
CNGrid Software 2: Service Oriented Approach to Grid 
Computing 

 
X. Xie①, N. Xiao②, Z. Xu③, L. Zha③, W. Li③, H. Yu③ 

①JiangNan Institute of Computing Technology 
②National University of Defense Technology 

③Institute of Computing Technology, Chinese Academy of Sciences 
 

Abstract 

In China, CNGrid software is one of the first middleware level grid software aiming at distributed 
resource sharing and application integration. It is built by SOA technology and composed by Vega 
GOS, GriShield and GriDaEn, which are responsible for resource sharing mechanism 
implementation, security and file management separately. In CNGrid software, we have learned 
from computer systems, view a grid as a distributed computer system. Following this methodology, 
we proposed several system techniques such as resource router, grid process (grip), grid community 
(agora), and the GSML software suite. We discussed these techniques and introduced the 
implementation accordingly.  

1.   Introduction 
Grid related research in China flourished in 
recent years. We have witnessed a rapidly 
growing interest in grid technology in China. 
The CNGrid software project, sponsored by 
National High Technology Research and 
Development 863 Program, is being undertaken 
by Institute of Computing Technology of CAS, 
JiangNan Institute of Computing Technology 
and National University of Defense 
Technology. The goal of CNGrid software is to 
support efficient management of multiple 
geographical distributed grid nodes, to provide a 
secured, uniformed and friendly interface to the 
grid users, and to provide a convenient 
accessing approach to the grid resources from 
anywhere. CNGrid software has been applied to 
different application domain by now, from 
computing sensitive such as distributed 
simulation in manufacturing, underground water 
and petroleum resources analysing, and 
large-scale genome sequencing and analysing, 
to information scope, such as scientific 
database, education, and e-governance. 
This paper is organized as follows. Section 2 
gives general situation on CNGrid software 2 
architecture and functionalities provided. 
Section 3 discusses several key approaches that 
CNGrid software 2 adopted in order to solve 
resource locating and management, user 
interaction and grid security issues. Section 4 
presents implementation details of major 
components. They are Vega GOS, GriShield 
and GriDaEn. Section 5 offers some concluding 
remarks. 

2.   CNGrid Software 2.0 
In order to support the goals of CNGrid 
software project, support autonomous and 
geographically distributed grid node, the SOA 
(Service Oriented Architecture) concept is fully 
utilized and embodied in CNGrid software 2.0 
architecture. The computing, storage and 
information resources can be wrapped as 
different plain Web services[1], and managed 
by CNGrid software. Thereafter, the developer 
can access these services via uniformed 
interfaces provided by CNGrid software. 

2.1   Architecture 

2.1.1  Hierarchy 

The CNGrid software 2.0 can be divided into 
four layers from bottom up. They are CNGrid 
hosting environment, core layer, system layer 
and application layer (as show in Fig.1).  
Currently, the CNGrid software is hosted by 
J2SE/Tomcat environment, and can be easily 
migrated to other platforms, such as OMII[2], 
WSRF[3], even the .NET platform.  
The core layer is something like OS kernel, 
provides common functionalities required by 
grid applications, such as layered service 
address management, grid user management and 
grid process manipulation. Also, the 
authentication and authorization are included in 
this layer.  
The system layer provides a collection of basic 
libraries to help programmer developing grid 



application quickly. The services that shadowed 
will be gradually appended into this layer.  
The application layer is not constructed by 
services, but by APIs provided by system layer 
and core layer. Grid portal developer or 
integrator can benefit from Grid Portal Engine 
by avoiding using system or core layer APIs 
directly. GSML[4] (Grid Service Markup 
Language) software suite is a kind of client side 
service composition and collaboration toolkit 
which implements the GSML specification 
1.0[4] and provides “on demand” programming 
environment.  
 

CNGrid 
Hosting Env.

Core
Level 

Services

Grip Container

Grip Container 
Service

Servlet Based Scalable Grid Portal Engine

Grid Apps

Core Libs Core Service APIs, Core Exception Handling, Authentication and Authorization

Java J2SE, J2EE

Tomcat
(Apache)

WebSphere
(IBM)

WebLogic
(BEA) .NET

(Microsoft)

GT4
(Globus)

System and Application Service APIs, System Exception Handling, AC Handling

Batch Service Workflow Service etc.

