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High Level Pro�ling Based Low Power Synthesis Technique
AbstractWe present a pro�ling based technique for power estimation. This technique is implemented in the pdss(Pro�le Driven Synthesis System) for the synthesis of low power designs. Initially, each module in themodule library is characterized for the average switching capacitance per input vector. The input descrip-tion is simulated using user-speci�ed set of input vectors to collect the pro�le data for various operatorsand carriers. The pro�le data, in conjunction with the pre-characterized module library is used to estimatethe total capacitance switched by each of the valid schedules produced by the pdssmbox mbox scheduler.A valid schedule is one which satis�es other constaints such as area and delay. The schedule with theleast switching capacitance estimate is further synthesized to the layout level. Results show an averagedeviation of 12% compared with the actual switching capacitance values at the layout level.
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High Level Pro�ling Based Low Power Synthesis Technique1 IntroductionAs the complexity of VLSI Systems is rapidly increasing, power consumption is becoming a major designconstraint. Since power estimation at the lower levels of design abstraction is very expensive, power esti-mation at the behavioral level is an attractive solution. In this paper, we present a high level technique forpower estimation. pdssmbox mbox (Pro�le Driven Synthesis System) employs this technique to synthesizelow power designs.High level synthesis is the process of generating a register level design from an algorithmic behavioralspeci�cation. A typical synthesis system is shown in (Figure 1). The inputs to the system are the behavioralspeci�cation, a module library and the user constraints. The behavioral speci�cation can be written in ahigh level general purpose language like C or in a Hardware Description Language like VHDL. The modulelibrary consists of storage units like registers and memories, execution units like adders and multipliers, andinterconnect units like multiplexors and buses. Typical user constraints are area, clock speed and power.Traditionally, the output of the synthesis system consists of two interacting components namely data pathand controller. The data path is built from the modules of the module library and the controller is a �nitestate machine to be implemented either as a PLA or a microprogram. High level synthesis is followed bylogic and layout synthesis resulting in fabricatable mask layouts targeted for various technologies.A pro�le-based approach for low power behavioral synthesis is presented in this paper. Initially, for eachmodule in the parameterized module library and for each size, average switching capacitance per inputvector is determined as a function of the bit-width of the module. This constitutes the characterizationof the module library. The synthesis ow of Pro�le Driven Synthesis System (PDSS), is explained brieyas follows: The input speci�cation is simulated using user-speci�ed set of input vectors to get the pro�ledata for the various operations and carriers. The pro�le data and the switching capacitance characteristicsfrom the module library, are used to get an estimate of the aggregate switching capacitance for each ofthe schedules that satisfy the area and clock speed constraints. The schedule with the least estimate issynthesized to the layout level. We assume that the target is CMOS technology.We synthesized a variety of designs consisting of various behavioral level constructs like conditionals, loops1
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Figure 1: A Typical High Level Synthesis Systemand subprograms etc. On an average, the estimates of the switching capacitance is within are 12% of theactual switching capacitance measured by simulating the switch level models from the layouts.2 Previous WorkPower estimation techniques at the gate and lower levels of abstraction can be broadly classi�ed [17] into(1) simulation based techniques; (2) probabilistic techniques; and (3) statistical techniques. Typically, ina simulation based technique [23, 25, 28] the average power is calculated by monitoring either the supplyvoltage or current waveforms or both. These are too slow to handle very large circuits. In a probabilistictechnique [34, 18, 36], user-supplied input signal probabilities are propagated into the circuit. Variousapproaches based on di�erent probabilistic measures such as transition density [16] are proposed. In astatistical technique [2, 3], the circuit is simulated with randomly generated input vectors until power2



