Evaluating the Tradeoffs of Mobile Code Design Paradigms
in Network Management Applications

Mario Baldi

Gian Pietro Picco

Dip. Automatica e Informatica Dip. Automatica e Informatica

Politecnico di Torino
C.so Duca degli Abruzzi, 24
[-10129, Ttaly
+39-11-564-7067
mbaldi@polito.it

ABSTRACT

The question of whether technologies supporting mo-
bile code are bringing significant benefits to the design
and implementation of distributed applications is still
an open one. Even more difficult is to identify precisely
under which conditions a design exploiting mobile code
is preferable over a traditional one. In this work, we
present an in-depth evaluation of several mobile code
design paradigms against the traditional client-server
architecture, within the application domain of network
management. The evaluation is centered around a quan-
titative model, which is used to determine precisely the
conditions for the selection of a design paradigm mini-
mizing the network traffic related to management.

KEYWORDS
Mobile code, network management, management by del-
egation, mobile agent, remote evaluation.

1 INTRODUCTION

Recently, a new approach to the development of dis-
tributed applications has become popular, fostered by
the availability of a new generation of programming lan-
guages and systems which provide the capability to re-
locate application code across the nodes of a computer
network. Among these systems, often called Mobile
Code Systems (MCS), Java is surely the best known,
to the point that many vendors of network equipment
already announced on-chip Java support. It is still un-
clear how to exploit the new technologies, concepts, and
paradigms enabled by these systems, and which are the
advantages that can be potentially benefited [5]. Many
researchers suggest that a major benefit provided by
mobile code is the capability to reduce network commu-
nication by moving client’s knowledge close to server’s
resources, thus accessing them locally. These arguments
are often supported only by qualitative and superficial

Politecnico di Torino
C.so Duca degli Abruzzi, 24
[-10129, Italy
+39-11-564-7008
picco@polito.it

considerations, rather than by a careful analysis of the
problem, possibly supported by quantitative evidence.

Previous work [2] presented a characterization of mo-
bile code that abstracted from the details of the dif-
ferent technologies by deriving design paradigms that
can be adopted for structuring distributed applications.
Also, it suggested that the exploitation of a mobile code
design is not an advantage per se, rather it must be eval-
uated as an alternative to traditional design in the con-
text of the particular application being designed. This
work builds on the aforementioned results, by showing
an in-depth quantitative analysis of the tradeoffs among
different architectures exploiting mobile code. This is
done in the real application domain of network manage-
ment. We present a quantitative model for traditional
and mobile code design of network management func-
tionalities, and we show how to determine the optimal
design paradigm according to the model parameters.

The contribution of this work can be regarded under
different perspectives. From a software engineering
perspective, it constitutes an experience in evaluating
design alternatives from a quantitative point of view.
From the network management perspective, it provides
managers with a formal tool to determine the best way
to perform management operations. Finally, it provides
formal arguments for the pro and cons of mobile code
in a relevant application domain.

The paper is structured as follows. Section 2.1 provides
some background information on network management
and Section 2.2 motivates a mobile code approach in this
context. Section 2.3 describes research on code mobility
and its application to network management in particu-
lar. Section 3 develops a model of traffic which is used
to compare the various paradigms. This model is then
refined in Section 4 to take into account non-uniform
networks. Finally, a case study is provided in Section 5,
where the model is instantiated with parameters taken
from a real implementation being developed at our uni-
versity and the tradeoffs of the paradigms are examined
for a specific management functionality. Some final re-
marks are provided in Section 6.

2 BACKGROUND
2.1 Network Management

Network management is split in two nearly separate
worlds [7]: IETF management, which relies on the
Simple Network Management Protocol (SNMP) and its
derivatives, and ISO management, which relies on the
Common Management Information Protocol (CMIP).
Both protocols assume a centralized management ar-
chitecture based on a client-server paradigm. Manage-
ment agents co-located with network devices act like
servers that communicate on request device data to a
network management station (NMS). Device data are
stored in a management information base (MIB)!, a hi-
erarchical base of information managed by each agent.
In this setting, all the computation related to manage-
ment, e.g., statistics, is demanded to the NMS. The
operations available to the NMS for accessing a MIB
are very low level. In SNMP, for instance, the NMS can
only get and set atomic values in the MIB. This fine
grained client-server interaction is often called micro-
management, and leads to the generation of intense
traffic and computational overload on the NMS. This
centralized architecture is particularly inefficient dur-
ing periods of heavy congestion, when management be-
comes important. In fact, the NMS increases its inter-
actions with the devices and possibly uploads config-
uration changes, thus increasing congestion. In turn,
congestion, as an exceptional status, is likely to trigger
notifications to the NMS which worsen network over-
load. Due to this situation, access to devices in the
congested area becomes difficult and slow.

Centralization is being addressed by IETF and ISO by
adapting their management architecture, as with SN-
MPv2 [3]. However, experimentation showed that these
new proposals do not provide yet the desired level of de-
centralization needed to cope with large networks. The
interested reader can find an extensive survey of ap-
proaches to network management in [9].

