
Mobile Networks and Applications 8, 485–498, 2003
 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

A New Bluetooth Scatternet Formation Protocol ∗

CHING LAW, AMAR K. MEHTA and KAI-YEUNG SIU
Massachusetts Institute of Technology, USA

Abstract. A Bluetooth ad hoc network can be formed by interconnecting piconets into scatternets. The constraints and properties of
Bluetooth scatternets present special challenges in forming an ad hoc network efficiently. In this paper, we present and analyze a new
randomized distributed protocol for Bluetooth scatternet formation. We prove that our protocol achieves O(log n) time complexity and
O(n) message complexity. The scatternets formed by our protocol have the following properties: (1) any device is a member of at most
two piconets, and (2) the number of piconets is close to be optimal. These properties can help prevent overloading of any single device and
lead to low interference between piconets. We validate the theoretical results by simulations, which also show that the scatternets formed
have O(log n) diameter. As an essential part of the scatternet formation protocol, we study the problem of device discovery: establishing
multiple connections simultaneously with many Bluetooth devices. We investigate the collision rate and time requirement of the inquiry and
page processes. Our simulation results indicate that the total number of packets sent is O(n) and that the maximum number of packets sent
by any single device is O(log n).

Keywords: Bluetooth, ad hoc networks, resource discovery, topology construction

1. Introduction

Bluetooth [4,7,15,22] is an emerging low-cost and low-power
short-range radio technology. Many useful applications can
be supported by an ad hoc network over Bluetooth. For ex-
ample, in a conference room, a special announcement can be
broadcast to the Bluetooth-enabled mobile phones and hand-
held computers through an ad hoc network. Bluetooth ad hoc
networks can also be used for rapid deployment of EMID
(electromagnetic identification) readers [2].

The area of ad hoc networking has gathered significant
research interests in recent years. Many studies have con-
centrated on the routing issues of ad hoc networks [16,23].
These studies usually assume that any two in-range nodes can
communicate with each other. Therefore, an ad hoc network
can be modeled as a graph such that the in-range nodes are
adjacent. For example, simulation-based studies [5,6] of ad
hoc routing protocols have been conducted with a link-layer
model based on or similar to the IEEE 802.11b standard.

An ad hoc network based on Bluetooth, however, brings
new challenges. There are specific Bluetooth constraints not
present in other wireless networks. For example, a Bluetooth
network is composed of piconets. Each piconet contains one
master and up to seven slaves. Piconets can be connected
into a larger scatternet (figure 1) by sharing slaves. As shown
by Miklos et al. [14] and Zurbes [26], the configuration of
a scatternet has significant impact on the performance of the
network. For instance, when a scatternet contains more pi-
conets, the rate of packet collisions increases. Before we can
make effective use of Bluetooth ad hoc networking, we must
first devise an efficient protocol to form a scatternet from iso-
lated Bluetooth devices.
∗ This work is supported in part by the MIT Auto-ID Center (autoidcen-

ter.org). Corresponding author: Ching Law, 305 Memorial Drive, Cam-
bridge, MA 02139, USA.

In this paper, we study the problem of scatternet formation
in the situation where the devices are in-range of one another.
The communication range is at least 10 meters according to
the current Bluetooth specification. This means that our for-
mation algorithm should work when the maximum distance
between any two devices is at most 10 meters. We will discuss
in section 8 how the algorithm should adapt if the assumption
is not satisfied.

We adopt a two-layer approach to this problem. First, we
investigate how these devices can be organized into scatter-
nets. We design and evaluate the performance of a new scat-
ternet formation protocol. Second, as a subroutine of the
formation protocol, we study how the devices can discover
each other efficiently.

This paper is organized as follows. In section 2, we discuss
the related research on Bluetooth scatternets. To get a bet-
ter understanding of how our results differ from prior work,
readers may skip this section and come back to it after going
through the results of this paper. In section 3, we introduce
the problem of scatternet formation. Our new scatternet for-
mation protocol is presented in section 4. We present the-

Figure 1. A Bluetooth scatternet.

486 C. LAW ET AL.

oretical analyses and simulation results of our protocol in
section 5. We discuss device discovery with simulation re-
sults in section 6. In section 7 we estimate the overall per-
formance of the protocol. We discuss several variations and
extensions to our protocol in section 8 and conclude in sec-
tion 9. Theoretical results in this paper have appeared in a
conference paper [12]. Simulation results in this paper have
appeared in a conference paper [10] and a thesis [13].

2. Related work

Miklos et al. [14] apply heuristics to generate scatternets with
some desirable properties. They evaluate these scatternets
of different characteristics through simulations. Johansson et
al. [9] perform link-layer simulations of piconets. Raman,
Bhagwat, and Seshan [17] argue for cross-layer optimization
in Bluetooth Scatternets.

Aggarwal et al. [1] introduce a scatternet formation algo-
rithm. Their algorithm first partitions the network into inde-
pendent piconets, and then elects a “super-master” that knows
about all the nodes. However, the resulting network is not
a scatternet, because the piconets are not inter-connected.
A separate phase of re-organization is required.

Salonidis et al. [18] discuss the issues of symmetric con-
nection between a pair of Bluetooth devices. In their symmet-
ric protocol, the devices switch states (INQUIRY and INQUIRY

SCAN) with a random schedule. In contrast, in our work,
the devices switch states periodically, but pick the states ran-
domly.

Salonidis et al. [19] introduce a scatternet formation algo-
rithm – Bluetooth Topology Construction Protocol (BTCP).
BTCP has three phases: (1) a coordinator is elected with a
complete knowledge of all devices, (2) this coordinator de-
termines and tells other masters how a scatternet should be
formed, and (3) the scatternet is formed according to the in-
structions. A formation scheme is presented in [19] for up
to 36 devices. In contrast, our algorithm has only one phase.
Since the topology is decided by a single device (the coordi-
nator), BTCP has more flexibility in constructing the scatter-
net. However, if the coordinator fails, the formation protocol
has to be restarted. BTCP’s timeout value for the first phase
would affect the probability that a scatternet is formed. Our
protocol’s timeout value for each round only affects the over-
all performance of the protocol – the scatternet will be formed
with certainty. In addition, BTCP is not suitable for dynamic
environments where devices can join and leave after the scat-
ternet is formed.

The algorithms in [1,19] depend on a single device to de-
sign the scatternet topology and notify other devices. There-
fore these algorithms will have time complexity �(n/k),
where n is the number of nodes, and k is the maximum num-
ber of slaves in a piconet. In comparison, our algorithm
consists of a single phase and has O(log n) time complex-
ity. However, as pointed out in [19], the coordinator election
phase dominates the total time requirement. Thus, the advan-
tage of our protocol’s O(log n) time complexity might not be

relevant in practice unless the number of devices is very large.
Moreover, we note that at least the phase II of BTCP can be
modified to run in O(log n) time, if the topological informa-
tion is distributed along a tree. However, a tree-based distrib-
ution scheme will increase the complexity of the protocol.

Tan [21] gives a distributed Tree Scatternet Formation
(TSF) protocol. The extensive simulation results indicate rel-
atively short scatternet formation latency. However, TSF is
not designed to minimize the number of piconets. The simu-
lation results suggest that each master usually has fewer than
3 slaves. In comparison, our protocol guarantees that all but
one of masters have at least 6 slaves.

