
Canonical views in object representation and recognitionFlorin Cutzu and Shimon EdelmanDept. of Applied Mathematics and Computer ScienceThe Weizmann Institute of ScienceRehovot 76100, IsraelApril 15, 1994AbstractHuman performance in the recognition of 3D objects, as measured by response times anderror rates, frequently depends on the orientation of the object with respect to the observer. Weinvestigated the dependence of response time (RT) and error rate (ER) on stimulus orientationfor a class of random wire-like objects. First, we found no evidence for universally valid canon-ical views: the best view according to one subject's data was often hardly recognized by othersubjects. Second, a subject by subject analysis showed that the RT/ER scores were not linearlydependent on the shortest angular distance in 3D to the best view, as predicted by the mentalrotation theories of recognition. Rather, the performance was signi�cantly correlated with animage-plane feature by feature deformation distance between the presented view and the best(shortest-RT and lowest-ER) view. Our results suggest that measurement of image-plane simi-larity to a few (subject-speci�c) feature patterns is a better model than mental rotation for themechanism used by the human visual system to recognize objects across changes in their 3Dorientation.1 Understanding the e�ects of viewpoint change in object recog-nition1.1 General backgroundThe appearance of a three-dimensional object (that is, the pattern formed by its projection ontothe retina of an eye or onto the imaging plane of a camera) depends on the point of view of theobserver. The ability of the human visual system to recognize a familiar object viewed from anunfamiliar perspective is impressive, and has been termed object constancy, by analogy with otherperceptual constancies. However, this constancy is far from perfect. Perceiving the shape of anobject irrespective of the viewing conditions such as its orientation in space and its distance fromthe observer frequently incurs a certain information-processing cost, over and above what it takesto recognize the same object in its most familiar appearance. This additional processing cost isre
ected in longer response times and in higher error rates evoked by randomly chosen views of theobject, as compared to certain so-called canonical views (Palmer, Rosch and Chase, 1981).11Obviously, if there is any variation at all in recognition performance across viewpoints, some views will be \better"than others. Palmer et al. (1981) found that \good" views of everyday objects such as houses and cars | viewsthat elicit the fastest and the most accurate recognition performance | are well-de�ned in the sense that the samecanonical views are obtained for di�erent subjects, in a variety of tasks, such as preferential inspection, recognition,and subjective judgment. 1



The degree of viewpoint dependence of human performance in recognition is a�ected by twofactors:� Object transformations. The visual system appears to �nd some kinds of transformationseasier to compensate for than others. Scaling, for example, is especially easy in this respect.The apparent size of objects does not a�ect their recognition rate, even though it may in
uencethe response time in a transitory fashion (Larsen, 1985). Similarly, rotation around line ofsight in
uences only the response time, and this in
uence tends to diminish with practice(Jolicoeur, 1985; Tarr and Pinker, 1989). In comparison, rotation in depth of a few tensof degrees can have a devastating e�ect on recognition rate (B�ultho� and Edelman, 1992;Edelman and B�ultho�, 1992b; Humphrey and Khan, 1992).� Similarity among objects. If the task is to determine the object's class (as in Biederman's\entry-level access" naming experiments) rather than its exact identity, human performance isvirtually independent of viewpoint (Biederman, 1987; Biederman and Cooper, 1991; Bieder-man and Gerhardstein, 1993). This independence seems, however, to be a matter of degree:if the similarity between object classes is manipulated in a gradual manner, viewpoint depen-dence changes equally gradually (Edelman, 1992).The failures of object constancy are particularly revealing as test cases for various theories ofrecognition, because a model based on any such theory, if it can be made to fail at all,2 is likely todo so in a peculiar way that can be compared to human performance in an appropriately designedexperiment. Consequently, in the present study we concentrate on a case in which recognitionperformance does depend on viewpoint, namely, on the recognition of depth-rotated objects all ofwhich belong to the same basic category.1.2 Goals of the present workWe now formulate the three major questions addressed in the present work:1. When do canonical views arise?2. How can canonical views be characterized computationally?3. What are canonical views good for?In the rest of this section, we discuss these three questions in some detail.1.2.1 When do canonical views arise?A complete answer to this question must touch upon two distinct issues: viewpoint dependence inrecognition memory, and in generalization to novel views.2Some of the theories of recognition recently advanced in computer vision are too powerful in the sense that theypredict perfect performance across the entire range of conditions mentioned above.2



Canonical views in recognition memory. To understand the processes involved in recognitionmemory one must separate the e�ects of prior exposure, practice and high-level knowledge from theintrinsic (geometric) properties of object views. This can be done by �nding out whether canonicalviews are obtained in controlled-exposure experiments with novel, random objects. Results of arecent study indicate that certain views are signi�cantly better than the others even for \balanced"synthetic objects which look statistically the same from all viewpoints, and which are shown to thesubjects equally often from all the viewpoints involved in the experiment (Edelman and B�ultho�,1992b). The next step in this direction would be to �nd out whether the canonical views that arisein this case are as prominent and consistent across subjects as in the original study of Palmer etal. (1981).Patterns of generalization to novel views To understand the processes of generalizationacross views one must determine the functional dependence of performance on objective distancebetween the test view and the training view (the shortest-path rotation distance in 3D may beappropriate for this purpose). Recently, it was found that distance to the closest familiar view is agood predictor of recognition rate, and that the dependence of performance on this distance agreesqualitatively with the predictions of a computational model of recognition based on interpolationamong multiple stored views (B�ultho� and Edelman, 1992). This �nding suggests that a quantita-tive comparison between the predictions of di�erent models and human performance is necessary.In particular, it would be especially interesting to �nd out whether or not performance dependsmonotonically on misorientation, and which of the several plausible distance measures predicts thepattern of performance most reliably.1.2.2 How can canonical views be characterized computationally?The second question we consider is how to tell in advance what views of an object would becanonical. Note that, in a sense, this is also an issue of prediction: a real understanding of whateverit is that makes certain views easier to recognize would imply an ability to predict the degree ofcanonicality of a speci�ed view given the 3D shape of the object. A computational characterizationof canonical views of balanced objects seen at evenly distributed orientations would be especiallyimportant to achieve, because the usual heuristics invoked to explain canonicality (frequency ofexposure, area of projection, etc.) are not applicable in this case.1.2.3 What are canonical views good for?The last question we consider in connection with the canonical views phenomenon is teleological:why have canonical views at all, or, in other words, what is the possible computational role ofcanonical views in recognition? A straightforward answer to this question can be formulated interms of recognition models based on viewpoint-speci�c representations of 3D objects. In thefollowing, we consider two classes of such models.Models that belong to the �rst class rely on viewpoint-speci�c 3D object representations. Nat-urally, for such models the idea of canonical orientation is of central importance. Consider as anexample recognition by alignment (Ullman, 1989). The basic idea of the multiple views plus trans-formation version of alignment, proposed in (Tarr and Pinker, 1989), is to store the 3D model of theobject at the canonical orientations, and when presented with a random view of an object to applyan appropriate transformation (rotation) in an attempt to bring the input object into register withthe model. Once the input object is brought to the closest canonical orientation, the match between3