converges to the average power where convergence is tested by statistical mean estimation techniques.At the architectural level, Landman et al [8] presented a technique for the characterization of module libraryusing signal statistics. At the behavioral level, Chandrakasan et al., [4, 5] present a high-level synthesissystem, HYPER-LP, which minimizes power consumption in application speci�c data path intensive CMOScircuits using a variety of architectural and computational transformations. Powell et al. [7] presented ahigh-level power dissipation model for DSP algorithms. Renu et al. [6] applied a combination of analyticaland stochastic techniques for power estimation.3 Pro�le-Driven Synthesis SystemThe architecture of pdss is shown in Figure 2. pdss accepts speci�cations in a behavioral subset of vhdland constraints in terms of clock-period and area. It generates a constraint-satisfying design with the leastamount of estimated switching capacitance. The behavioral speci�cation is �rst translated into a dataow graph (dfg) representation which captures both the data and control ow information among theoperations and carriers in the speci�cation. Figure 3 shows a toy speci�cation and its dfg representa-tion. The dfg contains operation nodes which represent arithmetic, relational and boolean operations andcontrol nodes which represent conditional statements. Cycles in the dfg denote iterative statements inthe speci�cation. Each edge in the dfg denotes data ow or control ow. In this paper, we assume thatprocedure and function calls have been expanded in-line.Characterization of Module Library for ISC: The module library contains parameterized register-level modules such as n-bit registers, n-bit adders and n-bit m-to-1 multiplexors. Modules are parameterizedwith respect to number of inputs where applicable and bit-width of each input, and characterized forperformance attributes such as area, delay and average intrinsic switching capacitance ( isc ). Theseattribute values are determined by actually generating layouts for several instances of the module withdi�erent parameter values. Area can be directly measured from the layout and delay can be determinedthrough simulation or a by timing analysis. Determination of isc which depends on input patterns is moreinvolved and is described below. 3
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 BEGIN
   u := a + b;
   v := a - b;
   IF(a > b)
    THEN
     c <= u;
    ELSE
     c <= v
   END IF;
 END PROCESS;
END foo;

a b

-+>

T F
select

c

  PORT(a,b : IN INTEGER;
ENTITY toy IS

BEGIN

--%PRAGMA BIT_WIDTH 4

--%PRAGMA BIT_WIDTH 5

   VARIABLE u,v : INTEGER;

 p : PROCESS(a,b)

ARCHITECTURE foo OF toy IS

END toy;
--%PRAGMA BIT_WIDTH 5

         c : OUT INTEGER);

Figure 3: A VHDL Behavioral speci�cation and its DFG
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Intrinsic Switching Activity, ISC of a module instance is the average capacitance that is expected to switchwhen an input event (change of logic values on the input lines) takes place.isc of a module instance is determined by extracting a switch level model from its layout, simulating theswitching level module using a very long stream of randomly generated input patterns and monitoring thecapacitance switched per pattern. Simulation is done using a modi�ed version of IRSIM []. Simulation andcounting continues until convergence occurs as de�ned below.Let Ck be the total capacitance switched after applying k random input patterns without reinitializationbetween successive patterns. Zk = Ckk denotes the average switching capacitance per input pattern afterapplying k patterns. �k = jZk�Zk�1jZk�1 denotes variation in the average capacitance between the k� 1 th andk the patterns.We continue to apply random input patterns until �k remains less than 0.001 over 1000 consecutive inputpattern applications. At this point we say that the average switching capacitance estimation convergedand accept the value of Zk after the last input pattern is applied. This value is the isc of that instance ofthe module. Similar procedure is used to determine the isc of various instances of the module and resultsare expressed as a table.Figure 4 shows the isc plot with respect to the bit-width for three modules namely, adder, register andtwo-input multiplexor. Table 2 shows the isc characteristics for some of the pdss library modules. Linearinterpolation or extrapolation will be used for bit-widths not included in Table 2.PLA Characterization: pdss assures that the controller will be implemented by a CMOS PLAStructure. A PLA is characterized by three parameters : (1) input size , I; (2) output size, O ; and (3)the number of states, S. Thus the isc for any controller is a function of these parameters. It is observedthat, for any random input vector, a pla switches approximately the same amount of capacitance for eachclock step. By varying three pla parameters (I;O;S), random plas are generated and are subjected torandom input vectors. For each (I;O;S) combination, the Intrinsic Switching Capacitance per clock step(as opposed to per input pattern in the case of module library) is determined. The simulation is continueduntil the isc converges in a manner similar to the determination of ISC for the module library as discussedabove. Thus a pla characterization table is computed which is used later for the estimation of switchingcapacitance in a controller. A portion of this table is as shown in Table 16



