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Abstract

A frequently made claim in the innovation literature is that important inven-

tions involve the transfer of new knowledge from one technological domain to

another. This study uses U.S. patents granted from 1976-2006 to identify the

role of knowledge acquired from outside each patent’s technological domain.

Our results do not seem to support the claim above. Increasing citations to

external prior art is a significantly less important predictor of forward cita-

tion frequency than citing prior art that is technologically closer. This result

is robust across several model specifications and ways of defining whether

each flow of knowledge is external. The result is even stronger in the most

highly-cited technology categories. We discuss possible explanations for this

apparently negative impact of external knowledge—including both measure-

ment issues and challenges associated with assimilating disparate knowledge.
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1. Introduction

Important concepts in the innovation literature build on the notion that

important inventions involve the transfer of knowledge from one technolog-

ical domain to another. This observation derives from the perspective that

new technologies are combinations of existing components and principles—

and further, that exotic combinations produce the most novel inventions. Of

those inventions that become commercialized, payoffs and importance may

be especially high. Examples abound of important inventions involving com-

binations and transfer across technological domains (Mowery and Rosenberg,

1998; Ruttan, 2001; Arthur, 2007). Jet engines for military aircraft provided

the fundamental technology for high efficiency natural gas power plants; ad-

vances in ball bearings and tires for bicycles enabled development of auto-

mobiles; production of long wires for radial tires was instrumental for slicing

silicon wafers to produce solar panels. On a larger scale, general purpose

technologies such as the steam engine, electric power, chemical engineering,

and semi-conductors have had pervasive effects across multiple sectors of the

economy. More specific technologies like lasers and synthetic fibers became

useful for improving the performance of technologies far afield from their

original area of application.

The possibility of substantial societal benefits resulting from novel com-

binations from disparate sources motivates work within technology policy,

for example on the characteristics of knowledge networks, interdisciplinar-

ity, and technology transfer. Firms too have been advised of the benefits of

developing broad absorptive capacity, making connections across structural

holes, and reaping economies of scope. While few would dispute that the po-
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tential for novel combinations is large, government decisions on science and

technology inevitably face a trade off between how much to support science

and technology conducted within existing domains versus supporting new

endeavors that span domains. Corporations too wrestle with tradeoffs asso-

ciated with improving routines versus initiating new ones; allocating between

exploration and exploitation; and to what extent to pursue the benefits of

concentration versus those of diversity.

This study aims to add insight on such decisions by using patent data

to address the question: can we observe benefits from assimilating knowledge

from other technological domains? Our data are information on the front

pages of all 3 million U.S. patents issued between 1976 and 2006. We run

negative binomial regressions on these data to identify the role of knowledge

acquired from outside each patent’s technological domain. The dependent

variable in these regressions is each patent’s importance. As a proxy, we use

the number of times it is cited by subsequent patents within 10 years. We

measure knowledge flows using the citations that each patent makes to pre-

vious patents, as well as the technological classifications for each. If a cited

patent has a different technological classification from the citing patent, that

patent-citation pair is counted as an external knowledge flow. We thus test

the hypothesis that patents with more citations to external knowledge are

more likely to be important, and thus receive more citations from future

patents. We control for time, citation lags, patent breadth, the type of orga-

nization patenting, and technological areas with higher propensity for being

cited. In order to improve the robustness of the results to patent examiners’

decisions, we employ both the U.S. and international patent classification
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systems. In this paper, we first describe the theoretical issues at stake in

understanding the importance of flows of knowledge and the use of patent

data to measure them. Section 3 describes our approach to hypothesis test-

ing. Section 4 presents the results and Section 5 discusses interpretation and

implications.

2. Knowledge flows, inventions, and patents

The hypothesis we test in this study examines two longstanding concepts

in the literature on innovation: first, the notion that novel technologies are

assembled through a combinatorial process and second, that important in-

ventions have often been characterized by the transfer of knowledge from

one technical area to another. To test this hypothesis, we make use of pre-

vious work on the interpretation of information found in patent documents

to construct indicators of inventions, invention value, boundaries of technical

domains, and knowledge flows.

2.1. Combination, cumulative synthesis, and transfer

The notion of “cumulative synthesis” provides a starting point in charac-

terizing the processes of discovering and developing new technologies. Usher

(1954) proposed that technologies are formed through the combination of

existing components and principles; a major or strategic invention repre-

sents the cumulative synthesis of many individual inventions (Ruttan, 2001).

Schumpeter argued that the crucial role that entrepreneurs play in economic

growth arises from their “special function” in “carrying out of new combina-

tions” (Schumpeter, 1934). Nelson and Winter (1982) focus on the role that
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firms play in assembling combinations of technical, organizational, and mar-

ket knowledge. Arthur (2007) used historical examples of the invention of

‘radical’—that is non-incremental—new technologies, to develop a theory of

invention that includes the claim that, “technologies are combinations; they

are phenomenon based; and their architecture is recursive.” An essential

aspect of this argument is that knowledge creation is inherently cumula-

tive; it resembles aspects of an evolutionary process (Gilfillan, 1935). This

well-established notion of cumulative synthesis provides some of the basis for

more recent work on the benefits of diversification within firms (Pavitt et al.,

1989), technological transitions (Geels, 2002), and the theoretical structure

of technologies (Arthur, 2009).