User Libs

System
Level 

Services

App Level 
Services

Build-in Utility Collection Extended UtilitiesGrid 
Portal

 Application Logic by Web Pages

BioInfo Service

OMII
(e-Science)

User 
Customized
Applications

GSML
Browser

/Composer

Extended
System 
Services

Information(MetaX) 
Services

MetaDB
Service

MetaSys
Service

MetaFile 
Service

etc.

CA&
Certificates

 Mgmt. Service

Base Services

Dymaic  Deploy  Service

System
Monitoring

Service

Logging& 
Auditing 
Service

File Service Database 
Service

Messaging 
Service

Router ServiceService Router 

Agora Service Set

Agora Authorization 
Authority Service

Agora Service

Agora User 
Mgmt. Service

Agora Resource 
Mgmt. Service

A
pp

lic
at

io
n 

La
ye

r
Sy

st
em

 L
ay

er
C

or
e 

La
ye

r

 
Fig.1. Hierarchy of CNGrid software 2.0 

2.1.2  Deployment 

Grid Node 2
(SSC, Shanghai)

Grid Node 3
(NUDT, Changsha)

Grid Node 4
(HKU, HongKong)

Grid Server

Grid
Server

Grid Server

Grid Server

Grid Server
.  Router service, Agora service set
   and Grip container service
.  System and application level 
   services
.  Handlers used by grid security 
   mechanism
.  Grid portal based on Grid Portal 
   Engine (optional)

Dedicated Client/
Grid Application Client

Web Browser

Grid Client
.  Generic Web Browser
.  and/or CNGrid Admin Tools
.  and/or CNGrid software API Based 
   Grid Application

CNGrid CA

Grid Node 1
(SCCAS, Beijing)

HPC Hosting Env.

Applications 
based on 

distributed Java 
virtual machine

To Other 
Grid Nodes

To Other 
Grid Nodes

HPC Hosting Env.

Weather 
forecast 

applications

HPC Hosting Env.

Hydrodynamics 
applications

HPC Hosting Env.

Biology 
information 
applications

IAPCM, USTC and etc.

ICT, XJTU and etc.

 
Fig.2. National wide deployment of CNGrid 

software 2.0 
As show in Fig. 2, the CNGrid software 2.0 has 
been already deployed at 8 major grid nodes. 
Because of the heterogeneity of mainframes and 
clusters, each grid node equips a standalone grid 
server for CNGrid software 2.0 installations, 
and acts as head server of backend machines. 
Grid servers can be connected as an overlay 
network with arbitrary topology by service 
router which installed in each grid server, so as 
to manage the services in distributed manner 

and provide a single system image on service 
space. The client can be generic Web browser, 
such as IE and Firefox, or dedicated one based 
on CNGrid software APIs. 

2.2   Features And Functionalities 

2.2.1  Virtualized 

Virtualization in CNGrid software 2.0 mainly 
refers to service address (URL) naming and 
mapping mechanisms, that is to say, services 
hosted in each grid server will assigned to a 
readable name when registered to CNGrid 
software. This name will be mapped to an actual 
service address dynamically while user 
accessing virtualized services. During mapping 
procedure, CNGrid software transparently 
provides service locating, and provides 
functionalities such as access controlling, 
service selection, fault tolerance.  

2.2.2  Distributed 

Obviously, services managed by CNGrid 
software are fully distributed. Furthermore, 
CNGrid software images can be installed in grid 
servers independently and connected by service 
routers. Meanwhile, the components, such as 
application, system and core level services, can 
be spread around multiple machines for 
performance consideration. The service oriented 
and loosely coupled architecture determines that 
grid environment built by CNGrid software is 
scalable and adaptable.  

2.2.3  Autonomous 

Services managed by CNGrid software are kept 
as autonomous as possible. Services in grid are 
owned by service provider, and can be managed 
by grid administrator when authorized to 
CNGrid software based grid environment. User 
can access the services via an authorization 
token assigned by CNGrid software. But the 
ultimate access control implementation is still 
operated at service side, which means the 
service owner will decide who can access their 
services.  

