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Abstract

For typical RLC interconnections with ramp input as the source voltage, Elmore delay can deviate
significantly (by up to 100% or more) from SPICE-computed delay since it is independent of rise
time of the input ramp signal. However, Elmore delay has been widely used as an analytical
estimate of interconnect delays in the performance-driven synthesis and layout of VLSI routing
topologies. Here, we develop new analytical delay models based on the first and second moments
of the interconnect transfer function when the input is a ramp signal with finite rise time. Delay
estimates using our first moment based analytical models are within 4% of SPICE-computed
delay, and models based on both first and second moments are within 2.3% of SPICE, across a
wide range of interconnect parameter values. Our analytical models are several several orders
of magnitude faster to evaluate than simulation methodologies such as SPICE. We also describe
extensions of our approach for estimation of source-sink delays in arbitrary interconnect trees.

1 Introduction

Accurate calculation of propagation delay in VLSI interconnects is critical to the design of high
speed systems, and transmission line effects now play an important role in determining inter-
connect delays and system performance. Existing techniques are based on either simulation or
(closed-form) analytical formulas. Simulation methods such as SPICE give the most accurate in-
sight into arbitrary interconnect structures, but are computationally expensive. Faster methods
based on moment matching techniques are proposed in [10, 12, 11, 14], but are still too expensive

to be used during layout optimization. Thus, Elmore delay [2], a first order approximation of
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delay under step input, is still the most widely used delay model in the performance-driven rout-
ing of clock distribution and Steiner global routing topologies. However, Flmore delay cannot be
applied to estimate the delay for interconnect lines with ramp input source; this inaccuracy is
harmful to current performance-driven routing methods which try to determine optimal intercon-
nect segment lengths and widths (as well as driver sizes). Recently, [4] has claimed that Elmore
delay is an upper bound on the 50% threshold delay for RC' interconnection trees, for any general
input waveform.! However, we find that Elmore delay is not at all close to SPICE-computed 50%
threshold delays and can deviate as much as 100% from the SPICE-computed delays (see Section
7 below).

Previous moment-based approaches [10, 12, 14] can compute a response for interconnects
under ramp input within a simulation-based methodology, but no previous work has given any
analytical delay estimation model based on the first few moments. This paper gives a new
and accurate analytical delay estimate for distributed RLC interconnects under ramp input.
To experimentally validate our analysis and delay formula, we model VLSI interconnect lines
having various combinations of source, load parameters and different input rise times, and obtain
delay estimates from SPICE, Elmore delay and the proposed analytical delay model. Over our
range of test cases, Elmore delay estimates can be as much as 100% away from the SPICE-
computed delays. As the rise time of the input signal increases, Elmore delay deviates even
further from SPICE-computed delays, which is unacceptable for design applications. In contrast,
our single-pole delay estimates are within 4% of SPICE delays and our two-pole delay estimates
are within 2.3% of SPICE delays. Since our analytical models have the same time complexity
of evaluation as the Elmore model, we believe that they are very useful for performance-driven

routing methodologies.

The organization of our paper is as follows. In Section 2 we discuss delay models which
have been previously proposed for interconnect lines under step input. Section 3 presents a new
analytical delay definition for interconnect lines under ramp input. Section 4 discusses various
threshold delay models for single-pole approximation of the interconnect transfer function; Section

5 gives various threshold delay models for two-pole approximation; and Section 6 extends our

YOur convention is to define threshold threshold delays relative to the point where the input signal is zero.
However, the sense of [4] is that threshold delay means “threshold to threshold” delay: measure from when the
input crosses a given threshold to when the output crosses the same threshold. E.g., in our convention 50% Elmore
delay for ramp input becomes T2—R + b1 instead of just b1 as in [4].



delay modeling approach to interconnection trees. Section 7 concludes with experimental results

for various combinations of input rise times and interconnect parameters.

2 Previous Delay Models Under Step Input

The transfer function of an RLC interconnect line with source and load impedance (Figure 1)

can be obtained using the ABCD parameters [1] as

H(S) . VQ(S) . 1
— Vols) Jeosh(8h) + Z2 sinh(6h)] + 4 [Zo sinh(6h) + Zs cosh(6h)]
1

= 1
14 bis+bes?2+ ... +bpsh+... (1)

where § = /(7 + sl)sc is the propagation constant and Zy = \/% is the characteristic

impedance; r = %,l = %,c = % are resistance, inductance, and capacitance per unit length

and h is the length of the line. The variables by are referred as coefficients of the transfer func-
tion and are directly related to the moments of the transfer function [7]. Expanding the above
transfer function into a Maclaurin series of s around s = 0 leads to an infinite series, and to com-
pute the response the series is truncated to desired order. The method of Padé approximation
has been widely used to compute the response from the transfer function [9, 10]. For the case
of resistive source (Rg) and capacitive load (Cr) impedances, the coefficient of s in the transfer

function can be obtained as [7]

RC
blstc—l—RscL—l—T—l—RcL. (2)
O Zg Digtributed RLC line
vO(t) |0(t) v1 ) |1(t) |2(t) v2(t)
O

Figure 1: 2-port model of a distributed RLC' line with source impedance Zg and load
impedance Z7.
Efficient delay estimates for interconnect lines are typically derived by considering a single
interconnect line with resistive source and capacitive load impedances; delay formulas for an

interconnect tree come from recursive application of the formula for a single line. Elmore delay



[2] is a first order delay estimate for interconnect lines under step input. It is equal to the first
moment of the system impulse response, i.e., the coefficient of s or the first moment in the system
transfer function H(s). Applying this definition to H(s) in Equation (1), the Elmore delay is

equal to the coefficient b;.

