
Evaluating the Tradeo�s of Mobile Code Design Paradigmsin Network Management ApplicationsMario BaldiDip. Automatica e InformaticaPolitecnico di TorinoC.so Duca degli Abruzzi, 24I-10129, Italy+39-11-564-7067mbaldi@polito.it
Gian Pietro PiccoDip. Automatica e InformaticaPolitecnico di TorinoC.so Duca degli Abruzzi, 24I-10129, Italy+39-11-564-7008picco@polito.itABSTRACTThe question of whether technologies supporting mo-bile code are bringing signi�cant bene�ts to the designand implementation of distributed applications is stillan open one. Even more di�cult is to identify preciselyunder which conditions a design exploiting mobile codeis preferable over a traditional one. In this work, wepresent an in-depth evaluation of several mobile codedesign paradigms against the traditional client-serverarchitecture, within the application domain of networkmanagement. The evaluation is centered around a quan-titative model, which is used to determine precisely theconditions for the selection of a design paradigm mini-mizing the network tra�c related to management.KEYWORDSMobile code, network management, management by del-egation, mobile agent, remote evaluation.1 INTRODUCTIONRecently, a new approach to the development of dis-tributed applications has become popular, fostered bythe availability of a new generation of programming lan-guages and systems which provide the capability to re-locate application code across the nodes of a computernetwork. Among these systems, often called MobileCode Systems (MCS), Java is surely the best known,to the point that many vendors of network equipmentalready announced on-chip Java support. It is still un-clear how to exploit the new technologies, concepts, andparadigms enabled by these systems, and which are theadvantages that can be potentially bene�ted [5]. Manyresearchers suggest that a major bene�t provided bymobile code is the capability to reduce network commu-nication by moving client's knowledge close to server'sresources, thus accessing them locally. These argumentsare often supported only by qualitative and super�cial

considerations, rather than by a careful analysis of theproblem, possibly supported by quantitative evidence.Previous work [2] presented a characterization of mo-bile code that abstracted from the details of the dif-ferent technologies by deriving design paradigms thatcan be adopted for structuring distributed applications.Also, it suggested that the exploitation of a mobile codedesign is not an advantage per se, rather it must be eval-uated as an alternative to traditional design in the con-text of the particular application being designed. Thiswork builds on the aforementioned results, by showingan in-depth quantitative analysis of the tradeo�s amongdi�erent architectures exploiting mobile code. This isdone in the real application domain of network manage-ment. We present a quantitative model for traditionaland mobile code design of network management func-tionalities, and we show how to determine the optimaldesign paradigm according to the model parameters.The contribution of this work can be regarded underdi�erent perspectives. From a software engineeringperspective, it constitutes an experience in evaluatingdesign alternatives from a quantitative point of view.From the network management perspective, it providesmanagers with a formal tool to determine the best wayto perform management operations. Finally, it providesformal arguments for the pro and cons of mobile codein a relevant application domain.The paper is structured as follows. Section 2.1 providessome background information on network managementand Section 2.2 motivates a mobile code approach in thiscontext. Section 2.3 describes research on code mobilityand its application to network management in particu-lar. Section 3 develops a model of tra�c which is usedto compare the various paradigms. This model is thenre�ned in Section 4 to take into account non-uniformnetworks. Finally, a case study is provided in Section 5,where the model is instantiated with parameters takenfrom a real implementation being developed at our uni-versity and the tradeo�s of the paradigms are examinedfor a speci�c management functionality. Some �nal re-marks are provided in Section 6.

2 BACKGROUND2.1 Network ManagementNetwork management is split in two nearly separateworlds [7]: IETF management, which relies on theSimple Network Management Protocol (SNMP) and itsderivatives, and ISO management, which relies on theCommon Management Information Protocol (CMIP).Both protocols assume a centralized management ar-chitecture based on a client-server paradigm. Manage-ment agents co-located with network devices act likeservers that communicate on request device data to anetwork management station (NMS). Device data arestored in a management information base (MIB)1, a hi-erarchical base of information managed by each agent.In this setting, all the computation related to manage-ment, e.g., statistics, is demanded to the NMS. Theoperations available to the NMS for accessing a MIBare very low level. In SNMP, for instance, the NMS canonly get and set atomic values in the MIB. This �negrained client-server interaction is often called micro-management, and leads to the generation of intensetra�c and computational overload on the NMS. Thiscentralized architecture is particularly ine�cient dur-ing periods of heavy congestion, when management be-comes important. In fact, the NMS increases its inter-actions with the devices and possibly uploads con�g-uration changes, thus increasing congestion. In turn,congestion, as an exceptional status, is likely to triggernoti�cations to the NMS which worsen network over-load. Due to this situation, access to devices in thecongested area becomes di�cult and slow.Centralization is being addressed by IETF and ISO byadapting their management architecture, as with SN-MPv2 [3]. However, experimentation showed that thesenew proposals do not provide yet the desired level of de-centralization needed to cope with large networks. Theinterested reader can �nd an extensive survey of ap-proaches to network management in [9].2.2 WhyMobile Code in Network Management?A �rst issue is the possibility to perform semantic com-pression of information. Suppose a table in the MIB hasto be searched for a value matching some criteria. In atraditional approach, a search function can be executedby the NMS on the elements retrieved from the remoteagent. In the worst case, all the elements in the tableneed to be transferred on the NMS. Placing the searchfunction on the agent, rather than on the NMS, enablessemantic compression. The table can be searched locallyon the device, where it is stored, and only the �nal value1MIB is actually the term used in SNMP only. CMIP usesthe term management information tree (MIT) database, instead.Hereafter, we ignore the di�erence for the sake of simplicity.

