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Abstract— Biaxial contouring systems involve competing con-
trol objectives of maximising accuracy while minimising traver-
sal time. In this paper, a model predictive controller for
contouring systems is proposed where the control inputs are
determined by minimising a cost function which reflects the
trade-off between these competing objectives, subject to state
and actuator constraints. To facilitate real-time implementation,
a linear time-varying approach is proposed, and stability is
guaranteed by introducing an additional contraction constraint.
Simulation results for an XY table system demonstrate the
effectiveness of the proposed contouring control scheme.

I. INTRODUCTION

Control of multi-axis contouring systems involves ac-

curate, high speed tracking of a predetermined geometric

path. Industrial applications include machine tool control and

laser profiling. Such systems are often subject to actuator

constraints which limit the acceleration capabilities of the

machine.

In contouring applications, a control objective is to min-

imise contouring error, defined as the minimum distance

between the current position and the desired path. Cross-

coupling control is a technique which explicitly seeks to

minimise contouring error by adding contour error compen-

sation to the axis control inputs [1]. In traditional contouring

systems, the desired path is converted to a time-dependent

reference trajectory offline which is then tracked online using

feedback controllers. It is desired to traverse the path at

high speed to maximise productivity. However, due to the

constraints and dynamics of the system, this may lead to

reduced accuracy. As a result, time optimal planning of the

reference trajectory is of significant interest.

A number of researchers have proposed adjusting the

speed of the reference trajectory such that the contour follows

a desired geometric path in minimum time. Offline trajectory

optimisation routines based on acceleration and velocity con-

straints were proposed in [2], and later [3] with the addition

of jerk constraints. In the context of robot motion control,

the combined trajectory and control input optimisation is

reformulated into a convex optimisation problem utilising

a dynamic model of the system [4]. All of these offline

methods are purely feedforward and cannot handle modelling

errors and disturbances.

In contouring applications there is a trade-off between

productivity and accuracy. For example, it is sometimes

desirable to sacrifice contouring accuracy to allow the path

to be traversed faster. In [5], the reference trajectory and the
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tuning parameters of the feedback controller were optimised

together such that the tracking accuracy was below a speci-

fied tolerance, for a given contour. Naturally, as the tolerance

is increased, the time to complete the trajectory decreases.

In [6], optimal tracking for piezo-based nanopositioners was

implemented by minimising a cost function representing the

trade-off between control effort and accuracy. Hence, the

system was allowed to deviate from the desired path resulting

in reduced control effort, but with a fixed speed reference

trajectory.

Path following control is a feedback control scheme where

the controller determines the velocity of the reference tra-

jectory as well as the control inputs online. However, path

following approaches [7] do not take actuator constraints into

account. Recently, a new path following control framework

based on model predictive control (MPC) has been proposed

[8]. It allows for optimisation of the reference trajectory

and the system inputs online in a receding horizon fashion,

subject to actuator and state constraints. The utilisation of

feedback at each time step allows for modelling errors

and disturbances to be rejected, under certain conditions.

However, since nonlinear MPC is used in [8], finding a real-

time solution to the optimisation problem is difficult.

In this work the framework of model predictive path-

following control is extended to suit high speed biaxial

contouring control applications. The model predictive struc-

ture allows for constraint handling and potential disturbance

rejection. The trade-off between productivity and accuracy is

addressed using the MPC cost function, allowing the system

to deviate from the desired path in order to increase produc-

tivity. The weights in the cost function determine the relative

importance of the competing control objectives. A linear

time-varying formulation is used to reduce computational

complexity.

II. THE CONTOURING CONTROL PROBLEM

Consider the following linear discrete time system which

describes the dynamics of a biaxial contouring system

ξk+1 = Aξk +Buk, ξk =
[

xk yk ηk

]T
(1)

where xk ∈ R and yk ∈ R denote the x and y axis

displacements at time k, ηk ∈ R
n−2 denotes the system’s

internal states and uk ∈ R
nu is the system input. The system

is subject to input and state constraints u ∈ U , ξ ∈ X ,

where U and X are closed convex polytopes containing

the origin, and in addition U is bounded.

