
Measuring the Impact of Memory Errors
on Application Performance

Mark Gottscho1, Mohammed Shoaib2, Sriram Govindan3, Bikash Sharma3, Di Wang2, and Puneet Gupta1

mgottscho@ucla.edu, {shoaib, srgovin, bsharma, wangdi}@microsoft.com, puneet@ee.ucla.edu
1Electrical Engineering Department, University of California, Los Angeles (UCLA) 2Microsoft Research 3Microsoft

F

Abstract—Memory reliability is a key factor in the design of warehouse-
scale computers. Prior work has focused on the performance overheads
of memory fault-tolerance schemes when errors do not occur at all, and
when detected but uncorrectable errors occur, which result in machine
downtime and loss of availability. We focus on a common third scenario,
namely, situations when hard but correctable faults exist in memory;
these may cause an “avalanche” of errors to occur on affected hardware.
We expose how the hardware/software mechanisms for managing and
reporting memory errors can cause severe performance degradation in
systems suffering from hardware faults. We inject faults in DRAM on a
real cloud server and quantify the single-machine performance degra-
dation for both batch and interactive workloads. We observe that for
SPEC CPU2006 benchmarks, memory errors can slow down average
execution time by up to 2.5×. For an interactive web-search workload,
average query latency degrades by up to 2.3× for a light traffic load,
and up to an extreme 3746× under peak load. Our analyses of the
memory error-reporting stack reveals architecture, firmware, and soft-
ware opportunities to improve performance consistency by mitigating
the worst-case behavior on faulty hardware.

Index Terms—Main memory, DRAM, error-handling, servers, reliability,
availability, RAS, cloud, performance consistency, hardware/software
interface

1 INTRODUCTION
In datacenters, particularly clouds, failures of servers and their com-
ponents are a common occurrence and can impact performance and
availability for users [35]. Faults can manifest as correctable errors
(CEs) that can degrade performance, detected but uncorrectable errors
(DUEs) that can cause machine crashes, and undetected errors that
often cause silent data corruption (SDC). At best, errors are a nuisance
by increasing maintenance costs; at worst, they cause cascading
failures in software micro-services, leading to major end-user service
outages [25].

Hard faults in main memory DRAM are one of the biggest culprits
behind server failures in the field [22], [32], [34], [19], [26], while
main memory comprises a significant fraction of datacenter capital
and operational expenses [24], [29]. Unfortunately, memory reliability
is expected to decrease in future technologies [26] as a result of
increasing manufacturing process variability in nanometer nodes [18],
[36], [27], [31]. Meanwhile, researchers are actively exploring new
approaches to designing memory for the datacenter, such as intention-
ally using less reliable DRAM chips to reduce provisioning costs [24],
[29].

Thus far, the research community has not explored application per-
formance on machines when errors actually occur. In past smaller-
scale systems with older DRAM technology, this was not a major
consideration because of the rarity of memory errors. In modern
warehouse-scale computers (WSCs), however, the worst case for
errors is no longer a rare case. While most servers have low error
rates, in any given month, there are hundreds of servers in a datacenter
that suffer from millions of correctable errors [26]. Understanding and
addressing this issue is important: a recent study at Facebook found
that correctable memory errors can lead to wildly unpredictable and
degraded server performance [26], which is a primary challenge in
cloud computing [9].

In this work, we experimentally characterize the performance of
several applications on a real system that suffers from correctable
memory errors. Our contributions are as follows:
• We identify why and how memory errors can degrade application

performance (Sec. 3). When memory errors are corrected, they are
reported to the system via hardware interrupts. These can cause
high firmware and software performance overheads.

• We quantify the extent of performance degradation caused by
memory errors on a real Intel-based cloud server using a custom
hardware fault-injection framework (Sec. 4). Our measurements

show that batch-type SPEC CPU2006 benchmarks suffer an av-
erage 2.5× degradation in execution time, while an interactive
web-search application can experience up to 100× degradation
in quality-of-service when just 4 memory errors are corrected per
second using “firmware-first” error reporting.