The perceived importance of cumulativeness and combination leads many

to claim that novel combinations account for much of the historical evidence

of particularly novel inventions. Inter-sectoral flows of knowledge are partic-

ularly important for these non-incremental inventions: “the most important

inventions have had implications across industries” (Mowery and Rosenberg,

1998). More generally, “an important determinant of the rate and direction

of scientific progress has been the transfer of concepts from one scientific spe-

cialty to another” (Rosenberg, 1994). And, “we know that novel technologies

are shaped by social needs; that they issue often from experience gained out-

side the standard domain” (Arthur, 2007). Using increasingly disaggregated

data on R&D, productivity, and patenting, Schmookler (1966) and Scherer

(1982a,b) found that R&D investment in one industry had substantial effects

on productivity growth in others.

Several studies highlight the role of the transfer of knowledge across
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boundaries within firms (Rosenkopf and Nerkar, 2001; Suzuki and Kodama,

2004), as well as in universities (Rosell and Agrawal, 2009). Others have

linked these findings to the benefits of diversification in firms (Nelson, 1959;

Jaffe, 1986; Garcia-Vega, 2006), and of relaxing disciplinary borders in academia

(Rosenberg, 2009). Further results include: benefits from combining old and

more recent technology (Nerkar, 2003); more variable outcomes when combin-

ing unfamiliar technology (Fleming, 2001); and breakthroughs arising from

experimentation with combinations of unfamiliar, recent, and novel inven-

tions (Ahuja and Lampert, 2001). Some firms actively exploit the diversity

of their client base to combine disparate knowledge (Hargadon and Sutton,

1997). The concepts of technological space, technological domains, and tech-

nological distance have been essential for developing empirical tests of the

value of combination (Gilsing et al., 2008; Benner and Waldfogel, 2008). As

described below, delineation of technological domains is central for this study.

2.2. Interpretation of patent data

To operationalize and test these concepts, we make use of patent data

and previous studies of what they represent. Patents provide an attractive

way to measure inventive activity for several reasons: comprehensive data

are publicly available, the technical characteristics are described in detail,

the definition of what constitutes a patent in the U.S. has changed little for

over 200 years, and every patent is categorized by experts using a standard

classification scheme (Griliches, 1990; Watanabe et al., 2001; Jaffe and Tra-

jtenberg, 2002; Hall et al., 2005; Popp, 2005). To be sure, using patents

involves many well-documented limitations. For example, all patents are

not equally important, not all inventions are patentable, firms use alterna-
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tive means to protect their intellectual property, and sometimes they patent

strategically (Harhoff et al., 1999; Bessen, 2005).

2.2.1. Forward patent citations as a measure of value

Claims about the role of inter-domain knowledge flows emerge from his-

torical case studies of important technologies. Our ability to examine those

claims against a broader set of inventions therefore requires distinguishing

important inventions from others. We make use of previous work that shows

that more frequently-cited patents tend to be more valuable. This literature

finds a positive relationship using indicators of value based on: sales-based

estimates of social value (Trajtenberg, 1990), stock market value of the as-

signee firm (Hall et al., 2005), interviews with inventors (Harhoff et al., 1999),

payment of patent renewal fees (Griliches et al., 1987; Harhoff et al., 1999,

2003), whether a lawsuit was filed (Allison et al., 2004), and filling patents for

the same invention in multiple countries (Lanjouw and Schankeman, 2004).

Recent work has developed composite indicators using multiple measures

(van Zeebroeck, 2011). Forward citations are a far from perfect measure of

value, however: they still account for only a small part of the variation in

value (Bessen, 2008); a full citation history takes decades to establish, intro-

ducing truncation issues (Lin et al., 2007); and they ignore future inventions

that are not subsequently patented (Mariani, 2004). We acknowledge that

our chosen measure of value is a “noisy” indicator (Jaffe et al., 1998) and

make efforts to reduce noise by controlling for truncation issues and variables

omitted in other studies.
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2.2.2. Patent classes as technological domains

We use patent classifications to delineate technological domains. After a

patent application is filed, the patent examiner responsible for that technical

area assigns patents to at least one or more patent classifications. The U.S.

PTO for example defines over 100,000 detailed classifications based on tech-

nical characteristics in the “Examiner Handbook to the U.S. Patent Classi-

fication System.”1 These detailed subclasses are structured under about 400

3-digit higher-level “classes.” Hall et al. (2001) grouped these 400 classes into

36 technical categories, each of which they then assigned to one of six broad

technical categories. As in previous work, we use these groupings to delin-

eate technical domains (Benner and Waldfogel, 2008).2 Like Jaffe (1986) we

view the technical, rather than product or market, orientation of the patent

classification system as an asset for our study, since we are interested in the

technical flows of knowledge. Similarly, even though many of these citations

are added by examiners (Alcacer and Gittelman, 2006), there is evidence that

these additions enhance the picture of whence knowledge derives, as it cor-

rects for incentives to ignore potentially overlapping prior art (Criscuolo and

Verspagen, 2008; Schoenmakers and Duysters, 2010). We address concerns

about the validity, precision, and consistency of patent classification (Dahlin

and Behrens, 2005) in four ways: first we collapse the multiple dimensions of

technological proximity to a simple dichotomy between inside and outside of

a technical domain; second, we avoid use of the most detailed level of clas-

1www.uspto.gov
2We do not make use of the >100,000 detailed classes because these distinctions likely

over-state their precision with the trend toward extensive cross-referencing of patent ap-
plications into multiple classes.
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sification; third, we use multiple classification systems; and fourth, we use

nested sub-categories within classifications.

