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In PET imaging, the resolution obtained in the used, but this text assumes the use of three-dimen-

reconstructed images is limited by a combination
of various physical and instrumentation-related
factors, namely (1) positron range, (2) photon
noncollinearity, (3) crystal size and decoding of
interacting crystals, (4) the acquisition mode (eg,
two-dimensional versus three-dimensional) and
the reconstruction algorithm and associated filter-
ing [1]. Because of the limited resolution, the sizes
of voxels used in functional imaging are set to be
larger than those used in higher-resolution
structural modalities such as MR imaging or CT,
to avoid excessive noise or sampling artifacts. (In
two-dimensional imaging, the term ‘‘pixel’’ is
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sional imaging, the more usual case.) Therefore an
existing problem is the tissue-fraction effect, in
which contributions from different tissues, with
possibly different tracer uptake and metabolism,
may be combined within a single voxel. This prob-
lem is not specific to functional imaging but also is
of concern in higher-resolution structural imaging
modalities such as CT [2] and MR imaging [3].
This effect often is stated as scanner blurring, or
point spread, an effect in which activities within
a region spill to nearby regions. Both effects origi-
nate from the finite resolution capabilities in PET
imaging and in reality are two faces of a single
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phenomenon. This unified aspect of partial volume
effects (PVE) is reflected in the authors’ system of
notations, listed in Table 1.

The following discussion assumes a perfectly reg-
istered high-resolution image (eg, MR imaging) of
the object and a lower-resolution PET image of
that same object. The partial volume operator P is
denoted as the n � m matrix modeling the com-
bined tissue-fraction effect as well as the PET
point-spread blurring effect (n is the number of
PET image voxels, m the number of high-resolution
voxels) from the space of the high-resolution image
to the PET image space. This notation/model is
somewhat different from the common notation in
which the tissue-fraction effect is modeled before
the point-spread effect and P then is taken as
a square matrix modeling the blurring effect on
the PET image. In fact, to compute the overall
PVE, it is more accurate to perform forward projec-
tion of the high-resolution image of the object
while incorporating the various finite-resolution
effects in PET, followed by application of the recon-
struction algorithm used, thus determining the
overall PVE (Table 1).
Table 1: Notations

Symbol Definition

b vector of observed PET
image voxels

s # of tissue segments
x vector of segment

values
m # of high-resolution

(MR imaging) voxels
R segment to MR imaging

mapping
n # of PET voxels
P MR imaging to PET

partial volume operator
h voxel noise in PET image
A region averaging

operator
r PET image voxel

covariance matrix
B vector of measured PET

region values
G Geometric Transfer

Matrix (GTM)
h’ PET region noise
r’ PET region covariance

matrix
y vector of partial

volume–corrected
image voxels
For many reasons, the first medical applications
of positron radiation focused on the brain, and
most of the first human PET prototypes were devel-
oped specifically for functional brain imaging [4].
Likewise, the first partial volume correction (PVC)
techniques focused on neurologic PET procedures
in which the enhancement of the quantitative capa-
bilities of PET was driven by brain research [5,6].
The most sophisticated PVC strategies rely on an
adjunct coregistered structural image in which MR
imaging plays a pivotal role because of the better
contrast between the gray and white matter
compared with CT [7–10]. Now, however, the use
of correlated anatomic information provided by
the CT component of dual-modality imaging
systems (eg, PET/CT) makes it possible to perform
accurate PVC in other organs and tissues including
cardiovascular [11], atherosclerotic [12], and
whole-body oncologic imaging [13,14].

PVC methods can be categorized broadly as (1)
postreconstruction-based and (2) reconstruction-
based methods; which are discussed separately in
later sections. Within each of these categories,
region-of-interest (ROI)–based and voxel-based
approaches are discussed. Clinical and research
applications of various PVC strategies used in PET
are addressed also.

Postreconstruction-based partial volume
correction methods

Postreconstruction region-of-interest–based
partial volume correction methods

Recovery coefficient method
The first attempts to compensate for PVE using
recovery coefficients were made by Hoffman and
colleagues [5], who computed a set of recovery
coefficients based on known size, shape, and loca-
tion (within the PET scanner) of the objects being
imaged. The same group later extended this
approach to predict the recovery coefficients for
different brain structures that were approximated
using a series of non-overlapping spheres [6]. At
this time, the PVE was tackled in the context of
hot objects against a cold background and thus
dealt with only one aspect of the problem, referred
to as ‘‘spill-out’’ (the loss of activity because of the
small size of the object relative to the PET scanner’s
spatial resolution). It soon was realized that,
depending on the background’s activity concentra-
tion, spill-in from the surrounding warm tissues
might be as important as spill-out and should be
compensated. The concept of contrast recovery
coefficient, introduced by Kessler and colleagues
[15], reflects the rate of recovery that lies above
the surrounding medium. This quantity is justified
only when the background itself is not subject to
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PVE and is of known concentration and uniform
activity.