2 RELATED WORK
There is a large body of prior work that address reliability in
memory systems [28]. Many compelling reliability-aware techniques
for energy savings in caches and memory have been proposed [6],
[7], [8], [23], [21], [30], [11], [15], [14], but none of them have
focused on large-scale systems. A recent thread of research studied
memory failures in large-scale field studies that characterized broader
trends [32], [34], [19], [33], [12], [26], [10], but none of them
has addressed the performance impact of memory errors. A recent
work has proposed designing datacenter DRAM with heterogeneous
reliability for cost reduction [24], but they did not consider the
performance implications from increased error rates. A recent work
on Software-Defined Error-Correcting Codes [16] proposed a novel
set of techniques to opportunistically recover from memory DUEs
and resume correct execution, but it did not consider the negative
performance effects of memory CEs. Delgado et al. [13] were the
first to experimentally expose the performance implications of Intel’s
System Management Mode (SMM), which is often used for memory
error reporting (and which we discuss in this work). They observed
inconsistent Linux kernel performance and reduced quality-of-service
(QoS) from SMM on latency-sensitive user applications.

Researchers have generally considered the server and application
performance overheads of DRAM fault tolerance schemes only in the
case when no errors occur. Prior work, however, has not identified
or measured the performance degradation caused by memory errors
in systems with faulty hardware. This effect is important: datacenter
operators have observed performance-degrading memory errors to
occur routinely in the field, where they increase maintenance costs
and reduce performance consistency. In this paper, we address these
gaps in prior work by describing the mechanisms by which perfor-
mance degrades and empirically demonstrate that the performance
degradation on a real cloud server can be severe.

3 DRAM ERROR MANAGEMENT AND REPORTING
Error reporting, or logging, in firmware and/or software is required
for datacenter operators to detect failures and service them appro-
priately. They also enable the numerous past [32], [34], [19], [33],
[12], [26], [10] and future field studies of DRAM errors. Page
retirement, which has been recently shown to significantly reduce
DUE occurrences at Facebook [26], also relies on accurate and precise
error logging in order to identify failing pages. We believe that a
primary cause of performance degradation from memory errors is
the firmware/software stack, not the hardware fault tolerance mech-
anisms. Thus, we discuss how DRAM errors are made visible to
software. Because Intel-based systems are dominant in the cloud, we
focus on their Machine Check Architecture (MCA) [2], specifically
for Haswell-EP (Xeon E5-v3) processors. Other platforms may have
similar mechanisms, but they are beyond the scope of this work.

When the ECC circuits in the memory controller detect or correct an
error, they write information about the error into special registers. This
includes information like the type/severity of the error (CE or DUE)
and possibly the physical address. The hardware then raises an inter-
rupt to either the OS or firmware, but not both simultaneously; this
option is specified statically at the system boot time [2], [5].

If the software interrupt mode is selected, the ECC hardware raises
either a Corrected Machine Check Interrupt (CMCI) for a CE, or
Machine Check Exception (MCE) for a DUE. For an MCE, the

AUTHORS' COPY dated August 8, 2016
To appear in the IEEE Computer Architecture Letters (CAL)

typical response in current cloud servers is to cause a kernel panic,
which crashes and restarts the entire machine. (Higher-end machines,
which are typically not deployed in public clouds, support poisoning, a
technique that facilitates recovery attempts from uncorrectable errors
instead of crashing.) For a CMCI, the kernel simply logs the DRAM
error with a timestamp, which can then be read by user-level software
through the system event log. On our system, a CMCI raised by the
memory uncore is broadcast to all cores on the socket, but handled
by just one thread (which may be statically assigned, as suggested by
Intel [2], or as we believe in the case of our platform, dynamically
load-balanced within a socket). With CMCI or MCE-based software
error reporting, the OS kernel might know the physical address of the
error, but generally not the precise location that the error occurred
in the DRAM organization. This is because the mapping is complex
and dependent on hardware and platform configurations. Thus, using
purely software-mode interrupts on supported processors, the OS
might use page retirement, although the datacenter operators would
generally not know which memory module is failing on a machine
that reports many errors. Note that in our platform used for the
experiments, the kernel does not know the physical address nor
the DRAM location of a memory error when using CMCI-based
reporting.