is sent across the network. As a pleasant side-e�ect, ahigher abstraction level is provided to the network man-ager, who can now think about the function as provideddirectly by the management agent, without being awareof its implementation in terms of elementary primitivesprovided by the management protocol. This idea canbe pushed even further, giving autonomy to manage-ment agents. In traditional approaches, the only actionagents can perform on their own is the generation of anevent (or alarm in the OSI jargon), i.e. a signal which issent autonomously to the NMS when a given conditionis satis�ed. Events are usually simple and prede�nedand the actual response to them is completely up to theNMS. In general, agents can be extended to check arbi-trarily complex event and possibly react locally withoutrequiring the intervention of the NMS.In principle, the extension of a management agent canbe achieved with traditional technology based on theclient-server paradigm, like in several CORBA-basedapproaches; this solution presents some relevant draw-backs. First of all, one could argue that the reasonwhy the primitives o�ered by management agents areso poor is that agents must be lightweight, since theycan be embedded in network devices equipped with lim-ited computational resources. In this setting, addingmanagement primitives to agents is just not desirable.Even if adequate computational resources are available,another relevant issue is the frequency of invocation ofprimitives. A function may be used only every now andthen, e.g., because its execution is needed only duringperiods of heavy congestion, or because its code maychange slightly according to operating conditions. Inthese cases, hard-wiring the function into the agent justmakes it bigger, wasting device resources without appre-ciable gain. In general, the dynamic nature of manage-ment operations demands for dynamic customizabilityof agent primitives.Mobile code provides the technology needed to en-hance network management with the degree of exibilityneeded to cope with the problems above. Mobile codecan be linked dynamically on network devices eitherproactively by the NMS or reactively by the network de-vice. This way, the management primitives embeddedin it become available on the device only when requestedby management operations, thus consuming device re-sources only when this is really needed. Furthermore,the capability to embed in the mobile code the strategyfor migration, provides an extra level of autonomy tomanagement operations. Hence, a NMS can extend dy-namically a management agent with mobile code, thusimproving exibility, and delegate to such code the ca-pability to migrate autonomously on di�erent networkdevices to perform complex management tasks withoutinvolving the NMS.

2.3 State of the ArtExisting mobile code technology supports code mobil-ity in di�erent ways2. Code mobility can be describedat a higher level of abstraction, without delving intothe details of the technology. In this work, we focus onthe description provided in [2]. Here, mobile code de-sign paradigms are identi�ed as the architectural stylesthat can be used to exploit code mobility in the de-sign of a distributed application. Design paradigms arecharacterized by components and the interactions be-tween them. A component may have a ow of controlor it may be an architectural element representing pas-sive data and physical devices. In the �rst case, it iscalled a computational component, otherwise it is calleda resource. A particular kind of resource is a code com-ponent, which contains the code necessary for the exe-cution of a given task. Components are hosted by sites,the architectural abstraction that provides support forcomponent execution and access. A service needs accessto resources, and its behavior (the know-how about theservice) is described by a code component which is ex-ecuted by some computational component in the archi-tecture. In order for actual computation of the serviceto take place, these three elements must be co-locatedin the same site. Interactions between components rulethe relocation of components needed for service execu-tion. Three mobile code paradigms are identi�ed usingthese abstractions, and compared with the traditionalclient-server paradigm.In the Client-Server (CS) paradigm, a client compo-nent needs to execute a speci�ed service, but lacks boththe resources and know-how needed. Instead, a servercomponent owns both code and resources, and can per-form the service on behalf of the client. To do so, theclient requests the service to the server, which shipsback the results after execution. In the Code On De-mand (COD) paradigm, the client component owns theresources needed by the service execution although itlacks the corresponding code component, available onthe server. Hence, it requests the code to the servercomponent and, after the code has been received, ex-ecutes the service locally. In the Remote EValuation(REV) paradigm, the client component owns the know-how about the service, and lacks the correspondingresources, which are owned by the server component.Thus, the client sends a request to the server includ-ing the code component needed to perform the service.This is executed by the server, that exploits local ac-cess to the resources needed, and ships back the results.When the Mobile Agent (MA) paradigm is used, theclient component knows how to perform the service, but2A classi�cation of mobile code technologies, design paradigms,and applications can be found in [5]. Moreover, [4] analyzes theimpact of mobility on the design of a programming language.