For simplicity, several investigators adopted this
concept and applied formulations derived by Hoff-
man and Kessler to clinical data to achieve more
accurate assessment of relevant parameters (eg, to
correct for brain atrophy) [16]. The technique is
used commonly in clinical oncology when a priori
information about the tumor (ie, a spherical shape
of known size) is available [13,17–20]. The ap-
proach is limited, however, by the crude approxi-
mations involved, and more sophisticated
techniques were sought.

Fleming and colleagues [21] have proposed
another simple method to account for the PVE by
measuring the total uptake rather than the activity
concentration in the ROI using a new index, the
specific uptake size index. The technique consists
in defining volumes of interest for the structure of
interest (eg, striatum), large enough to guarantee
the inclusion of all the partial volume counts de-
tected outside the physical volume of the structures.
The technique was validated further and proved to
be useful for accurate quantification of specific
binding ratio in Iodine-123 fluoropropyl-2-ß-car-
bomethoxy-3-ß-(4-iodophenyl)nortropane single
proton emission tomography ([123I]FP-CIT SPECT)
brain images [22].
Geometric transfer matrix method
The geometric transfer matrix (GTM) method is
based on considering as many ROIs as the number
of tissue segments considered in the analysis, result-
ing in as many equations to be solved as the number
of unknown true segment values. RSFi is the regional
spread function of tissue i (ie, the response of the
scanner to the activity within each tissue segment,
which is assumed to be uniform). RSFi is computed
for each segment i by creating an image Ui of the ith
segment with unit activity (the other segments being
Fig. 1. A PET image is considered as the blur
set to 0), followed by the forward projection (Fproj)
and reconstruction (Recon) steps [23–25]:

RSFi 5 Recon
�

Fproj ðUiÞ
�

ð1Þ

The resulting blurred images then define the RSF
for each segment within which the activity is
assumed to be homogeneous, as shown in Fig. 1.
Consideration of the issue of noise is elaborated
later.

The next step consists in computing what fraction
of each segment i contributes to each ROIj, as
shown in Fig. 2; these contributions define the gij

elements of the GTM, denoted here by G.
Next, referring to the vector containing the un-

known true tissue segment values as x (size s � 1
where s is the number of tissue segments within
which activity is assumed homogeneous) and the
vector containing the average measured values
within the ROIs drawn on the PET images as B
(size s � 1), one arrives at the model:

Gx 5 B ð2Þ

In practice, the matrix G is always invertible. One
should note that individual ROIs are drawn to cor-
respond closely to each tissue segment, so that the
matrix G has most of its largest values along its
diagonals. Therefore, the rows or columns of G
are not linear combinations of one another, and
G can be seen to be invertible. Solving for the vector
of unknown segment values x, one then arrives at:

x 5 G�1B ð3Þ

wherein the values for vector B are measured re-
gional activity concentrations, and the matrix G
has been estimated.

Perturbation-based geometric transfer matrix
method
A refinement to this approach, proposed by Du and
colleagues [26], is based on the observation that
red superposition of tissues of homogeneous activity.



Fig. 2. In this example, four segments of homogeneous activity are assumed: cortical gray matter plus thalamus
(VOI1), putamen (VOI2), caudate nucleus (VOI3), and white matter plus scalp (VOI4). The RSF corresponding to
each segment is then calculated, and its intersection fraction with each of the ROIs (j 5 1.4) is computed,
thus defining the elements of the 4 � 4 GTM in this example.
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statistical iterative reconstruction algorithms (eg,
ordered subset expectation maximization, OSEM)
are nonlinear, suggesting that the response of the
scanner to a particular segment can depend on
the activities in the other segments. The approach
proposed by the authors is to perturb the initially
estimated image ~f for the contribution of each
segment to arrive at a better estimate of the RSF
distributions. This approach can be written in our
notation as:

RSFi 5
1

di

n
Recon

�
Fproj

�
~f 1di Ui

��

� Recon
�

Fproj
�
~f
��o ð4Þ

where di is set to be a certain percentage (eg, 10% in
Ref. [26]) of the average counts in each segment i.
(The notation used by Du and colleagues does
not consider the tissue-fraction effect, because it de-
notes high-resolution segments and PET ROIs in
the same space, thus modeling only the point-
spread function (PSF) effect. The authors of this
article thus extend the notation to the more general
case).
The method was tested using phantoms and
simulations in the context of brain SPECT imaging
and showed noticeable reductions of bias in PVC
compared with the conventional method based
on the linear assumption [27].
Methods using voxel-based noise models
Alternatives to this approach also have been sug-
gested by Labbe and colleagues [28] and by Aston
and colleagues [29]. These alternatives are still
ROI based in that they perform PVC for measured
ROI values, but they attempt to model the noise
at the voxel level. A novel analytic comparison of
these methods with the one derived by Rousset
and colleagues [25] is presented here.