the projection of the model and the image of the input object is evaluated. Thus, the choice ofstored orientations in this case a�ects the amount of work (that is, of mental transformation) tobe done for each input view.The ability to rotate mentally 3D representations of objects is a key requirement of this scheme.Following Shepard's suggestion (Shepard and Metzler, 1971; Shepard and Cooper, 1982), the term\mental rotation" is interpreted quite literally, as an analog process of rotation of a 3D model ata constant angular speed. Consequently, recognition time under this model is expected to increaselinearly with the angular distance to the closest stored canonical orientation.3Models that belong to the second class rely on 2D representations, in conjunction with a processthat compares the input image against those representations without recourse to 3D operations.Examples of this class include recognition by linear combination of views (Ullman and Basri, 1991),and the various multiple-view interpolation models (Poggio and Edelman, 1990; Edelman andWeinshall, 1991). For such models, the choice of stored views is also of great importance: a viewis likely to be misrecognized if the di�erences between it and the stored views are too large for theinterpolation process to cope with. Unlike in the multiple views plus (3D) transformation model,under the 2D view-based approach the response time may vary either with the shortest angulardistance to the stored views, or with some image-based (2D) measure of distance between thepresented and the stored views. For example, in the model of (Edelman and Weinshall, 1991),representations of various views of objects to which the system has been exposed are associatedwith each other by links, determined by the presentation order of those views. Exposure to a seriesof views in the natural order corresponding to a rotation of the object produces a memory tracewhich has a \serial" structure. Showing such a system a test view amounts to activating a node inthis structure. If the recognition decision is assumed to occur when the entire structure reaches acertain level of activity, the latency of recognition becomes dependent on the distance within thisstructure between the representations of the current view and of the canonical view (one for whichrecognition is the fastest). Thus, the recognition process in this model mimics mental rotationwithout actually involving 3D representations.2 Psychophysical experimentsThe psychophysical experiments described below were designed to address all three major issuesoutlined in the introduction. We investigated the dependence of response time (RT) and error rate(ER) on stimulus orientation, both for recognition memory and for generalization to novel views.2.1 The objectsTo isolate the e�ects of orientation from those of self-occlusion, viewpoint variability of visiblesurface, and familiarity, we used computer-generated objects composed of thin tubes, with nearlyall the features visible at all orientations. The visible surface of the stimuli was essentially invariantto rotation in depth. The e�ects of possible familiarity with the stimulus, which are uncontrollableif natural objects are used, were eliminated by random placement of the vertices of the objects.3It should be stressed that Ullman's alignment scheme leads to an algorithm that can, in principle, work inconstant time, independently of the misorientation of the object relative to a canonical pose. To account for Tarr andPinker's (1989) �nding that for a certain class of random objects the recognition time is indeed linearly dependenton the angle of rotation, one must make a further assumption of the mechanism used by the human visual systemto implement alignment. Speci�cally, it must be assumed that object models can only be rotated by a (small) �xedangle at a time. 4



Objects (\wires") consisting of seven rigidly concatenated thin tubes were used in all theexperiments. The objects were generated and displayed on a computer workstation (DECsta-tion 5000/200) running DEC AVS 3.0, an interactive visualization program. The tubes had anaverage length to radius ratio of approximately 10, and were rendered as shaded white matte metalusing Gouraud shading. The concatenation of the individual tubes was achieved by computing thetrue intersections between the consecutive cylinders. Figure 1 displays a typical wire object.Figure 1 hereThe \balanced" appearance of an object was achieved by requiring that it have an almostspherical distribution of mass about the barycenter. Objects were generated in two steps. First,the eight vertices of the seven tubes comprising the new object were randomly placed within a cubeof a �xed size. Second, the object was positioned so that the center of mass coincided with theorigin of the coordinate system. The three moments of inertia Ix, Iy , Iz with respect to the axes ofthe coordinate system were then computed. In computing the moments of inertia, the tubes wereconsidered to have negligible radius and uniform linear density. The object was then rotated by45� around OY and by 45� around OX, and the three new moments I 0x, I 0y , I 0z were determined. Anaverage moment was de�ned as I = (Ix + Iy + Iz + I 0x + I 0y + I 0z)=6. Only those objects for whichevery individual moment was in the interval [0:95 � I; 1:05 � I] were retained for further use. Thissimple procedure allowed fast generation of geometrically balanced random objects. Two otherconstraints intended to eliminate viewpoint independent features such as sharp angles, and nearlyintersecting or parallel tubes were also implemented.2.2 Experimental designA 1-Interval Forced Choice paradigm, as in (Edelman and B�ultho�, 1992b), was employed. Theexperiments consisted of a training phase immediately followed by a testing phase. Two maincategories of experiments were conducted. In the recognition memory experiments, the test viewswere always a subset of the set of training views. Two types of recognition memory experimentswere run: general-axis motion in which the training and tested views uniformly sampled theviewing sphere, andY-axis motion experiments, in which the training and the test views uniformlysampled the equator of the viewing sphere. In the generalization experiments the test views werethe same as in the general-axis motion experiments, but the subjects were trained on a singleview of the target.2.2.1 The training phaseIn the general-axis motion experiment the training sequence of target images was generatedby composing a rotation step of 0:25� around OX with a 1:20� rotation around OY, achieving aperfect motion illusion. When plotted on the viewing sphere, the sequence of the training viewsdescribed a tight spiral connecting the poles. In the Y-axis motion experiment, the trainingconsisted of 10 revolutions about OY with a rotation step of 2:50�. The training views were situatedalong a great circle on the viewing sphere (the equator). In the generalization experiments thetarget executed several small amplitude (2:0�) oscillations, generated by combining two orthogonalharmonic oscillations of equal phase and amplitude, around the training view.5



2.2.2 The testing phaseThe general-axis motion and the generalization experiments required a complete coverage of theviewing sphere. Consequently the test views were generated by rotating the target �rst around OX,then around OY. The locations of the test views on the viewing sphere corresponded to the verticesof a quasi-regular polyhedron. This 42-vertex polyhedron was produced by adding to the verticesof the icosadodecahedron 12 new vertices, obtained by computing the centers of its pentagonalfacets (see Figure 2). In the Y-axis motion experiment the goal was to test views situated on agreat circle of the viewing sphere. The test views for this experiment were obtained by rotatingthe target around OY in 10� steps, followed by perspective projection onto the XOY plane.Figure 2 hereThe test views of each target were presented to the subject in a random order, interspersed withan equal number of images of six non-target objects generated by the same algorithm.4 Therefore,random guessing in these experiments would yield a 50% success rate. Each test image was shownseparately and statically, and was replaced by a mask (displayed for 100msec) when the subjectresponded by pressing a key on the computer keyboard. To allow the computation of the errorrates, each image (target and nontarget) was shown �ve times. The number of trials in a session was420 (210 target images and 210 nontarget images) in the general-axis motion experiments andthe generalization experiments, and 360 (180 target images and 180 foils) in the Y-axis motionexperiment. A typical session lasted approximately 25 minutes.The subjects were required to press one key if they thought the image belonged to the target, andanother key if not, and were instructed to do so as quickly and as accurately as possible. Becausewe were interested in immediate recognition, the requirement of speed was especially emphasised.2.3 Sessions and subjectsWe conducted six sessions in the recognition memory experiment: four for the general-axismotion condition (22 subjects) and two for Y-axis motion (8 subjects). In every session, a newset of objects (target and nontargets) was employed.Five sessions were conducted in the generalization experiment. Again, in each session a di�erenttarget and di�erent nontargets were employed. The number of subjects per session ranged between�ve and eight. Each subject was trained with a di�erent view of the target. The training views foreach target covered the viewing sphere as uniformly as possible.3 Results3.1 Descriptive statistics3.1.1 Generalization experimentsThe average value of the mean individual response time, over all the sessions, was 1200 msec, andthe average standard deviation, 500 msec. The extreme values of the individual mean responsetimes were 2500 msec and 680 msec. Characteristically, in the generalization experiments the false4To prevent the subjects from using \giveaway" contrasts between stimuli, the nontargets were selected to besimilar to the target in general appearance. For instance, if the target was spatially \spread out," no \contracted"nontargets were used. However, the nontargets were always clearly distinguishable from the target.6