The objective is to steer (xk, yk) along a continuously

differentiable and bounded two-dimensional geometric path

49th IEEE Conference on Decision and Control
December 15-17, 2010
Hilton Atlanta Hotel, Atlanta, GA, USA

978-1-4244-7746-3/10/$26.00 ©2010 IEEE 6137



(xd(θ), yd(θ)):

xd : [θs, 0] → R; yd : [θs, 0] → R; θs < 0 (2)

The contouring error ǫck is defined as the normal deviation

from the desired path [1], and can be expressed as

ǫck = sinφ(θr) (xk − xd(θr)) − cosφ(θr) (yk − yd(θr)) ,

φ(θr) = arctan

(

∇yd(θr)

∇xd(θr)

)

, (3)

where θr(x, y) is the value of the path parameter where

the distance between the point (xd(θr), yd(θr)) and (x, y) is

minimal, as per Fig. 1. The multi-objective control problem

x

y

(xk, yk)

(xd(θr), yd(θr))

ǫc
k

Desired path

φ(θr)

Fig. 1. Contouring error

involves selecting the control input u such that the solutions

of (1) traverse near the desired geometric path, minimising

contouring error while maximising path speed.

III. MODEL PREDICTIVE CONTOURING

CONTROL

It is proposed to extend model predictive path-following

control (MPFC) [8] to the contouring control problem. It is

assumed that the desired path (xd(θ), yd(θ)) is parameterised

by arc length, i.e. ds/dθ = 1, where s denotes the distance

travelled along the path. Arc length parameterisation of

general curves is nontrivial, however techniques exist in

the literature for approximate arc length parameterisation

of spline curves; see for example [9]. The system (1) is

augmented with the following dynamics

θk+1 = θk + vk, vk ∈ [0, vmax], vmax > 0, (4)

where vk is a virtual input to be determined by the controller

and θk denotes the value of the path parameter at time k.

Since the path is parameterised by arc length, v is directly

proportional to the path speed. Also, non-reversal of the path

is guaranteed, since vk ≥ 0.

It is proposed to use θk, whose evolution is governed by

(4), as an approximation to θr(xk, yk). The contouring error

is then approximated by

ǫ̂c(ξk,θk)=sinφ(θk)(xk−xd(θk))−cosφ(θk)(yk−yd(θk)) (5)

Let ǫl denote the path distance that (xd(θr), yd(θr)) lags

(xd(θk), yd(θk)) and approximate ǫl as

ǫ̂l(ξk,θk)=−cosφ(θk)(xk−xd(θk))−sinφ(θk)(yk−yd(θk)) (6)

Refer to Fig. 2 for a graphical interpretation of ǫc, ǫl and

their approximations.

x
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(xk, yk)

(xd(θr), yd(θr))

ǫc
k

φ(θk)

(xd(θk), yd(θk))

ǫ̂c(ξk, θk)

ǫ̂l(ξk, θk)

ǫl
k

Fig. 2. Contouring error, lag and their approximations

From Fig. 2, it can be observed that θk ≈ θr(xk, yk) if

ǫ̂l(ξk, θk) ≈ 0. Therefore, to aid in the problem formulation,

it is desired to select vk such that ǫ̂l ≈ 0. Note that while θr

in Figure 1 is not necessarily unique, the smooth evolution of

θk enforced by the constraint on vk ensures that the system

follows the path smoothly, provided vmax is chosen to be

sufficiently small.

Model predictive control involves minimisation of a cost

function over a prediction horizon of N time steps. The

cost function represents the control objectives and their

relative importance. In the context of contouring control, the

competing objectives include minimising contouring error

while maximising the path distance travelled at each time

step in the horizon. In addition, to allow θk to be used as an

approximation to θr, it is desired that ǫ̂l(ξk, θk) ≈ 0.