By considering only one pole in the transfer function, i.e, approximating the denominator
polynomial to only the first moment, the single pole response can be obtained as in [13, 3]. The
single pole of the transfer function is equal to the inverse of the Elmore delay Trp. Hence, the
delay at arbitrary thresholds of the single pole response can be directly related to Elmore delay
(Elmore delay actually corresponds to the 63.2% threshold voltage of the single pole response).
For example, delay at 50% threshold voltage is 0.69b1, and delay at 90% threshold voltage is
2.3by. The Elmore delay estimate has been widely used as an analytical delay formula for inter-
connect timing analysis. However, Elmore delay cannot accurately estimate the delay for RLC
interconnect lines, which are the appropriate representation for interconnects whose inductive

2 cannot be neglected [5]. More critically, Elmore delay cannot estimate delays when

impedance
the input signal is a ramp. (Recently, [7] have developed a more accurate model analytical delay
model considering the inductive effects based on the first and second moments of the trans-

fer function. Even though their model gives accurate estimates compared to SPICE-computed

delays, the model is valid only for step inputs.)

3 Analytical Ramp Delay Definitions

In the literature, various analytical (closed-form) delay models for step input have been proposed
[2, 3, 7]. In practice, the input at any gate or root of a tree is a ramp with finite rise time,
and there are no published analytical delay models for ramp input. In this section, we propose
various ramp delay definitions and also compute analytical expressions for delay using the first

one or two moments of the transfer function.
Rising Ramp Input

The finite rising ramp input shown in Figure 2 can be expressed in the time domain as

vip(t) = TKJZ [(tU(t) — (t—=Tr)U(t —Tg)] forallt>0.

?Inductive impedance is 27fL, where f is the frequency of operation.
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Figure 2: A ramp input function: (a) finite ramp with rise time Tz, and (b) finite ramp
decomposed into two shifted infinite ramps.

where U(t) denotes the step function. The finite ramp input in the transform domain is

1

=7 5_2[1 — e*TR]

Vin(s)

In the transform domain, the output response is

Vo 1
Vin(s) = Vin(s) () = 7 51 = e (s)
R S
Falling Ramp Input

Figure 3: A ramp input function: (a) finite falling ramp with fall time T, and (b) finite
falling ramp decomposed into a step input and two shifted infinite ramps.

Although we shall discuss delay models for rising ramp input only, our methodology can also
be applied for falling ramp input. The finite falling ramp input can be expressed in the time

domain as

vin(t) = (U = W@ + (1= Tp)U( = Tp)] - forall 1 >0

where U(t) denotes the step function (Figure 3). In the transform domain, this ramp input is

Vo (Tr 1 s
Vo= Yo (B Lo



implying that the output response Vi(s) for falling ramp input can be computed by subtracting

the response Vg(s) for rising ramp input from the response Vg(s) for step input (see [7]), i.e.,

Vi) = o (- =) )
= Vs = Vils) g

Note that throughout the remainder of this paper Vg(s) will be denoted as V,,4(s). We now give

three distinct derivation of an analytical ramp delay estimate.

Elmore Definition. We may apply Elmore’s original definition of delay for step input [2] to

compute an analytical delay T4p under ramp input, i.e.,

1 [ee]
Tip = 7/ to! (t)dt
vout(oo) 0 t( )
1 /OO ,
= — tv t)dt 4
VO 0 out( ) ( )
where v],,(1) is the derivative of the output response under finite ramp input. Taking the Laplace

transform of v/ (),

< sty
out(s) = /0 e’ vout(t)dt
o0 o0
= / vl () dt — 5/ vl (D)dt + . ..
0 0
Equation (4) then implies that the analytical ramp input delay T4p in time-domain is equal to
the first moment of the derivative of the response. In the transform domain, T4p is equal to the

first moment (or coefficient of s) of the function VO“TtO(S), which is equal to s- %ﬁl The derivative

of the response in the transform domain is

Vo/ut(s) = Svout(s)zs‘/in(S)H(S)
Vol T
= — (1 = SLR H
=T )
Vol s*Th 1+ as+ axs® + ...
= ———(sTp—
A i Sk pray sy s
T 1 24
= Vo(l——SR—I-...) T ast ars F (5)

2 14 b5+ bys? + ...

Therefore, the analytical ramp input delay is®

7 A simple approximation for 90% threshold delay for ramp input, which is nsed in the literature so far, is equal
to sum of 90% step input delay and rise time of input signal Tr, i.e., Tuppz = Tr + 2.3 * b1.
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where Tgp is the Elmore delay for a step input (i.e., the first moment of the transfer function).

Alternative Definition of Analytical Delay. Another definition of ramp delay from the

output response is*

1 0o
fap = (Uout(oo) - Uout(o)) /0 (vOUt(OO) - vout(t))dt

- /000(1 = L%‘;(t))dt (7)

0

The Laplace transform of the function (1 — %ﬁ) is equal to (1 — Mﬁl), so that

Vo
(1 _ VOUt(S)) — /OOO e—st(l B vOUt(t) )dt

S VO VO
o0 Uout(t) /oo Uout(t)
= 1— ——2)dt — s t(1 — dt+ ...
fy s 0= S
In the transform domain, this implies that the ramp input delay is equal to the zeroth moment
(or coefficient of %) of the function (1 — VO“TE(S)), ie.,
. 1 Vout(s)]
T =1 - — 8
AD sl—r% [8 VO ( )
Expanding (% — V"“Tto(s)) in terms of input ramp and transfer function coefficients yields
1 Vout(s)] [1 11 ST ]
—_ Jouwt\7) — L (1-—eR\Hg
[5 Vo s Tpgs? ( c JH ()

S 2 14 b5+ bys? + ...

(bl—a1—|-I2B‘)—|-...
140615+ bys24...

1[1_(1_STR_I_‘”)l—I—als—I—agsz—l—....]

and applying Equation (8) yields the same result
T
Tap = 7R-I-b1 —a (10)

Group Delay Definition.

The concept of group delay was initially defined for step input by Vlach et al. [15]. We now
give a group delay definition for computing ramp input delay similar to that in [15], and show

that it converges to same analytical expression derived in Equations (6) and (10).

* A similar definition is used in [8] to compute step input delay for general RC' networks.