Firmware-based error reporting, on the other hand, can determine
both the physical address and the precise location of the memory
error in DRAM by performing the required platform-specific calcu-
lations. This makes it our preferred boot-time option. If the firmware
interrupt mode is selected in Intel machines with the Enhanced
Machine Check Architecture (EMCA) [5], the ECC hardware raises
a maximum-priority System Management Interrupt (SMI). In our
platform, an SMI is broadcast to all logical processors across both
sockets. All processors that receive SMIs immediately enter the
special System Management Mode (SMM) in firmware. SMM raises
each processor to the highest-possible machine privilege level. The
job of SMM in response to a memory error is to read all relevant
registers in the memory controller, compute additional information
about the error, and report the error. Because SMM is not re-entrant,
whenever a memory error occurs in firmware-first mode, the entire
system becomes unresponsive. On our platform, when an SMI is being
handled, all operating system and user threads are stalled: no forward
progress on any system or application task can be made. Before
exiting, SMM constructs an entry with detailed error information in
the Advanced Configuration and Power Interface (ACPI) [1] tables
and then forwards the error to the OS by raising the appropriate MCE
or CMCI interrupt.

4 MEASURING THE IMPACT OF MEMORY ERRORS
We experimentally characterized the impact of correctable memory
errors to verify our claim that system-level error management and
reporting is a primary cause of degraded application performance.
Our hardware fault-injection methodology is described first, before
we discuss the empirical results.

4.1 Experimental Methods
We measured the performance impact of memory CEs on a real Intel
Haswell-EP-based cloud server running Windows Server 2012 R2.
We expect the behavior of Linux-based machines to be similar, to
what we find in this work, although we were not able to adapt our
experimental framework and all workloads of interest to function on
both platforms. We did not evaluate the relative performance of the
reliability, availability, and serviceability (RAS) features in non-faulty
situations because they are well understood and do not explain the
denial-of-service effect [26] seen on machines with errors in the field.
Instead, we measured the relative performance impact on the system
when errors actually occurred, enabling us to quantify the impact of
the complete hardware/firmware/software error reporting stack.

DRAM fault injection was physically performed using proprietary
hardware and software tools and was controlled by OS and user-level
software. The tools have the flexibility to flip specific bit cells with
any desired pattern. Before starting the application under test, our
framework uses the Windows kernel debugger [3] to perform virtual-
to-physical address translation for a special region in the private
virtual memory region. The tools are then used to inject a soft single-
bit fault into DRAM hardware at a controlled time and location using
the translated physical address. Demand and patrol scrubbing were
disabled to prevent unintended removal of the injected fault. Note
that in production systems, scrubbing is typically enabled; this might
contribute additional performance overheads beyond those measured
in this paper in the presence of real hard faults.

Using a lightly-modified version of X-Mem, our open-source and
extensible memory characterization and micro-benchmarking tool
[17], [4], we sensitized a single faulty DRAM location using one
thread at a user-controlled constant rate. To ensure every load to the
faulty memory actually reached the DRAM (and not just the caches),
we flushed the cache line after every access and used memory barriers

0 20 40 60 80 100
50

100

150

200

Time (sec)

Lo
ca

l D
R

A
M

 L
at

en
cy

(n

s/
ac

ce
ss

)

DRAM faults

sensitized, raise many

CMCI error handlers

(a) Trace

50 100 150 200

Local DRAM Latency (ns/access)

R
el

at
iv

e
Fr

eq
ue

nc
y

Idle

0

1

(b) Histogram

Fig. 1. CMCI handlers can cause significant memory interference, de-
grading performance even if the application thread is not directly inter-
rupted. A non-interrupted thread sees an increase of DRAM latency that
has additive Gaussian noise. Here, 1000 CMCIs per second worsens
average memory latency by about 2X by competing for memory-level
parallelism and bandwidth in the L3 cache and DRAM.

to ensure only one access could be outstanding at a time. This fault-
sensitizing approach is independent of application access behavior.
In general, because the performance penalty incurred by interrupts is
not necessarily “paid” by the aggressor thread that sensitizes the fault
(except in the case of SMIs), the results only depend on the interrupt
performance and the number of error-interrupts per second (as we
show in Sec. 4.2, there was no measurable performance degradation
caused by the hardware RAS technique in the presence of errors, such
as SECDED vs. ChipKill). These facts make our experiments tractable
to perform for different applications while yielding correct results for
different DRAM fault models.