The cost function Jk is therefore chosen to represent the

trade-off between contouring accuracy and path speed, as

well as penalising control input deviations:

Jk =
N
∑

i=1

(

[

ǫ̂c(ξk+i, θk+i)
ǫ̂l(ξk+i, θk+i)

]T

Q

[

ǫ̂c(ξk+i, θk+i)
ǫ̂l(ξk+i, θk+i)

]

− qθθk+i

+

[

∆uk+i

∆vk+i

]T

R

[

∆uk+i

∆vk+i

]

)

(7)

where ∆uk = uk − uk−1, ∆vk = vk − vk−1,

Q =

[

qc 0
0 ql

]

, qc, ql, qθ > 0, R ∈ R
(nu+1)2 , (8)

and R is positive definite. The penalty weights qc, qθ, R
are tuning parameters to be decided based on the rela-

tive importance of contouring accuracy, path speed, and

control deviations, and ql is chosen to be large so that

ǫ̂l(ξk+i, θk+i) ≈ 0.

This leads to the following optimisation problem being

posed:

Minimise Jk, (9)

Subject to

ξk+i = Aξk+i−1 +Buk+i−1

θk+i = θk+i−1 + vk+i−1

uk+i−1 ∈ U , vk+i−1 ∈ [0, vmax]
ξk+i ∈ X , θk+i ∈ [θs, 0], i = 1, ..., N















(10)

The model predictive contouring controller is implemented

by solving the optimisation (9)-(10) at each time step. The

first element of the optimal control input u
∗

k is applied to the

plant, while the first element of the optimal path speed v
∗

k
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is used to update θk. The optimisation is then repeated in a

receding horizon fashion.

The cost function (7) can easily be modified to incorporate

other control objectives, such as the minimisation of control

effort and jerk. Similarly, additional explicit constraints spe-

cific to certain applications can also be included.

In general, solving the optimisation (9)-(10) in real time

is computationally difficult. Even though the system (1) is

linear, the nonlinearity of the path function (xd(θ), yd(θ))
results in a nonlinear optimisation problem.

To reduce the computation time, a linear time-varying

(LTV) approach is proposed which approximates the optimi-

sation problem with a convex quadratic program (QP). Then,

a contraction constraint is introduced, which under specified

conditions guarantees closed loop stability in the presence of

approximation errors introduced by the LTV implementation.

A. Linear time-varying implementation

A number of LTV MPC schemes have been proposed

in the literature (e.g. [10]), where a nonlinear plant model

is linearised around one or more operating points at each

time step. The LTV approach is applied to model predictive

contouring control as follows.

1) Approximate cost function: Assume that û
∗

k, v̂
∗

k

are close approximations of the optimal predicted input

trajectories, which are unknown at time k. Let ξ̂∗k =
{ξ̂∗k,k, . . . , ξ̂

∗

k+N−1,k} and Θ̂∗

k = {θ̂∗k,k, . . . , θ̂
∗

k+N−1,k} de-

note the state trajectories obtained by applying û
∗

k to (1) and

v̂
∗

k to (4) with initial conditions ξ̂∗k,k = ξk and θ̂∗k,k = θk.

The contouring error and lag can be approximated by lin-

ear functions using a Taylor series expansion and neglecting

higher order terms

ǫ̂a,c
k+i,k= ǫ̂

c(ξ̂∗k+i,k, θ̂
∗

k+i,k)+∇ǫ̂c(ξ̂∗k+i,k, θ̂
∗

k+i,k)

[

ξk+i

θk+i

]

, (11)

ǫ̂a,l
k+i,k= ǫ̂

l(ξ̂∗k+i,k, θ̂
∗

k+i,k)+∇ǫ̂l(ξ̂∗k+i,k, θ̂
∗

k+i,k)