2.2 Why Mobile Code in Network Management?

A first issue is the possibility to perform semantic com-
pression of information. Suppose a table in the MIB has
to be searched for a value matching some criteria. In a
traditional approach, a search function can be executed
by the NMS on the elements retrieved from the remote
agent. In the worst case, all the elements in the table
need to be transferred on the NMS. Placing the search
function on the agent, rather than on the NMS, enables
semantic compression. The table can be searched locally
on the device, where it is stored, and only the final value

IMIB is actually the term used in SNMP only. CMIP uses
the term management information tree (MIT) database, instead.
Hereafter, we ignore the difference for the sake of simplicity.

is sent across the network. As a pleasant side-effect, a
higher abstraction level is provided to the network man-
ager, who can now think about the function as provided
directly by the management agent, without being aware
of its implementation in terms of elementary primitives
provided by the management protocol. This idea can
be pushed even further, giving autonomy to manage-
ment agents. In traditional approaches, the only action
agents can perform on their own is the generation of an
event (or alarm in the OSI jargon), i.e. a signal which is
sent autonomously to the NMS when a given condition
is satisfied. Events are usually simple and predefined
and the actual response to them is completely up to the
NMS. In general, agents can be extended to check arbi-
trarily complex event and possibly react locally without
requiring the intervention of the NMS.

In principle, the extension of a management agent can
be achieved with traditional technology based on the
client-server paradigm, like in several CORBA-based
approaches; this solution presents some relevant draw-
backs. First of all, one could argue that the reason
why the primitives offered by management agents are
so poor is that agents must be lightweight, since they
can be embedded in network devices equipped with lim-
ited computational resources. In this setting, adding
management primitives to agents is just not desirable.
Even if adequate computational resources are available,
another relevant issue is the frequency of invocation of
primitives. A function may be used only every now and
then, e.g., because its execution is needed only during
periods of heavy congestion, or because its code may
change slightly according to operating conditions. In
these cases, hard-wiring the function into the agent just
makes it bigger, wasting device resources without appre-
ciable gain. In general, the dynamic nature of manage-
ment, operations demands for dynamic customizability
of agent primitives.

Mobile code provides the technology needed to en-
hance network management with the degree of flexibility
needed to cope with the problems above. Mobile code
can be linked dynamically on network devices either
proactively by the NMS or reactively by the network de-
vice. This way, the management primitives embedded
in it become available on the device only when requested
by management operations, thus consuming device re-
sources only when this is really needed. Furthermore,
the capability to embed in the mobile code the strategy
for migration, provides an extra level of autonomy to
management operations. Hence, a NMS can extend dy-
namically a management agent with mobile code, thus
improving flexibility, and delegate to such code the ca-
pability to migrate autonomously on different network
devices to perform complex management tasks without
involving the NMS.

2.3 State of the Art

Existing mobile code technology supports code mobil-
ity in different ways?. Code mobility can be described
at a higher level of abstraction, without delving into
the details of the technology. In this work, we focus on
the description provided in [2]. Here, mobile code de-
sign paradigms are identified as the architectural styles
that can be used to exploit code mobility in the de-
sign of a distributed application. Design paradigms are
characterized by components and the interactions be-
tween them. A component may have a flow of control
or it may be an architectural element representing pas-
sive data and physical devices. In the first case, it is
called a computational component, otherwise it is called
a resource. A particular kind of resource is a code com-
ponent, which contains the code necessary for the exe-
cution of a given task. Components are hosted by sites,
the architectural abstraction that provides support for
component execution and access. A service needs access
to resources, and its behavior (the know-how about the
service) is described by a code component which is ex-
ecuted by some computational component in the archi-
tecture. In order for actual computation of the service
to take place, these three elements must be co-located
in the same site. Interactions between components rule
the relocation of components needed for service execu-
tion. Three mobile code paradigms are identified using
these abstractions, and compared with the traditional
client-server paradigm.

In the Client-Server (CS) paradigm, a client compo-
nent needs to execute a specified service, but lacks both
the resources and know-how needed. Instead, a server
component owns both code and resources, and can per-
form the service on behalf of the client. To do so, the
client requests the service to the server, which ships
back the results after execution. In the Code On De-
mand (COD) paradigm, the client component owns the
resources needed by the service execution although it
lacks the corresponding code component, available on
the server. Hence, it requests the code to the server
component and, after the code has been received, ex-
ecutes the service locally. In the Remote EValuation
(REV) paradigm, the client component owns the know-
how about the service, and lacks the corresponding
resources, which are owned by the server component.
Thus, the client sends a request to the server includ-
ing the code component needed to perform the service.
This is executed by the server, that exploits local ac-
cess to the resources needed, and ships back the results.
When the Mobile Agent (MA) paradigm is used, the
client component knows how to perform the service, but

2 A classification of mobile code technologies, design paradigms,
and applications can be found in [5]. Moreover, [4] analyzes the
impact of mobility on the design of a programming language.

lacks the resources. Unlike REV, the whole computa-
tional component is migrated to the site where the re-
sources reside. There, the component performs service
execution with local access to resources.

The approaches to network management that involve
code mobility are usually grouped under the label man-
agement by delegation. Management by delegation
has been conceived originally before the appearance
of Internet-based MCSs, as a means to cope with the
micro-management phenomenon of centralized manage-
ment. The original proposal, further extended in [6],
identifies an architecture for the dynamic uploading of
management scripts on network devices using a combi-
nation of the REV and CS paradigms. In this archi-
tecture, management scripts are delegated to perform
management operations on the device on behalf of the
NMS. Clearly, this assumes the presence of a special-
ized run-time support on the network device, capable of
executing mobile code. However, in management by del-
egation code migration is always triggered by the NMS,
and there is no support for autonomous mobility of del-
egated scripts. The original idea has been interpreted in
many ways by researchers leading to prototypes which
are often based on relatively limited “mobile code” tech-
nology, like interpreted Perl scripts. Management by
delegation is presently under standardization by IETF
and ISO working groups [10]. As discussed in [1], the
characterization of mobile code made earlier shows that
management by delegation can benefit from the recent
developments in code mobility.