Sl.No I O S ISC(pF)1. 3 24 14 16.042. 3 26 21 26.573. 4 7 12 8.704. 4 16 16 17.105. 4 18 8 11.015. 4 22 8 12.356. 5 10 14 12.517. 6 5 11 10.398. 6 6 9 7.709. 6 7 15 11.7010. 6 12 16 14.0311. 6 14 16 15.2112. 6 30 23 37.4113. 7 36 13 31.4814. 10 21 48 48.7515. 10 18 47 42.75Table 1: A portion of the PLA Characterization table
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Sl. Module ISC Table (BitWidth{ISC(pF))1. Adder 1{0.45, 2{0.98, 4{1.93, 5{2.43, 8{3.84, 16{7.742. Subtractor 2{0.97, 4{2.50, 6{3.26, 8{5.64, 10{7.05, 16{12.163. Comparator (>) 1{0.44, 2{0.88, 4{1.82, 5{2.00, 6{2.78, 8{3.99, 16{12.575. Multiplier 2{2.27, 3{3.53, 4{7.99, 5{15.30, 8{60.48, 16{45.396. Multiplexor 2-inputs: 2{0.45, 4{0.86, 8{1.70, 12{2.53, 16{3.394-inputs: 2{1.41, 4{2.68, 8{5.20, 12{7.95, 16{10.796-inputs: 2{2.46, 4{4.69, 8{9.46, 12{14.53, 16{19.538-inputs: 2{3.29, 4{6.23, 8{13.10, 12{19.89, 16{26.737. Register 1{3.77, 2{6.53, 4{12.09, 5{13.68, 6{18.19, 7,18.67, 16{41.628. Signal Register 2{10.90, 3{12.41, 4{15.45, 5{15.99, 8{23.78, 16{39.35(Register + Glue Logic)9. AND 2{0.17, 3{0.29, 4{0.36, 5{0.45, 6{0.55, 8{0.76, 10{0.97, 16{1.5510. OR 2{0.18, 3{0.27, 4{0.38, 5{0.48, 6{0.51, 8{0.71, 10{0.98, 16{1.4811. NOT 1{0.04, 2{0.08, 3{0.12, 4{0.16, 5{0.20, 8{0.33, 16{0.6612. NAND 1{0.06, 2{0.13, 3{0.19, 4{0.26, 5{0.32, 6{0.38, 7{0.44, 8{0.53, 16{1.0613. NOR 3{0.17,4{0.22,5{0.28,6{0.35,8{0.4714. XOR 2{0.31, 3{0.50, 4{0.68, 5{0.86, 6{0.98, 8{1.35, 10{1.6915. XNOR 2{0.31, 3{0.50, 4{0.64, 5{0.80, 6{0.97, 8{1.26, 10{1.61, 16{2.56Table 2: ISC Data for Some Parameterized Library Modules (BitWidth � 1)
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Pro�ler: Pro�ler takes the dfg representation of the speci�cation and generates equivalent vhdl pro-gram with probes (counters and similar monitoring variables) to gather various event activities. We needto pro�le the dfg rather than the original speci�cation, since the dfg representation exposes all the oper-ations and carriers (edges in dfg) that will be bound to hardware resources. The generated vhdl programis simulated using input vectors called the pro�ling stimuli. Pro�ling stimuli should represent typical usageof the design being synthesized. Since pro�ling stimuli will decide the event activity in the design andwill guide the synthesis system in generating a low power design, the user should take extreme care inpreparing this test data. We recommend the following methods for preparing pro�ling stimuli, based onthe type of design being synthesized:� Arithmetic Dominated Speci�cations: Pro�ling stimuli should include a relatively large number ofinput patterns representative of various regions of input space.� Control Dominated Speci�cations: Pro�ling stimuli should be selected to execute typical controlow paths through the speci�cation. Behavior level stimulus generators that guarantee execution ofdesired paths through the speci�cation can be used for this purpose [10, 11].� Instruction Set Processors: Pro�ling stimuli for these speci�cations are best generated using as-semblers and compilers by translating typical high level language programs, such as editors, textprocessors, operating system kernels etc. into machine code.The goal of pro�ling is to gather the following data:� For each dfg node op, determine the number of times the node is executed for the given pro�lingstimuli. This number is called the event activity of the operation node and is denoted by Eop.� For each edge e, determine the number of times the edge is traversed during execution. This numberis called the transaction activity of the edge and is designated by Te.� For each edge e, determine the number of times the value on the edge has changed. This number iscalled the event activity of the edge and is denoted by Ee. Note that Ee � Te.10