[

ξk+i

θk+i

]

. (12)

The linearised predictions ǫ̂a,c and ǫ̂a,l are used to approxi-

mate the cost function. The estimated cost is

Ja
k =

N
∑

i=1

( [

ǫ̂a,c
k+i,k ǫ̂a,l

k+i,k

]

Q
[

ǫ̂a,c
k+i,k ǫ̂a,l

k+i,k

]T

− qθθk+i

+
[

∆uT
k+i ∆vk+i

]

R
[

∆uT
k+i ∆vk+i

]T
)

. (13)

The LTV model predictive contouring controller is imple-

mented by solving the following optimisation problem

Minimise Ja
k , Subject to (10). (14)

The optimisation (14) can be formulated as a convex

quadratic program (QP), for which there exist efficient solu-

tion methods. A method for finding the approximated input

trajectories û
∗

k, v̂
∗

k is proposed in the following.

2) Trajectory approximation: Let u
∗

k−1 and v
∗

k−1 denote

the optimal input trajectory obtained by solving the optimisa-

tion (14) at time k−1. Then the approximations û
∗

k, v̂
∗

k can

be obtained by truncating u
∗

k−1, v∗

k−1 and appending feasible

inputs û∗k+N−1, v̂∗k+N−1 (typically û∗k+N−1, v̂
∗

k+N−1 = 0),

so that û
∗

k = {u∗k,k−1, ..., u
∗

k+N−2,k−1, û
∗

k+N−1}, v̂
∗

k =
{v∗k,k−1, ..., v

∗

k+N−2,k−1, v̂
∗

k+N−1}.

At the initial time step k = 0, û
∗

0, v̂
∗

0 can be computed

via the following iterative procedure.

Procedure 1:

1) Initialise û
∗j
0 , v̂

∗j
0 to û

∗0
0 , v̂∗0

0 (typically û
∗0
0
, v̂∗0

0 = 0).

2) Compute the LTV model (11)-(12) based on û
∗j
0 , v̂

∗j
0

3) Solve the optimisation (14) to obtain u
∗j
0 and v

∗j
0

4) Set û
∗j
0 = u

∗j
0 , v̂

j
0 = v

∗j
0 and increment j.

5) Repeat steps 2-4 until ||u∗j
0 − u

∗j−1
0 || ≤ ǫu and

||v∗j
0 − v

∗j−1
0 || ≤ ǫv , for some ǫu, ǫv > 0.

Procedure 1 is essentially a Newton-like approach to solving

the nonlinear optimisation (9)-(10). General techniques for

showing convergence of such approaches are described in

[11]. Since the optimal trajectories are not expected to

change much from one time step to another, û
∗

k and v̂
∗

k are

good approximations of the (unknown) optimal trajectories

u
∗

k and v
∗

k which can be used to calculate a linear time-

varying approximation to the cost function.

B. Stability analysis

In this section, a modified version of LTV model predictive

contouring control is proposed, and conditions under which

the modified approach ensures closed loop stability are

developed.

To investigate the stability of the proposed control scheme,

an augmented nonlinear system is formed, making use of the

following assumption.

Assumption 1: There exists a continuously differentiable

and bounded function ηd : [θs, 0] → R
n−2 such that for all

θ, (xd(θ), yd(θ), ηd(θ)) ∈ X and (xd(0), yd(0), ηd(0)) is an

equilibrium point of (1).

Consider the following change of co-ordinates:

ξ̃k = ξk − ξd(θk), ξd(θ) =
[

xd(θ) yd(θ) ηd(θ)
]T
. (15)

Then the following augmented nonlinear system can be

defined
[

ξ̃k+1 θk+1

]T
= f̃(ξ̃k, θk, uk, vk) (16)

where f̃(ξ̃, θ, u, v) is defined from (1), (4) and ξd(θ). By

Assumption 1, the origin of (16) is an equilibrium point. In

the following, the aim is to enforce stability of the origin of

(16).

