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Preface

VECPAR is an international conference series dedicated to the promotion and
advancement of all aspects of high-performance computing for computational
science, as an academic discipline and a technique for real-world applications, ex-
tending the frontier of the state of the art and the state of practice. The audience
and participants of VECPAR are researchers in academia, laboratories and in-
dustry. More information on the conference is available at http://vecpar.fe.up.pt.

The 10th edition of the conference, VECPAR 2012, was held in Kobe, Japan,
during July 17–20, 2012. It was the fifth time the conference was held outside
Porto (Portugal), where it started, succeeding Valencia (Spain) in 2004, Rio de
Janeiro (Brazil) in 2006, Toulouse (France) in 2008, and Berkeley (USA) in 2010.

The conference program consisted of seven invited talks, 28 papers and 15
posters. The invited talks were presented by Horst Simon, Barriers to Exascale
Computing; Richard Vuduc, A Theory for Co-Designing Algorithms and Archi-
tectures Under Power and Die-Area Constraints; Takashi Furumura, Peta-scale
FDM Simulation of Strong Ground Motion and Tsunami: Toward Disaster Pre-
diction and Mitigation; Ryutaro Himeno, Grand Challenge in Life Science on
the K Computer; Yoshinobu Kuramashi, Lattice QCD - From Quarks to Nuclei;
Kenji Ono, HPC/PF — High-Performance Computing Platform: An Environ-
ment That Accelerates Large-Scale Simulations; and Atsushi Oshiyama, Mate-
rials Design Through Computing: Nanostructures of Silicon and Carbon. The
major themes of the conference (thus the accepted papers and posters) were:

• Large-scale simulations in CS&E
• Parallel and distributed computing
• Numerical algorithms for CS&E
• Multiscale and multiphysics problems
• Data-intensive computing
• Imaging and graphics
• Performance analysis

The most significant contributions of VECPAR 2012 are available in the present
book, edited after the conference, and after a second review of all orally pre-
sented papers. The first round of reviews was based on an eight-page extended
abstract. Each paper was reviewed by three reviewers; in some cases a fourth
reviewer helped in the final decision. Out of 59 submissions, 30 were accepted
for presentation. For the second round of reviews, authors were given a larger
page budget, so they could better address reviewers’ comments and suggestions.

In addition, two related events were organized on the day before the
conference:

• The 7th International Workshop on Automatic Performance Tuning (iWAPT
2012), whose contributions are also available in the present book
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• Tutorial on High-Performance Numerical Tools for the Development and
Scalability of High-End Computer Applications.

VECPAR 2012 took place at the RIKEN Advanced Institute for Computational
Science (AICS) and the Integrated Research Center of Kobe University. Par-
ticipants had the opportunity to visit the K Computer, at the time the second
system in the top500 list. Paper submissions were managed with the EasyChair
conference system; the conference website and registration process were managed
by the University of Tokyo.

The success of VECPAR and the long life of the series result from the work of
many people. As on all previous occasions, a large number of collaborators were
involved in the organization and promotion of the conference. Here, we mention
just a few but through them we would like to express our gratitude to those
who dedicated their time to the success of VECPAR 2012: Kimihiko Hirao, Aki-
nori Yonezawa, Yoshio Oyanagi, Atsushi Hori, Nobuyuki Kaya, Sameer Shende,
Tony Drummond, and the iWAPT organizers, in particular Rich Vuduc, Takeshi
Iwashita, and Hiroyuki Takizawa.

We thank all authors that contributed to this book, for adhering to the dead-
lines and responding to the reviewers’ comments and suggestions, and all mem-
bers of the Scientific Committee, who greatly helped us with the paper selection
process.

January 2013 Michel Daydé
Osni Marques

Kengo Nakajima
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Message from the Chairs of iWAPT 2012

The International Workshop on Automatic Performance Tuning (iWAPT) brings
together researchers studying how to automatically adapt algorithms and soft-
ware for high performance on modern machines. The workshop convened for the
seventh consecutive year on July 17, 2012, at the RIKEN Advanced Institute for
Computational Science in Kobe, Japan.

If one were to identify a theme for this year’s program, it might arguably be
model-driven domain-specific optimization. The two invited keynote speakers —
Paolo Bientinesi (RWTH Aachen), who spoke on “A Domain-Specific Compiler
for Linear Algebra Operations,” and Jakub Kurzak (University of Tennessee,
Knoxville), who spoke on “Autotuning BLAS for GPUs” — showcased the state
of the art on this theme.

The remaining presentations reinforced various aspects of this theme, includ-
ing new algorithmic techniques, new programming model support and methods
tailored to massively parallel GPU architectures. There were ten such technical
presentations, chosen after a review of 18 submitted manuscripts (of 15 pages
each). This number of submissions was the highest since the first meeting in
2006. The manuscripts of the final ten papers appear in this volume.

Many people and organizations helped to make this workshop a success. We
are grateful to the VECPAR Organizing Committee, especially Osni Marques
and Kengo Nakajima, for their logistical and intellectual support; the iWAPT
Steering Committee, especially Reiji Suda and Takahiro Katagiri, for their guid-
ance; and the Program Committee for volunteering their time to help assemble
an outstanding program. Furthermore, the workshop would not be possible with-
out the generous financial support of the Japan Science and Technology Agency,
whose contributions have made Japan a leading international player in autotun-
ing research. Lastly, we wish of course to thank the invited speakers, authors,
and meeting participants for their insights and thoughtful debate throughout
the workshop.

January 2013 Hiroyuki Takizawa
Richard Vuduc

Takeshi Iwashita
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Barriers to Exascale Computing 
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Abstract. The development of an exascale computing capability with machines 
capable of executing O(1018) operations per second by the end of the decade 
will be characterized by significant and dramatic changes in computing 
hardware architecture from current (2012) petascale high-performance 
computers. From the perspective of computational science, this will be at least 
as disruptive as the transition from vector supercomputing to parallel 
supercomputing that occurred in the 1990s. This was one of the findings of a 
2010 workshop on crosscutting technologies for exascale computing. The 
impact of these architectural changes on future applications development for the 
computational sciences community can now be anticipated in very general 
terms. While the community has been investigating the road to exascale 
worldwide in the last several years, there are still several barriers that need to be 
overcome to obtain general purpose exascale performance. This short paper will 
summarize the major challenges to exascale, and how much progress has been 
made in the last five years.  

Keywords: exascale computing, energy efficient computing, resilience, 
massive parallelism, heterogeneous computing, technology trends, TOP500.  

1 Introduction 

It may come as surprise to many who are currently deeply engaged in research and 
development activities that could lead us to exascale computing, that it has been 
already exactly five years, since the first set of community town hall meetings were 
convened in the U.S. to discuss the challenges for the next level of computing in 
science. It was in April and May 2007, when three meetings were held in Berkeley, 
Argonne and Oak Ridge that formed the basis for the first comprehensive look at 
exascale [1].  

What is even more surprising is that in spite of numerous national and international 
initiatives that have been created in the last five years, the community has not made 
any significant progress towards reaching the goal of an Exaflops system. If one 
reflects and looks back at early projections, for example in 2010, it seemed to be 
possible to build at least a prototype of an exascale computer by 2020. This view was 
expressed in documents such as [2], [3]. I believe that the lack of progress in the 
intervening years has made it all but impossible to see a working exaflops system by 
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2020.  Specifically, I do not expect a working Exaflops system to appear on the #1 
spot of the TOP500 list with a RMAX performance exceeding 1 Exaflop/s by 
November 2019. More recent revisions of the earlier plans have taken this view, and 
the most recent DOE Exascale Strategy in the U.S. expects delivery of the First 
Prototype Exascale Cabinet in 2020, and a prototype system to be available in 2021. 

There are four major technology challenges that need to be addressed in order to 
build an exascale system. Today these challenges are effective barriers to reaching 
one exaflop/s level performance by 2020. 

Energy Challenge: reduce the power consumption of all elements of the system so 
that the operational cost is within reasonable power budgets. 

Parallelism Challenge: develop a programming model and system software that 
allows a software developer to use effectively unprecedented parallelism, while also 
managing data locality and energy-efficiency. 

Resilience Challenge: achieve resilience to faults so that they have no impact on 
development and operations of a system. 

Memory and Storage Challenge: develop energy efficient technologies and 
architectures that can provide 100s of Petabytes memory and high storage capacity, 
low power requirements, and ability to move large amounts of data. 

These challenges were well indentified already in the early workshops and elaborated 
in great detail in late 2009. What accounts for the lack of progress? Initial estimates 
for carrying out a successful research program that would engage an incentivize 
systems and software vendors, and technology companies was estimated to cost about 
$300 -$400M per year over the next decade in addition to the already existing 
investments in high performance computing. This price tag of about $3-4B additional 
funding for an Exascale initiative is not affordable under the current budget realities 
in the U.S.  

The original thinking envisioned a model of close collaboration between industry, 
labs, and academia that would create a tight feedback loop and funding for industry, 
so that the unique technology challenges for exascale would be addressed by industry. 
This model has fallen by the wayside. While the U.S. can fortunately count on several 
strong technology partners in industry that are willing to be engaged in Exaflops 
computing, the model has however fundamentally changed. We are “back to the 
future”, in the sense that the next five to ten years will see a replay of the successful 
“leverage COTS” model that ASCI pioneered in the mid 1990s. In short, there will be 
no specific exascale technology development in industry. Instead just like the Path 
Forward program of 15 years ago, there will a few targeted investments that will 
make commercially developed technology more useful in the HPC context.  The 
recent acquisition of the Cray interconnect network technology by Intel can be 
interpreted in this context. 

In my lecture I will discuss how the above challenges are actual barriers that 
probably cannot be overcome by the “back to the future COTS model” that the US 
community is deploying. We will get to Exaflops eventually, but not by 2020. 
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Toward a Theory of Algorithm-Architecture

Co-design

Richard Vuduc and Kenneth Czechowski

Georgia Institute of Technology, Atlanta, GA 30332-0765, USA

We are carrying out a research program that asks whether there is a useful
mathematical framework for reasoning at a high-level about the behavior of
an algorithm on a supercomputer with respect to the physical constraints of
energy, power, and die area. By “high-level,” we mean that we wish to explicitly
relate characteristics of an algorithm, such as its inherent parallelism or memory
and communication behavior, with parameters of an architecture, such as the
number of cores, structure of the memory hierarchy, or network topology. Our
ultimate goal is to say, in broad but also quantitative terms, how macroscopic
changes to an architecture might affect the execution time, scalability, accuracy,
and power-efficiency of a computation; and, conversely, identify what classes
of computation might best match a given architecture. The approach we shall
outline marries abstract algorithmic complexity analysis with caps on power and
die area, which are arguably the central first-order constraints on the extreme-
scale systems of 2018 and beyond [1, 16, 21, 29, 41]. We refer to our approach
as one of algorithm-architecture co-design.

We emphasize the term, “algorithm-architecture,” rather than “hardware-
software” or other equivalent expression. The former evokes a high-level math-
ematical process that precedes and complements traditional methods based on
cycle-accurate architecture simulation of code artifacts and detailed traces [3, 8,
9, 15, 19, 23, 25, 37, 39, 42]. Our approach draws from prior work on high-level
analytical performance analysis and modeling [4, 5, 20, 20, 22–24, 26–28, 32, 34–
36, 47, 49], as well as more classical work on models for circuits and very large-
scale integration [30, 31, 38, 40, 43]. However, our methods return to higher-
level I/O-centric complexity analysis [2, 6, 7, 11, 12, 17, 18, 44–46, 48], pushing
it further by trying to resolve constants [10, 13], which is necessary to connect
algorithmic analysis with the hard physical constraints imposed by power and
die area. Our aim is not to achieve the level of cycle-accuracy possible through
detailed simulation. Instead, our belief is that freedom from the artifacts of cur-
rent hardware and software implementations, while nevertheless incorporating
costs that reflect the reality of physical machines, may lead to new insights and
research directions for achieving the next level in performance and scalability.

Abstractly, the formal co-design problem might look as follows. Let a be an
algorithm from a set A of algorithms that all perform the same computation
within the same desired level of accuracy. The set A might contain different
algorithms, such as “A = {fast Fourier transform, F-cycle multigrid},” for the
Poisson equation model problem [14, 33]. Or, A may be a set of tuning parame-
ters for one algorithm, such as the set of all possible tile sizes for one-level tiled
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matrix multiply. Next, let μ be a machine architecture from a set M , and sup-
pose that each processor of μ has a die area of χ(μ). Lastly, suppose T (n; a, μ)
is the time to execute a on μ for a problem of size n, while using a maximum
instantaneous power of Φ(μ). Then, our goal is to determine the algorithm a
and architecture μ that minimize time subject to constraints on total power and
die area. That is, in principle we wish to solve the mathematical optimization
problem,

(a∗, μ∗) = argmin
(a∈A, μ∈M)

T (n; a, μ) (1)

subject to: Φ(μ) = Φmax (2)

χ(μ) = χmax (3)

where Φmax and χmax are caps on total system power and die area per chip,
respectively.

Such an analysis framework explicitly binds characteristics of algorithms and
architectures, Equation (1), with physical hardware constraints, Equations (2)–
(3). The fundamental research problem is to find the right forms of T (n; a, μ),
Φ(μ), and χ(μ), and then see what algorithms and architectures emerge as solu-
tions to the optimization problem. In our talk, we shall outline how one might
instantiate such a framework and shows the kinds of insights that emerge.
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Abstract. Strong ground motion from the 2011 off Tohoku, Japan (Mw=9.0) 
earthquake is demonstrated by high-resolution 3D parallel FDM simulation of 
seismic wave propagation using the Earth Simulator supercomputer. 
Complicated wavefield accompanying the earthquake in connection with the 
radiation of seismic wave from complex source rupture process and strong 
amplification of ground motion in complicated subsurface structure beneath 
populated cities are demonstrated by the comparison of visualized seismic 
wavefield derived by the computer simulation and observation from dense 
nation-wide seismic network. Good correspondence between simulation results 
and observed actual seismic wavefield promising us the effectiveness of the 
present simulation model for ground motion simulation which is applicable not 
only for reproducing strong ground motions for the past events but also for 
mitigating earthquake disasters associated with future earthquakes.  

Keywords: FDM simulation, 2011 off Tohoku, Japan, earthquake, Earth 
Simulator, parallel computing.  

1 Introduction 

On March 11, 2011, a destructive, Mw 9.0 earthquake occurred off the coast of Japan 
in the Pacific Ocean causing extreme disasters in northeastern Japan with estimated 
toll of dead and missing persons more than 18,000 due to high tsunami waves and 
strong ground motions.  

This earthquake starts from off Miyagi, where large earthquake of Mw=7.5-8.0 had 
been repeatedly occurred with a recurrent period of about 40 years. Therefore, it was 
anticipated that the next earthquake should occur within 30 years with a probability of 
99 %. However, the occurred earthquake was a much larger, mega-thrust event where 
fault rupture spreads entirely over the area of 500 km by 200 km covering off Miyagi, 
off Fukushima, and off Ibaraki earthquake nucleation zones.  
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Fig. 1. Snapshots of seismic wave propagation following the 2011 off Tohoku, Japan (Mw=9.0) 
earthquake at time 60, 110 and 210 s after the earthquake starts, derived by (a) observation 
from dense K-NET and KiK-net strong motion network and (b) results of FDM simulation of 
seismic wave propagation. Star indicates the hypocenter of this earthquake.  

Strong ground motions from such destructive earthquake were well recorded by the 
nation-wide K-NET and KiK-net seismic network in Japan. The strong motion 
network consists of over 1,800 seismic stations with an almost uniform station 
interval of about 20-25 km across Japan, and the observed waveform data is opened 
by the NIED web page [1] for public immediately after the earthquake occurs. We 
could explore the source rupture process and wave propagation properties of this 
event by making full use of dense observational data to study the cause of strong 
ground motions disasters during the earthquake. 

Also, we will conducted a computer simulation of seismic wave propagation for 
this earthquake by using a detail source-rupture model over the plate boundary and a 
high-resolution subsurface structural model in order to understand the seismic wave 
propagation process in detail with compliment the observations. For the large scale 
simulation of seismic wave propagation we will employ the Earth Simulator 
supercomputer (ES) with a suitable parallel finite-difference method (FDM) code for 
solving equation of motions in 3D heterogeneous structure. 

In this study, we will compare visualized seismic wavefield derived by dense 
seismic observation and high-resolution computer simulation. 

2 Visualization of Wave Propagation by Dense Strong Motion 
Network 

The visualized seismic wavefield derived by the 1,189 K-NET and KiK-net strong 
motion stations during the 2011 off Tohoku earthquake is illustrated in Figure 1 
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following the visualization procedure of the seismic waves [2][3]. The observed 
ground motion at each station of three-component ground accelerations are first 
integrated to construct a velocity record after applying a band-pass filter with a pass-
band frequency of 0.05 - 10 Hz to remove instrument noise. The ground motion as 
gridded data is then obtained by interpolation of the ground velocity record using a 
conventional gridding algorithm. Since the intensity of ground motion and strong 
motion damages manifests on a logarithmic scale of horizontal ground velocity 
motion, a scalar value of the strength of the ground motion is calculated from the root 
mean square of the observed two horizontal-component velocity motions and the 
record of vertical ground motion is not used in this study.  

The resulting scalar represents the energy of the seismic wave at each point of the 
regular mesh is then used to render the wavefront of the seismic wave using the 
"height_field" function of the POV-Ray rendering software [4]. For visualizing 
seismic wavefield more naturally we adopt a simple color which assign an intense 
(red) color for stronger wavefield and gentle (yellow) color for weaker wavefield 
rather than commonly using garish color tables such as red-blue and rainbow etc. In 
order to highlight the wavefront of intense ground motions and eliminate weak 
scattering wavefield, a proper opacity function proportional to the logarithmic 
amplitude of the ground motion is applied for the rendering of the seismic wavefield. 
The figure is protracted onto a surface topography image or a satellite photograph for 
realistic representation of seismic waves propagating on the Earth surface.   

 

 

Fig. 2. Structural model of northern Japan used in the 3D simulation of seismic wave 
propagation, showing the configuration of crust and upper-mantle structure and subducting 
Pacific Plate. The source-slip model [6] for the 2011 off Tohoku earthquake used in this study 
is shown in right. 
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The resulting combined image offers direct means to study propagation of the 
seismic waves in heterogeneous structure and development of strong ground motions 
due to the amplification of ground motions in populated areas with soft and thick 
sediments beneath. In the first frame of the snapshot at 60 s after source initiation, we 
see that large ground motions are built up from the radiation produced by a bilaterally 
rupturing fault from a hypocenter at off Miyagi (marked by star) from north and to 
south, illustrating the extent of a rectangular rupture area with raised ground motions. 
In the second (110 s) frame of the snapshot, a second large shock, almost as large as 
the first, spreads again over northern Japan, producing intense and long-term shaking 
of ground motions over northern Japan. As the strong ground motions propagate to 
Ibaraki, about 200 km southwest of the hypocenter, a third shock illuminates the 
surface area around Ibaraki. Then, the overlap of these strong ground motions extends 
the large, prolonged shaking area from Ibaraki to Tokyo (110 and 210 s). We see 
amplified and prolonged ground shaking in populated cities, such as Tokyo, Nagoya, 
and Osaka due to the resonance of long-period ground motions within large and thick 
sedimentary basins. Large ground motions in the basin continued for several minutes. 

3 Parallel FDM Simulation of Seismic Wave Propagation from 
the 2011 Off Tohoku Earthquake 

To compliment the observation and to seek further insights into the understanding of 
the complicated seismic wavefield during the destructive 2011 off Tohoku 
earthquake, we then conduct a numerical FDM simulation of seismic wave 
propagation. 

3.1 Simulation Model 

The simulation model represents an area of 800 km by 1200 km and extends to a 
depth of 200 km, which has been discretized into grid point with uniform resolution 
of 0.5 km by 0.5 km in the horizontal direction and 0.25 km in the vertical direction. 
The subsurface structural model is constructed based on J-SHIS sediment model [5], 
lateral variation of crust/mantle (Moho) boundary and depth of the subducting Paficic 
Plate. We assumed a lower-most shear-wave velocity of Vs=1.0 km/s in the 
sedimentary layer just beneath the surface, and thus, the FDM simulation using a 16-
th-order staggered-grid scheme allow wave propagation simulation with maximum 
frequency of f=0.5 Hz. The source model used in this study [6] was derived from an 
joint inversion using the K-NET and KiK-net strong motion records, teleseismic body 
waveforms, geodetic (GPS) data, and tsunami waveform data. The inferred subsurface 
structural model of surface topography and subducting Pacific-Plate and source-slip 
distributions over the subducting Plate are shown in Figure 2. The source model 
represents a very large (>50 m) slip over shallow (<10 km) part of the subducting 
plate near the Japan trench. In this simulation the source rupture over the fault source 
plane is represented by a number of point sources arranged over the subducting 
Pacific Plate at interval of 0.5 km. 
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Fig. 3. Parallel performance of the 3D FDM simulation code for seismic wave propagation 
derived by strong scaling test using former ES and new ES (ES2) after performance tuning. 
Dashed line denote parallel performance for ES2 before code tuning. 

The seismic wave propagation at each grid point of the subdomain is calculated by 
solving the equation of motion in 3D. For the parallel FDM simulation the 3D 
simulation model is partitioned vertically into many subdomains of equal grid 
numbers, and each subdomain is assigned into each node of the ES. The ES is 
constructed by 160 nodes of NEC SX-9 supercomputers each consists of eight vector 
processors with a large SMP memory, and are connected by a large fat-tree inter-node 
computer network. We adopted a hybrid parallel scheme for the parallel FDM 
simulation [7] in which a thread (automatic) parallelism is adopted for in-node 
parallel computing and a MPI is used for inter-node parallel computing. 

3.2 Performance Tuning of the FDM Code Suitable for New Earth Simulator 

The operation of the ES start in 2002 and then it was updated by the new model 
(hereafter we denote ES2) in 2009. Since the former ES had a high memory 
bandwidths relative to the CPU operation speed (4 Byte/FLOPS) and an effective 
single-stage crossbar switches (128 GB/s) for intra-node communications, it was able 
to pull out very high actual performance over 50 % of its peak performance (8 
GFLOPS/processor) and also an effective parallel performance more than 99.99 % 
even though no special tuning was performed to our parallel FDM code. However, the 
memory bandwidth of the ES2 dropped to 2.5 Byte/FLOPS and the network system 
was changed into a conventional fat-tree structure. As a result, the actual 
computational performance of our FDM simulation dropped to 22.7 %, and a 
parallelization rate is also dropped greatly to 99.9472 %. Although the theoretical 
performance of the new ES2 (102.8 GFLOPS/processor) is 12.8 times faster than the  
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old model, actual performance of our FDM simulation remained 5.8 times in fact. 
Furthermore, the theoretical speed-up of our parallel FDM simulation using large 
number of processors more than 1,000 became slower than before due to the fall of 
parallel performance (see broken line in Figure 3). 

We therefore performed a performance tuning of our parallel FDM code suitable 
for the architecture of the new ES2. The log of the computing profile obtained from 
the new ES2 showed that the rate of the memory bank conflict increased 3 times as 
large as before, and moreover, the idling time of the MPI communication was 
increasing 1.5 times than before. Since new ES2 has a special memory distribution 
structure to share 256 memories among eight SMP processors via 16 set of memory 
router, a bank conflict occurs very frequently and its penalty at the time of occurring 
is very large. Until now, we had set the first subscript of 3D array variables as odd 
number in order to avoid a bank conflict by accessing the same memory bank during 
loop of calculation. In addition, we also set the second subscript of the 3D array 
variables into odd number in order to access a memory bank at random during loop 
calculation. Furthermore, we changed an order of the FDM calculation, so that 
required calculation for a given variable might be performed at once after loading the 
variable, and reduced useless memory loading and storing procedures. In order to use 
effectively a small capacity (256 KB) cache memory (ADB; Assignable Data Buffer) 
with which the new model ES2 was firstly equipped, we wrote a directive of the ADB 
for notifying reusable variables storing into the cache. Also we applied a loop 
unrolling technique to make a cache friendly code. 

In the former parallel FDM program on ES we used a conventional function such 
as MPI_TYPE_CREATE_SUBARRAY() which is equipped in the MPI2 in order to 
pack and unpack data between variables at a large interval and MPI communication 
buffers before exchanging data between neighbour processors. However, the 
performance of the MPI communication improved drastically when this procedure 
was described explicitly by ourselves in the program. Moreover, MPI communication 
data for the same destination can be merged into one large data to enlarge 
communication speed and to reduce total number of communications. The MPI 
communication buffer can be allocating onto a global memory of the ES2 to reduce 
the time of the data copy between memory during the MPI. 

Finally we attained 1.36 times as large performance ratios on the ES2 than before 
as a result of such memory and MPI tuning mentioned above. Effective performance 
rate of our present FDM simulation has improved dramatically from 22.7% to 31.3%, 
and the parallel performance rate has improved significantly from 99.9472 % to 
99.9959 %. However, the influence of dramatic drop of memory bandwidth from ES 
to ES2 is mortal for our FDM simulation even carrying out extensive performance 
tuning, and it is not expectable to extract large sustain performance as before. 
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Fig. 4. Comparison of waveform of east-west component ground motions derived by computer 
FDM simulation (Cal; thick lines) and observation at 12 stations (Obs; thin lines). Waveforms 
are aligned from north to south and the K-NET station names are shown in right top. 

3.3 Simulation Results and Comparison between Observations 

Figure 1b shows a set of snapshot of the seismic wavefield derived by the 3D FDM 
simulation and using the visualization procedure of seismic wave propagating on the 
surface. Ground motion on sea is masked for direct comparison of observed seismic 
wavefield shown in Figure 1a. The computation of seismic wave propagation in 360 
sec took CPU (wall-clock) time of 2 hours using 32 node (256 processors) of the ES2. 

It is confirmed a good correspondence between the observed and simulated 
wavefield, except for a slight overestimation of the amplitude of the ground motion 
for the computer simulation. As we saw in the observed seismic wavefield the effect 
of thick sedimentary basin in major population centres such as Tokto, Nagoya, and 
Osaka can also be clearly seen as a region of anomalous localized amplification and 
prolonged ground motions due to development of long-period ground motions.  

Band-pass (f=0.01-0.2 Hz) filtered waveforms of east-west component ground 
velocity motions derived from the simulation are compared with 12 K-NET strong 
motion record, showing a good match with the observation is confirmed in terms of 
the arrival time of the P and S waves, waveshape, and duration of seismic waves, 
though the amplitude of simulated ground motion are slightly overestimated. This is 
probably due to the mismatch between the 3D structural model used in the present 
FDM simulation and 1D layered structural model used for source inversion study [6], 
where localized structure such as sedimentary basins are not represented well, 
although most of the K-NET stations are placed in sedimentary basins.  

Anyhow, fairly good match between simulatted and observed wavefield in terms of 
the snaspshots of seismic wave propagation and synthetic seismograms demonstrated 
the effectiveness of the present simulation model including detail subsurface structure 
of crust and upper-mantle structure and near-surface sedimentary layers and large 
scale parallel FDM simulation of seismic wave propagation using supercomputers. 
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4 Conclusion 

The development of the strong ground motions due to the destructive 2011 off 
Tohoku, Japan, earthquake was reproduced by 3-D FDM simulation of seismic wave 
propagation using the ES2 and observation of dense K-NET and KiK-net strong 
motion network across Japan. The characteristics of the seismic wavefield during 
large earthquake is controlled significantly by complex radiation properties of the 
seismic wave from earthquake source and propagation of seismic wave in 
heterogeneous crust and upper-mantle structure. Especially the soft sedimentary layer 
beneath populated cities with large impedance contrast between rigid bedrock beneath 
cause significant amplification and elongation of ground motions which leads in 
significant disasters during large earthquakes even for distant events. 

Such complicated wavefield observed in Japan during the 2011 off Tohoku 
earthquake should probably be a common characteristics for most sedimentary basins 
in the world to caused the similar damage in the past and in future. Applying the FDM 
simulation of seismic wave using detail 3D structural model implemented on 
powerful supercomputers is expecting to mitigate future earthquake disasters instead 
of reappearance of the damage during the past events. 
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Abstract. In 2006, we started a grand challenge project called ISLiM for K 
computer to demonstrate its performance. The ISLiM stands for Integrated 
Simulation of Living Matter to reproduce life phenomena on a supercomputer 
for understanding them and developing new medicine or new treatments.  We 
have 6 research teams: Molecular scale team, cell scale team, organ and body 
scale team, data analysis fusion team, brain and neural system team and HPC 
team.  We are developing a high performance software package for life science 
for K computer which contains 31 application software.  Currently two third of 
them are running on K computer and several ones shows more than 30 percent 
of theoretical peak performance of K computer.  

Keywords: HPC, Life Science Application, Molecular Dynamics, Blood Flow, 
Heart Simulation.  

1 Introduction 

In 2006, we started our grand challenge project in Life Science to show how K 
computer is effective using real application. This project is called as ISLiM which 
stands for Integrated Simulation of Living Matter. The ISLiM is included in the Next 
Generation Supercomputer Research and Development which is developing K 
computer. In the early 2000, there were a few codes in life science to show good 
scalability on thousand processors. To accelerate supercomputer usage in life science, 
we decided to develop a HPC software package for life science researchers which 
contains variety of allocations from molecule and cell scale to organ and whole body 
scale. In addition, we are developing data processing application to get information 
from experimental data. We also develop codes for Brain and Neural simulation. 34 
application codes are included in the package.  

2 Basic Concept and Teams of the ISLiM 

The ISLiM is developing a software package which can be utilized for reproducing 
life phenomena on a supercomputer for understanding them and developing new 
medicine or new treatments.  We have 6 research teams: Molecular scale team, cell 
scale team, organ and body scale team, data analysis fusion team, brain and neural 
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Fig. 5. Target of ZZ-HIFU 

UT-Heart is a heart simulation software developed by Prof. Hisada and his group 
in many years in The University of Tokyo[5].  It is based on multi-scale simulation 
model coupled with coronary artery circulation with capillary shown in figure 6.  
UT-Heart achieved more than 2 Peta FLOPS on the full system of K computer. 
 
 

 

Fig. 6. UT-Heart simulation model 

Cppmd is a molecular dynamics code developed by HPC team of the ISLiM[6].  
This code achieved more than 3 Peta FLOPS on the full system of K computer.  Its 
weal scaling performance is shown in figure 7 up to 16,384 nodes on K computer. 

 

Normal Adhesive protein

Abnormal Adhesive protein 
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Fig. 7. Weak scaling performance of cppmd on K computer 

5 Conclusions 

K has been very stable and powerful although it was a new design and at the very 
early stage.  Several codes have already shown very high effective performance on 
K.  Scalability on K shows very good.  This is pertly because of the effective 
neighboring network TOFU and ICC.  Currently, Fujitsu’s c/c++ compiler needs 
more improvement (SIMD optimization).  Computation time of application is getting 
longer and longer to get better scalability on peta-scale system.  This may make 
design of Exa-scale system more difficult. 
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Abstract. Peta-scale supercomputers enable us to tackle very large-
scale problems of which results provide useful information to understand
physical phenomena or to improve performance of a product design. The
large-scale simulation is becoming dawn to earth due to parallel com-
puting techniques, however, inherent barriers on the distributed parallel
environment are still remains in simulation process, i.e., grid generation,
visualization and data analysis. In this paper, the authors would like to
clarify the issues to be resolved for productive support environment of
the large-scale simulation, and to propose a foundational framework to
enhance the utilization of huge computational resources.

1 Introduction

Recent progress of hardware and software development yields the ability of
PFLOPS computation and allows us to tackle very large-scale problems. The K
computer[1] is the first machine achieved over 10 PFLOPS in LINPACK bench-
mark and will be started to operate at the end of 2012. The K computer is
planned to use variety of fields including science and engineering, especially, is
anticipated from industry field. Skilled manufacturing field is one of the impor-
tant application fields of the computer simulation. The utilization of state-of-
the-art HPC system, however, requires some degree of skills for users, therefore
this becomes a barrier in terms of the promotion of utilization. For example,
the number of grid points increases so that the solution with higher order is ob-
tained. In addition, the number of process and associated files generated reach
the order of 105. Increase in the number of files handled by the scale of the prob-
lem will affects the performance of input and output and the file system not only
greatly increase the cost of management. Since the increase of the number makes
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the simulation process complicated, work efficiency will be reduced. Engineers
utilize the HPC to yield excellent results in the field of their product design. In
order to increase outcome by simulation on HPC, it is necessary to resolve these
issues unique to large-scale problem.

This paper describes a construction of the framework that can be efficiently
utilized in the large-scale parallel simulations.

2 Concept of HPC/PF

HPC/PF is a support environment for executing large-scale parallel simulations
efficiently. This system also has integrated aspects of the system in addition
to so-called pre-post function, management of simulation execution, automated
processing by the workflow, database management of results. The proposed sys-
tem is designed and implemented as a collection of subsystems, so that various
use-case are able to be supported by provided many functions as shown in Fig.1.
Each subsystem is loosely connected by script language. Since the system is
composed of relatively highly independent software components, it is easy to
introduce open source software as a component and/or to replace by the com-
ponent that has same features and higher performance.

In the heart of this HPC/PF system, various physical simulators will be in-
corporated. The core physical simulators, we introduce a simulation program
has been developed in various fields in national projects in Japan so far. For
example, FFB[2], FFR, FISTR, Adventure, UPACS[3], VCAD[4], and so on.

2.1 Assumed Use-Case

Assumed typical use-cases for the HPC/PF are follows.

Use of Database

Documents and Case Studies. In order to provide basic information of each core
simulator, the document, e.g., manual, user guide, tutorial, installation guide,
will be registered for the end-users. Case study examples are also registered
including a model file, input parameters, computed results, visualized and ana-
lyzed data, and associated experimented data. Accumulated validation data tells
us the guideline of the utilization of the simulator and increase the reliability of
simulators. This verification and validation processes are important for not only
end-users but also application developers. Especially, when the version control
system of software and associated examples are operated, it is useful to develop
application efficiently.

Reproduction of Examples. The database system enables us to provide regis-
tered examples. User can install delivered software application onto the user’s
environment, then can be reproduced the examples provided by the database.
This step is a practice of using the simulation, and confirmation process. This
experience helps the user to get better understand.
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Customization Based on Provided Templates. Users to deepen understanding of
the simulator are now working on their own problems. They would be helpful
to download the project files from the database example, then they can cus-
tomize to their concerned problems. This mechanism will help greatly to improve
productivity.

Parameter Study. Optimization is one of the powerful strategies to obtain
better shape and/or performance of the products, and requires many runs cor-
responding to different parameters. Even a simple comparison of the computed
results for different parameters, we can derive useful information from the com-
parison result.

3 Key Components in HPC/PF

In this section, key components in HPC/PF are described.

3.1 Project Management

Both parallel computation and parameter study uses and generates many files,
e.g., grid files, parameter files, result files, analyzed files, and so on. Since many
files are found in a directory of a file system, we need to organize the files essential
to the simulations. In our approach, all files needed to a specific simulation are
managed by an asset list, which describes necessary files. The asset list contains
all file names required to the smallest unit of simulation, which is defined as a
case. We often need to manage a number of cases in the parametric study that
is performed in practical simulation. Multiple cases often form a project defined
as one group that has parameters associated each other.

3.2 File Handling

In parallel computation, each core reads and writes a file at the same time,
which degrades file I/O performance. Therefore, the most important and critical
issue is a mechanism of file handling in terms of performance of the proposed
system. MPI-I/O is one of the candidates to improve the performance by its
parallel file accessing. In addition to incorporate the parallel I/O libraries, we
also introduce a file index system that provides a mechanism to treat a lot of files
as it looks one file. The index contains the information related to subdomains
in domain decomposition method, e.g., the coordinate value of bounding box,
a rank number of MPI process, index of computational space, and file names.
This index plays a role of managing raw files and supplying the information in
other subsystems. For example, in data processing phase, the application access
the index file at first, then the application is able to know the file name to be
processed.
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Fig. 1. A schematic of logical concept of HPC/PF. Main functions are implemented on
a server, and applications that need user-interface are operated on user’s computer. A
database subsystem is hosted on a web server and can be distributed. An ssh protocol
is required for the communication between different platforms.

3.3 Workflow

In practical simulation cases, the engineer repeats predetermined tasks to obtain
the information to be needed in the design or for the optimization. Through en-
tire process of above mentioned parameter study, we need to manage parameter
space and its execution case. To do so, it is required to incorporate the functions
of the design of parameter space, definition of workflow and automatic execution
including batch job queuing, and file resource management. Xcrypt[5] provides
functions to perform sequential/parallel runs of a program with different param-
eters. Since Xcrypt is written by Perl script language, the portability is very
high even on the most supercomputers.
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3.4 Visualization and Data Analysis

Computed results on the parallel computer are written in a large number of files
and the files cannot be moved any more because the limitation of disk space
and the operation time of the data operation. Thus, it is required that the vi-
sualization system has the ability to handle many files at the same time and to
visualize the data in distributed parallel environment. In visualization and anal-
ysis process, users have their own way to analyze the data, and the visualization
environment is depending on users platform. We have planned to introduce the
well-established visualization platform VisIt[6] into the proposed HPC/PF. For
data analysis, the map-reduce framework[7], which can be effectively work as
the data supplier from the raw dataset, is combined to another filter programs.
The derived metadata will be registered to the database and utilized.

4 Concluding Remarks

We have been outlined the issues on large-scale parallel simulation and a basic
concept of an infrastructure to provide useful functions. The HPC/PF system
was organized by independent program stacks including open source software so
that the system enables users to support their simulation scenario efficiently and
to enhance productivity.
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Abstract. LU factorization with partial pivoting is a canonical nu-
merical procedure and the main component of the High Performance
LINPACK benchmark. This article presents an implementation of the
algorithm for a hybrid, shared memory, system with standard CPU
cores and GPU accelerators. Performance in excess of one TeraFLOPS is
achieved using four AMD Magny Cours CPUs and four NVIDIA Fermi
GPUs.

1 Introduction

This paper presents an implementation of the canonical formulation of the LU
factorization, which relies on partial (row) pivoting for numerical stability. It is
equivalent to the DGETRF function in the LAPACK numerical library. Since the
algorithm is coded in double precision, it can serve as the basis for an implemen-
tation of the High Performance LINPACK benchmark (HPL) [2]. The target
platform is a hybrid, multi-CPU, multi-GPU shared memory system.