We deliberately swept a wide range of error-interrupt rates in our
experiments to capture different scenarios. A rate in the range of 100-
1000 error-causing interrupts per second, while seemingly extreme,
might actually be common in production datacenters. This is due to
a power-law distribution, where a few machines see many errors in
a month [26]. However, existing data from the field does not provide
sufficient time-resolution information to determine how bursty errors
actually are compared to the relevant timescales of an application. For
instance, a server that had one million reported errors in a month [26]
might have had them uniformly over time (average 0.38 errors/sec)
or as an avalanche during a single hour (average 277 errors/sec). We
believe the latter type of scenario is more likely to occur in reality; a
hard fault may begin to manifest in a frequently-accessed mechanism,
such as a stuck I/O pin in the DDR channel interface. Moreover, there
may actually be more errors in practice than those indicated in the logs
used by field studies. This is because existing errors that are pending
service from firmware/software may block the recording of others.

To validate the accuracy of our fault injection approach, we used
a variety of faulty memory modules (DIMMs) with known fault pat-
terns that spanned major DRAM manufacturers. The faulty DIMMs
consisted of specimens that failed in a production datacenter setting
and were characterized after the fact, and of specimens that had failed
post-manufacturing screening tests and were graciously provided by
each manufacturer for our research needs. We replicated several of
the known failure patterns using our fault injection framework on
known-good DIMMs. For both the injected and the ground-truth
faulty memories, the system-level response was identical: the expected
number of errors reported in the OS, and the performance impacts that
we outline in the next subsection were identical. Therefore, all of our
reported results use our fault injection framework as a valid substitute
for real faulty DIMMs.

4.2 Empirical Results using Fault Injection
We first verified our hypothesis that the error reporting interface
is a major culprit behind performance degradation on machines
with memory errors. This was done by measuring raw memory
performance as well as application-level performance with error
interrupts enabled and disabled in the BIOS. When interrupts were
disabled, we measured no degradation in performance incurred by
sensitizing memory faults – even at very high rates – for each of
the available hardware RAS techniques (SECDED, SDDC/ChipKill,
rank sparing, channel mirroring, etc.). Conversely, the performance
degradation when interrupts were enabled depended only on the
fault sensitizing rate – regardless of the RAS scheme. This proved
that the firmware/software overhead to report memory errors causes
significant performance degradation, and warranted further analysis.
(Note that forms of memory scrubbing may also cause additional
performance degradation in presence of errors, but these were not
evaluated due to experimental limitations in our fault injection
framework.) We then characterized the latency of the error-reporting
interrupts before examining their interference with batch (throughput-
oriented) and interactive (latency-oriented) applications.

Error-handling interrupt latencies. We measured interrupt laten-
cies by accessing the faulty DRAM location – located on the same
socket as the sensitizing thread – as fast as possible, causing interrupts
that flood the whole socket and constantly pre-empt the sensitizing

2

Gottscho et al. Measuring the Impact of Memory Errors on Application Performance IEEE CAL 2016

errors/sec - # benchmark copies - benchmark name

Av
er

ag
e

Sl
ow

do
w

n
(%

)

0

40

80

120

160

b
z
ip
2

m
c
f

p
e
rl
b
e
n
c
h

b
z
ip
2

m
c
f

p
e
rl
b
e
n
c
h

b
z
ip
2

m
c
f

p
e
rl
b
e
n
c
h

b
z
ip
2

m
c
f

p
e
rl
b
e
n
c
h

b
z
ip
2

m
c
f

p
e
rl
b
e
n
c
h

b
z
ip
2

m
c
f

p
e
rl
b
e
n
c
h

b
z
ip
2

m
c
f

p
e
rl
b
e
n
c
h

b
z
ip
2

m
c
f

p
e
rl
b
e
n
c
h

b
z
ip
2

m
c
f

p
e
rl
b
e
n
c
h

1 2 4 1 2 4 1 2 4

1 2 4

(a) SMI Reporting

0

100

200

300

400

b
z
ip
2

m
c
f

p
e
rl
b
e
n
c
h

b
z
ip
2

m
c
f

p
e
rl
b
e
n
c
h

b
z
ip
2

m
c
f

p
e
rl
b
e
n
c
h

b
z
ip
2

m
c
f

p
e
rl
b
e
n
c
h

b
z
ip
2

m
c
f

p
e
rl
b
e
n
c
h

b
z
ip
2

m
c
f

p
e
rl
b
e
n
c
h

b
z
ip
2

m
c
f

p
e
rl
b
e
n
c
h

b
z
ip
2

m
c
f

p
e
rl
b
e
n
c
h

b
z
ip
2

m
c
f

p
e
rl
b
e
n
c
h

1 2 4 1 2 4 1 2 4

10 100 1000

Av
er

ag
e

Sl
ow

do
wn

 (
%

)

errors/sec - # benchmark copies - benchmark name
(b) CMCI Reporting

Fig. 2. Empirical results for three different SPEC CPU2006 “batch”
applications, show significant performance degradation in the presence
of errors. Workloads were run to completion, and run-to-run variation
was negligible.