Recall that group delay is defined as the negative of the rate of change of the phase charac-

teristic ¢ of the output response V., (w) with respect to frequency, at zero frequency:

Top = lim —8—¢ .
w—0 8w

To compute the phase characteristic of the output response, we first compute the output response

Vout(s) in the transform domain and then substitute for the Laplace variable s = jw, i.e.,

Vo -1 i
Vout(w) = T_;F(l_e / TR)'H(w)
-V wT]% wST]‘% ) sz]%
= — Thr — DO H
T |2 gt F TR =g ) HW)
= Oy 4 M) H ()
= Tre 1T Ji2

where My and M, are the real and imaginary parts of the input ramp function. Writing the

transfer function in terms of numerator and denominator polynomials,

(1 —aw? +..)+ jlagw — azw® + ...)
(1 =baw? +...)+ j(byw — bsw3 4 ...)
N1+ N,
D1+ Do

Hw) =

Then, the phase characteristic of the output response is

N. D
12 _gap ' 22

M,
=tan~! — 4 ¢ .
10} an o, + tan N, D,

Using

1 Mz) My 2L — ML
- ME+ M
we obtain the group delay

: d
Top = lm 5
T
= 7R—I—b1—a1 (11)

4 Single-Pole Analysis

If we approximate the system transfer function up to the first moment (or coefficient of s),

1
1—|—8b1

H(s) =



and the output response under infinite ramp is®

w1 1
Uol®) = 7314 sy
_ E[i_b_urbil]
 Tr1s? s (s+1/by)

with corresponding time-domain response

Ut (1) = TK; [—bl Fig blei—f] (12)

The time-domain response for a finite ramp is therefore

vout(t) = uout(t) - uout(t - TR)
—t —(t=Tg)
_ K [TR Fhen — bleTR] (13)
Tr

Note that as t — 00, vy (t) tends to a final value of Vj as expected.

4.1 Analytical Delay Model

From the output response given in Equations (12) and (13) the analytical ramp delay can be

computed using the definition in Equation (4) as

T ! /TRt’ (t)dt + ! /Oot’ (t)dt
= — U — v
AD VO 0 out VO TR out
1 I Tr Tr —t 0 —t 0 —(t=Tgr)
- = / tdt—/ tebldt—/ tendi+ [ te modt
Tr |Jo 0 Tr Tr
_ _ 0 —(t—Tg) —(t—Tg) 0
1 12 . ;—t_l_bz—t r teb_lt eb_lt N te tblR e tblR
= e — [ _— — - 5 -
T |[\zth o )|, —1/by  1/63 . —1/by 1/b3 .
. L
= 7R+b1 (14)

Threshold Voltage Corresponding To Analytical Ramp Delay.

Section 2 gave three different definitions for computing an analytical ramp input delay from
the output response. When the transfer function of the system is approximated up to the coeffi-
cient of s, this analytical delay reduces to

T
TAD:7R‘|‘I)1-

°In the transform and time domains, we respectively use U(z,s) and u(z,t) to indicate the response for the
infinite ramp input, and V(z,s) and v(z,t) to indicate the response for the finite ramp input.



The threshold voltage corresponding to this analytical delay is not known, and must be computed

by substituting T4p for time in either the infinite or the finite ramp responses.

When b < TQ—R, using the infinite ramp response in Equation (12) gives

Vo —Tap
Uout(t = Tap) = Tn [—51 + Tap + bie ]

- 3 [1 + Q—ble_(Hm)]
2 Tr
In the limit as % — 0 the threshold voltage reduces to u,(t = Tap) = % Hence, for large

rise-times or small first moment of the transfer function the analytical delay T4p corresponds to

50% threshold voltage.

When b > TQ—R, using the finite ramp response in Equation (13) gives

Vo —Tap —(Tap—=TR)
vout(t = TAD) = T_R [TR + bl@ b — ble by :|
= W |:1 + %?ﬂ(e?bl_/lﬂ% — e2b11/TR ):|
eTr

In the limit as % — o0 the threshold voltage reduces to v, (t = Tap) = Vo(1—1/¢) = 0.632V4,.

Hence, for small rise-times or large first moment of the transfer function the analytical delay Tap
corresponds to 63.2% threshold voltage. We see that for any arbitrary values of T and by the

threshold voltage corresponding to the analytical delay T4p will be between 50% and 63.2%.
4.2 Threshold Delay Models

Condition for Computing Threshold Delay Using Finite or Infinite Ramp Response.

The ramp input delay at any threshold voltage can be computed using the infinite ramp
response in Equation (12) if the ramp delay is less than rise time T'r, or using the finite ramp
response in Equation (13)if the ramp delay is greater than T'r. For example, the delay at threshold
Thl in Figure 4 is computed using the infinite ramp response, and the delay at threshold Th2 is
computed using the finite ramp response. To determine when the infinite ramp response should
be used, we write the threshold voltage corresponding to the rise-time T in terms of interconnect
and rise time parameters:

1 =Tr
vy = Tr —01 + TR+ bie 1

(e=¥—e¥) _
Y

. . =1 1 .
%Since limy— oo t(e® —er)=lmy,_o —2.

10



Voltage

Th2

Thi

_____________________________

T

R

Time

Figure 4: Ramp input delay at various threshold voltages.

by

= |- T—(l—eblﬁR) (15)

R

Here, vy, is the threshold voltage at which the delay through the interconnect is equal to T'g.

If vy, < v, delay is calculated using Equation (12), and if vy, > vr,, delay is calculated using

Equation (13).
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Figure 5: Variation of threshold voltage at delay equal to rise-time Tr with respect to the

b
factor T

Observe that Equation (15) can be rearranged to obtain a condition on %— for any given
R

threshold voltage vy,: the condition for delay calculation using infinite ramp response

by -1
—(1
TR(

11

_ eb1/TR) < (1 — Uth)



and the condition for delay calculation using finite ramp response is

bl _—1
T—R(l —en/Tr) > (1 — vy,)

Figure 5 shows the variation of vy, with respect to the factor ;—;. At by = Tgr the threshold

voltage vy, is 0.368Vp, i.e., 36.8%. Since most sub-micron interconnect networks have small rise-
times and large propagation delays, the delays at threshold voltages of interest (50% or 90%)
will likely be computed by considering the finite ramp response as developed in Equation (17)

below.”
Threshold Delay Using Infinite Ramp Response.