negative error rate signi�cantly exceeded the false positive error rates (cf. Edelman and B�ultho�,1992). The average correct recognition rate, for all sessions was about 60% for the target and75% for the nontarget images, that is a 40% false negative and a 25% false positive average errorrate. This imbalance shows that, when confronted with a di�cult decision, the subjects adopted aconservative strategy and preferred the \nontarget" response.3.1.2 Recognition memory experimentsThe descriptive statistics of the response times did not di�er signi�cantly between the recognitionmemory and the generalization experiments. The average, over the session set, of the mean responsetime was 1330 msec, with extreme values of 600 and 2600 msec. The average value of the standarddeviation of the response time was 450msec. Each individual subject was characterized by relativelyinvariant average response time and standard deviation across experiments.On the whole, the success rate in the recognition memory experiments was higher than in thegeneralization experiments, and the false positive and false negative error rates were more balanced.The average correct recognition rate, for all sessions and both conditions (general-axis motionand Y-axis motion) was about 74% for the target and 80% for the nontarget images, that is, a26% false negative and a 20% false positive average error rate. The error rate level under the Y-axismotion condition was generally lower than under general-axis motion, as was the perceiveddegree of di�culty of the task. There was no signi�cant di�erence between the two conditions fromthe point of view of the reaction times.3.2 Validation of the dataA trial was considered valid and was included in the further analysis if the RT was between 300 and3000 msec. In all sessions, less than �ve out of the 420 responses were discarded by this criterion,amounting to less than 1.5% of the responses.The false positive error rate was de�ned as the number of \yes" responses to nontargets, andthe false negative error rate as the number of \no" responses to targets, each divided by the totalnumber of responses satisfying the 300 { 3000msec RT criterion. To check against a possible speed-accuracy tradeo�, we computed for each subject the separate error rates for trials for which the RTfell in consecutive bins at 50 msec intervals, up to the maximum response time for that subject. Wethen correlated the various error rates (total error rate, false positives and false negatives) with RT.We found no evidence for a speed-accuracy tradeo�; on the contrary, the delayed responses weremore likely to be mistaken, as demonstrated by signi�cant positive values of the Pearson correlationbetween the time distribution of the total error rate and RT, obtained for almost all the subjects.Similar positive correlations were obtained between the time distribution of the false positive andthe false negative error rates and RT. There was never any signi�cant negative correlation betweenresponse time and error rate.3.3 Quanti�cation of the recognition performance: combining error rate (ER)and response time (RT) dataThe ER for a test view is the ratio of number of correct responses to the total number of presen-tations of that view. The RT is the average response time of a correct (\target") decision for theview. Both ER and RT measure the \goodness" of the view: in general, the easier it is for the7



subject to recognize a view, the lower the RT and the ER for that view. Each of those two mea-sures of performance has its advantages and disadvantages. On one hand, the technical limitationof �ve trials per condition makes ER too rough a measure, as it can only assume six distinct values(between 0/5 and 5/5). Still, ER is to be preferred over RT in analyzing data from an experimentwith multiple exposures per condition, because the RTs in recognition tend to become uniform withpractice, whereas ERs remain stable, if the subjects receive no feedback (Edelman and B�ultho�,1992b). Moreover, ER may be a more reliable measure of performance than RT, because the latteris a�ected by variability of the motor component of the response, to which ER is in principle lesssensitive.On the other hand, RTs can only be averaged over correct-response trials. Furthermore, reliableRTs can be obtained only for those views which have been correctly recognized most of the times.that is, for views with low ER: if a view has been correctly recognized twice in �ve trials, therelevance of RT (the average \target" response time for the two correct responses) is rather doubtful.We tried to overcome these disadvantages by combining both ER and RT in an uni�ed measure ofgoodness of view, as described in appendix A.3.4 Qualitative characteristics of recognition performanceA convenient representation of the pattern of RT and ER is obtained by deforming the polyhedralapproximation of the viewing sphere, whose vertices denote the orientation of the test views, sothat the length of the radius to each vertex is inversely proportional to the combined ER/RT scoreof the view corresponding to that vertex. In this manner, the greater the length of the radius for agiven view, the better the view; the undeformed viewing polyhedron then corresponds to a perfectperformance.In many cases, both in recognition and in generalization experiments, the resulting shape of theresponse surface was approximately bilobate (two-lobed, similar to the surface generated by thecharacter \8" rotating around its long axis), indicating that the best views were in the neighborhoodof the canonical view, or diametrically opposite to it, and the worst views were disposed on theequator, at a 90� distance from the canonical-view pole. Figure 3 displays such a case. Table 1contains the RT and ER data for this subject. In other cases, the response surface resembled a
attened sphere or an erythrocyte, with the best views disposed on a great circle of the viewingsphere, 90� away from the worst views. Figure 4 displays such an example. The data for thissubject are presented in Table 2. Figure 3 hereFigure 4 hereBoth in recognition memory and in generalization experiments diametrically opposite viewstended to elicit similar recognition performance. This tendency was especially prominent for viewscharacterized by extreme values of ER: if a target view was consistently and reliably recognized astarget (or nontarget), then very often the view opposite to it on the viewing sphere elicited similarresponses.A surprising result of the generalization experiments was that the canonical view and thetraining view were consistently quite distant from each other on the viewing sphere. Moreover,the di�erence in the recognition performance between the training view and the canonical viewwas often signi�cant, of one unit of error rate (one out of �ve trials) or more. This �nding has a8