Approximately following the notations of Aston
and colleagues [29], let R be a matrix mapping
the true segment values x to the high-resolution
(eg, MR) image voxels (thus m � s, where m is the
number of high-resolution voxels). As such, ele-
ments of R are strictly 0 or 1 for hard segmentation
or can take values in the range [0,1] for soft/fuzzy
segmentation of MR images. Also, denoting b to
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store the reconstructed PET image values at the voxel
level (with size n � 1), this model can be written
as:

PRx1h 5 b ð5Þ

where P, as previously defined, maps the MR image
to the PET image incorporating the overall PVE (ie,
tissue fraction as well as the PSF effect), and h

models the noise in the reconstructed PET image
that can be generalized to model the contribution
of different types of noise. In the present frame-
work, the approach of Rousset and colleagues [25]
can be derived by considering the s � n averaging
operator A, which essentially considers s regions
(ie, as many regions as the original segments) and
calculates the average image values within each re-
gion; thus:

APRx 1 Ah 5 Ab ð6Þ

Which, defining h’ 5 Ah, G 5 APR and B 5 Ab, can
be written as

Gx 1 h0 5 B ð7Þ

Note that B is thus simply the measured average re-
gion values, and G (which is a square s � s matrix)
models the PVE on the original segments as mea-
sured by the defined regions and is thus the stan-
dard GTM.

Now modeling the noise vector h’ using a general
region noise covariance matrix r’ (size s � s), the
weighted least-squares solution to Equation 7 (ie,
weighted by r’�1) is:

x 5 ðGTr0 �1GÞ�1
GTr0 �1B ð8Þ

Next, recalling as explained before, that the GTM G
is in practice always invertible, one arrives at many
cancellations in Equation 8 resulting in:

x 5 G�1B ð9Þ

That is, according to this method, the PVC segment
values are independent of the noise properties. This
important observation shows that the present
framework is not biased in the sense that it does
not make any assumptions or approximations
about the noise distribution in the reconstructed
PET images. It also suggests that, in ongoing ad-
vanced PVC research, this framework should be
used for benchmark comparisons because it makes
a minimal number of assumptions. Aston and col-
leagues [29] are able to reduce their derivation to
that of Rousset and colleagues [25] by making an
assumption regarding the noise model, but it is
not necessary to make that assumption to arrive at
the GTM approach. In fact, as argued previously,
given the ROI-averaging framework set by Equation
6, one may arrive at Rousset and colleagues’ [25]
formulation without making specific assumptions
about the noise model.

The approach instead can be implemented by
directly solving Equation 5, as described by Aston
and colleagues [29], at the voxel level. Thus, model-
ing the voxel noise h using a general image voxel
covariance matrix r (size n � n), the least-squares
solution of Equation 5 weighted by r�1 yields:

x 5 ðRTPTr�1PRÞ�1
RTPTr�1b ð10Þ

Here, unlike the previous solution, a cancellation of
terms does not occur, because the matrix PR is
a non-square matrix (n � x) mapping the true seg-
ment values to blurred PET images and as such is
not invertible. Labbe and colleagues [28] proposed
the nonweighted least-squares approach (ie, with
an assumption of uncorrelated, identically distrib-
uted voxel noise, thus r f I) arriving at:

x 5 ðRTPTPRÞ�1
RTPTb ð11Þ

Nevertheless, the aforementioned assumption is
generally not valid in PET reconstructions, and the
voxels tend to reveal unequal variances, especially
with iterative reconstructions in which voxel vari-
ances are very nonuniform and typically are highly
correlated with true voxel intensities [30,31]. As
such, a better approximation worthy of further in-
vestigation for OSEM-type algorithms is to set:

rwdiag
�

b2
�

ð12Þ

where b2 is the vector of squared imaged intensities,
which can be arrived at roughly by using approxi-
mate noise analysis for iterative algorithms (see
Equation 41 in Ref. [30]). Nevertheless, Equation
12 is still a rough approximation, and the variances
depend on the object in a more complicated way, as
derived extensively by Barrett and colleagues [30]
and more precisely by Qi [31]. Furthermore, it is
not accurate to assume that image voxels are uncor-
related, and the amount of correlation is highly de-
pendent on a number of factors (eg, the number of
iterations of the reconstruction algorithm and
whether resolution recovery methods are used [32]).