thread. The fault-sensitizing rate was thus limited by the interrupts,
allowing us to measure the handler latency directly based on the
completed number of memory accesses per second. We found that
the SMI latency (133 ms) is up to 171× worse than the CMCI latency
(775 µs). This is because the SMI invokes SMM, which must read
all the relevant registers to reconstruct the error information, populate
the ACPI tables, and then raise a CMCI to the OS before exiting and
allowing threads to resume. The implementation of SMM impacts
performance even more than the indicated latency by blocking all
threads from executing. It also executes slowly due to the way it uses
memory [2]. In contrast, CMCIs operate like a conventional interrupt,
only pre-empting a single logical core and running in the OS context.
Both of these error-reporting interrupts exhibit latencies that are high
enough to cause significant application interference.

We studied the memory interference caused by CMCIs further. We
measured the native DRAM latency over time using the standard
version of our X-Mem tool [17], [4], while our fault injection
framework sensitized a DRAM fault to raise 1000 CMCI/sec. The
trace and histogram of memory latency is shown in Fig. 1. The flood
of CMCI handlers compete for bandwidth in the shared L3 cache and
DRAM, adding Gaussian noise to the overall memory latency, which
doubled on average. This could interfere with the performance of a
victim application, even if it is isolated in a virtualized environment.

Impact of error handlers on batch applications. Given the high
interrupt-handling latencies that we measured, we characterized how
much performance degradation memory errors can actually cause
on real applications. First, we considered the performance of batch
applications using three benchmarks from the SPEC CPU2006 suite:
bzip2, mcf, and perlbench. The results are shown in Fig. 2(a)
when the server is configured to report memory errors using the SMI
interrupt, and Fig. 2(b) for the CMCI interrupt. For each benchmark,
we varied the number of error-interrupts per second (outer axis labels)
and the number of identical copies for each benchmark that were run
simultaneously on different cores (inner axis labels).

Performance penalties were significant for both types of interrupt.
When using SMIs, the average slowdown was roughly 16% for
all three benchmarks with just a single error-interrupt per second.
With two SMIs per second, the penalty rose to approximately 36%,
and with four SMIs per second, the average penalty was almost 115%.
For the SMI cases, the applications behave as though they were duty-
cycled at a rate of one minus the average utilization consumed by error
handlers. For CMCI reporting, performance degradation is negligible
for ten error-interrupts per second. At 1000 error-interrupts/sec with
CMCIs, our batch applications perform approximately 200% to 350%
worse.

As the error rate increases, performance varies considerably within
and across the three applications for both types of interrupts. We
believe this is caused by two factors. (i) As we noted earlier, high
error rates cause increased memory interference; this affects each

application differently. For example, in the SMI case, bzip2 has
very consistent performance no matter how many copies run, while
mcf shows more variation because it is a memory-heavy workload.
Given the frequent task pre-emption and possible cache pollution
and/or flushes that are caused by SMM, multiple copies of mcf are
more likely to interfere in main memory, causing additional perfor-
mance degradation. (ii) In the case of CMCIs, each processor core
may not receive a fair share of interrupts. Without knowing the
interrupt load-balancing policy taken by the kernel, a thread running
on one core might receive, for example, only 80% of the interrupts
that a thread running on another core receives. Regardless, we ran
all workloads to completion, and found that run-to-run variation was
negligible.