bearing on the concept of canonicality that we propose and discuss below. This e�ect is illustratedin Figure 5. Figure 5 hereIn the recognition memory experiments, a common characteristic of the individual RT and ERpatterns was the lack of correlation across subjects tested on the same views of the same objects.Pairwise inter-subject rank correlations of RT or ER, computed over the same set of views, werealmost never signi�cant. This indicates that performance averages computed across subjects in therecognition memory experiments would be meaningless. At the same time, for any given subject,the patterns of RT and ER, and their �t to the theoretical models proposed below, were nearlyconstant across experiments.3.5 Conclusions from the exploratory analysis of the dataWe now use a representative example of the exploratory data analysis to put forward some generallessons that will serve as a basis for the detailed computational model developed in the next section.Consider Figures 6 and 7, which display test views for two subjects in the same recognition memoryexperiment, under the general-axis motion condition, arranged according to the goodness rank-ing method explained above. The examination of these particular examples reveal several generalcharacteristics of the recognition process.Figure 6 hereFigure 7 hereFirst, the di�erence between the performance of the two subjects for the same target object isvery clear: neither the canonical views nor the worst views for the two are similar. Second, neigh-boring views in the sequence tend to be more similar than views that are far apart. Diametricallyopposite views are consistently close to each other in the sequence. Inter-view similarity is highespecially for the views which elicited the best recognition performance. These views have a num-ber of features in common: some of the component tubes are arranged according to a particularpattern which is visible in all the good views. In Figure 6 such a pattern is a Z-shaped feature;in Figure 7 it is a U-shaped feature one. Note that these features are no longer visible in the badviews located at the end of the sequence.A subject by subject examination of the sequences of tested views arranged in the order gener-ated by the goodness ranking method revealed that the top best views consistently share a stabletwo-dimensional arrangement of several of the component tubes. The resulting pattern, usuallyreminiscent of common symbols such as characters of the alphabet or simple shapes like an arrowor an isosceles triangle, is readily apparent in the best views. The stable pattern is also discernible,in a more distorted guise, in other views for which the recognition performance was lower, and isquite unrecognizable in the bad views. In the next section, we develop and test a quantitative modelof canonicality that is based on the idea that object views are represented by their similarities toa number of stable patterns, whose choice may vary across subjects.9



4 A view similarity model of object recognitionAn exploratory analysis of the data, outlined in the preceding section, showed that patterns of per-formance in the recognition of wire-like 3D objects are highly variable across subjects. Speci�cally,the objects were found to possess no canonical views in the classical sense: no set of viewpoints con-sistently elicited high recognition performance from all subjects. This lack of correlation betweensubjects dictated an individualized approach to further data analysis and modeling.4.1 Assumptions of the modelAccording to the approach we chose, a model should, when supplied with the appropriate subject-speci�c parameters, predict the performance of the subject (and not necessarily the average perfor-mance of all subjects). Note that this approach does allow the brain mechanism of recognition tobe universal. Indeed, our �rst basic assumption is that the same processing mechanism is employedby all subjects, in conjunction with a possibly idiosyncratic set of internal representations. Asdemonstrated below, this assumption enables us to predict how easy it will be for a given subjectto recognize any given target view, on the basis of the pattern of canonical views computed for thatsubject.Our second assumption is that during training the subject develops and commits to visualmemory a representation of the target object, which is then used in the testing phase to decidewhether the stimulus view can belong to the target. The analysis of the sequence of views rankedby goodness, described in the preceding section, indicates that the representation retained by thesubject may be in the form of a characteristic 2D aspect of the target. The recognition decisionwould then be based on an estimate of an image-plane similarity measure between the stimulus andthe stored representation. The more similar the input view is to the stored aspect, the higher theprobability that the subject will recognize it correctly. The \target" response will then be faster(low RT) and more consistent (low ER). The less similar the input view is to the stored aspect,the higher the probability that the subject will mistakenly classify the view as nontarget. The\nontarget" response will in this case be faster and more consistent.4.2 Features of representationHow do subjects represent speci�c views of the target? In the case of the wire objects we usedthroughout the experiments, the vertices of the object are a reasonable candidate for an elementaryfeature, because they are both informative and perceptually salient. Recall that the analysis of theranked test views revealed the importance of 2D cues in target recognition: image-plane ratherthan 3D measurements seem to determine the sequence order in Figures 6 and 7.There are many ways to describe a view of a 3D object by a set of image-plane measurements.One possibility is to use the x; y coordinates of the features (that is, of the vertices). However, thisrepresentation is not invariant to a 180� rotation in depth around an axis lying in the image plane,whereas the performance of our subjects showed marked insensitivity to this transformation.In our model, views are encoded by sets of inter-vertex distances measured in the image plane.This choice of representation is consistent with the above observation regarding similar performanceon diametrically opposite views, and o�ers an extra bene�t of invariance to translation and image-plane rotation. This latter invariance is also consistent with recent psychophysical �ndings on therecognition of wire-like objects (Edelman and B�ultho�, 1992a; Bricolo and B�ultho�, 1993).10



When inter-vertex distances are used to represent object views, the full dimensionality of therepresentation space X for objects possessing n feature points is equal to n(n � 1)=2. Formally,a subset of the full complement of intervertex distances su�ces for determining completely thearrangement of the vertices, but it is not obvious that the human visual system should use such areduced subset. All we assume at the present stage, therefore, is that di�erent views of an objectare represented by points in a metric feature space whose dimensions are some of the image-planeinter-vertex distances, and that the distance between two views in this space is monotonic withperceptual dissimilarity.54.3 The basic modelSuppose that in a recognition memory experiment a given subject stores a number of exemplarviews of the target (in a generalization experiment the stored view is simply the training view).These views will then appear in the data analysis as the top views in the RT/ER goodness ranking.Given the exemplar set E, our model predicts the RT and ER for a random view of the target asfollows.Let the recognition decision for a given view S(vi) be based on its overall similarity S(vi) to thestored views, expressed as the weighted sum of the Euclidean6 distances d(vi; vj) from the inputview vi to the stored exemplar views fvjg:S(vi) � 1= Xvj2E !i;j � d (vi; vj) (1)This decision method is an adaptation of the context model of classi�cation proposed in (Medinand Scha�er, 1978), as generalized for recognition memory in (Nosofsky, 1988). According to thismodel, the greater the total similarity between the current view and the stored views, the morereadily the current view is recognized. The weights in the formula allow for di�erent saliencies ofthe stored views and can be estimated by linear regression. This model predicts positive correlationbetween the combined RT/ER measure of goodness of a random view and its cumulative distanceto the stored exemplar views.74.4 An improved exemplar-based modelThe basic model presented above has two disadvantages: it requires a high-dimensional featurespace, and it ignores the regularities we observed in the sequence of the ranked test views. Asexplained in section 3.4, subject debrie�ngs and an examination of the ranked test views showedthat during training and testing the subjects usually focused their attention on a small numberof the target segments, and practically ignored the rest. Apparently, the visual system considersthe canonical 2D pattern formed by such special segments as being su�ciently target-speci�c androtation-invariant to allow reliable discrimination between targets and nontargets.5To compute the distance between two views in the feature space, one must �rst solve the vertex-to-vertexcorrespondence problem. While the correspondence problem in the general case is quite di�cult, for the objects usedin our experiments it has just two possible solutions, because of the constraints imposed by ordering the segmentsstarting from the free endpoints of the object. The correct correspondence thus minimizes the feature space distancebetween two projections of the same wire.6Although other metrics can be considered here, this issue is of a secondary importance, as we were mostlyconcerned with the rank order of predicted distances; see section 5.1.7Note that if there is a single stored view, this model resembles Tarr and Pinker's (1989) account of RT in termsof mental rotation to the best view, with the rotation angle replaced by the image-plane similarity measure.11