2 Background

The LAPACK block LU factorization is the main point of reference here, and
LAPACK naming convention is followed. The LU factorization of a matrix M
has the form M = PLU , where L is a unit lower triangular matrix, U is an upper
triangular matrix and P is a permutation matrix. The LAPACK algorithm pro-
ceeds in the following steps: Initially, a set of nb columns (the panel) is factored
and a pivoting pattern is produced (DGETF2). Then the elementary transforma-
tions, resulting from the panel factorization, are applied to the remaining part of
the matrix (the trailing submatrix). This involves swapping of up to nb rows of
the trailing submatrix (DLASWP), according to the pivoting pattern, application
of a triangular solve with multiple right-hand-sides to the top nb rows of the
trailing submatrix (DTRSM), and finally, application of matrix multiplication of
the form C = C−A×B (DGEMM), where A is the panel without the top nb rows,
B is the top nb rows of the trailing submatrix, and C is the trailing submatrix
without the top nb rows. Then the procedure is applied repeatedly, descending
down the diagonal of the matrix.
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3 The Solution

The main hybridization idea is captured on Figure 1 and relies on representing
the work as a Directed Acyclic Graph (DAG) and dynamic task scheduling, with
CPU cores handling the complex fine-grained tasks on the critical path (the
longest path through the DAG), and GPUs handling the coarse-grained data-
parallel tasks outside of the critical path. Some number of columns (lookahead)
are assigned to the CPUs, and the rest of the matrix is assigned to the GPUs
in a 1D block-cyclic fashion. In each step of the factorization, the CPUs factor
a panel and update their portion of the trailing submatrix, while the GPUs
update their portions of the trailing submatrix. After each step, one column of
tiles shifts from the GPUs to the CPUs.

(a) Task Graph Scheduling (b) Work Partitioning

Fig. 1. Scheduling the task graph of the LU factorization, with fine-grained tasks on
the critical path being dispatched to individual CPU cores and coarse-grained tasks
outside of the critical path being dispatched to GPU devices

The implementation relies on a number of state-of-the-art solutions such as:
tile data layout, block-cyclic data distribution, parallel recursive panel factoriza-
tion, GPU kernel autotuning, the technique of lookahead, the use of superscalar
scheduling and communication-computation overlapping.

3.1 Tile Data Layout

The matrix is laid out in square tiles on the CPU side (host memory), where each
tile occupies a continuous region of memory. Tiles are stored in column-major
and elements within tiles are stored in column-major. This layout, referred to
as Column-Column Rectangular Block (CCRB) [4] is the native layout of the
PLASMA library[7]. Tiles are transposed on the GPU side (device memory), i.e.
the layout is translated to Column-Row Rectangular Block (CRRB), which is
critical to the performance of the row swap (DLASWP) operation. This tile-wise
transposition is trivial to code and fast to execute.
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3.2 CPU Kernels

CPUs are responsible for the panel factorization and a portion of the update
of the trailing submatrix. The update is relatively straightforward and requires
three operations: row swap (DLASWP), triangular solve (DTRSM) and matrix mul-
tiplication (DGEMM). In the case of DLASWP, one core is responsible for swaps in
one column of tiles. The LAPACK DLASWP function cannot be used, because of
the use of tile layout, so DLASWP is hand-coded. In the case of DTRSM and DGEMM

one core is responsible for one tile. Calls to Intel Math Kernel Library (MKL)
are used, with layout set to column-major and the leading dimension set to tile
size (nb).

The LAPACK panel factorization (DGETF2) is sequential and memory bound,
and can deliver performance of roughly 2.0 Gflop/s, which is completely inade-
quate for a hybrid LU implementation. Running at such speed, panel factoriza-
tions would completely dominate the entire execution time. A fast alternative
is absolutely critical. Here, the recursive-parallel panel factorization from the
PLASMA library is used, providing an order of magnitude higher performance.

The application of recursion allows for a decrease in memory intensity by
introducing some degree of level 3 BLAS operations [3]. Tiles of the panel are
assigned to cores in a round-robin fashion and each core preserves the same set
of tiles throughout all the steps of the panel factorization. At some point in the
LU factorization, panels become short enough to fit in the aggregate cache of
the designated cores, i.e., panel operations become cache-resident, which at some
level resembles the technique of Parallel Cache Assignment (PCA) [1] currently
employed by ATLAS. The cores are forced to work in lock-step, but can benefit
from a high level of cache reuse. The ultra-fine granularity of operations requires
very light-weight synchronization. Synchronization is implemented using busy-
waiting on volatile variables and works at the speed of hardware cache-coherency.

3.3 GPU Kernels

The update of the trailing submatrix on the GPUs requires kernels for three
operations: row swap (DLASWP), triangular solve (DTRSM) and matrix multiplica-
tion (DGEMM). Also, a tile-wise transposition is required to convert between the
CCRB layout in the host memory and the CRRB layout in the device memory.
This transposition follows the transfer of each panel from the host memory to
the device memory and precedes the transfer of each column returning from the
device memory to the host memory.

DLASWP is implemented by creating nb (tile size) threads per multiproces-
sor and assigning one column to each thread. DTRSM (an in-place operation)
is replaced by an inversion of the diagonal block (application of the L factor
to identity) on a CPU, followed by a DGEMM on the GPUs (out-of-place). The
transposition is implemented by spanning the column being transposed with a
block-grid / thread-grid, such that each individual thread transposes one element
(no loops in the kernel). These straightforward implementations are sufficient to
make the impact of the operations negligible in comparison to the DGEMM.
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The DGEMM kernels are produced using the Automatic Stencil TuneR for Accel-
erators (ASTRA) system [5], which follows the principles of Automated Empirical
Optimization of Software (AEOS), popularized by the Automatically Tuned Lin-
ear Algebra Software (ATLAS) [9]. The same process is currently used to produce
DGEMM kernels for the MAGMA project [6].

The kernel is expressed through a parametrized stencil, creating a large search
space of possible implementations. The search space is aggressively pruned, us-
ing mostly constraints related to the usage of hardware resources. On NVIDIA
GPUs, one of the main selection criteria is occupancy, i.e. the capability of the
kernel to launch a big number of Single Instruction Multiple Threads (SIMT)
threads. The pruning process identifies a few tens of kernels for each tile size.
The final step of autotuning is benchmarking these kernels to find the best per-
forming ones.

There are two differences between the kernels used here and the MAGMA ker-
nels. MAGMA kernels operate on matrices in canonical FORTRAN 77 column-
major layout, compliant with the Basic Linear Algebra Subroutines (BLAS) stan-
dard. The kernels used here operate on matrices in CRRB tile layout [4]. Also,
MAGMA kernels are tuned for the case where all three input matrices are square,
while the kernels used here are tuned for the block outer product operation in
the LU factorization, i.e., C = C −A×B, where the width of A and the height
of B are equal to the matrix tile size nb.

DGEMM kernels achieve the best performance when texture reads are used for
read-only data (A and B input matrices). The complete LU factorization applies
matrix multiplications exceeding this limit by splitting them into a sequence of
multiple DGEMM calls (two or three). Here the tuning is done for the largest case
where texture mapping can be used without such splitting (∼12K×12K). Table 1
lists the performance of the autotuned kernels along with their most important
tuning parameters (the blocking factors, i.e., the size of DGEMM performed by
each multiprocessor in the outermost loop).

Table 1. Autotuned block outer product GPU DGEMM kernels

× × × × × × × × × × × × × × × × × ×

3.4 Superscalar Scheduling

Manually multithreading the hybrid LU factorization would be tedious, given
the three different levels of granularity involved: single tile, one column, a large
block (submatrix). Here the scheduling infrastructure of the PLASMA library is
used, namely the QUARK superscalar scheduler [8]. The LU factorization code
is expressed with the canonical serial loop nest, where calls to CPU and GPU
kernels are augmented with information about sizes of affected memory regions
and directionality of arguments (IN, OUT, INOUT). QUARK schedules the
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work by resolving data hazards (RaW, WaR, WaW) at runtime. Two important
extensions are critical to the implementation of the hybrid LU factorization:
variable-length list of dependencies and support for nested parallelism.

CPU tasks, such as panel factorizations and row swaps, affect columns of
the matrix of variable height. For such tasks, the list of dependencies is created
incrementally, by looping over the tiles involved in the operation. It is a simi-
lar situation for the GPU tasks, which involve large blocks of the matrix (large
arrays of tiles). The only difference is that here transitive (redundant) dependen-
cies are manually removed, to decrease scheduling overheads, while preserving
correctness.

The second crucial extension of QUARK is support for nested parallelism, i.e.,
superscalar scheduling of tasks, which are internally multithreaded. The hybrid
LU factorization requires parallel panel factorization for the CPUs to be able
to keep pace with the GPUs. At the same time, the ultra-fine granularity of
the panel operations prevents the use of QUARK inside the panel. Instead, the
panel is manually multithreaded using cache coherency for synchronization, and
scheduled by QUARK as a single task, entered at the same time by multiple
threads.

3.5 Communication

Each panel factorization is followed by a broadcast of the panel to all the GPUs.
After each update, the GPU in possession of the leading leftmost column sends
that column back to the CPUs (host memory). These communications are ex-
pressed as QUARK tasks with proper dependencies linking them to the com-
putational tasks. Because of the use of lookahead, the panel factorizations can
proceed ahead of the trailing submatrix updates and so can transfers, which
allows for perfect overlapping of communication and computation, as further
discussed in the following section.

4 Results

The system used for this work couples one CPU board with four sockets and one
GPU board with four sockets. The CPU board is a H8QG6 Supermicro system
with 4 AMD Magny Cours chips, 12 cores each, clocked at 2.1 GHz. The GPU
board is an NVIDIA Tesla S2050 system with 4 Fermi chips, 14 multiprocessors
each, clocked at 1.147 GHz.

The theoretical peak of a single CPU socket amounts to 2.1 GHz×12 cores×
4 ops per cycle � 101 Gflop/s, making it ∼403 Gflop/s for all four CPU sockets.
The theoretical peak of a single GPU amounts to 1.147 GHz × 14 cores ×
32 ops per cycle � 514 Gflop/s, making it ∼2055 Gflop/s for all four GPUs.
The combined CPU-GPU peak is ∼2459 Gflop/s.

The system runs Linux kernel version 2.6.35.7 (Red Hat distribution 4.1.2-
48). The CPU part of the code is built using GCC 4.4.4. Intel MKL version
2011.2.137 is used for BLAS calls on the CPUs. The GPU part of the code is
built using CUDA 4.0.
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Figure 2a shows the overall performance of the hybrid LU factorization, and
Table 2 lists the exact performance number for each point along with values of
tuning parameters. Tuning is done by exhaustive search across all parameters.
Matrix size goes up to 34,560. Beyond that point the size of memory on all
GPUs is exceeded. Each GPU can provide 2.6 GB of Error Correcting Code
(ECC) protected memory.

(a) Overall LU Performance (b) 1 Tflop/s Trace Fragment

Fig. 2. (a) Overall performance of the LU factorization. (b) Trace fragment of the run
which exceeded execution rate of 1 Tflop/s.

Figure 2b shows a small fragment in the middle of a 23,040 run (the smallest
size exceeding 1 Tflop/s performance). In the CPU part, only the panel fac-
torizations are shown. The steps shown on the figure correspond to factoring
submatrices of size ∼12,000. Due to the deep lookahead, panel factorizations on
the CPUs run a few steps ahead of trailing submatrix updates on the GPUs.
This allows for perfect overlapping of CPU work and GPU work. It also allows
for perfect overlapping of communication between the CPUs and the GPUs, i.e.,
between the host memory and the device memories. Each panel factorization is
followed by a broadcast of the panel to the GPUs (light gray DMA). Each trail-
ing submatrix update is followed by returning one column to the CPUs (dark
gray DMA).

Table 2. LU performance and values of tuning parameters
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Figure 3a shows the performance of the panel factorization throughout the
largest run (34,560), using different numbers of cores, for panels of width 192. The
jagged shape of the lines reflects the fact that the panel cores have to compete for
main memory with the other cores, applying updates at the same time. Generally,
more cores provide higher performance, due to more computing power and larger
capacity of their combined caches. However, 24 cores (two sockets) provide only
a small performance improvement over 12 cores (single socket) due to the higher
cost of inter-socket communication over communication within the same socket.
In actual LU runs, the use of 12 cores turns out to always be optimal, even for
large matrices. While 12-core panel factorizations are capable of keeping up with
GPU updates, the remaining cores can be committed to CPU updates.

(a) Panel on CPUs (b) DGEMM on GPUs

Fig. 3. (a) Performance of the panel factorization on CPUs at each step of the LU
factorization. Panel width = tile size = 192. (b) Performance of the 4-GPU DGEMM task
and performance of a single-GPU portion of that task.

Figure 3b shows the performance of the GPU DGEMM kernel throughout the
entire factorization. The gray line shows the DGEMM kernel performance on a
single GPU. The black line shows the performance of the 4-GPU DGEMM task.
The jagged shape of the line is due to the load imbalance among the GPUs.
The high peaks correspond to the calls where the load is perfectly balanced, i.e.,
the number of columns updated by the GPUs is divisible by 4. When this is
not the case, the number of columns assigned to different GPUs can differ by
one. The load imbalance can be completely eliminated by scheduling the GPUs
independently, although potential performance benefits are on the order of a few
percent.

5 Conclusions

The results reveal the challenges of programming a hybrid multicore system with
accelerators. There is a disparity in the performance of the CPUs and the GPUs
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to start with. It turns into a massive disproportion when the CPUs are given
the difficult (synchronization-rich and memory-bound) task of panel factoriza-
tion, and the GPUs are given the easy (data-parallel and compute-bound) task
of matrix multiplication. While the performance of panel factorization on the
CPUs is roughly at the level of 20 Gflop/s, the performance of matrix multi-
plication on the GPUs is almost at the level of 1,200 Gflop/s (two orders of
magnitude). The same disproportion applies to the computational power of the
GPUs versus the communication bandwidth between the CPU memory and the
GPU memory (host to device). The key to achieving good performance under
such adverse conditions is overlapping of CPU processing and GPU processing
and overlapping of communication. The work also reveals that the PLASMA
framework can easily adopt GPU acceleration, perhaps showing a path for the
eventual merge of the PLASMA and MAGMA projects into a single cohesive
multicore/manycore software package.
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Abstract. We present an implementation of a Two-Level Precondi-
tioned Conjugate Gradient Method for the GPU. We investigate a Trun-
cated Neumann Series based preconditioner in combination with defla-
tion. This combination exhibits fine-grain parallelism and hence we gain
considerably in execution time when compared with a similar implemen-
tation on the CPU. Its numerical performance is comparable to the Block
Incomplete Cholesky approach. Our method provides a speedup of up to
16 for a system of one million unknowns when compared to an optimized
implementation on one core of the CPU.

1 Introduction

Our work is motivated by the Mass-Conserving Level Set approach [6] to solve
the Navier Stokes equations for multi-phase flow. The most time consuming step
in this approach is the solution of the (discretized) pressure-correction equation,
which is a Poisson equation with discontinuous coefficients. The discretized equa-
tion takes the form of a linear system,

Ax = b, A ∈ R
N×N , N ∈ N (1)

where N is the number of degrees of freedom. A is symmetric positive definite
(SPD). Due to the large contrast in the densities of the fluids involved, the matrix
A has a large condition number κ, which results in slow convergence when the
system (1) is solved using the iterative Conjugate Gradients (CG) method.

1.1 Focus of This Research

To overcome the slow convergence it is imperative to use preconditioning. The
resulting system then looks like, M−1Ax = M−1b, where the matrix M is sym-
metric and positive definite. The choice of M is such that the operation M−1y,
for some vector y, is computationally cheap and M can also be stored efficiently.
This research aims to find preconditioning schemes that can exploit the com-
puting power of the GPU. To this end the preconditioning schemes should offer
fine-grain parallelism. At the same time they should prove effective in bringing
down the condition number of M−1A. We use a two-level preconditioner. The
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first level preconditioner is based on the Truncated Neumann series of the trian-
gular factors of the coefficient matrix A. After this, we apply Deflation to treat
the remaining small eigenvalues in the spectrum of the preconditioned matrix.We
compare our schemes with Block-Incomplete Cholesky (Block-IC) Precondition-
ers, as a benchmark to check their quality. The numerical performance of the
preconditioners we introduce in this paper comes close to their Block-IC coun-
terparts for our model problem and they also offer fine-grain parallelism making
them very suitable for the GPU.

1.2 Related Work

Preconditioning has been studied previously for GPU implementations of the
Conjugate Gradient method. The preconditioner in [2] offers as much parallelism
as the number of degrees of freedom, N (or the number of unknowns). However,
our experiments [1] show its use is limited for two-phase (high condition number,
(κ)) flow problems. An extension to [2] is provided in [8] wherein a relaxation
factor is utilized. In [9] an incomplete LU decomposition based preconditioner
with fill-in is used combined with reordering using multi-coloring.

One of the first works [4] using GPU computing used Multigrid with CG.
More recently in [3] also multigrid has been investigated for solving Poisson
type problems. In [11] a comparative study is presented between deflation and
multigrid. It shows that the former is a competitive technique in comparison
with the latter.

This paper is organized as follows: in the next section we present the test
problem. A brief overview of the preconditioning schemes and their features can
be found in Section 3. We discuss the approach of two level preconditioning in
Section 4. In Section 5 we introduce the Conjugate Gradient Algorithm with
Preconditioning and Deflation. Furthermore we comment on two different im-
plementations for this method in Section 5.1. In Section 6 we present our results
and we end with a discussion in Section 7.

2 Problem Definition

We define a test problem in order to test our preconditioning schemes. We define
a unit square as our computational domain in 2D (Figure 2). It has two fluids
with a density contrast (ρ1 = 1000, ρ2 = 1). It has an interface layer (at y =
0.5), where there is a jump in coefficient values due to contrast in densities of
the two fluids. This jump is also visible in the eigenvalue spectrum as shown
in Figure 1. Boundary conditions are applied to this domain as indicated in
Figure 2. The resulting discretization matrix A is sparse and SPD. It has a
pentadiagonal structure due to the 5-point stencil discretization. For a grid of
dimensions (n+ 1)× n the matrix A is of size N = n× n. Stopping criteria are
defined for convergence as ‖ ri ‖2≤‖ b ‖2 ε, where ri is the residual at the i-th
step, b is the right-hand side and ε is the tolerance. For our experiments we have
kept ε at 10−6. The initial guess (x0) is a random vector to avoid artificially fast
convergence due to a smooth initial error.
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Fig. 2. unit square with boundary con-
ditions

Through this test case we can ascertain the effectiveness of deflation for such
problems on the GPU. The final goal however remains to be able to make a
solver capable of handling the linear systems arising in bubbly flow problems.

Fig. 3. Problem Definition. Unit cube in 3-D.

To this end we also define a test case with a unit cube with bubbles. This
3D formulation poses additional challenges and is a harder problem to solve due
to many more small eigenvalues corresponding to the number of bubbles in the
system. In Figure 4 we present two cases where there is a single bubble and 8
bubbles in the domain presented in Figure 3. The contrast between the densities
of the bubble and the surrounding medium is of the same order as in the 2D
problem.

In the 3D case we apply Neumann boundary conditions on all faces. The
matrix is SPD and has a septadiagonal structure. The problem size is N = n×
n×n. We maintain the same stopping criteria, tolerance and initial conditions as
the 2D problem. The bubbles are placed symmetrically in the test cases (depicted
in Figure 4) whose results we present in Section 6.2.
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(a) 1 bubble (b) 8 bubble

Fig. 4. 3 Geometries for Realistic Problems

3 Preconditioning Schemes

Preconditioning operation yi = M−1ri involves the preconditioning matrix M
and the residual vector, ri at the i-th iteration. The preconditioner matrix M ,
for our problem, is sparse.

We compare our results to the standard Block Incomplete Cholesky precon-
ditioner (for which M = LLT ). We apply the block structure to A and generate
L as suggested in [10]. The Block Incomplete Cholesky preconditioners in our
results are suffixed with a number like 2n, 4n etc. which denotes the block-size.
So for example in a Block-IC preconditioner with blocksize 8n where the matrix
A has N = n× n unknowns the preconditioner will be named like M−1

Blk−IC(8n).

Since the data parallelism in Block Incomplete schemes is limited by the block-
size (refer [1] for details) we turn our attention to preconditioners that have more
inherent parallelism.

3.1 Neumann Series Based Preconditioning

We define the preconditioning matrix, M = (I +LD−1)D(I +(LD−1)
T
), where

L is the strictly lower triangular part and D is the diagonal of A, the coefficient
matrix. We apply the truncated Neumann Series for approximation of M−1.

Specifically for (I + LD−1) (and similarly for (I + (LD−1)
T
)) the series can be

defined as

(I + LD−1)
−1

= I − LD−1 + (LD−1)
2 − (LD−1)

3
+ · · · if ‖ LD−1 ‖∞< 1.

(2)

In our problem ‖ LD−1 ‖∞< 1, hence the Neumann Series is a valid choice for
approximating the inverse of (I + LD−1). So we can redefine M−1 as

M−1 = (I −D−1LT + · · · )D−1(I − LD−1 + · · · ). (3)

For making our preconditioners (computationally) feasible we truncate the series
(2) after 1 or 2 terms. We refer to these as the Neu1 and Neu2 Preconditioners.
Note that

M−1
Neu1 = (I −D−1LT )D−1(I − LD−1) (4)
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M−1
Neu2 = (I −D−1LT + (D−1LT )

2
)D−1(I − LD−1 + (LD−1)

2
). (5)

We define K = (I − LD−1) for M−1
Neu1 and K = (I − LD−1 + (LD−1)

2
) for

M−1
Neu2. For the preconditioners as given by (4) and (5) we only store LD−1

and calculate KTD−1Kx term-by-term every time required. Every term in the
expansion of M−1x = KTD−1Kx can be (roughly) computed at the cost of one
LD−1x operation. This is around 2N multiplications and N additions. This is
only true for the stencil we discuss in this paper.

4 Deflation

To improve the convergence of our method further we also use a second level of
preconditioning. Deflation aims to remove the remaining bad eigenvalues from
the preconditioned matrix, M−1A. This operation increases the convergence
rate of the Preconditioned Conjugate Gradient (PCG) method. We define the
matrices P = I − AQ,Q = ZE−1ZT , E = ZTAZ, where E ∈ R

d×d is the
invertible Galerkin matrix, Q ∈ RN×N is the correction matrix, and P ∈ RN×N

is the deflation operator. Z ∈ RN×d is the so-called ’deflation-subspace matrix’
whose d columns are called ’deflation’ or ’projection’ vectors. The deflated system
is now

PAx̂ = Pb. (6)

The vector x̂ is not necessarily a solution of the original linear system, since
x might contain components in the null space of PA, N (PA). Therefore this
’deflated’ solution is denoted as x̂ rather than x. The final solution has to be
calculated using the expression x = Qb + PT x̂. The deflated system (6) can
be solved using a symmetric positive definite (SPD) preconditioner, M−1. We
therefore seek a solution of M−1PAx̂ = M−1Pb. The resulting method is called
the Deflated Preconditioned Conjugate Gradient (DPCG) method as listed in

Algorithm 1. Deflated Preconditioned Conjugate Gradient Algorithm

1: Select x0. Compute r0 := b−Ax0 and r̂0 = Pr0, Solve My0 = r̂0 and set p0 := y0.

2: for i:=0,..., until convergence do
3: ŵi := PApi
4: αi :=

(r̂i,yi)
(pi,ŵi)

5: x̂i+1 := x̂i + αipi
6: r̂i+1 := r̂i − αiŵi

7: Solve Myi+1 = r̂i+1

8: βi :=
(r̂i+1,yi+1)

(r̂i,yi)

9: pi+1 := yi+1 + βipi
10: end for
11: xit := Qb+ P Txi+1
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Algorithm 1. We choose Sub-domain Deflation and use piecewise constant de-
flation vectors.We make stripe-wise deflation vectors (see Figure 7) unlike the
block deflation vectors suggested in [7]. These deflation vectors lead to a regular
structure for AZ and, therefore, an efficient storage of AZ.

In order to implement deflation on the GPU we have to break it down into a
series of operations,

a1 = ZT r, (7a)

a2 = E−1a1, (7b)

a3 = AZa2, (7c)

s = r − a3. (7d)

(7b) shows the solution of the inner system that results during the implementa-
tion of deflation.

5 Two Level Preconditioned Conjugate Gradient
Implementation

The implementation of the Deflated Preconditioned Conjugate Gradient(DPCG)
method follows Algorithm 1. The deflation operation requires solving the system
Ea2 = a1 in every iteration. Also a matrix-vector product, AZa2 is required in
every iteration. The first operation can be performed in two different ways as we
will see in Section 5.1. To optimize the second operation we store AZ in such a
format such that we get the same number of operations, memory access pattern
and (approximately) performance as the sparse matrix vector product Ax.

5.1 GPU Implementation of Deflation

We store the matrix A in the Diagonal (DIA) format and follow the implementa-
tion as detailed in [5]. For deflation, every iteration we have to solve the system
Ea2 = a1. This can be done in two ways.

1. Calculating E−1 explicitly so that the E−1a1 becomes a dense matrix-vector
product which can be calculated using the gemv routine from MAGMA
BLAS library for the GPU.

2. Using triangular solve routines from the MAGMA BLAS library. Specifically
we use the dpotrs and dpotrf functions ([12]).

The parallelism available in the second method drops for larger systems com-
pared to the first method which is embarrassingly parallel on the GPU. On the
other hand, in the first method calculation of E−1 (which is only done once
in the setup phase) becomes expensive as the number of deflation vectors in-
creases. In case of our test problem the setup times for the second method are
one-third when compared to the first method (details in [1]). However, this one



42 R. Gupta, M.B. van Gijzen, and C. Vuik

time calculation can make the operation a2 = E−1a1 very quick on the GPU.
So a selection of high-quality deflation vectors (such that d << N), which lead
to a smaller E matrix and hence computationally cheaper inversion provides an
advantage for a GPU implementation.

5.2 Storage of the Matrix AZ

The structure of the matrix AZ stored as an N × d matrix, where d is the
number of domains/deflation vectors, can be seen in Figure 5. In Figures 5 to
7 it must be noted that d = 2n here and N = n × n = 64, n = 8. The AZ
matrix is formed by multiplying the Z matrix (a part of which is shown in the
adjoining figure of matrix AZ in Figure 5) with the coefficient matrix, A. The
colored boxes indicate non-zero elements in AZ. They have been color coded to
provide reference for how they are stored in the compact form. The red elements
are in the same space as the deflation vector. The green elements result from
the horizontal fill-in and the blue elements result from the vertical fill-in. The
arrangement of the deflation vectors (on the grid) is shown in Figure 7. Each
ellipse corresponds to the non-zero part of the corresponding deflation vector in
matrix Z. The trick to store AZ in an efficient way (for the GPU) is to make
sure that memory accesses are coalesced. For this we need to have a look at how
the operation a3 = AZa2 works, where a2 is a d × 1 vector. For each element
of the resulting vector a3 we need an element from at most 5 different columns
of the AZ matrix. Now it must be recalled that in case of A times x we have 5
elements of A in a single row multiplied with 5 elements of x as detailed in [5].
So we start looking at the different colored elements and group them so that the
access pattern to calculate each element of a3 is similar to the Sparse-Matrix

Fig. 5. Parts of Z and AZ matrix. number
of deflation vectors =2n.

Fig. 6. AZ matrix after compression

Fig. 7. Deflation vectors for the 8×8
grid
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Vector Product operation. Wherever there is no element in AZ we can store a
zero. Thus in the compacted form the N × d matrix AZ can be stored in 5N
elements as illustrated in Figure 6. The golden arrows in Figure 6 show how
each thread on the GPU can compute one element when the operation AZa2 is
performed where a2 is a d× 1 vector. The black arrows show the accesses done
by multiple threads. This is similar to the DIA format of storage and calculating
Sparse Matrix Vector Product as suggested in [5].

5.3 Extension to Real (Bubble) Problems and 3D

This storage format can be extended to include bubbles in the domain. In this
case, only the values of coefficients change but the structure of the matrix remains
the same. For a 3D problem, deflation vectors that correspond to planes or stripes
can lead to an AZ matrix that is similar in structure compared to the matrix A
and hence can be stored using the ideas presented in the previous section.

In Figure 8 we provide an example for a 3D scenario in order to explain what
planar and stripe-wise vectors look like. One can notice that stripe wise vectors
are piecewise constant vectors. We briefly talk about stripe-wise vectors. Every
vector has length N . Each vector has ones for the row on which it is defined and
zeroes for the rest of the column. Planar vectors are an extension of stripe-wise
vectors and are defined on n2 cells (have n2 ones and rest of the column has
zeroes). It must be noted that for a 3D problem the number of unknowns or
problem size is N = n3 where n is the size of the grid in any one dimension.

For our experiments in Section 6.2 we use n2 stripe-wise and n planar vectors.

Fig. 8. Planes and stripes for a 83 uniform cubic mesh

6 Numerical Results

We performed our experiments on the hardware available with the Delft Institute
of Applied Mathematics.

– For the CPU version of the code we used a single core of Q9550 @ 2.83 Ghz
with 12MB L2 cache and 8 GB main memory.
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– For the GPU version we used a NVIDIA Tesla(Fermi) C2070 with 6GB
memory.

We use optimized BLAS libraries (MAGMA and ATLAS) on both GPU and
CPU for daxpys, dot products and calculation of norms.

All times reported in this section are measured in seconds. The time we report
for our implementations is the time taken (this excludes the setup time, specif-
ically the steps 2 to 10 in Algorithm 1) for iterations required for convergence.
In our results, speedup is measured as a ratio of this iteration time on the CPU
versus the GPU. The effect of setup time vis-a-vis the iteration time is reported
in detail in [1] (Figure 11 and 12 in Appendix A for quick reference). The setup
phase includes the assigning and initializing the memory and the operations
required to be done before entering the iteration loop, namely,

1. Assigning space to variables required for temporary storage during the iter-
ations.

2. Making matrix AZ.
3. Making matrix E.
4. Populating x, b.
5. Doing the operations as specified in the first line of Algorithm 1 in Section 4.

It also involves the setup for the operation Ea2 = a1 using either of the two
approaches mentioned in Section 5.1.

6.1 Stripe-Wise Deflation Vectors - Experiments with 2D Test
Problem

For the 2D problem we have used 2n deflation vectors unless otherwise men-
tioned. For the DPCG implementation which uses Block Incomplete Cholesky
as the first-level preconditioner, the difference in speedup between the two differ-
ent implementations to compute coarse grid solution (Ea1 = a2) as mentioned
in the previous section is negligible (Figure 9 in Appendix A). This is due to the
fact that in this case the majority of the time is spent in the preconditioning step
and it dominates the iteration time, so the effect of the deflation operation is
overshadowed. However, for the Truncated Neumann Series based precondition-
ers the difference between GPU and CPU execution times is significant (Figure
10 in Appendix A) since preconditioner is highly parallelizable. Consequently
the choice of inner solve in the deflation step becomes decisive in the length
of execution time. The speedup attainable for the complete solver with explicit
inverse (E−1) based calculation of a2 is four times that of the triangular solve
strategy (Figure 10 in Appendix A). A comparison of how the wall-clock times
for the different preconditioning algorithms vary for the DPCG method is pre-
sented in Table 1. Grid Size is N = 1024 × 1024, n = 1024 and 2n deflation
vectors have been used. These times and number of iterations shown in Table 2
are presented for the deflation implementation with explicit E−1 calculation.

In Table 2 we present the number of iterations required for convergence of
different preconditioning schemes. The number of iterations is not affected by
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Table 1. Wall Clock Times for DPCG on a 2D problem with N = 1024 × 1024

Preconditioning Variant CPU GPU

M−1
Blk−IC(2n) 28.4 9.8

M−1
Blk−IC(4n) 25.48 10.15

M−1
Blk−IC(8n) 22.8 11.28

M−1
Neu1 20.15 1.29

M−1
Neu2 25.99 1.47

Table 2. Iterations required for Convergence of 2D problem using DPCG with 2n
deflation vectors

Grid Sizes

Preconditioning Variant 1282 2562 5122 10242

M−1
Blk−IC(2n) 76 118 118 203

M−1
Blk−IC(4n) 61 98 98 178

M−1
Blk−IC(8n) 56 86 91 156

M−1
Neu1 76 117 129 224

M−1
Neu2 61 92 101 175

the choice of implementations for the Deflation Method discussed in Section
5.1. It can be noticed that the results for the second type (Neu2) of Neumann

Series based Preconditioner (with K = (I − LD−1 + (LD−1)
2
)) lie between the

Block-IC scheme with block sizes 4n and 8n.

6.2 Stripe and Plane-Wise Deflation Vectors - Experiments with
3D Problems

It is possible to use stripes for 3D problems and problems involving bubbles as
well. However, stripe-wise deflation vectors are not the best choice one can make
for the deflation subspace. For 3D experiments we measure our results against
an optimized CPU implementation that utilizes Sub-domain deflation vectors
(block-shaped vectors). Block vectors do not suit the storage pattern that we
have utilised for this study but they can also give good results. In Table 3 and
4 we see the results for a case when we have 3D geometries. For the first set of
results presented in Table 3 the geometry is that of slabs of different material. It
must be noted now that N = n3 and not n2. The computational domain is now
a unit cube. We present the results with n plane and n2 stripe-wise deflation
vectors. There are three slabs in the unit cube. The middle slab is 0.5 units thick.
Its density is 10−3 times the density of the surrounding slabs.

As we can see in the results of Table 3 the speedup drops. This is a consequence
of the fact that the inner system takes a lot of time to solve now and the data
structure and the associated kernels for the operation AZa2 do not perform
very well for very large number of deflation vectors. Moreover, if more (n2)
vectors are used the setup times become prohibitive and there is no speedup
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Table 3. 3D Problem (1283 points in the grid) with 3 layers. Middle layer 0.5 units
thick. Tolerance set at 10−6. Density contrast 10−3. Comparison of CPU and GPU
implementations.

CPU1 GPU2

8 block vectors 128 plane vectors 16384 stripe vectors

DICCG(0) DPCG(neu2)

Number of Iterations 206 324 259

Setup Time 0.3 0.36 148.5

Iteration Time 35.18 7.66 112

Speedup - 4.59 −

at all. The iteration times are high since we use the triangular solve method
for inner system. In Table 4 we continue to have a unit cube but instead of
slabs of different material we now consider bubbles in the system. In particular,
we have a single bubble with its center coinciding with the center of the cube
and another case when we have eight bubbles, 2 in each dimension and equally
spaced (refer Figure 4). It can be noticed from the results that the speedup
becomes worse for the problem with more bubbles and that can be explained by
the fact that stripe-wise vectors cut the bubbles and are poor approximations of
the eigenvectors of the preconditioned matrix.

Table 4. 3D Problem (1283 points in the grid) with 1 and 8 bubbles. Tolerance set at
10−6. Density contrast 10−3. Comparison of CPU and GPU implementations.

1 bubble

CPU1 GPU2

8 block vectors 128 plane vectors

DICCG(0) DPCG(neu2)

Number of Iterations 237 287

Setup Time 0.31 0.64

Iteration Time 40.44 6.79

Speedup - 5.95

8 bubble

Number of Iterations 142 402

Setup Time 0.3 0.36

Iteration Time 24.4 9.51

Speedup - 2.56

In Tables 3 and 4 the GPU version uses triangular solves for the inner system
since with explicit solve and stripe-wise vectors the round-off errors in the solu-
tion of the inner system (due to explicit inverse calculation) grow very quickly

1 CPU version uses CG for inner system solve.
2 GPU version uses triangular factorization based inner solve.
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and convergence is never achieved. We only show the results with n vectors in
Table 4 since with n2 vectors there is no speedup.

7 Conclusions and Future Work

We have shown how two level preconditioning can be adapted to the GPU for
computational efficiency. In order to achieve this we have investigated precondi-
tioners that are suited to the GPU. At the same time we have made new data
structures in order to optimize deflation operations.

Through our results we demonstrate that the combination of Truncated Neu-
mann based preconditioning and deflation proves to be computationally efficient
on the GPU. At the same time its numerical performance is also comparable to
the established method of Block-Incomplete Cholesky Preconditioning.

The approach of using stripe-wise vectors is applicable to 3D problems and
problems with bubbles in the domain. However, these deflation vectors, though
simple to implement are not the most effective choice for the deflation of more
ill-conditioned problems.

Through this study we have learnt that the choice made in the implementation
of deflation method is crucial for the overall run-time of the method. We are now
continuing to extend our work on 3D problems with bubbles. We believe that the
approach of calculating inverse of the matrix E explicitly can be very effective
for the GPU. In order to overcome the possibly large setup time of this scheme
and to avoid delayed convergence we are now working on better deflation vectors
based on Level-Set Sub-domain deflation. A small number of these vectors can
capture the small eigenvalues and result in an effective deflation step (this is
discussed in [7]). This directly translates to a low setup time and overall gain in
this approach of implementing deflation.

A Detailed Results

Fig. 9. Comparison of Explicit versus
triangular solve strategy for DPCG.
Block-IC Preconditioning with 2n, 4n
and 8n block sizes.

Fig. 10. Comparison of Explicit ver-
sus triangular solve strategy for DPCG.
Neumann Series based Preconditioners
M−1 = KTD−1K, where K = (I −
LD−1 + (LD−1)

2
)
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(a) CPU (b) GPU

Fig. 11. Setup Time as percentage of the total (iteration+setup) time for triangular
solve approach across different sizes of deflation vectors for DPCG

(a) CPU (b) GPU

Fig. 12. Setup Time as percentage of the total (iteration+setup) time for explicit E−1

approach across different sizes of deflation vectors for DPCG
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Abstract. The QR decomposition with column pivoting (QRP) of a
matrix is widely used for rank revealing. The performance of LAPACK
implementation (DGEQP3) of the Householder QRP algorithm is limited
by Level 2 BLAS operations required for updating the column norms.
In this paper, we propose an implementation of the QRP algorithm us-
ing a distribution of the matrix columns in a round-robin fashion for
better data locality and parallel memory bus utilization on multicore
architectures. Our performance results show a 60% improvement over
the routine DGEQP3 of Intel MKL (version 10.3) on a 12 core Intel Xeon
X5670 machine. In addition, we show that the same data distribution is
also suitable for general purpose GPU processors, where our implemen-
tation obtains up to 90 GFlops on a NVIDIA GeForce GTX480. This is
about 2 times faster than the QRP implementation of MAGMA (version
1.2.1).

Topics. Parallel and Distributed Computing.