2.2.3. Backward patent citations as knowledge flows

Many studies have found that citations from one patent to another pro-

vide a means for measuring the flows of knowledge (Trajtenberg, 1990; Jaffe

et al., 1998, 2000). Detailed technology case studies of citation networks

generally find that cited prior does include precursor inventions (Mina et al.,

2007; Fontana et al., 2009; Barbera-Tomas et al., 2011). These results sup-

port subsequent work employing backward citations to measure knowledge

flows across geographical space (Maurseth and Verspagen, 2002; Mariani,

2004) and to a lesser extent social space (Sorenson et al., 2006). We treat

backward patent citations as flows across technological space (Benner and

Waldfogel, 2008), and make only the modest assumption that that citations

from one patent class to another represent knowledge flows across technolog-

ical domains.

3. Data and methodology

We constructed variables indicating how frequently each patent was cited

by subsequent patents (forward citations), as well as how many and what

types of patents each patent cited as prior art (backward citations). We used

the resulting data set to evaluate several tests of the following null hypothesis:

H0: the extent to which a patent cites prior art outside its technological area

has no significant effect on the number of times it is cited by subsequent

patents.
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Based on the discussion in section 2, we expected to reject the null hypothe-

sis, and that increasing the amount of external prior art would have a positive

effect on forward citation frequency. The practical challenges in testing this

hypothesis center on: (1) establishing boundaries of technical domains (2) es-

tablishing the value of patents, and (3) controlling for the other determinants

of value.

3.1. Patent data and timing

We use patents granted by the U.S. Patent and Trademark Office (PTO)

from 1976–2006. Patent citation data come from a revised version of the Na-

tional Bureau of Economic Research (NBER) Patent Citation Data File (Hall

et al., 2001). We impose a ten-year window—on both forward and backward

citation pairs—to minimize truncation bias An alternative method to address

truncation is to estimate adjusted patent citations using the shape of the

overall citation lag distribution (Hall et al., 2005) or the patents available for

citation over time (Dahlin et al., 2004). We choose the blunter method for its

simplicity and reduced tendency to inflate the importance of recent patents

with a single early forward citation. We choose a 10-year window, rather

than the shorter 5-year window used in related work (Mariani, 2004; Nemet,

2009) to account for the possibility that novel combinations take longer to

be used in subsequent inventions. The price paid is that the 10-year window

restricts our evaluation to patents i granted from 1986–1996 (n=1,020,484).

Truncation issues are minimal because every patent i has exactly 10 years

available to receive forward citations, and 10 years of previous patents to

which it can make citations as prior art (Fig. 1). For the forward citations,

the 10-year window begins at the grant date of each patent i. For example,
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Figure 1: Schema for patent citations showing forward and backward citations to and from
patent of interest, i. Arrows indicate flows of knowledge.

for a patent i, granted in 1990, forward citations include those citing patent

i that were granted before 2000. Backward citations from patent i include

citations to patents that were granted after 1980.

3.2. Dependent variable: forward citation frequency

We use “forward citations” as a proxy for the importance of a patent.

Counts of forward citations received within 10 years provides the dependent

variable, citations received i, used in all models. Table 2 provides a summary

of the variables used, which are described in this section.

3.3. Knowledge flows

The key variables of interest for this study are those that measure knowl-

edge flowing from one technical domain to another. We use backward cita-

tions to indicate flows of knowledge from each cited patent to each patent

i.3 We refer to each citation from patent i to a previous patent as a citation

3Citations to prior art use language that implies the reverse direction of knowledge
flows; knowledge is assumed to flow from the cited patent to the citing patent.
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pair and we construct several measures characterizing the relationship for

each citation pair. For each patent i, we construct counts of each type of

pair.

Our basic approach is, for each pair, to compare the technical classifica-

tion assigned to each cited patent with the classification for the citing patent.

To avoid strategic citations to prior art, we exclude self-citation pairs (9.8%)

from the data set by removing instances in which the assignee for patent i

and the assignee for the patent that i cites are the same (Hall et al., 2005).

We count the total number of patents that patent i cites to define citations

made i. We consider prior art external knowledge if it does not reside in the

same classification as patent i. We assume that the classification to which

a patent is assigned represents that patent’s technical domain, and that any

patent with a different classification is external to that technical domain.

We make use of the patent classification system, which assigns each patent

primarily to one of over a 100,000 detailed sub-classes. The U.S. patent office

groups these detailed classes to higher level categories called “classes.”4 Hall

et al. (2001) (HJT) aggregate these higher-level categories further. They

use the 428 3-digit classes defined by the U.S. PTO and group them into

36 “sub-categories” and 6 top level “categories.” We use these grouping to

define sub-classes, classes, and super-classes below.