Model 1. For the infinite ramp response of Equation (12), the threshold delay is®

—TrD1

Trpi+bie 1 =uyTr+ b

We can solve such a recursive equation in less than 10 iterations of simple back-substitution (with
Tap as the starting value) for all the interconnect configurations we considered. Another way to
evaluate the above iterative equation is by substituting some f(74p) for Trp; in the exponential
term, which yields?

—f(Tap)

Trpr = ugpTp+b1(1—e 20 ). (16)

Here, f(T4p) depends on the threshold voltage and Typ. For example, for 50% threshold voltage
f(Tap) = Tap and for 90% threshold voltage f(T4p) = 2.3T4p. The delay values using Equation

(16) are very close to the values obtained by solving the equation through iteration.
Threshold Delay Using Finite Ramp Response.

Model 2. For the finite ramp response of Equation (13),

1 —TrD2 —(Trp2—=TR)
Vi, = T Tr+bie 2 —be b1
R

TAt 50% threshold, the condition for delay calculation using infinite ramp response is ;—; < 0.625, with delay
calculated using finite ramp response otherwise. Similarly, at 90% threshold, the condition for delay calculation
using infinite ramp response is ;—; < 0.1.

8 A simple upper bound on the delay stems from neglecting the exponential term entirely, i.e., Trp1 < wenTr+b1.
? Again, the convention we use is that threshold delay refers to delay measured from the point when the input

signal 1s zero. To compute delay relative to the input signal, subtract the corresponding threshold delay of the
input signal (e.g., for 50% threshold voltage, the delay for the input ramp is TTR)

12



Collecting the threshold delay Trp, terms, we obtain
1
In b_l ‘ (ebl/TR — 1)
TR (1 — ?Jth)
F
() .
(1 — ?Jth) ( )

1
where the factor F = ;—;(ebl/TR —1) can vary between oo and 0 as shown in Figure 6. With such

Trp2a = b1

- b

alarge variation in Fi, it is very difficult to fit the threshold delay Trpo against the corresponding

SPICE delay.

F1

30.00 — —
28.00 — —
26.00 — —
24.00 — —
22.00 — —
20.00 — —
18.00 — —
16.00 — —
14.00 — —
12.00 — —

10.00 — —

8.00 — —

6.00 — —

2.00 — —

0.00 t=I L L L L 1 —
0.00 2.00 4.00 6.00 8.00 10.00

b,/ Tr

1
Figure 6: Variation of the factor F; = ;—;(ebl/TR — 1) with respect to :l}—lR.

Model 3. Since the threshold delay computed from the finite ramp response is greater than Tg,

an alternative formula for the threshold delay can be obtained by expressing Trps as

Trp3s = TR + TrRD3

Substituting into Equation (13) yields

1 —TR —7TRD3 —TRD3
Vi, = T Tr+bie 1 ¢ b1 —hje u
R

b (1 enrm)
" (T—ﬁ)‘ | .

—1
hl b_l‘(l_ebl/TR)
TR (1 — ?Jth)

13

which implies

TRD3 = b1

Therefore, the total delay is

Trps = Tr+ b0




= Tr+h

" ((1 im))‘ )

The factor £y = ;—;(1 — en/Tr ) varies between 0 and 1.0 as shown in Figure 7. For by = Tg
this factor is Fy = 0.632. For by > Thr we can find a good approximation for Fy by fitting
against SPICE-computed delays, since the variation in Fy values is very small. For the range of

interconnect configurations studied both Model 2 and Model 3 gave essentially identical results

and hence in Section 7 we report results using just Model 2 only.

F, x 107°
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550.00 — —
450.00 — —
350.00 — —
250.00 — —
150.00 — —
50.00 — —
0.00 — —
L L L L L L b,/ Ta
0.00 2.00 4.00 6.00 8.00 10.00
—1
Figure 7: Variation of the factor Fy = 2-(1 — ¢™/7r ) with respect to 2.
Tr Tr

5 Two-Pole Analysis

The two-pole methodology for interconnect response computation under step input has been
discussed in [3, 17, 6]. For interconnect trees (or lines) the transfer function has a special form

in which the numerator polynomial is a constant, i.e., approximating to s? term yields

1

H(s)m —— .
(8) 1 + Sbl + 82b2

For the case of resistive source (Rg) and capacitive load (C) impedances, the transfer function

coefficients are given by [7]

RC
by = RsC+H+ RsCyp + - + RCy,

RsRC?  RsRCC, (RC)?  RXCC, LC
by = e L+(24)+ T T LCE (20)

14



For this form of the transfer function, the output response under infinite ramp input is

Vo 1 1
Uout(s) N T_R8_21—|-8b1—|-82b2
Wl 1
 Trbys? (s —s1)(s— s3)
W k k ks k
_ Yo LI B 3_|_ 4

Th ls—581 s— 59 s
Equating the coefficients of s’s in numerator and denominator, we obtain the equations
ki +ky+ks = 0
—k183 — kas1 — ka(s1+s2)+ ks = 0

k38182 - k4(81 + 82) =0

1
k48182 = b_
2
—b
s1+82 = b—l
2
1
S1892 = E

where s1 and s; are the poles of the transfer function. Solving these six equations for the six

o = —b1—|—\/b — 4b,
. = —by — \/b — 4b,

kl - 2b2 + bl \/ b2 4b2 1 + b182)
2, /b2 — db, 51— 52

- —b} 4 2by + b1 /b3 — 4D, _ L+ by s1

2, /b2 — db, 51— 52

variables, we get

Substituting for these variables, the infinite ramp response in the transform domain is

VO |:—b1 1 1—|—b182 1 n 1—|—b181 kQ :|

Uout (5) TR 5

s 52 81 — 892 8§ — 8] 81 — 89 8§ — 89
and the corresponding time-domain response is

14 bysy et 14 b1s1 o521

{
uout( ) S92 — 81 51 — 82

[ b+t + ]U(t) (21)

Tr

15



where U(t) represents the unit step function. The time-domain response for a finite ramp is

vout(t) = uout(t) - uout(t - TR)
1+06 1+6
_ jYO TR_I_ + 0152 (eslt _ esl(t—TR)) + + 0151 (65215 _ 652(t—TR)) U(t) (22)
R S2 — 851 $1 — $2

Note that the first and second moments of the transfer function can be obtained from the coef-
ficients by and bs, i.e., My = by and My = b% — by. We use the coefficient notation b, b5 and the

moment notation My, My interchangeably according to the simplicity of the expression.
Analytical Delay Model.