3 MODEL OF MANAGEMENT TRAFFIC

In this section, we derive a model for the traffic gener-
ated by network management. It differentiates among
the design paradigms described in Section 2.3 that can
be exploited to implement a given functionality. The
model is conceived to guide the manager during the se-
lection of the right design choice for a management func-
tionality. However, the model presented in this section
is a general one, and has to be adapted to the man-
agement scenario where the manager operates. This
scenario must take into account the actual management
protocols in place, as well as the technology actually
used to implement a given paradigm. An example of
such a refinement is provided in Section 5.

In what follows, a measure of the dimension of the
managed network is given in terms of the number N
of managed devices. The complexity of the manage-
ment, task is taken into account by the number) of
queries performed on the MIB. The transmission over-
head introduced by protocol encapsulation, and pos-
sibly traffic control or connection setup, is taken into
account down to the network layer, as defined by the
OSI model. In fact, the focus is on the traffic gener-

ated on the network as a whole; the amount of data
exchanged between network layer entities is indepen-
dent of the lower layer technology, and thus invariant
throughout the whole network. If a chunk of data of size
X is to be transmitted at the application level, we rep-
resent the actual amount of data exchanged at the net-
work layer as X' = a(X) + 8(X)X. In this expression,
B(X) may account, for example, for the overhead intro-
duced by message encapsulation, while a(X) may ac-
count for the control information exchanged during the
setup phase in a connection-oriented protocol. In the re-
mainder of the section, however, we use the equivalent
expression X' = n(X)X where n(X) = % + B(X),
7(X) > 1. This analytical transformation does not
change the meaning of the model; it just provides a more
compact representation. n(X) is called overhead func-
tion since accounts for the control information (protocol
overhead) added to X by the network and the above
layers. In the following, we write simply nX in place of
(X)X, in order to simplify formulae.

3.1 Model of the Overall Traffic

We derive here a model for the traffic generated by a
management task which involves retrieving a set of data
from managed devices. In devising this model, we as-
sume that the same management operations are exe-
cuted on each device. This is not necessarily the case
for every management task, but allows for a simpler
notation without compromising the generality and sig-
nificance of what can be inferred from the model.

3.1.1 Client-server ~ With the traditional client-server
paradigm, the NMS requests an operation to the man-
agement agent by sending a request message to it. We
assume that such information has size I,. In order to
perform the management task, () request messages must
be sent to each of the N managed devices. Device n an-

swers the ¢™ request with a reply whose size is R;,,. The
overall traffic is then:
N Q
TCS = Z Z(nCSIq + ﬁCSan) (1)
n=1qg=1

where we differentiate between the overhead function
used to send message requests (1.s) and the one used
for replies (7j¢s). Multicast communication is sometimes
used to send the same management request to multiple
devices. In our model we do not consider this case as
it is not very common. Moreover, we assume that the
queries contained in each request message are dependent
on the previous reply, i.e. it is not possible to aggregate
request messages.

3.1.2 Remote Evaluation 1f the REV paradigm is ex-
ploited, the @) requests are embedded in a code fragment
of size Cyyy sent on managed device n. Remote eval-
uation of the code produces the @) results R,, which

are sent back collectively to the NMS. This pairwise in-
teraction has to take place for each of the N managed
nodes. The overall traffic generated is given by

N

Q
Togy = Z(T}REVCREV + ﬁREV Z an) (2)

n=1 g=1

3.1.3 Mobile Agent The NMS unleashes a mobile
component that visits each of the N nodes and collects
information locally. When modeling such a component,
we model the code and the portion of the state needed
for its execution (C,,) as separate from the portion of
the state relevant to the application. The latter grows
as long as this agent travels from node to node. In fact,
if we denote with S, , the size of the state of the agent
during the trip towards node n, then
g 0 ifn=1
= { S Y Ry ifn>1
The first expression accounts for the fact that the mo-
bile agent has not yet collected any information when
traveling from the NMS to the first node. The second
one accounts for the fact that, when traveling to node
n, the agent already carries all the replies collected on
the previous n — 1 nodes. After information on the last
node has been collected, the mobile agent sends back
to the NMS all the results collected. An alternative
design would return the component back to the NMS.
Although sometimes viable, we chose the first solution
for uniformity with the REV case. The overall traffic
generated is given by
N

N
Tus = Z nMA(CMA + SMA,W,) + ﬁMA Z Z an (3)

n=1 n=1 q:l

3.1.4 Code On Demand With the COD paradigm,
management agents can be augmented dynamically
with code implementing primitives at a higher level of
abstraction, thus providing agents with the capability to
perform the () operations locally, rather than across the
network. The protocol we assume in this model is the
following. As in the CS paradigm, the NMS requests an
operation by sending a message that contains the oper-
ation signature, I.,,. If the operation has already been
installed on the managed node, a reply is sent which
contains the result of the) queries, like in a REV im-
plementation. On the other hand, if the code for the
operation has not been installed yet, the agent replies
with a message (that we assume of size I,,,.,) requesting
the dynamic download. The code, of size Cp, is trans-
ferred and linked on the agent device, where it becomes
available for future invocations, and the corresponding
operation is performed. Consequently, the expression of
traffic at equilibrium is:
N Q

Z(UCODICOD + Tcon Z an) (4)

n=1 g=1

TCOD,.vrul)lu =

By converse, during the “setup” phase, there is an over-
head represented by the message sent by the agent which
requests the download, plus the actual code transfer:

_ 3
Teop = coD, stable T TC()D,setup: where
N
Tcou,.«;m,, = g (nCODIﬁm-h + nCODCCOD) (5)
n=1

3.1.5 Fwvaluation We elaborate on the expressions
given earlier in order to find out the tradeoffs that must
be considered in order to minimize the overall traffic.
To this end, we compare the equations determined for
the various paradigms.