2.2.4  Simple 

For grid application developer or integrator, 
CNGrid software offers a set of basic client side 
APIs which only include 5 major Java method 
calls. Through these interfaces, CNGrid 
software can hide low level technical detail to 
the developers, such as service binding 
procedure and security related operations. For 
Web application integrators, CNGrid software 
provides a higher level APIs than basic client 



side APIs. The interior details of CNGrid 
software are encapsulated. So the integrator can 
focus on application logic and UI 
implementation. 

3.   Key Approaches 
To fulfill the characters listed above, we have 
proposed several system techniques[5] and 
applied in CNGrid software 2.0. Fully 
distributed service routers together with 
multiple centralized grid communities (agora) 
implement the layered service virtualization. 
Grid process (grip) acts as user agent when user 
wants to assessing the services around grid.  

3.1    Layered Service Virtualization 

3.1.1  EVP Address Space Model[6] 
Agora1 Agora2

...
AgoraL

...
V1,2,3

Service Container1 Service Container2 Service ContainerN

...

Effective
Address 
Space

Virtual 
Address 
Space

Phsical 
Address 
Space

Vm-2,m-1,m

E1 E2,3

P1, 2, 3 P4, 5, 6 Pn-1, n

El-2,l-1,l

Router1 RouterM

Service address naming schemes in CNGrid software 2.0 are as follow:
Physical: http://host_name_or_ip:port_number/suffix
Virtual: vres://router_id:service_id
Effective: eres://agora_name:effective_service_name  

Fig.3. Mappings in the EVP address space 
model 
 
The EVP (Effective, Virtual and Physical) 
address space model takes the address space 
concept in computer system for reference. 
CNGrid software has implemented this model 
but with some important changes. As show in 
Fig.3, from bottom up, physical address space 
consists of Web services called physical service 
hosted in different service containers. The Web 
service’s endpoint called physical service 
address is registered into the service router; the 
interlinked service routers can form a global 
virtual address space with single system image 
character. Each registered physical service will 
get a guid from its registering service router as 
the reference to its attached properties. The guid 
called virtual service address will be put into 
independent agoras manually, and will be 
assigned a readable name called effective 
service address. An effective service is 
described as a group of customized access 
control and authorization policies that can be 
indexed by an effective service address in a 
certain agora. All services in all agoras build up 
the effective address space. Mapping between 
virtual address space and physical address 
space is one to one mapping, while the mapping 

between effective address space and virtual 
address space is n to n mapping, that is to say, 
one effective service can be mapped to multiple 
virtual services and vice versa. 

3.1.2  Decentralized Global Service Locating 

How to name the physical services is very 
important when locating physical service 
globally in grid environment is needed. 
Unfortunately, location-dependent address 
makes it harder to handle service location 
migration. When a physical service wants to 
change or reassign its access point, the 
application that binds to this physical service 
must be rewritten to adapt this change. 
Therefore, location independent name for 
physical service is necessary in the grid 
environment.  
The virtual address space depicted above is 
maintained by decentralized interlinked service 
routers. Each service router is identified by a 
global unique id as its name (router_id), which 
is created automatically only once when the 
router startups at first time.  
We proposed a two-segment naming scheme 
which represents the virtual service address. 
When a physical service has been registered to a 
nearby service router, the router automatically 
creates a global unique and 
location-independent id (service_id) for it. A 
virtual service address is composed by router id 
and service id which generated by registering 
router. Hence, Physical services registered in 
same router have same former segment but 
different latter segment on its virtual service 
address. 
According to the addressing scheme of virtual 
service, the physical service locating procedure 
is divided into two stages. The first stage is 
responsible for resolving the service router 
endpoint. After the first stage, service router on 
which the target physical service registered is 
known. The second stage is for resolving the 
service id to the physical service address by 
directly accessing the target service router.  
Due to large scale, distributed and dynamic 
characters of grid environment, the scalability 
and adaptability issues must be considered when 
designing and implementing the service router. 
Service router is based on the idea that each 
router stores the information of all routers’ 
access point. The information maintains the one 
to one mapping between router id and router 
endpoint, and can help resolving the first part of 
virtual service address. The information of one 
to one mappings between service id and 
physical service address are kept in service 
router separately, and can help resolving the 