In [8], the terminal set/penalty approach is used to guaran-

tee closed loop stability of the system under model predictive

path-following control. A terminal penalty of E(θ) = ǫ
2θ

2 is

used, and it is shown that closed loop stability is guaranteed

if ǫ is chosen to be sufficiently large. However, in the

context of model predictive contouring control, this choice of

terminal penalty can have unwanted effects on the behaviour

of the controller, since it results in an increased weighting on
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the path speed. In addition, due to the model/plant mismatch

introduced by the linear time-varying implementation, this

terminal penalty does not guarantee stability of the system

under LTV model predictive contouring control.

Because of these issues, an alternative stabilising tech-

nique is employed for model predictive contouring control.

The chosen technique is contractive MPC [12], where sta-

bility is enforced by introducing a contractive constraint.

Contrary to other MPC stability approaches, the cost function

is not employed as a Lyapunov function. Contractive MPC

does not involve any additional terms in the cost function,

and has been used to guarantee closed loop stability of linear

time varying MPC [13], making it an attractive approach for

this application.

When contractive MPC is employed the contraction con-

straint remains constant for groups of N time steps [12]. It

is therefore useful to express the time step k in terms of

indices l, m and the horizon length N as follows:

k = lN +m (17)

where l ∈ {0, 1, ...,∞} and m ∈ {0, 1, ..., N − 1}. Table I

shows how l and m evolve with k.

TABLE I

VALUES OF l AND m FOR INCREASING k

k 0 1 . . . N − 1 N N + 1 . . .

l 0 0 . . . 0 1 1 . . .

m 0 1 . . . N − 1 0 1 . . .

In contractive MPC, a norm of the state is constrained to

decrease in order to enforce stability. The following norm is

defined for (ξ̃, θ)

||ξ̃, θ||V = ξ̃TP ξ̃ + p|θ| (18)

where P ∈ R
n2

is positive definite and p > 0. The

contraction constraint is then defined in terms of ||ξ̃, θ||V :

||ξ̃(l+1)N , θ(l+1)N ||V

≤

{

α||ξ̃lN , θlN ||V , ||ξ̃lN , θlN ||V ≤ α̃,

||ξ̃lN , θlN ||V − α̃, ||ξ̃lN , θlN ||V > α̃,

α ∈ (0, 1), α̃ > 0. (19)

The contraction constraint (19) depends on the value of

the states at time lN . If (ξ̃lN , θlN ) ∈ Bα̃, then an expo-

nential rate of decay is imposed. If the states are outside

Bα̃ then ||ξ̃, θ||V is constrained to decrease linearly. This

type of contraction constraint is chosen to best reflect the

desired behaviour: traverse the path linearly until the end

is approached, and then converge exponentially to the end

point. By choosing the constraint in this way, the effect of

the contraction constraint on the behaviour of the controller

is minimised while guaranteeing closed loop stability.

In order to retain the convex structure of the optimisation,

the contraction constraint must be approximated using a

linear time varying approach. The LTV optimisation problem

becomes

Minimise Ja
lN+m

Subject to (10),

||ξ̃a
(l+1)N,lN , θ(l+1)N ||V

≤

{

α||ξ̃lN , θlN ||V , ||ξ̃lN , θlN ||V ≤ α̃,

||ξ̃lN , θlN ||V − α̃, ||ξ̃lN , θlN ||V > α̃,

where ξ̃a
(l+1)N,lN = ξ(l+1)N − ξa

d,(l+1)N,lN

(

θ(l+1)N

)

(20)

and ξa
d,(l+1)N,lN

(

θ) is a Taylor series approximation of ξd
(

θ)

around Θ̂∗

lN , neglecting higher order terms:

ξa
d,(l+1)N,lN

(

θ) = ξd(θ̂
∗

(l+1)N,lN )