1 QR Decomposition with Column Pivoting

The QR decomposition with column pivoting (QRP) is proposed for computing
a rank revealing QR factorization (RRQR) [7]. Although QRP may fail to reveal
the numerical rank correctly, it is still a popular and economical method in
many applications. The QRP is also used as the first step to more robust RRQR
methods [2,8] and for accelerating a Jacobi method for computing the singular
value decomposition [5,6].

The QRP decomposition of A ∈ R
m×n is defined by an orthonormal Q and a

upper triangular matrix R such that

AP = QR,

where P is a permutation matrix chosen so that

|r11| ≥ |r22| ≥ · · · ≥ |rnn|

M. Daydé, O. Marques, and K. Nakajima (Eds.): VECPAR 2012, LNCS 7851, pp. 50–58, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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and moreover, for each i,

|Rii| ≥ ‖R(k:j,j)‖2 for j = i+ 1, . . . , n.

An outline of the Householder QRP algorithm is shown in Algorithm 1. Note
that the formula for the column norm updating is simplified here. The current
LAPACK implementation uses a more robust approach [4]. The omitted detail
is not relevant to the parallelization discussed in this paper.

Algorithm 1. QR decomposition with column pivoting

1 p1:n = 1 : n
2 c1:n = ‖Ae1:n‖22
3 for j = 1 : n
4 Choose i such that ci = max(cj:n)
5 if i �= j
6 swap(pi, pj); swap(Ai, Aj); swap(ci, cj)
7 end
8 Determine a Householder matrix Hj such that
9 HjAj:m,j = ±‖Aj:m,j‖2e1
10 Aj:m,j+1:n = HjAj:m,j+1:n

11 cj+1:n = cj+1:n −Aj,j+1:n · Aj,j+1:n

12 end

The main difference among the various implementations of Algorithm 1 is
how the Householder reflectors are applied. Since a Householder reflector H is a
rank-one modification of the identity,

H = I − τvvT ,

its application requires the computation

HA = A− τvvTA,

which can be implemented using three levels of BLAS. The current LAPACK
implementation (xGEQP3) is block based. It groups several rank-one updates for
exploiting the Level 3 BLAS operations [9].

Figure 1 shows the performance of Intel MKL1 routine DGEQP3 on a 12 core
(6 cores per socket) Intel Xeon X5670 machine. Here the execution is set up to
use one thread per core. The poor performance of DGEQP3 compared to DGEQRF

is because of the extensive use of the Level 2 BLAS operation DGEMV for column
norm updates, which is limited by the memory bandwidth and do not scale with
the number of cores. Figure 2 shows the amount of time spent by DGEQP3 on calls
to DGEMV and DGEMM relative to the total execution time on the same platform.
The reported amount of time for DGEMV does not include the unblocked part of
DGEQP3 which processes the last block of the matrix.

1 Intel MKL version 10.3 http://software.intel.com/en-us/intel-mkl

http://software.intel.com/en-us/intel-mkl
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Fig. 1. Performance of Intel MKL routines DGEMM, DGEQRF, and DGEQP3 on a 12 core (6
cores per socket) Intel Xeon X5670 machine

Fig. 2. Execution time in percentage of Intel MKL routines DGEMV and DGEMM in DGEQP3

on a 12 core (6 cores per socket) Intel Xeon X5670 machine

Although DGEQP3 uses the Y TY T representation [10] like DGEQRF, it is not
fully blocked because of the column norm updating. The column norm updating
requires to compute the row vector vTA for each Householder reflection applied
to A. DGEQP3 updates the columns of A every k (block size) times. However, it
still has to fetch the whole trailing matrix for the matrix-vector product. As the
matrix size gets too large to fit entirely in cache memory, the performance of
DGEQP3 decreases to the level of DGEMV.
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2 Parallel QRP for Multicore Processors

The design of LAPACK DGEQP3 routine is to enclose parallelism inside BLAS
routines. In a typical multicore implementation this means that each BLAS
routine contains at least one OpenMP parallel section. Therefore, for each call
to BLAS, a whole set of threads is started and stopped. This thread manage-
ment overhead is negligible for Level 3 BLAS operations, but it could be very
significant for Level 1 and 2 BLAS operations due to the low computational in-
tensity, namely, the low average number of floating point operations per memory
access.

In contrast, we propose the following Algorithm 2 to use only one OpenMP
parallel section. The parallelism here is not inside BLAS operations, but among
the vector computations required for all columns. The critical parts of the algo-
rithm are implemented with synchronization primitives, which is more efficient
than starting and stopping threads.

Algorithm 2 is a block algorithm, where the block size is denoted as b. We
assume without loss of generality that the matrix size is an exact multiple of
b. The loop from lines 6 to 29 performs the panel factorization, that is, the
QR factorization of the first b columns. The only sequential part of this loop
is the pivot selection and computation of the Householder transform (lines 7 to
13). The rest of the loop updates the matrix F used to accumulate part of the
Householder matrices application,

H1H2 · · ·HkA = A− Y TY TA = A− Y FT .

The last loop in Algorithm 2 applies the Householder matrices to the rest of
the matrix (lines 30 to 35). Recent work on using a parallel cache assignment
approach to speed up the panel factorization can be found in [3].

Algorithm 2 processes the columns of the matrix in their natural order from
left to right. On a parallel machine, it is natural to group the processors into a
logical ring and deal columns in a round-robin fashion. This technique staggers
the computation across the processors and guarantees a load balanced compu-
tation. This distribution was first proposed in the context of the parallel imple-
mentation of a QR decomposition with local pivoting [1]. The selection of which
columns are processed by each thread is not left to the OpenMP runtime, but
explicitly controlled in lines 8, 15, and 31.

With the column cyclic distribution, each thread is ensured to work with the
same subset of matrix columns during all the processes. If the OpenMP runtime
guarantees processor affinity, this will provide good memory locality at the lower
levels of memory hierarchy. This is important in modern multicore processors
where each core has typically its own L1 cache. As each thread works only with a
subset of the columns, there is a good probability of accessing a column already
stored in the L1 cache inside the core associated with this thread.
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Algorithm 2. OpenMP parallel QRP using column cyclic distribution

1 p1:n = 1 : n
2 #pragma omp parallel

3 i = omp get thread num(); t = omp get num threads()

4 c1:n = ‖Ae1:n‖22
5 for r = 1 : b : n− 1
6 for k = 1 : b
7 #pragma omp barrier

8 if r + k − 1 mod t = i
9 Choose u such that cu = max(cj:n)
10 if u �= j then swap(pu, pj); swap(Au, Aj); swap(cu, cj)
11 Apply previous transformations to Aj ← Aj + Y FT

12 Determine Householder matrix Hj

13 end
14 #pragma omp barrier

15 for j = r : r + k − 1
16 if j mod t = i then Tj−r+1,k = −τr+kYr+k−1Yj

17 end
18 #pragma omp barrier

19 for j = r : n
20 if j mod t = i
21 Fk,j = F:,jT:,k

22 if j > r + k − 1
23 Fk,j ← Fk,j − τr+kYr+k−1Aj

24 Ar+k−1,j ← Yr+k−1,:F
T
:,j

25 cr = cr −A2
j,r

26 end
27 end
28 end
29 end
30 #pragma omp barrier

31 for j = r + b : n
32 if j mod t = i
33 Aj:m,j ← Aj:m,j + FT

:,jYj,:

34 end
35 end
36 end

As the number of cores increases on modern multicore processors, the archi-
tecture is gearing towards a non-uniform memory access (NUMA) model. On
these architectures, each core has direct access to a part of the memory, but the
rest of the memory must be accessed via some communication network to other
core. This network is implemented by the cache hardware and is transparent to
the user. Therefore, these processors can be still programmed using the same
shared memory model as previous multicore processors. However, the memory
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Fig. 3. Performance comparison of the proposed algorithm and Intel MKL routine
DGEQP3 on a 12 core (6 cores per socket) Intel Xeon X5670 machine

access latency could have large variations depending on which part of the mem-
ory is accessed. In order to get good performance on these processors, techniques
from the distributed memory programming paradigm can be used to reduce the
communication among cores.

By the column distribution of Algorithm 2, a straightforward memory distri-
bution can be easily derived. The memory physically close to each core should
contain the columns updated by the thread associated to this core. This can be
implemented in current operating systems by allocating and filling this memory
from the thread itself. This technique is known in the literature as first touch
policy. As Algorithm 2 creates all threads at the start, this initialization can be
efficiently performed at the start of the process.

To guarantee that each consecutive column is stored in a different physical
memory page, the matrix must padded so the column length is a multiple of the
page size. This memory overhead could be important for small matrices, because
the typical page size on current platforms is 4096 bytes.

3 Performance Results

Figure 3 shows the results from an OpenMP implementation of Algorithm 2 on
a 12 core (6 cores per socket) Intel Xeon X5670 machine. Here the execution of
the proposed algorithm is set up to use one thread for each available core. The
block size for the proposed algorithm is set to 48, which it has been determined
empirically as the optimal for the platform. Moreover, the performance of the
proposed algorithm includes the cost of initializing the data distribution from
the standard Fortran matrix storage.

The proposed algorithm shows about 60% improvement over the optimized
DGEQP3 in Intel MKL for the matrix sizes tested. This improvement comes from
the data distribution, which allows faster memory access as a result of better data
locality and parallel memory bus utilization. Moreover, the proposed algorithm
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Fig. 4. Performance of the proposed GPU implementation and MAGMA implementa-
tion of xGEQP3 on NVIDIA Tesla C2050

has less thread management overhead than the implementation which keeps
parallelism inside BLAS operations.

4 Parallel QRP for GPU Processors

In order to achieve good performance on a general purpose GPU processor, the
computation must be divided into independent parallel subtasks. Moreover, each
subtask must be also suitable to efficient parallelization by a certain number of
processors (typically a multiple of 32). The parallel distribution of Algorithm 2
can be easily adapted to the GPU parallel model, assigning each column to a
block of threads. If the matrix is sufficiently large, there is enough work to keep
all processors in a block busy, and enough blocks to keep the whole GPU busy.
The main difference with the multicore version is that the memory distribution is
not required, because the memory access on current GPU processors is uniform.

Figures 4 and 5 compare the GPU performance of Algorithm 2 and MAGMA’s
xGEQP3 routines2 on two NVIDIA Fermi platforms. In single precision, the GPU
implementation of Algorithm 2 obtains about 60 GFlops on Tesla C2050 and 90
GFlops on GeForce GTX480. This is about two times faster than the MAGMA
implementation using the same hardware. The improvement is because our im-
plementation runs entirely on the GPU, with no memory transfers from the
CPU. In contrast, the panel factorization of xGEQP3 in MAGMA is performed
on the CPU and the trailing matrix update on the GPU. This approach works
quite well for the LU decomposition with partial pivoting and the QR without

2 MAGMA version 1.2.1 released on June 29, 2012. http://icl.cs.utk.edu/magma/

http://icl.cs.utk.edu/magma/
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Fig. 5. Performance of the proposed GPU implementation and MAGMA implementa-
tion of xGEQP3 on NVIDIA GeForce GTX480

pivoting, because the panel factorization can be computed in parallel while the
GPU is still updating the trailing matrix with the previous block. However, the
overlap of computation and communication is not possible for the QR decom-
position with pivoting. The pivoting criteria requires that the trailing matrix
update must be completed before starting the panel factorization.

The performance results confirm that the QRP decomposition is limited by
memory speed. Therefore a GPU platform is more adequate for computing the
QRP than a traditional CPU because of raw memory bandwidth. Another inter-
esting observation is that the low-end GeForce GTX480 obtains better perfor-
mance than the high-end Tesla C2050 even in double precision. This is because
the C2050 has less memory bandwidth (in part due to ECC checking, which
could not be disabled in our experiments).

5 Conclusions

We proposed a parallel algorithm for computing the QRP decomposition on mul-
ticores. This algorithm uses a column cyclic memory distribution and only one
parallel OpenMP section. With the column cyclic distribution each processor
works with a subset of the columns, improving memory access bandwidth and
data locality. Moreover, it has lower thread management overhead than the im-
plementations which only use parallelism inside BLAS operations. The proposed
algorithm is about 60% faster than Intel MKL routine DGEQP3 on a 12 core Intel
Xeon X5670 machine.

Although the column cyclic data distribution is not required on a GPU, the
same strategy is employed to allocate work among the processors. Our CUDA
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implementation of the QRP is about 2 times faster than the MAGMA version
of xGEQP3 on NVIDIA Fermi GPUs. Our implementation runs entirely on the
GPU, while MAGMA’s implementation splits the work between CPU and GPU,
which requires expensive data transfers. In other decompositions, such as LU or
QR, these transfers can be overlapped with computations, but this optimization
cannot be applied to QRP because of the pivoting selection criteria.
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Abstract. A high-performance SYMV kernel is implemented on Fermi-
core GPUs using an atomic-operation based algorithm. The algorithm
is effective for the memory bandwidth and reduced memory usage. On
a Tesla C2050, sustained double-precision and single-precision perfor-
mances of approximately 43 GFLOPS and 78 GFLOPS, respectively,
were achieved. The proposed SYMV kernel also performs on a GeForce
GTX580 with 72 GFLOPS and 128 GFLOPS in the double-precision and
single-precision modes, respectively. The proposed SYMV kernel out-
performs major CUDA BLAS kernels, CUBLAS, MAGMABLAS, and
CULA-BLAS. This performance improvement has a significant impact
when the SYMV kernel is plugged into user codes.

1 Introduction

In the development of our eigensolver [1], it was very difficult to speed up House-
holder tridiagonalization. Detailed cost analysis revealed the cost of the kernel
SYMV to be extremely high, and cost reduction is a very important problem.
With emerging GPGPU, costly kernels such as SYMV and SYR2K in House-
holder tridiagonalization can be accelerated. Nath et al. [2] reported the opti-
mization of the SYMV kernel in their MAGMABLAS library, which had faster
performance than the CUBLAS library. Consequently, their Householder tridi-
agonalization routine, magma dsytrd, performs very well. In the present paper,
we present a new implementation of the SYMV kernel in order to realize a new
eigenvalue solver, and we demonstrate the performance of this kernel on a sin-
gle Fermi core GPU, such as an NVIDIA Tesla C2050 or an NVIDIA GeForce
GTX580.

2 SYMV Kernel

The SYMV is a kernel function for a symmetric-matrix vector product and is
categorized in Level 2 BLAS. Since the cost of operation and the amount of data
in SYMV are each O(n2), performance bounds are based on memory bandwidth.

M. Daydé, O. Marques, and K. Nakajima (Eds.): VECPAR 2012, LNCS 7851, pp. 59–71, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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It is difficult to achieve sufficient performance on a general CPU, on which the
memory bandwidth is limited to at most 30 or 40 [GB/s]. Therefore, better
performance is expected to contribute to a wider global memory bandwidth of
the GPU (140 [GB/s] on a GTX280, for example). Compared with other Level
2 kernels (GEMV, for example), the symmetry of the matrix helps to reduce
data accesses between memory and processor. In other words, improving the
algorithm is expected to provide higher performance.

2.1 SYMV Algorithms

Taking symmetry into account, the Fortran code can be written as follows:

w(1:n)=0

do i=1,n

y0=0

do j=1,i-1

y0 =y0 +a(j,i)*x(j)

w(j)=w(j)+a(j,i)*x(i)

enddo

y(i)=y0+a(i,i)*x(i)

enddo

y(1:n)=y(1:n)+w(1:n)

The vector w, which can be replaced by y, is introduced in order to clarify
the CUDA algorithm. Based on the source lines shown above, the framework
of the SYMV algorithm specified with the ‘U’ option for a CUDA environment
is presented in Figure 1. The algorithm is divided primarily into three kernels:
pre-processing (corresponding to w(1:n)=0)), post-processing (corresponding to
y(1:n)+=w(1:n)), and the main process. The main kernel consists of three parts,
calculation on non-diagonal blocks, calculation on a diagonal block, and sumup
of the registers on each thread. In Figure 1, the outer-most loop represented
by counter i is expanded UX times, and the thread-block is organized into a
one-dimensional array of threads, where BLOCK SIZE is the number of threads
issued.

Since Figure 2 shows the data access pattern for a specific thread-block rep-
resented in block.id, data updating of vector w is performed by multiple thread-
blocks. In order to secure updating of vector w, we need an exclusive control
mechanism. There are several variations of implementations in which vector w
is multiplexed and exclusive (or mutex) control is fully obligated. In the remain-
der of this section, we would like to explain three algorithms with regard to an
exclusive control mechanism on the SYMV kernel.

2.2 Atomic Algorithm

The algorithm shown in Figure 3 (top) uses atomic operations or a mutex mech-
anism, and so is referred to as the Atomic algorithm. Since CUDA 4.x does not
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<01> // variable n refers to the dimension of the matrix A.
<02> // variables y{∗} and w{0} refer to registers.
<03> // array s is on shared memory.
<04> // assume blockDim>=UX.
<05> // sumup adds up the value of the specified register in a block.
<06> kernel kernel preprocess
<07> set j := thread.id + block.id ∗ block.Dim.
<08> if j < n then
<09> w[j] := 0.
<10> endif
<11> endkernel
<12> kernel kernel main
<13> define j ≡ j̃ + thread.id.
<14> foreach (thread, block) do
<15> set i:=UX*block.id.
<16> y{0} := . . . := y{UX−1} := 0.
<17> // part one / sweep along the column block
<18> CORE of either the Algorithm Atomic, Blocked, or Ticket in Fig. 3
is called here.
<19> // part two / calculation on a diagonal part
<20> for j̃:=thread.id to UX-1 do
<21> s(thread.id, j) := s(j, thread.id) := a(i+thread.id, i+ j).
<22> endfor
<23> sync threads in a block
<24> if thread.id<UX then
<25> y{k} += s(thread.id, k) ∗ x[i+ k] for k ∈ [0,UX).
<26> endif
<27> // part three
<28> s(k, thread.id) := sumup(y{k}) for k ∈ [0,UX).
<29> if thread.id<UX then
<30> y[i+ thread.id] += s(thread.id, thread.id).
<31> endif
<32> endfor
<33> endkernel
<34> kernel kernel postprocess
<35> set j := thread.id + block.id ∗ block.Dim.
<36> if j < n then
<37> y[j] += w[j], or y[j] +=

∑
w(j, :).

<38> endif
<39> endkernel

Fig. 1. Framework of the SYMV Algorithm
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Fig. 2. Schematic diagram of the data access pattern on the SYMV kernel

support atomicAdd for double precision, critical section controls (mutex lock
and unlock) are implemented using atomicCAS and atomicExch functions.

In our implementation, the atomic functions are issued on the master threads
to avoid incurring the serialization of all working threads. Thus, loss of thread
serialization can be minimized. Following the CUDA thread model, it is reason-
able to secure the update of vector w, even if the operations to be in the Atomic
algorithm are relatively small. Consequently, we expect that the total cost on
exclusive controls is reduced. This lock-and-unlock mechanism is a general model
and can be applied to other BLAS kernel implementations, such as GEMV and
spMV, to reduce memory usage on working buffers.

2.3 Blocked Algorithm

Figure 3 (middle) shows the variation for exclusive control of the Atomic algo-
rithm. This algorithm adds a second index to the variable w and requires no
exclusive control. Thus, data access to w is implicitly blocked, and we refer to
this algorithm as the Blocked algorithm. This is also known as the ‘scatter and
gather technique’. From the viewpoint of the multiplicity of vector w, this is
similar to the algorithm adopted in MAGMABLAS when UX=1.

2.4 Ticket Algorithm

On the other hand, we can generate another intermediate algorithm between the
Atomic algorithm and the Blocked algorithm. In Figure 3 (bottom), vector w
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// CORE of the Atomic Algorithm
for j̃:=0 to i− 1− thread.id step BLOCK SIZE do

y{k} += a(j, i+ k) ∗ x[j] for k ∈ [0,UX).
w{0} :=

∑
k∈[0,UX)

a(j, i+ k) ∗ x[i+ k].

// equivalent to atomic (w[j] += w{0}) in the CUDA semantics.
mutex lock @ the masterthread and syncthreads.
w[j] += w{0}.
syncthreads and mutex unlock @ the masterthread.

endfor

// CORE of the Blocked Algorithm
for j̃:=0 to i− 1− thread.id step BLOCK SIZE do

y{k} += a(j, i+ k) ∗ x[j] for k ∈ [0,UX).
w{0} :=

∑
k∈[0,UX)

a(j, i+ k) ∗ x[i+ k].

w(j, block.id) += w{0}.
endfor

// CORE of the Ticket Algorithm
ticket id = get ticket id( ).
for j̃:=0 to i− 1− thread.id step BLOCK SIZE do

y{k} += a(j, i+ k) ∗ x[j] for k ∈ [0,UX).
w{0} :=

∑
k∈[0,UX)

a(j, i+ k) ∗ x[i+ k].

w(j, ticket id) += w{0}.
endfor

// ‘int Ticket id master’ is initialized at the preprocessing step.
device int function get ticket id( )

shared int shred buff;
if is master thread then

shared buff := atomicInc( &Tickect id master, gridDim.x );
endif
syncthreads; block id := mod(shared buff, M); syncthreads
return block id

end function

Fig. 3. Core Algorithms (Top: Atomic, Middle: Blocked, Bottom: Ticket)
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is multiplexed M times (M should be a multiple of the number of SM’s). This
limits mutex control among activated thread-blocks and consequently reduces
the number of atomic operations. In this case, since exclusive control is open
not only for a single thread-block but also for multiple thread-blocks, this algo-
rithm is similar to a seat reservation model, such as for reserving train tickets.
Therefore, this algorithm is referred to as the Ticket algorithm.

2.5 Another Kernel Implementation (L+U Algorithm)

There is another implementation of SYMV. A symmetric matrix A is represented
by the sum of upper and lower triangle matrices by taking into account the
symmetry of the matrix

A = L+D + U = L̃(= L+D) + U(= Lt).

Using the decomposition, SYMV can be calculated by Ax = L̃x+ Ux. We refer
to the above expression as the L+U algorithm, which can be easily implemented
using GEMV kernels modified for upper and lower triangle matrices. In the
present paper, the GEMV kernel codes presented in [3] are modified and used for
the SYMV kernel. Since this algorithm requires two kernels, the upper triangular
part (Ux) and the lower triangular part (L̃x), the overhead to start up GPU
kernels is quite small. Therefore, the L+U algorithm offers better performance
when the matrix dimension is small.

2.6 Pointer Redirection Optimization

Pointer redirection [2] is an optimization technique for CUDA programming that
produces coherent running threads on a specific loop. When all of the threads
in a thread-block proceed with the loop and a number of these threads access
out of bound on array accesses, invalid pointers are modified in order to access
proper addresses. In the present case, invalid accesses to matrix a and vector
x are adjusted to access their top element. In the case of vector w, an invalid
pointer is redirected to a dummy variable on global memory in order to protect
w from an invalid overwrite.

3 Experiment Results

The primary experiments were conducted on an NVIDIA Tesla C2050 GPU and
an NVIDIA GeForce GTX580, and we use an NVIDIA GeForce GTX280 for a
preliminary test. Their specifications and software environment are summarized
in Table 1. All of the performance tests include only kernel execution without
host-device data transfer. In other words, CUDA BLAS kernels operate in the
non-thunking mode. The performance parameters (BLOCK SIZE, UX) are cho-
sen to be (256, 16) and (128, 26) for the DP and SP modes, respectively.
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Table 1. Hardware and software specifications of GPU’s used in the present study
(∗Theoretical peak performance is referred from [5])

Tesla C2050 GTX580 GTX280

The core architecture Fermi Fermi GT200
The number of CUDA cores 448 512 240
Processor core clock [GHz] 1.15 1.544 1.296

Peak performance [DP/SP GFLOPS]∗ 515/1030 393/1573 78/933
Memory capacity [GB] 3 1.5 1

Memory bandwidth [GB/s] 144 192.4 141.7

Host CPU Core i7-860 Core i7-2600K Phenom 9750
Frequency [GHz] 2.8 3.4 2.4

CUDA Compute Capability 2.0 2.0 1.3
CUDA version 4.0 4.1 4.1

NVIDIA Linux driver 275.09.07 295.71 295.71
GNU gcc version 4.4.5 4.5.3 4.5.3

3.1 Preliminary Performance Prediction

We first theoretically discuss the performance bound for the SYMV. As a re-
sult of symmetry, memory access to an element of matrix A corresponds to two
multiply-add operations. Thus, the memory requirement per DP operation is
computed by ‘BF’ := sizeof(element)[Byte]/4[flop] = 2 [Byte/flop]. Based on
the benchmark reports, e.g., [4], the sustained memory bandwidth of a C2050
with ECC switched on is calculated to be approximately 99 [GB/s]. The opti-
mal SYMV performance is 99/BF [GFLOPS]. Therefore, the SYMV kernel is
bounded by 49.5 and 99 [GFLOPS] in cases of the DP and SP modes,
respectively.

3.2 Comparison of Four Algorithms

The Atomic, Ticket, and Blocked algorithms have no difference in the core com-
putation part, except for exclusive operation and sumup of vector w. Table 2
summarizes the differences in parts 1 and 3 of these algorithms. Table 2 indi-
cates that the Atomic algorithm has a significant advantage with respect to the
cost of w, the computational cost, and memory usage. In contrast, the Atomic
algorithm requires far more atomic operations than other algorithms.

Here, we should have two scenarios according to the cost of the atomic oper-
ations. If the cost of atomic operations is too high, we expect Atomic > Ticket
< Blocked. Thus, the Ticket algorithm has an advantage in such cases. On the
other hand, if the cost of atomic operations is small, we expect Atomic < Ticket
< Blocked, which leads us to select the Atomic algorithm.

Table 3 shows the elapsed time and the overhead cost for the above three
algorithms as well as the L+U algorithm on an NVIDIA Tesla C2050. Tables
2 and 3 suggest that the overhead cost is proportional to the memory usage of
w. This tendency was reported by Nath et al. [2], and the results of the present
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Table 2. Complexity analysis for three algorithms (L ≡ �N/BLOCK SIZE�)

words of
extra data

cost of
sumup w

max(atomic ops.
per thread-block)

Atomic N + L N 2L
Ticket NM +M NM 2
Blocked N�N/UX� N�N/UX� 0

Table 3. Analysis of SYMV calculation for four algorithms in the DP mode on a Tesla
C2050 (top: total time [s], bottom: overhead time [s])

matrix dimension
1,000 2,000 4,000 6,000 8,000

Atomic
.252E-3 .395E-3 .968E-3 .189E-2 .319E-2
.118E-3 .126E-3 .127E-3 .119E-3 .124E-3

Ticket
.429E-3 .611E-3 .127E-2 .234E-2 .380E-2
.306E-3 .343E-3 .383E-3 .407E-3 .450E-3

Blocked
.426E-3 .632E-3 .160E-2 .294E-2 .492E-2
.266E-3 .376E-3 .694E-3 .103E-2 .159E-2

L+U .139E-3 .406E-3 .147E-2 .321E-2 .566E-2

Table 4. Analysis of SYMV calculation for four algorithms in the DP mode on a
GeForce GTX280 (top: total time [s], bottom: overhead time [s])

matrix dimension
1,000 2,000 4,000 6,000 8,000

Atomic
.275E-2 .514E-2 .914E-2 .110E-1 .149E-1
.387E-4 .364E-4 .399E-4 .405E-4 .400E-4

Ticket
.398E-3 .579E-3 .119E-2 .211E-2 .347E-2
.236E-3 .264E-3 .305E-3 .360E-3 .415E-3

Blocked
.346E-3 .556E-3 .142E-2 .270E-2 .454E-2
.236E-3 .289E-3 .503E-3 .855E-2 .139E-2

L+U .167E-3 .470E-3 .163E-2 .361E-2 .624E-2

study are similar. Furthermore, the cost of atomic operations is not significant
compared to the total computational time. Table 4 also shows the elapsed time
and the overhead cost for an NVIDIA GeForce GTX280, which is prior to the
Fermi GPU core architecture. Since the costs of the Ticket algorithm and the
Blocked algorithm on a GeForce GTX280 are almost equivalent to those on
a Tesla C2050, the large performance difference between a Tesla C2050 and a
GeForce GTX280 stems from the cost of the atomic operations. A technical
paper by NVIDIA reported that a Fermi core adopts fast and greatly improved
atomic memory operations, compared to GT200 cores [6], and that the cost
of atomic operations on a GTX280 is quite high. The Ticket algorithm is a
better algorithm in such a case. Thus, the Atomic algorithm has better overall
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performance than the Ticket and Blocked algorithms in the case of the current
Fermi core architecture. However, if the cost imbalance between calculation and
atomic operations is severe in a future architecture, the selected algorithm will
differ.

Furthermore, Tables 3 and 4 suggest that the L+U algorithm performs with
a tiny overhead. In fact, the L+U algorithm has better performance when the
matrix dimension is smaller (N = 1, 000). Therefore, on a Tesla C2050, we switch
the algorithm in the DP mode, using the L+U algorithm when N < 2, 020 and
the Atomic algorithm when N ≥ 2, 020. In the case of the SP mode, the border
between the L+U algorithm and the Atomic algorithm is N = 2, 990.

3.3 Performance Test

In the present paper, we measured the performance of SYMV kernels for the
present implementation (hybrid of the Atomic and L+U algorithms) and three
major BLAS implementations: CUBLAS [7], MAGMABLAS [8] (run in the L-
mode), and BLAS in CULA [9]. Here, the performance is calculated by 2N2/
‘elapsed time’.

Tesla C2050. The performance on a single NVIDIA Tesla C2050, which is a
high-end Fermi-core GPU card, is presented in Figure 4. The release versions of
the CUDA BLAS’s are as follows: CUBLAS R4.0, MAGMABLAS R1.2.1 (run in
the L-mode), and CULABLAS R12. In [2], the performance on the SP mode for
MAGMABLAS on a C2050 exceeds 80 GFLOPS; however, we could not obtain
that performance in the present C2050 environment. In order to compare the
throughput from the FLOPS rates fairly, the results on a C2050 are based on
the performance measurement in the present paper.

In the DP and SP modes, the performance of the proposed SYMV kernel
reaches 43 and 78 GFLOPS, respectively, when the matrix dimension is 18,000.
These values represent speed-ups of approximately 2.5 times and 4.0 times, re-
spectively, when CUBLAS is set as a baseline. Furthermore, performances of
86% and 78% of the upper bound, respectively, are achieved.

GeForce GTX580. The performance on a single NVIDIA GeForce GTX580,
which is also a Fermi-core GPU, is presented in Figure 5. The release versions of
the CUDA BLAS’s are as follows: CUBLAS R4.1, MAGMABLAS R1.2.1 (run in
the L-mode), and CULABLAS R14. In the DP and SP modes, the performance of
the proposed SYMV kernel achieves 71 and 128 GFLOPS, respectively, when the
matrix dimension is 12,000. These values represent speed-ups of approximately
2.8 times and 3.3 times, respectively, in comparison to CUBLAS.

3.4 Discussion and Related Research

Compared with other implementations of BLAS, small fluctuations in the SYMV
appear upon varying the matrix dimension, whereas the performance of the
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Fig. 4. Performance results on a Tesla C2050 in non-thunking mode (Top: DSYMV =
DP mode, bottom: SSYMV = SP mode)
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Fig. 6. Access patterns in GEMV-T (left) and GEMV-N (right)

present implementation is the most stable. CUBLAS exhibits performance with
a sawtooth profile, and CULABLAS behaves irregularly for multiples of 32 or
64 dimensions, which is also true for MAGMABLAS on a C2050 in the SP
mode. The proposed SYMV kernel also has a small fluctuation, especially in the
SP mode. Since the period is observed to be equivalent to the size of UX, we
recognize that load imbalance among thread-blocks affects this phenomena. The
fluctuation reaches approximately 3% and is negligible.

Investigating the difference in the performance profile by reading the source
code of MAGMABLAS reveals that MAGMABLAS is realized by the GEMV-
N-based algorithm (access through the same row direction). On the other hand,
the GEMV-T algorithm (access through the same column direction) used in
the present study is the enhanced version presented in [3]. Their typical access
patters are shown in Figure 6. This also causes a difference in performance
between MAGMABLAS and the proposed SYMV kernel.

GLAS by Sørensen [10,11] is another CUDA BLAS implementation that uses
atomic operations. GLAS adopts atomic operations not in a SYMV kernel but
rather in a GEMV-N kernel at the current release, wherein atomicAdd or equiva-
lent functionality is emulated. GLAS’s GEMV implementation on a Tesla C2050
is optimized by an automatic tuning technique and achieved approximately 90%
of the memory bandwidth (performance upper bound) in the SP mode.

For the Tesla C2050 and the GeForce GTX580, the implementation of the
proposed SYMV kernel is sufficiently optimized. We conclude that the proposed
SYMV algorithm is, overall, the most stable and fastest. The Atomic algorithm
used in the current implementation is a powerful technique in CUDA GPGPU
programming for the Fermi generation GPU architecture.

4 Conclusion

We have presented an optimal implementation of the GPU kernel for symmetric-
matrix vector multiplication, referred to as the SYMV kernel. The proposed
SYMV kernel uses the Atomic algorithm, which requires very little extra working
memory. In the DP and SP modes, the proposed SYMV kernel performs at 43 and
78 GFLOPS on a Tesla C2050, respectively. The implementation of the SYMV
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kernel is herein demonstrated to provide remarkable memory consumption and
performance. Since a generic processor performs at from 2 to 5 GFLOPS on
DSYMV, the impact of the proposed SYMV kernel is enormous.

In the future, we would like to examine the proposed SYMV kernel on Kepler,
which is a new GPU core architecture. Furthermore, we would like to apply the
SYMV kernel to a previously proposed eigensolver [1].
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Abstract. Hardware accelerators are becoming ubiquitous high perfor-
mance scientific computing. They are capable of delivering an unprece-
dented level of concurrent execution contexts. High-level programming
language extensions (e.g., CUDA), profiling tools (e.g., PAPI-CUDA,
CUDA Profiler) are paramount to improve productivity, while effectively
exploiting the underlying hardware. We present an optimized numerical
kernel for computing the symmetric matrix-vector product on nVidia
Fermi GPUs. Due to its inherent memory-bound nature, this kernel is
very critical in the tridiagonalization of a symmetric dense matrix, which
is a preprocessing step to calculate the eigenpairs. Using a novel design
to address the irregular memory accesses by hiding latency and increas-
ing bandwidth, our preliminary asymptotic results show 3.5x and 2.5x
fold speedups over the similar CUBLAS 4.0 kernel, and 7-8% and 30%
fold improvement over the Matrix Algebra on GPU and Multicore Archi-
tectures (MAGMA) library in single and double precision arithmetics,
respectively.

1 Introduction

GPUs have been, for a long time, dedicated for graphics processing. However,
their increasing level of parallelism and computing capability have drawn atten-
tion in the HPC community, as low cost, low power, and high Gflop/s processing
units. The latest architecture released by nVidia, codenamed Fermi, has a the-
oretical peak of 1 Tflop/s for single precision (SP), and about 500 Gflop/s for
double precision (DP). Fermi has been highlighted as the first complete GPU
computing architecture [5], with a complete memory hierarchy, ECC support,
IEEE 754-2008 compliant floating point performance, and many novel features.
Due to the drastic change from the previous GPU architecture, further tuning
of existing numerical kernels is required to efficiently exploit new features in the
Fermi architecture, in order to boost the performance.

One of the critical numerical kernels in dense linear algebra is the symmet-
ric matrix-vector multiplication (SYMV). The kernel is, by nature, memory-
bandwidth (BW) bound. It is a core step in computing the eigenpairs of a dense
symmetric matrix. Having irregular memory access pattern due to the symmetric
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property of the matrix, the kernel design on GPUs is challenging. We present a
novel design of the SYMV kernel. We try to exploit the new features introduced
in Fermi. Most of the techniques used in this design target hiding memory la-
tency and increasing memory bandwidth. When it comes to GPU programming
for high performance, there are a lot of knobs to tune a kernel design. However,
investigating all these knobs is daunting and time consuming. Therefore, we rely
on performance counters to profile existing SYMV kernels in order to detect and
identify weak points, where possible improvements can be made. PAPI CUDA
Component [3] and the nVidia Compute Profiler [2] were the main performance
counter tools used during the design process. The new kernel design is tested
against two open-source SYMV kernels: the nVidia’s CUBLAS 4.0 implementa-
tion and the Matrix Algebra on GPU and Multicore Architectures (MAGMA)
1.0.0-rc5 [1] implementation. MAGMA SYMV kernel [9] was tuned for Fermi.
Our preliminary design is 3.5x better than CUBLAS 4.0 and 7-8% better than
MAGMA in SP, while the speedup is about 2.5x over CUBLAS 4.0 and 1.3x
over MAGMA in DP.

The rest of the paper is organized as follows. Section 2 discusses some previous
work. Section 3 describes our proposed design in the SYMV kernel. Sections 4
and 5 present experimental and profiler results, respectively. Section 6 shows
the impact of the new design on the overall symmetric eigenvalue problem. We
summarize and propose some future work in Section 7.

2 Related Work

Accelerator-based hardware are employed in many HPC software libraries and
applications, where they often outperform homogeneous x86 architecture in per-
formance, power consumption, and cost-effectiveness. The STI Cell processor
and GPUs have already been used in accelerating dense linear algebra ([7], [11]
and [10]) as well as stencil computations [4].

An up-to-date highly tuned SYMV kernel was recently presented in [9]. The
basic idea is to divide the matrix A into square blocks. Each Streaming

(a) MAGMA strategy (b) Proposed strategy

Fig. 1. Proposed computation strategy against MAGMA strategy. The vertical move-
ment of thread blocks in (b) is more suitable for column major formats.
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Multiprocessor (SM) is responsible for one or more blocks. The kernel launches
as many thread blocks as the number of diagonal matrix blocks. Each thread
block is responsible for exactly one block-row. Figure 1(a) shows an example
thread block movement. Each non-diagonal block is computed in two fashions:
transposed and non-transposed. Partial results from transposed computations
are written to global memory so that the correct thread blocks can consume
them. The MAGMA implementation is, therefore, divided into two kernel calls.
The first one does the computation. The second kernel is a final reduction step
through global memory. Recursive blocking [9] was used to save shared memory
usage in GPUs. In addition, pointer redirecting was adopted to handle matrix
dimensions that are not multiples of the block dimension. The next section de-
scribes the design outlines of our proposed kernel and how it differs from the
MAGMA kernel strategy.