lacks the resources. Unlike REV, the whole computa-tional component is migrated to the site where the re-sources reside. There, the component performs serviceexecution with local access to resources.The approaches to network management that involvecode mobility are usually grouped under the label man-agement by delegation. Management by delegationhas been conceived originally before the appearanceof Internet-based MCSs, as a means to cope with themicro-management phenomenon of centralized manage-ment. The original proposal, further extended in [6],identi�es an architecture for the dynamic uploading ofmanagement scripts on network devices using a combi-nation of the REV and CS paradigms. In this archi-tecture, management scripts are delegated to performmanagement operations on the device on behalf of theNMS. Clearly, this assumes the presence of a special-ized run-time support on the network device, capable ofexecuting mobile code. However, in management by del-egation code migration is always triggered by the NMS,and there is no support for autonomous mobility of del-egated scripts. The original idea has been interpreted inmany ways by researchers leading to prototypes whichare often based on relatively limited \mobile code" tech-nology, like interpreted Perl scripts. Management bydelegation is presently under standardization by IETFand ISO working groups [10]. As discussed in [1], thecharacterization of mobile code made earlier shows thatmanagement by delegation can bene�t from the recentdevelopments in code mobility.3 MODEL OF MANAGEMENT TRAFFICIn this section, we derive a model for the tra�c gener-ated by network management. It di�erentiates amongthe design paradigms described in Section 2.3 that canbe exploited to implement a given functionality. Themodel is conceived to guide the manager during the se-lection of the right design choice for a management func-tionality. However, the model presented in this sectionis a general one, and has to be adapted to the man-agement scenario where the manager operates. Thisscenario must take into account the actual managementprotocols in place, as well as the technology actuallyused to implement a given paradigm. An example ofsuch a re�nement is provided in Section 5.In what follows, a measure of the dimension of themanaged network is given in terms of the number Nof managed devices. The complexity of the manage-ment task is taken into account by the number Q ofqueries performed on the MIB. The transmission over-head introduced by protocol encapsulation, and pos-sibly tra�c control or connection setup, is taken intoaccount down to the network layer, as de�ned by theOSI model. In fact, the focus is on the tra�c gener-

ated on the network as a whole; the amount of dataexchanged between network layer entities is indepen-dent of the lower layer technology, and thus invariantthroughout the whole network. If a chunk of data of sizeX is to be transmitted at the application level, we rep-resent the actual amount of data exchanged at the net-work layer as X 0 = �(X) + �(X)X . In this expression,�(X) may account, for example, for the overhead intro-duced by message encapsulation, while �(X) may ac-count for the control information exchanged during thesetup phase in a connection-oriented protocol. In the re-mainder of the section, however, we use the equivalentexpression X 0 = �(X)X where �(X) = �(X)X + �(X),�(X) > 1. This analytical transformation does notchange the meaning of the model; it just provides a morecompact representation. �(X) is called overhead func-tion since accounts for the control information (protocoloverhead) added to X by the network and the abovelayers. In the following, we write simply �X in place of�(X)X , in order to simplify formulae.3.1 Model of the Overall Tra�cWe derive here a model for the tra�c generated by amanagement task which involves retrieving a set of datafrom managed devices. In devising this model, we as-sume that the same management operations are exe-cuted on each device. This is not necessarily the casefor every management task, but allows for a simplernotation without compromising the generality and sig-ni�cance of what can be inferred from the model.3.1.1 Client-server With the traditional client-serverparadigm, the NMS requests an operation to the man-agement agent by sending a request message to it. Weassume that such information has size Iq . In order toperform the management task, Q request messages mustbe sent to each of the N managed devices. Device n an-swers the qth request with a reply whose size is Rqn. Theoverall tra�c is then:TCS = NXn=1 QXq=1(�CSIq + ~�CSRqn) (1)where we di�erentiate between the overhead functionused to send message requests (�CS) and the one usedfor replies (~�CS). Multicast communication is sometimesused to send the same management request to multipledevices. In our model we do not consider this case asit is not very common. Moreover, we assume that thequeries contained in each request message are dependenton the previous reply, i.e. it is not possible to aggregaterequest messages.3.1.2 Remote Evaluation If the REV paradigm is ex-ploited, the Q requests are embedded in a code fragmentof size CREV sent on managed device n. Remote eval-uation of the code produces the Q results Rqn which

are sent back collectively to the NMS. This pairwise in-teraction has to take place for each of the N managednodes. The overall tra�c generated is given byTREV = NXn=1(�REVCREV + ~�REV QXq=1Rqn) (2)3.1.3 Mobile Agent The NMS unleashes a mobilecomponent that visits each of the N nodes and collectsinformation locally. When modeling such a component,we model the code and the portion of the state neededfor its execution (CMA) as separate from the portion ofthe state relevant to the application. The latter growsas long as this agent travels from node to node. In fact,if we denote with SMA;n the size of the state of the agentduring the trip towards node n, thenSMA;n = � 0 if n = 1Pn�1m=1PQq=1 Rqm if n > 1The �rst expression accounts for the fact that the mo-bile agent has not yet collected any information whentraveling from the NMS to the �rst node. The secondone accounts for the fact that, when traveling to noden, the agent already carries all the replies collected onthe previous n� 1 nodes. After information on the lastnode has been collected, the mobile agent sends backto the NMS all the results collected. An alternativedesign would return the component back to the NMS.Although sometimes viable, we chose the �rst solutionfor uniformity with the REV case. The overall tra�cgenerated is given byTMA = NXn=1 �MA(CMA + SMA;n) + ~�MA NXn=1 QXq=1Rqn (3)3.1.4 Code On Demand With the COD paradigm,management agents can be augmented dynamicallywith code implementing primitives at a higher level ofabstraction, thus providing agents with the capability toperform the Q operations locally, rather than across thenetwork. The protocol we assume in this model is thefollowing. As in the CS paradigm, the NMS requests anoperation by sending a message that contains the oper-ation signature, ICOD . If the operation has already beeninstalled on the managed node, a reply is sent whichcontains the result of the Q queries, like in a REV im-plementation. On the other hand, if the code for theoperation has not been installed yet, the agent replieswith a message (that we assume of size Ifetch) requestingthe dynamic download. The code, of size CCOD , is trans-ferred and linked on the agent device, where it becomesavailable for future invocations, and the correspondingoperation is performed. Consequently, the expression oftra�c at equilibrium is:TCOD;stable = NXn=1(�CODICOD + ~�COD QXq=1Rqn) (4)