Time a b1 5 72 10 33 15 114 11 11Figure 5: Sample Pro�ling Stimuli for the Example in Figure 3Probes are inserted by the pro�ler to measure the above quantities, collectively called the pro�le data ofthe speci�cation. Nodes and edges in the dfg are annotated with the pro�le data. Annotated dfg is thensubmitted for synthesis. Figure 5 shows sample pro�ling stimuli for our example and Figure 6 shows thedfg annotated with the pro�le data. For edges, the number in the parenthesis denotes event activity andthe number outside the parenthesis denotes transaction activity.Scheduling and Performance Estimation: Following pro�ling, there are four major phases in pdss:scheduling, register optimization, interconnect optimization and control generation. During scheduling,abstract operations in the dfg are assigned to control steps and various operation nodes are bound tospeci�c instances of modules selected from the module library. A schedule is acceptable provided theestimates of area and clock period satisfy the user-speci�ed constraints. Scheduling itself is performed toobtain a minimal length schedule subject to a resource constraint, namely, only the modules available in amodule bag should be used. 1 A module bag is a collection of instances of modules from the module library.A valid module bag satis�es the following properties: (1) For each operation in the dfg, the bag has atleast one module instance which implements the operation; (2) The delay of each module in the bag is nomore than the constraint on clock period. We assume non-pipelined designs; (3) The total area occupied bythe module instances in the bag should not exceed the area constraint. Clearly, di�erent valid module bagslead to di�erent schedules and hence di�erent tradeo� points in the design space. An e�cient synthesissystem generates a variety of valid module bags from the library, generates corresponding near-minimal1A bag is a collection of items with duplicates allowed. A set is a collection items with no duplicates.11
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1. Generate a set of valid module bags.2. for each valid module bag do3. begin4. Schedule the dfg using the module bag.6. Estimate area, clock period and asc.7. end8. Choose the schedule (and the corresponding operation bindings)for which the area and delay estimates are within thestated constraints and which minimizes the asc.Figure 7: Scheduling and Performance Estimationlength schedules and selects the one that meets both area and clock period constraints and has the leastestimated asc. Figure 7 shows the overall algorithm for the scheduling and performance estimation phase.Dutta et al. describe e�cient algorithms for generation of valid module bags [12]. We use the force-directed scheduling algorithm proposed by Paulin and Knight [13]. E�cient procedures to estimate areaand clock speed are described in literature [19, 20, 21, 9]. In this paper, we describe procedures for switchingcapacitance estimation only. Note that, at the end of scheduling, each dfg operation is bound to a librarymodule instance. Hence, our power estimation process, described in the next section, assumes scheduledand operator-bound dfgs. Figure 8 shows a scheduled and operator-bound data ow graph.Register Optimization Each data ow edge that crosses a control step boundary denotes a value thatneeds to be stored in a register. Such edges are called carriers of values. Register optimization phase groupscarriers such that no two carriers in the same group are simultaneously active. Each group of carriers isthen assigned to a register module whose bit-width is the maximum of the bit-widths of all carriers inthe group. Various register optimization strategies have been proposed [30]. Our register optimizationalgorithm is based on a clique partitioning heuristic on the lines proposed by Tseng and Siewiorek [31].Figure 9 shows the dfg following register optimization and binding.13
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DATAPATH CONTROLLERFigure 10: Data Path and Controller after Interconnect OptimizationInterconnect Optimization The goal of interconnect optimization is to assign an interconnect pathto each value transfer in the dfg. Interconnect paths are formed using point-to-point wires, multiplexorsand gated buses (buses whose drivers are enabled through transmission gates). Various cost functions andalgorithms for interconnect optimization exist [32]. Our interconnect optimization algorithm is a min-maxalgorithm that prefers shared buses to multiplexor-based connections wherever possible. Figure 10 showsthe data path and the controller generated following interconnect optimization for our illustrative example.Controller Generation Following interconnect optimization, the data path is completely formed. Con-troller generator produces a �nite state machine (fsm) description. The fsm accepts inputs in the formof status ags from the data path and produces control signals which would enable register transfers inthe data path. Each control input of a control node in the dfg denotes a ag from the data path tothe controller. dfg edges that cross control step boundaries denote state transitions in the fsm. Each16