+ ∇ξd(θ̂
∗

(l+1)N,lN )(θ − θ̂∗(l+1)N,lN ). (21)

Following [13], the contraction constraint remains constant

over N time steps, so the linearisation (21) for the con-

traction constraint occurs every N time steps, in contrast

to the linearisation of the cost function (11)-(12) which

occurs at every time step. The overall contractive LTV model

predictive contouring control algorithm is as follows:

Control Algorithm 1:

1) Set l = 0, m = 0 and calculate û
∗

0, v̂
∗

0 using

Procedure 1

2) Linearise the prediction of ||ξ̃(l+1)N , θ(l+1)N ||V using

(21) and û
∗

lN , v̂
∗

lN

3) Linearise the predictions of ǫ̂c and ǫ̂l using (11)-(12)

and û
∗

lN+m, v̂
∗

lN+m

4) Solve the constrained optimisation (20) to obtain

u
∗

lN+m and v
∗

lN+m

5) Apply the first element of u
∗

lN+m to the plant and

update θk with the first element of v
∗

lN+m

6) Calculate û
∗

lN+m+1, v̂
∗

lN+m+1 from u
∗

lN+m, v
∗

lN+m

7) If m = N − 1, set m = 0, increment l and return to

Step 2. Otherwise, increment m and return to Step 3.

The addition of the contraction constraint changes the struc-

ture of the problem to a convex quadratically constrained

quadratic program (QCQP), which can be solved with con-

ventional algorithms.

In the remainder, sufficient conditions for stability of the

origin of (16) under Control Algorithm 1 will be established.

The approximation of ||ξ̃(l+1)N , θ(l+1)N ||V introduces a

model/plant mismatch which can affect closed loop stability

of the system. The following assumptions are required:

Assumption 2: There exists a constant β > 0 such that for

all l ∈ {0, ...,∞},m ∈ {0, ..., N − 1} ||ξ̃lN+m, θlN+m||V ≤
β||ξ̃lN , θlN ||V .

Remark 1: Assumption 2 imposes a bound on the tran-

sient states between times k = lN and k = (l+ 1)N . Since

the system inputs are constrained and the path functions are

bounded, Assumption 2 is always satisfied.

Assumption 3: The optimisation problem (20) is feasible

for all k from the initial state.

Remark 2: Unfortunately, satisfaction of Assumption 3

cannot be guaranteed a priori. A methodology for choosing

P and p such that Assumption 3 is most likely satisfied is

discussed in Remark 5.
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Assumption 4: The function ξd(θ) is twice continu-

ously differentiable and there exists G ∈ R such that

||1/2∇2ξd(θ)|| ≤ G, for all θ ∈ (θs, 0), where ||.|| is the

Euclidean norm.

First, a bound on the difference between the approximated

state prediction ξ̃a
(l+1)N,lN

and the true state ξ̃(l+1)N is es-

tablished. Then this bound will be used to develop conditions

on α and α̃ that will guarantee stability of the origin of the

nonlinear system (16).

Lemma 1: Let Assumption 4 hold. Then there exists

λ1, λ2 > 0 such that for all l

||ξ̃(l+1)N−ξ̃a
(l+1)N,lN ,0||V≤min{λ1||ξ̃lN , θlN ||V ,λ2} (22)

Proof: By the Mean Value Theorem and Assumption 4,

||ξ̃(l+1)N−ξ̃a
(l+1)N,lN ||

= ||ξd(θ(l+1)N ) − ξa
d,(l+1)N,lN (θ(l+1)N )||

≤ G|θ(l+1)N − θ̂∗(l+1)N,lN |2. (23)

Since θ̂∗lN,lN = θlN , θ ∈ [θs, 0] and v ∈ [0, vmax],

|θ(l+1)N−θ̂∗(l+1)N,lN |2≤Nvmax min{Nvmax,|θlN |}. (24)

Combining (23) and (24),

||ξ̃(θ(l+1)N ) − ξ̃a
(l+1)N,lN (θ(l+1)N ), 0||V

≤
√

σmax{P}GNvmax min{Nvmax, |θlN |} (25)

where σmax{P} denotes the maximum eigenvalue of

P . Setting λ1 = 1/p
√

σmax{P}GNvmax and λ2 =
√

σmax{P}GN
2v2

max concludes the proof.