We use the hierarchy defined by these three highest levels of aggregation

to define the technological relationship for each citation pair. Fig. 2 shows

4These classification systems change over time, which is especially problematic with a
data set that spans 31 years. To address this issue, we use the reclassification that occurred
in 2008 so that early patents have assignments within the same hierarchy of classes as later
patents.
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Figure 2: Definitions of external knowledge flows. P is patent of interest, patent i. C1 is
prior art cited by patent i.

three levels of aggregation, which we refer to generically as super-class, class,

and sub-class. We code each citation pair as external, far external, or near

by comparing their classifications at each level in the hierarchy. For example,

a pair is considered internal if both patent i and the cited patent are in the

same class. If they are in different classes, they are considered an external

pair. The pair is coded as near if the pair share the same sub-class. The

pair is coded as far external if the two are in different super-classes. We use

this latter measure as the primary indicator of external knowledge flow; we

use near to represent the opposite. This coding scheme is used to develop

3 variables using counts of backward citation pairs for each patent i: far

external i, externali, and neari. Given the observation that patent counts

in general increase forward citations (Bessen, 2008), we add counts of other

citations made, defined as: other = citations made − (far + near). Because

we later drop it, external citations are not included in the definition of other.

We find that using other citations, rather than total citations made avoids

collinearity in the regressors. Using USPTO classifications other has a corre-

lation with far of 0.13 and with near of 0.14. Near and far have a correlation
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Table 1: Patent classification structure. Values in parentheses show number of categories.
U.S. Patent and International Patent
Trademark Office Classification

super HJT “category” IPC “section”
classes 1 Computers and 1 Human Necessities

Communications 2 Operations; Transport
2 Drugs and Medical 3 Chemistry; Metallurgy
3 Electrical and Electronics 4 Textiles; Paper
4 Chemical 5 Fixed Constructions
5 Mechanical 6 Mechanical; Light; Heat
6 Others 7 Physics

8 Electricity

classes HJT “sub-category” IPC “class”
(36) (124)

sub- 3-digit PTO “class” IPC “sub-class”
classes (428) (1053)

coefficient of 0.11. Results under the IPC definitions are similar: 0.09–0.15,

as well as under strict definitions: 0.06–0.20. Results on correlations are

included in the appendix and are discussed in the next section.

In order to improve the robustness of the results to inconsistencies in

patent examiners’ classification decisions, we employ a parallel but distinct

taxonomy, the International Patent Classification system (IPC). We arrive

at a comparable hierarchy of super-classes (8), classes (124) and sub-classes

(1053) and code each citation pair according to these categories as well. Fi-

nally, we develop a third coding for each citation pair using the intersection

of the coding for the U.S. system and the international system. This inter-

section creates the strictest definition of external. Table 1 shows the parallel

classification structures used in this analysis.
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3.4. Other determinants of patent value

We control for time trend, citation lags, patent breadth, the type of orga-

nization patenting, and technological areas with higher propensity for being

cited.

3.4.1. Time of patenting

The 10-year forward citation window helps control for patent vintage

effects. Still some periods may be more technologically productive and thus

raise the potential for citation among recently granted patents. Further, the

general increase in patenting over time increases citations probabilities for

later patents. We add a variable for the year in which a patent is granted

(grant year i). We also include a variable for the year in which the application

was made (application year i) but observe no difference in results when using

that indicator.

3.4.2. Citation lag

We define citation lag as the time between the year in which a cited patent

was granted and the year in which a citing patent was granted. Previous work

has found that: spillovers from one sector to another peak rather quickly in

the life of a patent, for example within two years (Verspagen and De Loo,

1999); and also that citation lag is a significant, although small, determinant

of forward citations (Criscuolo and Verspagen, 2008). We create citation

lag i, the mean of the citation lags for all of the patents cited by a patent i

within 10 years. Previous work suggests that we should expect patent value

to decrease with increases in mean citation lag.
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3.4.3. Technological field

Because some technological areas are inherently more dynamic, especially

during periods when technological opportunity is high (Nelson and Wolff,

1997; Nelson, 2003), we measured mean citations received for each of the 6

broad technological categories defined in the most aggregated classification

scheme: HJT category. We found that three of these—computers and com-

munications; drugs and medical; and electricity and electronics—received

significantly and substantially more forward citations than the others. We

add dummies for these three technological categories to control for high tech-

nological opportunity in these areas (computersi,medicali, and electricali).

3.4.4. Patent breadth

Since some patents stake out a larger swath of intellectual property than

others, we use the number of claims each patent i makes as an indicator of its

breadth. The expectation is that broader patents, those with more claims,

are more likely to be cited frequently.

3.4.5. Type of inventor organization

We use information about the type of organization whence each patent

originated using the U.S. PTO categorization of each assignee. Possible

categories for assignee type are: (1) unassigned (typically individual inven-

tors); (2) U.S. non-government organizations (typically corporations); (3)

Non-U.S., non-government organizations (typically corporations); (4) U.S.

individuals; (5) Non-U.S. individuals; (6) U.S. Federal Government; and (7)

Non-U.S. governments. We add binary variables for U.S. corporate assignees

(U.S.corp = 1 if type 2) and government assignees (govt = 1 if type 6 or 7).