For instance, the use of a REV paradigm is an improve-
ment over traditional centralized management only if
Tes > Trev. After elaboration of (1) and (2):

N Zqul Nesly + ZnN:1 Z§:1 NesByn 2

Nngey Crev + ZnNzl Ny Zqul Ryn.
In order to simplify notation and have a better insight
into the meaning of the formulae, we introduce some
assumptions. Instead of differentiating the contribution
of each request I, and reply Ry, in (1), we consider the
average values Jand R. Consequently, the formula can
be rewritten as:

NQT}CSI + NQﬁCSR > N(nREVCREV + ﬁREVQR)

It is likely* that Q7josR > faevQR since usually a
fixed overhead is associated to each packet and thus,
the longer the message being segmented, the smaller
the relative overhead. Hence, if more results R can be
transmitted together in a single message, the overhead
is likely to be smaller; although depending on the pro-
tocols used to implement communications in CS and
REV. We call the difference in the overhead introduced
to send the results of the queries AO¢g zpy > 0; REV is
more convenient than CS if

nREVCREV S AOC'S,I?EV + QT)CSIJ (6)
that is, if the size of the message containing the code to
be evaluated remotely is smaller than the overall size of
the message requests needed in a CS paradigm plus the
difference in overhead introduced when transmitting the
result. Clearly, REV is convenient when the number of
instructions) needed to perform a query is high and
Crpy effectively compacts the representation of the local
interactions I, within the code, e.g., using loop control
structures.

We can apply the same reasoning and assumptions in or-
der to determine which is the most convenient paradigm
between REV and MA. It can be seen that a MA im-

3We do not model the intermediate situation where some of
the nodes already contain the code, since we do not consider it
relevant to the goals of this paper and can be easily derived from
the result presented.

4Tt must be reminded that we use X as a shortcut for n(X)X.

plementation always generates more traffic than a REV
one. In fact, substituting and elaborating (2) and (3) in
Tys > Trey within the assumptions above, we obtain:

N1yaChs + ﬁMAQNRj_ 25:1 nMAQ(n - I)R >
N(T}REVCREV + ﬁREVQR)

A first simplification is to assume

Nl QR ~ 1usQNR. (7)
This assumption holds when @ is sufficiently large and
Nrev =~ Twa: in this case, more results are packed to-
gether for both, rather than being sent individually like
with CS, and the difference in overhead is likely to be
negligible. A more gross simplification is to consider
Chrpy =~ Cya- Usually is Crpy < Cyy4, since O, contains
the execution state as well as the code determining the
next migration. If we apply this oversimplification the
equation above becomes

N
Z "IMAQ(” - I)R >0,
n=1

that is, REV is always more convenient than MA, be-
cause the latter must carry the state which is growing
at every hop. As we discuss in Section 3.3, the possi-
bility of performing semantic compression introduces a
different, evaluation criteria.

The application of the COD paradigm depends on the
frequency of invocation which has not been considered
yet. So far, we have given the expression of the traf-
fic generated for a single execution of a management
task. However, in general it may be interesting to con-
sider how this varies over U different invocations. For
the other paradigms, this additional parameter does not
affect the expression of the traffic. The traffic gener-
ated during U executions of an implementation with a
paradigm p € {cs,REV,MA}, T,(U) = UT,. The ex-
pression of T (U) when COD is used is

TCOD(U) = Tcoo,.v.m + UTCOD,.vtul)lu

Calculation of Tyuy (U) > Teon(U) under the likely as-
sumptions that [~ I.op =~ L., and sy QR ~ foopQR
yields

U+1 1

nREVCREV > Tncouj“f‘ ﬁncoaccou

Clearly, if U is large, i.e. the primitive is invoked many
times before being upgraded or discarded, the disequa-
tion above can be approximated by

Newv Criv > Noonl
which is always satisfied, the threshold being a REV
code composed by a single instruction. If, by converse,
U is small, all the terms must be considered. However,
we can assume that, although shipped with a different
paradigm, the code describing the management function
at hand is the same, i.e. Cy,, = Ccop = C, and that we
are comparing implementations of different paradigms
with the same technology, i.e. Nz = 1cop = 7. Under

these assumptions, we obtain
U+ 17} 7
U-1

which confirms the intuition that if a function is used
at least two times in a row, caching its code saves band-
width. Finally, comparing Tos > T¢op under the as-
sumption I ~ I.,, ~ I,,.,, we obtain that

U > nic()Dj + nic()DCG()D (8)
QnosI — Neon! + AOCS,COD

where AO¢s cop i the difference in the overhead intro-

duced by the two implementations to send back the re-

sults.

nC >

3.2 Model of the Traffic around the NMS

As we pointed out in Section 2.1, the NMS is likely
to represent a bottleneck of the management system in
a centralized approach, due to the micro-management
phenomenon. Thus, although the measure of the overall
traffic generated is surely relevant, it is important to
compare the performance of the different paradigms also
in terms of the traffic generated from and to the NMS.