By converse, during the \setup" phase, there is an over-head represented by the message sent by the agent whichrequests the download, plus the actual code transfer:TCOD = TCOD;stable + TCOD;setup, where3TCOD;setup = NXn=1(�CODIfetch + �CODCCOD) (5)3.1.5 Evaluation We elaborate on the expressionsgiven earlier in order to �nd out the tradeo�s that mustbe considered in order to minimize the overall tra�c.To this end, we compare the equations determined forthe various paradigms.For instance, the use of a REV paradigm is an improve-ment over traditional centralized management only ifTCS � TREV . After elaboration of (1) and (2):NPQq=1 �CSIq +PNn=1PQq=1 ~�CSRqn �N�REVCREV +PNn=1 ~�REV PQq=1Rqn:In order to simplify notation and have a better insightinto the meaning of the formulae, we introduce someassumptions. Instead of di�erentiating the contributionof each request Iq and reply Rqn in (1), we consider theaverage values �Iand �R. Consequently, the formula canbe rewritten as:NQ�CS �I +NQ~�CS �R � N(�REVCREV + ~�REVQ �R)It is likely4 that Q~�CS �R � ~�REVQ �R since usually a�xed overhead is associated to each packet and thus,the longer the message being segmented, the smallerthe relative overhead. Hence, if more results �R can betransmitted together in a single message, the overheadis likely to be smaller, although depending on the pro-tocols used to implement communications in CS andREV. We call the di�erence in the overhead introducedto send the results of the queries �OCS;REV � 0; REV ismore convenient than CS if�REVCREV � �OCS;REV +Q�CS �I; (6)that is, if the size of the message containing the code tobe evaluated remotely is smaller than the overall size ofthe message requests needed in a CS paradigm plus thedi�erence in overhead introduced when transmitting theresult. Clearly, REV is convenient when the number ofinstructions Q needed to perform a query is high andCREV e�ectively compacts the representation of the localinteractions Iq within the code, e.g., using loop controlstructures.We can apply the same reasoning and assumptions in or-der to determine which is the most convenient paradigmbetween REV and MA. It can be seen that a MA im-3We do not model the intermediate situation where some ofthe nodes already contain the code, since we do not consider itrelevant to the goals of this paper and can be easily derived fromthe result presented.4It must be reminded that we use �X as a shortcut for �(X)X.

plementation always generates more tra�c than a REVone. In fact, substituting and elaborating (2) and (3) inTMA � TREV within the assumptions above, we obtain:N�MACMA + ~�MAQN �R+PNn=1 �MAQ(n� 1) �R �N(�REVCREV + ~�REVQ �R):A �rst simpli�cation is to assumeN ~�REVQ �R ' ~�MAQN �R: (7)This assumption holds when Q is su�ciently large and~�REV ' ~�MA: in this case, more results are packed to-gether for both, rather than being sent individually likewith CS, and the di�erence in overhead is likely to benegligible. A more gross simpli�cation is to considerCREV ' CMA. Usually is CREV < CMA, since CMA containsthe execution state as well as the code determining thenext migration. If we apply this oversimpli�cation theequation above becomesNXn=1 �MAQ(n� 1) �R � 0;that is, REV is always more convenient than MA, be-cause the latter must carry the state which is growingat every hop. As we discuss in Section 3.3, the possi-bility of performing semantic compression introduces adi�erent evaluation criteria.The application of the COD paradigm depends on thefrequency of invocation which has not been consideredyet. So far, we have given the expression of the traf-�c generated for a single execution of a managementtask. However, in general it may be interesting to con-sider how this varies over U di�erent invocations. Forthe other paradigms, this additional parameter does nota�ect the expression of the tra�c. The tra�c gener-ated during U executions of an implementation with aparadigm p 2 fcs;rev;mag, Tp(U) = UTp. The ex-pression of TCOD(U) when COD is used isTCOD(U) = TCOD;setup + UTCOD;stableCalculation of TREV (U) � TCOD(U) under the likely as-sumptions that �I ' ICOD ' Ifetch and ~�REVQ �R ' ~�CODQ �Ryields �REVCREV � U + 1U �COD �I + 1U �CODCCODClearly, if U is large, i.e. the primitive is invoked manytimes before being upgraded or discarded, the disequa-tion above can be approximated by�REVCREV � �COD �Iwhich is always satis�ed, the threshold being a REVcode composed by a single instruction. If, by converse,U is small, all the terms must be considered. However,we can assume that, although shipped with a di�erentparadigm, the code describing the management functionat hand is the same, i.e. CREV = CCOD = C, and that weare comparing implementations of di�erent paradigmswith the same technology, i.e. �REV = �COD = �. Under