16



Table 2: Variables used to characterize each patent, i.
Name Description

Dependent variable:
Citations received Count forward cites within 10 years

Knowledge flows (counts):
Far external Citations made, coded as far
External Citations made, coded as external
Near Citations made, coded as near
Other citations Citations made, not near or far

Technological fields (HJT):
Computers Computers and communications (1/0)
Medical Drugs and medical (1/0)
Electrical Electricity and electronics (1/0)

Other characteristics:
Claims Breadth: number of claims made
U.S. Corp. Assignee: U.S. corporation (1/0)
Govt. Assignee: government (1/0)
Grant year Year patent was issued
Citation lag Mean backward citation lag for all cites made

17



Table 3: Descriptive statistics (n=1,020,484 observations).
Variable mean median std. dev. min. max.
Citations received 7.13 4 11.10 0 754
Citations made 3.79 3 4.39 0 213
Claims 12.64 10 10.38 1 868
Grant year 1991.3 1991 3.115 1986 1996
Citation lag 5.13 5 1.96 0 10

Computers 0.127 0.333 0 1
Medical 0.089 0.284 0 1
Electrical 0.183 0.387 0 1
U.S. Corp. 0.428 0.495 0 1
Government 0.011 0.105 0 1

The hypothesis is that corporations have the best information about both

technology and market opportunities and are thus more adept at generat-

ing and commercializing valuable inventions. Empirical work support this

hypothesis (Bessen, 2008).

4. Results

We regress the knowledge flow variables and controls on counts of forward

citations using negative binomial models. Our focus is on the influence of

external citations.

4.1. Descriptive statistics

Table 3 shows descriptive statistics for all variables other than the knowl-

edge flow variables. Note that the mean for citations received is higher than

that of citations made because the number of patents granted each year has

grown substantially, by over 50% from 1986–96.
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Figure 3: Distribution of values for the dependent variable, citations received within 10
years. One percent of observations had values above 50 and are not displayed on this
figure.

Fig. 3 shows the probability distribution for the dependent variable, cita-

tions received within 10 years. Only 12% of patents had no forward citations

and less than 1% had more than 50 citations. Note that this shape of the

distribution is sensitive to the choice of citation window. A 5-year citation

window would produce many more patents with zero citations, and a longer

window would shift the central tendency to the right.

Table 4 shows the mean share of backward citations for each type of

citation pair relationship. On average, 21% of a patent’s backward citations

are to prior art categorized as far external using the USPTO system. Only

11.5% are coded as far external in both the USPTO and IPC. Over 50% of

patents’ backward citations are to prior art coded as technologically near,

meaning it resides in the same 3 digit US PTO classification as the citing

patent. Given our interest in making distinctions among types of backward

citation relationships, we are particularly concerned about collinearity in
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Table 4: Portion of total citations that are coded as far external, other, and near. Values
are means across n=878,226 observations with > 0 citations made within 10 years. The
three types of citation pairs are shown under three classification systems.

USPTO IPC US+IPC
Far external 0.211 0.229 0.115
Other 0.202 0.220 0.436
Near 0.588 0.550 0.449

these variables. The tables in the appendix show the correlation coefficients

(Table 9) and indices of collinearity (Table 10). We find no correlations above

0.20 and a maximum variance inflation factor (VIF) of 1.09, well below the

level of concern.

4.2. Estimation approach

Our estimation approach is as follows. First, because the dependent vari-

able consists of count data, we consider a Poisson regression. However, the

variance, 123 is much larger than the mean 7.1, indicating the data are over-

dispersed, and suggesting that a negative binomial regression would be more

appropriate. This choice is confirmed by our results, which show α values

consistently significantly different from zero. That the mode for citations

received is 1, not zero, implies that the variable does not have an excessive

number of zero values, and thus supports the use of the negative binomial

regression model. We use robust estimators to avoid heteroskedasticity; all

z-statistics reported are based on robust standard errors. Second, as a ro-

bustness check, we also run the negative binomial regressions using grant

year fixed effects. We include grant year as a control, but it is possible that

events may have occurred in individual years that are not accounted for by

the general increase in patenting activity captured by the inclusion of the
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grant year trend variable. This allows identifying effects within each of the

11 years in which patents could be issued.

To assess the robustness of the results to bias in patent examiners’ clas-

sification decisions for each patent, we employ various ways of defining ex-

ternality and specify 7 models. The first 3 models (1–3) use counts of far

external citations and the next 3 (4–6) add counts of near citations. Models

1 and 4 define near and far using USPTO classifications, while 2 and 4 use

those from the IPC. Models 3 and 6 use the strict definitions of near and

far; each pair has to be coded the same in USPTO and IPC to be considered

near or far. Model 7 is the same as 6 but adds the variable citation lag.

We do not use this variable in other models because it requires dropping all

observations with no citations to prior art within 10 years (about 12% of

the patents). We drop the use of external knowledge flows from our models

as it represents an intermediate measure of technological proximity and is a

weak indicator relative to the variable for far external, on which we focus our

analysis.