Bluetree [25] and Bluenet [24] are scatternet formation
protocols for larger-scale Bluetooth networks, in which the
devices can be out of range with one another. Simulation
results of the routing properties of the scatternets were pre-
sented in [24,25]. However, there were no simulation or the-
oretical analyses on the performance of the scatternet forma-
tion process.

3. Preliminaries

In this section we introduce some terminologies and perfor-
mance measures for the scatternet formation problem.

Bluetooth devices share 79 channels of 1 MHz bandwidth
in the 2.4 GHz band using frequency hopping. When two
Bluetooth devices are connected, one of the devices acts as a
master and the other device acts as a slave. Any Bluetooth
device can perform the role of a master or a slave.

A Bluetooth device can discover other devices by the in-
quiry process. A master in INQUIRY state hops 3,200 times per
second according to a 32-channel inquiry hopping sequence.
At the same time, a slave in INQUIRY SCAN state changes its
listening frequency every 1.28 seconds, along the same se-
quence.

If the inquiry process succeeds, the master learns the ad-
dress (which is unique for each Bluetooth device) and the
clock of the slave. Then the master and the slave can be con-
nected with the page process. In the page process, the master
in PAGE state contacts the slave with a 32-channel page hop-
ping sequence, which is a function of the slave’s address and
(estimated) clock. Similarly, the PAGE SCAN slave hops with
the period of 1.28 seconds along the same sequence. After the
master and the slave are connected, they communicate with
a hopping sequence over all 79 channels at the rate of 1600
hops per second. This hopping sequence is determined by the
master’s clock and address.

A piconet consists of 1 master and 1–k active slaves.1 All
packets are exchanged between a master and its slaves within
a piconet. There is no direct master–master or slave–slave
communication. A device can be a slave in several piconets
but be a master in only one piconet. The degree of a device is
the number of piconets to which the device belongs. A device
is unshared if its degree is 0 or 1. Otherwise, it is shared.

1 k = 7 in Bluetooth Specification 1.1 [20].

NEW BLUETOOTH SCATTERNET FORMATION PROTOCOL 487

A scatternet is a set of piconets connected through shared de-
vices.

The problem of scatternet formation: How does a collec-
tion of isolated devices form a scatternet? The devices are
isolated in the beginning; each device is not aware of the other
devices. Therefore, the scatternet formation protocol must be
distributed. We assume that the devices are in the communi-
cation range of each other. Thus, potentially, any two devices
can be connected directly.

A scatternet formation protocol has two major perfor-
mance measures:

• Time complexity – amount of time to form a scatternet.
A scatternet should be formed as fast as possible to mini-
mize the delay experienced by the users.

• Message complexity – number of messages sent between
the devices. This is important because Bluetooth devices
usually operate with limited power. By reducing the num-
ber of messages sent, power consumption is conserved.

Futhermore, it is also crucial to have scatternets of good
quality. It is not very useful to have scatternets leading to poor
communication performance. Thus, we should aim to form a
scatternet that facilitates inter-piconet communications. It is
not easy to quantify the quality of a scatternet, but we believe
the following measures are good indicators:

• Number of piconets – a measurement of a scatternet’s ef-
ficiency. Since all piconets share the same set of 79 chan-
nels, there will be more collisions when there are more
piconets. As shown in [26], the burst failure rate increases
with the number of piconets.

• Maximum degree of the devices – the maximum number
of piconets that any device belongs to. Since the piconets
communicate through shared slaves, if a slave belongs to
many piconets, then this slave could become the bottle-
neck of inter-piconet communications. A shared slave has
to be time multiplexed between the piconets that it belongs
to. Therefore, a shared slave of high degree could become
overloaded.

• Network diameter – maximum number of hops between
any pair of devices. This will provide us with an estima-
tion of the maximum routing delay of the scatternet.

A good balance among the quality measures is desirable.
Consider, for example, a star topology: a single “central”
slave is shared by all piconets. In such a scatternet of n

devices with every piconet containing k slaves, there are
�(n − 1)/k� piconets. Although the number of piconets is
minimized, minimized (see remark 1), this scatternet prob-
ably would not perform very well in practice because the
shared slave will be overwhelmed, unless the network is
small.

Remark 1. Let k be the maximum number of slaves in a
piconet. A scatternet of n devices must contain at least
�(n− 1)/k� piconets.

Proof. See appendix A. �

4. Scatternet formation

In this section, we first present our scatternet formation proto-
col and then evaluate its performance and properties by analy-
ses and simulations. The development of this algorithm was
inspired by our research on resource discovery algorithms in
general networks [11]. The main idea is to merge pairs of con-
nected components until one component is left. Each compo-
nent has a leader. In each round, a leader either tries to contact
another component or waits to be contacted. The decision of
each leader is random and independent. Our protocol in [11]
forms a complete graph in O(log n) rounds. In this paper, we
apply the same idea to connect Bluetooth devices in O(log n)

rounds.

4.1. Algorithm

Initially, we are given a set of isolated but in-range devices.
During the execution of the algorithm, the devices are parti-
tioned into components. A component is a set of intercon-
nected devices, and can be a single device, a piconet, or a
scatternet. There is one leader in each component. For a
single-device component, the only member is the leader. For
a piconet, the master is the leader. For a scatternet, one of the
masters is the leader. When a leader retires, it stops being a
leader and will be inactive for the rest of the algorithm (un-
less it becomes a leader again). For any device v, let S(v)

be the set of v’s slaves. If v is not a master or has no slaves,
then S(v) = ∅. Let k � 2 be the maximum number of slaves
allowed in a piconet. Thus S(v) � k for any v.

In lemma 2, we will prove the following invariants for the
algorithm:

• Each leader either has no slave, or has at least one un-
shared slave in its piconet.

• Each leader has fewer than k slaves in its piconet, i.e.,
|S(u)| < k for any leader u.

All leaders execute procedure MAIN in the beginning of
each round. We assume a constant δ, such that procedure
MAIN and the procedures called by it can be completed in δ

seconds. A good choice of δ can be found by simulations (see
section 6) and by prototyping. We assume that all leaders call
procedure MAIN at time t0 + iδ, for i = 0, 1, . . . , where t0 is
the start time.

In the beginning, all devices are leaders. In procedure
MAIN, a leader calls SEEK with probability p ∈ (1/3, 2/3).
Otherwise, the leader calls SCAN or asks an unshared slave
to call SCAN. During each round, only one device in each
component should call SEEK or SCAN.

MAIN(leader u)
1 x ← a random number in [0, 1)

2 if x < p (1/3 < p < 2/3)

3 then SEEK(u)
4 else if S(u) = ∅
5 then SCAN(u)

6 else v← an unshared slave of u

7 SCAN(v)

488 C. LAW ET AL.

When a leader executes SEEK, it tries to acquire a new
slave (which is running SCAN). However, the leader may not
always succeed, because, in any given round, the number of
devices running SCAN can be smaller than the number of de-
vices running SEEK. Therefore, if a leader is not able to con-
tact a slave after certain time, it should give up and run MAIN

again in the next round. Similarly, SCAN might also fail in
any given round. During each round, a matching is found be-
tween the SEEK devices and SCAN devices. The number of
connections established (size of the matching) is the smaller
of the number of SEEK devices and the number of SCAN de-
vices.