control step corresponds to at least one state in the fsm. In the presence of mutually-exclusive conditionalbranches, a control state may be mapped to multiple fsm states, one per each exclusive branch. Controllergeneration algorithms have been described in the literature [33]. Figure 10 shows the controller fsm forour example.
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4 Estimation of Aggregate Switching CapacitanceAggregate Switching Capacitance (ASC) is de�ned as the total capacitance switched in the design whensimulated using the pro�ling stimuli.ASC estimation takes place each time the DFG is scheduled using a module bag and partially bound. Atthis time, all operation nodes are bound to modules in the library. ASC for the entire design is given byascdesign = ascdp + asccon + ascclockwhere ascdp , asccon and ascclock are the capacitances switched by the data path, controller and thesystem clock respectively.4.1 Estimation of Data path ASCThe data path is composed of three types of components : (1) Register Units; (2) Operators; and (3)Interconnect. Thus the ascdp is given byascdp = ascreg + ascop + asci4.1.1 Estimation of ASC in Registers and OperatorsThe estimation of ascreg and ascop is as explained below. For any operator op, the capacitance switchedis the product of its event activity and the isc of a module to which the operator is bound. For any carrierc, the capacitance switched is the product of its event activity and the isc of the register module withbit-width equal to the bit-width of the carrier. Thus ascreg and ascop are given by the equations,ascop =Xop Eop � ISCbound(op)ascreg =Xc Ec � ISCr
18



4.1.2 Estimation of ASC in InterconnectThe estimation of asci is di�cult due to the fact that the number and sizes of the interconnect units isknown only after allocation and binding phases are carried out. Typically, during allocation phase, thehardware units for the carriers in the dfg are chosen by exploring various operator sharing and registersharing possibilities. The allocation phase is followed by the binding phase in which the possibility ofinterconnect sharing is explored. As the �nal interconnect con�guration is dependent on the allocationand binding phases which are dependent on each other, predicting the �nal interconnect con�guration isvery di�cult.The strategy to estimate asci is as follows: Assuming that in the �nal design, maximum operator sharingor maximum register sharing takes place , we can estimate an upper bound on the amount of interconnectintroduced by each type of sharing. The sum of these two bounds is the upper bound on the amount ofinterconnect in the design.The estimation of the upper bound on interconnect due to operator sharing is as follows: For each operatortype (like add, multiply etc.,) assuming all the operations (say n) are scheduled in their ASAP timesteps,the maximum number of instances (say m) that are needed in the same control step can be computed. Thisis the minimum number of hardware units that are necessary for the operator type, in the entire design.Obviously this introduces maximum interconnect. Assuming binary operations, the maximum number ofinterconnect units introduced due to operator sharing 2 is 2 m, since a maximum of one multiplexor will beintroduced at each input port of the operator. Assuming mux-based design, we estimate the capacitanceswitched as follows: The parameters of any multiplexor are: bitwidth and number of inputs. Each of theseunits has bitwidth equal to the maximum of the widths (say Wmax) of all operator instances. The numberof inputs is equal to n = m , assuming n operator instances are bound equally amongst m interconnectunits. The event activity of each interconnect unit is equal to the sum of the event activities of all theoperator instances Eop type, divided by m. The capacitance switched in the interconnect introduced by thesharing of operator of type op type is given byascmux;op type = m � (Eop type=m) � ISC(Wmax;n=m; op type)2Operator chaining is not considered. 19