From the output response given in Equations (21) and (22), the analytical ramp delay can be

computed by applying the definition in Equation (4):1°

. 1 /TR Nd 1 fe° d
i ul, t—|——/ t . (1)dt
w = o [t o [Tt
_ 1 l/Tthﬁ/TR Mesﬁdw/m (Lt D151)%2 gy
Tr |Jo 0 82 — 81 S1— 52
0 S9 — 81 81 - 52
T
_ _R b (23)

This is the same expression obtained from the analytical ramp input definition in Section 3.
5.1 Threshold Delay Models

Depending on the sign of 3 —4b,, the poles of the transfer function can be either real or complex.

We now separately derive delay models from the two-pole response for each of these cases.

5.1.1 Real Poles

The condition for the poles to be real is (b3 — 4by) = (4My — 3M7) > 0. Since the magnitude |s]
is greater than |sq|, the second term in the time-domain response decreases rapidly compared to

the first term. Hence, the two-pole infinite ramp response can be approximated as

1 —|— b182 651t

Vo
Uout (1) =~ by +t4+ (24)
TR 2 — 81
The derivation uses the integral f tedt = % - %

16



and the finite ramp response as

(25)

Vout(t) =

Vo L+b1S2 ¢ st o1 (t=Tw)
T_R[TR+ S — 81 (e o )

Note that the residue k4 = 151-6% is a positive quantity, and that the pole s; has to be negative

in value for the response to converge.
Threshold Delay for Infinite Ramp Response.

Model 4. The delay Trpy at threshold voltage us, can be obtained as

1+ bys9 651TRD4
S2 — 81

Trp4 + = uy TR+ by

Again, we were able to solve the above equation in less than 10 iterations for the interconnect con-
figurations we considered. Another way to evaluate the above iterative equation is by substituting

some f(T4p) for Trps in the exponential term, which yields

L+ bisy e51f(Tap) (26)
S9 — 81

Trpa = wpTr + b1 —

where f(T4p) depends on the threshold voltage and 7'4p. For example, for 50% threshold voltage
f(Tap) = Tap and for 90% threshold voltage f(T4p) = 2.3T4p. The delay values using Equation

(16) are very close to the values obtained by solving the equation through iteration.
Threshold Delay for Finite Ramp Response.

Model 5. The delay Trps at threshold voltage vy, can be obtained from the response as

1+ bys9 (6—51TR _ 1)651TRD5
S2 — 81

viplr = TR —

Since the value of the pole s; is negative, the quantity (e™*17% — 1) is positive and the residue

lsl'bfl,:f is also positive. Thus, the delay expression reduces to
[s1|Tr _
Trps = € In (L +bisa)(e D
| s1] (s3 — s1)TR(1 — vy,)
1 Py
C () .
|51] (1 — o) 27)

(14b152)(el*11TR —1)
(s2—s1)Tr

where the factor f3 = can vary widely.

Model 6. Since the threshold delay computed from the finite ramp response is greater than Tg,

an alternative formula for the threshold delay can be obtained by assuming the form
Trpe = Tr + TRDS6
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Substituting into Equation (25) yields

1 + b182
T =Tr~ ———=(1- 51 TR )51 7R
27— °1

which implies

T = L In ((1+b152)(1_6_|51|TR))‘
BDG = 4] (52 — 51)TR(1 — vip)
1 Fy
- m hl((l—?fth))‘ (28)

(14b152)(1—e~1511TR)

where the factor £y = Ta(ss=51)

varies over only a small range. The delay is

(i)l

For the range of interconnect configurations studied both Model 5 and Model 6 gave essentially

1
TRD6 = TR + m
1

identical results and hence in Section 7 we report results using just Model 5 only.

5.1.2 Complex Poles

The condition for complex poles is (4 Mz — 3M{) = (b3 — 4by) < 0. Even though for most cases
of interest the poles turn out to be real (see Section 7), here we present analytical delay models
for the case of complex poles. Even for complex poles, the response for infinite and finite ramp

inputs can be calculated from the expressions in Equations (21) and (22). We can write the poles

in the form s; = —a 4 )8 and s = —a — 33, so that the infinite ramp response is
[ 1+0 1+0
uout(t) = E _bl + t + il 152 €Slt + h — €S2t:|
Tr L S2 — 81 S1 — 52
Vo [ b1 B+ 5(1 —abi) (_ b1 —g(1 —aby) (.-
LN (—atsB)t (<o m)t]
Tn | ™ +i+ % € + 25 €
- Y —by +t+e <b1 cos(ft) — (= aby) sin(ﬂt))]
Tr | g
[ 1 — 2aby + b?(a? + 32
— & by +t+ \/ ! il ) e ot sin(f8t — p)
Tr g
Vo [ et
= L|-b+t+ sin(ft — p)] (30)
Tr I
where
O P 1 N R | ‘ ﬂ:\/4b2—b§:\/3M12—4M2
1 - blOé ’ 2b2 2(M12 — MQ) ’ 2b2 2(M12 — MQ)



Similarly, the finite ramp response can be obtained as

Vout(t) = TL; [TR + % (e‘at sin(ft — p) — e~o(t=Tr) sin(B(t —Tr) — p))] (31)

Threshold Delay for Infinite Ramp Response.