second part of virtual service address. So the 
key issue is how to keep the consistency on 
global router information among all routers.  
Our approach learns from RIP algorithm in IP 
routing and quite simple. Each router will 
timely update its global router table from its 
directly linked routers which called neighbors. 
When a router is added into or removed from 
router network, the information changes will 
propagate to all the routers after a certain time 
by this updating procedure. Consequently, this 
approach can ensure that router’s entering or 
leaving will make no affects to other router that 
still running.  
Since the effective address space is built upon 
virtual address space, it is necessary to keep the 
virtual address space as stable as possible in 
order to accommodate changes in physical 
service address, and provide a fixed view to the 
upper space, even to the applications. According 
to our router semantics descript above, when a 
registered physical service wants to change its 
registering location to another router, it will get 
a new virtual service address from the target 
router. In this case, we have provided a symbol 
link method that allows physical service 
changes the registering location but remains the 
original virtual address. 

3.1.3  Centralized Local User, Effective 
Service And Policy Management 

User and effective service information are 
maintained by centralized agora (grid 
community). We proposed a role based user 
manage system (UMS for short) in agora. Each 
registered user will get an external user name 
and an internal one. The internal ones is the 
distinguished name (DN for short) that extracted 
from user certificate, while the external ones 
along with password is for user login and can be 
multiple. For security consideration, UMS only 
stores user proxy certificate[7] that uploaded by 
registered user. It will be pulled into grip when 
user login with an external user name and 
password. Simultaneously, the external user 
name will be mapped to internal user name for 
being used inside the CNGrid software.  
In agora, several virtual services can be 
manually grouped into one effective service by 
administrator. The address mapping between 
them will be stored permanently. Although the 
grouped virtual services have same functions, 
we can not guarantee that they all have the same 
interfaces. So, we use adaptor approach to 
eliminate the differences. The adaptor is called 
Parameter Transformer and applied to the 
mappings between effective services and virtual 
services. 

Since the mapping between effective address 
space and virtual address space is n to n, we 
proposed service selection and authorization 
policy engine approach to determine which 
virtual service address will be returned when 
user is accessing the effective service. The 
service selection algorithms can be configured 
and customized. After doing the service 
selection, the engine will filter out the virtual 
service that user have the access permission. 
By the service grouping and policy mechanism, 
agora can hide the complexity of service 
selection and authorization. Centralized 
management on user, effective service and 
policy cooperating with service router presents 
an integrated EVP address space model. 

3.2    Dynamic Grid User Agent 

We hope that when user is accessing the service 
in grid, he/she knows as little as possible about 
the information of physical services. With the 
EVP address space model, we can hide the 
information of physical service address to solve 
the service change problem. Meanwhile, other 
problems which the user may encounter should 
be considered. They are as follow: (1) The grid 
user does not care about the process of address 
mapping. It is the job of the grid software. There 
must be exist a module in grid software that can 
comprehend the interfaces of agora, and call the 
corresponding interface to complete the address 
mapping from effective service address to 
virtual ones. In this process, this module may 
realize the service selection when an effective 
service is mapped to multiple virtual services. 
Then, this module must interact with service 
router to complete the address mapping from 
virtual to physical. (2) The user does not care 
about the variety and detailed information of the 
physical services, but is aware about the 
functions that services provide. The grid 
software needs to get the information of the 
physical service in order to finish the service 
accessing. For example, the physical service 
may be configured as secured which requires 
getting the user identity to do access control. So, 
this module should decide whether the user 
identity should be added or not into the 
invocation request. (3) The grid software should 
support convenient services even resources 
sharing and collaboration. Therefore, the system 
needs to maintain the user data structure and 
context in order to use this information 
implementing the authorization, authentication, 
and access control dynamically. 
As a result, we proposed a runtime construct 
called grip (grid process), which is an 
abstraction that corresponding to process in a 



traditional OS, and runs on CNGrid software, 
representing a grid subject to access various 
services in grid. In another words, other 
components in CNGrid software, such as 
service router and agora, seem like the brawn 
which provide many functions; but grip seems 
like the brain, which makes use of the functions 
provided by the brawn instructed by the user’s 
requests. At present, the grip presents 5 client 
side APIs, they are: create, bind, invoke, control 
and close. The developer can program the code 
with the 5 APIs simply and easily. 