The measure of the overall traffic generated by man-
agement operations and the measure of the manage-
ment traffic flowing through the NMS coincide for all
the paradigms considered, except for the MA paradigm.
In fact, in the other paradigms, the NMS is always in-
teracting directly with all the devices being managed.
Instead, when the MA paradigm is used, there is traffic
through the NMS only when the mobile agent is injected
into the network and when the agent reports back the
collected results, that is

N Q
TMA,M,,m = nMACMA + ﬁMA Z Z an- (9)
n=1g=1
The remainder of the traffic is generated without involv-
ing the NMS. It is useful to compare Ty > Tya prgm- I
we consider R instead of the single contributions, and
apply assumption (7), then
nMACMA
nREVCREV
holds, i.e. MA is convenient with respect to REV if
the ratio between the traffic generated when unleashing
the mobile agent and the one to move the code to be
evaluated remotely is smaller than the number of nodes
being managed. Notably, for a single node REV is going
to be more convenient, as usually C,,, > Cpz,. Here,
the tradeoff is between the size of the code of the mobile
agent and its autonomy as far as mobility is concerned.

<N

A comparison with COD at the equilibrium point,
within the assumptions enumerated before, yields
TC()D,siable > TMA,Mgm: that iS,

Tva OI\{A <N,

"IchDI

Hence, the MA paradigm is more convenient than COD
only if the size of the code and execution state of the
mobile agent are sufficiently small. If we assume that
the size of a single instruction in the code of the mobile
agent is I, its code must contain a number of instruc-
tions smaller than the number of nodes being managed.

As for CS, always within the assumptions above, Ty >
TMA,Mgm if

AOCS,MA > "IMACMA - QN”)CS-T7

that is, if the difference of the protocol overhead gener-
ated to send the results in the two cases is greater than
the difference between the size of the code of the mobile
agent and the overall size of request message. Note that,
if QN > 1, the right hand side is likely to be negative,
thus always verifying the inequality.

3.3 Semantic Compression

As we mentioned in Section 2.2, in many management
tasks the size of the results sent back to the NMS can
be reduced by semantic compression.

The CS paradigm exploited by traditional approaches,
where the primitives offered by the agent are often low
level and anyway fixed, does not allow semantic com-
pression to be performed whenever possible. A COD
paradigm, on the other hand, may enable semantic com-
pression by installing a proper functionality on the man-
agement agent. In this case,

N
Téoo,.vr.tz)z.f = Z(UCODICOD + ﬁCODRn)
n=1

where we assumed that semantic compression of g data
values R, yields a single value R,,. Clearly, Tiop i, 1S
unchanged. The REV and MA paradigms can achieve
semantic compression by executing remotely a routine
that performs the compression, like the search routine
described in Section 2.2. This generates a traffic

TI;EV = 25:1 (UREVCREV + ﬁREVRn)

Ton = Eala [(Cua + Siy0) + ua R
and T},, < T,.,, since in the expression of the traffic
generated by MA there is still a term S}, = which grows
linearly with the number of nodes visited and, in addi-
tion, usually Cpy < Cya-

If we consider only the management traffic involving the
NMS, like in the previous section, we obtain that

N
TJ:,IA,MW = T}MACMA + Tara Z R, (10)

n=1

To evaluate the improvement introduced by seman-
tic compression, we compute the difference ATI’), p €
{REV,MA, cOD}, between the traffic generated with the
traditional CS paradigm and the traffic generated in the
situations above. In doing this, we apply the usual ap-

proximation of considering average sizes I and R for in-
structions and results, respectively. For the sake of sim-
plicity, we consider a unique overhead function 7 across
all the paradigms, without differentiating between re-
quests and replies. For mobile code paradigms, this is
not a big approximation if we restrict the evaluation
to implementations that use the same application level
protocol for transferring both the code and the results.
The real approximation is introduced in considering as
equivalent the overhead introduced by a particular MCS
(e.g, Java Aglets) and the overhead introduced by a tra-
ditional CS-based management protocol (e.g., SNMP).
Under this assumptions, however, we obtain:

ATé‘OD,.vmblu = N(Q - D(nl +nR) _

AT}:’,EV = NQTI{-'_ N(Q - 1)7}}? - nCREV

AT]\’/IA,Mgm =NQnl + N(Q - 1)T}R + AOUS,MA —nCha
After some trivial manipulations of the formulae above,

we can express the above as functions of AT/, -

ATllwv = ATéOD,.vmblu + N("lj - T}CREV)
ATI(JA,Mgm = ATé()D,smbte + N”)I + AOUS,MA o nCMA

These formulae show that REV is never better than
COD when the management task is repeated a number
of times large enough to neglect the COD setup traffic.
This is not true only if nCrz, < nf, which is clearly
unlikely, as it means that the message containing the
code being evaluated remotely is smaller than a simple
request message. The traffic around the NMS is reduced
with respect to COD if

77CMA < an+ AOCS,MA7

which highlights that, if the code of the mobile agent
is kept sufficiently compact, the gain in traffic grows
linearly with the number of nodes.

The MA paradigm enables also a global form of seman-
tic compression across all the devices, while the other
paradigms enable only a local semantic compression on
each device. For example, a mobile agent may travel
across a set of nodes looking for the most loaded net-
work interface. In doing this, only one data value needs
to be carried from hop to hop the state of the agent
does not increase. In other words, if we assume that
such data value has a fixed size R, then S, ., = R, and
T = NMuaCus + fuaR).