SEEK(u)
1 u performs INQUIRY

2 if a slave v is found
3 then u connects to slave v by PAGE

4 //S(u)← S(u) ∪ {v}
5 CONNECTED(u, v)

SCAN(v)

1 v performs INQUIRY SCAN

2 if v is contacted by a master u

3 then v waits for u in PAGE SCAN

We note that SEEK and SCAN devices will go into PAGE

and PAGE SCAN modes, respectively, after all inquiries are
completed. The amount of time required is investigated in
section 6. In general, we make sure that each master is
matched to only one slave, and vice versa. When a leader u

running SEEK connects to a slave v running SCAN, procedure
CONNECTED(u, v) is called.

Procedure CONNECTED(u, v) merges the component of u

and the component of v. There are several cases:

1. If v is an isolated leader, then v would become a slave of
u unless the piconet of u has become full, in which case a
new piconet with master v and unshared slave y is created,
as shown in figure 2. This is necessary because otherwise
u’s piconet would be full, violating the second invariant.
To satisfy the first invariant, we also need to give the new
master v an unshared slave y.

2. If v is not an isolated leader, then let w be the master of v.

(a) If the piconet of u and the piconet of w can fit into a
single piconet (with at most k − 1 slaves because of
the second invariant), then w and its slaves join the
piconet of u, as shown in figure 3.

(b) Otherwise, we cannot merge the two piconets, and
thus we should let w retire.

(i) If u was an isolated master, u would not have an
unshared slave. Thus, we will let u become the
slave of retiring master w and let v become an
unshared slave of u (figure 4).

(ii) If the merged piconet is just full, violating the
second invariant, we will need to let v become a
master and give it an unshared slave y (figure 5).

Figure 2. Lines 5–7 in procedure CONNECTED for k = 7.

(iii) Otherwise, we will just try to move as many
nodes allowed by the invariants as possible from
the piconet of u to the piconet of retiring mas-
ter w, so as to reduce the overall number of pi-
conets (figure 6).

CONNECTED(leader u, slave v)
1 if v is a leader
2 then //v was an isolated leader
3 if |S(u)| < k

4 then v retires
5 else u retires // figure 2
6 y ← an unshared slave of u

7 MOVE({y}, u, v)

8 else w← the other master of v

9 w retires
10 switch
11 case |S(u) ∪ S(w)| + 1 < k: // figure 3
12 MERGE(u, v,w); return
13 case |S(u)| = 1: // figure 4
14 MOVE({u}, NIL, w)
15 v disconnects from w; return
16 case |S(u) ∪ S(w)| + 1 = k: // figure 5
17 u retires
18 y ← an unshared slave of u

19 MERGE(u, v,w)

20 MOVE({y}, u, v)

21 v becomes a leader; return
22 case default: // figure 6
23 MIGRATE(u, v,w); return

Communications between u and w in CONNECTED,
MERGE, MIGRATE, and MOVE are via their common slave v.

NEW BLUETOOTH SCATTERNET FORMATION PROTOCOL 489

Figure 3. Lines 11–12 (|S(u) ∪ S(w)| + 1 < k) in procedure CONNECTED

for k = 7.

Figure 4. Lines 13–15 (|S(u)| = 1) in procedure CONNECTED for k = 7.

Procedure MERGE(u, v,w) makes w and all its slaves be-
come u’s slaves.

MERGE(master u, slave v, master w

1 v disconnects from w

2 MOVE(S(w) \ v,w, u)

3 MOVE({w}, NIL, u)

Procedure MIGRATE(u, v,w) moves slaves from S(u) to
S(w) until S(w) is full or when only two slaves are left
in S(u).

MIGRATE(master u, slave v, master w)
1 i ← min(k − |S(w)|, |S(u)| − 2)

2 //i is the number of slaves to migrate
3 if i > 0
4 then y ← an unshared slave of u

Figure 5. Lines 16–21 (|S(u) ∪ S(w)| + 1 = k) in procedure CONNECTED

for k = 7.

Figure 6. Lines 22–23 (default) in procedure CONNECTED for k = 7.

5 Z← {i slaves in S(u) \ {y, v}}
6 MOVE(Z, u,w)

Procedure MOVE is a subroutine called by CONNECTED,
MERGE, and MIGRATE. All devices in set Z disconnect from
u and become slaves of w.

MOVE(set Z, master u, master w)
1 devices in Z disconnect from u

2 devices in Z wait for w in PAGE SCAN

3 w connects to devices in Z by PAGE

Lemma 2 proves the invariants of the algorithm.

490 C. LAW ET AL.

Lemma 2. During the execution of the algorithm, the follow-
ing invariants hold:

• Each leader has either no slave, or has at least one un-
shared slave.

• Each leader has fewer than k slaves.

Proof. We will prove the invariants by induction.
In the beginning, all devices are leaders without slaves. So

our invariants are satisfied.
Assuming a state satisfying the claim, we only have to

make sure that CONNECTED and its calls to MERGE, MI-
GRATE, and MOVE preserve the invariants, because no pi-
conet is formed or modified in MAIN, SEEK, and SCAN.

Let S ′(u) and S ′(v) be the slaves of u and v after CON-
NECTED(u, v) is returned.

First, we consider the case that v is a leader (lines 1–7).
If v is a leader, it means that v does not have any slave. If
|S(u)| < k (lines 3, 4), v would become an unshared slave
of u. If u has exactly k slaves (lines 5–7), then one unshared
slave y is moved from S(u) to S(v). Thus, S ′(v) contains an
unshared slave. In this case, u is retired so that it does not
need an unshared slave.

Second, we consider the case that v is a slave of a leader w.
Master w will no longer be a leader, so it does not have to
satisfy the invariants. There are four cases:

• (|S(u) ∪ S(w)| + 1 < k). All devices in S(w) become
slaves of u. Device v was an unshared slave in S(w). After
the merge, u is the only master of v, so v becomes an
unshared slave of u. Also, we note that |S ′(u)| = |S(u) ∪
S(w)| + 1 is smaller than k by assumption.

• (|S(u)| = 1). Leader u will have v as its only slave. Slave
v is unshared because it was w’s unshared slave.

• (|S(u) ∪ S(w)| + 1 = k). In this case, u retires so it does
not need to satisfy the invariants. When slave v becomes a
leader, it obtains an unshared slave y from u.

• (Default). Slaves in S(u) are migrated to S ′(w) until
|S ′(w)| is k or S ′(u) contains only two slaves (one of
them is v). Procedure MIGRATE will always reserve an
unshared slave y for S ′(u). By assumption, w had at most
k − 1 slaves before CONNECTED is called. Therefore, we
can move at least one slave from S(u) to S ′(w). There-
fore, |S ′(u)| is at most k − 1, because at least one slave is
removed after u has obtained slave v. �

This algorithm does not minimize the absolute number of
messages passed between the devices. This is not crucial in
practice, as section 6 will show that most of the packets are
sent during the inquiry processes. The current design is a
compromise between simplicity of the algorithm and the con-
stant factors of the message complexity of the algorithm.

The last leader will keep calling MAIN even after the scat-
ternet is formed. It is because the leader cannot be certain
that all devices are already connected unless it knows the total
number of devices. In practice, we can let the leader stop after
it has failed to find any device for certain number of rounds.