4.   System Implementations 
The CNGrid software 2.0 is constituted by Vega 
GOS, GriShield and GriDaEn. The following is 
the implementation details about these major 
modules.  

4.1    Vega GOS 

The Vega GOS is an open framework that 
follows the SOA concept[8], and can be 
downloaded from Vega site for free 
(http://vega.ict.ac.cn). This framework is 
divided into layers (as show in Fig. 1) according 
to different functionality partition. The core 
layer solves the essential issues that extract 
from common requirements of grid applications, 
such as address spaces and grid process 
mentioned in section 3. More like the system 
software in traditional OS, the system layer 
serves as collection of user libraries and toolkit 
which are developed upon the abstractions 
provided by core layer. The application layer is 
the nearest layer away from the end user. The 
end user can use the applications in this layer 
accessing the service in grid environment 
unaware of the things occur in lower layers. All 
the services in CNGrid software 2.0 are based 
on Axis 1.2RC2; and all the client side APIs are 
provided by Java class libraries.  

4.1.1  Core Layer 

The core layer composed by grip service, agora 
service set and router service with wrapped 
client side APIs; user authentication and service 
authorization mechanisms implemented by Axis 
handler chains; and the Vega GOS exception 
handling extends from the Axis fault which can 
help the developers accurately locating the 
service side exceptions and failures.  
Aggregated by grip at runtime, agora service 
sets and router services implement the EVP 
address space model that discussed in section 
3.1. As show in Fig. 4, the grip client offers 
only 5 method calls. Behind these method calls, 
the grip container service accepts the requests 

and forwards the requests to the agora service 
set or router service accordingly. When a grip 
created inside a grip container service, it will 
retain the information of login user and binding 
services in grip control block until a close 
operation is called. During the lifetime of a grip, 
user can access it at anytime and anywhere. 
When user invokes the binding service through 
a grip, the grip will first resolve the virtual 
service address to physical one, then invoke the 
actual service by endpoint. At last, get back and 
cache the result of invocation waiting for 
retrieval. 

Authenticationcreate create

close close

Grip Container 
Service

Agora Service 
Set

System or Application 
Level Services

Grip APIs
(Client Side)

Router
Services

①

a.  Subject Authentication
b.  Permission Authentication
c.  AC Handling

User Profile, 
Proxy

bind Effective Addr

Virtual Addr, 
Token

bind

gripHandle

invoke Virtual Addr

Physical Addr

invoke

Operation name, Parameters
Proxy, Token

Result

rIndex

Result 
Cachingcrtl

cachedResult

result

succ

Service
Locating

①

crtl
(getResult)

 
Fig.4. Sequence diagram of CNGrid software 

2.0 core 
4.1.2  System Layer 
The system layer includes two categories of 
service. One is called MetaX service which 
aggregates the information that comes from 
resources wrapped in service, and the other is 
Base service which provides a bunch of 
functions needed for grid application developer. 
We have implemented the dynamic deploy 
service, grid batch system with accounting, grid 
file management system and so on.  
The dynamic deploy service can remotely 
deploy a service into its hosted container but 
need not to stop it. It is done by extending the 
class loader mechanism of Axis. Supported by 
dynamic deploy, applications can deploy 
services on demand at runtime without grid 
administrator’s intervene. For example, a 
application that does blocked matrix 
multiplication can dynamic deploy several 
matrix multiplication service to grid at runtime, 
Then partitions the matrixes into blocks 
according to the number of service deployed , 
and do the computation in parallel.  