Again, MA is not more advantageous than the COD
paradigm, at least as far as overall traffic is concerned.
The calculation of AT}/, > AT/, assuming that the
overhead function is the same, shows that this condi-
tion is met only if nC,, < nI which, as we discussed
earlier for local compression with REV, is practically
never met. The real advantage of global compression,
however, shows up when considering traffic involving
the NMS. In this case, the traffic is simply

T]\’/;A,Mgm = nMACMA + ﬁMAR (].].)
and calculation of AT, > AT! _ shows that MA is

CcOD

better than COD if

1Cuwa < Nl +nR) —nR
The first addendum actually represents a whole CS in-
teraction: basically, the message containing the code of

the mobile agent must be smaller than N pairs of re-
quest and reply messages.

4 MODEL OF MANAGEMENT COSTS

The model devised so far is meaningful only for a uni-
form network; for example it applies to the management
of a single LAN. However, corporate intranets and ex-
tranets spanning across long-haul links with different
characteristics, require an explicit modeling of commu-
nication costs. A natural way to relate network traf-
fic with the communication cost associated to the links
is to assign to each link a weighting cost coefficient
0 <)\ < 1. The value of the cost coefficient has to be
determined by the manager according to the notion of
cost, associated to the link, and may be actually a com-
bination of several factors. For instance, a high cost
may be due to high latency or low-bandwidth on the
link, or to the fact that a link connected to the NMS
should be kept as unloaded as possible, or to security
considerations.

The formulae derived so far are still valid in the case of
management of a single LAN (Fig. 1.a). We approxi-
mate the LAN as a shared media or as a mesh of iden-
tical cost paths between any pair of nodes. The same
coefficient A is associated to each link, and the overall
cost of performing a given management task is K = AT,
where T can be each of the expressions derived in the
previous section.

A common case that involves differentiation of costs is
management of a remote LAN, shown in Fig. 1.b. In this
case, the managed devices are placed in a high-speed
network whose links are characterized by the same co-
efficient \. The LAN has an entry point, e.g., a router,
to which the NMS is connected through a link® with dif-
ferent, and most likely higher, coefficient Ag. Thus, the
cost of reaching any device from the NMS is weighted
by a coefficient (A\g + A). In this situation, the cost
for any management task performed using a paradigm
p € {CS,REV, COD} is
K, = (Ao + AT

On the other hand, for the MA paradigm the expres-
sion of the cost is actually a generalization of the traffic
T m,» computed in the previous section:

KMA =)\OTMA,M_um +)\TMA
In fact, traffic across the link connecting the NMS to,

5Here, the term link must be considered in a broad sense. The
NMS can be actually connected to the managed LAN through a
sequence of physical links and nodes. In this case Ag is the weight
associated to the whole path from the NMS to the managed LAN.

say, the router of the LAN is concerned only with the
first trip of the agent and the final delivery of aggre-
gated results, and thus has the same expression derived
earlier. Traffic within the managed LAN is generated
since the mobile agent is injected from the ingress router
into the managed LAN. If we imagine to place a virtual
NMS on the ingress router, we can easily see that the
traffic generated within the LAN has the same expres-
sion derived for the general case of the MA paradigm.
The traffic Ty, n,» computed earlier is a special case
of the formula above, where \g = 1 and A = 0. A
more general case is management of an internetwork,
i.e. a collection of LANs interconnected through in-
ternetworking devices usually routers which enables
communication among stations on different LANs. In
this setting, the NMS is connected through different
links to each of the remote LANs (Fig. 1.c). In our
model, the link connecting the NMS to the It* of the L
LANSs is assigned a cost coefficient Ag;; the link connect-
ing the LANs [and m is assigned a coefficient \;,,;; each
link within LAN [is assigned a coefficient A;. In this
respect, remote management of a LAN can be seen as
a special case of internetwork management where only
one LAN must be managed. For the sake of simplicity,
we assume that the cost coefficient is constant with re-
spect to the direction of communication over the link,
i.e. Apm = Anu- Under these assumptions, the overall
cost for the CS paradigm is

L N Q
Ko = Z Z Z[(/\Ol + /\l)(ncslq + ﬁCSRlnq)]

=1 n=1gq=1
where we assumed, in order to avoid cluttering the ex-
pression, that each LAN contains the same number N
of managed nodes. The expressions for the cost of the
REV, COD, and MA paradigms are derived similarly.

5 A CASE STUDY

In this section we illustrate the use of the model by
focusing on the implementation of a specific manage-
ment task: collecting information about the load level

a)

node

b)

Figure 1: Different management configurations: a) local
management of a single LAN, b) remote management of
a LAN, and c) management of an internetwork.

I T

20 8 32

H MIB element name/value ‘

Figure 2: Encapsulation of SNMP requests and replies.

of network interfaces. The goal is to show how to refine
the model to cope with the details of the technologies
used to implement design paradigms and how to use the
model to actually determine the best design choice.

We used SNMP as an implementation of the CS
paradigm and Java Aglets [8] to implement the mobile
code paradigms, because of their diffusion and level of
support. For each implementation, the traffic generated
has been measured and the overhead of each protocol
layer down to the IP one has been isolated®. Measure-
ments provided the information needed to calculate the
value of the parameters of the traffic formulae presented
in earlier sections.