The probability that n leaders fail to make any connections
for l rounds is (pn + (1− p)n)l , which is less than (5/9)l for
n � 2 and 1/3 < p < 2/3.

5. Performance and properties

5.1. Theoretical results

5.1.1. Scatternet properties
We show that the scatternet formed possesses two useful
properties: small degrees for shared devices and small num-
ber of piconets.

Lemma 3. At most one piconet in the scatternet formed by
the algorithm contains fewer than k − 1 slaves.

Proof. When a scatternet is formed, only one component is
left. Therefore, except for one piconet, the masters of the
other piconets have retired. We will show that a retired master
has at least k − 1 slaves. Therefore, when the scatternet is
formed, all but one of the masters have at least k − 1 slaves.

We only need to make sure that if a leader becomes a re-
tired master in a round, it should have at least k − 1 slaves,
because a retired master will not lose any slave in subsequent
rounds. There are four places in CONNECTED that a leader is
retired:

• line 4: v becomes a slave.

• line 5: The test |S(u)| < k is false. Thus u had at least k

slaves before line 7: MOVE({y}, u, v), which reduces the
number of u’s slaves by 1. Thus u would have k−1 slaves
when retired.

• line 9: We must show that for all the four cases in
lines 11–23, w will have at least k − 1 slaves when
CONNECTED returns if w remains a master. In the first
and third cases, w loses all of its slaves in the proce-
dure MERGE and becomes a slave itself. In the second
case (lines 13–15), we have |S(u)| = 1 but |S(u) ∪
S(w)| + 1 � k because the condition of the first case
is not satisfied. Since u and w share one slave, we have
|S(u)| + |S(w)| − 1+ 1 � k. Thus, S(w) � k− 1 before
MOVE is called. Master w loses slave v, but gains a new
slave u, so w still has at least k− 1 slaves when procedure
CONNECTED returns. In the last case (lines 22–23), we
have |S(u)∪S(w)|+1 � k+1, and MIGRATE will move
all devices in the piconet of u to the piconet of w until w

has k slaves or u has only 2 slaves left. In the latter case,
only one slave in S(u) ∪ S(w) will not become a slave
of w. Thus w would have at least k − 1 slaves after the
MIGRATE operation.

• line 17: All slaves of w and w itself become slaves of
u in line 19. We note that u and w had k − 1 slaves in
total (line 16), thus u should have k slaves after MERGE

(line 19). MOVE (line 20) would remove one slave from u.
Therefore, u still has k − 1 slaves when CONNECTED re-
turns. �

NEW BLUETOOTH SCATTERNET FORMATION PROTOCOL 491

Lemma 4. The algorithm forms a scatternet with m − 1 de-
vices of degree 2 and n−m+ 1 devices of degree 1, where n

is the number of devices and m is the number of piconets.

Proof. See appendix B. �

Theorem 5. The scatternet formed by the algorithm contains
at most �(n− 2)/(k − 1)� + 1 piconets.

Proof. Consider a scatternet produced by the algorithm. Let
n be the number of devices and m be the number of piconets.
By lemma 3, at most one piconet has size less than k. (A pi-
conet has size less than k if and only if it has fewer than k− 1
slaves.) Such piconet has size at least 2. By lemma 4, m − 1
devices have degree 2 and the rest of the devices have de-
gree 1. Therefore, we can conclude that the scatternet con-
tains at least

k(m− 1)+ 2− (m− 1) = (k − 1)(m− 1)+ 2

devices. Thus, n � (k−1)(m−1)+2. Since m is an integer,
m � �(n− 2)/(k − 1)� + 1. �

Comparing theorem 5’s upper bound �(n−2)/(k−1)�+1
with remark 1’s lower bound �(n − 1)/k�, we note that our
bound is very close to be optimal. For example, when n =
100 and k = 7, our algorithm forms a scatternet containing at
most 17 piconets, while the lower bound requires 15 piconets.

5.1.2. Asymptotic complexities
We first derive the algorithm’s time complexity and then its
message complexity.

Lemma 6. During a round with at least 2 leaders, the number
of leaders is reduced by a constant fraction with a constant
probability.

Proof. Let m � 2 be the number of leaders. Let p be the
probability that a leader chooses to run SEEK. The algorithm
specifies that 1/3 < p < 2/3. We will assume p � 1/2,
because if p > 1/2, we can switch the roles of SEEK and
SCAN and the proof follows similarly.

During each round, we have a matching between the SEEK

devices and the SCAN devices. Let random variable X be
the number of SEEK devices in a given round. Since X is
distributed binomially with parameter p, we have E[X] = pm
and Var[X] = mp(1− p).

Let α be a real number between 0 and 1. If (1 − α)pm �
X � (1 + α)pm, then at least (1 − α)pm connections are
made between the SEEK devices and SCAN devices because:
(1) there are at least (1 − α)pm SEEK devices; and (2) there
are at least

m− (1+ α)pm = (1− p − αp)m � (1− α)pm

SCAN devices since (1− p) � p if p � 1/2.

Thus, the probability of having at least (1− α)pm connec-
tions (size of the matching between SEEK devices and SCAN

devices) is

Pr
{
at least (1− α)pm connections

}
= Pr

{
(1− α)pm � X � (1+ α)pm

}
= Pr

{|X − pm| � αpm
}

= 1− Pr
{|X − pm| > αpm

}
.

The Chebyshev’s inequality states that

Pr
{∣∣X − E[X]∣∣ > t

}
< t−2Var[X].

By setting t = αpm, E[X] = pm, and Var[X] = mp(1 − p),
we have

Pr
{|X − pm| > αpm

}
<

mp(1− p)

(αpm)2
= 1− p

mα2p
.

Since m � 2 and p > 1/3, we have (1 − p)/pm < 1. Thus
we can pick α so that α2 > (1−p)/2p � (1−p)/mp. Then
c = (1− p)/(2α2p) is a constant smaller than 1. Therefore,

Pr
{
at least (1− α)pm connections

}
> 1− c.

Each connection reduces the number of leaders by 1. There-
fore, with probability at least 1− c, the number of leaders is
reduced by a fraction (1− α)p. �

Theorem 7. The algorithm forms a scatternet in O(log n)

rounds with probability at least 1− 1/n�(1),

Proof. We note that a scatternet is formed when there is only
one leader left. By lemma 6, when there are at least two lead-
ers, the number of leaders is reduced by a fraction with some
probability q . The probability that the algorithm takes more
than O(log n) rounds to reduce the number of leaders to 1 is
at most q�(logn) = 1/n�(1). �

Theorem 8. The expected message complexity of the algo-
rithm is O(kn).

Proof. See appendix C. �

Corollary 9. If k is a constant, then the message complexity
of the algorithm is O(n).

We note that O(n) is the optimal asymptotic message com-
plexity because each device needs to send at least one mes-
sage.

5.2. Simulation results

In this subsection, we investigate the properties and perfor-
mance of our scatternet formation protocol.

We simulate our scatternet formation algorithm with sim-
java [8], a discrete event simulation package for Java. The
probability p that each leader chooses to execute SEEK in
each round is 1/2 in our simulations. Following the Blue-
tooth specification, we set k = 7. We start with 2, 4, and 8

492 C. LAW ET AL.

Figure 7. Number of piconets in the scatternet formed, compared to upper bound �(n− 2)/(k − 1)� + 1 and lower bound �(n− 1)/k�, where k = 7.

nodes, and then increase by increments of 8 nodes, up to 128
nodes. This allows us to present the results against the num-
ber of nodes in linear scale and in logarithmic scale. Each
data point in the graphs of this section represents an average
of 50 trials.