these assumptions, we obtain�C � U + 1U � 1� �Iwhich con�rms the intuition that if a function is usedat least two times in a row, caching its code saves band-width. Finally, comparing TCS � TCOD under the as-sumption �I ' ICOD ' Ifetch , we obtain thatU � �COD �I + �CODCCODQ�CS �I � �COD �I +�OCS;COD (8)where �OCS;COD is the di�erence in the overhead intro-duced by the two implementations to send back the re-sults.3.2 Model of the Tra�c around the NMSAs we pointed out in Section 2.1, the NMS is likelyto represent a bottleneck of the management system ina centralized approach, due to the micro-managementphenomenon. Thus, although the measure of the overalltra�c generated is surely relevant, it is important tocompare the performance of the di�erent paradigms alsoin terms of the tra�c generated from and to the NMS.The measure of the overall tra�c generated by man-agement operations and the measure of the manage-ment tra�c owing through the NMS coincide for allthe paradigms considered, except for the MA paradigm.In fact, in the other paradigms, the NMS is always in-teracting directly with all the devices being managed.Instead, when the MA paradigm is used, there is tra�cthrough the NMS only when the mobile agent is injectedinto the network and when the agent reports back thecollected results, that isTMA;Mgm = �MACMA + ~�MA NXn=1 QXq=1Rqn: (9)The remainder of the tra�c is generated without involv-ing the NMS. It is useful to compare TREV � TMA;Mgm . Ifwe consider �R instead of the single contributions, andapply assumption (7), then�MACMA�REVCREV � Nholds, i.e. MA is convenient with respect to REV ifthe ratio between the tra�c generated when unleashingthe mobile agent and the one to move the code to beevaluated remotely is smaller than the number of nodesbeing managed. Notably, for a single node REV is goingto be more convenient, as usually CMA > CREV . Here,the tradeo� is between the size of the code of the mobileagent and its autonomy as far as mobility is concerned.A comparison with COD at the equilibrium point,within the assumptions enumerated before, yieldsTCOD;stable � TMA;Mgm , that is,�MACMA�COD �I � N:

Hence, the MA paradigm is more convenient than CODonly if the size of the code and execution state of themobile agent are su�ciently small. If we assume thatthe size of a single instruction in the code of the mobileagent is �I , its code must contain a number of instruc-tions smaller than the number of nodes being managed.As for CS, always within the assumptions above, TCS �TMA;Mgm if �OCS;MA � �MACMA �QN�CS �I;that is, if the di�erence of the protocol overhead gener-ated to send the results in the two cases is greater thanthe di�erence between the size of the code of the mobileagent and the overall size of request message. Note that,if QN � 1, the right hand side is likely to be negative,thus always verifying the inequality.3.3 Semantic CompressionAs we mentioned in Section 2.2, in many managementtasks the size of the results sent back to the NMS canbe reduced by semantic compression.The CS paradigm exploited by traditional approaches,where the primitives o�ered by the agent are often lowlevel and anyway �xed, does not allow semantic com-pression to be performed whenever possible. A CODparadigm, on the other hand, may enable semantic com-pression by installing a proper functionality on the man-agement agent. In this case,T 0COD;stable = NXn=1(�CODICOD + ~�CODRn)where we assumed that semantic compression of q datavalues Rqn yields a single value Rn. Clearly, TCOD;setup isunchanged. The REV and MA paradigms can achievesemantic compression by executing remotely a routinethat performs the compression, like the search routinedescribed in Section 2.2. This generates a tra�cT 0REV = PNn=1(�REVCREV + ~�REVRn)T 0MA = PNn=1[�MA(CMA + S0MA;n) + ~�MARn]and T 0REV < T 0MA, since in the expression of the tra�cgenerated by MA there is still a term S0MA;n which growslinearly with the number of nodes visited and, in addi-tion, usually CREV < CMA.If we consider only the management tra�c involving theNMS, like in the previous section, we obtain thatT 0MA;Mgr = �MACMA + ~�MA NXn=1Rn (10)To evaluate the improvement introduced by seman-tic compression, we compute the di�erence �T 0p, p 2frev;ma;codg, between the tra�c generated with thetraditional CS paradigm and the tra�c generated in thesituations above. In doing this, we apply the usual ap-

proximation of considering average sizes �I and �R for in-structions and results, respectively. For the sake of sim-plicity, we consider a unique overhead function � acrossall the paradigms, without di�erentiating between re-quests and replies. For mobile code paradigms, this isnot a big approximation if we restrict the evaluationto implementations that use the same application levelprotocol for transferring both the code and the results.The real approximation is introduced in considering asequivalent the overhead introduced by a particular MCS(e.g, Java Aglets) and the overhead introduced by a tra-ditional CS-based management protocol (e.g., SNMP).Under this assumptions, however, we obtain:�T 0COD;stable= N(Q� 1)(� �I + � �R)�T 0REV = NQ� �I +N(Q� 1)� �R� �CREV�T 0MA;Mgm = NQ� �I +N(Q� 1)� �R+�OCS;MA � �CMAAfter some trivial manipulations of the formulae above,we can express the above as functions of �T 0COD;stable:�T 0REV = �T 0COD;stable +N(� �I � �CREV)�T 0MA;Mgm = �T 0COD;stable +N� �I +�OCS;MA � �CMAThese formulae show that REV is never better thanCOD when the management task is repeated a numberof times large enough to neglect the COD setup tra�c.This is not true only if �CREV � � �I , which is clearlyunlikely, as it means that the message containing thecode being evaluated remotely is smaller than a simplerequest message. The tra�c around the NMS is reducedwith respect to COD if�CMA � N� �I +�OCS;MA;which highlights that, if the code of the mobile agentis kept su�ciently compact, the gain in tra�c growslinearly with the number of nodes.The MA paradigm enables also a global form of seman-tic compression across all the devices, while the otherparadigms enable only a local semantic compression oneach device. For example, a mobile agent may travelacross a set of nodes looking for the most loaded net-work interface. In doing this, only one data value needsto be carried from hop to hop|the state of the agentdoes not increase. In other words, if we assume thatsuch data value has a �xed size �R, then SMA;n = �R, andT 00MA = N(�MACMA + ~�MA �R):Again, MA is not more advantageous than the CODparadigm, at least as far as overall tra�c is concerned.The calculation of �T 00MA � �T 0COD , assuming that theoverhead function is the same, shows that this condi-tion is met only if �CMA � � �I which, as we discussedearlier for local compression with REV, is practicallynever met. The real advantage of global compression,however, shows up when considering tra�c involvingthe NMS. In this case, the tra�c is simplyT 00MA;Mgm = �MACMA + ~�MA �R (11)and calculation of �T 00MA � �T 0COD shows that MA is