3 Kernel Description

GPU kernels are conceptually designed following two main strategies. The first
one (the block-level strategy) is how thread blocks travel throughout the matrix
blocks. The second one (the thread-level strategy) is how a single matrix block
is processed by one thread block. The first strategy has to optimize memory
accesses through global memory and L2 cache, while the second strategy goes
deeper into the memory hierarchy i.e., registers and L1 cache/shared memory, to
optimize processing block elements through efficient use of single SM’s limited
resources.

The new design has similar block-level strategy to the MAGMA kernel, with
the exception it organizes memory accesses more efficiently. Moreover, as op-
posed to MAGMA, there are three successive kernel calls in the proposed design.
The first kernel is a computation kernel for diagonal blocks only. The second one
is a computation kernel for the non-diagonal blocks. The third kernel is a fi-
nal reduction step done through global memory, which is very similar to the
MAGMA kernel. The reason for separating the computation into three kernels
will be shortly apparent. The proposed design divides the matrix into 64×64
blocks. This is an auto-tuning result obtained from MAGMA’s internal param-
eters. In the first kernel, we launch as many thread blocks as the number of the
diagonal blocks. When a thread block finishes computation, the partial result
(64 element-vector representing the block row) is written into global memory.

The second kernel has the same number of threads as the first kernel. Each
thread block travels vertically through the matrix (Figure 1(b)). This is a more
memory-friendly scheme compared to MAGMA, since blocks are fetched in com-
pliance with the data layout (column-major format). This scheme achieves thus
better profiling in terms of number of load instructions from global memory and
L2 cache than MAGMA (see Section 5).

Going at a lower level in the kernel design (the thread-level strategy), each
diagonal block computation produces a partial result, a 64-element vector. A
non-diagonal block computation produces two 64-element vectors. We enumerate
the new contributions in this strategy.



Optimizing Memory-Bound SYMV Kernel on GPU Hardware Accelerators 75

Separating Different Computation Patterns. Diagonal blocks have differ-
ent processing strategy than non-diagonal blocks. Therefore, they require differ-
ent resources in terms of registers and shared memory. Since one SM can host
multiple thread blocks, separating different computation strategies can allow
multiple thread blocks/SM for kernels that are not resource-consuming. This is
the main reason why the diagonal block computation has been separated from
non-diagonal block computation.

Data Prefetching. Data prefetching [6] arises almost everywhere in our design.
Each block is divided into smaller pieces, which we refer to as chunks. A software
pipeline is implemented to hide the memory latency by prefetching the next
chunk of data, while a current chunk is being processed. This is a burden on the
GPU memory resources, so organizing the work between threads has to be within
the physical resource limit allowed per thread as well as per SM. Figures 2(a)
and 2(b) describe how data prefetching is applied to diagonal and non-diagonal
blocks, respectively. In the non-diagonal case, prefetching spans blocks; while
processing the second chunk of a given block, the first chunk of the next matrix
block is being prefetched.

Using More Registers. A very important feature of our kernel is that it
completely avoids computing partial products in shared memory. Shared memory
is used only in a final reduction step before a partial result of an entire block
is written into global memory. This feature avoids paying a penalty in terms
of potential shared memory bank conflicts. It also reduces the occurrences of
synchronization points. Using registers pays off very well, especially when register
spilling to local memory is avoided. This is guaranteed on Fermi as long as each
thread uses 63 registers or less.

4 Experimental Results

All experiments were executed on a single Fermi C2070 GPU, with 448 cores
and 6 GB of DRAM, connected to a machine with dual socket quad core Intel
Xeon processor, running at 2.67GHz, and with 24 MB of main memory. The
kernel is implemented using CUDA C v4.0 and originally designed for matrices
of dimensions that are multiples of 64. For other irregular dimensions, the matrix
is padded with zeros inside the SM shared memory and registers. No padding is
done in global memory.

Figures 3(a) and 3(b) show the performance results (in Gflop/s) for SP and
DP, respectively. The proposed design is far better than the CUBLAS 4.0 kernel.
There are some dips in the SP performance, which we are trying to resolve.
Overall, there is a 7-8% improvement over MAGMA in SP. The performance
gap widens in DP and reaches more than 30%. Although our kernel is mainly
tuned for DP, the smaller improvement seen for SP against MAGMA is explained
below along with the memory performance analysis.
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(a) Diagonal computation. (b) Non-diagonal computation.

Fig. 2. Computation strategy inside a block. In (a), diagonal blocks are processed as
two chunks. Hashed elements are loaded from DRAM then overwritten in a mirroring
step. Black elements are not loaded at all from memory. Their values are loaded from
shared memory during the mirroring step. In (b), non-diagonal blocks are also divided
into two chunks. Threads are originated at the black elements. As threads move from
left to right in the upper chunk, they prefetch hashed elements from the lower chunk
in their registers.

Since the kernel is memory bound, the reported performance numbers are far
below the theoretical floating point peak performance. However, we can get in-
tuition about the quality of the kernel design by translating Gflop/s into GB/s
to see how close we are from the Fermi peak memory bandwidth. Fermi C2070
GPUs have theoretical peak memory bandwidth of 144 GB/s (with ECC turned
on). However, the actual (sustainable) peak memory bandwidth is about 103
GB/s (when ECC is on). This information is obtained by running a CUDA
implementation of the STREAM benchmark [8]. The memory bandwidth is cal-
culated by dividing the amount of useful data loaded/stored from/into global
memory by the total runtime of the kernel. For the SYMV kernel, and a matrix
of dimension N , the total amount of useful data is from A, X , and Y , that is,
1
2N(N + 1) + 2N elements, where each element consumes 4 bytes in SP and 8
bytes in DP.

Figures 3(c) and 3(d) show the memory bandwidths of the SP and DP kernel
versions. Our kernel scores about 70% (SP) and 80% (DP) of the actual peak
memory bandwidth. This is 7-8% (SP) and 30% (DP) better than MAGMA,
and 250% (SP) and 140% (DP) better than CUBLAS 4.0. It is interesting to
see how the improvements in memory bandwidth matches those of performance.
As previously mentioned, memory bandwidth improvement in SP is less than
in DP. Running the same DP kernel for SP means saving more registers per
thread, and loading less data each time. We thought that doubling the block
size as well as the number of threads would result in memory bandwidth similar
to the DP case. However, we were not able to double the number of threads in
an SM because we are already using the maximum possible number on Fermi.
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(a) Performance of SYMV in SP (b) Performance of SYMV in DP

(c) Memory BW of SYMV in SP (d) Memory BW of SYMV in DP

Fig. 3. Performance of the SYMV kernel in SP and DP on Fermi C2070

5 Performance Analysis

In this section, we analyze the performance of the new kernel, by studying the
performance counters obtained from the nVidia and PAPI-CUDA [3] profilers.
All three kernels were tested for matrix dimensions up to 10000. We selected the
most relevant performance counters to the proposed kernel study. All results in
this section are for the DP kernel. The first performance counter is the num-
ber of 64-bit load instructions made to the global memory. In general, going to
global memory is a penalty, so the less we refer to global memory the better.
Our experiments shows that the proposed design achieves 17% less load instruc-
tions than CUBLAS, and 13% less load instructions than MAGMA. Although
the improvement is not significant, it could potentially have strong impact on
performance, due to the huge penalty of going to global memory.

In addition, shared memory has higher latency than registers. Since we mini-
mize the usage on shared memory, Figures 4(a) and 4(b) show that we refer less
to shared memory and thus, pay much less penalty in terms of bank conflicts.
The burden is rather put on registers, which are faster to read and compute,
and do not have restrictions of the load pattern. It is noteworthy to mention
that CUBLAS does not encounter any bank conflicts, though being the slowest
kernel.

Two final performance counters are SM activity and registers-per-thread us-
age. Surprisingly, CUBLAS 4.0 took the lead for occupancy at 98.36%, followed
by our design at 94.54%, and MAGMA at 80.90%. This result again shows it
is indeed critical to consider all performance counters, when judging the kernel
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(a) Shared memory loads (b) L1 shared bank conflicts

Fig. 4. Performance counters for shared memory on Fermi C2070

quality. A single performance metric cannot reflect a comprehensive performance
view. Regarding the registers-per-thread usage, CUBLAS 4.0 uses the least num-
ber of registers/thread i.e., 29, while MAGMA uses 51 and our kernel uses 63.

6 Case Study: The Symmetric Eigenvalue Solver

The proposed DSYMV (in DP) was integrated into MAGMA, and a test was
made for the tridiagonalization routine (DSYTRD) and the overall symmetric
eigensolver (DSYEVD). We repeated the tests for MAGMA, and for CUBLAS.
Results are shown in Figures 5(a) and 5(b). The new DSYTRD improves asymp-
totically by 88% with CUBLAS SYMV and by 20% with MAGMA SYMV. Look-
ing at the overall symmetric eigensolver, the new DSYEVD is about 66% better
with CUBLAS SYMV and about 17% better with MAGMA SYMV.

(a) DSYTRD Performance (b) DSYEVD Runtime

Fig. 5. Impact of tuned SYMV kernels on DSYTRD and DSYEVD

7 Summary and Future Work

This paper introduces an optimized kernel for computing the symmetric matrix-
vector product on Fermi GPUs. The kernel achieves 3.5x (SP) and 2.5x (DP) fold
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speedups over CUBLAS 4.0, and 7-8% (SP) and 30% (DP) improvement over
MAGMA, similarly to the memory bandwidth. One possible extension to the
work presented in this paper is to consider the load imbalance in the block-level
strategy. The vertical movement encounters different loads for thread blocks.
We intend to apply a 1D block cyclic distribution of non-diagonal blocks. Non-
diagonal blocks are to be mapped in a periodic manner over the available number
of SMs (14 on Fermi C2070), as done in [7]. Although this scheme might not be
friendly with respect to the column-major data layout, we expect that the load
balance can compensate for this penalty, especially if a tile data layout within
each block is considered.

Acknowledgements. We would like to thank Timothy Lanfear (nVidia), for
providing the STREAM benchmark for CUDA, and Rajib Nath (UCSD) for his
help in understanding MAGMA design outlines of the SYMV kernel.
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Abstract. As one of the promising approaches for reducing greenhouse-gas 
content in the atmosphere, CCS (carbon dioxide capture and storage) has been 
recognized worldwide. CO2 is captured from large emission sources and 
injected and stored in deep reservoir rocks, including saline aquifers, depleted 
oil and gas field. Under typical pressure and temperature conditions at deep 
reservoirs (depths > 800m), CO2 will be stored in supercritical state, 
subsequently dissolving in groundwater, and eventually forming carbonate 
minerals through geochemical reactions in a long-term (e.g., thousands of 
years). To ensure the safety and permanence of the storage, numerical 
simulation is considered as the most powerful approach for predicting the long-
term fate of CO2 in reservoirs. A parallelized general-purpose hydrodynamics 
code TOUGH2-MP has been used on scalar architectures where it exhibits 
excellent performance and scalability. However, on the Earth Simulator (ES2), 
which is a massively parallel vector computer, extensive tune-ups were required 
for increasing the vector operation ratio. In this paper, the performance of the 
modified TOUGH2-MP code on ES2 is presented with some illustrative 
numerical simulations of long-term fate of CO2 stored in reservoirs.  

Keywords: CCS, Hydrodynamics, Vector processors, The Earth Simulator. 

1 Introduction 

CCS (carbon dioxide capture and storage) is an emerging and promising technology 
for reducing greenhouse-gas content in the atmosphere, through capturing CO2 from 
large emission sources and injecting and storing it into deep reservoir rocks, including 
saline aquifers, depleted oil and gas field [1]. Under typical deep reservoir conditions 
(depths > 800m), CO2 will be stored in supercritical state, subsequently dissolving in 



 Numerical Simulation of Long-Term Fate of CO2 Stored in Deep Reservoir Rocks 81 

groundwater, and eventually forming carbonate minerals through geochemical 
reactions in a long-term (e.g., hundreds to thousands of years). Numerical simulation 
is regarded as the most powerful approach for predicting the long-term fate of CO2 in 
reservoirs, to ensure the safety and permanence of the storage. The simulations are 
generally conducted by using numerical simulators of multi-component, multi-phase 
fluid flow in porous media, but can often be computationally demanding for large-
scale, high-resolution models because of complex non-linear processes involved.  

In this study, we implemented a hydrodynamics code TOUGH2-MP on a 
massively parallelized vector computer, the Earth Simulator (ES2) in Japan. The code 
was extensively modified for the vector computer including the replacement of the 
original matrix solver to another suitable for vector processors. This paper presents 
the performance of the improved code on ES2 for high-resolution simulations of CO2 
behavior in deep reservoirs on the following two topics 1) CO2 migration in highly 
heterogeneous geologic formations; 2) DDC (dissolution-diffusion convection) 
process in CO2 – brine system, which are both important for predicting long-term fate 
of CO2 stored in reservoirs. 

2 General-Purpose Flow Simulator TOUGH2-MP 

TOUGH2 [2] is a general-purpose numerical simulator for multi-dimensional fluid 
and heat flows of multiphase, multicomponent fluid mixtures in porous and fractured 
media. TOUGH2 solves mass and energy balance equations that describe fluid and 
heat flow in multiphase, multicomponent systems.  
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where, Mκ: energy or mass of component κ (e.g., water, CO2, NaCl) per volume, Fκ: 
mass or heat flux, qκ: sink and sources, n : normal vector on the surface element dΓn 
pointing inward into Vn. The mass accumulation term in the left hand side is, 
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where, φ: porosity, Sβ: the saturation of phase β, ρβ: the density of phase β, Xκ
β: the 

mass fraction of component κ present in phase β, ρβ: grain density, T: temperature 
(°C), CR: specific heat of the rock, Uβ: specific internal energy of phaseβ.  

Fluid advection is described with a multiphase extension of Darcy’s law.  
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Here uβ is the Darcy velocity (volume flux) in phase β, k is absolute permeability, krβ 
is relative permeability to phase β, µβ is viscosity, and Pβ is the fluid pressure in phase 
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β (=P+Pcβ, Pcβ: the capillary pressure). The krβ and Pcβ are normally given as a non-
linear function of saturation Sβ, which is subject to change at each time step of 
transient simulations.  

Heat flux includes conductive and convective components 

                         
+∇−=

β
ββλ FF hTh

                    
(5) 

where, λ is thermal conductivity, and hβ is specific enthalpy in phase β. 
Space discretization is made directly from the integral form of the basic 

conservation equations, without converting them into partial differential equations 
(IFDM, integral finite difference method). Time is discretized fully implicitly as a 
first-order backward finite difference. 
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where, xt: the independent primary variables (i.e., pressure, temperature, saturation 
…) at time step t, Rκ

n: the residuals, Mκ
n: mass or heat accumulation term averaged 

over the element (gridblock) n with volume Vn, ∆t: time step length, Fnm is the average 
value of the (inward) normal component of flux F over the surface segment Anm 
between volume elements Vn and Vm. The equations (6) can be iteratively solved by 
Newton/Raphson method. 

ECO2N [3] is a fluid property (EOS, equation of state) module designed for 
applications to geologic CO2 storage, including a comprehensive description of the 
thermodynamics and thermophysical properties of H2O-NaCl-CO2 mixtures, modeling 
single and/or two-phase isothermal or nonisothermal flow processes, two-phase 
mixtures, fluid phases appearing or disappearing, as well as salt precipitation or 
dissolution. The nonlinear processes include interactions of immiscible multi-phase 
fluids in porous media; thermo-physical properties of supercritical CO2 fluid that  
can changes rapidly against the pressure and temperature conditions at reservoir  
depths. 

In this study, we use a parallel simulator TOUGH2-MP [4] with ECO2N fluid 
property module, which is a three-dimensional, fully implicit model that solves large, 
sparse linear systems arising from discretization of the partial differential equations 
for mass and energy balance. The original TOUGH2-MP uses MPI for parallel 
implementation, the METIS software package [5] for simulation domain partitioning, 
and the iterative parallel linear solver package Aztec [6] for solving linear equations 
by multiple processors. On scalar architecture machines, it exhibits excellent 
performance and scalability. In fact, “super-linear speedup” meaning speedup higher 
than expected linear speed up (a speedup of more than p when using p processors) has 
been reported on multi-core PCs [4]. 
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3 Code Implementation and Modification on ES2 

The Earth Simulator (ES) is a massively parallel vector supercomputer operated by 
JAMSTEC, originally developed for, and extremely used in, global climate change 
simulations. The ES had been the most powerful supercomputer in the world from 
2002 to 2004, and recently it was upgraded to new ES2 in March 2009. ES2 is an 
NEC SX-9/E system and consists of 160 nodes with eight vector processors (the peak 
performance of each processors is 102.4Gflop/s) and 128 GB of computer memory at 
each node. For a total of 1280 processors and 20 TB of main memory, the total peak 
performance is 131 Tflop/s.  

TOUGH2-MP was ported to the Earth Simulator, but a special tune-up to increase 
its vector operation ratio (VOR) was needed for the efficient use of the ES vector 
processors. The original source code of TOUGH2-MP over 40,000 lines was 
originally written assuming the use on scalar computers. Thus it contains many 
obstacles for increasing the vector operation ratio, such as frequent conditional 
branches and short loop lengths. Especially deadly short loop lengths in the matrix 
solver were found to be the key issue of the improvement, because it limits upper 
bound of the average vector length and thus decreases the vector operation ratio that 
should be 95% or more to get reasonable performance on the vector architecture 
computer. In the original code, an iterative parallel linear solver package Aztec [6] 
was employed. The Aztec solver uses a distributed variable block row (DVBR) 
format (a generalization of the VBR format) as a matrix storage format, which is 
highly memory-efficient; however the innermost loop is relatively short, order of 
number of off-diagonal components for matrix-vector operations.  

In order to achieve efficient parallel/vector computation for applications with 
unstructured grids, the following three issues are critical [7]: (1) local operation and 
no global dependency, (2) continuous memory access, and (3) sufficiently long 
innermost loops for vectorization. Nakajima [7] suggested that DJDS (descending-
order jagged diagonal storage) reordering is suitable for efficient length of innermost 
loops, producing 1D arrays of coefficient with continuous memory access and 
sufficient length of innermost loops. Based on the considerations, we replaced the 
Aztec solver to another matrix solver that employs DJDS format. The solver was 
found among GeoFEM [8], which has been implemented and optimized for various 
types of parallel computers, from PC cluster to the Earth Simulator. In addition, we 
performed loop-unrolling and inline expansion wherever possible and effective, and 
rewrote bottleneck computations (loops) in the fluid property (EOS) module. 

On ES2, the modified code is about 60 times faster than the original code with 
Aztec solver. The speed of the new solver is 10-14 GFlops/PE (10-14% of peak 
performance; VOR > 99.5%; Figure 1a), while that of the original Aztec solver on 
ES2 is 0.15 GFlops/PE with VOR=80%. As expected, the speed up was achieved 
largely due to the change of the matrix storage format that greatly helps the speed-up 
of matrix-vector product calculations in the sparse matrix solver. Additionally, 
exclusions or modifications of many conditional branches equipped for the general-
purpose code also contribute to the speedup considerably.  
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Fig. 1. Computation performance of the new solver of TOUGH2-MP on the Earth Simulator 2. 
In addition to the two problems in this paper (SPE10 in section 4.1 and DDC in section 4.2), 
two larger problems (Tokyo Bay [13] and QLASTIC [14]) are also included. 
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Figure1 shows the scalability of the new solver of TOUGH2-MP on the ES2. In 
addition to the two problems shown below in this paper (SPE10 in section 4.1 and 
DDC in section 4.2), two larger problems (Tokyo Bay [13] and QLASTIC [14]) are 
also included. The solver performance is considerably reduced with increasing 
number of PEs probably because of the load increase of communication among PEs, 
which is pronounced for smaller models (i.e., SPE10). 

4 Numerical Simulation of CO2 Behaviors in Deep Reservoirs 

This study intends to demonstrate potential benefits from high performance 
computing for simulating CO2 behavior in deep reservoirs for important scientific and 
engineering topics. Here, we investigate uncertainties due to grid resolution effects on 
the two topics: 1) CO2 behaviors in highly heterogeneous reservoir formations; 2) the 
diffusion-dissolution-convection process that may cause gravity instability that 
greatly enhances the convective mixing of dissolved CO2 in reservoirs in long-term.  

4.1 CO2 Behaviors in Highly Heterogeneous Reservoirs 

Reservoir formations for storing CO2 are usually regarded as heterogeneous porous 
media, often consisting of alternating sand and mud layers having quite different 
permeability and porosity. Obviously, because CO2 preferentially migrates into higher 
permeable portion of the reservoir, the heterogeneity of reservoirs should be properly 
considered and represented in simulation models. However, it is well known that 
transient simulation of multi-phase flow in heterogeneous media generally requires 
very long computational time, because the heterogeneity of hydraulic properties 
strongly limits the length of time steps, resulting in a huge number of time steps to be 
solved in the simulation. As a practice in such as oil and gas industries, for 
performing simulations in a practically reasonable time, the heterogeneity is spatially 
averaged with reducing number of grid cells of the computation model (i.e., up-
scaling). In this study, with the help of high-performance computing, we directly 
solved a highly heterogeneous reservoir model without such simplifications. 

Figure 2 shows the heterogeneous model known as SPE-10 model [9], representing 
irregular nature of sand/shale distribution in a reservoir with 1.122 × 106 (60 × 220 × 
85) grid cells in the dimension of 6400m × 8800m × 170m. In this simulation, CO2 in 
supercritical state is injected at the injector with the rate of 390 k tons / year, with 
producing brine groundwater with the rate of 580 k tons / year [10].  

The distribution of CO2 after 20-years injection is shown in Figure 3. For a 
comparison, a simulation result obtained from a homogeneous model with a unique 
average permeability and porosity is also shown. Because the density of supercritical 
CO2 is smaller than that of groundwater, injected CO2 tend to overrides on denser 
groundwater. In the homogeneous model, the override effect is prominent and the 
lower part of the reservoir volume cannot effectively be used for storing CO2. In 
addition, the CO2 plume spread widely on the top of the reservoir, suggesting higher 
risks of CO2 leakage through undetected high-permeable features such as faults. On 
the other hand, in the heterogeneous model, CO2 tends to migrate in sand portions 
with higher permeability, suppressing the gravity override. The more tortuous flow 
paths of CO2 in the heterogeneous model results in larger contact area of CO2 and 
groundwater, and thus enhances the dissolution of CO2 in groundwater, which is  
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Injector

Producer

 

Fig. 2. SPE-10 model, a highly heterogeneous reservoir model. The colors indicate porosity of 
the sand and mud in the reservoir. The CO2 injector and the water producer used in the 
simulation are shown in the figure [10]. 

Injector

    

Injector

 

Fig. 3. CO2 plume spreading from the injector in the homogeneous (left) and heterogeneous 
model (right). SCO2: saturation of gaseous CO2. 

deemed as more stable form of storage than buoyant supercritical CO2 plume. Figure 
4 includes the change of CO2 status in the reservoir over time. The dissolution of CO2 
in groundwater is enhanced nearly double in the heterogeneous model than that in the 
homogeneous model. 

As seen in the above, although the heterogeneity of reservoir is an important key in 
predicting the efficiency and risks of CO2 storage, two-phase flow simulations in 
heterogeneous porous media computationally demanding in general. The 20-years 
simulation of the homogeneous model was finished only in about 3 node-hours (about 
650 time steps), while it took more than 900 node-hours (about 40,000 time-steps) for 
the heterogeneous model. The simulation was performed by using 2 or 4 nodes (16 to 
32 PE) of ES2, taking into account the limited scalability for this SPE10 model as 
shown in Figure 1. 
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Fig. 4. Time evolution of the CO2 form stored in the reservoir 

4.2 Diffusion-Dissolution-Convection Process of CO2-Brine System 

As mentioned above, injected supercritical CO2 generally tends to override over 
native groundwater in the reservoir (Figure 5a). The supercritical CO2 on top 
gradually dissolves in surrounding groundwater, and increases its density. This results 
in a situation that denser fluid laid on lighter fluid as schematically shown in the red-
box in Figure 5a. In a certain time, the Rayleigh-Taylor instability invokes convective 
mixing of the groundwater [11]. The mixing would significantly enhance the CO2 
dissolution into groundwater, and reduce the amount of CO2 in buoyant supercritical 
state, and eventually attain more stable storage. 

The simulation of the Rayleigh-Taylor instability is sensitive to numerical errors. 
The simulation grids should be fine enough to resolve incubation times for onset of 
convection, and spatial evolution of convective fingers or tongues [11, 12]. Figure 5b 
shows a simulation result for a local-scale model of a small region (1m×1m×4m) with 
1cm spacing, resulting in about 4 million gridblocks [12]. Starting from the initial 
condition that supercritical CO2 is stagnate on the top of groundwater, CO2 gradually 
dissolves in groundwater, developing a thickness of a CO2 diffuse layer. When the 
thickness of the diffusive layer reaches a critical thickness, the convection with 
developing downward fingers of high-CO2 water occurs. 

Massively parallel computation would make it possible to simulate not only the 
local process shown above, but also the whole system in reservoir scales (i.e., more 
than hundreds to thousands of meters) on the resolution of centimeter-scale grids. 
Figure 6 shows a preliminary simulation result performed for a homogeneous and 
horizontal reservoir model of 10km radius and 40m thickness. The model is finely 
discretized with about 10cm grid spacing. We successfully simulated the evolution of 
the convectional mixing process in entire reservoir, showing that the fingering 
gradually developed from centimeter to tens of meters scale enhancing the dissolution 
of CO2 in groundwater, and the CO2 in supercritical state stay on the top of the 
reservoir was eventually lost. 

 



88 H. Yamamoto et al. 

 

Supercritical 
CO2

Caprock (Low permeable seal)

Native Groundwater (Brine)

Injection Well

Local-scale 
Model

Reservoir

 
(a) Local-scale model   

 
 

 

                  
(b) Simulation results 

 

Fig. 5. (a) The concept of the local-scale model and (b) the simulated results of CO2 
concentration dissolved in groundwater. The model size is 1m×1m×4m. The iso-surfaces in the 
right figures are colored for CO2 mass fractions (brown: 0.025, green: 0.008). 
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Injection Well

 

Fig. 6. A preliminary simulation result of the diffusion-dissolution-convection process in a 
radially symmetric homogeneous model at a reservoir-scale (10km radius and 40m thickness). 
CO2 is injected in supercritical state with the rate of 100k tons/year for one year. The contours 
show the time evolution of CO2 mass fraction in the aqueous phase (groundwater) in the post-
injection period. Due to the gravity convection, the supercritical CO2 which has overridden 
over groundwater during the injection period is dissolved promptly, and eventually disappears 
(completely dissolved in the groundwater). The permeability and porosity are 1darcy and 20% 
respectively, employing the Corey equation for relative permeability and neglecting capillarity. 

Figure 7 compares the result obtained from two models with different grid-
spacings. In the ‘coarse’ model, the grid-spacings in vertical and lateral direction are 
both increased 10 times from the original ‘fine’ model shown above. In Figure 7a, the 
supercritical CO2 laid along the reservoir top is recognized as the red colored portion 
of high CO2 mass fraction in aqueous phase. It was seen that the coarseness of the 
grid artificially stabilizes the layer of CO2-saturated groundwater on the top [11]. 
Figure 7b shows the time evolution of the amount of CO2 dissolved in groundwater. It 
is seen that the rough model underestimates the dissolution of CO2 by almost half, and 
thus underestimates the long-term stability of CO2 stored in the underground 
reservoir. Usually 3D field scale simulations employ grid model with the size of tens 
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(a) CO2 mass fraction in the aqueous phase at 10 years 

 
 

0.0E+00

1.0E+04

2.0E+04

3.0E+04

4.0E+04

5.0E+04

6.0E+04

7.0E+04

8.0E+04

9.0E+04

1.0E+05

0 5 10 15 20 25

CO
2

D
is

so
lv

ed
 in

 G
ro

un
dw

at
er

 (t
on

s)

Time (years)
 

(b) The time evolution of the amount of CO2 dissolved in groundwater 

Fig. 7. Impact of grid spacing on the prediction of CO2 dissolution in groundwater 

to hundreds of meters, but finer grid model will be required to predict the long-term 
fate of CO2 appropriately. 

These above simulations were both performed by using 2 to 16 nodes (8 to 128 PE) 
of ES2. Vector efficiency was observed in the same level as in other measurements. 
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5 Conclusion 

A general purpose hydrodynamics code TOUGH2-MP was successfully implemented 
on the Earth Simulator (ES2). The performance of the TOUGH2-MP code on ES2 
was considerably improved by the efforts including (1) the replacement of matrix 
solver and (2) restructuring and rewriting of the EOS routines. So far, the 
computational performance of 10 to 14 GFlops/PE (approximately 10-14% of peak 
performance of a vector processor on ES2 with a vector operation ratio > 99.5%) has 
been achieved. The achieved performance is satisfactory for the general purpose code, 
which was originally developed for scalar architectures, but not for vector 
architectures.  

Using the code, uncertainties due to grid resolution effects on the two topics were 
investigated: 1) CO2 behaviors in highly heterogeneous reservoir formations; 2) the 
diffusion-dissolution-convection process that may cause gravity instability greatly 
enhancing convective mixing of dissolved CO2 in reservoirs in long-term. These 
simulations illustrate the practical necessity of fine grid-resolution in numerical 
reservoir models, and thus importance of high-performance computing for predicting 
the long-term fate of CO2 even in actual storage projects in the future. 
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Abstract. To analyze and depict complicated fluid behaviours in fractured 
porous media with various permeable material matrix across different scales, an 
Enhanced Heterogeneous Porous Media Computational Model is proposed 
based on Lattice Boltzmann method (LBM). LBM is widely employed to model 
basic fluid dynamics within disordered structures due to its powerful 
applicability to mesoscopic fluid mechanics and its potential performance of 
parallel computing. This paper combines with the force model, statistical 
material physics and the parallel algorithm to effectively describe the feature 
changes while fluid passes through the fractured porous media with diverse 
permeable material matrix of high resolution by using supercomputers. As an 
application example, a 3D sandstone sample is reconstructed with 36 million 
grids using the scanned CT images and characterized with different feature 
values at each lattice grid to distinguish pores, impermeable solids and 
permeable material matrix by stating its local physical property. The calculation 
and comparison results with the conventional LBM are discussed to 
demonstrate the advantages of our method in modeling complicated flow 
phenomena in fractured porous media with variable permeable material matrix 
across different scales, and its sound computing performance that keeps the 
parallel speedup linearly with the number of processors. 

Keywords: fluid dynamics, fractured porous media, diverse permeable material 
matrix, interfacial dynamics, Lattice Boltzmann, high performance computing. 

1 Introduction 

The imperative of complex fluid flow and transport in porous media becomes 
increasingly apparent in both scientific research and industrial applications [1-2] (i.e., 
CO2 geosequestration, mining and material engineering). Among conventional 
approaches, flow dynamics are usually described from the perspective of macroscale 
view by solving macroscopic continuum equations (i.e., mass, momentum and 
energy) with finite differential method, finite volume method and finite element 
method [3-4]. However, heterogeneous materials typically possess a multitude of 
mechanically significant scales and each of these scales requires appropriate 
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modeling. Heterogeneous structures on the microscale (i.e., material grains, pore 
space and micro-cracks) are often close in size to a characteristic length for the 
macroscopic pattern for such as subsurface flow and transport. Hence these structures 
strongly influence macroscale processes. While conducting simulation in the 
microscale or nanoscale, these kinds of conventional methods show disadvantages in 
simulating the complicated fluid dynamics in dissimilar porous media, as well as its 
complex boundary and surface conditions.  

Derived from particulate natures, LBM has enormous strengths to model basic 
fluid dynamics compared with other conventional numerical techniques, which is 
advanced for studying the complicated fluid flow behaviours such as in porous media, 
together with the complexity of structural geometry and pore scale flow uncertainties. 
Most of applications in LBM simulating fluid flow in porous media have focused on 
pore scale with simplified impermeable solids [5][8]. However for some cases, such 
as the fractured porous media with pores/fractures across the different scales inside, 
the matrix cannot be simply treated as impermeable solids, while under certain 
resolutions, some material matrix even has diverse permeability. 

To get detailed information about the microstructure of heterogeneous porous media, 
digital images are nowadays widely applied to describing complicated structures with 
multiple colors such as in mining, medicine and material sciences [14]. A digital image 
is made up of a rectangular array of equal-sized picture elements. Such elements are 
usually referred to as "voxels". Therefore, it is possible to describe and measure 
complex heterogeneous structures and material properties in the format of images (i.e., 
pores and different kinds of materials). Based on the scanned CT/MRI images, accurate 
reconstruction of the 2D/3D numerical domain of heterogeneous porous media can be 
conducted [7], and such kinds of digital models can be easily converted into LBM grids 
across different resolutions [13]. 

To consider nonlinear pore scale processes and their related influence on the 
heterogeneous structures and material properties variation, this paper will focus on 
modeling of fluid dynamics in permeable matrix through extending the force model 
algorithm [9], together with the statistical calculation of diverse permeable material 
parameters at each LBM grid on the advanced parallel computers (in the section 2), 
and the comparison of its calculation results and parallelization with the conventional 
impermeable solids case (in the section 3). 

2 Methodology and Modeling 

2.1 Lattice Boltzmann Method 

Instead of solving the conventional Navier-Stokes equations or its simplified form 
with macroscopic properties, the discrete Boltzmann equation is solved here to 
simulate the fluid flow with collision models such as Bhatnagar-Gross-Krook (BGK) 
[10-11]. LBM models the fluid consisting of fictitious particles, and such particles 
collide with one another and propagate over a discrete lattice mesh. By simulating 
streaming and collision processes across a limited number of particles, the intrinsic 
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particle interactions evince a microcosm of viscous flow behaviour applicable to the 
greater mass [5-6].  

The generalized BGK Lattice Boltzmann equation (LBM BGK) is described as 
below [9][12]: 

 ( ) ( ) ( ) ( )[ ]tftftftttf eq
iiii ,,

1
,, xxxex i −−=−Δ+Δ+

τ .
 (1) 

The left term of the equation is the propagation part, while the right side is the 
collision part. Especially, in the LBM BGK model, τ is a constant relaxation number. 
Parameter ei means the direction of related neighbours of one certain resting particle. 
fi(x,t) and fi(x+ei∆t,t+∆t) are the fluid population distribution in the ei direction on 
lattice node x at time step t and t+∆t, respectively. In the classical LBM structure 
DmQn (where m is the domain dimension, and n is the number of the resting particle 
and its related neighbours), ei has n directions. For example, the classical model 
D3Q19 is applied for 3D calculation in this paper with one resting particle having 18 
neighbours (Fig.1). fi

eq(x,t) is the equilibrium distribution of fluid particle population 
in the ei direction at time step t on the same lattice node. While simulating 
incompressible or slightly compressible fluid flow in porous media using the LBM 
BGK model, fi

eq(x,t) is defined as: 
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where cs is 1/3 speed of sound running over the lattice mesh, and ϕ is the average 
porosity of porous media. ρ is fluid density related to pressure p (p=cs

2ρ/ϕ). u is the 
macroscopic velocity of fluid flow. ωi is the coefficient weight of population 
distribution of fluid particles in the ei direction on the lattice node x. For D3Q19: 
i=0,1,…,18, ωi = 1/3 (i=0), 1/18 (i=1,2,…6), 1/36 (i=7,8,…18).  

 

Fig. 1. Lattice mesh and nodes relations in the classical 3D LBM lattice structure (D3Q19): one 
resting particle (grey point in the cubic centre) and its 18 neighbours (black points) 

Due to its particulate nature and local dynamics, LBM possesses advantages in 
simulating complex pore scale fluid flow and boundary conditions in porous media 
with detailed microstructures. However in the conventional LBM, there only can be 
either 0 or 1 particle on a lattice node moving in a lattice direction according to the 
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microstructure features of porous media (i.e., only pores or impermeable solids). On 
the other hand, based on the scanned CT images, porous media structures and 
geometry with different kinds of materials can be observed and reconstructed, 
together with its physical characters (i.e., porosity). To extend applications of LBM in 
simulating porous media with diverse permeable material matrix across different 
scales, the following algorithm with force term is applied. 

2.2 Force Model in Fractured Porous Media with Permeable Material Matrix  

In porous media, fluid flow is always confronted with different kinds of forces: 
external forces such as gravity and buoyancy, interactions between the fluid particles, 
and the force derived from the porous matrix. Especially while the fluid is blocked by 
impermeable solids or flows through some permeable material matrix, the porosity 
and permeability will cause such forces to behave in a complicated way. Considering 
such force terms, Eq.(1) is further revised as below [12]:  

 ( ) ( ) ( ) ( )[ ] i
eq

iiii tAtftftftttf Δ+−−=−Δ+Δ+ ,,
1

,, xxxex i τ .
 (3) 

Ai is the body force distribution of fluid flow in the ei direction on the lattice node x. 
As for seepage behaviour in porous media, both the linear and the non-linear 
influence of the porous matrix on fluid flow should be considered. The composition 
force of fluid flow in the porous media can be written as [9]:  

 GuuuF φφφ ε +−−=
k
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k
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 (4) 

where νs is fluid viscosity (νs=cs
2(τ-1/2)∆t). As for one certain porous medium, Fε is 

the average characteristic property of the porous medium related to the average 
porosity, G includes forces derived from particles and other external forces (i.e., 
gravity), and k is the average permeability of the porous medium. We take 
Fε

2=1.752/150ϕ3, k= ϕ3d2/150(1-ϕ)2  in this paper, and d is the effective diameter of a 
solid particle of the porous medium. Especially considering the porous medium with 
more than one kind of permeable materials, the Eq.(4) can be modified as: 
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Fεj is the characteristic property of the jth permeable material matrix on each lattice 
node, ϕj and kj represent the porosity and permeability of the jth permeable material 
matrix, respectively.  

The macroscopic force F and velocity u in Eqs.(4) and (5) are continuous, which is 
different from the situation with other discrete variables in the Lattice Boltzmann 
equation. To build correlations between macroscopic continuum qualities and discrete 
pore scale values, the force model is embedded [9]. The discrete body force Ai  is 
defined as:  
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Velocity u is obtained by combining Eqs.(5) and (6): 
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According to the Champon-Enskog expansion, Eqs.(3), (5) and (6) are equivalently 
formulated with the following Navier-Stokes equations with force term F: 

      0=⋅∇ u . 
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Based on this Enhanced Heterogeneous Porous Media Computational Model, there is 
no need to define boundary types for the border nodes that separate pores and the 
matrix, and thus no conventional bounce-back treatment required in our model. 