The authors believe that the accurate modeling of
noise using Equation 10 has considerable potential
for obtaining more precise (ie, less variant) PVC
estimates. At the same time, the task of estimating
the covariance matrix r is quite intense [31] and
would be compounded further in practice because
it would be estimated based on the measured data
set, which is only a single, noisy projection of the
true object [33]. The degree of valid approximations
in the estimation of the covariance matrix r that
would be acceptable for the task of estimating
PVC segment values x remains an open question.
Therefore it is useful to compare such derivations
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with that of Equation 9, which, as was shown, is
independent of the noise model.
Postreconstruction voxel-based methods
of partial volume correction

Potential advantages of PVE-corrected images, as
opposed to PVE-corrected ROI-measured concen-
trations, include the ability to delineate functional
volumes accurately and to improve the tumor-to-
background ratio, which could improve consider-
ably the analysis of response-to-therapy studies
and diagnostic examinations as well as treatment
planning for PET-based radiation therapy. In this
context, however, the problem is more complex
and has been attempted frequently, based on
a number of often strong assumptions and
approximations.

Partition-based methods
To perceive the complexity of the problem, one
should note that the true segment distribution f(r)
at any voxel r being estimated can be written as:

f
�
r
�

5
XN

i 5 1

xiUi

�
r
�

ð13Þ

assuming N homogeneous segments each with ac-
tivity xi. As such, each voxel can have the contribu-
tions of up to N segments (thus one equation with
N unknowns for each voxel). The strategy in the
ROI-based PVC methods was to set up as many
ROIs as there are unknown segments, to arrive at es-
timated concentrations for the ROIs given the
knowledge of the RSFs. Within the present context
of voxel-based PVC, a simple approach has been
to set N 5 1 [34]. This approach aims to compen-
sate for signal dilution in nonactive tissues such
as cerebrospinal fluid (CSF). This compensation is
important in the case of tissue atrophy to avoid mis-
interpreting the decrease of metabolism as being
caused by the PVE. Setting N 5 1 in this equation,
while applying the partial volume operator to
both sides, gives:

bðrÞ5 Pf ðrÞ5 x1PU1ðrÞ ð14Þ

Assuming entirely consistent reconstructions (ie, no
noise) and very accurate modeling of the operator P,
solving Equation 14 at any non-zero measured PET
voxel would yield the value of xi. Realistically, how-
ever, within segment 1 one may instead define x1(r)
and compute it as:

x1

�
r
�

5
bðrÞ

PU1ðrÞ
ð15Þ

A more realistic approach proposed by Muller-
Gartner and colleagues [35] has been to model
presence of three distinct regions: (1) gray matter,
(2) white matter, and (3) background and CSF ac-
tivity. (It is worth paying close attention to
whether the detected activity in this third region
is not simply the result of spillover from adjacent
tissue plus noise.) The relevant equation in this
case is:

bðrÞ5 Pf ðrÞ5 x1PU1ðrÞ1x2PU2ðrÞ1x3PU3ðrÞ ð16Þ

The approach is based on assuming the presence of
ROIs within regions 2 and 3 such that they are not
contaminated by PVEs (thus extracting values of x2

and x3). Similar to the N 5 1 case, x1(r) now can be
estimated as:

x1

�
r
�

5
bðrÞ � x2PU2ðrÞ � x3PU3ðrÞ

PU1ðrÞ
ð17Þ

This approach, for the simplified N 5 2 case (activity
only in gray and white matter) is depicted in Fig. 3.

Another method proposed by Rousset and col-
leagues [36], and later incorporated in the software
described by Quarantelli and colleagues [37], has
been to extract the white matter activity using
ROI-based PVC methods, followed by application
of this calculation. The Muller-Gartner method
was extended by Meltzer and colleagues [38] for
the case N 5 4 wherein a voxel of interest with dis-
tinct activity (amygdala) is considered within gray
matter. The same group also reported on the com-
parative analysis of two- and three-compartment
methods and concluded that the two-compartment
approach is better suited for comparative PET
studies, whereas the three-compartment approach
provides better accuracy for absolute quantitative
measures [39].

In comparison with the ROI-based PVC methods,
the aforementioned (N > 1) approaches are (1)
based on the assumption of possibility of extracting
non–partial volume–contaminated activities from
some remote ROIs (particularly for white matter
and CSF), and additionally (2) tend to limit N to
a very few regions to provide solutions to the multi-
unknown problem. By contrast, the ROI-based
methods are based on a collective modeling of the
ROIs’ partial volume contributions to one another,
rather than focusing on individual voxels at each
computation. A quantitative comparison of the
methods is provided in [36]. Nevertheless, the
search for voxel-based PVC remains appealing,
and deconvolution methods have seemed natural
for this problem, as discussed in the following
section.