4.3. Regression results

A first general observation is that the results are stable across the 7 speci-

fications using the negative binomial regression model (Table 5). The results

are robust to the classification scheme used to define external and near. They

are also robust to whether counts of near are included. Coefficient values are,

without exception, significant. Controls are in the expected directions. We

include the results for negative binomial regressions with grant year fixed

effects in the Appendix (Table 8).
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4.3.1. Positive coefficients on knowledge flow variables

The coefficients for all three knowledge flow variables—far, near, and

other citations—are positive and significant in every specification tested, in-

cluding fixed effects models. The sizes of the coefficients are also reasonably

consistent across models. As a robustness check, Table 8 in the Appendix

shows results with grant year fixed effects—to account for any environmen-

tal changes in particular years not accounted for in the general increase in

patenting over time. All three knowledge flow variables remain positive and

significant across the 7 model specifications.

4.3.2. Controls

Across all 7 models, controls are significant and in the expected directions.

Signs and sizes of each coefficient are stable across models. Computers,

medical, and electronics patents raise citation frequency, with the effects of

computers and medical about twice as large as electronics. Patents filed by

U.S. corporations have a positive coefficient, although this effect is smaller

than filing a patent in one of the highly cited technology areas. Grant year

is positive and stable across models. We expected this result because the

growth in patenting over time allows for higher forward citation probabilities

over time; the total number of patents in the ten-year forward citations

window rises over time. Claims is positive, significant and stable. Broader

patents cover a wider swath of technological territory and thus are more

likely to be cited. Citation lag is included in model 7, which is a variation on

model 6. It is negative, which is consistent with the notion that knowledge

depreciates, so older prior art is less valuable than more recent art, as also

found in Schoenmakers and Duysters (2010). In the fixed effects results, signs
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and significance of control variables are all similar to those in the ungrouped

results.

4.3.3. Comparing effects of external to other citations

Counts of external citations are positive predictors of forward citations,

but are they more important than other types of citations? On a first look,

the positive and significant result on far external citations appears to support

the hypothesis that assimilating external knowledge stimulates more impor-

tant innovations. However, a comparison across the three types of knowledge

flow variables provides evidence of the opposite. We compared coefficients of

far external citations and other citations. Fig. 4 compares these coefficients

across all 7 model specifications for the negative binomial regressions and

negative binomial fixed effects regressions. We also include ratios for tech-

nology specific subsets of models 4 and 6, described below. The vertical axis

in the figure represents the ratio of the coefficients for far external and other

citations (βfar/βother). The dashed line, where the ratio equals 1 is where

there is no difference between citations to external prior art and citations to

other prior art. In the region above the line, external citations have a larger

effect on forward citations than do other citations. In the region below, ex-

ternal citations have a weaker effect. One can see that in almost every case

the coefficients for external are nearly the same, but smaller, than those for

other citations. The ratios are generally smaller in the fixed effects mod-

els than in the original negative binomial. These differences are significant.

Wald tests were run to test the hypothesis that βfar < βother. In almost

every specification, differences were significant with p < 0.01. The difference

in model 5 using fixed effects is barely above the 0.01 threshold. These test
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Figure 4: Comparison of coefficients for far external to those for other citations. Model
numbers refer to specifications in Tables 5 and 8. Vertical axis = βfar/βother.

results are shown in the bottom row of the regression results tables.

Finally, we find that, with only one exception, the effect of near citations

is always larger than that of far citations. This results holds for all model

specifications, including fixed effects and technology subsets. In only model

7 is the coefficient for near smaller than that of far. Moreover, in the fixed

effects models, near citations are more important than other citations. The

relative importance of near citations is mixed in the pooled negative binomial

regressions as well as in the technology subsets.

4.4. Results within technological categories

Because of the strong results found on the three controls for technological

categories—computers, medical, and electronics—we look at the effect of

external knowledge within each of these highly-cited technology categories.

Table 6 shows the results using the strict definition of external (model 6 from
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Table 5). The results point to important differences from the pooled results.

All coefficients remain significant, however, the knowledge flow variables have

changed. The category for computers and communications shows the most

dramatic change. External citations have a significant negative effect on

forward citations. Near and other are positive. Fig. 4 shows this negative

effect, in both model 4 and model 6. Unsurprisingly a Wald test (Table

6) shows a significant difference between far and other citations. Results

for medical and drugs are similar. The coefficient for far external is not

actually negative, but the ratio comparing it to other citations is very small.

For the two most highly-cited technology categories, external citations are

much less effective than other types of citations. There is even evidence

that, for computer technologies, an external citation lowers forward citations

frequency. For the third technology category, electrical and electronics, the

results look quite similar to the pooled estimates, although the difference

between external and other citations is not significant.