The delay at a given threshold voltage can be computed by solving for time recursively in
Equation (30), i.e.,
e " sin(Bt — p) = BlugTr + by — 1) (32)

Model 7. One way to solve the recursive Equation (32) is to approximate the sine variable by

the first term of the Taylor series, i.e.,

ot BlugTr+ by —t)

(Bt —p)
which yields
1 BTrp7 — p ) ‘
T = —|ln ( 33
o=y B(unTr+ by — Trp7) (33)

Even though this equation is still recursive, we can now approximate the delay Trpr in the

logarithmic expression with either a function of analytical delay f(74p), or the factor F5 =

BTrpr—0 . . .
‘ln (ﬁ(uthTR-I—brTRm)) ‘ can be approximated by a constant for the required range of interconnect

parameters by fitting against SPICE delays.

Model 8. Another way to solve the recursive Equation (32) is to approximate the time variable
in the exponential term by a function of the analytical delay expression, i.e., f(T4p) is used as
an approximation for the time variable ¢ in the exponential term. Expanding sine as a Taylor

series and considering only the first term yields

(un T + bl)eaf(TAD) 12
Trps = ( : g (34)

(1 + eaf(TAD))

Model 9. If at in the exponential term of Equation (32) is O(1), it cannot be expanded as a

Taylor series because the series becomes divergent. However, if we express the exponential term

(at—1)

as e and then expand as a Taylor series, we get
(uinTr + by — Trpg)e®TrPe = %Sin(ﬂTRD9 —-p)
(unTr + by — Trpe)e@TrEe=1 = %(TRD9 - %)
eaT]%Dg + Trpo(1l — ea(uyp,Tr+ b1)) — % =0
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Solving the above quadratic equation we obtain two solutions for delay; the feasible one is

~(1 = ea(unTr+ b)) + /(1 — ca(unT, + b1))? + 252

2eq

Trpo = (35)

Threshold Delay for Finite Ramp Response.

The delay at a given threshold voltage can be computed by solving for time in Equation (31)

recursively, i.e.,
(e_a(t_TR) sin(B(t — Tr) — p) — e " sin(Bt — p)) = TrB(1 —vy,) (36)

Model 10. Again we approximate the sine variable in Equation (36) by the first term of the

Taylor series, which yields

(72T (B3(t — Tr) = p) — e (Bt — p)) = TrA(1 — vyy)
The threshold delay can be obtained as

n (BTrp1o — p)(e®Tr — 1) — BTRe TR
ﬁTR(l - Uth)

1
Trpio = o (37)

Model 11. Again, an alternative delay model approximates the time variable in the exponential
term of Equation (36) by the analytical delay expression derived in the previous sections, i.e.,

Trp11 is replaced by T4p in the exponential terms. This yields

((1 — vy, )TRe?T(Tap) 4 TpeaTr 4 %(eaTR — 1))
Trpn =

38
(eaTR _ 1) ( )
Model 12. And again, if we assume at is O(1) in the exponential term of Equation (32), it
cannot be expanded as a Taylor series. Expressing the exponential term as e(®*=1) and then

expanding as a Taylor series, we get

(e_at sin(ft — p) — e~ U=TR) gin(B(t — Tg) — p)) = —TrB(1—vy)
(—OéTRDm(ﬁTRDm —p) + aTrpi2e®*(B(Trp12 — Tr) — ,0)) = —%ﬁ(l — V)

T
af(e®TR — )TEp, — (ap(e®TR — 1) + aBTRre*TR)Trp1o + fﬁ(l —vp) = 0

The feasible solution for delay is

(ap(e®Tr — 1) + afBTreTR) + \/(ap(echR — 1) + afTreTr)? — TRaf2(e?Tr — 1)(1 — vyy,)

T =
RD12 QOéﬁ(eaTR _ 1)

(39)
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6 Interconnection Trees

Finally, we describe how to extend our analytical models to estimate delays in arbitrary inter-
connect trees. An RLC network is called an RLC' tree if it does not contain a closed path of
resistors and inductors, i.e., all resistors and inductors are floating with respect to ground, and
all capacitors are connected to ground. Consider an RLC' interconnect tree with root (or source)
S and set of sinks (or leaves) {1,2,...,n}. The unique path from root S to the sink node i is
denoted by p(7) and is referred as the main path. The edges/nodes not on the main path are
referred as the off-path edges/nodes. We model each edge on the main path of the tree using a

lumped RLC segment, e.g., an L, T, or IT model.!!

We approximate the off-path subtree rooted at node ¢ with its admittance. At any node ¢,
the admittance Y; is equal to (i) the capacitance of node 7 (C;) if there is no subtree at node 1,
or (ii) to the sum of the capacitance of node i (C;) and the subtree admittance Yp(;) otherwise.

In other words,

V. sC; if node 7 has no off-path subtree
o= sCi+ Yr@;y if node ¢ has an off-path subtree
S Rs Vi e by Y Rt Y Yo R h 1 L
o— WA 2114 MV —EEE
Y i 1 <

Figure 8: Representation of the main path in the tree, where each distributed line is modeled
using RLC segments. Y; indicates the off-path subtree admittance at node «.

With this approximation, the main path reduces to an RLY equivalent circuit. Only two
admittance moments need to be computed for an exact transfer function moment computation
for the main path. The k" coefficient by, of the transfer function for the general RLY circuit

of Figure 8 can be obtained using the recursion equation given in [6]. The first and second

' Our model is not limited to traditional segment models, and accuracy of our results would likely improve if
we use non-uniform segment models [6, 16] designed to perfectly match the low-order moments of the distributed

RLC line.
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coefficients of the transfer function are

N N
bISL = RSZYLJ + RNZYL] + b{v
7=1 7=1
N 4 N N 4 N N
bQSL = RSZYL] . b{ + RSZYQJ + RNZYL] . b{ + Ry ZYQJ + Ly ZYL] + b]2\7 (40)
=t 7=1 i=1 j=1 j=1

The first and second moments are expressed in terms of coefficients as My = by and My = b% —bs.
For any given source-sink pair the coefficients by and by can be computed in linear time by

traversing the main path and using the Equation (40) to obtain transfer function coefficients.