Iterative deconvolution methods
One intuitive approach to this problem, which
does not require the use of a high-resolution
modality or assumptions regarding surrounding
structures, is to employ analytic deconvolution



Fig. 3. A simplified depiction of the Muller-Gartner approach for the N 5 2 case (gray matter, white matter). The
term x2½activity� � PU2½RSF� for white matter is subtracted from the original image b(r), followed by division,
within the ROI for the gray matter, by its regional spread function, which is typically thresholded (eg, 20%)
to avoid amplification of noise.
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methods, because the PVE typically is presented as
a convolution of the original image with the system
PSF (which may well be space-variant). Neverthe-
less, because of the presence of noise in the images,
and because simple deconvolution methods am-
plify the high-frequency content of images, thus
making the resulting images unsuitable for visual
interpretation, more advanced approaches are
needed. Many alternatives have been described in
the literature. (Readers are encouraged to consult
Schafer and colleagues [40] and especially Carasso
[41].) In the Richardson-Lucy algorithm derived
from Bayes’s theorem (and not necessarily based
on additional noise assumptions, although Pois-
son’s assumption also arrives at same solution),
one uses [41]:

yi11 5 yi � PT b

Pyi
ð18Þ

where the partial volume–corrected image, vector y,
is iteratively estimated (from iteration i to i11)
from the partial volume–contaminated image, vec-
tor b, and the estimated blurring matrix, P. The algo-
rithm, however, gives the inverse filtering solution
when iterated until convergence [41], thus needing
to be terminated early or regularized.

Another notable alternative has been the applica-
tion of the reblurred VanCittert method [41]:

yi11 5 yi 1 l PT
�
b� Pyi

�
ð19Þ

where l˛ð0; 2Þis a constant that controls conver-
gence. The method can be derived by application
of the steepest descent scheme to the minimization
of jjPy-bjj2 (ie, least-squares criterion based on the
Gaussian model). Like the Richardson-Lucy
algorithm, however, this method iteratively results
in increasingly noisy image estimates, suggesting
the need for early termination or use of regulariza-
tion (eg, see Ref. [42]). For a review of these and al-
ternative methods (eg, the Poisson maximum
a priori maximum entropy, Tikhonov-Miller restora-
tion, and linear slow evolution from the continua-
tion boundary [slow evolution from the
continuation boundary] methods), the reader is re-
ferred to Carasso [41].

One such approach was implemented recently in
the context of oncologic PET imaging. The authors
used an iterative three-dimensional deconvolution
algorithm and a local model of the PET scanner’s
PSF followed by application of a PVE correction
to the mean voxel value within a voxel of interest
[43]. The authors report more accurate quantitative
assessments of uptake in lesions greater than 1.5 �
full-width at half-maximum (FWHM) of the imag-
ing system’s PSF.
Multi-resolution approach
A newer approach makes use of the multi-resolution
method [44]: the algorithm extracts details of a high-
resolution image (eg, MR imaging) and transforms
these details to integrate them into a low-resolution
image (eg, PET). The method proposes using wavelet
analysis to decompose the images into layers of dif-
ferent resolution/frequency content. The high-reso-
lution (eg, MR) image therefore will result in
additional levels of resolution images, from which,
it is proposed, the details lost in the low-resolution
image can be constructed. The study used a purely
linear model of scaling the wavelet-transformed
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images between the two modalities studied; this lin-
ear model does not seem to be justified, except that it
results in ROI quantitation comparable with that
obtained by standard PVC methods. This method
seems to be quite promising and remains to be ex-
tended by more accurately relating the transformed
resolution levels of high-resolution and low-resolu-
tion modalities.

Combined noise and partial volume
correction model
Another promising method proposed by Chiver-
ton and colleagues [45] is the use of an elaborate
statistical framework for combining image noise
reduction and partial volume estimation. The
approach works by considering the relationship
between true voxel concentrations and the com-
posite (ie, partial volume–contaminated) voxel
concentrations, as well as the statistical relations
between composite values and the noisy realiza-
tions. The latter component, however, is assumed
to obey Gaussian statistics, an assumption that
may be inadequate, especially for low-statistics
data. This distribution can be highly dependent
on the type of reconstruction method used
[30,31]. This approach still needs to be validated
more thoroughly.

Reconstruction-based partial volume
correction methods

PVC commonly is presented in the context of com-
pensating for the spill-in/spill-out effects present in
reconstruction images, resulting from the limited
resolution capabilities of the imaging system. One
therefore would think that, for a structure of a given
size, the higher the resolution of a modality, the less
the PVE will be. Another way of thinking about this
problem, however, is to note that improving the res-
olution of reconstructions performed on a given
scanner would, in effect, be a move in the direction
of PVC. Reconstruction methods that improve the
effective resolution of the scanner (at a given noise
level) can be considered as PVC methods. In this
sense, there are numerous approaches to reconstruc-
tion that attempt to achieve the aforementioned
goals [46,47]; the use of statistical iterative recon-
structions has been an important step in this direc-
tion both for voxel-based [11,48] and ROI-based
[49–52] reconstructions. Within the context of these
algorithms (and building on them), a number of re-
cent methods deserve to be highlighted.