Canonicality can thus be understood in terms of canonical features: a set of salient featuresthat are shared to some extent by many views in a more or less deformed version, and that arepresent undistorted in the canonical views.8 To test the validity of this concept of canonicality, weemployed the following simple algorithm to identify the most invariant subset of segments in theset of best views for a given subject:1. Identify the best views: those in the ER=0/5 category with RT signi�cantly shorter than themean RT of the views in this category. Usually we selected the top 4-6 views.2. For every inter-vertex distance di;j, compute its CV , or coe�cient of variation:CVdi;j = SDi;jdi;j (2)where di;j and SDi;j denote, respectively, the mean and the standard deviation of the distancebetween vertices i and j computed over the chosen top views;3. Select the inter-vertex distances for which the CV is signi�cantly lower than the average, thatis, the outliers of the distribution of CV.The least varying image-plane inter-vertex distances selected by the above method were clearlyidenti�able in the target view employed by the subject in the target-nontarget discrimination (asdetermined by inspection of the response surface and the ranked view sequence, and by subjectdebrie�ng). Even though the best views for a given target varied across subjects, in all the casesthe most invariant subset of segments resembled a common shape such as a star, an arrow, anisosceles triangle, stylized letters, etc. The inter-vertex distances de�ning the canonical patterns(marked by thin black lines in Figures 6 and 7) were obtained by the algorithm described above.4.5 A prototype-based modelOur results can also be interpreted as supporting the notion that, rather than storing several ex-emplar views, the subject represents the target by similarity to a characteristic shape: a distinctivearrangement of segments present in many of the target views at various levels of deformation. Thischaracteristic shape is then employed in the target-nontarget discrimination. Thus, the exemplar-based recognition scheme outlined above can be modi�ed to use prototype views instead. In theprototype-based version of the model, the target is represented by a prototypical feature: thecharacteristic pattern of segments visible in its purest form in the canonical view.The modi�ed scheme operates in the feature subspaceR�X spanned by the distances extractedby the algorithm described above. For a given input view, instead of employing the overall measureof similarity to the stored exemplars in the full space X , we now compute the distance in thereduced feature space R to the one best view only (that is, to the view in which the canonicalsubset of segments appears in its purest form). The recognition decision for view vi is based onits distance dR to the best view v1 as measured in the subspace R spanned by the least varyinginter-vertex distances:8This notion of canonicality may explain why in many cases in the generalization experiments the canonical viewwas not the one showed in training, but another view, which could be quite far away on the viewing sphere. Forinstance, it could be that in that particular view the canonical shape (say, a nearly equilateral triangle) rememberedby the subject was less deformed (closer to the prototypical equilateral triangle).12



S(vi) � 1=dR (vi; v1) (3)where S(vi) measures the image-plane similarity between the corresponding sets of inter-vertexdistances in the two views. The higher the similarity measure, the more readily the current viewis recognized as target. This version of the model predicts positive rank correlation between thecombined RT/ER measure of view goodness and the distance de�ned above. This prediction istested in the next section.5 Experimental validation of the view similarity model5.1 Goodness ranksTo assess the correlation between the recognition probability of a view as predicted by the prototypesimilarity model and its goodness as re
ected in the experimentally determined view rank value,we proceeded as follows. For a given subject, we ranked the test views in the decreasing order ofthe predicted recognition probability. As explained above, this rank order is generated by usingthe canonical view of the target object for the subject data under consideration. The theoreticallydetermined rank order of the test views was then compared with their experimentally de�ned rankorder. The goodness of �t of the model to the data was evaluated by computing the correlationbetween the two rank orders. We used for this purpose a non-parametric statistical measure, theSpearman rank correlation.We found that the Spearman coe�cient of correlation was usually in the 0:55�0:75 range, withvery good signi�cance levels, both for generalization and for recognition memory experiments. Theindividual data are displayed in Tables 3 and 4. A typical scatter plot of the theoretical and theexperimental ranks is shown in Figure 20, where the ordinate coordinate of each point representsits theoretical rank, and the abscissa { its experimentally determined rank. The data are from thegeneralization experiment illustrated in Figure 8.Figure 8 here5.2 Shape of response surfaceThe view similarity model can also explain the overall shape of the response surfaces such as theone shown in Figures 3 and 4. Speci�cally, bilobate response surfaces arise when the patternextracted by the subject consists of several segments in a complex 3D arrangement. Such patternsare best visible in the vicinity of the canonical view pole and also at the opposite pole, and thebad views are disposed around the equator. Figure 9 displays an example of a bilobate responsesurface corresponding to the ranked views of Figure 8. Subject debrie�ng, inspection of the responsesurface and the canonical feature extraction algorithm described above revealed that this subjectbased his decision on the presence of two parallel V's made up of four segments. Figure 9 shows thecanonical view, in which the two V's are evident, and Figure 10 shows a bad view, where the V'sare not visible. The training view used in this session (Figure 11 is also di�erent from the canonicalview, the two V's being in this case less parallel.) The shape of the subject's response surface isclose to that of the surface generated by the model using the pattern spanned by the four segmentscomprising the two V's. Figure 9 here13



Figure 10 hereFigure 11 hereIn the case of erythrocyte-shaped response surfaces, our analysis showed that the subject mayhave extracted from the target a small number of segments that were roughly coplanar with theaxis along which the ideal spherical response surface has been compressed. The pattern made upby these segments was best visible when viewed from a direction orthogonal to the axis, hencethe great circle of the good viewpoints and the concentration of the bad viewpoints at the poles.Figure 12 displays an example of such response surface. Subject debrie�ng and the canonical featureextraction algorithm revealed that this subject based his decision on the presence of two roughlyparallel segments (the true angle is about 30�). The good viewpoints are precisely those from whichthe two segments appear to be parallel. Figure 12 shows the canonical view, in which the parallelsegments are evident, and �gure 13 shows a bad view, where the apparent parallelism of the twosegments is lost. Again, the shape of the response surface is close to that of the surface generatedby the model using the pattern spanned by the two parallel segments.Figure 12 hereFigure 13 here5.3 Idiosyncrasy of the representations employed by di�erent subjectsConsider Figures 14 and 15, which represent the canonical view and the worst view for subject Harin a Y-axis motion experiment. Figure 16 plots the mean RT for views recognized four or �veout of �ve times. The good views are those in which a rough U-like shape is seen. The bad vieware those in which the segments forming the U shape intersect. These views are \orthogonal" tothe good ones. There is a good agreement between the experimental rank of a test view and itstheoretical rank computed by the model with the U shape serving as the canonical feature. Quiteinterestingly, for another subject, Sol, in the same experiment, the orientation of the good and thebad view directions was orthogonal to those of the �rst subject. Figure 17 shows the view withthe canonical feature (a combination of > and C symbols), and Figure 18 presents the worst view.Figure 19 is a plot of the mean RT for the views recognized four or �ve out of �ve times by thissubject. Figure 14 hereFigure 15 hereFigure 16 hereFigure 17 hereFigure 18 hereFigure 19 here14