5.2.1. Scatternet properties
First, we found that the maximum degree of the scatternet
formed is 1 when there are fewer than 8 nodes and is 2 when
there are at least 8 nodes. This means that the maximum de-
gree is optimal except when there are 8 nodes, in which case
a maximum degree of 1 is possible.

As we discussed in section 3, it is important to mini-
mize the number of piconets because piconets interfere with
each other. Figure 7 shows that the number of piconets
formed lies between the protocol’s theoretical upper bound
�(n − 2)/(k − 1)� + 1 and the universal lower bound
�(n − 1)/k�. The largest difference between our simulation
result and the lower bound is 2.2 piconets.

The network diameter, which is the maximum shortest
path length between any pair of devices, captures the maxi-
mum routing delay between any pair of nodes in the scatter-
net. Although we do not have a theoretical analysis of the
network diameter, figure 8 shows that the network diame-
ter grows about logarithmically with the number of devices
(x axis is in logarithmic scale).

5.2.2. Performance
First, it is crucial that the scatternet is formed as fast as possi-
ble, because this translates to the latency experienced by the
users. In figure 9, we can see that the number of rounds re-
quired to form the scatternet is around 1.2 log2 n + 2. This
validates the O(log n) time complexity theoretical result. In
section 6, we will investigate the amount of time required in
each round.

Second, as most mobile Bluetooth devices are expected to
run on batteries, it is important to minimize the number of
messages sent in order to conserve battery power. We can put
the messages into three categories:

Figure 8. Network diameter of the scatternet formed.

Figure 9. Number of rounds to form a scatternet.

Inquiries – Bluetooth INQUIRY and INQUIRY RESPONSE

packets.
Pages – Bluetooth PAGE and PAGE RESPONSE packets.
Algorithmic Messages – other messages used by our scat-

ternet formation algorithm.

Figure 10 presents the total number of the Algorithmic
Messages, Inquiries, and Pages. We can verify that the num-
bers of all three types of messages increase linearly with the
number of devices. This agrees with the O(n) message com-
plexity theoretical result.

NEW BLUETOOTH SCATTERNET FORMATION PROTOCOL 493

Figure 10. Total number of Algorithmic Messages, Pages, and Inquiries.

Figure 11. Maximum number of Algorithmic Messages, Pages, and Inquiries
sent by any single node.

In figure 11, we can see that the maximum number of mes-
sages sent by any device increases logarithmically with the
number of nodes. This implies that the power requirement
of the “unluckiest” device is O(log n). A likely candidate of
such unlucky device is the last remaining leader in the proto-
col. Since the last leader is not retired, the number of mes-
sages sent by this leader is �(log n).

In the next section, we will find out how long it takes to
finish one round of inquiry and page. We will also see how
many packets are sent during the inquiry and page processes.

6. Device discovery

In this section, we investigate the performance of the device
discovery protocol used during each round of the scatternet
formation algorithm.

During scatternet formation, there are many devices try-
ing to get connected at the same time, so the inquiry and page
processes will interfere with each other. We call this the prob-
lem of device discovery when a set of in-range devices try to
connect with each other. In the following, we discuss our ap-
proach and present the simulation results.

6.1. Protocol

We describe a simple randomized protocol for the problem
of device discovery. This protocol is repeated during each
round of the scatternet formation algorithm introduced in sec-
tion 4. We are given n devices that are not aware of each other.
Our goal is to establish as many connections as possible. We
are not concerned with exactly which of the devices are con-
nected.

First, each device independently decides to be a SEEK

node (with probability p) or a SCAN node (with probability
1− p).

The protocol contains two phases – the inquiry phase and
the page phase. In the inquiry phase, all the SCAN devices
stay in the INQUIRY SCAN state. Each SEEK device will try
to contact a SCAN device. However, a SEEK device may
not always succeed in finding a slave because the number
of SCAN devices can be smaller than the number of SEEK

devices. Therefore, if a SEEK device is not able to contact
a slave after certain amount of time, it will simply give up.
Similarly, a SCAN device might also fail to be connected. In
the page phase, the already paired devices are connected with
PAGE and PAGE SCAN.

This protocol makes sure that each SEEK device is con-
nected to at most one SCAN device and each SCAN device is
connected to at most one SEEK device. In other words, we
obtain a one-to-one matching between the SCAN devices and
SEEK devices. The number of connections established is the
smaller of the number of SEEK devices and the number of
SCAN devices.

6.2. Simulation results

We also used simjava [8] to simulate this protocol.2 Each
Bluetooth device is simulated by a thread. In each time slot,
all devices first send messages, which include the frequency
channel numbers, to a special object Air. Object Air de-
tects the collisions in each of the 79 frequency channels, and
only delivers the uncollided messages to those devices listen-
ing on the respective frequency channels. Inquiry and page
frequency hopping sequences are implemented according to
the Bluetooth specification. Since the overall time scale of
the simulation is small, we did not simulate the clock drift.
Each data point in the figures of this section is an average of
10 trials. In each trial, the devices are assigned addresses and
clocks randomly.

Figure 12 shows the running time of the inquiry phase
with three different master-to-slave ratios. For example, when
there are 16 devices in total, a 50%–50% split leads to 8 mas-
ters and 8 slaves, and a 25%–75% split leads to 4 masters and
12 slaves. In the simulations of our algorithm in section 5.2,
we set p to 1/2. Thus, we expect to see 50% masters and 50%
slaves in each round. The actual outcomes at each round are
distributed according to the binomial distribution. For more

2 IBM’s BlueHoc simulator [3] is not used because we began implementing
our simulator before BlueHoc was released in public.

494 C. LAW ET AL.

Figure 12. Running time of the inquiry phase with three master-to-slave ra-
tios.

Figure 13. Percentage of packet collisions (over all packets sent) when there
are 50% masters and 50% slaves.

than 8 devices, the 25%–75% split and 75%–25% split en-
compass at least 2 standard deviations around the expectation.
We observe that the inquiry time of the 50%–50% split case
increases sharply when there are around 64 devices. Since
all SEEK devices follow the same inquiry hopping sequence
(the phase depends on the device’s clock), packet collision is
a major problem when there are many devices. From the col-
lision graph (figure 13) on the 50%–50% split case, we can
deduce that collisions start to hurt the performance severely
when there are around 64 devices.

In figure 14, we observe that, for up to 64 devices, the time
consumed by the page phase is below 0.02 seconds, which
is insignificant compared to the time required for the inquiry
phase. This is because the SEEK devices already know the
addresses and clocks of their target SCAN devices, thus they
are able to contact the SCAN devices quickly. In addition,
since they have different hopping sequences, the amount of
collisions is lower in this case.

Figure 15 shows the total number of packets sent. Again
the number of packets sent rises sharply around the 64-device
case, due to collisions. However, we can see that the total
number of packets is around (10000/32)n for n = 32, 64,

Figure 14. Running time of the page phase with three master-to-slave ratios.

Figure 15. Total number of packets sent when there are 50% masters and
50% slaves.

and 128. This means that the total number of packets sent
increases roughly linearly with the number of devices.