4.5. Whence did knowledge flow?

Finally, we briefly look at the sources of knowledge flows for the most

highly cited patents. We restrict this analysis to the set to patents in the top

25th percentile of citations received (≥ 9). Echoing approaches by Schmook-

ler (1966) and Scherer (1982a,b), Table 7 represents an input-output table

for knowledge flows across technology areas, We only include citation pairs

which were defined as far external using the USPTO definition, which is why

the diagonal is empty. One can think of knowledge flowing from the cate-

gories for each row to the categories for each column. Column totals show

the share of each technology category among highly-cited patents receiving
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Table 6: Technology areas with high citation propensity: estimates of negative binomial
regressions (model 6). Dependent variable is counts of citations received within 10 years.
Far external and near use the strict definition of external (U.S.+I.P.C.).

a

Computers & Medical Electrical &
communications & drugs electronics

Far ext. citations -0.0137*** 0.0104*** 0.0467***
(-5.27) (3.62) (20.22)

Near citations 0.0300*** 0.0678*** 0.0544***
(24.45) (41.39) (43.22)

Other citations 0.0534*** 0.0814*** 0.0452***
(48.76) (39.21) (36.49)

Claims 0.0131*** 0.0147*** 0.0121***
(43.97) (31.23) (39.94)

Grant year 0.0471*** 0.0220*** 0.0535***
(45.12) (13.35) (58.41)

U.S. Corp. 0.345*** 0.232*** 0.154***
(50.76) (22.81) (26.20)

Constant -91.85*** -42.20*** -105.1***
observations 129,642 90,638 187,018
Log-likelihood -451386 -298014 -564575
Pseudo R2 0.0229 0.0227 0.0175
ln(α) -0.110*** 0.264*** -0.105***
p : βfar < βother 0.0000 0.0000 0.2910

aRobust z-statistics in parentheses. *** p< 0.01, ** p< 0.05, * p< 0.1
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Table 7: Inter-domain knowledge flows for highly cited patents (top quartile for citations
received). Values indicate percentages of total far external citation pairs (n=666,630 pairs).

Destination (technology category for patent i)
Chem Comp Med Elec Mech Other Total

Source:
Chem - 0.8 4.1 3.0 3.8 6.2 18
Comp 0.8 - 0.5 8.4 3.8 1.6 15

Med 3.9 0.4 - 0.8 1.1 1.6 8
Elec 3.0 9.1 1.2 - 4.6 2.8 21

Mech 3.5 4.2 1.1 4.4 - 6.4 20
Other 5.9 1.6 2.0 2.8 6.7 - 19
Total 17.1 16.2 8.9 19.3 20.0 18.5 100

external knowledge; electrical and mechanical are highest. Row totals indi-

cate each sector’s contribution of knowledge flows to highly-cited patents in

other sectors. The same two categories were most important. Setting aside

the “other” categorization, the 3 largest flows are: from electronics to com-

puters, from computers to electronics, and from electronics to mechanical.

5. Discussion

Our main finding is that citations to external prior art are significantly

less important to subsequent forward citations than are other types of cita-

tions. These results are robust across patent classification schemes, which

allowed for three different definitions of externality. They are also robust to

the use of a model using grant year fixed effects. The results are even stronger

when applied to the two most highly-cited individual technology categories:

computers and medicine. In these most highly-cited areas, external citations

had an especially adverse effect. Conversely, citing prior art that is techno-

logically near has a stronger effect than far citations, and in most cases a
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stronger effect than all other types of citations. These results do not appear

to support the hypothesis that external knowledge leads to more important

inventions. Rather, we see significant effects in the opposite direction.

5.1. Why do citations in the technological proximity increase value?

These results apparently contradict the substantial set of claims in the lit-

erature about the importance of inter-sectoral knowledge flows. We suggest

a few interpretations. A first possibility is that the results are biased due to

one or more measurement problems. This problem could stem from our fun-

damental assumption that patents provide useful measures of inventions and

knowledge flows. More specifically, we make three important assumptions

in our use of patent data. We assume that forward citations received is a

useful proxy for the value of an invention. Counts of forward patent citations

may be ill-suited to characterizing the importance of those inventions that

feature in the case studies that emphasize external flows of knowledge. Note

that this problem requires more than an acknowledgement of the ‘noisiness’

of patent citations. Rather, it implies that these important historical inven-

tions are disproportionately less likely to be patented and cited. There is

however a large body of work now supporting the assumption that citations

proxy for value. Distinguishing between radical and incremental inventions,

as in Hurmelinna-Laukkanen et al. (2008), while not feasible with a large

data set, may add information that avoids bias. We also assume that back-

ward citations represent knowledge flows. One could argue that inventors

are less likely to cite prior art that is external, perhaps because there is

less concern among inventors about overlapping intellectual property claims

for distant technological domains. It is also possible that patent examiners
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fail to add prior art from external domains because those areas lie beyond

the examiners’ own expertise. Still, the strong results on the importance

of the total number of citations suggests that inventors benefit from being

diligent in their search for and descriptions of prior art. We also assume

that patent classification systems provide a useful delineation of boundaries

between technological domains. Perhaps examiners assign patents incon-

sistently and that classification-based technological domains overlap. Our

efforts to use only high-level classes, to compare results across multiple clas-

sification systems, and our construction of a strict definition that combines

systems alleviate these concerns. That the results are consistent across the

classification schemes make it unlikely that the use of patent class assign-

ments is a source of bias. We provided justifications based on the literature

for each of these assumptions in section 2.