5.4 Comparison with \random" modelsThe prototype view similarity model is only useful insofar as the rank order it predicts on the basisof the extracted canonical view is better than the rank order generated by the same model on thebasis of a randomly selected set of inter-vertex distances, or when using the most variant set ofinter-vertex distances. Indeed, the correlations obtained in the latter cases were never signi�cant.Similarly, it is necessary that the rank order predicted by the model using the canonical views of agiven subject be better than the rank order generated by the same model on the basis of a randomselection of views. We found that the correlations obtained by substituting random for canonicalviews were not signi�cant. In rare cases, signi�cant correlations were obtained using the completeset of inter-vertex distances. These cases fall under the heading of the \basic model," discussed insection 4.3.5.5 Comparison with the multiple views plus transformation modelWe now compare the model proposed and tested in the preceding sections with a representativeof the class of models that postulate the involvement of mental rotation (Shepard and Metzler,1971; Shepard and Cooper, 1982) in recognition. Speci�cally, we consider the multiple views plustransformation model of Tarr and Pinker (1989), which predicts that the RT for a given viewlinearly increases with its 3D rotational distance to the closest stored view. We �rst note that themultiple views plus rotation scheme applies only to the recognition times of the correct \target"responses. Therefore, this scheme is in principle restricted to a small subset of the experimentalresults of a given subject, and, contrary to our model, cannot account for the incorrect \nontarget"responses.The quantitative di�culties of the mental rotation models in accounting for our data are espe-cially easy to understand in the case of the generalization experiments. First, the canonical view isfrequently distant from the training view, both in terms of the rotational distance and in terms ofthe recognition performance. In this case, the very idea of storing the training view and employ-ing it for representing the target fails. Second, even when the canonical view coincides with thetraining view, neither the RT nor the ER correlate signi�cantly with the rotational distance fromthe training view. A typical scatter plot of the rotational distance ranks vs. the experimentallydetermined goodness ranks is presented in Figure 21. The data are from the same generalizationexperiment illustrated in Figure 8. Figure 20 hereFigure 21 hereThe reason for this lack of correlation becomes obvious when the view ranks are representedin the form of a response surface. As we have already pointed out, both for recognition memoryand for generalization experiments, the shapes of the response surfaces can be roughly classi�edas either bilobate or 
at. If indeed RT or ER were monotonic in the rotational distance from thecanonical view, then the distance from the center of the plot would vary monotonically, resultingin a surface resembling a water drop in the case of a single stored view. The 
at, erythrocyte-likeresponse surfaces are di�cult to explain by mental rotation, unless one assumes a set of stored viewsuniformly disposed around the equator. As for the bilobate response surfaces, a mental rotationmodel would have to postulate the existence of two diametrically opposed stored views, and a rapiddegradation of performance as the rotational distance approaches 90�. Even then, the response15



surface would be rotationally symmetric around the axis passing through the two stored views,because according to the mental rotation models all views at a given rotational distance from thestored view elicit equal recognition performance. This prediction is refuted by an inspection of theresponse surfaces; while the global shape is indeed bilobate, there are signi�cant local departuresfrom symmetry.Of course, the multiple views plus transformation model would in principle be able to �t anyresponse surface, no matter how irregular, simply by assigning one stored view per local minimumand by using a linear approximation to �t the neighboring surface. However, this kind of approach isunacceptable, �rst because it is unfalsi�able in principle, and, second, because the required numberof stored views is high (equal to the number of local minima in the response surface).6 General discussionWe are now in a position to o�er some answers to the three questions regarding canonical viewsthat we posed in the introduction.6.1 On the computational characterization of canonical viewsThe �ndings reported here indicate that the concept of canonicality has to be revised. The originalnotion of canonicality due to (Palmer et al., 1981) was formulated in general, shape-independentterms such as visible area, familiarity, etc. In comparison, we �nd that a view is rendered canonicalby the presence of certain concrete and salient features, which are visible, more or less deformed,over a range of viewpoints. Thus, it is not the views which are canonical, but rather the diagnosticfeatures.The involvement of diagnostic features in the making of canonical views suggests that canonical-ity should be de�ned in a context and task dependent manner. The canonical views of the targetin our two-way target-nontarget discrimination task depend on the expected distribution of thenontarget objects in the shape space, which is initially hidden from the subject. The subjects arelikely to select the features of the target which are of potential diagnostic value depending on theexpected target-nontarget similarity, and on prior knowledge of the dimensions of the shape space.In a di�erent variant of the same task, e.g., when the nontargets are also shown during training, thechoice of the diagnostic features would probably be di�erent and more e�ective, because it wouldrely on the true distribution of nontargets in the shape space.6.2 On the role of canonical views in object representation and recognitionIn attempts to understand object recognition in human vision, a major distinction is usually madebetween theories that hold that objects are represented by stored 3D replicas or analogs of ob-jects, and those that postulate representation by sets of \snapshots" taken from certain viewpoints(Marr and Nishihara, 1978; B�ultho� and Edelman, 1992). Recent developments in computer visionindicate that this distinction may be unwarranted, because a set of properly chosen views of anobject, along with feature correspondence information, is computationally equivalent to having a3D model of the object at one's disposal (Ullman and Basri, 1991). We would like to point out thatthose two apparent extremes also share an important conceptual trait: both the 3D model and themultiple-views model ascribe certain perceptual realism to the representation. Be it 3D or 2D, the16