2.3 Statistical Material Physics 

In microscale material structures, material physics behaves a slight fluctuation. To 
describe these noise features, statistical material physics based on the Weibull 
analysis is employed and utilized here on different lattice nodes to slightly 
discriminate porosity distribution ϕjp instead of setting up a constant material porosity ϕj (0 for conventional LBM) at all the matrix nodes [12]. The porosity probability 
distribution meets the equation:  
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According to the Weibull distribution, random number x for the matrix’s physical 
property distribution on each LBM lattice node can be described as:  
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In Eqs.(9) and (10), α(>0) controls the shape of the distribution, while β stands for the 
scale (or the position, i.e., average porosity ϕj) of the distribution, and U is the 
uniform random number ranging from 0 to 1. Normally, when α is larger than 2, the 
distribution mimics Gaussian distribution, which is reasonable to be used for random 
distribution generation of certain matrix porosity. According to the embedded 
statistical material physics method mentioned above, Eqs.(3), (5) and (6) can be 
modified as: 

( ) ( )











−⋅+⋅+= 2

2

42 22
1

sjpsjps
i

eq
i ccc

ρω,tf
φφ
uueue

x ii

.

                                  (11) 

GuuuF jp

jp

jjp

jp

sjp

k

F

k

v
φ

φφ ε +−−=
.

                                      (12) 

( )










 −+⋅=
4

2

2 2

:

sjp

s

s
ii c

c

c
A

φ
ρω IeeCeB iii .                                       (13) 

2.4 Parallelism Implementation 

To meet the computational resource needs of the complex 3D simulations, parallelism 
technology has been implemented into the code (written in C++) to improve 
computing performance of high resolution or large scale cases on supercomputers. 
Fig.2 demonstrates the code structure, including input preparation, parallel computing 
and data management, and post-processing such as data output and its visualization. 

In the input preparation step, the control processor (processor 0) conducts I/O 
instructions, and both control parameters and geometry files are read for the program 
initialization. In the main computing step, message passing is conducted in this code 
with the Message Passing Interface (MPI) using domain decomposition, where Lattice 
data has been split as sub-blocks and broadcasted onto each processor. Each processor 
is responsible for performing density and velocity calculations by executing collision, 
propagation, and relaxation for its block portion of the simulation grids, as well as 
dealing with boundary conditions at the external edges of each block. A two-voxel-
thick padding layer is employed to manage the most recently updated parameters 
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exchanged from the edge of the neighbouring sub-blocks. In the output and 
visualization step, each processor outputs density and velocity data, the format (i.e., 
vtk) of which can be visualized by Paraview.  

 

Fig. 2. Code structure of the model 

The scalable code has been designed to maintain portability on different computer 
architectures, compilers, and MPI libraries, and a portable Makefile is programmed to 
enable easy compilation across different platforms. For this paper, the earth systems 
simulator, Savanna, at our centre is carried out for the calculation. Savanna is a 64bit 
SGI ICE 8200 EX Parallel Computer, with 128 Intel Xeon quad-core processors (512 
cores at 2.8 GHz each), 2 TB memories, 14.4 TB disk on a Nexis 9000 NAS, and with 
peak speed reaching 5.7 TFlops. Based on Savanna, parallelization for both cases as 
above (Eqs.(1) and (3)) has been implemented with the message-passing paradigm of 
MPI library (v4.0.0.028) for running programs on the distributed-memory platforms, 
with the Intel C++ compiler employed. Up to 512 processors have been used, and up 
to 1GB time-varying volumetric output data can be produced in a single run. 

3 Application Example 

3.1 Porous Media Reconstruction of Sandstone Sample 

Based on digital images, a pre-processing module is developed to convert such 
images into the lattice dataset, and then a 3D porous medium is reconstructed for 
computing over the discrete LBM lattice. In this paper, the scanned CT images of 
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sandstone are taken as a 3D application example [7]. The sandstone core is a cube of 
2.5mm in length, and a porous medium structure (331×331×331 voxels, Fig.3) has 
been generated according to 600 CT images.  

                                   

                                          (a)                                                     (b) 

Fig. 3. The sandstone sample (331×331×331 voxels) to be analyzed. (a) matrix structure in 
grey, pores in black, (b) pore structure displayed in orange.  

3.2 Simulation Results 

The above sandstone (331×331×331 voxels) is used here to compare the influence of 
porous medium matrix characters on fluid flow behaviours. Two kinds of porous 
matrix (impermeable solids and permeable material matrix under Weibull distribution 
with an average porosity of 0.23) are calculated. The flow is driven from bottom to 
top under a constant dimensionless pressure (0.1/lattice grid) with all the other sides 
closed.  

Detailed simulation results of flux features inside the sandstone are compared in 
Fig.4 and Fig.5. As it is shown, a transect is conducted right in the middle of y-
direction to demonstrate the inside structure of sandstone (Fig.4(a) and Fig.5(a)). 
Although under the same boundary conditions, as well as same geometry and 
distribution of porous media, the velocity distributions are clearly different due to 
dissimilar properties of microscale matrix permeability (Figs.4(b)~(d), Figs.5(b)~(d)).  

Figs.4(b)~(d) and Figs.5(b)~(d) have demonstrated the snapshots of fluid flow 
process to the steady situation under two different porous matrix conditions. Within 
the impermeable solids case, velocity distribution differs largely at pores and matrix 
(Figs.4(b)~(d)); while within the permeable material matrix case, the fluid flows 
through the matrix with a lower speed than through the fractures (Figs.5(b)~(d)). It is 
clearly shown in Figs.4(b)~(d) that the fluid flow is blocked by the impermeable 
solids (districts in black color), while the seepage phenomenon emerges clearly in the 
permeable material matrix (Figs.5(b)~(d)). In Fig.4, the conventional bounce-back 
boundary is arbitrarily utilized to simulate the pore/solid surfaces, while in Fig.5, our 
model is able to distinguish matrix and pores automatically according the different 
porosity description on each lattice node. 

From the above comparison, our model can easily simulate the permeable 
behaviour of fluid passing through permeable material matrix, and distinguish 
complex solid/pore interfacial dynamics without arbitrarily defining solid/pore 
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surfaces (e.g. bounce-back or slip walls). Additionally, it indicates that both porous 
matrix geometry and permeability of the matrix have significant effects on detailed 
fluid flow behaviours.  

         

                         Fig.4(a)                  Fig.4(b)                 Fig.4(c)                  Fig.4(d) 

      

Fig. 4. (a) Transect of sandstone (solids in black, pores in grey), (b)~(d) Snapshots of velocity 
distribution within porous medium with impermeable solids (zero velocity in black) 

            

                         Fig.5(a)                 Fig.5(b)                 Fig.5(c)                  Fig.5(d) 

      

Fig. 5. (a) Transect of sandstone (permeable material matrix in brown, pores in grey), (b)~(d) 
Snapshots of velocity distribution within porous medium with permeable material matrix 

It is highly applicable to combine the conventional LBM and Enhanced 
Heterogeneous Porous Media Computational Model to analyze fluid behaviours in 
fractured heterogeneous porous media across different scales. Upon completion of a 
solution step, the micro models based on the conventional LBM return with the 
upscale material properties as a local matrix character evaluation (i.e., average 
permeability) for macroscale analysis. The macroscale model distinguishing fractures, 
solids and other matrix with certain permeability by stating its physical property from 
the microscale simulation will be simulated to consider the multiscale heterogeneity.  

3.3 Parallelization and Computation Performance 

The sandstone sample (Fig.3) is discretized into 36 million cubes with a spatial 
resolution of 7µm and calculated using Savanna. The computing time and speedup are 
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compared and shown in Fig.6 for both permeable material matrix and impermeable 
solids cases. Fig.6(a) shows curves of the logarithm of computational time vs. the 
number of processors. With the increasing CPU numbers up to 512 processors, 
computational time drops abruptly in both cases. As shown in Fig.6(b), strong scaling 
of the computational models has been demonstrated on Savanna, and the code scales 
up to a large number of processors with linear speedup.  
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Fig. 6. Comparison of both cases on (a) computational time and (b) speedup 

Additionally in Fig.6(a), it is demonstrated that extra about 40% computing time is 
consumed in the permeable material matrix case than the impermeable solids case 
while under the same resolution. The increase is mainly due to the additional 
calculation of complex forces term (i.e., Eqs.(3), (5) and (6)) for describing the 
permeable material matrix feature on each lattice node at each time step. However, if 
the conventional LBM model is applied to simulating such permeable mineral matrix 
conditions, it requires much higher resolution to distinguish detailed pore/solid 
structures, which will cost more computation time even using double resolution of 
that in the above permeable model (Fig.6(a)). Therefore, the proposed model is better 
for modeling complicated fluid flow in 3D fractured porous media across different 
scales. 
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4 Conclusions 

With the development of advanced imaging technology, digital images are nowadays 
widely applied to describing the complicated structures of porous media. A LBM 
based Enhanced Heterogeneous Porous Media Computational Model is proposed to 
model the complicated fluid dynamics in the fractured porous media across different 
scales. The force model is extended and combined together with the statistical 
material physics and the parallel algorithm to effectively describe the feature changes 
while the fluid passes through the fractured porous media with diverse permeable 
material matrix on supercomputers. A 3D sandstone sample is successfully 
reconstructed with 36 million grids using the scanned CT images and characterized 
with different feature values at each grid to distinguish pores, impermeable solids and 
permeable material matrix by stating its local physical property. The calculation and 
comparison results with the conventional LBM demonstrate the advantages of our 
method in modeling complicated flow phenomena in fractured porous media with 
diverse permeable material matrix, and its sound computational performance which 
keeps the parallel speedup linearly with the number of processors. The proposed 
model will be used to explore complex multiscale fluid flow phenomena across 
different scales, which are widely observed in geo-science and geo-engineering. The 
model is also useful to deal with complex interfacial dynamics between solid/pore 
boundaries in porous media. 
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Abstract. We developed scalable parallel computing extensions for
Seismic Response Analysis (SRA) and evacuation simulation modules
of an Integrated Earthquake Simulator (IES), with the aim of simulat-
ing earthquake disaster in large urban areas. For the SRA module, near
ideal scalability is attained by introducing a static load balancer which
is based on the previous run time data. The use of SystemV IPC as
a means of reusing legacy seismic response analysis codes and its im-
pacts on the parallel scalability are investigated. For parallelizing the
multi agent based evacuation module, a number of strategies like com-
munication hiding, minimizing the amount of data exchanged, virtual
CPU topologies, repartitioning, etc. are used. Priliminary tests on the
K computer produced above 94% strong scalability, with several million
agents and several thousand CPU cores. Details of the parallel com-
puting strategies used in these two modules and their effectiveness are
presented.

Keywords: multi agent simulations, seismic response analysis, large ur-
ban area, HPC, scalability.

1 Introduction

Petascale super computers have opened new avenues for more reliable earth-
quake disaster predictions compared to the currently used simplified methods.
The current earthquake disaster predictions, which are based on the statistical
analysis of past events, are less reliable since the built environment has signifi-
cantly changed since those decades old past events. It is possible to make more
reliable predictions by simulating large area earthquake disasters using cutting
edge numerical tools from many disciplines like seismology, earthquake engineer-
ing, civil engineering, social science, etc. High performance computing is vital to
meet the computational demand of simulating high fidelity models of large urban
areas, with high spatial and temporal resolutions. Further, the need of stochastic
modelling increases this high computational demand by severalfold. Stochastic
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modeling is required to improve reliability of the numerical predictions; what
decision makers require is the high level of confidence in the predictions.

With the aim of developing a such a system for making for more reliable
earthquake disaster predictions, a system called Integrated Earthquake Simula-
tor (IES) is being developed[1]. The objective of IES is to seamlessly simulate
earthquake hazards, disasters and aftermaths. Modules for simulating source to
site seismic wave propagation, seismic response analysis (SRA) of buildings and
underground structures, evacuation and recovery are being developed. Highly
scalable parallel extensions are essential for IES, in order to realize more reli-
able disaster predictions using high fidelity models. While petascale machines
provide the necessary hardware resources, it is a challenging task to develop
scalable codes for simulating a large urban area with fine detailed models.

Prior to this work, a parallel computation extension for the IES’s SRA module
has been developed[2]. However, several bottlenecks seriously hinder its scala-
bility to mere 32 CPU cores. The SRA module of IES consists of several simple
to moderately advanced seismic response analysis methods. All these seismic
response analysis models are implemented as serial programs. With task level
parallelism and simple static load balancer, near ideal scalability is attained up
to a limited number of CPUs. Runtime of some tasks are excessively large com-
pared to the majority of tasks; large buildings involve much longer run time.
These tasks with large runtime limit the scalability, and have to be parallelized
to scale over a large number of CPUs.

The emergency evacuation module of IES is based on Multi-Agent Simulation
(MAS), in which people are represented by agents that autonomously navigate,
and interact with the neighbors and the environment. Even though MAS often
advocates the use of simple agents, sophisticated and smart agents are necessary
to model complex human behaviors. High performance computing enhancements
are necessary to simulate the evacuation of large urban area with millions of
smart agents. Most literature focuses on simulation of several ten thousands of
simple agents on less than 50 CPU cores, and real time rendering; modeling
virtual worlds for games and entertainment is the main objective of the existing
studies. Consenza et al.[3] have demonstrated simulation of 100,000 agents on
64 CPUs, but it has limited scalability. With several strategies to hide commu-
nications and minimize the volume of data exchanged, our HPC enhanced MAS
code attained 94% strong scalability up to 2048 cores on the K-computer, with
two million agents.

Details of the parallel extension of the SRA module and scalability are pre-
sented in the section 2. Section 3 summarizes difficulties and the strategies used
in parallelizing the multi-agent based evacuation module. Some concluding re-
marks are given in the last section.

2 Parallel Performance Enhancement of SRA Module

SRA module of IES has a series of simple to advance nonlinear SRA meth-
ods like discrete element method (DEM), one component model (OCM), fiber
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element model, etc. All these SRA methods are implemented as serial codes
with FORTRAN 77. On the other hand, IES is developed with C++; extensive
object oriented features make C++ a popular choice for projects developed by
large groups. Though FORTRAN 77 is an outdated standard, the reuse of these
SRA codes is unavoidable since rewriting in a latest standard, verification and
validation require a significant effort and time.

A previous effort to parallelize SRA module [2] based on a master slave model
produced much lower scalability than the required; some bottlenecks that hinder
the scalability are extensive use of temporary files for inter-process communica-
tion and output data saving, uneven workloads assign to CPUs, and the large
number of message passing. We eliminated these bottlenecks and achieved high
scalability with task parallelism and a static load balancer. The rest of the sec-
tion provides the details of these improvements.

2.1 Calling Legacy FORTRAN Codes

The existing FORTRAN 77 based SRA codes have to be converted to libraries,
so that those can be reused in IES. This conversion is a complex and error prone
process since the original codes have been developed under non-standard default
compiler settings. The SRA codes have been developed with COMPAQ FOR-
TRAN which used save semantics, which makes compiler to allocate all local
variables in static storage and initialized to zero. The use of this special com-
piler setting is not recommended by most of the present day compilers including
Intel FORTRAN, which is the successor of COMPAQ FORTRAN. To circum-
vent this problem, independent SRA executables can be called from IES using
system() command while using temporary files for data exchnage. Though this
is an acceptable solution in serial applications, using temporary files is a serious
performance bottleneck in parallel applications.

It is necessary to find a simple and less error prone means of reusing old FOR-
TRAN codes for the future needs. To this end, we explored the applicability of
SystemV IPC[4] (commonly abbreviated SysV IPC) in parallel computing envi-
ronment. In this setting, IES invokes the legacy FORTRAN codes as indepen-
dent executable and use shared memory segments and semaphores of SysV-IPC
to exchange data with IES. Compared with conversion to a library, this process
involves fewer modifications to FORTRAN codes. As shown at the end of this
section, the use of SysV-IPC is a good alternative to call legacy FORTRAN 77
codes in parallel environments.

One disadvantage of using SysV IPC shared memory segments is that those
persist even after termination of the owner processes, unless explicitly cleaned.
Under normal operations, the IPC classes introduced to IES take care of the
cleaning of the used SysV IPC resources. However, if the main program dies
prematurely, the IPC resources used must be manually cleaned, in each node;
SysV IPC resources can be released with the command ipcrm <-s/-m> <shmid/
semid>. Unless the shared memory segments are manually cleaned, it becomes
a system wide persistent memory leak. SysV IPC is a good solution for a clus-
ter dedicated for IES. However, premature exits of IES may cause problems in
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clusters with multiple users and automated resource management. Therefore,
this SysV IPC approach cannot be used in professional super computers; spawn-
ing new process is usually prohibited.

2.2 Saving Large Volume of Data with MPI-IO

When simulating a large urban area, SRA module produces a large volume of
output data; around 10GB of binary data per 10,000 structures. IES should or-
ganize and save the output data in a ready-to-visualize format. We utilized the
MPI-IO functionalities of MPI-2 standard to write the SRA output in ready
to visualize format, thereby achieving higher parallel performance and reduc-
ing the visualization time. Compared to POSIX I/O, MPI-IO can deliver much
higher I/O performance in parallel environment[5]. The level 3 access function
MPI File write all(), which allows non-contiguous collective access to a file, is
used to write SRA output data in a ready to visualize format.

2.3 Load Balancing

The currently implemented task parallelism makes the SRA module an embar-
rassingly parallel problem. However, the difficulty of predicting the runtime of
each task makes it difficult to attain a good load balance; run time for each
structure depends on the location and magnitude of an earthquake, etc. There-
fore, some form of dynamic load balancing is necessary. A hybrid solution with
static load balancing for the majority of the buildings and switching to dynamic
load balancing for the remaining is the best solution. However, only static load
balancing is implemented in the modified version, since dynamic load balancing
requires significant modifications to the present code of IES.

The static load balancer utilizes the runtime information recorded at previous
executions to assign nearly equal workloads to each CPU. The simple static load
balancer first distributes all the building information and previous run time
data to all the CPUs. These data are grouped such that data of one or several
GIS (Geographic Information System) tiles are in one set, and each data set is
compressed to reduce message size. CPUs independently pick a subset of data so
that each has nearly equal work load, estimated based on the previous runtime
data. The use of static load balancer is an acceptable solution provided the
runtime difference of a given building due to different input Strong Ground
Motions (SGM’s) of similar magnitudes would not be large. Irrespective of the
number of input data files of building shapes and run times, this phase involves
only 2 message broadcasts, provided the volume of building shape data and run
time data is less than 4GB. Unlike a master slave load balancing, where master
CPU decides and distributes the work, this communication independent load
balancing does not degenerate the scalability.

2.4 Scalability of the New Parallel Extension of SRA Module

The modified parallel extension of SRA module involves message passing only at
the very beginning and the end of a simulation: at the beginning to share some



Parallel Scalability Enhancements of IES 109

configuration files and building shapes and run time data of each GIS tile; at the
end to save data with collective MPI-IO. In this setting, the modified parallel
module should well scale with the number of CPUs, as long as previous run time
based load estimation assigns equal workloads to CPUs.

To test the scalability of the new parallel extension, we simulated 125,500
buildings in the Kochi city of Japan, with the OCM model. The buildings are
excited with the strong ground motion data observed during the 1995 Kobe
earthquake. A DELL cluster with QLogic 12200 InfiniBand switch and 16 com-
putation nodes, each with two hexa-core Intel Xeon X5680 CPUs and 47GB
DDR3 memory, was used for these simulation. This cluster has hardware sup-
port for MPI-IO. However, it does not have a parallel file system supporting
MPI-IO.
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Fig. 1. Scalability of the SRA module

As shown in Fig. 1, the modified parallel extension of SRA module exhibits
near ideal scalability, up to 110 CPUs. The same graph shows that saving 84 GB
of output data with MPI-IO has little impact on the scalability, even though the
cluster does not have supporting file system for MPI-IO. On the same hardware,
another simulation is conducted to find the scalability issues due to the use of
SysV IPC for inter-process communication; OCM model is called as an indepen-
dent executable and SysV IPC resources are used for data exchange. It is found
that the use of SysV IPC has no noticeable effect on the scalability. This con-
firms that SysV IPC resources can be used for calling legacy FORTRAN codes
in parallel environments, without any impact on scalability. Surely, some work
is necessary to introduce SysV IPS resources to FORTRAN codes. However,
compared to conversion to a library, it is less error prone and requires much less
time.

The sudden changes of the graphs in Fig. 1 to a constant, after 110 CPUs,
indicates the inadequacy of task level parallelism. For complex SRA methods
like OCM and fiber element method, run time for large buildings is 2-4 orders of
magnitude larger compared to that for small buildings. Further, these complex
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SRA methods involve hours of runtime for large buildings. One of the buildings
in this demonstration involves 1211 seconds run time, which is almost equal to
the run time with 110 CPUs. Hence the graphs in Fig. 1 flatten.

Parallelizing the SRA codes is necessary to break the above mentioned per-
formance barrier. With parallelized SRA codes, CPU subgroups of different sizes
have to be formed such that resources are optimally used. All the small build-
ings are executed as serial codes in one large CPU group while the other groups
execute bigger buildings in parallel. Such strategy makes it possible to simulate
a large urban area in a single simulation.

Figure 2 shows a snapshot of seismic response of 145,000 buildings in central
Tokyo; assumed structural skeletons and material properties are used. Colors
represent the magnitude of displacement vector; red color indicates displace-
ments exceeding 0.5m.

Tokyo dome
Ikebukuro

Shinjuku

||u|| (/m)
0.0 0.1 0.3 0.4 0.50.2

Fig. 2. Snapshot from a seismic response analysis demonstartion of central Tokyo

3 Parallel Performance Enhancements of Evacuation
Module

To simulate emergency evacuation of millions of people in a large urban area like
Tokyo, it is necessary to develop a scalable parallel extension of the evacuation
module. The existing MAS based pedestrian simulation studies have reported
low scalability which is limited to a few tens of CPU cores; the objective of
majority of the existing studies is simulating virtual worlds, for which a few tens
of CPU cores may be sufficient. With several strategies for hiding and minimizing
communications, we attained near liner scalability at least up to 2048 CPU cores,
with a few millions of agents. The rest of this section provides a short description
of the abilities of current agents, difficulties in parallelization and main strategies
used to attain high parallel scalability.
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3.1 Complexity of Agents

Since the evacuation simulations are concerned with human lives, it is necessary
to use smart agents which can reproduce the observed behaviors of real crowds.
Modeling smart agents involves complex data structures consisting of a large
number of variables. While the current agents are simple, we are implementing
the required abilities that are important for tsunami triggered emergency evac-
uations. To model the heterogeneous real human crowds, a wide range of agents
are implemented: agents with different physical abilities like speed, maximum
sight distance, etc.; agents with different amount of information related to the
environment and the emergency scenario; agents with different levels of responsi-
bilities like police officers, fire fighters, volunteers and common residents. Figure 3
shows a part of the UML diagram for a resident agent. Another two types of
agents, officials and non-residents, are implemented similarly by specializing the
same Agent base class.

Model

RadarTemplate
+num_intervals
+ray_info

EventTime

Times

Recognition
+p_near_neighborset
+p_lr_neighborset
+pneighbors_in_vicinity
+exitinview

_Memory
+IVset
+time_at_IVset
+viewvector
+RT_stop
+RT_think
+destination_final
+position_previous
+velocity
+velocity_previous
+destination_looping
+pass
+trapped
+looping
+direction
+direction_previous
+path_to_destination
+no_rcnt_IV_sets_updates
+no_IV_sets_updates_to_SR
+past_IV_sets
+time_at_past_IV_sets
+pathtodest_size
+path_to_dest_snd

_Ability
+level
+max_speed
+visibility_radius

Type
+name

_Agent
+ID
+GID
+vctindx
+fin_time
+influenced_time
+distance_travelled
+peventtime
+time
+radartemplate
+precognition
+pmemory
+position
+IV
+pability
+ptype

Resident

circ_list
+container
+…
:…

Fig. 3. Class hierachy of a resident agent

All the types of agents have common navigation behavior, though the different
type of agents may take different actions depending on the role they play. As
an example, official agents seek for the other agents requiring support while
resident agents move to nearest evacuation center. With See() functionality, an
agent makes a high resolution scan of his visible environment like a radar, and
identify the boundary of visibility and visible neighboring agents. Next, with
Think() functionality, he analyzes the area and the boundary of his visibility
and identify the available paths and choose the closest path to his destination
direction. Finally, with Move() functionality, he navigates avoiding collisions
with neighboring agents and other obstacles.
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3.2 Difficulties in Parallelization

The major steps in parallelizing the multi agent code are the same as that of
other particle type simulations like SPH. However, compared to other particle
type methods, parallelization of the multi agent code involves several additional
difficulties, some of which are listed below.

1. Complexity of data structures and the amount of data involved
(a) The volume of agent’s data is 50 times or more compared to SPH.
(b) Agents have dynamically growing data like memory of their experiences,

etc.
(c) Implementing smart agents requires the use of complex data structures

like graphs, maps and trees, which grow in size.
2. Objects of different types of agents, like officials, residents, etc., have to be

stored in non-contiguous locations in different vectors.
3. Require maintaining a wide ghost layer of thickness at least equal to the

maximum visibility distance of an agent.
4. Amount of computations depends on the type and surrounding conditions

of an agent.

While all the first three items increase the communication time, the last item
leads to load imbalance. The agent data to be communicated are located in non-
contiguous memory locations; the hierarchical data structure shown in Fig. 3
requires byte padding for the alignment of base class objects and for the sake
of performance. Item 2 makes the data to be communicated become further
fragmented and non-uniform; it is not possible to store agents to be sent and
received to each CPU in a continuous memory stretches, and one may prefer
not to delete inactive agents for performance reasons. In order to preserve the
continuity, it is necessary to maintain a ghost layer of width at least equal to the
largest sight distance of agents. In a dense urban area, ghost layer of 50m may
contain a large number of people. Communicating a larger volume of fragmented
data always is associated with increase in communication time[6]. Hence the
first three items increase the communication time. The presence of dynamically
growing data further increases the communication time; it requires at least two
messages, memory allocation at the receiving end and packing and unpacking of
data.

3.3 Strategies for Enhancing Scalability

The basic strategies used in parallelization of the multi agent code are more
or less the same as that of other particle type simulations: the domain is de-
composed such that each has equal work loads; ghost or overlapping layer is
maintained and updated with the neighboring CPUs to preserve the continuity;
agents are moved to neighbor CPUs when they enter the domain of a neigh-
bor CPU; domain is repartitioned when the agent movements bring significant
load imbalance. For domain decomposition, kd-tree is used. Although kd-tree
does not minimize the volume of data being communicated, its simple geometry
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makes it possible to easily detect the movements of agents between different do-
mains. In addition to these common strategies, the following strategies are used
to deal with the above mentioned additional difficulties.

Virtual CPU Topologies. With 2D-tree based partitioning we cannot take the
advantage of communication topologies of underlying hardware like hypercube,
torus, etc.; the resulting communication patterns of kd-tree is too irregular to
be mapped to these structured hardware topologies. Distributed graph topology
interfaces of MPI-2.2 address this problem[7]. We used MPI Dist graph create()
to map MPI process ranks to processing elements, to better match the commu-
nication pattern of the partitions to the topology of the underlying hardware.
However, we could not test the effectiveness of virtual topology due to the un-
availability of a cluster supporting this feature.

Algorithm 1.

comm freq = ghost update interval;

for k = 1 to n do
Execute send agents;
if (! (k%comm freq)) then

Initialize ghost update;
end
Execute inner agents;
if (! (k%comm freq)) then

Finalize ghost update;
end

end

Fig. 4. Subdivisions of a partition

Hiding Communications and Minimizing Volume of Data Exchanged.
As mentioned in the Section 3.2, communication of large volume of fragmented
data is time consuming. However, most of the communication time can be hidden
behind calculations by processing the agents in a certain order (see Algorithm
1). To this end, agents in each CPU are divided into three sub groups (see Fig
4); agents to be received from other CPUs, agents to be sent to other CPUs
and the rest of the active agents which are named inner most agents hereafter.
To deal with the large amount of data to be communicated, only the necessary
agent data is exchanged. The three agent sub groups are stored in std::map<>
C++ containers instantiated with std::pair< global ID, Agent * >. The map
data structure makes it efficient to manage agent movements among CPUs and
repartitioning.
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The presence of dynamically growing data makes it difficult to eliminate the
communication overhead completely. Exchanging all the dynamic data requires
at least two messages and packing and unpacking of large amount of data. In-
stead, in a single message, only the newly added contents are exchanged when
updating ghost boundaries; new updates are packed to a small temporary buffer
in agent objects, sent with the static data members in one message, and unpacked
at the receiving end. The explicit packing and unpacking makes it impossible
to hide the communication overhead completely. However, a significant portion
of communication overhead is hidden, making the code to attain high parallel
scalability.

Reduction of the Frequency of Ghost Layer Updates. Even if the ghost
update communications are hidden, packing and unpacking dynamically growing
data, etc. incur some time. Therefore, further gain in scalability is possible by
reducing the frequency of ghost layer updates. This introduces small error to
the simulation. However, the error is negligibly small; the time increment used is
0.2 s. Table 1 shows that the reduction of ghost update frequency has a significant
advantage only with smaller number of CPUs. With the increasing number of
CPUs, its effect diminishes; the overhead of packing and unpacking data goes
down with the decreasing number of agents. Therefore, this approach is effective
only when CPUs have a large number of agents in the ghost regions.

Table 1. Comparison of runtimes with ghost update interval ’s of 1 and 2

CPUs
Runtimes with /(s)

Difference
comm freq=1 comm freq=2

4 16701.7 15103.2 1598.5

8 7765.6 7025.6 740.0

16 3243.5 3170.5 73.0

32 1701.3 1694.4 6.9

Minimizing Data Exchange in Repartitioning. Migration of agents from
a partition to another brings load imbalance. When a significant load imbalance
occurs, repartition is necessary to maintain equal workloads. Repartitioning is
an expensive step since sophisticated agents have large amount of data. With
2D-tree, it is observed that most of the agents remain in the same CPU even
after repartitioning, unless MPI Dist graph create() maps a partition to a differ-
ent CPU. The repartitioning algorithm detects whether a partition is assigned
to the same CPU and exchanges only the newly assign agents. This drastically
reduces the communication overhead involved with repartitioning, effectively
lowering any performance degeneration due to repartitioning. Table 2 compares
run times without any repartitioning and with 4 repartitioning (once in 80 steps).
As is seen, even with the current serial 2d-tree algorithm, the gain due to repar-
titioning is significantly increasing with the number of CPUs. Figure 6, about



Parallel Scalability Enhancements of IES 115

which a detailed explanation is given later, demonstrate the gain due to reparti-
tioning. Instead of calling repartitioning at fixed intervals, load in each CPU has
to be monitored and repartitioning has to be called based on the level of load
imbalance.

Table 2. Effectiveness of repartitioning

CPUs
Runtime /(s)

Gain /(%)
no repartition 4 repartitions

32 1733.9 1656.7 4.6

64 939.1 866.5 8.4

128 459.8 434.1 5.9

256 250.9 220.6 13.7

3.4 Scalability

In order to test the effectiveness of the above major strategies, we conducted a
series of simulations with 500,000 agents in a part of Kochi city environment.
The same cluster used for the scalability test of the SRA module is used for
these simulations. Ghost layer updating at each time step and repartitioning at
an interval of 80 steps are considered for these simulations. As Fig. 5 indicates,
the above strategies have produced near linear scalability; super linear behavior
is due to the nonlinear time reduction of the neighbor search algorithm with the
decreasing number of agents.

Further, preliminary tests in the K-computer produced 94% strong scalability

with 2048 CPU cores; strong scalability is defined as
(Tm

Tn
)

( n
m ) , where Tk is the time

with k number of CPU cores and n ≥ 2m. For the tests on the K-computer, 400
time steps with 2 million of agents are considered. Further the ghost boundaries
are updated at each iteration, movements of agents between CPU cores are
checked at each 10 iterations and domain is repartitioned at each 100 iterations
for load balancing. Figures 6a and 6b show the runtime for 400 iterations, except
the repartitioning time. These figures clearly show the significant performance
gain due to repartitioning. As is seen, at each iteration, the run time with 2048
cores is nearly the half of that of 1024 cores.

Figure 7a shows the history of total run time with 2048 CPU cores. As is
seen the major bottleneck in the current code is repartitioning, which is still a
serial code. Further, as shown in Fig. 7b, migration of agents (detecting agent
movements from the domain of one CPU to another and dispatch those agents
to the new CPU) is relatively time consuming. In future developments, these
two bottlenecks are to be addressed to further increase the scalability.
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Fig. 5. Scalability of the multi agent code
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4 Summary

Scalable parallel extensions for the seismic response analysis and multi-agent
based evacuation modules of an Integrated Earthquake Simulator (IES) are being
developed. Task parallelism is considered for the SRA module and near ideal
scalability is attained with a static load balancer. In future, parallelization of
the SRA codes is necessary to address the scalability limitations due to the
presence of long time consuming tasks (i.e. large buildings). Further, out of a
given number of CPUs, forming CPU subgroups of different sizes to execute the
parallel SRA codes with minimum waste of CPU time and task scheduling have
to be considered.

The multi agent based evacuation simulation module produced high strong
scalability with a few thousands of CPU cores in the K-computer. In future,
further scalability improvements of evacuation module are planned with direct
remote memory access features of MPI. Such enhancements are necessary to
cope with complexities arising from planned sophisticated agent features and
introduction of different types of agents.
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Abstract. In this work we discuss several key aspects for an efficient implemen-
tation and deployment of large-scale quantum Monte Carlo (QMC) simulations
for chemical applications on petaflops infrastructures. Such aspects have been
implemented in the QMC=Chem code developed at Toulouse (France). First, a
simple, general, and fault-tolerant simulation environment adapted to QMC algo-
rithms is presented. Second, we present a study of the parallel efficiency of the
QMC=Chem code on the Curie machine (TGCC-GENCI, CEA France) show-
ing that a very good scalability can be maintained up to 80 000 cores. Third, it is
shown that a great enhancement in performance with the single-core optimization
tools developed at Versailles (France) can be obtained.

1 Introduction

Quantum Monte Carlo (QMC) is a generic name for a large class of stochastic ap-
proaches solving the Schrödinger equation by using random walks. In the last forty
years they have been extensively used in several fields of computational physics and
are in most cases considered as state-of-the-art approaches. However, this is not yet the
case in the important field of computational chemistry where the two “classical” com-
putational methods are the Density Functional Theory (DFT) and post-Hartree-Fock
methods. For a review of QMC and its status with respect to the standard approaches,
see e.g. [1]. In the recent years several applications for realistic chemical problems have
clearly demonstrated that QMC has a high potential in terms of accuracy and in ability
of dealing with (very) large systems. However, and this is probably the major present
bottleneck of QMC, simulations turn out to very CPU-expensive. The basic reason is
that chemical applications are particularly demanding in terms of precision: the en-
ergy variations involved in a chemical process are typically several orders of magnitude
smaller than the total energy of the system which is the quantity computed with QMC.
Accordingly, the target relative errors are typically 10−7 or less and the Monte Carlo
statistics needed to reach such a chemical accuracy can be tremendously large.

Now, the key point for the future is that this difficulty is expected to be largely over-
come by taking advantage of the remarkable property of QMC methods (not valid for
standard methods of chemistry) of being ideally suited to HPC and, particularly, to mas-
sive parallel computations. In view of the formidable development of computational
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platforms this unique property could become in the near future a definite advantage for
QMC over standard approaches.

The stochastic nature of the algorithms involved in QMC enables to take advantage
of today and tomorrow’s computer architectures through the following aspects: i) Data
structures are small inducing a fairly small memory footprint (less than 300 MiB per
core for very large systems) and data accesses are organized to maximize cache us-
age: spatial locality (stride-one access) and temporal locality (data reuse), ii) Most of
the computation can be efficiently vectorized making full use of the vector capabili-
ties of recent processors, iii) Network communications can be made non-blocking, iv)
Access to persistent storage is negligible and can be made non-blocking, v) Differ-
ent parallel tasks can be made independent of each other so as to run asynchronously,
vi) Fault-tolerance can be naturally implemented. All these features which have been
implemented in the QMC=Chem code developed at Toulouse[2] are required to take ad-
vantage of large-scale computing grids[3] and to achieve a very good parallel efficiency
on petascale machines.

In section 2 a short overview of the mathematical foundations of the QMC method
employed here is presented. For a more detailed presentation the reader is referred to [1]
and references therein. Section 3 is devoted to the presentation of the general structure
of the simulation environment employed for running QMC=Chem on an arbitrary com-
putational platform. A preliminary version of such an environment has been presented
in [3]. Here, we present an improved implementation where the network communica-
tions are now fully handled by a client-server implementation and the computational
part is isolated in multiple instances of a single-core Fortran program. These modifi-
cations allow the program to survive failures of some compute nodes. In section 4 the
results of our study of the parallel efficiency of the QMC=Chem code performed on the
Curie machine (TGCC-GENCI, France) thanks to a PRACE preparatory access[4] are
presented. In section 5 the results of the optimization of the single-core performance
are discussed. The optimization was performed after a static assembly analysis of the
program and a decremental analysis.

2 Overview of a QMC Simulation

In the simulations discussed here, the basic idea is to define in the 3N-dimensional
electronic configuration space a suitable Monte Carlo Markov chain combined with a
birth-death (branching) process to sample a target probability density from which exact
(or high-quality) quantum averages can be evaluated. In our simulations we employ
a variation of the Fixed-Node Diffusion Monte Carlo (FN-DMC) method, one of the
most popular versions of QMC. In short, we aim at solving the electronic Schrödinger
equation written as

H Ψ0(r1, . . . ,rN) = E0Ψ0(r1, . . . ,rN) (1)

where H is the molecular Hamiltonian operator, Ψ0(r1, . . . ,rN) the N-electron wave
function, and E0 the total electronic energy.

To do that, the basic idea is to construct a stochastic process having the density

π(r1, . . . ,rN) =
Ψ0(r1, . . . ,rN)ΨT (r1, . . . ,rN)

∫
. . .
∫

dr1 . . .drNΨ0(r1, . . . ,rN)ΨT (r1, . . . ,rN)
(2)
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Fig. 1. Graphical representation of a QMC simulation. Each process generates blocks, each block
being composed of Nwalk walkers realizing Nstep Monte Carlo steps.

as stationary density. Here, ΨT — called the trial wavefunction — is some good known
(computable) approximation of Ψ0. The role played by the trial wavefunction is cen-
tral since it is used to implement the “importance sampling” idea, a fundamental point
at the heart of any efficient Monte Carlo sampling of a high-dimensional space. In
the important case of the total energy, it can be shown that the exact ground-state
energy E0 may be expressed as the average of the so-called local energy defined as
EL(r1, . . . ,rN)≡ H ΨT

ΨT
over the density π .