Impact of error handlers on an interactive web-search ap-
plication. Finally, we consider an interactive web-search workload,
which was developed internally. It emulates the index-searching
component of a major production search engine using real web-search
traces. Fig. 3 depicts the normalized average and 95th percentile query
latency as a function of the normalized query arrival rate and the
number of DRAM error-interrupts per second. We find that even
for light loads, error-interrupt rates of four SMIs per second can
cause 2.3× higher average query latency. Under peak search traffic,
the introduction of just a few memory errors to the system causes
the average query latency to increase by up to a staggering 873×
(Fig. 3(a)). We see similar trends in the tail latency (Fig. 3(b)). In
contrast, CMCI-based error reporting does not result in significant
performance penalties for up to 50 error-interrupts per second. CMCIs
can still deny service completely, however, just like SMIs: up to
3746× degradation can occur in average search latency under peak
load with 1000 error-interrupts per second (Figs. 3(c) and 3(d)). Note
that the relative degradation in tail latency is usually greater than the
average for the lightly loaded cases, but less than the average for the
heavily-loaded cases. This implies that error-interrupts can completely
deny service in the worst case, which will cause the average latency
to exceed the tail latency.

The interactive application is much more sensitive to errors than
the batch applications because its performance metric (tail latency) is
dependent on the worst-case interference of interrupt handlers with
user event handlers, i.e., the timing of events. Conversely, the batch
applications’ performance metric (overall execution time) is linearly
dependent on the number of interrupts and their total handling dura-
tion, but not the arrival times of the errors. These results highlight the
need for further empirical evaluation and modeling by the community
in order to develop compelling solutions to the problem of memory
errors.

Possible solutions. There are a number of ways to mitigate
this issue. (i) Dramatically speed up interrupt handlers through
firmware/software optimization. (ii) Change SMM architecture to
allow just a single processor to execute in firmware mode concur-
rently with the other processors in kernel or user mode, improving
performance of SMI-based error handling. However, this may have
implications for firmware complexity as well as platform security.
(iii) Expose the complete and static physical-to-DRAM organization
mapping at boot time from firmware to OS through a new ACPI
structure that is cached in the kernel, improving utility of CMCI-
based error handling. This would add complexity to both firmware
and system software. (iv) Leverage aggressive page retirement to
remove the source of faults that are sensitized and degrading per-
formance. This could potentially cost capacity and memory-level
parallelism. (v) Finally, revert to the older error polling-style method,
which bounds the time spent handling errors, but potentially reduces
the fidelity of error logs for use by the OS, datacenter operators,
and field study researchers. It may also reduce the common-case
performance of all machines in a WSC, which may affect the tail
latency of interactive applications. (vi) Leverage application-level
load-balancing in the datacenter to mitigate the denied service of
machines with memory errors. This might have limited use, however,
for applications that are composed of many microservices, like those
at Google [20]. We leave these solutions, as well as studying the
impact of memory errors on datacenter-level performance consistency
and availability, to future work.

5 CONCLUSION
Memory reliability will continue to be an important consideration in
the design of WSCs for the foreseeable future. As researchers explore
new directions in reliability-aware design, variation-tolerant systems,
and approximate computing, we advocate for increased awareness of
the more subtle effects of reliability on performance, energy, and
cost. Our empirical measurements confirmed our hypothesis: a pri-
mary cause of performance degradation witnessed on machines with
faulty memory is not the underlying hardware itself; rather, it is the
extreme software overheads that are required to manage and report the
error occurrences in the system. Compelling directions for future work
include the design of improved error-handling architectures, charac-
terizing the impact of memory errors on performance of distributed

3

Gottscho et al. Measuring the Impact of Memory Errors on Application Performance IEEE CAL 2016