SNMP requests and replies are encapsulated into UDP
messages (Fig. 2). In our case study, requests and replies
are short and are always carried within a single UDP
message’—no fragmentation takes place. Hence, as de-
scribed in Section 3, we can express the overhead func-
tion 7cs(X) = fles(X) = 255 4 B (X) by assuming
agcs = 60 and Bcs = 1, independently of the values of
I, and R,,. In Java Aglets, invocation of the dispatch
method on an aglet triggers the migration of the classes
describing its code and of the value of its attributes. No
execution state is retained across migration. In order to
implement the MA paradigm, we added explicitly extra
information to the aglet’s state to obtain control of the
execution flow after migration. Java Aglets communica-
tion facilities are built upon the Agent Transfer Protocol
(ATP) which exploits the services offered by TCP. Upon
migration, the code and state of an aglet are prepended
by an ATP header of variable length. Reliable trans-
fer is ensured by an acknowledgment ATP message sent
by the receiver. To transmit the result to the NMS we
used the message passing facility of Java Aglets, which
is built upon ATP as well.

Sending an ATP message requires a TCP connection
to be setup and subsequently torn down, i.e. 5 TCP
messages®. As shown in Fig. 3, an ATP message is pos-
sibly segmented into TCP messages, whose maximum
payload is 1460 bytes in our implementation. Each TCP
message is prepended by a 20 byte TCP header and en-

6The measurements have been performed over an Ethernet
LAN which introduces an additional 26 byte overhead on each
packet. Moreover, the overall traffic generated on the LAN is
slightly larger than the aforementioned because Ethernet packets
have a minimum size of 72 bytes.

7Some SNMP implementations may segment messages also in
this case; we do not consider this here.

8The equations derived in this section assume that no message
is lost in the network.

‘ ATP header H ATP payload ‘
, P o~
! N .
] I B o
| |
up to 1460
22 P ‘EHQH TCP payload ‘

Figure 3: Segmentation of the ATP dispatch.

capsulated into an IP packet that introduces a 20 byte
header. A TCP message must be acknowledged by the
receiver either explicitly or implicitly. We assume ex-
plicit acknowledgment and no traffic in the reverse direc-
tion of the TCP connection transporting the code, i.e.
acknowledgment piggybacking is not used. The traffic
generated by an ATP message is given by

Qrep + ﬂTCP(HATP + C) + ﬂTCPaATP

where a,qp is the traffic generated for setting up and
tearing down the TCP connection (200 bytes), aup
is the ATP acknowledgment message size (120 bytes),
H,., is the ATP header size, C is the size of the ATP
message payload code and state in the case of aglet
migration. [(,¢p is the overhead introduced by the trans-
mission and acknowledgment of TCP messages:

2H’T P/IP X

where Hop,p is the size of the TCP and IP headers
(40 bytes) present in data and acknowledgment TCP
messages, and prcp is the size of the maximum TCP
payload (1460 bytes). In our case study, since the
same MCS is exploited for the implementation of all
the three mobile code paradigms, and replies are sent
using the same ATP facilities used for code migration,
the overhead function 1, = 1), = 7 is independent of the
paradigm:

2H
a(X) = e + (HA;';Z;; [H;TTP;X] + 1) Houre

n (2HTCP/IP + 1) Qarn

QATP

_ 2Hrcpsip | Harp+X
pX) = Harp+X [prep +1

(12)
At this point, the model has been refined to take into
account the details of the technology selected for the im-
plementation. We can now evaluate the different archi-
tectures. However, this needs some information about
the topology of the network and the characteristics of
the task to be performed. We assume that the man-
aged network is composed of N = 50 nodes, and we
temporarily assume a uniform network. In our CS im-
plementation, the load level of an interface can be ob-
tained through an SNMP query which retrieves 5 MIB
variables; assuming that each device has 30 interfaces,
@ = 30. From our data, each SNMP request and re-
ply is 48 and 66 byte long, respectively. Moreover, we
assume that each query is sent in a separate request
message. Substituting these values and n¢s = 2.01 in

(1), the traffic generated by the SNMP implementation
of the management task is T = 335.6 Kbytes.

The same management task can be implemented with
the REV paradigm. The Java bytecode performing the
@ queries on each node is Cy,, = 5.6 Kbytes and is
sent on each node prepended by a header H,;, = 120
bytes, and augmented by the overhead determined by
(12), which yields n(Crev) = 1.32 and, under similar
conditions, n(QR) = 2.91. According to (2) we ob-
tain that T, = 437.1 Kbytes. Thus, as far as global
generated traffic is concerned, it is more convenient to
implement the management task according to the CS
paradigm. This can be inferred using (6) obtaining that
REV is convenient over CS if () > 87. However, this is
not a general result and depends on the particular tech-
nology chosen. In particular, using ATP rather than
directly TCP connections to send replies introduces a
huge, unnecessary overhead. Furthermore, Java Aglets
are probably overshooting for the implementation of
a REV paradigm. For this task, scripting languages
are probably much more efficient as witnessed by ear-
lier work on management by delegation, because they
provide a more compact code representation. Ongoing
experimental work will provide better insight on these
technological issues.

If the management task is repeated U = 20 times, the
traffic generated by a COD implementation is Ty, =
2.6 Mbytes, as given by (4) and (5) where Cg,p = 5.1
Kbytes and 7(I) = 58.3. In this case the COD design
is more convenient than the CS one, which generates
6.6 Mbytes. Using (8) it is possible to foresee that the
COD approach is convenient if the management task is
supposed to be performed at least U = 4 times.