Voxel-based methods

Resolution recovery methods
In resolution recovery methods, the system matrix
is modeled more accurately to incorporate the
blurring effects in PET (positron range, noncolli-
nearity, intercrystal scattering and/or crystal pene-
tration effects). A number of such methods exist
and have been reviewed elsewhere [53]. These
methods have been shown to result in considerably
improved contrast-versus-noise plots for extended
objects, because of better modeling of blurring
effects in PET (ie, higher effective resolution, and
thus less PVE, at a given noise level) [54,55].

Bayesian methods
Bayesian methods were developed originally to
suppress noise in PET reconstructed images by
penalizing voxel variations between neighboring
voxels [56]. More sophisticated methods involved
the use of anatomic information from MR imaging
or CT to avoid blurring effects at the boundaries of
regions, as reviewed extensively by Rousset and
Zaidi [53]. As such, these methods obtain improved
noise levels at nearly similar contrast and effective
resolutions. Alternatively, Bayesian methods can
be thought of as obtaining improved contrast and
effective resolution at a given level of noise, thus
reducing the PVE.

The main problem with these methods, however,
has been the introduction of bias in the reconstruc-
tion images because of strong assumptions of
uniformity correlations between anatomic and
functional regions. By contrast, Zhang and col-
leagues [57] and Bowsher and colleagues [58]
have proposed elaborate and involved methods
that are able to account for exceptions to the
assumed anatomy–function correlation and thus
allow for the possibility that intensity regions in
the emission reconstruction may not correspond
to regions in the anatomic image. These methods,
however, require some user interactions and the
estimation of several hyperparameters. A joint
mixture framework proposed by Rangarajan and
colleagues [59] offers the aforementioned advan-
tage but does not involve user interactions or the
need to determine complicated hyperparameters.
Region-of-interest–based methods

A different, novel approach to this problem has
been to quantify ROIs directly from projection
data, taking into account the effect of PVE (among
other effects, such as scatter). Derived from the early
work of Huesman [49], this approach has been de-
veloped and investigated by Muzic and colleagues
[60] in cardiac imaging, by Chen and colleagues
[61] and Schoenahl and Zaidi [62] in tumor imag-
ing, and by Vanzi and colleagues [52] in dopamine
transporter imaging. This method has the particular
advantage of being able to estimate region variance
for subsequent use in model analysis to obtain
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parameter estimates; however, these methods re-
main to be extended to three-dimensional imaging.

Clinical and research applications of partial
volume correction

Quantitative PET measurements of physiologic and
biologic processes in vivo are influenced by various
physical degrading factors including partial volume
averaging among neighboring tissues with differing
tracer concentrations resulting from the limited
spatial resolution of state-of-the-art PET scanners.
PVC is important for describing the true functional
contribution of PET in providing clinicians and
scientists with relevant functional information in
various pathologies. This information might allow
accurate quantification of physiologic processes
including cerebral blood flow, glucose metabolism,
neuroreceptor binding, tumor metabolism, and
myocardial perfusion.

It has been shown in brain PET imaging that,
despite substantial improvements in PET scanners’
spatial resolution, the loss of cerebral volume
resulting from healthy aging processes can cause
underestimation of PET physiologic measurements.
Thus, the failure to account for the effect of partial
volume averaging of brains with expanded sulci
has contributed to the confounding results in
functional imaging studies of aging. After PVC, no
cerebral blood flow decline with age in healthy
individuals is described [63–65]. Likewise, it has
been demonstrated that reduced glucose metabo-
lism measured by PET in dementia of the Alzheimer
type is not simply an artifact caused by an increase
in CSF space induced by atrophy but reflects a true
metabolic reduction per gram of tissue [66]. In ep-
ileptic foci, also, hypometabolism is larger than
a mere atrophy effect [67]. Assessment of the dopa-
minergic system with PET has shown that
dopamine transporters are noticeably reduced in
Lesh-Nyhan disease; PVC highlights this finding
[68]. Dopa-decarboxylase activity has been shown
to be reduced greatly in patients who have Parkin-
son disease, compared with normal controls [69].

In myocardial imaging, the use of recovery
coefficients and spillover factors derived either the-
oretically or using experimental measurements was
popular in the 1980s [70,71]. The same approach
was used for the quantification of myocardial blood
flow using Nitrogen-13–labeled (13NH3) ammonia
[72] where the spillover from the blood pool into
the myocardial wall was significant. Partial volume
losses in the myocardium also can be estimated us-
ing an extravascular density image, created by the
subtraction of a blood pool from a transmission
image [73]. The authors have shown that the
extravascular density image can correct for partial
volume averaging over a range of myocardial thick-
nesses applicable to patient studies. Nevertheless,
the method was found to be sensitive to errors in
both the blood pool and transmission images in
the thinnest regions.