Making use of Lemma 1, the following theorem establishes

conditions under which Control Algorithm 1 guarantees

asymptotic stability of (16).

Theorem 1: Let Assumptions 1-4 hold. If α, α̃ from (20)

and P, p from (18) satisfy

1) α− 1/p
√

σmax{P}GNvmax < 1, α > 0,
2) α̃ >

√

σmax{P}GN
2v2

max,

then the origin of (16) under Control Algorithm 1 is asymp-

totically stable. Moreover, states starting in Bα̃ := {ξ, θ :
||ξ, θ||V ≤ α̃} will converge to the origin exponentially.

Proof: By the triangle inequality,

||ξ̃(l+1)N , θ(l+1)N ||V ≤ ||ξ̃(l+1)N − ξ̃a
(l+1)N , 0||V

+ ||ξ̃a
(l+1)N,lN , θ(l+1)N ||V (26)

The 0 appears because there is no linearisation error in

predicting θ(l+1)N . In the remainder of the proof, two

separate cases are considered.

Case 1: ||ξ̃0, θ0||V > α̃. From Lemma 1 and the

contraction constraint,

||ξ̃(l+1)N , θ(l+1)N ||V ≤ λ2 + ||ξ̃lN , θLN ||V − α̃,

||ξ̃lN , θlN ||V > α̃. (27)

Clearly, if

α̃− λ2 > 0, (28)

the following hold:

1) ||ξ̃lN , θlN ||V ≤ ||ξ̃0, θ0||V .

2) There exists lf > 0 such that ||ξ̃lf N , θlf N ||V ≤ α̃,

From Assumption 2,

||ξ̃lN+m, θlN+m||V ≤ β||ξ̃0, θ0||V . (29)

Therefore if (28) holds, ||ξ̃k, θk||V remains bounded for all

k and converges to Bα̃.

Case 2: ||ξ̃0, θ0||V ≤ α̃. From Lemma 1 and the

contraction constraint,

||ξ̃(l+1)N , θ(l+1)N ||V ≤λ1||ξ̃lN ,θLN ||V +α||ξ̃lN ,θLN ||V (30)

It follows from (30) and Assumption 2 that

||ξ̃lN+m, θlN+m||V ≤ β(α+ λ1)
l||ξ̃0, θ0||V . (31)

It can be shown that if [12]

α+ λ1 < 1, (32)

there exist γ1 ≥ 0, γ2 ∈ (0, 1) such that ||ξ̃k, θk||V ≤
γ1||ξ̃0, θ0||V γk

2 Therefore, if (32) holds the origin of the

system (16) is locally exponentially stable from Bα̃. Com-

bining the results from Case 1 and 2, it can be concluded

that the origin of the system (16) is asymptotically stable if

(28) and (32) hold.

Remark 3: It follows from Theorem 1 that a

necessary condition for stability to hold is that
1/p
√

σmax{P}GNvmax < 1. This can always be satisfied

by setting p sufficiently large relative to σmax{P}.

Remark 4: If the true contraction constraint (19) is used

instead of the approximation, it follows from Theorem 1

that any α ∈ (0, 1) and α̃ > 0 will guarantee closed loop

stability of the system. The effect of the linear time-varying

approximation is that the contraction constraint must become

more conservative to overcome the linearisation error.

Remark 5: As mentioned in Remark 2, satisfaction of

Assumption 3 cannot be guaranteed a priori. However, ex-

amining the system constraints, it can be seen that choosing

p large relative to σmax{P} minimises the risk of feasibility

issues.