The grid batch system consists of batch service, 
accounting service and batch driver for backend 
batch system (OpenPBS, LSF and so on.) 
interaction. The batch service has the interface 
of job submission, job status query, job 
cancellation or deletion. File stagein and 
stageout are supported by grid file management 
system (GriDaEn) which will be described in 
section 4.3. When a job description document is 
sent to batch service, the batch service will 
transfer the request to job script and submit to 
backend batch system. If the request contains 
file stagein or stageout requirements, the batch 
service will download/upload the files from/to 
user global file space maintained by GriDaEn. 
When a job finished, the batch service will put a 
record about computing and storage resource 
usage into accounting service for later retrieval.  
4.1.3  Application Layer 
In the application layer, CNGrid software offers 
two interaction oriented toolkit that helps people 
transparently accessing the services in grid. 
 Grid Portal Engine 

Grid Portal Engine (GPE for short) provides a 
mechanism for the integration of servlet/JSP 
based Grid portal applications. Integration 
means applications access address spaces using 
grips managed by GPE.  
Grip management, which is the most important 
function GPE focused on, includes: (1) 
Lifecycle management, and (2) Invocation 
management. 
Firstly, the creation and close of grips are 
managed by GPE instead of portal applications. 
As explained later, GPE chooses which grip to 
use based on each request and there is no 
session/lifecycle issues that portal applications 
have to care about. 
Secondly, GPE provides a mechanism called 
grip-encoded URL, means encoding the name 
of grip in request URLs, for clients to specify 
which grip should be used in a request, which 
frees up GPE and portal applications from 
maintaining bondage between Grips and HTTP 
sessions. With grip-encoded URL, GPE can 
choose which grip to use based on each request, 
avoiding potential conflicts between session 
states of GPE and portal applications. 
Besides grip management, another important 
feature provided by GPE is user identifying. 
GPE maintains the mapping between HTTP 
sessions and user identities, by which GPE 
provides user identity information of a request 
for portal applications. GPE also uses this user 
identity information to make access control 
decision internally; for example, one can not 
make an invocation on other’s grip. 
Some portal applications may run on behalf of 

some other user than the one logged in and 
remembered in the mapping mentioned above; 
GPE provides a mechanism like setuid in 
UNIX-like operating systems to fulfill this need. 
As far as session is concerned, GPE uses grips 
as a kind of distributed user session and does 
not store any data in HTTP session provided by 
servlet containers. GPE only uses HTTP session 
as mechanism of user identifying as mentioned 
above. 
GPE does its work by several Servlet filters, 
which can be reconfigured easily without 
modifying applications. GPE uses dependency 
injection containers to provide APIs for portal 
applications, concealing dependency 
modification internal GPE in the future. 
 GSML software suite 

Grid Service Markup Language (GSML) is an 
XML-based Grid programming language, which 
allows end-users to program grid on demand. 
Based on reusable components and 
asynchronous event-driven model, GSML is 
capable to describe flexible, diverse grid 
application logic, and provides collaboration 
frameworks. The goal of GSML is to provide an 
easy-to-use Grid programming language, which 
not only can integrate Grid resources flexibly 
and efficiently, but can also provide 
infrastructures for collaborations between Grid 
applications, resources and end-users. 

HTML

Documnt

EMail

Multimedia

Web Service

XML Doc

File

Database

Graphics
News Group

Work Book

GSML Application A

GSML Application B

HTML Browser Pipe

WhiteBoard Pipe

Email Client Pipe

WS Invoker Pipe

Image Render Pipe

News Client Pipe
FTP Pipe

Accounting Pipe

Collaboration

Grid User A

Grid User B

Resource Layer

EventLayer

Pipe Layer

Application Logic Layer

 
Fig.5. GSML language structure 

The core concepts, Pipe, Event, EventSet (as 
show in Fig.5) is enlightened by pi Calculus. 
Using these concepts, end-users can organize 
the interactions between various software 
components and services uniformly with 
asynchronous event-driven communication 
models. GSML software suite includes GSML 
Composer and GSML Browser. GSML 

http://move.to/mobility


Composer enables visual and intuitive Grid 
programming; GSML Browser provides runtime 
environment for convenient execution of GSML 
applications. 