7. Overall performance

We now estimate the overall performance of our protocol, us-
ing the results of sections 5.2 and 6.2.

In section 5.2, we learned that the number of Inquiries,
Pages, and Algorithmic Messages all increase linearly with
the number of devices. And in section 6.2, we found that the
number of packets sent during a single round of the protocol
increases linearly with the number of devices. Therefore, we
can conclude that overall message complexity of the proto-
col is linear. This means that the average power consumed
by a device remains constant when the number of devices in-
creases. In section 5.2, we also showed that the number of
Inquiries, Pages, and Algorihtmic Messages of any single de-
vice increases logarithmically. Thus, our protocol does not
cause a very high load on any single device.

To estimate the total time taken by the protocol, we can
multiply the number of rounds (figure 9) by the time required
for each round. The time taken in each round is the sum of

NEW BLUETOOTH SCATTERNET FORMATION PROTOCOL 495

the time required for the inquiry phase (figure 12), the page
phase (figure 14), and the procedure CONNECTED.

We can estimate the time required for CONNECTED. Dur-
ing each round, each device will perform either PAGE or PAGE

SCAN at most once as a result of procedure CONNECTED.
Procedure CONNECTED does not cause any INQUIRY be-
cause the clocks and addresses of the devices are already
known. Therefore, the time required for the PAGEs caused
by CONNECTED should be more than the time required in
the 50%–50% case of the page phase (figure 14). In addition,
O(k) messages need to be exchanged among leader u, slave v,
and leader w in procedure CONNECTED. The amount of in-
formation to be passed is small, and thus the time required
to pass these messages is insignificant compared to the time
required for the INQUIRYs and PAGEs.

For example, according to our simulation results, for up to
32 devices, we expect that 1.39 + 0.02 · 2 = 1.43 seconds
are required for each round. The protocol takes on the av-
erage 7.7 rounds to form the scatternet. Thus, the total time
requirement is about 7.7 · 1.43 < 11.1 seconds. Similarly, the
estimated total time required for 16 devices and 64 devices
are at most 10.2 seconds and 30.3 seconds, respectively. Sec-
tion 8 discusses how the overall performance can be improved
with an asynchronous version of our protocol.

8. Variations and extensions

In the following, we discuss several limitations of our proto-
col and suggest techniques for overcoming them.

8.1. Inquiry collisions

When there are many devices, packet collisions among IN-

QUIRY devices can adversely affect the performance. In par-
ticular, if two INQUIRY devices happen to have their clocks in
phase so that their inquiry sequences are synchronized, then
their inquiry packets will collide repeatedly. This effect was
observed in our simulations in those cases with large numbers
of devices. It is conceivable that this problem can be allevi-
ated if the INQUIRY devices back off randomly during a heavy-
collision situation. We note that this back-off by the INQUIRY

device is not related to the random back-off by an INQUIRY

SCAN device after receiving an inquiry packet, as specified in
Bluetooth 1.1.

8.2. Asynchronous protocol

The overall time requirement estimated in section 7 is longer
than the phase I of BTCP [19]. To improve the performance,
we should consider an asynchronous version of our protocol.
We believe that the overall time requirement can be reduced
because of the following observations:

• The worst-case time required per round happens when
there is a perfect split between the masters and slaves.
However, if this happens frequently, the total number of
rounds required is small. For example, if there is a perfect

split every round, the protocol will only need log2 32 = 5
rounds to form a scatternet of 32 nodes.

• The number of active leaders decreases rapidly. Thus, the
device discovery processes in the later rounds can be com-
pleted faster.

We can consider an asynchronous version of our protocol
with the following change: once CONNECTED returns, the
remaining leader can proceed to MAIN immediately. The
synchronized nature of the current protocol is useful for
the theoretical analyses of the performance. In practice, it
is not necessary for all devices to execute CONNECTED at
the same time. The overall performance of the asynchronous
version should be better than the synchronous version. More-
over, the analyses on the degrees of devices (lemma 4) and
the number of piconets (theorem 5) remain valid in the asyn-
chronous version.

We note that it is not necessary for the devices to start at
the same time in practice. Even in the synchronous version,
a device can join the scatternet in a later round (see section 8.4
for a discussion of dynamic environments).

8.3. Out of range devices

In some scenarios, some of the Bluetooth devices might be
out of range of one another. Given arbitrary device connec-
tivity, it is not possible to maintain the performance and scat-
ternet properties guarantees. Despite such limitations, we can
augment the protocol to try to form a scatternet whenever pos-
sible. Procedures SEEK and SCAN will not need to be mod-
ified because two devices will be connected only if they are
in-range. We note that, other than SEEK, the only place that
master-slave connections are established (by PAGE and PAGE

SCAN) is in procedure MOVE. Therefore, procedure MOVE

might fail. Let us consider the places in CONNECTED where
MOVE is called:

• lines 5–7 (figure 2). If y cannot be connected to v, then we
can try to use other unshared slaves of u. If all unshared
slaves of u are not able to connect to v, then v should be-
come a retired master and have u as its only slave.

• lines 11, 12 (figure 3). The MERGE call might fail. In this
case, we can let w retire with its smaller piconet.

• lines 13–15 (figure 4). If u cannot be connected to w, then
we can let u be the slave of v. This will be similar to
the original outcome except that v will be the new leader,
instead of u.

• lines 16–21 (figure 5). If MERGE fails, we will just let w

retire.

• lines 22, 23 (figure 6). The MIGRATE procedure should
move as many devices to the retiring master w as allowed
by the underlying connectivity.

The above modifications, except the one on lines 5–7, only
affect the total number of piconets of the scatternet formed,
but not the maximum degree of any device in the scatternet
formed.

496 C. LAW ET AL.

Each execution of modified lines 5–7 might increase the
degree of u by one. Without a distribution assumption of de-
vice locations, we cannot bound the probability of such event.
However, we can provide some reasons that such event is un-
likely. Given that v was still an isolated device before the
connection, we can show that it is unlikely that u has more
than one shared slaves. If u has at least two shared slaves,
then the component led by u has at least k+ (k− 1)+ (k− 1)

devices, because each retired piconet has at least k−1 slaves.
This implies that at least �log2(3k − 2)� rounds have passed
before v is able to make a connection. If p = 1/2, v has a
probability of at least 1/2 to make a connection in each round.
Thus, if k = 7, then the probability that v is not connected for
�log2 19� = 5 rounds and then connect to u as a slave is at
most (1/32)(1/2) = 1/64. When u has no more than 1 shared
slave, it is unlikely that the k− 1 or k− 2 unshared slaves are
all out of range with v.

Depending on the underlying connectivity of the devices,
the piconets are likely to have smaller sizes, implying a larger
number of piconets in the scatternet formed. Unless the situ-
ation discussed in the previous paragraph happens, the maxi-
mum degree of any device in the scatternet will still be two.

8.4. Joins, leaves, and faults

Our protocol can be easily extended to work with dynamic
environments (with devices joining and leaving the scatternet)
and device failures. Our current protocol already handles the
events of devices joining – the new devices can simply start as
leaders and thus discover or be discovered by other devices.
Additional work is required to deal with the case of devices
leaving or failing. We give an outline in the following:

• If a master fails (or leaves the network), then a new master
can be elected from the slaves. If the failed master was
shared, then the new master should become a leader and
merge with the rest of the scatternet by the protocol.