In brief, the stochastic rules employed are as follows:

1. Use of a standard Markov chain Monte carlo chain based on a drifted Brownian
motion. The role of the drift term is to push the configurations (or “walkers” in
the QMC terminology) towards the regions where the trial wavefunction takes its
largest values (importance sampling technique).

2. Use of a birth-death (branching) process: the walkers are killed or duplicated a
certain number of times according to the magnitude of the local energy (low values
of the local energy are privileged).

It can be shown that by iterating these two rules for a population of walkers the station-
ary density π (Eq. 2) is obtained. Note that in the actual implementation in QMC=Chem,
a variation of the FN-DMC method working with a fixed number of walkers is used[5].

Denoting as X = (r1, . . . ,rN) a walker in the 3N-dimensional space, the random
trajectories of the walkers differ from each other only in the initial electron positions
X0, and in the initial random seed S0 determining the entire series of pseudo-random
numbers.

The main computational object is a block. In a block, Nwalk independent walkers re-
alize random walks of length Nstep, and the energy is averaged over all the steps of each
random walk. Nstep is set by the user, but has to be taken large enough such that the
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positions of the walkers at the end of the block can be considered independent from
their initial positions. A new block can be sampled using the final walker positions as
X0 and using the current random seed as S0. The block-averaged energies are Gaus-
sian distributed and the statistical properties can be easily computed. The final Monte
Carlo result is obtained by super-averaging all the block-averages. If the block-averages
are saved to disk, the final average can be calculated by post-processing the data and
the calculation can be easily restarted at any time. As all blocks are completely in-
dependent, different blocks can be computed asynchronously on different CPU cores,
different compute nodes and even in different data centers. Figure 1 shows a picto-
rial representation of three independent CPU cores computing blocks sequentially, each
block having different initial conditions.

The core of QMC=Chem is a single-core Fortran executable that computes blocks as
long as a termination event has not been received. At the end of each block the results
are sent in a non-blocking way to a central server, as described in the next section.

3 The Client/Server Layer

In the usual MPI implementations, the whole run is killed when one parallel task will not
be able to reach the MPI Finalize statement. This situation occurs when a parallel task
is killed, often due to a system failure. For deterministic calculations where the result
of every parallel task is required, this mechanism is convenient since it immediately
stops a calculation that will not give the correct result. In our case, as the result of the
calculation of a block is a Gaussian random variable, removing the result of a block
from the simulation is not a problem since doing that does not introduce any bias in
the final result. Therefore, if one compute node fails, the rest of the simulation should
survive.

A second disadvantage of using MPI libraries is that all resources need to be avail-
able for a simulation to start. In our implementation, as the blocks can be computed
asynchronously we prefer to be able to use a variable number of cores during the simu-
lation in order to reduce the waiting time in the batch queue.

These two main drawbacks lead us to write a lightweight TCP client/server layer in
the Python language to handle all the network communications of the program and the
storage of the results in a database. The Python program is divided into three distinct
tasks shown in figure 2, the first and second tasks running only on the master compute
node.

The first task is a manager that watches periodically the database associated with the
running simulation. The manager computes the running averages and error bars, and
checks if the stopping condition of the calculation is reached. The stopping condition
can be for instance a threshold on the error bar of the energy, a condition on the total
execution time, etc. If the stopping condition is reached, a stopping flag is set in the
database.

The second task is a data server. This task contains two threads: one network thread
and one I/O thread. The network thread periodically sends a UDP packet to the con-
nected clients to update their stopping condition and to check that they are still running.
The network thread also receives the block averages and puts them in a queue. Simulta-
neously, the I/O thread empties this queue by storing in the database the block averages.
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Fig. 2. The communication architecture of QMC=Chem

At any time, a new client can connect to the data server to request the input files and par-
ticipate to a running calculation. Another way to increase the number of running cores
is to submit another run reading and writing to the same database. As the managers read
periodically the content of the database, each simulation is aware of the results obtained
by the other simulations. This allows the use of multiple managers and data servers that
can be submitted to the batch scheduler as independent jobs in order to gather more and
more computing resources as they become available.

The third task is a forwarder. Each compute node (as well as the master node) has
only one instance of the forwarder. The forwarder has different goals. The first goal is
to spawn the computing processes (single-core Fortran executables) and to collect the
results via Unix pipes after a block has been computed. Then, it sends the results to
the data server while the computing processes are already computing the next block.
If every compute node sends directly the results to the data server, the master node is
flooded by small packets coming from numerous sources. Instead the forwarders are
organized in a binary tree structure, and the second goal of a forwarder is to collect
results from other forwarders and transfer them in a larger packet to its parent in the
binary tree. Using this structure, the data server has much fewer connected clients, and
receives much larger packets of data. All the nodes of the forwarder tree can possibly
connect to all their ancestors if the parent forwarder does not respond.

On massively parallel machines an MPI launcher is used to facilitate the initialization
step. The launcher sends, via the MPI library, the input files and Python scripts to all
the slave nodes allocated by the batch scheduler. The files are written in a RAM disk
on every node (the /dev/shm location). The reason for this copy is to avoid too many
simultaneous I/O on the shared file system, and also to avoid I/O errors if the shared file
system fails, if a local disk fails or is full. The MPI launcher then forks to an instance
of a forwarder that connects to the data server.
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Fig. 3. Number of computed blocks as a function of the number of CPU cores for a fixed compu-
tation time

4 Parallel Efficiency

Using the design described in the previous section, the parallel section of the program is
expected to display a parallel efficiency of about 100% since there is no blocking state-
ment. In this section, we investigate in some detail how the initialization and finalization
steps impact the parallel efficiency of QMC=Chem.

For that, a small benchmark was set up during a PRACE preparatory access on the
Curie machine (TGCC-GENCI, France).[4] On this machine, all the compute nodes
were equipped with the same processors, namely four Intel Nehalem 8-core sockets.
Two important parameters are to be kept in mind. First, we chose to run a short simu-
lation for which the average CPU time required to compute one block is 82 seconds.1

Second, we have chosen to send the stopping signal after 300 seconds (during the fourth
block). When the forwarders receive the stopping signal, they wait until all the working
CPU cores finish their current block. Hence, in this study the ideal wall time for perfect
scalability should be 328 seconds.

The additional time T (Ncore) with respect to the ideal time can be expressed as

T (Ncore) =W (Ncore)− C(Ncore)

Ncore
(3)

where Ncore is the number of cores, W (Ncore) is the wall time and C(Ncore) is the CPU
time, both measured for Ncore cores. With 10 000 cores, 149 seconds are needed for the

1 This is not representative of a real simulation since it is far too small: the time spent in net-
work communications will be over-estimated compared to real simulations where the time to
compute one block is typically much greater (10 minutes and more).
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initialization and finalization steps. For this 7 minutes benchmark, a parallel efficiency
of 69% was obtained. However, as the parallel section has an ideal scaling, one can
extrapolate the parallel efficiency one would obtain for a one hour run. If the stopping
signal occurs after one hour, each core would have computed 44 blocks. The total CPU
time would be C̃(Ncore) = 11C(Ncore). As the additional time T (Ncore) does not depend
on the number of computed blocks, the wall time would be W̃ (Ncore) = T (Ncore) +
C̃(Ncore)/Ncore. A parallel efficiency of 96% would be obtained for a one-hour run on
10 000 CPU cores (figure 3).

More recently, we were given the opportunity to test QMC=Chem on the thin nodes
of the Curie machine (80 000 Sandy Bridge cores), for a real application on a biological
molecule made of 122 atoms and 434 electrons (the largest application ever realized
using all-electron Diffusion Monte Carlo). Using 51 200 cores for 3 hours, the paral-
lel efficiency was 79%. After the runs were finished, we realized that for such a large
molecular system, the CPU time needed to compute one block had quite large fluctua-
tions due to the implementation the dense-sparse matrix product presented in the next
section. This implementation considerably reduces the total wall time (which is what
the end user wants), but slightly reduce the parallel efficiency. This problem has been
solved by making the number of Monte Carlo steps per block non-constant. Neverthe-
less, these runs confirm that a good scaling can still be obtained for a real simulation.

5 Single-Core Efficiency

Our choice in the implementation of the QMC algorithms was to minimize the memory
footprint. This choice is justified first by the fact that today the amount of memory per
CPU core tends to decrease and second by the fact that small memory footprints allows
in general a more efficient usage of caches. Today, the standard size of the molecular
systems studied by QMC methods and published in the literature usually comprise less
than 150 electrons. For a 158 electron simulation, the binary memory footprint (includ-
ing code and data) per core is only 9.8 MiB. To check the memory footprint of much
larger systems, a few Monte Carlo steps were performed successfully on a molecular
system containing 1731 electrons; such a large system only required 313 MiB of mem-
ory per core. For a system beyond the largest systems ever computed with all-electron
QMC methods, the key limiting factor is only the available CPU time and neither the
memory nor disk space requirements. This feature is well aligned with the current trends
in computer architecture for large HPC systems.

As the parallel scaling is very good, single-core optimization is of primary impor-
tance: the gain in execution time obtained on the single-core executable will also be
effective in the total parallel simulation. The Fortran binary was profiled using stan-
dard profiling tools (namely gprof[6] and Scalasca[7]). Both tools exhibit two major
hot spots in the calculation of a Monte Carlo step. The first hot spot is a matrix inver-
sion, and the second hot spot is the product of a constant matrix A with five different
matrices B1 . . .B5. These two bottlenecks have been carefully optimized for the x86
micro-architectures, especially the for the AVX instruction set of the Sandy Bridge
processors.
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To measure the performance of the matrix inversion and the matrix products, small
codelets were written. The final results are given in table 1, compared to the perfor-
mance of the single core executable, with different molecular system sizes. Compu-
tational complexity (with respect to FP operations) of the matrix inversion is O(N3

e )
where Ne is the number of electrons. Exploiting the sparse structure of the right matri-
ces in the matrix matrix products, computational complexity of such products is reduced
to O(N2

e ) with a prefactor depending on Nbasis, the size of the basis set used to describe
the wave function.

The matrix inversion is performed in double precision (DP) using the Intel MKL li-
brary, an implementation of the LAPACK[9] and BLAS[10] APIs. To maximize MKL
efficiency, arrays were padded to optimize array alignment (lined up on 256 bit bound-
aries) and the leading dimension of the array is chosen to be a multiple of 256 bits to
ensure that all the column accesses are in turn properly aligned.

For the matrix matrix products, similar alignment/padding techniques were used.
Loops were rearranged in order to use full vector length stride-one access on the left
dense matrix and then blocked to optimize temporal locality (i.e. cache usage).

An x86 64 version of the MAQAO framework[11] was used to analyze the binary
code and to generate best possible static performance estimates. This technique was
used not only on the matrix matrix products but also on all of the hottest loops (i.e.
accounting at least for more than 1% of the total execution time). This allowed us to
detect a few compiler inefficiences and to fix them by hard coding loop bounds and
adding up pragmas (essentially for allowing use of vector aligned instructions).

Then, the DECAN tool[12] was used to analyze performance impact of data access.
For that purpose, for each loop, two modified binaries were automatically generated: i)
FPISTREAM: all of AVX load instructions are replaced by PXOR instructions (to avoid
introduction of extra dependencies) and all of the AVX store instructions were replaced
by NOP instructions (issuing no operation but preserving the binary size). FPISTREAM
corresponds to the ideal case where all of the data access are suppressed. ii) MIS-
TREAM: all of the AVX arithmetic instructions were replaced by NOP instructions.
By comparing cycle counts of FPISTREAM, MISTREAM binaries with the original
binary, potential performance problems due to data access (essentially cache misses)

Table 1. Single core performance (GFlops/s) of the two hot routines: inversion (DP), matrix
products (SP), and of the entire single-core executable. Measurements were performed on an
Intel Xeon E31240, 3.30GHz, with a theoretical peak performance 52.8 GFlops/s (SP) and 26.4
GFlops/s (DP). The values in parenthesis are the percentages with respect to the peak. The turbo
feature was turned off, and the results were obtained using Likwid performance tools.[8]. 1As the
matrix to invert is block-diagonal with two Ne/2×Ne/2 blocks, the inversion runs on the two
sub-matrices.

System sizes Matrix inversion1 Matrix products Overall performance

Ne = 158, Nbasis = 404 6.3 (24%) 26.6 (50%) 8.8 (23%)
Ne = 434, Nbasis = 963 14.0 (53%) 33.1 (63%) 11.8 (33%)
Ne = 434, Nbasis = 2934 14.0 (53%) 33.6 (64%) 13.7 (38%)
Ne = 1056, Nbasis = 2370 17.9 (67%) 30.6 (58%) 15.2 (49%)
Ne = 1731, Nbasis = 3892 17.8 (67%) 28.2 (53%) 16.2 (55%)
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could be easily detected. Such an analysis revealed that for most of the hot loops, data
access was accounting for less than 30% of the original time, indicating an excellent
usage of the caches. Measurement of the binaries were performed directly with the
whole application running allowing to take into account runtime context for the loops
measured.

6 General Conclusion

In December 2011, GENCI gave us the opportunity to test our program on Curie (TGCC-
GENCI, France) while the engineers were still installing the machine. At that time, up
to 4 800 nodes (76 800 cores) were available to us for two sessions of 12 hours. As the
engineers were still running a few benchmarks, our runs were divided into 3-hour jobs
using 400 nodes (6 400 cores). In this way the engineers were able to acquire resources
while our job was running. This aspect points out the importance of our flexible parallel
model, but makes it impossible to evaluate rigorously the parallel efficiency. At some
point, all the available nodes were running for our calculation during several hours.
As we had previously measured a sustained performance of 200 GFlops/s per node
for this run, we can safely extrapolate to a sustained value of ∼960 TFlops/s (mixed
single/double-precision) corresponding to about 38 % of the peak performance of the
whole machine for a few hours. As the machine was still in the test phase, we experi-
enced a few hardware problems and maintenance shutdowns of some nodes during the
runs. Quite interestingly, it turns out to be an opportunity for us to test the robustness of
our program: it gave us the confirmation that our fault-tolerant scheme is indeed fully
functional.

In this work we have presented a number of important improvements implemented
in the QMC=Chem program that beautifully illustrate the extremely favorable compu-
tational aspects of the QMC algorithms. In view of the rapid evolution of computational
infrastructures towards more and more numerous and efficient processors it is clear that
such aspects could be essential in giving a definite advantage to QMC with respect to
other approaches based on deterministic linear algebra-type algorithms.
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Abstract. In parallel finite element solvers, sparse matrix assembly is
often a bottleneck. Implemented using message passing, latency from
message matching starts to limit performance as the number of cores
increases. We here address this issue by using our own stack based rep-
resentation of the sparse matrix, and a hybrid parallel programming
model combining traditional message passing with one-sided communi-
cation. This gives an significantly faster insertion rate compared to state
of the art implementations on a Cray XE6.

Keywords: UPC, PGAS, Hybrid Parallel Programming.

1 Introduction

In large scale finite element simulations a considerable amount of time is spent
in sparse tensor assembly. These tensors are often represented as sparse matri-
ces which can be frequently reassembled for time dependent problems. Efficient
tensor assembly is therefore a key to obtain good performance. Sparse matrix
formats are designed to have a low memory footprint and for good performance
when rows are accessed consecutively, for example in sparse matrix vector mul-
tiplication. Finite element assembly on the other hand often inserts or adds data
at random locations in the tensor, resulting in a poor access pattern which can
have a tremendous impact on the assembly performance.

Unstructured meshes are excellent for accurate approximation of complex
geometries. However, the lack of underlying structure implies an unstructured
communication pattern, which can have a negative effect on the overall perfor-
mance, in particular for the assembly stage on a large number of cores, as we
have observed in our previous work [9].

The reason for this behaviour is partly due to the programming model used.
Today, most scientific libraries and applications are parallelized using the Mes-
sage Passing Interface (MPI) [13] or some hybrid incarnation combining MPI
with OpenMP [14]. MPI is what is called two-sided,which means that each pro-
cess can only communicate with send and receive operations, and since these have
to be matched to each other it will unavoidably increase latency and synchro-
nization costs in non-structured communication, as in sparse matrix assembly
on unstructured meshes.

M. Daydé, O. Marques, and K. Nakajima (Eds.): VECPAR 2012, LNCS 7851, pp. 128–139, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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In this paper we address this issue by replacing the linear algebra parts of
the finite element library DOLFIN [11] with a one-sided communication lin-
ear algebra backend, based on the Partitioned Global Address Space (PGAS)
programming model, resulting in a hybrid MPI/PGAS application. Using this
hybrid model we observe a significant reduction in assembly time, especially for
large core counts.

The outline of the paper is the following; in §2 we motivate our work and give
a short background on related work. In §3 we present our sparse matrix format
and in §4 we present our parallelization strategy and briefly describe DOLFIN’s
implementation. Performance results are discussed in §5, and we give conclusions
and outline future work in §6.

2 Background

Most state of the art linear algebra packages, as for example PETSc [1], optimize
the sparse matrix assembly by using non-blocking communication, overlapping
computation and communication. It can be seen as a simulation of one-sided
communication, since send and receive operations do not have to be matched
directly. However, it requires the receiver to occasionally check for messages
which introduces latency etc. Non-blocking communication also involves soft-
ware buffering, either on the sending or receiving side which adds to the latency
penalty. True one-sided communication is realized in MPI 2.0 with Remote Mem-
ory Access (RMA) operations, but unfortunately the API imposes a number of
restrictions that limit the usability of these extensions. For a discussion of these
constraints, see for example [3].

Today, at the dawn of exascale computing some concerns have been raised
whether MPI is capable of delivering the needed performance. Since a tremen-
dous amount of high quality scientific software has been written in MPI over the
past decades, it is unreasonable to think that these are going to be rewritten
or replaced with something written in for example PGAS. Therefore we argue
that a reasonable way to prepare old legacy codes for exascale is to replace bits
and pieces with more scalable one-sided communication, thus creating hybrid
MPI/PGAS applications which to our knowledge is a quite unusual combina-
tion. Related work in this area is sparse, most of the work is focused on support
in the runtime system [2][10] or the applicability of hybrid methods [5], with the
exception of [16] which presents an entire large scale application rewritten using
a hybrid PGAS/OpenMP approach.

In our previous work on sparse matrix formats [6], we have found that the
most common format Compressed Row Storage (CRS) [17] is sub-optimal when
it comes to sparse matrix assembly. CRS has an efficient access pattern for
Sparse Matrix Vector Multiplication (SPMV) since data is stored in consecutive
places in memory. On the fly insertion of elements can however be costly due
to reallocation and data movement. Instead we propose a new way of using a
stack-based representation. It is similar to the linked-list data structure where
each row is represented by a linked list.
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Fig. 1. An illustration of the stack-based representation of the matrix S

3 Stack-Based Representation

A stack-based representation of a sparse matrix is based around a long array A,
with the same length as the number of rows in the matrix. For each entry in the
array A(i), we have a stack A(i).rs holding tuples (c, v) representing the column
index c and element value v, hereby referred to as a row-stack, illustrated in Fig.
1. Inserting an element into the matrix is now straightforward. Namely, find the
corresponding row-stack and push the new (c, v) tuple on the top. Adding a value
to an already inserted element is also straightforward. Find the corresponding
row-stack, perform a linear search until the correct (c, v) tuple is found and add
the value to v, as illustrated in Algorithm 1 below:

Algorithm 1. Matrix update (Ai,c + = v):

for j = 1 : length(A(i).rs) do
if A(i).rs(j).c == c then
A(i).rs(j).v+ = v
return

end if
end for
push (c, v) onto the row-stack A(i).rs

We argue that this representation is more efficient for matrix assembly than the
CRS, in particular for random insertion such as finite element assembly, foremost
since the indirect addressing to find the corresponding start of a row is removed.
Secondly we do not require these stacks to be ordered. Thus we could push new
elements regardless of the column index. In the case of adding a value to an already
inserted element, the linear search will still be efficient since each row-stack has a
short length equal to the number of non-zeros in the corresponding row.

4 Parallelization Strategy

The finite element framework DOLFIN is written in C++ and parallelized using
MPI. Our HPC branch is based on a fully distributed mesh approach, where
everything from preprocessing, assembly of linear systems and postprocessing
is performed in parallel, without representing the entire problem or any pre-
/postprocessing step on one single core. Each core is assigned a whole set of
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Fig. 2. An illustration of the representation of row stacks as a directory of objects

elements, defined initially by the graph partitioning of the corresponding dual
graph of the mesh. Since whole elements are assigned to each core, assembly of
linear systems based on evaluation of element integrals can be performed in a
straightforward way with low data dependency. Furthermore, we renumber all
degrees of freedom such that a minimal amount of communication is required
when modifying entries in the sparse matrix. A more detailed description of
DOLFIN’s parallelization can be found in [7].

The parallelization of the stack-based linear algebra backend is based on a row
wise data distribution. Each core is assigned a continuous set of rows, such that
the first core is assigned rows 0 . . . n, the second n+1 . . .m, and so forth. For the
implementation we used Unified Parallel C (UPC) [18], a C like language that
extends ISO C99 with PGAS constructs. In UPC the memory is partitioned into
a private and a global space. Memory can then either be allocated in the private
space as usual or in the global space using UPC provided functionality. Once
memory is allocated in the global space it can be accessed in the same manner
on all threads.

4.1 Directory of Objects Representation

In theory the stack-based (or CRS based) representation can easily be imple-
mented in UPC by allocating the entire list of row-stacks in global space. How-
ever, this is not possible. For performance reasons memory in UPC is allocated
in blocks with affinity to a certain thread. Hence we would either waste memory
or force the matrix dimension to be even divisible by the number of threads.

The solution to this problem is to use a technique called directory of objects,
where a list of pointers is allocated in the global space such that each thread
has affinity to one pointer. Each pointer then points to a row-stack, allocated in
the global space with affinity to the same thread as the pointer. This technique
enables us to have unevenly distributed global memory, and each piece can grow
or shrink independently of each other, as illustrated in Fig. 2.
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Algorithm 2. Lock free matrix update:

if owner(A(i).rs)! = threadid then
stage(owner(A(i).rs), c, v)

else
for j = 1 : length(A(i).rs) do
if A(i).rs(j).c == c then
A(i).rs(j).v+ = v
return

end if
end for
push (c, v) onto the row-stack A(i).rs

end if

4.2 Parallel Matrix Operations

Operating on the matrix in parallel is almost the same as for the serial imple-
mentation. The big difference is how matrix add/insert operations handle non
thread-local elements. One solution is to allow the thread which updates an en-
try to update it in the row-stack on the thread to which the entry has affinity to.
The possibility of data races makes this approach error prone, which of course
can be solved by adding locks around certain regions, and pay a certain latency
fee for acquiring the locks.

Instead, we use a lock-free approach where Algorithm 1 is modified such that
if an entry does not belong to a thread it is placed in a staging area (offthread
row-stack), one for each thread, as illustrated in Algorithm 2. After all entries
have been added or inserted into the matrix, each thread copies the relevant
staging areas from each other using the remote memory copy functionality in
UPC, and add/insert them into the local row-stack. Possible communication
contention is reduced by pairing UPC threads together, such that each thread
copies data from the thread with number mod (threadid + i, nthreads), where
threadid is the thread’s own id and nthreads is the total number of UPC threads.
For static sparsity patterns, we use the initial assembly to gather dependency
information such that consecutive assemblies can be optimized, only fetching
data from threads in the list of dependencies, as illustrated in Algorithm 3.

4.3 Hybrid Interface

Mixing different programming languages in scientific code has always been a
cause for headache and portability issues. Since there is no C++ version of UPC
we had to use an interface that did not expose the UPC specific data structures
to DOLFIN’s C++ code. To overcome this problem we access the UPC data
types from DOLFIN as opaque objects [15]. On the C++ side we allocate mem-
ory for an object of the same size as the UPC data type and the object is never
accessed by the C++ code. All modifications are done through the interface to
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Algorithm 3. Finalization of matrix assembly:

if Initial assembly then
for i = 1 : nthreads do
src = mod(threadid + i, nthreads))
if length(staging area(src, threadid)) > 0 then
data = memget(staging area(src, threadid))
for j = 1 : length(data) do
add data(j) to matrix

end for
add src to list of dependencies (dep)

end if
end for

else
for i = 1 : length(dep) do
src = dep(i)
data = memget(staging area(src, threadid))
for j = 1 : length(data) do
add data(j) to matrix

end for
end for

end if

typedef struct {
shared [ ] row stack ∗ shared ∗ a d i r ;
row stack ∗ r s ;
. . .

} jp mat t ;

int j p mat i n i t ( jp mat t ∗ r e s t r i c t A,
u in t32 t m,
u in t32 t n ) ;

(a) UPC side

extern ”C” {
int j p mat i n i t ( char ∗ r e s t r i c t A,

u in t 32 t m,
u in t 32 t n ) ;

}

char A[ 1 4 4 ] ; /∗ s i z e o f ( j p m a t t ) ∗/

j p ma t i n i t (A, M, N) ;

(b) C++ side

Fig. 3. An illustration of the hybrid interface

the UPC library. For example, the code given in Fig. 3(a) illustrates how an UPC
matrix (jp_mat_t) and its initialization function (jp_mat_init) are defined. As
mentioned above, since shared pointers are illegal in C++, we have to redefine
the function on this side as illustrated in Fig. 3(b). This technique enables us
to access exotic UPC types from C++ with minor portability issues, except
for determining the size of the data type for each new platform the library
is compiled on. During runtime we use a flat model and map MPI ranks to
UPC threads one-to-one. How this mapping is created and managed is left to
the runtime system. Also, in order to minimize possible runtime problems we
ensured that no UPC and MPI communication overlaps.
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5 Performance Analysis

We conducted a performance study in order to determine if sparse matrix as-
sembly, in particular for finite element solvers, can gain anything from one-sided
communication, and also to determine if the hybrid MPI/PGAS model is feasi-
ble for optimizing legacy MPI codes. For our experiments we chose four partial
differential equations (PDE), all with different kinds of communication and com-
putational costs. Two of them are more synthetic with large mesh sizes and the
other two are more application oriented with realistic mesh sizes. We measured
the time to recompute the stiffness matrix, thus assuming that the sparsity pat-
tern is known a priori. Insertion rate r (per core) was also measured, computed
as

r =
N

t · c (1)

where N is the number of measured matrix updates, t the time it took to as-
semble the matrix and c the number of cores.

Benchmark A: Laplace Equation in 3D. In the first benchmark we com-
pute the stiffness matrix corresponding to the continuous linear Lagrange FEM
discretization of Laplace equation:

−Δu = 0 (2)

This benchmark corresponds to a worst case scenario, since the stiffness matrix
can be computed with minimal work. Hence, this benchmark tests the com-
munication cost more than the insertion rate. For this experiment we use an
unstructured tetrahedral mesh of the unit cube consisting of 317M elements.

Benchmark B: Convection-diffusion in 2D. The second benchmark com-
putes the matrix for the convection-diffusion equation:

u̇+∇ · (βu) + αu−∇ · (ε∇u) = f (3)

on a 214M element continuous linear Lagrange FEM discretization of the unit
square. In this benchmark, the assembly cost for each element is significantly
higher. Since we are using vector elements more data is also inserted per element.
Hence, this benchmark tests both the communication and the insertion rate for
a more balanced problem.

Benchmark C: Linear Elasticity in 3D. The third benchmark assembles
the matrix for the linear elasticity equation:

∇ · σ = f (4)

on a 14M element continuous linear Lagrange FEM discretization of a three
dimensional gear. This problem has an order of magnitude smaller mesh than
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the previous problems, and is more within the range of a typical application than
the extreme mesh sizes of benchmark A and B. The problem has a balanced
communication and computational cost (similar to benchmark B) if the number
of cores are kept small. If the latter is increased the communication cost will
start to dominate and the problem will be more similar to benchmark A.

Benchmark D: Navier-Stokes Equations in 3D (Momentum part).
Our last benchmark computes the momentum matrix for the three dimensional
Navier-Stokes equation:

u̇+ (u · ∇)u +∇p− νΔu = f (5)

on a 80M element unstructured discretization of a wind tunnel using continuous
linear Lagrange elements. As in the previous benchmark, the mesh size reflects
the size of a real application. The momentum part of the Navier-Stokes equations
(5), is the most computational expensive problem of all benchmarks, and with
its moderately sized mesh, it should also have a more balanced communication
cost than benchmark C, behaving more like a combination of benchmarks A
and B.

5.1 Experimental Platform

This work was performed on a 1516 node Cray XE6 called Lindgren, located at
PDC/KTH. Each node consists of two 12-core AMD “Magny-Cours” running at
2.1 GHz, equipped with 32GB of RAM. The Cray XE6 is especially well suited
for our work since its Gemini interconnect provides hardware accelerated PGAS
support. We used the Cray Compiler Environment (CCE) version 8.0.6 to com-
pile everything. For our UPC based sparse matrix library JANPACK [8], we used
the C compiler with UPC enabled (-hupc) and compiled a library. For DOLFIN
we used the C++ compiler to compile another library for the finite element
framework, but without any PGAS flag. Finally, we linked them together (now
with the -hupc flag) forming a true hybrid MPI/PGAS application. DOLFIN
supports several different linear algebra backends. For this work we chose the
Cray provided PETSc 3.2.0 as the base line for our experiments.

5.2 Results

The benchmark problems were run on 384 up to 12288 cores, reassembling the
matrix several times and measuring the mean. The experiments were also re-
peated several times in order to remove possible effects of poor node placement
within the machine (due to fragmentation of available nodes). In Fig. 4 and Ta-
ble 1 we present the reassembly time. In Table 2 insertion rates (normalized to
one core) are presented.

In Fig. 4 we can see that for all benchmarks, JANPACK inserts entries faster
than PETSc. Part of this is due to the less costly communication in UPC, but
also due to our own sparsity format which has proven to outperform PETSc’s in
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Fig. 4. Assembly time for benchmark A, B, C and D (from top to bottom)

previous single core studies [6]. Furthermore, the result also confirms our claim
that one-sided communication has a lower latency than traditional message pass-
ing. As it can be seen for benchmark A, C and D, PETSc’s performance flattens
out when the number of elements per core becomes small, while the less latency
affected UPC code continues to perform well. For a problem with a more bal-
anced computation/communication ratio, benchmark B, the result is different.
JANPACK still performs better than PETSc, but the performance degradation
due to higher latency cost on large core counts is not visible, since the latency
cost is completely hidden behind the computational cost. Furthermore, bench-
marks C and D also demonstrate the ability of PGAS to run small problems
efficiently on a large amount of cores, despite the small amount of elements
assigned per core.

To summarize we see that PGAS, and in particular UPC, can be faster than
MPI, in contrary to the conclusions in [4][12]. However, it might be fair to men-
tion that the evaluations in these references were performed on platforms with-
out hardware accelerated one-sided communication. Besides the performance
improvements, the hybrid approach also has some drawbacks when it comes to
productivity. We have to acknowledge that PGAS offers great potential when
it comes to ease of programming and expressiveness. However, this has not yet
influenced currently available development tools, which could have a direct im-
pact on both performance and productivity. Furthermore, the lack of support
for celestial linking of MPI and UPC libraries in most application development
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Table 1. Assembly time (in seconds) for all benchmarks

Benchmark A Benchmark B Benchmark C Benchmark D

cores PETSc JANPACK PETSc JANPACK PETSc JANPACK PETSc JANPACK

384 1.420 1.050 2.800 2.040 0.515 0.411 2.800 0.908
768 0.772 0.547 1.430 1.080 0.294 0.228 1.590 0.531

1536 0.429 0.285 0.571 0.390 0.161 0.124 0.822 0.263
3072 0.268 0.150 0.330 0.202 0.132 0.082 0.495 0.139
6144 0.200 0.086 0.177 0.119 0.104 0.059 0.357 0.079

12288 0.194 0.050 0.101 0.063 0.087 0.041 0.303 0.047

Table 2. Insertion rate (Mega entries/second) for all benchmarks

Benchmark A Benchmark B Benchmark C Benchmark D

cores PETSc JANPACK PETSc JANPACK PETSc JANPACK PETSc JANPACK

384 9.31 12.6 7.16 9.83 10.9 13.6 10.8 33.2
768 8.56 12.1 7.01 9.28 9.51 12.3 9.49 28.4

1536 7.70 11.6 8.78 12.8 8.68 11.3 9.18 28.7
3072 6.16 11.0 7.60 12.4 5.30 8.52 7.62 27.1
6144 4.13 9.60 7.08 10.5 3.36 5.92 5.28 23.9

12288 2.13 8.26 6.20 9.96 2.01 4.26 3.11 20.1

environments also limits the portability of our approach. Hopefully, these are
things that will improve in the future.

6 Summary and Future Work

In this work we have investigated the feasibility of optimizing finite element
solvers with one-sided communication. Our results show that one can gain a
significant speedup by switching from traditional message passing sparse matrix
assembly to a one-sided communication using the PGAS programming model.
The approach of developing a hybrid MPI/PGAS application also demonstrates
that old legacy code can be optimized further with PGAS without rewriting the
entire application.

For many applications good SPMV performance is equally or even more im-
portant than matrix assembly. Since this is the first step towards solving non-
linear transient problems, where assembly performance matters since matrices
are reassembled for each time step, tuning the stack based representation for
good SPMV performance is left as future work. Also, we acknowledge that re-
placing PETSc in our solvers is a serious undertaking. Future work also in-
cludes the implementation of Krylov solvers and efficient preconditioners in UPC
such that we can use our sparse matrix library for solving large industrial flow
problems.
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Abstract. This paper describes a fast implementation of a FEM appli-
cation on a GPU. We implemented our own FEM application and suc-
ceeded in obtaining a performance improvement in two of our application
components: Matrix Assembly and Sparse Matrix Solver. Moreover, we
found that accelerating our Boundary Condition Setting component on
the GPU and omitting CPU–GPU data transfer between Matrix Assem-
bly and Sparse Matrix Solver slightly further reduces execution time. As
a result, the execution time of the entire FEM application was shortened
from 44.65 sec on only a CPU (Nehalem architecture, 4 cores, OpenMP)
to 17.52 sec on a CPU with a GPU (TeslaC2050).

1 Introduction

The performance of GPUs is rapidly improving, attracting greater and greater
attention. Through various projects, numerous numerical applications and li-
braries have been optimized for GPUs. On the other hand, there are many
applications which are not suitable for GPUs, and some kinds of applications
are suitable for both CPUs and GPUs. Therefore, it is necessary to implement
and evaluate various real applications on GPUs.

Our specific interest is in investigating the acceleration of numerical appli-
cations though the use of GPUs and creating numerical libraries based on our
results. Our current aim to accelerate our 3D finite element method (FEM) ap-
plication on a NVIDIA GPU using CUDA[1]. We proposed and implemented
some optimization techniques specific to our FEM application for a GPU and
demonstrated that better performance can be attained than for a multi-core
CPU.

The remainder of this paper is as follows. Section 2 describes the abstrac-
tions of CUDA and our target FEM application. Section 3 describes special
characteristics of our FEM application and proposes three types of optimization
techniques, which we implement and evaluate the effectiveness of. Section 4 is
the Conclusion section.

2 CUDA and FEM Application

2.1 CUDA and NVIDIA GPU

CUDA is an architecture and application development framework of NVIDIA
GPUs. It provides a GPGPU program development environment using an
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c© Springer-Verlag Berlin Heidelberg 2013



Implementation and Evaluation of 3D Finite Element Method 141

extension of the C/C++ programming language and a corresponding compiler.
There is only a slight difference between C/C++ and CUDA in terms of lan-
guage specification, but CUDA has unique specifications in its hardware model,
memory model, and execution model. Therefore, the program optimization tech-
niques for CPUs and GPUs (CUDA) are greatly different.

Some optimization techniques and strategies for GPU programming are al-
ready well known[2]. For example, GPU programs must have high parallelism in
order to hide latencies of memory access. Also, reducing the number of branch
instructions and random memory accesses is important because the associated
performance penalties are larger for GPUs than for CPUs.

2.2 FEM Application

FEM is widely used in various scientific applications, and the acceleration of
FEM is important and in high demand. There are many FEM applications and
various libraries are used to accelerate these. Generally, Sparse Matrix Solver
and Matrix Assembly take up a significant portion of the execution time of
FEM applications.

Our target FEM application is based on the GeoFEM program[3], which is an
existing FEM program for CPUs. The target problem is a 3D solid mechanics
problem. This application has been parallelized for a multi-core CPU and PC
cluster by using OpenMP and MPI. We use the modified OpenMP version [4]
as a target of GPU acceleration.

Figure 1 shows the structure of our target FEM application, which has five
parts. The execution time breakdown is shown in Figure 2. The execution en-
vironment is described in Table 1. This environment has a Xeon W3520 CPU
(Nehalem architecture, 4 cores, 2.67 GHz) and a Tesla C2050 GPU (Fermi archi-
tecture, 448 SPs, 1.15 GHz). The number of elements is 512,000 (=80×80×80).
The most time-consuming part is Sparse Matrix Solver, for both sequential ex-
ecution (90.36%) and parallel execution (80.15%). In this part, this program
uses a Conjugate Gradient Solver (CG solver) with a simple block diagonaliza-
tion preconditioner as a sparse matrix solver. The second most time-consuming
part is Matrix Assembly. Therefore, we focused mainly on trying to accelerate
Sparse Matrix Solver and Matrix Assembly, which are described in Section 3.

Our FEM program has a special memory structure. Our matrix format is sim-
ilar to the Compressed Row Storage (CRS) and blocked CRS formats. Matrices
are partitioned into 3×3 blocks, and also divided into diagonal matrix, upper
matrix, and lower matrix parts (Figure 3). This is based on physical problem
setting that is stress strain. This 3×3 blocks structure is effective in terms of the
memory requirements. Moreover, because 3×3 blocks structure improves cache
hit rate, execution time is shorter than non-3×3 blocks structure.
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Fig. 1. Structure of our target FEM program

2.3 Related Works

Accelerating a CG solver requires speeding up matrix and vector calculations —
for example, summation and multiplication of a vector and scalar, and multipli-
cation of a matrix and vector — and these calculations are easy to parallelize.
Also, these calculations are suitable for GPUs. Thus, there have been many stud-
ies of sparse matrix solvers (CG solvers) for GPUs over the years [5] [6] [7]. Also,
some libraries for executing a CG solver on a GPU have been published. For
example, the CUSP library[8] provides a fast CG solver and some useful data
structures and calculation methods as a C++ class library.

