for learning and validating discrete-time

models of human control strategy. We summarize the original contributions of thiswork below.

» We developed a neural-network-based algorithm that combines flexible cascade neural net-
works with extended Kaman filtering. We show that the resulting learning architecture
achieves better convergence in faster time than aternative neural-network paradigms for
modeling both known continuous functions and dynamic systems, as well as for modeling
human control strategies from real-time human data. We also demonstrate the fundamental
problem of modeling discontinuous control strategies with a continuous function approxi-

mator.

» We developed a statistical, discontinuous framework for modeling discontinuous human
control strategies. The approach models control actions as probabilistic events and chooses a
specific control action based on a stochastic selection criterion. We demonstrate that the
resulting learning architecture is much better able to approximate discontinuous control

strategies than continuous function approximators.
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» Asamode validation tool, we developed a stochastic similarity measured — based on Hid-
den Markov Models — that measures the level of similarity (or dissimilarity) between
multi-dimensional, stochastic trgjectories. We demonstrate and derive important properties

of the similarity measure.

» We applied the similarity measure towards classifying human control data across different
individuals. We demonstrate that the similarity measure does a better job of grouping human
control data from the same individual than the more traditional Bayes classifier. We also

analyze classification performance as a function of similarity measure parameters.

» We applied the similarity measure for comparisons between human control strategy models
and their respective human training data. Thus we quantify qualitative results about model
fidelity in different modeling approaches. We also apply the similarity measure for model-
to-model comparisons to show how representational choices of the input space affect model

performance.

» We developed areal-time graphic driving simulator, with dynamic interactions of the simu-
lated car an the environment. This has proven to be a valuable testing tool for the learning
algorithms and statistical methods developed herein. Some other researchers have also used
this ssimulator in their work [29, 110].

9.2 Futurework

While this thesis provides the foundations for modeling and analyzing human control strate-
gies, it is certainly not the first and last word on this topic — it is only an important first step.

There are a number of different directionsin which the work in this thesis can be extended and

applied.

Once we have abstracted aHCS model, it isimportant to assess the skill exhibited by the model
and its corresponding human controller. In this thesis, we evaluate models based on stability

and model fidelity to the human training data. There are, however, other criteria— many of
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them task-dependent — by which we can evaluate performance. Models or control strategies
with different skill qualities may be more or less appropriate for a given situation, depending
on the specific performance requirements of an application. For example, Song, et. al. [110]
have begun to examine the problem of skill evaluation, by proposing two task-specific perfor-
mance criteriafor the human driving task, including a (1) tight-turning and (2) obstacle avoid-
ance criterion. These criteria evaluate the performance of a HCS model outside its training

range and quantify a particular model’s suitability for specific control subtasks.

Given a specific performance requirement, it might be necessary to optimize a particular HCS
model with respect to that performance measure. The unoptimized HCS model already gives
aninitial stable control strategy; optimization would merely refine the parameters in the model
to improve performance with respect to a specific criterion J. Since, in general, we do not have
an explicit representation for J in terms of the model parameters @, model optimization can
be achieved through one of a number of different stochastic algorithms, including simulta-
neously perturbed stochastic approximation (SPSA) [113], population-based incremental
learning (PBIL) [11] and genetic optimization [40]. Initial experiments with SPSA, for exam-
ple, demonstrate that learned models of human control strategy can be improved with respect

to specific performance criteria[111].

Another area of application for HCS models might be as virtual expert instructors. A novice,
when faced with learning an appropriate control strategy for anew task, is generally faced with
two aternatives. Either the novice can attempt to learn the new skill through trial and error, with
no on-line feedback to critique performance, or the novice can learn with the help of a human
instructor. Thefirst approach can be frustrating and cumbersome, whilein the second approach,
the feedback advice by the instructor is limited to certain sensor modalities and is sporadic in
nature. In addition, individual one-on-one training is expensive and can tax the constrained

resources of asingle expert.




158 Chapter 9: Conclusion

To aleviate these problems, it may be possible to replace an actual human expert instructor, so
that an apprentice gets advice through the expert’s HCS model, rather than from the expert
directly. The model-generated advice can be presented continuously to the apprentice, while
exploiting multiple sensor modalities. This hasthe potential to improve both learning speed and
the quality of learning by the apprentice. In this approach, apprentice training need no longer
be one-to-one. A single expert can efficiently train many apprentices through his’lher HCS
model, without increased demands on the expert’stime; conversely, asingle apprentice can effi-
ciently benefit from diverse advice of many experts at once (Figure 9-1). Finally, since HCS
models are trained on physically plausible human data, feedback advice from the HCS model
does not require unreasonably high precision or control fidelity from the apprentice. It hasbeen
shown that simulated training (e.g. training on a simulation of the system rather than the real
system) still improves performance once the apprentice transitions to control of the real
dynamic system [41, 103]. Therefore, we would expect that this approach would prove useful,
even if — for safety reasons — we replace the actual system by a simulation of that system

during apprentice training.