A more appealing approach taking advantage of
the availability of correlated structural imaging
(CT) was proposed to derive count recovery maps
in SPECT myocardial perfusion imaging that was
validated experimentally in an elegant study using
a porcine heart model [11]. This method could be
extended easily for use in cardiovascular PET imag-
ing but would be challenging to apply in tumor
imaging because of the difficulties in delineating
accurately the metabolically active parts of a tumor
(eg, in lesions with wholly or partially necrotic
centers) using structural imaging [14].

In tumor imaging, several studies reported that
PVE is a serious issue that affects both image quality
and the quantitative accuracy of estimated indices
characterizing lesion uptake, such as the standard-
ized uptake value (SUV). The most straightforward
approach uses a set of precalculated recovery
coefficients for more reliable estimates of the SUV
in pulmonary lesions [20,74,75] and breast cancer
[76]. The bias affecting estimates of tumor-to-back-
ground ratio resulting from the PVE is dependent
on lesion size. The generally accepted criterion is
that PVC is required if the lesion size is less than
two to three times the spatial resolution (FWHM)
of the imaging system when the parameter of inter-
est is the maximum voxel value within a particular
voxel of interest. In fact, it has been demonstrated
that when the parameter of interest is the average
count density, the bias introduced by the PVE could
exceed 10%, even for lesions 0w6 times the FWHM,
depending on the true tumor-to-background ratio
[77].

As mentioned previously for cardiac imaging,
the lesion size determined by structural imaging
(CT or MR imaging) also can be used to compen-
sate for PVE, thus allowing a more accurate esti-
mate of the SUV. Hickeson and colleagues [13]
reported an increase in accuracy from 58% to
89% by using this technique for assessing the met-
abolic activity of lung nodules measuring less than
2 cm when a SUV threshold of 2.5 was adopted to
distinguish between benign and malignant lesions
(Fig. 4). Similar techniques also were used for pre-
clinical imaging using a clinical PET/CT scanner.
High-resolution CT is used for more precise local-
ization of PET findings in addition to PVC
through size-dependent recovery coefficient correc-
tion [78].

The use of global metabolic activity (obtained by
multiplying segmented MR imaging volumes by the
measured mean cerebral metabolic rates for glucose



Fig. 4. Images of a 72-year-old woman with small cell lung carcinoma. (A) Transaxial and (B) coronal images of
FDG-PET scan demonstrate focus of mildly increased uptake in right middle lobe. The maximum standardized
uptake value (SUVmax) was 1.39, which is less than threshold for malignancy. (C) Transaxial chest CT image dem-
onstrates that nodule measures 1.0 � 0.8 cm. Corrected SUV was obtained by drawing ellipsoid or circular ROI (in
black) with diameter of 0.8 cm (two voxels) larger than that of the area of perceived increase in activity at plane
of maximal FDG uptake, and drawing another ROI (in gray) with diameter of 0.8 cm larger than first ROI to de-
termine background activity (activity per volume outside smaller ROI and inside larger ROI). Corrected SUV then
was obtained by determining activity in first smaller ROI corrected for background activity, dividing by lesion’s
size on CT and ratio of injected dose to body mass, and correcting for decay of 18F. Corrected SUV of this lesion
was 3.54, which exceeds threshold for malignancy. (From Hickeson M, Yun M, Matthies A, et al. Use of a cor-
rected standardized uptake value based on the lesion size on CT permits accurate characterization of lung nod-
ules on FDG-PET. Eur J Nucl Med Mol Imaging 2002;29:1639–47; with kind permission from Springer Science and
Business Media.)
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using PET), introduced by Alavi and colleagues [10]
in assessment of the brain in patients who had Alz-
heimer disease and in age-matched controls, has
made possible the accurate measurement of the
global metabolic activity of the red marrow using
segmented MR imaging for PVC of PET data [79].
This strategy may have potential research and clini-
cal applications in the study of the global metabolic
activity of the individual component and in the
diagnosis of benign and malignant bone marrow
disorders.

Potential pitfalls

Despite the remarkable advances and achievements
to date, PVC still is limited by the inaccuracies of the
various procedures involved in the implementation
of sophisticated methods, particularly those relying
on an adjunct structural modality image (CT or MR
imaging). These limitations, which include the
spatial realignment of functional and anatomic
images, segmentation of the high-resolution ana-
tomic image, and tissue inhomogeneities, are dis-
cussed briefly.