Normalized Query Arrival RateN
or

m
al

iz
ed

 A
ve

ra
ge

 Q
ue

ry
 L

at
en

cy

baseline
1 error/sec
2 errors/sec
4 errors/sec

8
7
3
X

 D
e
g
ra

d
a
ti
o
n

6
X

Nominal

Load
Light

Load

Heavy

Load

Peak

Load

2
.3

X 1
6
.6

X

×1 ×2 ×3 ×4 ×5 ×6×
1

×
10

×
100

×
1K

×
10K

(a) SMI, Average

baseline
1 error/sec
2 errors/sec
4 errors/sec

Nominal

Load
Light

Load

Heavy

Load

Peak

Load

9
8

.7
X

 D
e

g
ra

d
a

ti
o

n

6
.5

X

4
.7

X 2
0

X

Normalized Query Arrival RateN
or

m
al

iz
ed

 9
5t

h
%

ile
 Q

ue
ry

 L
at

en
cy

×1 ×2 ×3 ×4 ×5 ×6×
1

×
10

×
100

×
1K

(b) SMI, 95th Percentile

baseline

1 error/sec

10 errors/sec

50 errors/sec

100 errors/sec

200 errors/sec

333 errors/sec

500 errors/sec

1000 errors/sec

Nominal

Load

Light

Load

Heavy

Load

Peak

Load

3
.3

X

3
.2

X

2
4

.2
X

3
7

4
6

X
 D

e
g

ra
d

a
ti
o

n

Normalized Query Arrival RateN
or

m
al

iz
ed

 A
ve

ra
ge

 Q
ue

ry
 L

at
en

cy

×1 ×2 ×3 ×4 ×5 ×6×
1

×
10

×
100

×
1K

×
10K

×
100K

(c) CMCI, Average

baseline

1 error/sec

10 errors/sec

50 errors/sec

100 errors/sec

200 errors/sec

333 errors/sec

500 errors/sec

1000 errors/sec

Nominal

Load

Light

Load

Heavy

Load

Peak

Load

9
8

.4
X

 D
e

g
ra

d
a

ti
o

n

3
X

3
.6

X 3
2

.2
X

Normalized Query Arrival RateN
or

m
al

iz
ed

 9
5t

h
%

ile
 Q

ue
ry

 L
at

en
cy

×1 ×2 ×3 ×4 ×5 ×6×
1

×
10

×
100

×
1K

×
10K

(d) CMCI, 95th Percentile

Fig. 3. An industrial web-search application running on a state-of-the-art cloud server experiences severe performance degradation in the presence
of memory errors. SMI interrupts (133 ms) degrade performance much faster than CMCIs (775 µs) because of their higher handling latencies.

and microservice-based applications across multiple machines, and
accounting for the performance degradation in machine servicing and
datacenter total cost-of-ownership models. Our ongoing work aims
to analytically model the observed performance degradation using
queuing theory in pursuit of these goals.

ACKNOWLEDGMENTS
This work was conducted jointly between Microsoft Corporation and
the NanoCAD Lab of the Electrical Engineering Department at the
University of California, Los Angeles (UCLA). The authors thank
Dr. Jie Liu of Microsoft Research, and Dr. Badriddine Khessib and
Dr. Kushagra Vaid of Microsoft for supporting this work while Mr.
Gottscho was an intern at Microsoft Research in 2015. Funding came
partly from the NSF Variability Expedition Grant No. CCF-1029783.

REFERENCES
[1] “Advanced Configuration and Power Interface (ACPI) Specification,”

www.uefi.org, accessed: 2015-06.
[2] “Intel 64 and IA-32 Architectures Software Developer Manu-

als,” http://www.intel.com/content/www/us/en/processors/architectures-
software-developer-manuals.html, accessed: 2015-05-01.

[3] “Microsoft WinDbg,” https://msdn.microsoft.com/en-us/windows/
hardware/hh852365.aspx, accessed: 2015-06.

[4] “X-Mem Source Code,” https://nanocad-lab.github.io/X-Mem/, accessed:
2016-07.

[5] “MCA Enhancements in Future Intel Xeon Processors,”
http://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/enhanced-mca-logging-xeon-paper.pdf, 2013.

[6] J. Abella et al., “Low Vccmin Fault-Tolerant Cache with Highly Pre-
dictable Performance,” in MICRO, 2009.

[7] A. R. Alameldeen et al., “Adaptive Cache Design to Enable Reliable
Low-Voltage Operation,” TC, vol. 60, no. 1, 2011.

[8] A. Ansari et al., “Archipelago: A Polymorphic Cache Design for En-
abling Robust Near-Threshold Operation,” in HPCA, 2011.

[9] M. Armbrust et al., “A View of Cloud Computing,” CACM, vol. 53, no. 4,
2010.

[10] E. Baseman et al., “Improving DRAM Fault Characterization Through
Machine Learning,” in DSN-W, 2016.

[11] L. Chen et al., “E3CC: A Memory Error Protection Scheme with Novel
Address Mapping for Subranked and Low-Power Memories,” TACO,
vol. 10, no. 4, 2013.

[12] N. DeBardeleben et al., “Extra Bits on SRAM and DRAM Errors - More
Data from the Field,” in SELSE, 2014.

[13] B. Delgado and K. L. Karavanic, “Performance Implications of System
Management Mode,” in IISWC, 2013.