better than COD if�CMA � N(� �I + � �R)� � �RThe �rst addendum actually represents a whole CS in-teraction: basically, the message containing the code ofthe mobile agent must be smaller than N pairs of re-quest and reply messages.4 MODEL OF MANAGEMENT COSTSThe model devised so far is meaningful only for a uni-form network; for example it applies to the managementof a single LAN. However, corporate intranets and ex-tranets spanning across long-haul links with di�erentcharacteristics, require an explicit modeling of commu-nication costs. A natural way to relate network traf-�c with the communication cost associated to the linksis to assign to each link a weighting cost coe�cient0 � �l � 1. The value of the cost coe�cient has to bedetermined by the manager according to the notion ofcost associated to the link, and may be actually a com-bination of several factors. For instance, a high costmay be due to high latency or low-bandwidth on thelink, or to the fact that a link connected to the NMSshould be kept as unloaded as possible, or to securityconsiderations.The formulae derived so far are still valid in the case ofmanagement of a single LAN (Fig. 1.a). We approxi-mate the LAN as a shared media or as a mesh of iden-tical cost paths between any pair of nodes. The samecoe�cient � is associated to each link, and the overallcost of performing a given management task is K = �T ,where T can be each of the expressions derived in theprevious section.A common case that involves di�erentiation of costs ismanagement of a remote LAN, shown in Fig. 1.b. In thiscase, the managed devices are placed in a high-speednetwork whose links are characterized by the same co-e�cient �. The LAN has an entry point, e.g., a router,to which the NMS is connected through a link5 with dif-ferent, and most likely higher, coe�cient �0. Thus, thecost of reaching any device from the NMS is weightedby a coe�cient (�0 + �). In this situation, the costfor any management task performed using a paradigmp 2 fcs;rev;codg isKp = (�0 + �)Tp:On the other hand, for the MA paradigm the expres-sion of the cost is actually a generalization of the tra�cTMa;Mgm computed in the previous section:KMA = �0TMA;Mgm + �TMAIn fact, tra�c across the link connecting the NMS to,5Here, the term link must be considered in a broad sense. TheNMS can be actually connected to the managed LAN through asequence of physical links and nodes. In this case �0 is the weightassociated to the whole path from the NMS to the managed LAN.

say, the router of the LAN is concerned only with the�rst trip of the agent and the �nal delivery of aggre-gated results, and thus has the same expression derivedearlier. Tra�c within the managed LAN is generatedsince the mobile agent is injected from the ingress routerinto the managed LAN. If we imagine to place a virtualNMS on the ingress router, we can easily see that thetra�c generated within the LAN has the same expres-sion derived for the general case of the MA paradigm.The tra�c TMA;mgm computed earlier is a special caseof the formula above, where �0 = 1 and � = 0. Amore general case is management of an internetwork,i.e. a collection of LANs interconnected through in-ternetworking devices|usually routers|which enablescommunication among stations on di�erent LANs. Inthis setting, the NMS is connected through di�erentlinks to each of the remote LANs (Fig. 1.c). In ourmodel, the link connecting the NMS to the lth of the LLANs is assigned a cost coe�cient �0l; the link connect-ing the LANs l and m is assigned a coe�cient �lm; eachlink within LAN l is assigned a coe�cient �l. In thisrespect, remote management of a LAN can be seen asa special case of internetwork management where onlyone LAN must be managed. For the sake of simplicity,we assume that the cost coe�cient is constant with re-spect to the direction of communication over the link,i.e. �lm = �ml. Under these assumptions, the overallcost for the CS paradigm isKCS = LXl=1 NXn=1 QXq=1[(�0l + �l)(�CSIq + ~�CSRlnq)]where we assumed, in order to avoid cluttering the ex-pression, that each LAN contains the same number Nof managed nodes. The expressions for the cost of theREV, COD, and MA paradigms are derived similarly.5 A CASE STUDYIn this section we illustrate the use of the model byfocusing on the implementation of a speci�c manage-ment task: collecting information about the load level
λ

node

b)

λNMS

λ01

03

3

λ1

L1

L3

λ

λ
L2

2

λ23

c)

λ

λ

a)

Figure 1: Di�erent management con�gurations: a) localmanagement of a single LAN, b) remote management ofa LAN, and c) management of an internetwork.