• If a shared slave fails, its older master (the master who
connected to this slave first) should become a leader again
and then it will be connected to the rest of the scatternet
by the protocol.

• Nothing needs to be done when an unshared slave fails,
unless it is the only unshared slave of an active leader.

• In general, if we end up with a leader u with no unshared
slave, then this leader has to disconnect from its shared
slaves. Other masters of those shared slaves should now
become leaders again. This will allow the protocol to pro-
ceed as usual. Fortunately, this expensive reorganization
should occur rarely.

9. Concluding remarks

In this paper, we introduced a new Bluetooth scatternet forma-
tion protocol. We presented both theoretical and simulation
results to show that our protocol has O(log n) time complex-
ity and O(n) message complexity.

We have shown that the algorithm produces scatternet with
desirable properties: small number of piconets for minimiz-
ing inter-piconet interference, and small degrees for the de-
vices for avoiding network bottlenecks. In addition, accord-
ing to the simulations, the diameter of the scatternet, which
corresponds to the maximum routing distance between nodes,
is about O(log n). At last, we also demonstrated that no sin-
gle device is particularly exhausted by the protocol.

Appendix A. Proof of remark 1

We need to show that a scatternet of n devices has at least
�(n − 1)/k� piconets. Let p(n) be the minimum number
of piconets for a scatternet of n devices. We will show that
p(n) � �(n− 1)/k� by induction on p(n).

First, if p(n) = 1, then n � k + 1 by our assumption that
each piconet can have at most k + 1 devices. Therefore

p(n) = 1 =
⌈

k

k

⌉
�

⌈
(n− 1)

k

⌉
.

Next, assume that if p(n) � m, then p(n) � �(n− 1)/k�.
Then we consider the case that p(n′) = m + 1. Given
a scatternet of n′ devices, we pick a master and remove
its piconet so that the rest of the scatternet is still con-
nected. We can at most remove k devices because this pi-
conet was connected with the rest of the scatternet. There-
fore, after this removal, we are left with m piconets, and at
least n′ − k devices. By the inductive hypothesis, we have
p(n) � �(n − 1)/k� if p(n) � m. Since n � n′ − k, we
have p(n) � �(n′ − k − 1)/k� = �(n′ − 1)/k� − 1. Thus,
p(n′) � p(n)+ 1 � �(n′ − 1)/k�.

Appendix B. Proof of lemma 4

First, we will show that any device has maximum degree 2.
We will verify that the shared slaves and shared masters have
degrees at most 2.

Shared slaves. We observe that only unshared slaves may
participate in SCAN. Thus, a shared slave will not be shared
again through SCAN. A shared save might become unshared
in a MERGE or become a degree-2 shared master in lines
16–21 of procedure CONNECTED.

Shared masters. A shared master can only be a slave of
a retired master. Therefore, a shared master will never be
shared again with another master through SCAN. In addition,
a shared master v is always created from an unshared slave or
an isolated master. This means that v had no slave before be-
coming a shared master. Therefore, a device can only become
a shared master once.

We can now consider the topological graph of the scatter-
net, in which each piconet is a node and each degree-2 de-
vice is an edge. We can show that this topological graph is
a tree. Initially, each component is a tree (a single node).

NEW BLUETOOTH SCATTERNET FORMATION PROTOCOL 497

During each CONNECTED call, at most one edge is created
between the two merging components. And since each com-
ponent only participates in one CONNECTED process during
each round, the components remain trees throughout the pro-
tocol.

In a tree of m nodes, there are exactly m− 1 edges. There-
fore, there are m−1 degree-2 devices, and n−(m−1) degree-1
devices.

Appendix C. Proof of theorem 8

We first consider the message complexity of each invocation
of the procedures. We note that each of the procedures MAIN,
SCAN, SEEK, CONNECTED, MERGE, MIGRATE sends O(1)

messages. Procedure MOVE moves at most k devices. Thus
it sends O(k) messages.

To analyze the message complexity of MAIN, SEEK, and
SCAN, it is sufficient to find the expected number of times
that MAIN is called, because each call to MAIN leads to a call
to SEEK or a call to SCAN.

First, we can assume that when a leader w chooses SCAN

such that if it or its slave is contacted by another leader u, then
w will retire. This is true except that if u has k slaves, then u

will retire instead. See lines 5–7 in procedure CONNECTED.
However, for simplicity of the analysis, we can assume that
w retires instead of u. In other words, we can assume that
w and u swap their identities whenever we are in this case.
This will not affect our result because we only care about the
total number of messages sent by these leaders. The high-
level algorithm does not rely on an identifier of the device.
(Device address is used by low-level Bluetooth INQUIRY and
PAGE. But these processes are independent between different
rounds in the algorithm.)

During any round, each leader chooses SCAN with prob-
ability 1 − p. Assume that a leader w has chosen SCAN.
Leader w or w’s unshared slave will definitely be contacted
by another leader if the total number of SCAN devices is not
more than the number of SEEK devices.

Let Xi be the random variable of the number of SCAN de-
vices over i components. Thus, [Xi] = (1 − p)i. Let m � 2
be the number of components. We now assume that p � 1/2
because if otherwise, we can switch the roles of SCAN and
SEEK. Assume w has chosen SCAN:

Pr{w or w’s slave is contacted by a leader}
= Pr

{
Xm−1 � m

2
− 1

}
.

By Markov inequality, we have

Pr

{
Xm−1 >

m

2
− 1

}

= Pr

{
Xm−1 � m

2
− 1

2

}
� E[Xm−1]

m/2− 1/2
= 2(1− p).

Thus,

Pr

{
Xm−1 � m

2
− 1

}
� 1− 2(1− p) = 2p − 1.

Thus, each leader retires with probability at least (1 − p)

(2p − 1), which is positive except when p = 1/2.
We now consider the case where p = 1/2. In the proof of

lemma 6, we have

Pr
{
at least (1− α)pm connections

}
> 1− 1− p

α2pm
.

Let p = 1/2, α = 1/2 and m � 5, then

Pr{at least m/4 connections} > 1/5.

Therefore, with probability at least 1/5, at least m/4 connec-
tions are made. And when that happens, each device has a
probability of at least 1/4 to be the slave of a connection be-
ing made. This proves our argument for m � 5. The cases
where m = 2, 3, 4 can be easily verified.

We have shown that any leader has a constant probability
of retiring during each round. This means that each leader
is active for O(1) rounds. Thus MAIN is called O(n) times
in total, and the overall message complexity for procedures
MAIN, SEEK, SCAN is O(n).

Procedure CONNECTED is called exactly n − 1 times.
Thus, the message complexity of CONNECTED is O(n). Each
call to CONNECTED could result in at most 1 call to MERGE,
at most 1 call to MIGRATE, and at most 3 calls to MOVE.
Thus the overall message complexity of MERGE and MI-
GRATE is O(n), and the overall message complexity of MOVE

is O(kn).

References

[1] A. Aggarwal, M. Kapoor, L. Ramachandran and A. Sarkar, Cluster-
ing algorithms for wireless ad hoc networks, in: Proceedings of the
4th International Workshop on Discrete Algorithms and Methods for
Mobile Computing and Communications, Boston, MA (August 2000)
pp. 54–63.