7 Experimental Results

We evaluate the above models by simulating various RLC' interconnect lines with different
source/load impedances and different input rise times. We consider typical interconnect pa-
rameters encountered in single-chip interconnects [7], with the length of the interconnect being
2000 um. The source resistance is varied between 100 to 1000 © and the load capacitance is

varied from 0.1 to 1.0 pf. We also consider 100 ps and 500 ps rise times for the input ramp.

For all our experiments, we compute exact 50% and 90% delays from the response at the
load using the SPICE3e simulator. The step input delay is computed using the Elmore delay
formula and then multiplying it with the appropriate constant for the given threshold voltage.
For example, Elmore delay at 50% threshold voltage is 0.69b; and at 90% threshold voltage is
2.3b1. We also find that Elmore delay as a bound, which corresponds to Typ = IQB‘ + by from the
paper [4], is not at all close to SPICE-computed 50% threshold delays and, and deviates as much
as 100% from the SPICE-computed delays. Also, increased rise time of the input signal deviates
the Elmore delay further from SPICE-computed delays (see Tables 1 and 3).

For a comparison, we also present delay estimates using the analytical ramp delay model Typ.
When the rise time of the ramp input is increased from 100 ps to 500 ps the SPICE delays at
50% threshold are increased by approximately 200 ps, which suggests that delay at 50% threshold
voltage is proportional to TQ—R. This effect of the rise time is well modeled in the analytical ramp
delay model Ty4p. Figures 9 and 10 show that the response computed from single-pole model,
and two-pole model for the first case in Tables 1 and 3 are identical to the SPICE response. To

computed ramp input delays using the single-pole methodology we used either the Model 1 or
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Voltage

1.00 —
0.95 —
0.90 —
0.85 —
0.80 —
0.75 —
0.70 —
0.65 —
0.60 —
0.55 —
0.50 —
0.45 —
0.40 —
0.35 —
0.30 —
0.25 —
0.20 —
0.15 —
0.10 —
0.05 —
0.00 —

-0.05 ‘ ‘ ‘ ‘ ‘ ‘ Time x 10712
0.00 100.00 200.00 300.00 400.00 500.00

Figure 9: Response due to SPICE, single-pole model, and two-pole model for the first case
in Table 1. The rise-time of the ramp input is 100 ps.

Model 2, depending on the value of the first moment b; and the threshold voltage of interest.
Similarly, to compute ramp input delays using the two-pole methodology we use either Model 4
or Model 5, again depending on the value of b; and the threshold voltage of interest. (If the delay
is computed using the infinite ramp response then we mark those delays in the Table with (*)).
Tables 1 and 2 gives 50% and 90% delay estimates for ramp input with 100 ps rise time. Tables
3 and 4 gives 50% and 90% delay estimates for ramp input with 500 ps rise time. Over our range
of test cases, Elmore delay estimates can be as much as 100% away from the SPICE-computed
delays and are underestimating. In contrast, our single-pole delay estimates are within 4% of

SPICE delays and the two-pole delay estimates are within 2.3% of SPICE delays.

8 Conclusions

Fast delay estimation methods, as opposed to simulation techniques, are needed for incremental

performance-driven layout synthesis. Estimation methods based on Elmore delay for a step
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Voltage

1.00 —
0.95 —
0.90 —
0.85 —
0.80 —
0.75 —
0.70 —
0.65 —
0.60 —
0.55 —
0.50 —
0.45 —
0.40 —
0.35 —
0.30 —
0.25 —
0.20 —
0.15 —
0.10 —
0.05 —
0.00 —

-0.05 ‘ ‘ ‘ ‘ ‘ ‘ Time x 10°9
0.00 0.20 0.40 0.60 0.80 1.00

Figure 10: Response due to SPICE, single-pole model, and two-pole model for the first case
in Table 3. The rise-time of the ramp input is 500 ps.

input, although efficient, cannot accurately estimate the delay for RLC interconnect lines. We
have obtained new analytical delay models under ramp input, based on the first and second
moments of RLC interconnection lines. Resulting delay estimates are significantly more accurate
than Elmore delay estimates. We also describe how to extend our delay models to estimate

source-sink delays in arbitrary interconnect trees.
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Interconnect | Driver Load Delay from Elmore | Analytical Single-Pole Two-Pole
parameters Res. Cap. Response Delay Delay Delay Delay
r,lc Rg Cr SPICE 0.693bq TAD Model 1/2 | Model 4/5
/pm 0 pf ps ps ps ps ps
r = 0.0015 €2
¢c=0.176 ff 100 0.01 83.41 25.48 86.76 83.29* 83.90*
1 = 0.246 ph
? 500 0.01 178.14 125.85 231.56 178.14 178.36
? 1000 0.01 302.08 251.31 412.56 302.45 302.59
? 100 0.1 90.40 31.90 96.03 90.31* 92.49*
? 500 0.1 209.13 157.19 276.83 209.06 209.33
? 1000 0.1 364.29 313.81 502.83 364.80 364.97
? 100 1 150.40 96.14 188.73 149.15 150.80
? 500 1 521.76 470.91 729.53 521.63 522.02
? 1000 1 989.25 939.38 1405.53 989.89 990.15
r=10.015 Q
¢c=0.176 ff 100 0.01 87.30 28.96 91.78 87.14%* 88.14*
1 = 0.246 ph
? 500 0.01 181.26 129.33 236.58 181.56 182.32
? 1000 0.01 304.81 254.79 417.58 305.92 306.58
? 100 0.1 95.71 37.06 103.48 95.76* 97.19*
? 500 0.1 213.95 162.36 284.28 214.17 215.17
? 1000 0.1 368.92 318.97 510.28 369.95 370.83
? 100 1 171.69 118.14 220.48 170.60 173.20
? 500 1 542.82 492.91 761.28 543.61 545.19
? 1000 1 1009.78 961.38 1437.28 1011.89 1013.35

Table 1: The length of the interconnect line in these experiments is always h = 2000 pm. The
rise time of the input ramp is 100 ps. The delay estimates refer to 50% threshold voltage.