IV. SIMULATION RESULTS

To demonstrate the effectiveness of the proposed con-

touring controller, the algorithm was simulated for an XY

table system. Each axis of the XY table is modelled as two

rotational inertias connected by a flexible coupling. The XY

table model is as follows

ξ =
[

x y ψx ψ̇x ϕ̇x ψy ψ̇y ϕ̇y

]T
, u =

[

ix iy
]T

xk = τϕx,k, yk = τϕy,k,

ϕj,k+1 = ϕj,k + Tsϕ̇j,k, ψj,k+1 = ψj,k + Tsψ̇j,k

ϕ̇j,k+1 = ϕ̇j,k + Ts/Jl(k(φj,k − ϕj,k) + c(ψ̇j,k − ϕ̇j,k)

− blϕ̇j,k),

ψ̇j,k+1 = ψ̇j,k + Ts/Jm(Kt ij,k + k(ϕj,k − ψj,k)

+ c(ϕ̇j,k − ψ̇j,k) − bmψ̇j,k), (33)

where j = {x, y} and ψj , ϕj represent the angular dis-

placements of the motor and load respectively in each axis.
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The simulation parameters are summarised in Table II. The

system inputs are the servo motor currents ix, iy in Amperes

which are subject to the constraints −1 ≤ ix, iy ≤ 1.

TABLE II

SIMULATION PARAMETERS

Parameter Unit Value

Motor inertia Jm kg m2 1.9×10−5

Load inertia Jl kg m2 1.93×10−5

Motor viscous friction bm Nm s/rad 1.37×10−4

Load viscous friction bl Nm s/rad 1.44×10−5

Motor torque constant Kt Nm/A 0.5105

Coupling stiffness k Nm/rad 2.5450

Coupling damping c Nm s/rad 0.001

Ball screw pitch τ mm/rad 0.7958

Sample period Ts s 0.001

The model predictive contouring controller was simulated

for the XY table system using Control Algorithm 1 for the

contour shown in Fig. 3. The chosen parameters were N =
50, ql = 103, R = diag{5, 5, 2000} and varying values of

qc and qθ. The desired path is an arc length parameterised

quintic spline generated using the method outlined in [9].

The average computation time per time step for the chosen

horizon on a desktop PC with MATLAB was 0.19 seconds,

indicating that further work is required before the controller

can be implemented on a real machine.

The contraction constraint was chosen as P = 10−5I ,

p = 100, where I is the identity matrix. For this simulation,

it can be shown that choosing α = 0.997, α̃ = 4.138 satisfies

the requirements of Theorem 1. The contraction constraint

was implemented at each time step by first solving the QP

(14) without the contraction constraint, and subsequently

solving the QCQP (20) only if the contraction constraint is

violated. This approach reduced the additional computation

time involved with incorporating the contractive constraint,

as in most cases the constraint was satisfied already by solv-

ing (14). With the above parameters the QCQP solver was

never required, indicating that the effect of the contraction

constraint on the behaviour of the controller is minimal.

The contours for qc = 10, qθ = 10 and qc = 1000,

qθ = 0.1 are shown in Fig. 3. It can be observed that

when the contouring error penalty is lower, the path is

traversed faster but at the cost of increased contouring error.

Thus, by adjusting the penalty weights, the trade-off between

productivity and contouring accuracy can be systematically

addressed. Table III summarises the maximum contouring er-

ror and average path speed for each combination of weights.

TABLE III

MAX. CONTOURING ERROR AND TRAVERSAL TIME

Contour error Path speed Max. contouring Traversal
weighting weighting error (mm) time (s)

10 10 0.932 0.759

1000 0.1 0.0074 0.832

V. FURTHER WORK

Future work may include accounting for disturbances and

modelling errors, and further reductions in computation time.
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Fig. 3. XY table simulation results
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