. &R

Expert

HCS HCS HCS HCS
model model model model

N S

Figure 9-1: One expert can teach many apprentices (left) and many experts can
contribute to the learning of a single apprentice (right).

Apprentice
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Figure 9-2: An augmented learning interface for human-to-human skill transfer.

In [80], we demonstrate the viability of applying HCS models towards human-to-human skill

transfer for a simple inverted-pendulum system (see Figure 9-2). This example does not, how-

ever, address a number of important issues in human-to-human skill transfer — namely, (1)

model selection for good apprentice learning, (2) multiple model learning, and (3) interface

design of the feedback advice. These are all important directions for future research.

Finally, while our primary motivation for developing the similarity measure in Chapter 6 was

for validation of HCS models, we believe that it may have other useful applications. Most

importantly, it could be used to monitor and detect potentially dangerous control behaviors on

the part of the human operator, as is done, for example, in [29] with auto-regressive models.

Alternatively, it could be used to monitor an apprentice’s control strategy during training to see

whether or not his control strategy begins to approach that of the expert.
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Appendix A:

Human control data

In this appendix, we describe the human control data sets which we use throughout the thesis
for learning and validation experiments. We use the dynamic driving simulator of Section 2.2.1
to collect human control datafrom six individualst — (1) Larry, (2) Curly, (3) Moe, (4) Grou-
cho, (5) Harpo and (6) Zeppo. In order to become accustomed to the simulator’s dynamics, we
first allow each individual to practice “driving” in the ssmulator for up to fifteen minutes prior
to recording any actual data. We then ask each person to drive over three different, randomly
generated 20km roads — roads #1, #2 and #3 in Figure 2-2 —as fast as possible without veer-

ing off the road. Between runs, we allow a short break for each operator.

Sections A.1 through A.6 plot the instantaneous velocity v (mi/h), the lateral offset from the
road median d; (m), the steering angle 6 (rad) and the acceleration command ¢ (N) for each
human control data set. Table A-1 reports corresponding aggregate statistics for each of the 18

runs.

1. All human subjects are malesin their mid-20s.
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Table A-1: Aggregate statistics for human driving data?

Run | v(mi/h) | w(radis)® | d(rad)®| @( x103N) | off road %
X(L1) | 71.8(81) | (0.183) | (0.064) 1.70 (2.41) 1.31
% X(1L2) | 711(7.2) | (0.194) | (0.072) 1.81 (2.35) 0.80
X(13) | 737(80) | (0.200) | (0.081) 2.04 (2.35) 2.05
X(21) | 631(12.2) | (0.174) | (0.057) 1.38 (2.43) 2.94
5; X(22) | 627(95) | (0.174) | (0.056) 1.31 (1.85) 2.33
X(23) | 64.0(86) | (0.178) | (0.056) 1.29 (1.37) 243
X(31) | 708(83) | (0.201) | (0.073) 1.90 (3.26) 1.75
é X(32) | 69.1(7.7) | (0.194) | (0.073) 1.85 (3.34) 1.19
X(33) | 715(7.7) | (0.200) | (0.077) 1.97 (3.14) 0.59
_ X4D | 731(95) | (0244) | (0.092) 2.19 (2.77) 2.04
g X(#2) | 71.9(90) | (0.249) | (0.095) 2.24 (2.62) 1.02
© x4y | 745 (94) | (0.285) | (0.114) 2.57 (2.65) 241
X(51) | 66.8(12.4) | (0.181) | (0.084) 1.85 (3.83) 4.02
% X(52) | 651(13.2) | (0.208) (0.095 1.94 (3.98) 5.27
- X(5.3) | 69.8(12.3) | (0.226) | (0.111) 2.29 (3.76) 4.69
X(61) | 523(12.2) | (0.171) | (0.053) 0.89 (1.48) 7.16
% X(62) | 517(42) | (0.158) | (0.043) 0.70 (0.25) 1.36
) X(63) | 56.1(5.7) | (0.204) | (0.058) 1.01 (0.34) 450

a. Numbersin parentheses are standard deviations.
b. Meansfor al runsis 0.000.
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Figure A-2: Larry’s run over road #2 as a function of time (sec).
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Figure A-4: Curly’s run over road #1 as a function of time (sec).
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Figure A-10: Groucho’s run over road #1 as a function of time (sec).