As we discussed earlier, an MA design reduces the traffic
involving the NMS. In fact, according to (9) T wgm =
34.3 Kbytes, with a code size for the aglet of 6.6 Kbytes.
This can be further improved leveraging on semantic
compression. We consider now a different management
task: collecting load on the most loaded interface on
each device. This task enables local semantic compres-
sion and, according to (10), T}, ... = 10 Kbytes, being
n(NR) = 2.9. Moreover, if global compression is possi-
ble, for instance when the most loaded interface in the
whole network has to be searched for, the traffic is re-
duced to Ty, ... = 9.6 Kbytes, as derived from (11)
with n(R) = 65.9. Again, in this case the difference in
the traffic generated with local and global compression
is small because the fixed overhead component in the
transmission of the results to the NMS is large, due to

the particular technology chosen.

As an example of application of our model of costs, let
us consider that the most loaded interface has to be
found in an internetwork of I = 15 LANs, each con-

taining N = 5 nodes. A reasonable value for the cost
associated to each LAN is A,y = 0.01, with a cost
associated to WAN links of A\,.y = 1. Under these
assumptions, the cost of performing the management
task using SNMP is given by Ky, = 508.4 Kbytes,
while the cost with an implementation based on the MA
paradigm is K,,, = 130.3 Kbytes. The movement of the
agent among the managed devices generates a consider-
able amount, of traffic, as we described earlier; neverthe-
less, these movements are mostly inside high bandwidth
LANs and only a small percentage of them involve wide
area links and the NMS. This confirms that the MA
paradigm can be cost effective for the management of
internetworks.

6 CONCLUSIONS

We discovered that, in the selected application domain
and with the particular goal of optimizing network traf-
fic, the design tradeoffs depend on the characteristics
of the network being managed (costs, number of nodes,
protocols) and of the management task (possibility of lo-
cal/global semantic compression, expected frequency of
invocation, complexity of the task, dimension of replies).
The characteristics of the technology actually used for
the implementation also affect these tradeoffs according
to the management protocols (overhead) and the MCS
(expressiveness of the language, formats used for trans-
fer, overhead) used. Hence, determining when to use
a mobile code design paradigm in place of a traditional
client-server architecture requires i) a model of the man-
agement functionality to be implemented, together with
information about the managed network; ii) a precise
quantitative characterization of the management proto-
cols and the MCS to be used for the implementation.
This work is a partial answer to the first point. In fact,
it provides a general framework that is conceived for
being tailored and customized by the manager accord-
ing to the peculiarities of her needs, as exemplified in
Section 5. Quantitative information about the perfor-
mance and the overhead introduced by MCSs is still
missing in literature. However, this measurement and
modeling activity is done once and for all, and can guide
a highly effective design of management tasks, as shown
throughout the paper.

Our long term work on the theme of this paper envisions
a scenario where the manager is provided with a soft-
ware platform which guides the “management life cycle”
as describe above. Management operations could be
specified by “packing” sets of management instructions
into reusable library components possibly reusing off-
the-shelf components. The same complex functions
could be embedded in different components implement-
ing different design paradigms. This platform would
provide tools to derive customized models of the man-
aged networks from general models as we exemplified,

and to visualize and simulate the performance of the
management operations according to different design
and implementation choices. Ongoing work is headed
towards the realization of such a platform, the refine-
ment of our model, and a quantitative characterization
of existing MCS.

ACKNOWLEDGEMENTS

We wish to thank Jean-Philippe Martin-Flatin, Carlo
Ghezzi, Fulvio Risso, and Emiliano Graglia for their
insightful comments on early drafts of this work.

REFERENCES

[1] M. Baldi, S. Gai, and G. P. Picco. Exploiting
Code Mobility in Decentralized and Flexible Net-
work Management. In Mobile Agents, volume 1219
of LNCS, pages 13 26. Springer, Apr. 1997.

[2] A. Carzaniga, G. P. Picco, and G. Vigna. De-
signing Distributed Applications with Mobile Code
Paradigms. In Proc. of the 19" Int. Conf. on Soft-
ware Engineering, pages 22-32. ACM Press, 1997.

[3] J. Case et al. Structure of Management Information
for version 2 of the Simple Network Management
Protocol. RFC 1902, Jan. 1996.

[4] G. Cugola, C. Ghezzi, G. P. Picco, and G. Vigna.
Analyzing Mobile Code Languages. In Mobile Ob-
ject Systems, volume 1222 of LNCS, pages 93 111.
Springer, Apr. 1997.

[5] A. Fuggetta, G. P. Picco, and G. Vigna. Under-
standing Code Mobility. Technical report, Politec-
nico di Milano, Italy, July 1997. Submitted.

[6] G. Goldszmidt and Y. Yemini. Distributed Man-
agement by Delegation. In Proc. of the 15" Int.
Conf. on Distributed Computing, June 1995.

[7] K. Jones. Internet’s SNMP and ISO’s CMIP Pro-
tocols for Network Management. Int. J. of Network
Management, pages 130-137, Sept. 1994.

[8] D. Lange. Java Aglet Application Programming
Interface (J-AAPI). IBM White Paper, Feb. 1997.

[9] J.-P. Martin-Flatin and S. Znaty. A Simple
Typology of Distributed Network Management
Paradigms. In Proc. of the 8" IFIP/IEEE Int.

Workshop on Distributed Systems: Operations &
Management (DSOM’97), Oct. 1997.

[10] J. Schénwélder. Network Management by Dele-
gation From Research Prototypes Towards Stan-
dards. In Proc. of the 8" Joint European Network-
ing Conf., May 1997.