One example of matrix assembly on a GPU is Cris[9].

Fig. 2. Breakdown of execution time on a CPU
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Fig. 3. Matrix structure

Table 1. Evaluation environment

CPU Intel Xeon W3530 (Nehalem, 4cores, 2.67GHz)

Main memory PC3-10600(DDR3-1333) 12GB

GPU NVIDIA Tesla C2050 (Fermi, 448SPs, 1.15GHz)

Video memory DDR5 3GB

connection PCI-Express x16 (Gen 2)

OS CentOS5.7 (kernel 2.6.18)

Compiler gcc version 4.4.4 20100726 (Red Hat 4.4.4-13) (GCC)
Cuda compilation tools, release 4.0, V0.2.1221

Our work has a specific target application and focuses on optimization tech-
niques for that application. There are no existing reports of accelerating GeoFEM-
based FEM applications on a GPU. We only are trying to accelerate a 3×3-block
CG solver. Few studies have considered the implementation of boundary condi-
tion setting on a GPU or evaluating the CPU–GPU data transfer time between
matrix assembly and sparse matrix solver components.

3 Implementation

3.1 Optimization of Sparse Matrix Solver

In this section, we describe three kinds of optimization strategies and implemen-
tations. The first is the optimization of Sparse Matrix Solver.

As described in Section 2, for our FEM application, Sparse Matrix Solver,
which uses a CG solver with a matrix partitioned into 3×3 blocks, is the most
time-consuming part. The CG solver involves only a few types of calculation, the
most time-consuming of which is sparse matrix–vector multiplication (SpMV).
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Therefore, in this section, we mainly focusing on describing acceleration on a
GPU for a matrix partitioned into 3×3 blocks.

SpMV calculation with the CRS format is very easy to parallelize and accel-
erate, whether for CPU or GPU calculation, because the calculation of each row
is independent and can be executed in parallel. However, it is difficult to obtain
very good performance because SpMV calculation requires random memory ac-
cesses. A GPU can execute SpMV quickly and simply by dividing the matrix
based on rows and assigning them to CUDA Threads. Our problem is how to
divide and assign the 3×3 block partitioned matrix to CUDA Threads.

A simple strategy is dividing the block based on rows and assigning each
block to CUDA ThreadBlock and each row to a CUDA Thread (Figure 4(a)).
Although this strategy can obtain almost the same performance as SpMV cal-
culation without 3×3 blocking on a GPU, it is not sufficiently optimized. This
strategy cannot perform coalesced memory access and does not create sufficient
parallelism.

Our optimization strategy is to assign each 3×3 block to three CUDA Threads.
Each CUDA Thread reads matrix data in coalesced rule (Figure 4(b)) and has
data in the shared memory, and these CUDA Threads calculate multiplication
and addition using SharedMemory. Moreover, parallelism is increased by assign-
ing multiple 3×3 blocks to each CUDA TreadBlock. These strategies are simple
and effective.

Fig. 4. Optimization strategy for SpMV (coalesced memory access)

Figure 5(a) shows the SpMV performance. The evaluation environment and
problem setting are same as in Section 2. As a result, 3×3 blocked SpMV ob-
tained 3.20 times better performance on a GPU than on a CPU. The perfor-
mance ratio is much smaller than that for FLOPS (515 GFLOPS/42.7 GFLOPS
= 12.06). Rather, it is closer to the memory bandwidth ratio (144 GB/s / 32
GB/s = 4.50). Moreover, by applying the same strategies to vector summation,
multiplication, and dot product calculation, the execution time of the entire CG
solver was shortened from 39.90 sec to 14.15 sec (Figure 5(b)).
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Fig. 5. Performance evaluation 1 (SpMV calculation and entire FEM application)

3.2 Optimization of Matrix Assembly

As shown in Section 2, Matrix Assembly was the second most time-consuming
part of the FEM application. As the result of accelerating the CG solver on a
GPU, the relative amount of time used by Matrix Assembly increased. In this
subsection, we describe the acceleration of Matrix Assembly.

Figure 6 shows the structure (flow of source code) of Matrix Assembly. The
flow of Matrix Assembly is more complicated than SpMV, and a hierarchical loop
structure (loopA, loopB, and loopC in Figure 6) is characteristic. The problem
of how to assign calculations to the GPU is more important than the problem
of Sparse Matrix Solver. Because Matrix Assembly has dependencies between
each matrix element, coloring computation is used to obtain parallelism. In this
study, we make the CPU execute coloring computation (multicolor method) and
make the GPU execute parallel calculation after coloring.

We tried to implement the calculation in two styles. The first style (data
strategy) performs the entire calculation in one GPU kernel, and the second
style (data+task strategy) divides the calculation into three parts. While the
data+task strategy can make each GPU kernel simple and small, the CPU and
GPU have to synchronize their kernels, which may degrade performance. Accord-
ing to the results of our implementation and evaluation, the data+task strategy
obtained better performance than the data strategy (Figure 7).

3.3 Optimization of Entire FEM Application

The execution time of the FEM application is shortened by accelerating Matrix
Assembly and Sparse Matrix Solver on a GPU. However, some parts of the FEM
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Fig. 6. Assignment of Matrix Assembly to the GPU

Fig. 7. Performance evaluation 2 (Matrix Assembly)

application are still executed on the CPU, but the execution times of these parts
are not so time-consuming. However, we think that accelerating more parts on
the GPU is important in order to obtain the best performance in the CPU with
a GPU environment.

Of the five parts of the FEM application, Sparse Matrix Solver and the latter
half of Matrix Assembly are already implemented to execute on the GPU. Here,
we implement Boundary Condition Setting on the GPU. Because our FEM appli-
cation has a simple boundary condition, the computation time for the boundary
condition is small and we can implement it easily on the GPU. However, if we
implement Boundary Condition Setting on the GPU, the data transfer between
CPU and GPU after Matrix Assembly and before Sparse Matrix Solver can be
omitted and the performance may improve. In order to obtain correct result,
we modify Matrix Assembly and Sparse Matrix Solver to omit the data man-
agement computation. Therefore, the CPU only performs control computations,
such as kernel launching of the GPU and loop control in the CG solver from
after the coloring procedure of Matrix Assembly to the end of Sparse Matrix
Solver (Figure 8).

Figure 9 shows the resulting execution times. The middle bar shows the results
of the above-described optimization. It is true that the effect of this optimization
is not large, but it is significant: a 5.14% performance improvement.
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Fig. 8. Assignment more parts to the GPU

Fig. 9. Performance evaluation 3 (entire FEM application)

4 Conclusion

In this paper, we described the acceleration of a FEM application on a NVIDIA
GPU with CUDA. We implemented three components of the application, Sparse
Matrix Solver, Matrix Assembly, and Boundary Condition Setting, on a GPU.
The execution time of Sparse Matrix Solver was shortened from 39.30 sec to
14.15 sec, and the execution time of Matrix Assembly was shortened from 2.44
sec to 0.65 sec. By implementing the Boundary Condition Setting on the GPU
and omitting the CPU–GPU data transfer, the execution time of the entire FEM
application was reduced. The most important technique for accelerating execu-
tion was memory assignment. Exact assignment obtained good performance. As
a result, the execution time of entire FEM application was shortened from 44.65
sec on only a CPU (Nehalem architecture, 4 cores, OpenMP) to 17.52 sec on a
CPU with a GPU (TeslaC2050).
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There remains room for improvement and some challenges for FEM applica-
tions on a GPU. For example, coloring computation, complex preconditioners,
and complex boundary conditions are difficult for a GPU to accelerate. Utilizing
multiple GPUs is also an advanced topic. These remain as future work of our
project.
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Abstract. We analyze two parallel finite element implementations of the 2D
time-dependent advection diffusion problem, one for multi-core clusters and one
for CUDA-enabled GPUs, and compare their performances in terms of time and
energy consumption. The parallel CUDA-enabled GPU implementation was de-
rived from the multi-core cluster version. Our experimental results show that a
desktop machine with a single CUDA-enabled GPU can achieve performance
higher than a 24-machine (96 cores) cluster in this class of finite element prob-
lems. Also, the CUDA-enabled GPU implementation consumes less than one
twentieth of the energy (Joules) consumed by the multi-core cluster implementa-
tion while solving a whole instance of the finite element problem.

1 Introduction

The advances of numerical modeling in the past decades have allowed scientists to solve
problems of increasing complexity. Frequently, these problems require the solution of
very large systems of equations at each time step and/or iteration. Because of that, a
great effort has been made on the development of more efficient and optimized solution
algorithms. But, along the past few decades, the underlying hardware for running these
algorithms has changed significantly. A recent important development was the advent
of the Compute Unified Device Architecture (CUDA) [12].

CUDA is a new Graphics Processing Unit (GPU) architecture that allows general
purpose parallel programming through a small extension of the C programming lan-
guage. The Single Instruction Multiple Thread (SIMT [12]—it is similar to SIMD, but
more flexible on the use of resources) architecture of CUDA-enabled GPUs allows the
implementation of scalable massively multithreaded general purpose C+CUDA code.
Currently, CUDA-enabled GPUs possess arrays of hundreds of cores (called stream
processors) and peak performance surpassing 1 Tflop/s. More than 200 million CUDA-
enabled GPUs have been sold [10], which makes it the most successful high perfor-
mance parallel computing platform in computing history and, perhaps, up to this point
in time, one of the most disruptive computing technologies of this century—many rel-
evant programs have been ported to C+CUDA and run orders of magnitude faster in
CUDA-enabled GPUs than in multi-core CPUs.

M. Daydé, O. Marques, and K. Nakajima (Eds.): VECPAR 2012, LNCS 7851, pp. 149–162, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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In this paper, we analyze two parallel finite element implementations of the 2D time-
dependent advection diffusion problem: one for multi-core clusters and one for CUDA-
enabled GPUs [12]. We also compare their performances in terms of time and energy
consumption.

The finite element method is one of the most used numerical techniques for finding
approximated solutions of partial differential equations (PDE). In this method, the so-
lution approach is based either on rendering the PDE into an approximating system of
ordinary differential equations, which are then numerically integrated using standard
techniques, such as the Euler’s method [6].

The finite element formulation requires the solution of linear systems of equations
involving millions of unknowns that are usually solved by Krylov space iterative up-
date techniques [13], from which the most used is the Generalized Minimum Resid-
ual method (GMRES). One of the most time consuming operations of this solution
strategy is the matrix-vector product, which can be computed on data stored accord-
ing to global and local schemes. The most well known global scheme is the com-
pressed storage row (CSR) [13], while the most well known local schemes are the
element-by-element (EBE) and edge-based data structure (EDS) [2, 4]. The code for
CSR is easily parallelized in different computer architectures. This type of implemen-
tation is often preferred to local schemes—matrix-vector products computed on EBE
or EDS can be memory intensive, needing more operations than on CSR. However,
particularly for large-scale nonlinear problems, EBE and EDS schemes have been very
successful because they handle large sparse matrices in a simple and straightforward
manner.

In this work, we consider the parallel finite element formulation of the 2D time-
dependent advection diffusion equation. To solve the system of ordinary differential
equations that results from the finite element formulation, we employ the well known
implicit predictor/multicorrector scheme [15]. The sparse linear system of each time-
step (stored in a Compressed Storage Row (CSR) scheme in both implementations) is
solved by the GMRES method.

We implemented one code for multi-core clusters and, from that, one code for CUDA-
enabled GPUs, and run them in a 24-machine (96 cores) cluster and in a 4-GPU desktop
machine. Both implementations were written in C and use the MPI library for inter-core
communication. Our simulations show that a desktop computer with a single GPU can
outperform a 24-machine (96 cores) cluster of the same generation and that a 4-GPU
desktop can offer more than twice the cluster performance. Also, with four GPUs, the
CUDA-enabled implementation consumes less than one twentieth of the energy (Joules)
consumed by the multi-core cluster implementation while solving a whole instance of
the finite element problem. These results show that, currently, considering the benefits
of shorter executing times, smaller energy consumption, smaller dimensions and main-
tenance costs, Multi-GPU desktop machines are better high performance computing
platforms than small clusters without GPUs, even though they are somewhat harder to
program.



Evaluation of Two Parallel Finite Element Implementations 151

2 Governing Equations and Finite Element Formulation

Let us consider the following time-dependent boundary-value problem defined in a do-
main Ω ∈ �2 with boundary Γ :

∂u

∂t
+ β.∇u−∇.(κ∇u) = f (time-dependent advection-diffusion equation) (1)

u = g on Γg (essential boundary condition) (2)

n.κ∇u = h on Γh (natural boundary condition) (3)

u(x, 0) = uo(x) on Ω (initial condition) (4)

where u represents the quantity being transported (e.g. concentration), β is the velocity
field, and κ is the volumetric diffusivity. g and h are known functions of x = (x, y)
and t, n is the unit outward normal vector at the boundary, and Γg and Γh are the
complementary subsets of Γ where boundary conditions are prescribed.

Consider a finite element discretization ofΩ into elementsΩe, e = 1, . . . , nel, where
nel is the number of elements. Let the standard finite element approximation be given
as

uh(x) ∼=
nnodes∑

i=1

Ni(x)ui, (5)

where nnodes is the number of nodes, Ni is a shape function corresponding to node i,
and ui are the nodal values of u. Then, applying this approximation on the variational
form of Equation (1), we arrive at a system of ordinary differential equations:

Ma +Kv = F , (6)

where v = {u1, u2, . . . , unnodes}t is the vector of nodal values of u, a is its time
derivative, M is the “mass” matrix, K is the “stiffness” matrix, and F is the “load”
vector [6]. In this work, we approximate the domain Ω using linear triangular elements.
Thus, the global interpolation of Equation (5) is restricted to an element by

ue(x) ∼=
3∑

i=1

Ni(x)ui, (7)

where the superscript e means that u is restricted to an element, and N1, N2 and N3

are the conventional shape functions [6]. Proceeding in the standard manner, matrices
M and K and vector F are built from element contributions and it is convenient to
identify their terms as:

M =
nel

A
e=1

(me), K =
nel

A
e=1

(ke) and F =
nel

A
e=1

(fe) (8)

where A is the assembling operator and me, ke and fe are the local contributions.
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3 Solution Algorithm

To solve the time-dependent advection diffusion problem numerically employing the
approach described in the previous section, we just have to solve the system of ordinary
differential equations stated in Equation (6) towards a final time tfinal. To do that, we
use the Algorithm 1, which implements the well known implicit predictor/multicorrec-
tor solution scheme [15]. The algorithm: receives as input the initial values of v and a
(see Equation (6)), tfinal, Δt, the maximum number of multicorrection attempts, nmax,
and the tolerance of the multicorrection phase, ε; and returns the values of v and a at
tfinal.

Algorithm 1. Predictor/multicorrector
1: Data: v0 and a0, tfinal, Δt, nmax, ε
2: t = 0, n = 0
3: M∗ = M + αΔtK
4: while t ≤ tfinal do
5: i = 0
6: v

(i)
n+1 = vn + (1− α)Δtan

7: a
(i)
n+1 = 0

8: normd = 0
9: while i ≤ nmax and ‖a(i)

n+1‖ ≥ ε× normd do

10: b = F −Ma
(i)
n+1 −Kv

(i)
n+1

11: Solve M∗d = b
12: a

(i+1)
n+1 = a

(i)
n+1 + d

13: v
(i+1)
n+1 = v

(i)
n+1 + αΔtd

14: i = i+ 1, normd = ‖d‖
15: end while
16: an+1 = a

(i)
n+1

17: vn+1 = v
(i)
n+1

18: t = t+Δt, n = n+ 1
19: end while

In Algorithm 1, the prediction phase (lines 5 to 8) calculates an initial guess of the
nodal values v and a at iteration n + 1, where n denotes a time step, and the multi-
correction phase (lines 9 to 15) iteratively calculates new nodal approximations until a
convergence criteria (line 9) is reached. The most time consuming step of the algorithm
is solving the linear system derived from Equation (6), lines 10 and 11. In this linear
system, M∗ is denoted the effective matrix, b is the residual vector, and d is the cor-
rection of the nodal values of a from one multicorrection iteration to the next. Matrix
M∗ is constant in time and is computed in line 3. The residual vector b, however, must
be computed in every multicorrection step (line 10).

Apart from the solution of the linear system in line 11, the other time consuming
operations of the algorithm are the matrix vector product in line 10, and the saxpy
vector update operations of lines 6 (the number of multicorrection iterations is small,
but one always have to remember the Amdhal’s Law), 12 and 13. We solve the linear
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system of line 11 using GMRES [13]. The most time consuming operations of GMRES
are a matrix vector product per iteration, and several saxpy and vector inner products.
Therefore, the most time consuming operations of the whole predictor/multicorrector
algorithm are matrix vector products, saxpy and vector inner products. For more on the
predictor/multicorrector algorithm see [15].

4 Parallel Implementations

To solve our problem in parallel, it is necessary to code all matrices and vectors in Algo-
rithm 1 in a way that allows parallel access, and to calculate their most time consuming
operations in parallel. In order to achieved this, we create a partition of non-overlapping
sets of elements, Ωe. For that, we discretized the domain into a mesh composed of lin-
ear triangular elements,  = Ωe, where {1,2, · · · ,p} represents a partition of the
triangulation in subdomains, p is the number of subdomains, and

⋃p
i=1 i =  and

i ∩ j = ∅ when i �= j. By dividing the computation domain into p subdomains,
it is possible to spread the workload between p different cores. That is, by partitioning
the matrices M , K and M∗, and the vectors v, a and d (see Equation (6) and Algo-
rithm 1) independently over p cores (with core i working only on subdomain i), one
can spread the workload among the p different cores.

We rewrite all matrices and vectors presented in Algorithm 1 into block matrix and
block vector forms employing the well known Schur complement decomposition [13],
as suggested by Jimack and Touheed [8]. By doing that, a generic vector u (representing
v, a or d) can be ordered in the following way:

u = (u1, u2, · · · , ui, · · · , up, uS)
T . (9)

The nodes of the linear triangular elements of the mesh  can be classified into interior
nodes, interface nodes and boundary nodes of the domain.

Figure 1 illustrates a mesh with 50 nodes and 74 triangular elements, where the
domain was partitioned into 4 subdomains to be assigned to four cores. In this mesh,
nodes I and J are interior nodes of cores 3 and 4, respectively, while node K is an
interface node of cores 1, 3 and 4.

In Equation (9), the sub-vector ui is associated with the interior nodes in i, i =
1, 2, · · · , p; while uS , in turn, is defined as uS =

⋃p
i=1 us(i), an assembly of others

sub-vectors that are associated with the interface nodes of each subdomain i, i =
1, 2, · · · , p. That is, each sub-vector us(i) holds the interface nodes of i. Boundary
nodes are not unknowns and need not be represented in u. Also following the approach
suggested by Jimack and Touheed [8], a generic matrix A (M , K and M∗) can be
written in a block matrix form as:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A1 B1

A2 B2

. . .
...

Ap Bp

C1 C2 · · · Cp AS

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(10)
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Fig. 1. Example of the partitioned mesh with 4 subdomains

where the block-arrowhead structure of the new matrix comes from the local support
of the finite element basis functions. In Equation (10), the sub-matrices Ai, Bi, Ci and
AS are sparse matrices that are stored using a CSR data structure.

The sub-matrix Ai stores the contribution of the interior nodes of core i on the in-
terior nodes of core i. The matrix Bi stores the contribution of the interior nodes of
core i on the interface nodes of core i. The sub-matrix Ci stores the contribution of the
interface nodes of core i on the interior nodes of core i. Finally, the sub-matrix AS , an
assembly of a set of blocks distributed over the p cores, is defined as AS =

⋃p
i=1 As(i),

where the sub-matrix As(i) stores the contribution of the interface nodes of core i on
the interface nodes of core i.

With this approach, each of the sub-vectors ui and us(i), and each of the sub-matrix
Ai, Bi, Ci, As(i) may be computed entirely by core i, for i = 1, 2, · · · , p. One can also
observe that core i will work only on the elements of its own subdomain i. Assuming
that the partition  is built in such way that each core deals with approximately the
same number of elements and the number of vertices lying on the partition boundary
is as small as possible, the amount of calculations performed by each core i will be
balanced and the amount of communication will be minimized.

Following the same procedure explained above for a generic vector u and a generic
matrix A, we rewrite all the matrices (M , K and M∗) and vectors (v, a or d) of
Algorithm 1 in a block matrix form and execute the most time consuming operations
of the whole predictor/multicorrector algorithm—matrix vector product, saxpy vector
update and vector inner product—in parallel.

Using the domain partitioning presented above, a matrix-vector product, v = Au,
can be computed in parallel by computing both expressions on Equation (11) below
(see also Equations (9) and (10))

vi = Aiui +Bius(i) and vs(i) = As(i)us(i) + Ciui (11)

on each core i = 1, 2, · · · , p. Also, using the domain partitioning presented, a saxpy
vector update, v = v + λu, can be formulated as
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vi = vi + λui and vs(i) = vs(i) + λus(i) (12)

for i = 1, 2, · · · , p, where λ is a real number. Finally, using the domain partitioning
presented, a vector inner product, scalar = u · v, can be computed on each core as

scalar =

p∑

i=1

(ui · vi + us(i) · vs(i)) (13)

for i = 1, 2, · · · , p. It is important to note that this last operation requires a global
communication because its result is a scalar that always must be known by all cores.
This communication is a global reduction, which computes the sum of the contributions
to the inner product coming from each core, and then provides each core with a copy of
this sum.

In addition to global reductions required by inner products, our Multi-Core Cluster
implementation performs core-to-core communication before every matrix vector prod-
uct (lines 10 and 11 of Algorithm 1) in order to communicate the value of the interface
nodes—we use MPI send and MPI Recv for that. Thanks to the assembly presented
in Equation 4, the data that needs to be communicated is clearly specified (interface
nodes). The partitioning of the work between the cores is made before the whole com-
putation using METIS [9]. Please refer to our internal technical report for more de-
tails about our multi-core cluster implementation (http://www.lcad.inf.ufes.br/∼alberto
/techrep01-11.pdf).

The CUDA-enabled GPU parallel version was derived from the Multi-Core Clus-
ter parallel version and, therefore, follows the same principles described above. It was
implemented in C+CUDA and, as we wanted to run it in multi-core desktop computers
with multiple GPUs (or clusters of multi-core machines each of which with one or more
GPUs), it takes advantage of the multiple cores for distributing the domain (or subdo-
mains in the case of a cluster) between multiple GPUs (one subdomain per GPU) and
employs MPI for inter-core communication. We choose to do this way (i) to avoid large
modifications in the Multi-Core Cluster version in the process of morphing it into the
C+CUDA version, and (ii) to transform our multi-core cluster code into a code that runs
in clusters of multi-core machines each of which with multiple GPUs. For this process,
we basically moved the main functions of the Multi-Core Cluster version into CUDA
kernels and optimized the use of the GPU memory hierarchy.

The main strategy adopted in the design of the C+CUDA version was (i) to iden-
tify the most time consuming operations of the predictor/multicorrector (Figure 1) and
GMRES algorithms, (ii) to parallelize and optimize these operations, and (iii) to try and
avoid data transfer between the CPU and GPU memories as much as possible.

We identified the most time consuming operations of the predictor/multicorrector
and GMRES algorithms—the matrix-vector product, v = Au, and the vector inner
product, scalar = u · v—using gprof. Please refer to our internal technical report
for details about the C+CUDA implementation (http://www.lcad.inf.ufes.br/∼alberto
/techrep01-11.pdf).
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5 Experimental Evaluation

5.1 Hardware

The Multi-Core Cluster implementation was run on the Enterprise 3 cluster of the Lab-
oratório de Computação de Alto Desempenho (LCAD) at UFES. Enterprise 3 is a 24-
node cluster of 24 quad-core Intel 2 Q6600 machines (96 cores), with 2.4GHz clock
frequency, 4MB L2 and 4GB of DRAM, interconnected with a 48-Port 4200G 3COM
Gigabit Ethernet switch. The C+CUDA implementation was run on LCAD’s BOXX
Personal Supercomputer, which is a quad-core AMD Phenon X4 9950 of 2.6GHz, with
2MB L2, 8GB of DRAM, and four GPU NVIDIA Tesla C1060 PCIE boards, with 240
1.3GHz CUDA cores and 4GB DRAM each.

5.2 Rotating Cone Problem

In our experimental evaluation we solved a standard test problem for transient domi-
nated advection flow, named rotating cone problem. The problem (Figure 2(a)) consid-
ers a cosine hill profile advected in a two-dimensional rotating flow field (see [1] for
details). The homogeneous Dirichlet boundary conditions is imposed zero everywhere
on the external boundaries and the initial condition is a hill profile. In our experiments,
the velocity field is β = (−y, x)T and the diffusivity is κ = kI , where k = 10−6.
The exact solution consists of a rigid rotation of a cone about the center of the square
domain [−5, 5] × [−5, 5]. Figure 2(b) shows the solution obtained after 7 seconds of
simulation.

(a) Description
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(b) Solution

Fig. 2. Description and solution of the rotating cone problem

To evaluate the performances in terms of time of the machines on the solution of a
large size problem, we consider the rotating cone problem in a regular mesh of 1024×
1024 cells, totalizing 2, 097, 152 elements, 1, 050, 625 nodes and 1, 046, 529 unknowns
with Δt = 10−2, the tfinal = 7, GMRES and predictor-multicorrector tolerances equal
to 10−3; and number of restart vectors for GMRES equal to 10. The observed number
of GMRES iterations for each correction was around 15.
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5.3 Performance in Terms of Time

Figure 3(a) shows the time it takes to solve this problem with the Multi-Core Cluster
implementation running on the Enterprise 3 configured with 1, 4, 8, 12, 16, 24, 32, 48,
64 and 96 cores, while Figure 3(b) shows the speedups obtained with 1, 4, 8, 12, 16, 24,
32, 48, 64 and 96 cores.
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Fig. 3. Enterprise 3 times and speedups

In the graph of Figure 3(a), the x-axis is the number of cores, while the y-axis is the
time it takes to solve the problem in seconds. As the graph shows, there is an almost
linear reduction of the time it takes to solve the problem as the number of processors
increases from 1 to 8. However, the performance gains obtained increasing the number
of cores from 8 onwards decreases as the number of cores increases. This can be more
easily appreciated by examining the graph of Figure 3(b). In this graph, the x-axis is the
number of cores, while the y-axis is the speedup. As the graph of Figure 3(b) shows,
although the speedup starts augmenting linearly, as the number of cores increases, the
speedup levels of—there is no gain as one goes from 64 to 96 cores. This is to be
expected because, as the number of cores increases, the amount of inter-machine com-
munication increases, while the amount of compute work per core decreases. So, the
time spent waiting for data transfer (communication) ends up surpassing the time doing
computation.

Figure 4(a) shows the time it takes to solve this problem with the C+CUDA imple-
mentation running on the BOXX Personal Supercomputer configured with 1, 2 and 4
GPUs, while Figure 4(b) shows the speedups obtained with 1, 2 and 4 GPUs—these
speedups were computed against a single Enterprise 3 core.

In the graph of Figure 4(a), the x-axis is the number of GPUs, while the y-axis is
the time it takes to solve the problem in seconds. As the graph shows, the time it takes
to solve the problem decreases as the number of GPUs increases, but not linearly. This
is to be expected since the multi GPU C+CUDA implementation uses the PCI Express
bus to transfer interface nodes data between the multi-core CPU and the GPUs and, as
the number of GPUs increases, this bus becomes a bottleneck. Figure 4(b) presents the
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(a) Times (b) Speedups

Fig. 4. BOXX Personal Supercomputer times and speedups

speedups obtained with the BOXX Personal Supercomputer configured with different
numbers of GPUs (the reference time is that of a Enterprise 3 single core). In this graph,
the x-axis is the number of GPUs, while the y-axis is the speedup. As the graph shows,
speedups close to 60 were obtained with C+CUDA.

To better appreciate the benefits of CUDA-enabled GPUs and C+CUDA, we plot on
the graph of Figure 5 the speedups obtained with the BOXX Personal Supercomputer
against the best performing Enterprise 3 cluster (96 cores). In the graph of Figure 5, the
x-axis is the number of GPUs, while the y-axis is the time it takes to solve the problem
with Enterprise 3 divided by the time it takes to solve the problem with the BOXX
Personal Supercomputer configured with different numbers of GPUs. As the graph of
Figure 5 shows, a desktop machine with a single GPU can outperform a 24-machine
cluster (96 cores). Also, a desktop machine with four GPUs can deliver more the twice
the performance of a 24-machine cluster (96 cores).

5.4 Performance in Terms of Energy Consumption

To compare the performance of our Multi-Core Cluster implementation with that of
our C+CUDA implementation in terms of energy consumption, we run the rotating
cone problem in a regular mesh of 2048 × 2048 cells in both machines and measured
the total current drained by each at 10-second intervals using a Digital Clamp Meter
Minipa, Model ET-3880, while measuring the voltage. Figure 6 shows the measurement
setup employed with each machine (voltage measurement not shown).

By numerically integrating the current × voltage (power in Watts) required by the
machines in the period of time they took to solve the rotating cone problem, we were
able to estimate the total energy (in Joules) consumed by each machine. The amount of
Joules consumed by Enterprise 3 (all 96 cores) was equal to approximately 5,545,530
Joules (45 Amperes × 114 Volts × 1,081 Seconds). The amount of Joules consumed
by the BOXX Personal Supercomputer on equivalent circumstances (127 Volts, but
different currents and times for each number of GPUs) was measured for 1, 2 and 4
GPUs. Figure 7 shows the energy consumed by each machine configuration.
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Fig. 5. BOXX Personal Supercomputer speedups: C+CUDA x Multi-Core Cluster

As Figure 7 shows, the amount of Joules decreases as the number of GPUs increases.
This is to be expected, since the time to solve the problem diminishes. Note that we did
not remove the unused GPU boards during these experiments and, even when not doing
useful computation, the GPUs consume a significant amount of energy. Note also that
the energy consumed by the whole machine was measured in all cases, and the ratio
computation/energy consumption becomes worth with fewer GPUs doing useful work.

Finally, Figure 8 presents a comparison between the amount of energy consumed by
Enterprise 3 versus (divided by) the amount of energy consumed by the BOXX Personal
Supercomputer while solving the rotating cone problem with 1, 2 and 4 GPUs. As the
graph of Figure 8 shows, the BOXX Personal Supercomputer consumes more than 20
times less energy than the Enterprise 3 cluster while solving the same problem. This
result shows that, currently, considering the benefits of shorter executing times, smaller
energy consumption, and smaller size and maintenance costs, Multi-GPU desktop ma-
chines are better high performance computing platforms than small clusters without
GPUs such as Enterprise 3, even though they are somewhat harder to program. It is
important to note that our C+CUDA code runs unmodified in clusters of multi-core
machines each of which with multiple GPUs (it is, in fact, a C+CUDA+MPI code).

(a) (b)

Fig. 6. Power (current) measurement setup. (6(a)) Cluster setup: the total current consumed by
Enterprise 3 was measured on the neutral wire of its power distribution panel. (6(b)) BOXX
Personal Supercomputer setup: the total current consumed by it was measured on the neutral
wire of its power cord.
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Fig. 7. Joules consumed while running the rotating cone problem with the BOXX Personal Su-
percomputer with 1, 2 and 4 GPUs. The unused GPU boards were not removed during the exper-
iments.

Fig. 8. Energy reduction observed while solving the rotating cone problem in the BOXX Personal
Supercomputer for 1, 2 and 4 GPUs when compared with the 96-core Enterprise 3 Cluster

6 Related Work

Since the introduction of CUDA, a number of works have demonstrated that the use
of GPUs can accelerate computational fluid dynamics (CFD) simulations ([3, 11, 14,
16]). Recently, Jacobsen et al. [7] have exploited some of the advanced features of MPI
and CUDA programming to overlap both GPU data transfer and MPI communications
with computations on the GPU. Their results demonstrated that multi-GPU clusters
can substantially accelerate CFD simulations. In this work, we compared a Multi-Core
Cluster without CUDA-enabled GPUs with a desktop machine with CUDA-enabled
GPUs and showed that the way pointed by the work of Jacobsen et al. and others [7] is
perhaps the current only way forward in the high performance CFD simulation field.

Little research has been conducted on the evaluation of energy consumption of GPUs
against that of clusters. Huang et al. [5] analyzed two parallel implementations of a bi-
ological code that calculates the electrostatic properties of molecules—a multithreaded
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CPU version (for a single multi-core machine) and a GPU version—and compared their
performance in terms of execution time, energy consumption, and energy efficiency.
Their results showed that the GPU version performs the best in all three aspects. In this
work, we showed that a parallel CUDA-enabled GPU implementation consumes con-
siderably less energy (Joules) than a parallel multi-core cluster implementation while
solving a whole instance of the finite element problem.

7 Conclusions

We used a finite element formulation to solve the 2D time-dependent advection dif-
fusion equation in Multi-Core Clusters and CUDA-enabled GPUs. Our experimental
results have shown that a desktop computer with a single GPU can outperform a 24-
machine cluster of the same generation and that a 4-GPU desktop can offer more than
twice the cluster performance (performance in terms of time to compute a solution).
Our experimental results have also shown that a 4-GPU desktop can consume less than
one twentieth of the energy (Joules) consumed by a 24-machine cluster while solving
a whole instance of this relevant finite element problem. The techniques we employed
for the problem tackled in this paper can be employed in much harder problems. In fu-
ture works, we will examine multidimensional compressible problems governed by the
Navier-Stokes equations.

Acknowledgments. We thank CNPq-Brazil (grants 552630/2011-0, 309831/2007-5,
314485/2009-0, 309172/ 2009-8) and FAPES-Brazil (grant 48511579/2009) for their
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Abstract. This paper describes a service-oriented architecture that eases
the process of scientific application deployment and execution in IaaS
Clouds, with a focus on High Throughput Computing applications. The
system integrates i) a catalogue and repository of Virtual Machine Im-
ages, ii) an application deployment and configuration tool, iii) a meta-
scheduler for job execution management and monitoring. The developed
system significantly reduces the time required to port a scientific appli-
cation to these computational environments. This is exemplified by a
case study with a computationally intensive protein design application
on both a private Cloud and a hybrid three-level infrastructure (Grid,
private and public Cloud).
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1 Introduction

With the advent of virtualization techniques, Virtual Machines (VM) represent
a key technology to provide the appropriate execution environment for scien-
tific applications. They are able to integrate the precise hardware configuration,
operating system version, libraries, runtime environments, databases and the ap-
plication itself in a Virtual Machine Image (VMI) which can be instantiated into
one or several runnable entities commonly known as Virtual Appliances. With
this approach, the hardware infrastructure is decoupled from the applications,
which are completely encapsulated and self-contained. This has paved the way
for Cloud computing [1,2], which enables to dynamically provision and release
computational resources on demand.

The efficient and coordinated execution of scientific applications on Cloud in-
frastructures requires, at least: (i) the dynamic provision and release of computa-
tional resources (ii) the configuration of VMs to offer the appropriate execution
environment required by the applications and (iii) the allocation and execution of
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the jobs in the virtualised computational resources. This requires the coordina-
tion of different Cloud-enabling technologies in order to automate the workflow
required to execute scientific application jobs on the Cloud. To that end, we
envision a system where users express their application requirements via declar-
ative procedures and the burden of its deployment, execution and monitoring
on an IaaS (Infrastructure as a Service) Cloud is automated. There are previous
studies that aim at using Cloud computing for scientific computing [3,4]. How-
ever, as far as the authors are aware, there is currently no generic platform that
provides automated deployment of scientific applications on IaaS Clouds which
deals with VMI management, configuration of VMs and the meta-scheduling of
jobs to the virtual computing resources. This represents the whole life cycle of
scientific application execution on the Cloud.

For that, the main contribution of this paper is to present a service-oriented
architecture integrated by the following developed components: i) a generic cat-
alogue and repository system that indexes VMIs together with the appropriate
metadata describing its contents (operating system, capabilities and applica-
tions), ii) a contextualization system that allows to deploy scientific applications
together with its dependences, iii) a meta-scheduler to manage and monitor the
execution of jobs inside VMs and to access the generated output data of the
jobs with support for computational steering. The usage of such a system would
significantly reduce the time required to migrate an application to be executed
on the Cloud. The integration of the different components of the architecture
enables to abstract many of the details that arise when interacting with Cloud
platforms. This would reduce the entry barrier to incorporate the Cloud as a
new source of computational power for scientific applications. This way, scien-
tists would focus on the definition of the jobs and delegate on the proposed
platform the orchestration of the components to execute the jobs on the provi-
sioned virtualised infrastructure on the Cloud.

The remainder of the paper is structured as follows. First, section 2 introduces
the architecture and details the features of the principal components. Later,
section 3 addresses a case study for the execution of a protein design scientific
application using the aforementioned system. Finally, section 5 summarises the
paper and points to future work.

2 Architecture for Scientific Application Execution on
the Cloud

Many scientific applications require the execution of batch jobs, where each job
basically consists of an executable file that processes some input files (or com-
mand line arguments) and produces a set of files (or data to the standard output)
without the user intervention. This is the case of many parameter sweep stud-
ies and Bag of Tasks (BoT) applications commonly found in High Throughput
Computing (HTC) approaches, where the jobs share common requirements. For
these applications, the benefits of the Cloud are two-fold. Firstly, computational
resources can be provisioned on demand according to the number of jobs to be
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Fig. 1. Scientific applications execution on IaaS Cloud via the Cloud Enactor

executed (and the budget of the user in the case of a public Cloud). Secondly,
the provisioned VMs can be configured for the precise hardware and software
configuration required by the jobs. This means that VMs can be reused to per-
form the execution of multiple jobs.

Figure 1 summarises the main interactions between a user and the proposed
architecture. The user employs the client-side API to describe each task to be
executed (executable file or source code, and required input files) together with
the hardware (i.e. CPU architecture, RAM, etc.) and software requirements (OS,
applications, system packages, etc.). The jobs might optionally include budget
information, since the underlying Cloud infrastructure could require a pay-per-
use access to resources. These jobs are submitted (step 1) to the Cloud Enactor
(CE) which is the central manager that orchestrates all the components.