170 AppendixA:

90

80
= 70
=
é 60
>

50

40

0 100 200 300 400 500 600 0 100 200 300 400 500 600
0.2 4000 {
2000 (

01 T
e P 0 “
g | g \u
R 0 ‘ “'\ I ’ i S -2000
o }{ -4000

-0.1

6000
-0.2 -8000
0 100 200 300 400 500 600 0O 100 200 300 400 500 600

Figure A-11: Groucho’s run over road #2 as a function of time (sec).
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Figure A-12: Groucho’s run over road #3 as a function of time (sec).
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Figure A-13: Harpo’s run over road #1 as a function of time (sec).
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Figure A-14: Harpo’s run over road #2 as a function of time (sec).
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Figure A-15: Harpo’s run over road #3 as a function of time (sec).
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Figure A-17: Zeppo’s run over road #2 as a function of time (sec).
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Figure A-18: Zeppo’s run over road #3 as a function of time (sec).




Appendix B:
HMM Training

In this appendix, we briefly summarize the forward-backward and Baum-Welch algorithms,

For a complete discussion of these algorithms, please see [94].

B.1 Forward-backward algorithm

The forward-backward algorithm is a computationally efficient algorithm for calculating
P(OJA), for adiscrete-output Hidden Markov Model A = { A, B, 1§ with n states, and adis-

crete observation sequence O = {04, 0,, ..., 07} , Where,

ayq Ay ... Aq, b,(1) by(1) ... b,(1) us
A= 32182 80 g b,(2) by(2) ... b,(2) = | (B-1)
81 @yp e 8y by (L) by(L) ... by(L)] T,

Itisalsothefirst step of the Baum-Welch algorithm described in Section B.2. Theforward algo-
rithm is described below:

a,(i) = mbi(o,), i 0{1,2,...,1} (B-2)

n

ROE {Z at(i)aij}bj(oHl),tD{l, 2., T-1,j0{1,2 ..., (B-3)
i=1
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n
POOIN) = 3 ar(i) (B-4)
i=1
For long observation sequences, the above algorithm is not numerically stable, asit will result
in numerical underflow. By appropriate scaling, the forward algorithm can be modified to elim-

inate this problem:

a,(i) = mb;(0,), 1<i<n (B-5)

a,(i) = cpaq(i),i0{1,2,...,n (scaing) (B-6)

o, () = [Z dt(i)aij}bj(otﬂ),tm{l, 2,...,T=-13,j0{12,..,n (B-7)
i=1

Oi41(]) = G104 1(), tO{1,2,...,T-1 ,jO{1,2,...,n (scaing) (B-8)

ol O .
C = 1/%2 ut(|E,tD{1, 2,..., T} (scaing) (B-9)
=1

P(OJA) = 1/%|I| cD (B-10)

LS

Similarly, the backward algorithm (with scaling) is defined as follows:

B.(i) = 1,1<i<n (B-11)

Br(i) = crB(i), L<i<n (scaling) (B-12)

B() = 3 b0, )Beea() tO{T-1T~2,... 1}, 1<isn (B-13)
=1

Bi(i) = ¢B,(i),t0{T-1,T-2,..,1} , 1<i<n (scaling) (B-14)
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Note that the scaling coefficients c, are chosen to be the same for the forward and backward

algorithms.

B.2 Baum-Welch algorithm (with scaling)

Assume that we have multiple observation sequences O, of length T,, 1<k < K. Further-
more, assume that we have a current estimate of the optimized Hidden Markov Model
A = {A B, 1t withn statesand L output observables. We would now like to generate a new
estimate A = { A, B, which guaranteesthat,

K K

M P(A|O®K) > [ P(A[O®) (B-15)
k=1 k=1

The Baum-Welch algorithm does just that. The state transition matrix A is updated by,

K T,-1
z 6‘tk(i)aijbj(o(k)l)Bt+1(])
a, = K=1t=1 ,1<i,j<n (B-16)

1) K Ty— 1,\k
(')Bt(J)
> Y

k=1t=1

while the output probability distribution matrix B is updated by,

K Ty ~krivAKy
o (P (j)
22
b(1) = Ks-t-"Tr”' ,1<l<sL,1<j<n (B-17)
CHOE
> 2 T &
k=1t=1 t

Rabiner provides an excellent and practical introduction to the Baum-Welch algorithm [94].
Unfortunately, in [94] the final equations summarizing the Baum-Welch algorithm — namely,
equations (110) and (111), corresponding to equations (B-16) and (B-17) — are incorrect.
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In equation (110), the upper summation limit for t should be T, , not (T, — 1) ; otherwisg, the
last symbol for each observation sequenceisignored in the reestimation formulafor B. Thus,
eguation (110) should read,