4.2    GriShield 

In grid environment, the population of user and 
resource (service) is large and dynamic. 
Participants in grid want to be as flexible as 
possible. Meanwhile, security must be enabled 
to protect the user and resource confidential. 
From user point of view, they do not want to 
enter password again when change the 
accessing resource. From resource provider 
point of view, they want to decide by 
themselves who can go through. To summarize, 
the focus of GriShield is to provide a loosely 
coupled and complete security solution, which 
can be plugged into CNGrid software and 
integrated into heterogeneous grid environment. 
In this solution, the traditional techniques in 
security will be used, such as PKI, algorithms of 
encryption and signature, even the matured third 
party software, such as OpenSSL and xmlsec.  
CNGrid software and applications primarily 
requires functions of authentication, 
authorization and access control. Especially, the 
GriShield seeks to (1) provide authentication 
solutions that allow user and the resources 
accessed by that user can verify each other’s 
identity; (2) provide agora based multi-grain 
authorization mechanism, and (3) allow local 
access control mechanisms to be integrated into 
GriShield without changing.  
Inside the GriShield system, we have developed 
a CA service that responsible for certificate 
management, and have implemented 
WS-Security[9] conformed authentication, 
authorization, message level secure 
communication, access control by 
handler-chains of Axis. 
The extensible message processing model is the 
core of GriShield. This model uses handlers and 
handler chains of Axis that can enable the 
functionality to be tailored to satisfy wide 
variety of situations and requirements. A 
handler is an atomic component that will 
operate on a specified part of SOAP message. 
For example, a handler can be in charge of 
performing authentication on message sender 
before allowing it to be processed by the 
provider. A special handler, the pivot handler 
(another name for the service’s provider), is in 
charge of executing the service implementation 
logic. It is called pivot handler because it is 
where the message’s processing cycle changes 
from request processing to response processing. 
As show in Fig.6, we have implemented the 

following 7 handlers in GriShield: 
SignHandler implements the signature 
procedure of SOAP message and it can operate 
on both incoming and outgoing messages. 
AddHandler can add GOSContext to SOAP 
message into the SOAP attachments.  
GOSContext is a common system object storing 
agora name, certificate or proxy certificate (with 
key), and token in a structured manner. Agora 
name is string type, which denotes the name of 
agora that user registered. The certificate is 
byte [] type, which denotes cert or proxy cert 
of user. Token is byte [] type too, which 
denotes a SAML based authorization token or a 
X.509 based authorization attribute certificate. 
The token with signature is issued to trusted 
service invocation request by agora 
authorization authority service dynamically. 
WSSecurityHandler implements signature 
verification of SOAP message. 
GetAttachmentsHandler can get the 
GOSContext from SOAP message from its 
attachments. 
VerifyCertsHandler verifies certificate or 
proxy certificate of user stored in GOSContext 
object. 
VerifyTokenHandler verifies token in 
GOSContext. 
ACHandler implements the access control at 
agora service or physical service side. Service 
side ACHandler can be replaced by customized 
ones. The new ACHandler will accommodate 
with service provider’s local security policy. 
 

Web
Service

WS
Client

.  SignHandler(with proxy or
   user cert)
.  AddHandler

.  WSSecurityHandler

.  GetAttachmentsHandler

.  VerifyCertsHandler

.  VerifyTokenHandler

.  WSSecurityHandler

.  GetAttachmentsHandler

.  VerifyCertsHandler

.  VerifyTokenHandler

.  ACHandler

.  SignHandler (with service
   cert)
.  AddHandler

SOAP Msg. over
SSL/TSL(HTTPS)

Client Side Server Side
request flow

response flow  
Fig.6. E2E handler-chains and message flow in 

GriShield 

4.3    GriDaEn 

Grid file management in CNGrid software 
called GriDaEn which provides a uniform file 
resources view and high level interface to 
access heterogeneous file resources. GriDaEn is 
composed of two modules: meta service for 
metadata management and file service for local 
file system management and file transportation. 
By GriDaEn, every agora user possesses a logic, 
continuous and independent file space. So, 
different user actions on files will be mapped 
into different file spaces. A global shared space 
in an agora is also supported for public 
accessing. We allow granting and revoking 
operations to support file sharing among 
different users. File owners can grant or revoke 