internal model is assumed to be a replica of the world object, or, more precisely, of the percept ofthe world object.We argue that such a degree of veridicality in representation is neither feasible computationallynor strictly necessary for successful object recognition. Representation is not a passive processof mirroring the world, and a stored model of a visual object need not be the stored percept ofthat object. On the contrary, our data suggest that representation is a process of simpli�cationand schematization that depends both on the task and on context. Task is important becauseits de�nition may create bias in favor or against certain types of features, and may also directlyin
uence the response distribution. Context is important because the features of recognition arebest selected according to the expected contrasts between the target and the nontarget objects.Our main result is that fast recognition of irregular, complex objects relies at least in parton schematic, caricature-like 2D object representations and a straightforward image-plane shapematching process. In each of our experiments, the subjects appeared to have selected a small subsetof the segments of the target, arranged in a special pattern presumably expected to be su�cientlytarget-speci�c and rotation-invariant to allow reliable discrimination between target and nontargets.The presence of this special pattern of segments accounted for the high saliency or canonicalityof the best-recognized views. We believe that a chief reason for the choice of such a strategy is,prosaically, the incapacity of the system to do better: simultaneous processing of the geometricaldescriptions of a set of arbitrary and highly similar objects in 3D requires precise and complicatedcomputations that may be unsuitable for a biological information processing mechanism operatingunder constraints of sloppy hardware and severe time shortage.6.3 SummaryWe have studied the dependence of a combined RT/ER score of human performance in objectrecognition on stimulus orientation. First, we found no evidence for universally valid canonicalviews: the best view according to one subject's data was often hardly recognized by other subjects.Second, a subject by subject analysis showed that the RT/ER scores were not linearly dependenton the shortest angular distance in 3D to the best view, as predicted by the mental rotation theoriesof recognition. Rather, the performance was signi�cantly correlated with the summed image-planefeature-by-feature distances between the presented view and several best (shortest-RT and lowest-ER) views. Third, the subject's response to a view of the stimulus could be usually adequatelyaccounted for by a greatly simpli�ed description of the stimulus in terms of a small subset of itsparts, chosen according to a criterion of saliency and stability across views. These results suggestthat measurement of image-plane similarity to a few subject-speci�c feature patterns (Edelman,1993) is a better model than mental rotation for the mechanism used by the human visual systemto recognize objects across changes in their 3D orientation.The results we report were obtained for a class of synthetic randomized wire-like objects. Thislimitation obviously calls for an extension of the present study to a variety of natural objectcategories. We would like to stress that our results suggest a concrete approach to such an extension.Instead of merely asking whether or not natural objects possess canonical views, one can applythe method of extraction of canonical features of wire objects, developed in section 4.4, to theidenti�cation of similarly important features of natural objects. We conjecture that these featuresof recognition will not be too numerous, that the features will be common to di�erent subjects tothe extent that their personal visual experiences overlap, and that, once determined for a givensubject in a certain experimental setting, the features would allow accurate prediction of that17
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A Computation of the \goodness" of a view based on combinedRT/ER dataConsider the problem of de�ning an experimental criterion for ranking test views, for a givensubject, from \best" to \worst". During training the subject abstracts and commits to memorya representation of the target object. In the testing phase the recognition decision is based on anevaluation of the similarity between the input image and the representation. Presumably, highsimilarity leads to a fast \target" decision, while high dissimilarity results in a fast and con�dent\nontarget" response. Our aim was to de�ne experimental criteria for ranking the tested targetviews, for a given subject, from the \best" (canonical view) to the \worst" { the one most dissimilarto the subject's representation of the target. Thus, we would like the rank of a test view to re
ectits probability of being recognized as \target."The variable used for such a ranking obviously must include the error rate: the best viewshave ER=0 and the worst views have maximum ER (in our experiments this means ER=5/5: �vemistakes out of the �ve trials per view). The �rst step is then to rank the views in the increasingorder of the error rate. Next, we observe that a view that is easier to recognize is likely to elicita shorter response time (RT). Consequently, for a given ER, the responses time can be used tofurther rank the views.Note that by considering only the RT of the correct \target" decisions (as it is usually done inthe study of recognition performance) one loses the information carried by the RT of the incorrect,\nontarget," response to the target. In our experiments each target view was presented r = 5times. Suppose that it was correctly recognized t times and incorrectly recognized as \nontarget"nt = r � t times. For each test view of the target we de�ne RTc as the mean response timefor the t correct (\target") responses, and RTnc as the mean response time for the nt incorrect(\nontarget") responses to the target view under consideration.Views with the same ER were ranked as follows. The possible values of ER are 0/5, 1/5, 2/5,3/5, 4/5, 5/5. For the 0/5, 1/5, 2/5 ER values (low error rate category) we ranked the views in theincreasing order of RTc: for these views the correct recognition decision prevailed, in which case,as we have argued above, views should be considered better if they elicit short recognition times.For these reliable \target" responses it is the RTc which is relevant. The one or two values of RTncare discarded in this case as corresponding to low-probability events.For the views that elicited 3/5, 4/5, 5/5 ER values (high error rate category) the incorrectrecognition (false negative response) prevailed, presumably because they were considered by thesubject as being very di�erent from his or her representation of the target. We ranked these viewsin the decreasing order of RTnc. For these reliable \nontarget" responses it is the RTnc which isrelevant, and the one or two values of RTc are discarded. We used RTnc here because a view thatis highly dissimilar from the target, and is likely to be wrongly classi�ed as nontarget, will alsoelicit faster rejection decision (shorter \nontarget" response time). In summary, according to ourranking method, the best view of an object has ER=0/5 and the shortest \yes" response time andthe worst view has ER=5/5 and the shortest \no" response time.20



Figure 1: A typical \wire" object used in our experiments. All the objects, targets and nontar-gets, were made of seven rigidly articulated cylinders, with an average length to radius ratio ofapproximately 10, and were rendered as shaded white matte metal using Gouraud shading. Theconcatenation of the individual segments was achieved by computing the true intersections betweenthe consecutive cylinders.
21



x, deg y, deg RTc or RTnc, msec ER trials110 -30 1464 0 531 18 689 5 5148 54 637 1 5-31 -18 801 4 5148 18 881 5 5-31 -54 790 1 5211 -18 612 5 50 31 652 4 531 -54 969 2 5148 -18 944 3 50 -31 1319 3 5-31 18 1028 4 5249 -30 612 4 5180 0 763 4 590 -58 1133 5 590 90 805 5 5-69 30 821 3 5180 31 723 4 531 -18 834 4 5121 0 1081 0 590 -90 705 5 5-90 -58 623 5 590 0 889 2 531 54 605 5 5110 30 1343 2 5148 -54 890 4 5-90 0 1016 0 569 30 976 5 569 -30 1199 2 590 58 760 5 5211 18 812 5 5211 54 964 4 5-31 54 1179 3 5211 -54 605 5 558 0 800 4 5-58 0 858 0 5180 -31 677 5 50 0 785 5 5238 0 774 5 5-69 -30 1012 1 5249 30 760 3 5-90 58 960 5 5Table 1: Performance of the subject whose bilobate response surface is shown in Figure 3. The�rst two columns contain the coordinates of the test views. The third column shows the mean RTof the \target" responses when the number of \target" responses (shown in the fourth column) isat least 3, or the mean RT of the \nontarget" decisions, when the number of \target" responses incolumn four is at most 2. The last column contains the total number of presentations of the view.22



x, deg y, deg RTc or RTnc, msec ER trials110 -30 882 5 531 18 784 2 5148 54 913 0 5-31 -18 742 1 5148 18 864 0 5-31 -54 861 1 5211 -18 813 0 50 31 761 4 531 -54 812 0 5148 -18 735 5 50 -31 649 1 5-31 18 721 4 5249 -30 850 4 5180 0 599 1 590 -58 669 5 590 90 635 5 5-69 30 722 5 5180 31 718 0 531 -18 772 0 5121 0 968 3 590 -90 667 4 5-90 -58 755 5 590 0 588 4 531 54 842 2 5110 30 837 3 5148 -54 695 5 5-90 0 735 5 569 30 661 4 569 -30 548 5 590 58 694 5 5211 18 707 0 5211 54 619 0 5-31 54 892 3 5211 -54 654 1 558 0 741 5 5-58 0 717 3 5180 -31 885 1 50 0 661 1 5238 0 560 3 5-69 -30 726 4 5249 30 710 4 5-90 58 664 5 5Table 2: Data for the subject whose erythrocyte-like response surface is illustrated in Figure 4.The arrangements of the data are as in the previous table.23