IP

20

UDP

8

SNMP

32

MIB element name/valueFigure 2: Encapsulation of SNMP requests and replies.of network interfaces. The goal is to show how to re�nethe model to cope with the details of the technologiesused to implement design paradigms and how to use themodel to actually determine the best design choice.We used SNMP as an implementation of the CSparadigm and Java Aglets [8] to implement the mobilecode paradigms, because of their di�usion and level ofsupport. For each implementation, the tra�c generatedhas been measured and the overhead of each protocollayer down to the IP one has been isolated6. Measure-ments provided the information needed to calculate thevalue of the parameters of the tra�c formulae presentedin earlier sections.SNMP requests and replies are encapsulated into UDPmessages (Fig. 2). In our case study, requests and repliesare short and are always carried within a single UDPmessage7|no fragmentation takes place. Hence, as de-scribed in Section 3, we can express the overhead func-tion �CS(X) = ~�CS(X) = �CS (X)X + �CS(X) by assuming�CS = 60 and �CS = 1, independently of the values ofIq and Rqn. In Java Aglets, invocation of the dispatchmethod on an aglet triggers the migration of the classesdescribing its code and of the value of its attributes. Noexecution state is retained across migration. In order toimplement the MA paradigm, we added explicitly extrainformation to the aglet's state to obtain control of theexecution ow after migration. Java Aglets communica-tion facilities are built upon the Agent Transfer Protocol(ATP) which exploits the services o�ered by TCP. Uponmigration, the code and state of an aglet are prependedby an ATP header of variable length. Reliable trans-fer is ensured by an acknowledgment ATP message sentby the receiver. To transmit the result to the NMS weused the message passing facility of Java Aglets, whichis built upon ATP as well.Sending an ATP message requires a TCP connectionto be setup and subsequently torn down, i.e. 5 TCPmessages8. As shown in Fig. 3, an ATP message is pos-sibly segmented into TCP messages, whose maximumpayload is 1460 bytes in our implementation. Each TCPmessage is prepended by a 20 byte TCP header and en-6The measurements have been performed over an EthernetLAN which introduces an additional 26 byte overhead on eachpacket. Moreover, the overall tra�c generated on the LAN isslightly larger than the aforementioned because Ethernet packetshave a minimum size of 72 bytes.7Some SNMP implementations may segment messages also inthis case; we do not consider this here.8The equations derived in this section assume that no messageis lost in the network.

IP

T
C

P TCP payload

IP

T
C

P TCP payload

20 20 up to 1460

IP

T
C

P TCP payload

ATP payloadATP headerFigure 3: Segmentation of the ATP dispatch.capsulated into an IP packet that introduces a 20 byteheader. A TCP message must be acknowledged by thereceiver either explicitly or implicitly. We assume ex-plicit acknowledgment and no tra�c in the reverse direc-tion of the TCP connection transporting the code, i.e.acknowledgment piggybacking is not used. The tra�cgenerated by an ATP message is given by�TCP + �TCP(HATP + C) + �TCP�ATPwhere �TCP is the tra�c generated for setting up andtearing down the TCP connection (200 bytes), �ATPis the ATP acknowledgment message size (120 bytes),HATP is the ATP header size, C is the size of the ATPmessage payload|code and state in the case of agletmigration. �TCP is the overhead introduced by the trans-mission and acknowledgment of TCP messages:�TCP(X) = 2HTCP=IPX � XpTCP �+ 1where HTCP=IP is the size of the TCP and IP headers(40 bytes) present in data and acknowledgment TCPmessages, and pTCP is the size of the maximum TCPpayload (1460 bytes). In our case study, since thesame MCS is exploited for the implementation of allthe three mobile code paradigms, and replies are sentusing the same ATP facilities used for code migration,the overhead function �p = ~�p = � is independent of theparadigm:�(X) = �TCP + � 2HTCP=IPHATP+X lHATP+XpTCP m+ 1�HATP+�2HTCP=IP�ATP + 1��ATP�(X) = 2HTCP=IPHATP+X lHATP+XpTCP m+ 1 (12)At this point, the model has been re�ned to take intoaccount the details of the technology selected for the im-plementation. We can now evaluate the di�erent archi-tectures. However, this needs some information aboutthe topology of the network and the characteristics ofthe task to be performed. We assume that the man-aged network is composed of N = 50 nodes, and wetemporarily assume a uniform network. In our CS im-plementation, the load level of an interface can be ob-tained through an SNMP query which retrieves 5 MIBvariables; assuming that each device has 30 interfaces,Q = 30. From our data, each SNMP request and re-ply is 48 and 66 byte long, respectively. Moreover, weassume that each query is sent in a separate requestmessage. Substituting these values and �CS = 2:01 in

(1), the tra�c generated by the SNMP implementationof the management task is TCS = 335:6 Kbytes.The same management task can be implemented withthe REV paradigm. The Java bytecode performing theQ queries on each node is CREV = 5:6 Kbytes and issent on each node prepended by a header HATP = 120bytes, and augmented by the overhead determined by(12), which yields �(CREV) = 1:32 and, under similarconditions, �(Q �R) = 2:91. According to (2) we ob-tain that TREV = 437:1 Kbytes. Thus, as far as globalgenerated tra�c is concerned, it is more convenient toimplement the management task according to the CSparadigm. This can be inferred using (6) obtaining thatREV is convenient over CS if Q > 87. However, this isnot a general result and depends on the particular tech-nology chosen. In particular, using ATP rather thandirectly TCP connections to send replies introduces ahuge, unnecessary overhead. Furthermore, Java Agletsare probably overshooting for the implementation ofa REV paradigm. For this task, scripting languagesare probably much more e�cient as witnessed by ear-lier work on management by delegation, because theyprovide a more compact code representation. Ongoingexperimental work will provide better insight on thesetechnological issues.If the management task is repeated U = 20 times, thetra�c generated by a COD implementation is TCOD =2:6 Mbytes, as given by (4) and (5) where CCOD = 5:1Kbytes and �(�I) = 58:3. In this case the COD designis more convenient than the CS one, which generates6.6 Mbytes. Using (8) it is possible to foresee that theCOD approach is convenient if the management task issupposed to be performed at least U = 4 times.As we discussed earlier, an MA design reduces the tra�cinvolving the NMS. In fact, according to (9) TMA;Mgm =34:3 Kbytes, with a code size for the aglet of 6.6 Kbytes.This can be further improved leveraging on semanticcompression. We consider now a di�erent managementtask: collecting load on the most loaded interface oneach device. This task enables local semantic compres-sion and, according to (10), T 0MA;Mgm = 10 Kbytes, being�(N �R) = 2:9. Moreover, if global compression is possi-ble, for instance when the most loaded interface in thewhole network has to be searched for, the tra�c is re-duced to T 00MA;Mgm = 9:6 Kbytes, as derived from (11)with �(�R) = 65:9. Again, in this case the di�erence inthe tra�c generated with local and global compressionis small because the �xed overhead component in thetransmission of the results to the NMS is large, due tothe particular technology chosen.As an example of application of our model of costs, letus consider that the most loaded interface has to befound in an internetwork of L = 15 LANs, each con-