= Eop type � ISC(Wmax;n=m)where Eop type = PopEop and ISC(width;number of inputs ; type) is the isc of a module whose type istype and has the parameters width and number of inputs. The capacitance switched in the interconnectintroduced by the operator sharing is given byascmux op share = Xop typeascmux;op typeThe upper bound on interconnect due to maximum register sharing alone is determined as follows: Letthe maximum number of edges crossing any control step boundary be Rmin. Then at least Rmin numberof register are needed in the entire design. The total number of edges (Rmax) that cross all control stepboundaries is the maximum number of register instances that are needed in the entire design. Thusthe upper bound on the total number of interconnect units due to maximum register sharing alone isapproximately , N = Rmax=Rmin. The event activity for any interconnect unit is approximately thesum of the event activities (say Ereg) of all the carriers divided by N. Assuming mux-based design, thewidth of any interconnect unit is the maximum of the widths of all the edges. The number of inputs isroughly Rmax = Rmin. Using these two parameters and the event activity, switching capacitance due tothis interconnect can be estimated.ascmux reg share = N � (Ereg=N ) � ISC(Wmax;N ; Register)= Ereg � ISC(Wmax;N ; Register))The aggregate switching capacitance in the entire interconnect, asci given byasci = w i � (ascmux op share + ascmux reg share)where w i is the weighting factor less than 1. We assume that w i = 0.5 i.e only 50 % of operator sharingand 50 % of register sharing occurs in the �nal design.4.2 Estimation of ASC in the Controllerpdss implements the controller of a design as a pla. As discussed in 3, isc per clock step of a pla withthree parameters, input size (I), output size(O) and the number of states(S), is readily available from the20



pla characterization table. Thus to estimate the asccon we need to estimate I;O;S of the controller andTv, the total number of clock steps needed to process an input vector. Tv is assumed to be approximatelyequal to the number of states in the controller. Hence the total number of clock steps for the entire set ofstimuli is equal to the number of stimuli Nv multiplied by Tv.The aggregate switching capacitance in the controller asccon is computed as follows:asccon = Nv � Tv � ISC(I;O;S)where ISC(I;O;S ) is the isc of a PLA of with parameters I;O;S. If we do not have an entry for (I;O;S)in the pla characterization table, then extrapolation/interpolation is carried out.4.3 Estimation of ASC for the system clockThe system clock is used to clock all the components in data path and controller and hence it is loaded bylarge capacitance. As it is frequently switched, it consumes substantial amount of power. In data path, theclock goes to the storage units like registers and latches. Each type of storage unit in the module libraryis characterized for the typical capacitive loading on the clock lines for di�erent bitwidths. Note that thecapacitive loading by the controller is already taken care of in the pla characterization. Thus we need toestimate the capacitance switched by the clock in the data path alone.ascclock = Nv � Tc �Xc Ccwhere Cc is the capacitive loading on the clock lines of the register to which the carrier c is bound.5 ResultsIn this section we present experimental results for six designs: a compression chip, a decompression chip,a sort and search chip (Find), a �rst-in �rst-out queue (FIFO), a tra�c light controller (TLC) and aShu�e Exchange Network [14]. Table 3 shows the speci�cation and pro�ling data. Table 4 shows pertinentdata obtained during the synthesis process. pdss system is implemented in C++ on Sun Sparcstation Iplatforms. 21