[2] Auto-ID Center, http://autoidcenter.org/
[3] BlueHoc: Bluetooth performance evaluation tool, http://oss.

software.ibm.com/developerworks/opensource/
bluehoc/

[4] J. Bray and C.F. Sturman, Bluetooth: Connect Without Cables (Prentice
Hall, New York, 2001).

[5] J. Broch, D.A. Maltz, D.B. Johnson, Y.-C. Hu and J. Jetcheva, A perfor-
mance comparison of multi-hop wireless ad hoc network routing pro-
tocols, Mobile Computing and Networking (1998) 85–97.

[6] S.R. Das, R. Castañeda and J. Yan, Simulation-based performance eval-
uation of routing protocols for mobile ad hoc networks, Mobile Net-
works and Applications 5 (2000) 179–189.

[7] J. Haartsen, Bluetooth – the universal radio interface for ad hoc, wire-
less connectivity, Ericsson Review (3) (1998) 110–117.

[8] F. Howell and R. McNab, simjava: A discrete event simulation library
for Java, in: Proceedings of International Conference on Web-Based
Modeling and Simulation, International Society for Computer Simula-
tion (January 1998).

[9] P. Johansson, N. Johansson, U. Korner, J. Elg and G. Svennarp, Short
range radio based ad-hoc networking: performance and properties, in:
Proceedings of the IEEE International Conference on Communications
1999, Vol. 3 (1999) pp. 1414–1420.

498 C. LAW ET AL.

[10] C. Law, A.K. Mehta and K.-Y. Siu, Performance of a new Bluetooth
scatternet formation protocol, in: Proceedings of the ACM Symposium
on Mobile Ad Hoc Networking and Computing 2001, Long Beach, CA
(October 2001).

[11] C. Law and K.-Y. Siu, An O(log n) randomized resource discovery al-
gorithm, in: Brief Announcements of the 14th International Symposium
on Distributed Computing, Technical Report, Technical University of
Madrid, No. FIM/110.1/DLSIIS/2000 (October 2000) pp. 5–8.

[12] C. Law and K.-Y. Siu, A Bluetooth scatternet formation algorithm, in:
Proceedings of the IEEE Symposium on Ad Hoc Wireless Networks
2001, San Antonio, TX (November 2001).

[13] A.K. Mehta, Ad-hoc network formation using Bluetooth scatternets,
Master’s Thesis, Massachusetts Institute of Technology (June 2001).

[14] G. Miklos, A. Racz, Z. Turanyi, A. Valko and P. Johansson, Perfor-
mance aspects of Bluetooth scatternet formation, in: Proceedings of
The First Annual Workshop on Mobile Ad Hoc Networking and Com-
puting (2000).

[15] B.A. Miller and C. Bisdikian, Bluetooth Revealed: The Insider’s Guide
to an Open Specification for Global Wireless Communications (Pren-
tice Hall, New York, 2000).

[16] C.E. Perkins, Ad Hoc Networking (Addison-Wesley, Reading, MA,
2000).

[17] B. Raman, P. Bhagwat and S. Seshan, Arguments for cross-layer op-
timizations in Bluetooth scatternets, in: Proceedings of Symposium on
Applications and the Internet (2001) pp. 176–184.

[18] T. Salonidis, P. Bhagwat and L. Tassiulas, Proximity awareness and fast
connection establishment in Bluetooth, in: First Annual Workshop on
Mobile and Ad Hoc Networking and Computing (2000) pp. 141–142.

[19] T. Salonidis, P. Bhagwat, L. Tassiulas and R. LaMaire, Distributed
topology construction of Bluetooth personal area networks, in: Pro-
ceedings of the Twentieth Annual Joint Conference of the IEEE Com-
puter and Communications Societies (2001).

[20] Specification of the Bluetooth System, Version 1.1 (February 2001).
[21] G. Tan, Self-organizing Bluetooth scatternets, Master’s Thesis, Massa-

chusetts Institute of Technology (January 2002).
[22] The Bluetooth Special Interest Group, http://www.bluetooth.

com
[23] C.K. Toh, Ad Hoc Mobile Wireless Networks: Protocols and Systems

(Prentice Hall, New York, 2001).
[24] Z. Wang, R.J. Thomas and Z. Haas, Bluenet – a new scatternet forma-

tion scheme, in: Proceedings of the 35th Annual Hawaii International
Conference on System Sciences (January 2002).

[25] G.V. Záruba, S. Basagni and I. Chlamtac, Bluetrees–scatternet for-
mation to enable Bluetooth-based ad hoc networks, in: Proceed-
ings of IEEE International Conference on Communications (2001)
pp. 273–277.

[26] S. Zurbes, Considerations on link and system throughput of Bluetooth
networks, in: Proceedings of the 11th IEEE International Symposium
on Personal, Indoor and Mobile Radio Communications, Vol. 2 (2000)
pp. 1315–1319.

Ching Law received his S.B. degree in computer sci-
ence and engineering and his S.B. degree in mathe-
matics in 1998, and his M.Eng. degree in computer
science and electrical engineering in 1999, all from
the Massachusetts Institute of Technology. He is cur-
rently a Ph.D. candidate at the Department of Com-
puter Science and Electrical Engineering, Massa-
chusetts Institute of Technology. His research inter-
ests include ad hoc networks, peer-to-peer networks,
and distributed algorithms.

E-mail: ching@list.mit.edu

Amar Mehta graduated in June of 2001 from MIT
with a S.B. and M.Eng. in electrical engineering and
computer science. He graduated with distinction, as
a member of both Eta Kappa Nu and Tau Beta Pi. As
a graduate student at MIT, he was a research assistant
at the MIT Auto-ID Center, simulating the formation
of scatternets with Bluetooth, a wireless protocol for
short range communication.
E-mail: amar@list.mit.edu

Kai-Yeung (Sunny) Siu received the B.S. degree
(summa cum laude) in mathematics and computer
science from New York University, New York, NY,
and the B.Eng. degree (summa cum laude) in electri-
cal engineering from The Cooper Union, New York,
NY, both in 1987. He received the M.S. and Ph.D.
degrees in electrical engineering from Stanford Uni-
versity, Stanford, CA in 1988 and 1991, respectively.
From 1989 to 1990, he was a research student as-
sociate at the IBM Almaden Research Center, San

Jose, CA. From 1991 to 1995, he was Assistant Professor of Electrical and
Computer Engineering at the University of California, Irvine. He joined the
Massachusetts Institute of Technology in 1996, and is currently Associate
Professor and recipient of the d’Arbeloff Career Development Chair at MIT.
He is with the d’Arbeloff Laboratory for Information Systems and Technol-
ogy of Mechanical Engineering and also affiliated with the Laboratory for
Information and Decision Systems of Electrical Engineering and Computer
Science. He has published over 100 research papers in the areas of optical
networking, wireless communications, Internet routing and congestion con-
trol protocols, parallel and distributed algorithms, and computational com-
plexity theory. He has served on the editorial board of the IEEE Transac-
tions on Networking. Dr. Siu received a National Science Foundation Young
Investigator Award in 1993, the UC Irvine Distinguished Assistant Profes-
sor Award in 1995, the IEEE Browder J. Thompson Memorial Prize Paper
Award in 1997, and the Best Paper Award of the SPIE Conference on All-
Optical Networking in 1998.
E-mail: siu@list.mit.edu