taining N = 5 nodes. A reasonable value for the costassociated to each LAN is �LAN = 0:01, with a costassociated to WAN links of �WAN = 1. Under theseassumptions, the cost of performing the managementtask using SNMP is given by KSNMP = 508:4 Kbytes,while the cost with an implementation based on the MAparadigm is KMA = 130:3 Kbytes. The movement of theagent among the managed devices generates a consider-able amount of tra�c, as we described earlier; neverthe-less, these movements are mostly inside high bandwidthLANs and only a small percentage of them involve widearea links and the NMS. This con�rms that the MAparadigm can be cost e�ective for the management ofinternetworks.6 CONCLUSIONSWe discovered that, in the selected application domainand with the particular goal of optimizing network traf-�c, the design tradeo�s depend on the characteristicsof the network being managed (costs, number of nodes,protocols) and of the management task (possibility of lo-cal/global semantic compression, expected frequency ofinvocation, complexity of the task, dimension of replies).The characteristics of the technology actually used forthe implementation also a�ect these tradeo�s accordingto the management protocols (overhead) and the MCS(expressiveness of the language, formats used for trans-fer, overhead) used. Hence, determining when to usea mobile code design paradigm in place of a traditionalclient-server architecture requires i) a model of the man-agement functionality to be implemented, together withinformation about the managed network; ii) a precisequantitative characterization of the management proto-cols and the MCS to be used for the implementation.This work is a partial answer to the �rst point. In fact,it provides a general framework that is conceived forbeing tailored and customized by the manager accord-ing to the peculiarities of her needs, as exempli�ed inSection 5. Quantitative information about the perfor-mance and the overhead introduced by MCSs is stillmissing in literature. However, this measurement andmodeling activity is done once and for all, and can guidea highly e�ective design of management tasks, as shownthroughout the paper.Our long term work on the theme of this paper envisionsa scenario where the manager is provided with a soft-ware platform which guides the \management life cycle"as describe above. Management operations could bespeci�ed by \packing" sets of management instructionsinto reusable library components|possibly reusing o�-the-shelf components. The same complex functionscould be embedded in di�erent components implement-ing di�erent design paradigms. This platform wouldprovide tools to derive customized models of the man-aged networks from general models as we exempli�ed,

and to visualize and simulate the performance of themanagement operations according to di�erent designand implementation choices. Ongoing work is headedtowards the realization of such a platform, the re�ne-ment of our model, and a quantitative characterizationof existing MCS.ACKNOWLEDGEMENTSWe wish to thank Jean-Philippe Martin-Flatin, CarloGhezzi, Fulvio Risso, and Emiliano Graglia for theirinsightful comments on early drafts of this work.REFERENCES[1] M. Baldi, S. Gai, and G. P. Picco. ExploitingCode Mobility in Decentralized and Flexible Net-work Management. In Mobile Agents, volume 1219of LNCS, pages 13{26. Springer, Apr. 1997.[2] A. Carzaniga, G. P. Picco, and G. Vigna. De-signing Distributed Applications with Mobile CodeParadigms. In Proc. of the 19th Int. Conf. on Soft-ware Engineering, pages 22{32. ACM Press, 1997.[3] J. Case et al. Structure of Management Informationfor version 2 of the Simple Network ManagementProtocol. RFC 1902, Jan. 1996.[4] G. Cugola, C. Ghezzi, G. P. Picco, and G. Vigna.Analyzing Mobile Code Languages. In Mobile Ob-ject Systems, volume 1222 of LNCS, pages 93{111.Springer, Apr. 1997.[5] A. Fuggetta, G. P. Picco, and G. Vigna. Under-standing Code Mobility. Technical report, Politec-nico di Milano, Italy, July 1997. Submitted.[6] G. Goldszmidt and Y. Yemini. Distributed Man-agement by Delegation. In Proc. of the 15th Int.Conf. on Distributed Computing, June 1995.[7] K. Jones. Internet's SNMP and ISO's CMIP Pro-tocols for Network Management. Int. J. of NetworkManagement, pages 130{137, Sept. 1994.[8] D. Lange. Java Aglet Application ProgrammingInterface (J-AAPI). IBM White Paper, Feb. 1997.[9] J.-P. Martin-Flatin and S. Znaty. A SimpleTypology of Distributed Network ManagementParadigms. In Proc. of the 8th IFIP/IEEE Int.Workshop on Distributed Systems: Operations &Management (DSOM'97), Oct. 1997.[10] J. Sch�onw�alder. Network Management by Dele-gation From Research Prototypes Towards Stan-dards. In Proc. of the 8th Joint European Network-ing Conf., May 1997.