Sl. Design LOC DFG DFG Pro�ling Pro�lingNodes Edges Stimuli Time (s)1. TLC 72 27 123 18 2.82. Compress 42 22 107 7 2.03. Decompress 40 22 106 8 1.94. Find 63 33 121 8 4.85. FIFO 70 38 176 6 4.06. Shu�e Xchg NW 450 31 2040 14 30.9Table 3: Speci�cation and Pro�ling Data for Six Designs
Sl. Design Number of Schedule Carriers Transitions SynthesisSchedules Length Time (s)1. TLC 2 17 18 27 1.52. Compress 1 14 15 53 1.03. Decompress 1 13 13 52 1.04. FIFO 2 10 29 57 1.75. Find 2 34 29 45 2.26. Shu�e Xchg NW 4 13 214 98 24.0Table 4: Data During and After Scheduling
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Sl. Design Clock Nodes Transistors Area Cycles SimulationPeriod (sq.mm.) Time (min)1. Decompress 200ns 2,803 6,059 10.3 259 1.042. Compress 200ns 2,946 6,315 10.9 401 1.273. Find 550ns 5,602 11,458 20.3 2,662 17.444. FIFO 900ns 4,438 10,688 24.6 580 5.115. TLC 200ns 1,938 4,769 6.9 760 3.166. Shu�e Xchg 160ns 49,655 95,004 418.7 1,975 240Table 5: Synthesized Design DataEach register level design produced by pdss is processed by the Lager IV silicon compiler [15] to generatemask layouts. The designs generated use a two phase non-overlapping clocking scheme. Although thedesigns are generated in a scalable cmos technology, all results for this paper are obtained using 2 micronfeature size. Switch level models are extracted from the layouts and simulated using the irsim switch levelsimulator. irsim uses an RC model for timing calculations. Table 5 shows the data of the �nal synthesizeddesign.Table 6 shows the estimated and actual asc in the data path and controller of the six designs. Theestimated asc is computed during the scheduling phase of pdss and actual asc is determined during theswitch level simulation of the synthesized designs. As shown in the table, the percentage error in ascestimation for data path is in the range of 3.9% { 14.90% with the average deviation from the actual valuebeing 8.0%. Similarly for controller the range is 2.2% { 13.8% with the average deviation being 9.9%.Table 7 shows the asc values for the entire design, which is the sum of the asc in data path, controllerand system clock. The percentage error is in the range 9.8% { 14.4% and the average deviation is 11.9%.This shows excellent correlation between the estimated and actual values not only in the entire design butalso in the datapath and controller seperately.
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Sl. Design Data path ControllerEstimated Actual % Devn. Estimated Actual % Devn.pF pF pF pF1. TLC 9400.31 9826.92 4.30 32163.58 32910.90 2.22. Compress 8174.54 7113.63 14.90 15020.66 16408.90 8.43. Decompress 5498.05 4992.90 10.10 9437.49 8470.89 11.44. FIFO 24950.29 27445.31 9.09 73041.69 82546.00 11.55. Find 202913.69 215996.00 6.05 211097.55 187340.00 12.66. Shu�e Xchg 545976.25 525207.00 3.95 256303.50 297400.03 13.8Average Error 8.06 9.98Table 6: Comparison of the ASC in the Datapath and Controller
Sl.No Design TotalEstimated Actual % Devn.pF pF1. TLC 45216.09 50132.90 9.82. Compress 26654.46 23293.80 14.43. Decompress 17685.64 15708.22 13.74. FIFO 104210.31 116278.00 10.35. Find 446851.69 399834.00 11.76. Shu�e 1227679.75 1388943.00 11.6Average Error 11.9Table 7: Comparison of ASC for the Entire Design24
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