< 1 Tl k k < 1 o k k
3 S5 S amBH 5 Ys S amBGE
E_ k=1 K t=1 E El_ k=1 K t=1 E
D)(l) — st. Ot = V| D |:| D)(I) — st. Ot = V| D (B-18)
ik Tk 1 ] o 0! K 1 T . 0
- z 2 a(HBi() 0 O > & > aB() o
O O O k=1 Ki=1 :
The problem with equation (111) istwo-fold. First note from equation (109),
Tk 1
Z z a (I)a|JbJ(O(k)1)Bt+1(J)
a;; = (B-19)

Tk—l

z P NOIN)

that for multiple observation sequences, each term in the k-sum is weighted by 1/P, . The
1/ P, factor comes from the definition of the €, (i, j) and y,(i) variablesin equations (37) and
(38), respectively. Now, consider equation (111) (in terms of the scaled forward-backward vari-
ables):

Tk—l
z z 6k ()b, (0% DB+ 2())

ij Tk—l

Z P a (1) (i)

o

(B-20)

Rewriting the above equation in terms of unscaled variables, we get,
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K T,—-1
1 k
52 Crarg(i)ayb; (o 1)DE, 1Bt (1)
a; = =4 Kl 1Tk_1 (Wrong!) (B-21)
k _k
55, 3, Cloto: i (i)
k=1
cp¥,, = ck; ckpk = il ck = Pik (by definition) (B-22)
K ka—l Tk—l
k k
z 3 (i)ayb;( Eﬁpsmu) z P2 5 ° t(i)ayjb; (0D B (1)
a t
aij K ka—l K T-1
T kK _KyiynKy - 1
> 5 > ao(DBc() 55 cra (HBL())
k=1 Kt=1 Pk
(Wrong!) (B-23)

Thus, equation (111) makes two errors: (1) it inadvertently scales each observation sequence
by 1/PZ, and (2) it leaves an extra c{‘ term in the denominator. Equation (B-16) above corrects
these errors. Using the incorrect equations leads to oscillating behavior of the Baum-Welch

algorithm, which, theoretically, is guaranteed not to happen.
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Appendix C:

Author’s Publications

The following is a complete list of journal and refereed conference publications derived from

thiswork (in reverse chronological order):

[1] M. C. NechybaandY. Xu, “Stochastic Similarity for Validating Human Control Strategy
Models,” to appear in IEEE Trans. on Robotics and Automation, June, 1998.

[2] M. C. NechybaandY. Xu, “On Discontinuous Human Control Strategies,” to appear in
Proc. |IEEE Int. Conference on Robotics and Automation, May, 1998.

[3] J. Song,Y.Xu, M. C. NechybaandY. Yam, “Two Performance Measures for Evaluating
Human Control Strategy,” to appear in Proc. |EEE Int. Conference on Robotics and Auto-
mation, May, 1998.

[4] M. C. NechybaandY. Xu, “Learning and Transfer of Human Real-Time Control Strate-
gies,” Journal of Advanced Computational Intelligence, vol. 1, no. 2, pp. 137-54, 1997.

[5] M. C. NechybaandY. Xu, “Human Control Strategy: Abstraction, Verification and Rep-
lication,” IEEE Control Systems Magazine, vol. 17, no. 5, pp. 48-61, 1997.
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[6] M. C. NechybaandY. Xu, “Cascade Neural Networks with Node-Decoupled Extended
Kaman Filtering,” Proc. |EEE Int. Symp. on Computational Intelligencein Robotics and
Automation, vol. 1, pp. 214-9, 1997.

[7] M. C. NechybaandY. Xu, “Stochastic Similarity for Validating Human Control Strategy
Models,” Proc. |IEEE Int. Conf. on Robotics and Automation, vol. 1, pp. 278-83, 1997.

[8] M. C.NechybaandY.Xu,“OntheFidelity of Human Skill Models,” Proc. IEEE Int. Con-
ference on Robotics and Automation, vol. 3, pp. 2688-93, 1996.

[9] M. C. Nechyba and Y. Xu, “Human Skill Transfer: Neural Networks as Learners and
Teachers,” Proc. |EEE Int. Conference on Intelligent Robots and Systems, val. 3, pp. 314-
9, 1995.

[10] M. C. NechybaandY. Xu, “Neural Network Approach to Control System Identification
with Variable Activation Functions,” Proc. |EEE Int. Symp. on Intelligent Control, val. 1,
pp. 358-63, 1994.
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