Image registration

Dual-modality imaging systems provide a hardware
approach to spatial alignment of functional and an-
atomic images that is of particular value when nu-
meric algorithms fail. Software approaches remain
vital to the solution of many registration problems
in clinical practice, however, and might even com-
plement hardware approaches in many cases [80].
The accuracy of the PVC techniques will depend
in part on the accuracy of the realignment of the an-
atomic and functional images. The impact of



Partial Volume Correction Strategies in PET 245
misalignment has been investigated in the context
of brain imaging for the region-based approach
[25,37,81,82] and for the pixel-based approaches
[35,37,38,83]. For the GTM approach, the errors
resulting from misregistration affect only the
observed estimates and do not modify the
coefficients of the GTM matrix. Therefore, the effect
of the registration error on the corrected estimates is
of the same magnitude as the effect of misregistra-
tion on the observed estimates because of inaccu-
rate placement of the ROIs [82]. It has been
shown that these errors have a relatively modest im-
pact on the final accuracy of the corrected estimates
(< 2% of true value for typical 1- to 2-mm misregis-
tration errors) [81,82]. Some authors, however, sug-
gested recently that misregistration errors have the
strongest impact on data accuracy and precision
[37].

Anatomic image segmentation

Medical image segmentation has been identified as
the key problem of medical image analysis and
remains a popular and challenging area of research
[84]. In brain MR imaging, a wide variety of brain
MR imaging segmentation techniques, including
a number of promising approaches, have been
devised and are described in the literature [85].
Similar to image registration, the accuracy of algo-
rithms for PVC depends in part on the degree of
accuracy in the segmentation of the anatomic
images. Errors in the segmentation procedure
have greater impact but are relatively limited to
the mis-segmented region [81]. Overall, the accu-
racy of the corrected estimates seems to be impacted
more by the success of the segmentation of the
structural information provided by MR imaging
Fig. 5. Representative slices of clinical T1-weighted MR ima
patient’s original MR images coregistered to correspondin
rithm bundled in the Statistical Parametric Mapping packa
algorithm [88]; and a histogram-based segmentation algori
gray areas to gray matter, and dark gray areas to cerebrospi
tation results. Because of brain extraction, atrophic region
than by the influence of image co-registration. Zai-
di and colleagues [86] investigated the impact of
brain MR image segmentation on PVC. Three algo-
rithms were compared: the first, bundled in the
Statistical Parametric Mapping package [87], and
the second, the Expectation Maximization Seg-
mentation algorithm [88], incorporate a priori
probability images derived from MR images of
a large number of subjects. The third, referred to
as the ‘‘histogram-based segmentation algorithm
(HSBA) algorithm,’’ is a histogram-based segmen-
tation algorithm incorporating an Expectation
Maximization approach to model a four-Gaussian
mixture for both global and local histograms [89].
Fig. 5 illustrates an example in which brains were
extracted inappropriately using the brain extrac-
tion tool for the HBSA segmentation. Regions
where some degree of atrophy was present were
extracted as nonbrain matter by the brain extrac-
tion tool. It was concluded that the PVC activities
in some regions of the brain show large relative
differences when performing paired analysis on
two algorithms, indicating that the segmentation
algorithm for ROI-based PVC must be chosen
carefully.

It was suggested that, in the absence of major
sources of registration or segmentation errors,
recovered activity concentration estimates were typ-
ically within 5% to 10% of the true tracer concentra-
tion with an SD of a few percent in both phantom
and simulation studies [25,29,37,81]. Potential
innovative developments for future simultaneous
PET/MR imaging technology dedicated for brain
research [90] would be combining various MR
imaging segmentation methods to compensate for
both PVC and attenuation [91].
ges segmentation. Images from left to right show the
g PET image; the segmentation result using the algo-
ge [87]; the Expectation Maximization Segmentation

thm [89]. White areas correspond to white matter, light
nal fluid. Arrows show discrepancies between segmen-
s were removed. Arrows indicate possible errors.
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Tissue inhomogeneity

Inaccuracies resulting from mis-segmentation can
be considered in the context of a more general
problem of tissue heterogeneity. In fact, the key lim-
iting factor of these techniques is the hypothesis
made regarding the homogeneity of tracer distribu-
tion in each region or tissue component. Some
investigators gave suggested performing tests of
inhomogeneity based on Krylov subspace iteration
to assess the suitability of assuming a homogeneous
tracer distribution [29]. This test, however, is valid
only when an accurate noise model is available,
which is still a challenging task. If known a priori,
the tissue mixture of each identified component
can serve as a basis for computing the required
RSFs. This computation can be performed using
statistical probabilistic anatomic maps that can be
defined as the probability of each tissue class (eg,
gray matter, white matter, CSF) being present in
a given location of a standardized, or stereotaxic
space [92].
Summary

It is gratifying to see the progress that PVC has made
in PET. Recent developments have been enormous,
particularly in the last decade. The focus has been
on improving accuracy, precision, and computa-
tional speed through efficient implementation in
conjunction with decreasing the amount of opera-
tor interaction. PVC of PET data is well established
in research environments, but its use in clinical
settings is still limited to institutions with advanced
technical support. As the challenges discussed in
this article are met, and experience is gained, imple-
mentation of validated techniques in commercial
software packages will be useful to attract the
interest of the clinical community and increase
the popularity of these tools.
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