Name Corr IP p Corr 3D pore 0.56 0.0002 0.15 0.32fab 0.62 0.0001 0.01 0.93jud 0.68 0.0001 0.22 0.15bog 0.30 0.1090 -0.01 0.19mir 0.60 0.0001 0.17 0.27olg 0.50 0.0010 -0.06 0.69ele 0.66 0.0001 -0.02 0.87tli 0.67 0.0001 0.27 0.20had 0.39 0.0119 0.05 0.72ana 0.61 0.0001 0.08 0.60yuv 0.61 0.0001 0.02 0.87mar 0.55 0.0002 0.07 0.63�o 0.67 0.0001 0.25 0.22ore 0.29 0.06 0.12 0.42evg 0.69 0.0001 0.26 0.10len 0.63 0.0001 0.14 0.40mas 0.66 0.0001 -0.02 0.85ali 0.55 0.0005 0.25 0.14eya 0.64 0.0001 0.37 0.02ore 0.55 0.0009 -0.32 0.05ali 0.58 0.0001 0.08 0.58luc 0.53 0.0006 0.16 0.32mic 0.54 0.0003 0.15 0.49nur 0.60 0.0001 0.07 0.67sma 0.61 0.0001 0.09 0.57har 0.80 0.0001 0.27 0.10nur 0.65 0.0001 0.22 0.17ine 0.82 0.0001 0.35 0.03sol 0.79 0.0001 0.30 0.07mic 0.74 0.0001 0.31 0.06Table 3: Recognition memory experiments. The �rst column contains the name of the subject. Thesecond column displays the Spearman rank correlation coe�cient between the experimental ranksand the ranks predicted by the image-plane similarity model; the signi�cance level is presented inthe third column. The last two columns contain the rank correlation and the signi�cance level withthe 3D rotational distance to the best view as a predictor of goodness of the test view.24



Name Corr IP p Corr 3D pdor 0.60 0.0001 0.30 0.05don 0.77 0.0001 0.30 0.84eya 0.56 0.0001 0.11 0.47bog 0.63 0.0001 0.30 0.05mar 0.55 0.0003 0.02 0.91har 0.60 0.0001 0.08 0.59jud 0.65 0.0001 0.37 0.01mos 0.50 0.0015 0.01 0.94cat 0.48 0.0015 0.02 0.89hel 0.62 0.0001 0.10 0.59tal 0.78 0.0001 -0.04 0.79shi 0.54 0.0005 0.29 0.08chr 0.62 0.0001 -0.12 0.43ore 0.61 0.0001 0.14 0.37jud 0.51 0.0004 0.34 0.06har 0.66 0.0001 0.10 0.05shi 0.69 0.0001 0.06 0.69vic 0.80 0.0001 0.40 0.02len 0.74 0.0001 0.10 0.55sch 0.57 0.0002 0.07 0.65shi 0.75 0.0001 0.16 0.31ore 0.59 0.0001 -0.05 0.74tal 0.47 0.0016 0.30 0.05jud 0.62 0.0001 0.18 0.24ali 0.69 0.0001 -0.34 0.03bog 0.63 0.0001 0.30 0.05don 0.58 0.0001 0.17 0.25hel 0.60 0.0001 -0.19 0.23len 0.57 0.0001 0.10 0.40tal 0.53 0.0005 0.26 0.09eug 0.73 0.0001 0.15 0.32Table 4: Generalization experiments. The �rst column contains the name of the subject. Thesecond column displays the Spearman rank correlation coe�cient between the experimental ranksand the ranks predicted by the image-plane similarity model; the signi�cance level is presented inthe third column. The last two columns contain the rank correlation and the signi�cance level withthe 3D rotational distance to the best view as a predictor of goodness of the test view.25



Figure 2: The viewing polyhedron illustrating the test views (which were situated at its vertices),drawn around a target object.
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Figure 3: A bilobate (two-lobed) response surface produced by plotting a subject's performance inthe recognition memory experiment. The best viewpoints are at the poles.
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Figure 4: An erythrocyte-like response surface, from a generalization experiment data. The bestviewpoints are situated around the equator. The canonical view is marked with a long line, thetraining view with a short line.
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Figure 5: An illustration of the di�erence between training and canonical views found frequently inour data. The training view is shown on the left (coordinates 90�; 0�, recognized 3/5 times). Thecanonical view is on the right (coordinates 238�; 0�, recognized 5/5 times).
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Figure 6: Data from a recognition memory experiment. Coordinates of each test view are presentedtogether its goodness rank. Thin black lines mark the inter-vertex segments which de�ne thecanonical (in this case) Z-shaped pattern visible in the good views.
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Figure 7: Data from another subject in the same recognition memory experiment as in Figure 6.Coordinates of each test view are presented together with its rank. The thin lines mark the segmentswhich de�ne a U-shaped canonical pattern visible in the good views.
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Figure 8: Data from a generalization experiment. Coordinates of each view are presented togetherwith the rank. A double-V shape, marked with lines, is visible in the best views.
32



Figure 9: The bilobate response surface in the generalization experiment. The canonical double-Vfeature is visible. The canonical view is positioned at one of the poles.
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Figure 10: Same experiment as in Figure 9; a bad view, in which the double-V feature is invisible.
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Figure 11: Same experiment as in Figure 9; training view. The double-V feature is visible, but isless prominent than in the canonical view. The recognition performance for the training view wassigni�cantly worse than for the canonical view.
35



Figure 12: An example of a 
at response surface with the target object inside, seen from a goodvantage. The apparent parallelism of two of the segments was a diagnostic feature for the sub-ject whose data are plotted here. The presence of this feature accounts for the good recognitionperformance for this view.
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Figure 13: Same experiment as in Figure 12; bad viewpoint. The two segments forming thecanonical feature are no longer visible.
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Figure 14: Canonical view for subject Har in a Y-axis motion experiment.
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Figure 15: A bad view for subject Har in the same experiment as in Figure 14.
39



Figure 16: A plot of the response times for subject Har, in the same experiment as in Figure 14.The orientation of the extra lines corresponds to the orientation of the target for which the ER was0 or 1/5, and their length is proportional to the mean RT of the \target" response.40



Figure 17: Canonical view for subject Sol in the same experiment as in Figure 14.
41



Figure 18: A bad view for subject Sol, in the same experiment as in Figure 14.
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Figure 19: A plot of the response times for subject Sol, in the same experiment as in Figure 14.The orientation of the extra lines corresponds to the orientation of the target for which the ER was0 or 1/5, and their length is proportional to the mean RT of the \target" response.
43



Figure 20: Goodness ranks predicted by the view similarity model, plotted against the experimen-tally determined ranks. In this case, the Spearman coe�cient of correlation is equal to 0.7, at asigni�cance level of 0.0001. 44



Figure 21: Rotational distance ranks in 3D to the best view, plotted against experimentally deter-mined ranks. The Spearman coe�cient of correlation is 0.03, n.s.45