(*) indicates that the delay is computed using the infinite ramp response models.
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Interconnect | Driver Load Delay from Elmore | Analytical Single-Pole Two-Pole
parameters Res. Cap. Response Delay Delay Delay Delay
r,lc Rg Cr SPICE 2.3by TAD Model 1/2 | Model 4/5
/pm 0 pf ps ps ps ps ps
r = 0.0015 €2
¢c=0.176 ff 100 0.01 141.45 84.64 86.76 145.35 142.51
1 = 0.246 ph
? 500 0.01 468.31 481.05 231.56 470.34 469.45
? 1000 0.01 882.02 834.82 412.56 885.97 885.40
? 100 0.1 160.80 105.86 96.03 164.70 161.00
? 500 0.1 571.76 521.70 276.83 574.12 573.02
? 1000 0.1 1089.60 1041.50 502.83 1093.60 1092.84
? 100 1 366.41 319.07 188.73 372.42 366.41
? 500 1 1611.96 1562.91 729.53 1615.28 1613.61
? 1000 1 3166.78 3117.71 1405.53 3171.53 3170.40
r=10.015 Q
¢c=0.176 ff 100 0.01 150.46 96.20 91.78 155.74 151.32
1 = 0.246 ph
? 500 0.01 475.58 429.62 236.58 481.84 478.83
? 1000 0.01 888.90 846.38 417.58 897.52 894.79
? 100 0.1 173.70 123.00 103.48 180.72 174.79
? 500 0.1 583.34 538.84 284.28 591.23 587.22
? 1000 0.1 1100.31 1058.64 510.28 1110.74 1107.07
? 100 1 429.38 392.10 220.48 444.98 435.47
? 500 1 1667.70 1635.94 761.28 1688.37 1681.78
? 1000 1 3217.53 3190.74 1437.28 3244.63 3238.48

Table 2: The length of the interconnect line in these experiments is always h = 2000 pm. The
rise time of the input ramp is 100 ps. The delay estimates refer to 90% threshold voltage.
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Interconnect | Driver Load Delay from Elmore | Analytical Single-Pole Two-Pole
parameters Res. Cap. Response Delay Delay Delay Delay
r,lc Rg Cr SPICE 0.693bq TAD Model 1/2 | Model 4/5
/pm 0 pf ps ps ps ps ps
r = 0.0015 €2
¢c=0.176 ff 100 0.01 286.69 25.48 286.76 286.74%* 286.75%
1 = 0.246 ph
? 500 0.01 412.74 125.85 431.56 414.70* 414.86*
? 1000 0.01 529.27 251.31 612.56 529.60 529.76
? 100 0.1 295.89 31.89 296.03 295.95 295.98*
? 500 0.1 444.89 157.19 476.83 444.93* 449.33*
? 1000 0.1 586.18 313.81 702.83 586.65 586.84
? 100 1 380.47 96.14 388.73 380.31" 381.10*
? 500 1 736.28 470.91 929.53 736.27 736.70
? 1000 1 1196.70 939.38 1605.53 1197.26 1197.53
r=10.015 Q
¢c=0.176 ff 100 0.01 291.26 28.96 291.78 291.74%* 291.76%*
1 = 0.246 ph
? 500 0.01 416.17 129.33 436.58 418.61* 419.13*
? 1000 0.01 531.97 254.79 617,58 532.70 533.51
? 100 0.1 302.76 37.06 303.48 303.30" 303.38"
? 500 0.1 449.92 162.36 484.28 454.63* 455.44*
? 1000 0.1 590.66 318.97 710.28 591.45 592.47
? 100 1 404.93 118.14 420.48 406.01* 407.54"
? 500 1 756.92 492.91 961.28 757.61 759.29
? 1000 1 1217.00 961.39 1637.28 1219.09 1220.57

Table 3: The length of the interconnect line in these experiments is always h = 2000 pm. The
rise time of the input ramp is 500 ps. The delay estimates refer to 50% threshold voltage.
(*) indicates that the delay is computed using infinite ramp response models.
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Interconnect | Driver Load Delay from Elmore | Analytical Single-Pole Two-Pole
parameters Res. Cap. Response Delay Delay Delay Delay
r,lc Rg Cr SPICE 2.3by TAD Model 1/2 | Model 4/5
/pm 0 pf ps ps ps ps ps
r = 0.0015 €2
¢c=0.176 ff 100 0.01 486.68 84.64 286.76 486.76* 486.76*
1 = 0.246 ph
? 500 0.01 720.32 481.05 431.56 722.18 721.47
? 1000 0.01 1109.57 834.82 612.56 1113.11 1112.57
? 100 0.1 495.91 105.86 296.03 496.03* 496.03*
? 500 0.1 814.22 521.70 476.83 816.49 815.53
? 1000 0.1 1311.62 1041.50 702.83 1315.45 1314.76
? 100 1 633.35 319.07 388.73 637.74 633.63
? 500 1 1826.42 1562.91 929.53 1829.93 1828.28
? 1000 1 3374.25 3117.71 1605.53 3378.89 3377.78
r=10.015 Q
¢c=0.176 ff 100 0.01 491.19 96.20 291.78 491.78* 491.78*
1 = 0.246 ph
? 500 0.01 727.03 429.62 436.58 732.44 730.00
? 1000 0.01 1115.99 846.38 617.58 1124.30 1121.72
? 100 0.1 502.72 123.00 303.48 503.59 503.84
? 500 0.1 825.17 538.84 484.28 832.34 832.84
? 1000 0.1 1322.06 1058.64 710.28 1332.25 1328.71
? 100 1 686.70 392.10 420.48 699.78 692.47
? 500 1 1881.85 1635.64 961.28 1902.37 1895.88
? 1000 1 3424.77 3190.74 1637.28 3451.83 3445.71

Table 4: The length of the interconnect line in these experiments is always h = 2000 pm. The
rise time of the input ramp is 500 ps. The delay estimates refer to 90% threshold voltage.
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