the access permission of their files to other user 
or group in same agora.  
Similar to the EVP address space model, we 
have developed a grid file storage resource 
space model. It is composed of three layers: 
Physical storage space: the collection of storage 
resources at grid nodes which can be distributed 
and heterogeneous; Virtual storage space: the 
abstraction of physical storage resources 
provides uniform accessing interface; Effective 
storage space: provide a convenient interface 
for programmers or end users.  
On the basis of grid file storage resource space 
model, files in GriDaEn are divided into layers. 
Grid physical file: the files stored at local file 
system (e.g. NTFS on Windows or EXT3 on 
Unix ). Grid virtual file: global identifier of grid 
file, which is similar to the file handle in Unix 
file system or the public file handle in NFS. 
Grid effective file: visible and operable by end 
user, and exclusive in users’ file space. 
Effective file name, virtual file name and other 
file information are stored in meta service. 
Before grid user accessing a file in GriDaEn, 
meta service should be invoked to do name 
transform from effective to virtual. Meta service 
also offers some interfaces on meta information 
operating such as list and search.  
The file service is equipped with two channels 
to separate the control and data transport 
protocol. The control channel is implemented by 
file service interfaces (operations), whereas the 
transport channel is based on servlet that 
attached to file service for performance 
consideration. Therefore, transfer of files can be 
configured as HTTPS mode when a secured 
transport is needed. Using HTTP/HTTPS in 
GriDaEn solved the firewall problem comparing 
to other widely used grid file management 
system, such as GridFTP and SRB. 
Currently, supported by Vega GOS, GriDaEn 
allows one meta service and multiple file 
services combining to construct the “grid file 
system”. Distributed and heterogeneous local 
file system can enter or leave this big “grid file 
system” as will. For grid application developers, 
GriDaEn is an extensible grid file management 
system that provides virtualized and uniformed 
file space view, and provides a high level 
interface to access heterogeneous files systems.  

5   Conclusion and Future Works 
Guided by computer system approach and SOA 
concept, CNGrid software implements several 
system techniques, such as service address 
spaces, service router, grid process (grip) and 
grid community (agora). We have also 

developed grid security mechanism (GriShield) 
and grid file management system (GriDaEn) 
based on these system abstractions that 
implemented in Vega GOS. 
The approaches and implementations discussed 
in this paper reveal several advantages. The 
CNGrid software achieves virtualization and 
hides system details from users. It helps 
applications to seamlessly adapt to resource 
changes. It helps separate concerns of 
application logic and interaction, policy and 
context, and resource naming.  
The CNGrid software 1.1 and 2.0 are already 
deployed and being used in the China National 
Grid project. After we gain more application 
experiences and perform extensive testing, some 
of the code will be released in an open source 
form to the grid research community.  

Reference 
1. W3C, Web Services Architecture, 

http://www.w3.org/TR/ws-arch/, 2004.2.11 
2. OMII, http://www.omii.ac.uk/, 2005.3 
3. Globus Alliance, The WS-Resource 

Framework Version 1.0, 
http://www.globus.org/wsrf/specs/ws-wsr
f.pdf, 2004.3.5 

4. LIU Hao-Zhi, YU Hai-Yan et al., GSML: 
An Interaction and Collaboration Oriented 
Grid Programming Language for 
End-users, Chinese Journal of Computers, 
2005, 28(4): 704~711 

5. Zhiwei Xu, Wei Li, et al., Vega: A 
Computer Systems Approach to Grid 
Computing, Journal of Grid Computing, 
2004, Vol.2, Issue 2：109~120 

6. LI Wei, XU Zhi-Wei, A Model of Grid 
Address Space with Applications, Journal of 
Computer Research and Development, 
2003, 40(12): 1756~1762. 

7. V. Welch, I. Foster, et.al. X.509 Proxy 
Certificates for Dynamic Delegation. In: 
Proceedings of 3rd Annual PKI R&D 
Workshop, 2004. 

8. ZHA Li, LI Wei, et al., Service oriented 
Vega grid system software design and 
evaluation, Chinese Journal of Computers, 
2005, 28(4): 495~504 

9. OASIS, Web Services Security: SOAP 
Message Security 1.0, 
http://docs.oasis-open.org/wss/2004/01/oasi
s-200401-wss-soap-message-security-1.0.p
df, 2004.3 

http://www.w3.org/TR/ws-arch/
http://www.omii.ac.uk/
http://www.globus.org/wsrf/specs/ws-wsrf.pdf
http://www.globus.org/wsrf/specs/ws-wsrf.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

	Abstract
	Introduction
	CNCGrid Software 2.0
	Key Approaches
	System Implementations
	Conclusion and Future Works
	Reference