A second explanation is that incorporating external knowledge is hard to

do well and is risky. The literature on absorptive capacity shows that efforts

to assimilate external knowledge take investment and considerable time to

develop. Coordination costs are higher due to delays and higher likelihood of

project termination (Cuijpers et al., 2011). They often require expertise and

relationships that are outside a firm’s typical activities. In addition, even if

resources, patience, and expertise are available, the incorporation of external

knowledge for new inventions likely involves more risk. Inventors and firms

lack the deep familiarity they have with more proximate knowledge. Unfore-

seen bottlenecks may emerge; incompatibilities may arise; prolonged revision

and iteration may be required, perhaps extending beyond what a firm or in-

vestor is willing to tolerate. Normatively, studies that code projects by their
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technical uncertainty show the need for quite different management strate-

gies (Shenhar, 2001). Even so, the literature suggests that the combinations

that do work out are so valuable that they justify the uncertain returns on

investment (Scherer and Harhoff, 2000). Perhaps firms are risk averse or the

benefits of resulting inventions are difficult to sufficiently appropriate. So

one explanation for the weak effect of external knowledge is that success-

ful inventions are few and failures prevalent. The distribution of payoffs for

inventions may be so extremely skewed that even the highly-skewed distri-

bution of forward citation counts (Fig. 3) does not adequately characterize

the magnitude of the payoffs for the most successful inventions.

A third explanation is that inventions that emerge from the exploitation

of inter-industry knowledge flows may be particularly difficult to assimilate

into subsequent inventions, even if they become useful and commercially suc-

cessful themselves. These inventions from hybrid fields may not provide easy

to use building blocks that enable further combinations. They may display

unfamiliar, perhaps even awkward forms, with difficult to predict properties.

They likely lack the adherence to standards that facilitates progress within

technical areas. Their suitability for subsequent innovations may require a

prolonged period of testing, understanding, and incremental improvement.

This latter issue may be particularly relevant in this study due to our im-

position of a ten-year forward citation window. The exceptional novelty of

hybrid inventions may inhibit, or at least delay, their ability to serve as prior

art for subsequent inventions. One possibility would be to assess value based

on the next generation of forward patent citations (Popp, 2006). A related

possibility is that these challenges make it especially difficult to incorporate
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more than a small amount of external knowledge in a new invention. Perhaps

we see rather weak effects from external citations because many inventions

encounter diminishing returns to their external citations.

5.2. Conclusion

This discussion proposed several explanations for the result we observed—

that additional flows of knowledge from distant technological domains are

associated with fewer forward citations received relative to adding citations

to more proximate knowledge. Some of these explanations arise from the

possibility that the construction of our variables, and their interpretation,

produced biased results. We took care to address these concerns as much as

possible, by referencing prior literature and extensively assessing robustness

across definitions. Still, understanding of what patents and patent citations

actually represent, particularly in their characterization of inventions, value,

and knowledge flows, is incomplete. The reliability of results in a study like

this depends on improved understanding of how to interpret patent data.

Evaluating international patent data might also enhance reliability. Incor-

porating other measures of the value of inventions, such as expert elicitation

or case studies of commercialization, would obviate the need to make impor-

tant assumptions on the meaning of forward citations. Scalability of such

labor-intensive techniques is a limitation.

These potential sources of measurement bias may be small or offsetting.

More mechanistic explanations exist as well. Compared with more familiar

areas, working with external knowledge is costly, time-consuming, and risky.

Hence this study may accurately characterize the role of the many technical

failures, conversely it may under-estimate the magnitude of the important,
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but rare, successful inventions arising from cross-technology knowledge flows.

Still, the possibility exists that external knowledge flows really do have an

adverse effect on invention. They may be distracting, too difficult, and too

prone to failure to justify investment. Resolving this open interpretation has

important policy implications. If inter-industry knowledge flows are valuable

then firms should develop capabilities to develop them. If their payoffs are

too uncertain for risk-averse firms, then it may be necessary for governments

to reduce uncertainty—for example by supporting cross-cutting knowledge

exchange in intellectual communities, conferences, and longer term collabo-

ratives. If inventions resulting from inter-industry knowledge flows are im-

portant but more difficult to appropriate than other inventions, then govern-

ments may need to increase incentives for the development of cross-sectoral

science and technology. The results from this study suggest that the payoffs

from inter-sectoral knowledge flows, if they do exist, are obscured in patent

data and may be offset by substantial risk and appropriability concerns.
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Appendix

This appendix includes results of negative binomial regressions with grant
year fixed effects (Table 8), as well as a matrix of correlation coefficients
(Table 9) and indices of collinearity in the regressors (Table 10).
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Table 10: Indices of collinearity for independent variables used in model 6.
Variance
Inflation Tolerance Eigen Condition

Factor (1/VIF) R2 value index
Far citations 1.05 0.950 0.050 1.561 1.000
Near citations 1.04 0.959 0.041 1.181 1.150
Other citations 1.09 0.917 0.083 1.126 1.177
Claims 1.06 0.946 0.054 1.011 1.243
Grant year 1.03 0.971 0.029 0.979 1.263
Computers 1.09 0.921 0.079 0.881 1.331
Medical 1.06 0.946 0.054 0.830 1.372
Electrical 1.07 0.932 0.068 0.771 1.423
U.S. Corp. 1.05 0.954 0.046 0.660 1.537
Aggregate 1.06 1.537
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