[14] M. Gottscho et al., “DPCS: Dynamic Power/Capacity Scaling for SRAM
Caches in the Nanoscale Era,” TACO, vol. 12, no. 3, 2015.

[15] ——, “ViPZonE: Hardware Power Variability-Aware Memory Manage-
ment for Energy Savings,” TC, vol. 64, no. 5, 2015.

[16] ——, “Software-Defined Error-Correcting Codes,” in DSN-W, 2016.
[17] ——, “X-Mem: A Cross-Platform and Extensible Memory Characteriza-

tion Tool for the Cloud,” in ISPASS, 2016.
[18] P. Gupta et al., “Underdesigned and Opportunistic Computing in Pres-

ence of Hardware Variability,” TCAD, vol. 32, no. 1, 2013.
[19] A. A. Hwang et al., “Cosmic Rays Don’t Strike Twice: Understanding

the Nature of DRAM Errors and the Implications for System Design,”
SIGARCH Comp. Arch. News, vol. 40, no. 1, 2012.

[20] S. Kanev et al., “Profiling a Warehouse-Scale Computer,” in ISCA, 2015.
[21] S. Li et al., “System Implications of Memory Reliability in Exascale

Computing,” in SC, 2011.
[22] X. Li et al., “A Realistic Evaluation of Memory Hardware Errors and

Software System Susceptibility,” in USENIX ATC, 2010.
[23] S. Liu et al., “Flikker: Saving DRAM Refresh-Power Through Critical

Data Partitioning,” SIGARCH Comp. Arch. News, vol. 39, no. 1, 2011.
[24] Y. Luo et al., “Characterizing Application Memory Error Vulnerability

to Optimize Datacenter Cost via Heterogeneous-Reliability Memory,” in
DSN, 2014.

[25] B. Maurer, “Fail at Scale,” CACM, vol. 58, no. 11, Nov. 2015.
[26] J. Meza et al., “Revisiting Memory Errors in Large-Scale Production

Data Centers: Analysis and Modeling of New Trends from the Field,” in
DSN, 2015.

[27] S. Mittal, “A Survey of Architectural Techniques for Managing Process
Variation,” ACM Comp. Surv., vol. 48, no. 4, 2016.

[28] S. Mittal and J. S. Vetter, “A Survey of Techniques for Modeling and
Improving Reliability of Computing Systems,” TPDS, vol. 27, no. 4,
2016.

[29] P. Nikolaou et al., “Modeling the Implications of DRAM Failures and
Protection Techniques on Datacenter TCO,” in MICRO, 2015.

[30] M. K. Qureshi and Z. Chishti, “Operating SECDED-based Caches at
Ultra-Low Voltage with FLAIR,” in DSN, 2013.

[31] A. Rahimi et al., “Variability Mitigation in Nanometer CMOS Integrated
Systems: A Survey of Techniques From Circuits to Software,” Proc.
IEEE, vol. 104, no. 7, 2016.

[32] B. Schroeder et al., “DRAM Errors in the Wild: A Large-Scale Field
Study,” in SIGMETRICS, 2009.

[33] V. Sridharan et al., “Feng Shui of Supercomputer Memory: Positional
Effects in DRAM and SRAM Faults,” in SC, 2013.

[34] V. Sridharan and D. Liberty, “A Study of DRAM Failures in the Field,”
in SC, 2012.

[35] K. V. Vishwanath and N. Nagappan, “Characterizing Cloud Computing
Hardware Reliability,” in SoCC, 2010.

[36] L. Wanner et al., “NSF Expedition on Variability-Aware Software:
Recent Results and Contributions,” De Gruyter it, vol. 57, no. 3, 2015.

4

Gottscho et al. Measuring the Impact of Memory Errors on Application Performance IEEE CAL 2016

www.uefi.org
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://msdn.microsoft.com/en-us/windows/hardware/hh852365.aspx
https://msdn.microsoft.com/en-us/windows/hardware/hh852365.aspx
https://nanocad-lab.github.io/X-Mem/
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/enhanced-mca-logging-xeon-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/enhanced-mca-logging-xeon-paper.pdf

	Introduction
	Related Work
	DRAM Error Management and Reporting
	Measuring the Impact of Memory Errors
	Experimental Methods
	Empirical Results using Fault Injection

	Conclusion
	References