The CE checks whether the job could be executed on one of the already de-
ployed (if any) VMs. For the jobs that cannot be executed on the currently
deployed VMs, the CE queries the Virtual Machine image & Repository Cata-
logue (VMRC) [5] with the job’s requirements to find the most appropriate VMI
to execute the application (step 2). The VMRC, a software that we previously
developed, implements matchmaking capabilities to offer a ranked list of suit-
able VMIs to the Cloud Enactor. The VMRC discards the VMIs that do not
satisfy the mandatory requirements (i.e., different OS or CPU architecture) and
it ranks the resulting VMIs according to the degree of satisfaction with respect
to the optional requirements (mainly, software applications). The CE computes
the deviation from the current state of the most appropriate VMI found and the
desired state for the job execution in order to create the Application Deployment
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Descriptor (ADD) for the contextualization software (step 3). The ADD specifies
the deployment process of the application so that the contextualization software
can unattendedly perform the installation of the application and its software
dependences. This will be executed inside the VM at boot time to deploy the
application and its dependences.

Next, the CE must decide the deployment strategy of VMs, which will be
in charge of executing the jobs. For that, it has to consider a mixture of per-
formance, economic and trust models to decide the optimum number of VMs
to be deployed, together with their Cloud allocation strategy. The performance
model should consider the execution time of the jobs (which can be initially es-
timated by the user but computed after each execution), the deployment time of
the VM in the Cloud infrastructure, the time invested in deploying the software
requirements of the job (contextualization) and the application itself, as well
as the time invested in data transfer, that is, staging out the generated output
data of the application inside the VM. The economical model should consider
the budget of the user allocated to the execution of each job (or a set of jobs),
and the billing policies of the Cloud provider (i.e. hourly rates, economic time
zones, etc.). Finally, the trust model plays an important role on scenarios with
multiple Cloud providers (Sky Computing), where reputation and the ability of
a provider to systematically fulfill the Service Level Agreement (SLA) must be
considered. The trust model would be employed to rank a Cloud provider ac-
cording to its adherence to SLA and the Quality of the Service it offered along
the time, among other possible characteristics. For example, a Cloud provider
that systematically violates its own SLA should be ranked lower than a provider
that has always fulfilled the terms of conditions. The user would express the
precise rank function according to the aforementioned categories, as performed
in other meta-scheduling softwares such as GridWay.

Therefore, the CE decides to fire up a new VM (or a group of them). This
is achieved by delegating on a Virtual Infrastructure Manager (VIM), which
deploys the VM on top of a physical infrastructure (step 4). Notice that the
CE could use elasticity rules in order to enlarge or shorten the number of VMs
dynamically assigned for the allocation of jobs, depending on the budget and
the deadline constraints imposed by the user.

When the VM has booted, the CE stages the contextualization agent and
the ADD into the VM using SSH (step 5). The VMRC service stores the login
name and the private key (or the password) of an account in the VM as part of
the metadata stored for a VMI. Then, the contextualization process is started,
where software dependences are retrieved from the Contextualization Service
and then installed. Next, the scientific application is deployed and a Web services
(WS) wrapper is automatically created and deployed into an application server,
which is finally started (step 6). This WS wrapper enables to remotely start
and monitor the application running inside the VM. All this automated process
results in a VA fully configured for the execution of the scientific application.

Once the VA is up and running, the meta-scheduler can perform the execution
of the jobs inside the VAs (step 7). This involves managing and monitoring the
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execution of the jobs inside the VM during their lifetime. For efficiency purposes
each VM would be in charge of the execution of several jobs. In the case of
parameter sweep studies and BoT applications commonly found in HTC ap-
proaches, the jobs share common requirements and, therefore, they can be exe-
cuted in the same contextualized VM. In addition, scientific applications might
require a periodical access of the generated output data during their executions,
mainly for computational steering purposes. Once the application inside the VM
has finished executing, then its output data must be retrieved so that another
job (with the same requirements) can execute inside the VM.

After all the executions have been carried out, the VAs can be gracefully
shutdown which is achieved by the VIM. Notice that it is possible to cata-
logue the resulting VMI (after the contextualization process) together with the
metadata information concerning the new applications installed. Therefore, this
would minimize the contextualization time for subsequent executions of that sci-
entific application, since no additional software should have to be installed. This
streamlined orchestration of components enables the user to simply focus on the
definition of the jobs and thus delegate to the central manager the underlying
details of interacting with the Cloud technologies for computational resource
provisioning and scientific application execution.

This Service-Oriented Architecture relies on several interoperable services that
can be orchestrated by the Cloud Enactor due to the usage of standard protocols
and interfaces (WS, WSRF, XML). Concerning the software employed, we have
relied on the GMarte meta-scheduler [6], which provides execution management
capabilities of scientific tasks on computational Grid infrastructures. By incor-
porating the functionality to access Cloud infrastructures in this software we can
simultaneously schedule jobs on both Grid and Cloud infrastructures. In fact,
once the virtual infrastructure of computational resources has been provisioned,
other job dispatchers could be fit within the proposed architecture, such as Con-
dor or GridWay. The WS Wrapper for the application is created by the Opal 2
Toolkit [7], which has been integrated in the lightweight contextualization soft-
ware that we previously developed. Other tools for software configuration, such
as Puppet or Chef could also be employed within this architecture.

2.1 The Virtual Machine Catalogue and Repository

In a previous work we introduced an early version of the Virtual Machine Cata-
logue and Repository system (VMRC) [5], whose main capabilities are explained
in this section for the sake of completeness. This paper also describes novel fea-
tures recently included in the system, such as multi-user support by means of
Access Control Lists (ACLs) in order to introduce certain levels of security and
prevent malware distribution in the VMs and the development of a web-based
GUI. In addition, the integration with the Cloud Enactor module is unique in
this paper, which can be seen as a practical usage of its functionality.

The main goal of VMRC is to enable users to upload, store and catalogue
their VMIs so that they can be indexed. This way, others can search and retrieve
them, thus leveraging sharing and collaboration. For that, we have used industry
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standards such as the Open Virtualization Format (OVF) [8] to describe the
VMIs in an hypervisor-agnostic manner, and Web Services to develop the core
of the VMRC service.

Each VMI can be catalogued together with appropriate metadata including
information about the hardware configuration (memory, architecture, disk size,
etc.), the operating system (type of OS, version and release) and the applications
currently installed (application name and version). Linking metadata to the
VMI enables the development of matchmaking algorithms to retrieve the most
appropriate VMI to execute a job considering its requirements.

The following snippet of code summarises the declarative language employed
to query the catalogue considering the job’s requirements. This example queries
the catalogue for a Linux-based VMI, preferably an Ubuntu 11.10 or greater,
created for the KVM hypervisor which must have MySQL 5.0 and Tomcat 7.0.22
and it would be desirable to have also the Java Development Kit version 1.5 or
greater.

vm.type="kvm"

os.name="linux"

os.name="linux" && os.flavour="ubuntu" &&

os.version>="11.10", soft, 20

app.name="org.mysql" && app.version="5.0"

app.name="org.apache.tomcat" && app.version="7.0.22"

app.name="org.oracle.java-jdk" &&

app.version>="1.5", soft, 40

This language, inspired by the Condor classads language [9], differentiates
between the hard requirements, which should be met by a VMI to be considered
a potential candidate, and the soft ones, which can be ranked by the client.
Certain applications might be considered soft requirements since the client might
rely on proper deployment software to delegate the installation of these software
on the VM. The inclusion of matchmaking capabilities in the catalogue is a key
differential aspect with other catalogues of VMIs.

It is important to point out that the usage of preconfigured VMIs as base im-
ages for other VMIs involves security concerns that should be addressed, such as
the distribution of malware among images. This can be alleviated by enforcing
access control to images [10]. Therefore, we have included multi-user support
in the VMRC. The VMRC has an administrator account that has privileges
to create new users. The user that registers a VMI can optionally specify the
list of users (or give public access) that can perform a given operation on its
VMI (search, download, modify). This allows having public images in the cat-
alogue, downloadable by everyone, and private images which might be shared
by a collection of users. This is of importance for a research collaboration that
might require the usage of a set of VMI, with their specific requirements for their
scientific applications.

The VMRC features a web-based GUI which enables authentication via user
and password in order to list and download the VMIs together with its metadata
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that the user can access. Therefore, the catalogue can currently be used via its
Web Service API, through the Java bindings for programmatic access, and also
using the web based GUI. This allows seamless access to the VMIs. Notice that
since the VMRC is a generic component, and it has no specific bindings with
a particular Cloud infrastructure, it can be deployed as a central VMI sharing
module in a Cloud deployment in order to foster sharing and collaboration. This
software is open source and it is available online1.

2.2 Contextualization of Scientific Virtual Appliances

As stated earlier, the process of configuring a VM to obtain a VA can be referred
to as contextualization, a term initially employed in [11] for the configuration
of virtual machines to create virtual clusters. This term is employed in this
paper for application contextualization, i.e., providing the application with the
appropriate execution environment (mainly software dependences) to guarantee
its execution. An application with a reduced number of external dependencies
can be perfectly contextualized at the time the VM is deployed by the VIM.
This way, it is possible to start from a base VM, that only includes the operating
system and common use libraries, and to perform the application deployment
and contextualization when the VM boots, before executing the application.

However, applications with a large number of dependencies on third-party
software are not candidate to perform the contextualization at the time of de-
ployment. In some cases, the time required for contextualization might represent
an important overhead, depending on the total execution time of the applica-
tions running on the VA. As an example, the compilation and installation of
the Globus Toolkit 4 [12], a toolkit for deploying Grid services can take several
hours. Additionally, in most cases, performing automatic contextualization re-
quires a considerable complexity from a technical point of view. For these cases,
a practical approach consists in performing the installation of the most com-
plex software components by the user, in order to produce a pool of partially
contextualized VMIs which are stored on the VMRC. These VMs would then
be completely contextualized at boot time in order to create the appropriate
environment required for the execution of the scientific application.

Automatic Deployment of Scientific Applications. In order to avoid man-
ual installation procedures when the VMs are allocated by the VIM, we devel-
oped a tool (called cntxtlzr) that enables to automate the flow of deploying
scientific applications. The main goal is to perform the main steps required
when deploying a scientific application (packaging, configuration, compilation,
execution) without the user intervention. This way, instead of manually config-
uring the VM via SSH, application inoculation into the VM with minimal user
intervention is achieved.

1 http://www.grycap.upv.es/vmrc

http://www.grycap.upv.es/vmrc
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This tool supports a small declarative language based on XML employed to
create an Application Deployment Descriptor (ADD) which specifies the com-
mon actions employed to deploy a scientific application, together with its soft-
ware requirements.

These are the typical steps involved in the deployment of a scientific applica-
tion which are addressed by the developed tool:

1. Package Installation. Installs the software packages that the application de-
pends on. It resolves dependencies with other software components and in-
stalls those dependencies first. The software packages can be made accessible
to the contextualization software via an URL, an installable system pack-
age via yum or apt-get or simply staged into the VM together with the
contextualization tool.

2. Configuration. Enables the user to detail the configuration process of the
software package. This is achieved by specifying common actions such as
copying files, changing properties in configuration files, declaring environ-
ment variables, etc.

3. Build. Compiles the software package using the appropriate build system
(Configure + Make, Apache Ant, SCons, etc.)

4. Opal-ize. Creates the configuration required by the Opal toolkit, the Web
services wrapper for the application. It then installs Opal and its require-
ments (Tomcat + Java), deploys the scientific application and, finally, starts
Tomcat. This causes the scientific application to be deployed and the jobs
ready to be started by the Cloud Enactor.

The following snippet of code shows a simplified version of an ADD. It describes
an application called gBiObj that requires the MPICH Message-Passing Inter-
face (MPI) library, the GNU C compiler and the make utility. Its source code is
available in a compressed TAR file called gBiObj.tgz. We want the application
to be accessible via the Opal WS Wrapper so we specify the Opalize XML ele-
ment. In addition, we want to modify the Makefile of the scientific application to
point to where the MPICH library has been installed. Notice that dependencies
are installed before the application.

<DeployableApp name="gBiObj" requires="mpich gcc make">

<Package name="gBiObj" file="gBiObj.tgz"/>

<Opalize exec_file="gBiObj"

default_args="--gra1 @gBiObj#INSTALL_PATH@/energy.gra"

<Configuration>

<ReplaceInFile file="@gBiObj#INSTALL_PATH@/Makefile"

from="mpicc" to="@mpich#INSTALL_PATH@/bin/mpicc"/>

</Configuration>

<Build type="make"/>

</DeployableApp>

The contextualization tool relies on plugins, in the shape of other ADDs, to
deploy specific software. This way application developers can specify the instal-
lation procedure required by their applications. Thus, it is possible to integrate
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different software installation descriptions in order to perform complex installa-
tions. There currently exists plugins for commonly used software such as Java,
Globus Toolkit 4 WS-Core, etc.

The cntxtlzr tool currently consists of a highly portable Python script that
processes the XML ADD and performs the required actions. This script is staged
into the VM and started so that the contextualization process starts. The plu-
gins (or ADDs) and the packages for the software dependencies can be stored
in a separate web server. Therefore, the tool can download all the required in-
formation at runtime inside the VM in order to perform the contextualization.
This lightweight approach to application contextualization only requires Python
support in the VM, which is commonly found in the pristine installations of
many GNU/Linux distribution.

We plan to combine our tool with other software configuration tools such
as Puppet or Chef in order to take advantage of their software deployment
approaches. Our approach would complement these software since we use a high
level XML-based declarative description of the deployment process which targets
at the specific workflow required for the deployment of scientific applications.

2.3 Application Management and Monitoring Inside the VM

Starting and monitoring the execution of the jobs inside the VMs is far from
being a trivial task because it requires the deployment of a special agent inside
the VM in charge of starting and cancelling the application, and which provides
information about the appropriate states of the job (running, finished, etc.).
For that, we have relied on the Opal 2 Toolkit [7], which is a tool that wraps
scientific applications as Web services so that they can be managed via remote
invocations.

Opal requires the user to write an Application Configuration File (ACF) which
provides metadata information about the application, such as the location of the
executable file and the command-line arguments together with its description.
It also accepts advanced features such as the execution method (either locally,
inside the VM or delegating the execution to another component such as Globus
or Condor).

Then, Opal generates a Web service wrapper and deploys the application
into an application server such as Apache Tomcat. The WS front-end to the
application allows starting, stopping and monitoring the application that runs
in the VM. Different executions of the application can be concurrently carried
out within the same VM, since separate folders are employed to generate output
data files. It also allows to obtain a list of generated output files. An interesting
point is that the output files can easily be accessed from outside the VM via the
HTTP protocol, since they are generated inside the Tomcat deployment folder.
This allows for computational steering capabilities, where scientific applications
performing long simulations periodically generate output data. These data can
be retrieved while the computation takes place, thus being able to steer the ex-
ecution depending on the intermediate results. As an example, if a certain job
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in a Bag of Tasks submission takes longer than the expected time, it can be
cancelled and resubmitted by the Cloud Enactor.

3 Case Study

In order to test the suitability of the Cloud infrastructure as a computational
source for scientific applications, two case studies were performed. They involve a
scientific application that designs proteins with targeted properties via a compu-
tationally intensive process based on Monte Carlo Simulated Annealing (MCSA)
[13]. The application is developed in the C programming language and it depends
on common build tools available in Linux (configure, make and a C compiler).
It also requires the MPICH 2 library.

For the first case study, we used a fixed number of 8 jobs (an appropriate
number for our test infrastructure) and we analysed the total execution time.
This time includes from the beginning of the task allocation process until the
last job has been executed and its output results have been retrieved. Each job
requires the initial configuration of the protein and the matrix that indicates the
energetic interactions among the different rotamers of the protein. This amounts
to a total of 172 MBytes per job. The job outputs the results of the optimization
process to the standard output. This computationally intensive application is
typically CPU-bound, but we configured the executions to periodically read the
energy matrix from the disk (as part of the optimization process) so that I/O
would also be significant in the total runtime.

The test infrastructure is based on four dual-processor Intel Xeon QuadCore
with 16 GBytes of RAM Blade servers, with a total of 32 cores, managed by
OpenNebula 2.2 and the KVM hypervisor. Two nodes were exclusively used for
this particular case study. In order to focus on the execution time, the case study
was carried out on pre-started VMs where all the contextualization process had
finished and the VMs were ready to receive the execution of the jobs. The allo-
cation of tasks to VMs is achieved by the GMarte meta-scheduler. The current
configuration controls that only one job is executed inside a single VM. There-
fore, using N VMs allows the concurrent execution of up to N tasks. Other jobs
are executed as soon as free VMs are available.

In addition, since the architecture can simultaneously schedule jobs to Grid
and both private and public Cloud infrastructures, the second case study exe-
cutes 30 protein design jobs on a hybrid infrastructure composed by resources
from a Grid, the aforementioned private Cloud and the Amazon EC2 public
Cloud. This demonstrates its ability to scale out computations on demand as
long as resources from different infrastructures become exhausted.

3.1 Results

The solid line in Figure 2.a depicts the global execution time of the first case
study. As expected, the global execution time decreases when the number of
VMs increases, since more computational resources are available to carry out
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jobs. The plateau in the execution time seen between 4 and 7 VMs is explained
by the fact that only one job is executed in each VM and the execution time of
each job is expected to be quite similar. Therefore, the executions are actually
carried out in groups. As an example, with 5 VMs there is a first group of 5 jobs
that are concurrently executed. When they finish, the meta-scheduler allocates
the remaining 3 jobs to the free VMs. This would take a similar time as the
allocation of the 8 jobs into 7 VMs, which carries out 7 concurrent jobs and a
final single job when spare computational resources are available.
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Fig. 2. Global execution time (a) of the case study, considering two different distribu-
tions of VMs. Allocated jobs (b) on an infrastructure composed of Grid, private Cloud
and public Cloud resources.

The dotted line in Figure 2.a compares the degree of scalability of the Blade
servers since it shows the global execution time of the case study when all the
VMs are running inside a single node. It can be seen that a similar execution
time is achieved except for the case of using 8 VMs, where a minor difference
is noticed. Since each node features a dual quad-core processor, it appears that
scalability issues are only noticeable starting from the 8-th VM in a single node,
where the usage of shared resources such as memory and disk start affecting
the execution of the applications. These results suggest that VM consolidation
in few physical nodes might still deliver good performances for computationally
intensive applications, depending on resource consumption.

Concerning the performance improvement gained using the Cloud infrastruc-
ture, the results show that up to an speed up of 7.13 is achieved with 8 VMs
evenly distributed among the two physical nodes. The global execution time of
the case study reduces from a total 6041 seconds in a single VM to just 847
seconds using the aforementioned 8 VMs. Therefore, the usage of virtualised
resources from a Cloud as a provider of computational power can deliver a sig-
nificant improvement for resource-starved scientific applications.
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For the second case study we used 10 Grid nodes (from a local resource inte-
grated in the Spanish National Grid Initiative), 4 provisioned VMs for the private
Cloud and 4 for the public Cloud. The provisioned VMs where contextualized
at boot time in order to deploy the application. We used the Free Usage Tier
provided by Amazon EC2 to provision low-performance VMs, thus requiring a
noticeably larger time to execute the jobs

The task allocation of the 30 jobs is shown on Figure 2.b, further detailed in
[14]. The system starts submitting jobs to the Grid infrastructure until all the
execution slots are used (approximately at instant 31 in the figure). Since there
are pending jobs to be executed, a virtual infrastructure composed of 4 virtual
machines is provisioned from the private Cloud provider in order to be able
to submit additional jobs to be executed. When both the Grid infrastructure
and the private Cloud are not able to execute additional jobs (approximately at
instant 258 in the figure) then the computations are scaled out to the Amazon
EC2 public Cloud provider. Therefore, 4 additional virtual machines on a pay-
per-use basis are provisioned in order to enlarge the available computational
infrastructure. Notice that from that moment on, the jobs are being concurrently
executed on a Grid infrastructure and on virtual infrastructures provisioned from
both a private Cloud and a public Cloud. When the provisioned computational
resources of the Cloud are no longer used, they will be shut down. This enables
to dynamically adjust the size of the virtual infrastructure to the computational
requirements of the case study.

Therefore, the developed system allows to simultaneously harvest computa-
tional power from three different infrastructures, in order to reduce the execution
time of HTC-based applications.

4 Related Work

This paper aims at abstracting the details of scientific applications execution on
Cloud platforms. The literature reveals research efforts into this area.

In a work related to the Nimbus project [15], the authors offer the Workspace
Service, which enables to publish different VMIs ready to be used for the execu-
tion of certain applications. Therefore, each VMI must be properly configured in
advance with the hardware parameters and software dependencies required for
the execution of the application. A different approach is offered by the Swarm
project [16] which is a task scheduler that acts over three kind of infrastructures
(Grid, Windows Server Cluster and Cloud). However, the task execution on the
Cloud requires the VMs deployed in the Cloud configured by means of a Hadoop
cluster. It uses the MapReduce execution model for the execution of tasks.

SAGA [17] allows to remotely execute applications on top of Grid and Cloud
infrastructures. The SAGA libraries and its dependences need to be deployed
in advance into the VM, but the main advantage over the previous approaches
is that it allows basic VM contextualization once it has been deployed in the
Cloud. This includes package installation and minor application configuration
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during VM startup. There also exists the Cloud Scheduler2, which is a cloud-
enabled distributed resource manager. It provides part of the functionality of
a VIM but uses the Condor scheduler [18] to delegate the scheduling decisions
for jobs. The user can reference VMIs stored either in Nimbus (via its URL) or
Amazon EC2 (via the name of the Amazon Machine Image (AMI)), the same
IaaS providers currently available with this tool.

In [19] the authors propose a system to deploy and invoke science applications
in the Cloud with minimal user effort. They address the principal challenges
when porting an application to the Cloud: application deployment, application
execution and data transfer from and into the Cloud. They propose several pre-
defined application runtime environments which can be staged into the VM,
and an execution framework to start the application. However, being imple-
mented in Windows Azure [20], their approach only targets Windows platforms.
In addition, their approach focuses on self-contained applications (binaries and
libraries), which are assumed to seamlessly run on the target VM. Therefore,
they do not consider the intricacies of deploying complex scientific applications.

5 Conclusion

This paper has introduced a software architecture that abstracts the details of
application deployment and execution on IaaS Clouds. The system features the
provision of computational virtualised resources, the configuration of these re-
sources to support the execution of the applications, the cataloguing of virtual
machine images and, finally, the job execution management on the virtual infras-
tructure. The benefits of the proposed architecture have been exemplified by the
execution of a protein design case study on both a private Cloud infrastructure
and a hybrid infrastructure (Grid, private and public Cloud). The automated
deployment and execution of scientific applications fosters the widespread adop-
tion of Cloud technologies by the scientific community. This way, Clouds deliver
important benefits for scientific computing in terms of the ability to provision
computational resources and the customizability of the execution environments.

Therefore, the main contribution of this work to the state-of-the-art is the
development of generic components and an architecture to integrate them all
in order to ease the process of executing scientific applications on the Cloud. In
addition, some of the components of the architecture, such as the VMRC system,
have been released to the community as open source.
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Abstract. The Volume Ray-Casting rendering algorithm, often used to
produce medical imaging, is a well-known algorithm and the underlying
computation can be easily executed in parallel. This is due to the fact
that the huge number of rays, used to sample the volumetric data, can
be processed independently. However, the algorithm’s performance may
drop substantially when the complexity/size of the volumetric dataset
increases. In this paper, we present three implementations of our parallel
volume ray-casting algorithm in different multi-core architectures, such
as CMPs, GPUs and MPSoCs. Furthermore, we show that using multi-
GPUs, that perform in parallel, we can almost halve the rendering time.
The performance and aspects of the three implementations are discussed.

1 Introduction

High performance visualization of 3-D datasets has always been one of the main
goals in Computer Graphics. For 3-D volumetric datasets, such as those acquired
by Computer Tomography (CT), the rendering process is generally known as Vol-
ume rendering. The volumetric dataset is usually composed of several stacked
parallel slices (images) that form a 3-D volumetric dataset. There are different
techniques to render 3-D volumetric datasets [9,2]. For instance, the March-
ing Cubes algorithm [11] is one approach to turn voxels samples into polygonal
data, in order to create an actual set of 3-D primitives that can be rendered
by regular GPUs pipeline. On the other hand, such technique may lead to a
poor quality polygonal representation of the volume, because of the approxi-
mations that are performed to create the polygonal data. Thus, the Volume
Ray-Casting algorithm is a better candidate for producing more accurate re-
sults [10,4]. Essentially, this algorithm samples equidistant points along the ray,
inside the volumetric 3-D dataset. Each sample, i.e. Voxel (volumetric pixel), cor-
responds to a given color and opacity in one of the parallel slices of the dataset.
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The interpolated colors and opacities are merged through compositing to yield
the color of the view-plane pixel through which a primary ray has been traversed.
For instance, the algorithm can show specific parts of a human body volumetric
dataset, such as bones or internal organs.

Interactive visualization of volumetric datasets is often difficult. The volume
ray-casting performance can drop significantly as more complex datasets are
used. On the other hand, volume ray-casting has a very high parallelization
potential, as each ray can be processed independently, producing one corre-
sponding pixel information. Therefore, there are consistent approaches to accel-
erate volume ray-casting with custom parallel architectures in hardware. In [6],
a pipelined application-specific integrated circuit (ASIC) was created, fabricated
in 0.35 μ technology and running at 125MHz. Such ASIC is capable of produc-
ing interactive frame-rates at some degree, since there are limitations regarding
the size of the dataset (2563 voxels). GPUs have recently become a good option
for massively parallel processing of floating point data [8]. Thus, there are also
approaches to accelerate volume ray casting using GPUs [5,3]. However, most of
the volume ray-casting algorithms on GPU strongly depend on optimizations to
achieve real-time rendering performance. For example, using texture or constant
memories of the GPU to store frequently-used data can substantially improve
the given algorithm performance, because of their much lower latency [8].

In this paper, we propose and discuss the implementations of our interactive,
un-optimized and flexible parallel volume ray-casting algorithm with supersam-
pling on three different multi-core architectures: Chip Multiprocessor (CMP),
Graphics Processing Unit (GPU) and Multiprocessor System on Chip (MPSoC).
The CMP implementation of the algorithm uses OpenMP, while the GPU imple-
mentation is CUDA-based. The MPSoC-based implementation on FPGA uses
the shared DDR memory for synchronization. We extensively compare perfor-
mance results of the GPU and OpenMP implementations, showing that the GPU
implementation can reach interactive visualization, especially when a multi-GPU
configuration is used. We also compared and analyzed the advantages of using
multi-GPU configuration over a single-GPU configuration for varying workloads
(number of primary rays). Finally, the MPSoC-based implementation on FPGA
(Xilinx Virtex-5) shows the portability and scalability of the volume ray-casting
algorithm, as several microprocessors (MicroBlaze [13] cores) can be mapped on
the FPGA and run the algorithm in parallel. All the implementations have not
been optimized to use any special features of the corresponding architectures.

The rest of this paper is organized as follows: Sections 2, 3 and 4 briefly ex-
plains the parallel Volume Ray-Casting algorithm in CMP, GPU and MPSoC.
Then, Section 5 presents extensive performance results for the three implemen-
tations and compare them, while Section 6 draws the conclusion of this work.

2 Parallel Volume Ray-Casting in CMP

The OpenMP-based parallel volume ray-casting technique is presented in Algo-
rithm 1, where we use a for work-sharing construct, that splits the execution of
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the parallel section among the group of threads. Thus, iterations of the for loop
are split across the group of threads. Therefore, in Algorithm 1, groups of rays
are assigned to groups of threads for execution, leading to parallelization of rays.
Each thread has its own private variables (i, j and s) that are used to control the
loop iterations assigned to each thread in the beginning of the parallel section.
Also, if supersampling is enabled, then each ray spawns a given number of neigh-
bor sampling rays (i.e. in the vicinity of the primary ray), that are executed by
the same thread. Thus, the color information of each pixel is measured from all
the sampling rays, improving the overall quality of the resulting image.

3 Parallel Volume Ray-Casting in GPU

The CUDA-based parallel volume ray-casting is presented in Algorithm 2. In the
CUDA programming model, a thread is actually a lightweight thread, because of
their simplicity and faster context switching mechanism when compared to regu-
lar threads. Throughout this section, we refer to threads in CUDA as lightweight
threads. In addition, the CUDA-based implementation in Algorithm 2 has not
been optimized for GPU execution. For example, the kernel do not make use of
shared memory or texture memory, that are usually employed to avoid global
memory long latency penalties.

Algorithm 1. Volume Ray-Casting with OpenMP

Require: rays, uniform grid structure, 3-D dataset
Ensure: image
1: # pragma omp parallel for private(i,j,s)
2: for i = 0 to WIDTH do
3: for j = 0 to HEIGHT do
4: color pixel;
5: for s = 0 to N SAMPLES do
6: ray ry ⇐ get ray(i,j,s);
7: color aux ⇐ intersectGrid(grid, ry, dataset);
8: pixel ⇐ pixel + aux;
9: pixel ⇐ pixel / N SAMPLES;
10: image[i][j] ⇐ pixel ;

Modern general purpose GPUs are capable of executing many thousands of
threads in parallel [8]. Thus, each thread can be assigned to a primary ray
that crosses a pixel of the view-plane. The result is that a portion of the final
image is going to be produced by a block of threads (one pixel per thread). The
corresponding CUDA Kernel is presented in Algorithm 2, considering that all
data transfers between the host and the GPU have been already performed.
If supersampling is enabled, the thread will execute as many sampling rays as
required, as shown in line 5 of Algorithm 2. The sampling rays are addressed in
column chunks, as shown in line 6.
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Algorithm 2. Volume Ray-Casting CUDA–kernel

Require: rays, uniform grid structure, 3-D dataset
Ensure: image
1: ray ry;
2: i ⇐ blockDim.x * blockIdx.x + threadIdx.x;
3: j ⇐ blockDim.y * blockIdx.y + threadIdx.y;
4: color pixel;
5: for samples = 0 to N SAMPLES do
6: ry ⇐ rays[i][j+samples];
7: color aux ⇐ intersectGrid(uniform grid, ry, dataset);
8: pixel ⇐ pixel + aux;
9: pixel ⇐ pixel / N SAMPLES;
10: image[i][j] ⇐ c; {corresponding pixel color}

3.1 CUDA-Based Implementation Using Multi-GPUs

In this implementation, the same kernel shown in Algorithm 2 is executed by
each GPU. However, the input rays are split among the GPUs, increasing even
more the parallel processing of rays. In order to use two GPUs, a separate thread
must be created to access each GPU, because one thread cannot control both
GPUs at the same time. For that reason, we use OpenMP to create two threads,
each one controlling one GPU. The same idea can be extended for more than
two GPUs, if available. In the end, the results from both GPUs are merged by
the host process into one single image.

4 Parallel Volume Ray-Casting in MPSoC

The MPSoC architecture consists of up to four Xilinx MicroBlaze [13] micro-
processors running in parallel at 125MHz. They are connected to a shared DDR
memory via a Xilinx Multi-Port Memory Controller (MPMC) [12]. One of the
microprocessors is connected to a few communication peripherals, to enable in-
put/output data transmission between the MPSoC and a host machine, as well
as to enable access to the FPGA’s flash memory. Thus, all the microprocessors
must wait until the whole 3-D volume data is available for computation.

The parallel volume ray-casting implementation is presented in Algorithm 3,
where iterations of the for loop are split across the microprocessors, as shown
in line 2. Therefore, in Algorithm 3, groups of rays are assigned to different
microprocessors, since rays can be processed independently from the others.
Each microprocessor knows which data to read and to write, according to its
own identification number (CPU ID= 0, 1, 2 or 3) and also according to the
total number of enabled microprocessors (N CPU= 1, 2, 3 or 4), as shown in line
2 of Algorithm 3. Finally, at each loop iteration, an image pixel is produced, as
shown in line 9 of Algorithm 3.
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Algorithm 3. Volume Ray-Casting with MicroBlaze

Require: rays, uniform grid structure, 3-D dataset
Ensure: image
1: for (i = 0; i < IMG WIDTH; i++) do
2: for j = CPU ID; j < IMG HEIGHT; j ⇐ j + N CPU) do
3: color pixel;
4: for s = 0 to N SAMPLES do
5: ray ry ⇐ get ray(i,j,s);
6: color aux ⇐ intersectGrid(grid, ry, dataset);
7: pixel ⇐ pixel + aux;
8: pixel ⇐ pixel / N SAMPLES;
9: image[i][j] ⇐ pixel ;

5 Experimental Results

In this section we present the experimental results on different datasets for each
multi-core architecture implementation. The CUDA-based implementation was
compiled using the CUDA Toolkit 4.0, while the OpenMP-based implementation
was compiled in GCC 4.4.4. Up to two NVIDIA GTX 470 GPU were used for
execution of the algorithm in CUDA, while a Core i7 960 Intel Multiprocessor (at
3.2 GHz) was used for the algorithm execution in OpenMP. The MPSoC-based
architecture was synthesized in Xilinx EDK 13.1 for a Virtex-5 XC5VLX50T
FPGA and the parallel algorithm implementation was compiled using MicroB-
laze gcc compiler 4.1.2. All the execution time results are measured in seconds
and the volumetric dataset (Fig. 1) used in this work is available in [1].

Fig. 1. Images produced by the proposed parallel volume ray-casting algorithm

Table 1. High-resolution execution times for eight different datasets

Data
Sampling rays, OpenMP Core i7 Sampling rays, single-GPU Sampling rays, dual-GPU
1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

foot 2.54 4.68 9.02 18.30 34.58 69.75 0.03 0.08 0.17 0.34 0.67 1.35 0.03 0.06 0.12 0.24 0.48 0.96
skull 2.07 3.94 7.22 15.08 30.36 55.45 0.04 0.09 0.19 0.38 0.77 1.54 0.02 0.05 0.09 0.19 0.38 0.76
engine 2.14 4.12 8.63 16.81 33.42 66.45 0.02 0.04 0.09 0.18 0.37 0.74 0.02 0.03 0.07 0.14 0.28 0.56
aneurism 2.69 5.43 11.20 21.41 41.19 81.48 0.03 0.07 0.15 0.29 0.59 1.18 0.03 0.06 0.12 0.24 0.49 0.97
bonsai 2.23 4.19 7.41 14.65 30.16 55.78 0.03 0.06 0.14 0.27 0.53 1.11 0.03 0.05 0.11 0.22 0.44 0.87
teapot 2.58 4.57 8.72 16.84 38.36 73.00 0.03 0.06 0.13 0.26 0.53 1.06 0.02 0.05 0.09 0.19 0.38 0.77
aorta 6.19 12.22 24.08 47.94 95.76 192.46 0.08 0.19 0.39 0.80 1.62 3.26 0.06 0.12 0.23 0.45 0.88 1.76
backpack 6.36 12.51 24.97 49.45 99.22 198.32 0.12 0.29 0.58 1.20 2.43 4.91 0.08 0.17 0.33 0.66 1.32 2.62
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5.1 High-Resolution Performance Results

For each volumetric dataset, the volume ray-casting algorithm was executed for
1280×800 primary rays, producing high-resolution images. In addition, the algo-
rithm was executed with supersampling enabled, varying from 1 to 32 sampling
rays per pixel. Therefore, up to 32 sampling rays were cast around the region
of the primary ray pixel, producing smoother edges in the resulting image. The
performance results are summarized in Table 1, for the OpenMP and the CUDA
based implementations, using 1 and 2 GPUs, respectively. The MPSoC does
not support high-resolution volume ray-casting processing because of memory
limitations. Thus, its results are not included in Table 1.

The OpenMP-based implementation uses 8 parallel threads, since the Core i7
microprocessor can execute up to eight parallel processes. The results in Table
1 show that even for one sampling ray, the performance is still not enough to
ensure interactive visualization of the datasets. However, good results, i.e. image
quality and interactive visualization, can still be obtained at lower resolutions,
as fewer primary rays are processed. This will be shown in Section 5.2.

On the other hand, the GPU-based implementation results show that inter-
active visualization of volumetric datasets is possible even for high-resolution
volume ray-casting. As depicted in Fig. 2a and 2b, the volume ray-casting exe-
cution time for every dataset is still below one second if up to 4 sampling rays
are used, which corresponds to processing 1280 × 800 × 4 rays, in total. Thus,
more than one image, a.k.a frame, can be produced in one second, especially if
less than four sampling rays are used. The dual-GPU implementation is around
90 times faster than the OpenMP implementation. Comparing the algorithm
execution results using one and two GPUs, the performance is almost two times
faster when two GPUs are employed instead of one. Also, observe that as more
sampling rays are used, the performance gap increases, making the dual-GPU
configuration a better candidate for high-quality interactive volume ray-casting,
especially for complex datasets such as aorta and backpack, as shown in Fig. 3.

(a) Single-GPU, CUDA-based results. (b) Dual-GPU, CUDA-based results.

Fig. 2. GPU performance results in CUDA
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(a) Single vs. Dual GPU speed up. (b) GPU frame rate (1 sampling ray).

Fig. 3. Acceleration rate using two GPUs and frames per second rate

5.2 Lower-Resolution Performance Results

Lower resolution volume ray-casting can still provide a good trade-off between
image quality and performance. In this section, we present some experimental
results for the foot and backpack datasets, rendered in lower resolutions. The
performance results are presented in Fig. 4, for one sampling ray.

It is clear that the GPU-based implementation can easily achieve real-time
visualization (30 fps) of volumetric datasets when the resulting image resolution
is decreased, which means that fewer primary rays are used to sample the volume
data. For a simple dataset (foot), interactive visualization (around 60 fps) can be
achieved even for higher resolutions, as in Fig.4a. On the other hand, the backpack
dataset can achieve interactive visualization performance for very-low resolutions
only, as depicted in Fig.4b. Moreover, the OpenMP-based implementation cannot
provide real-time or interactive rendering yet. Thus, optimizations are necessary
in order to improve the algorithm performance in OpenMP, as shown in [7].

5.3 MPSoC Synthesis and Performance Results

The MPSoC-based implementation results are shown in Fig. 5. Because of mem-
ory limitations of the FPGA we could render images of 640× 480 pixels. Also,

(a) Foot dataset low-resolution fps. (b) Backpack dataset low-resolution fps.

Fig. 4. Frames per second rendering rate for lower resolutions
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we could not fit the aorta and backpack datasets in memory. In Fig. 5a, one
can observe that almost all the FPGA slices are being used (82%), as well as
the available BlockRAMs (95%). Because of that, we could only fit up to 4 mi-
croprocessors running in parallel. The high usage of BlockRAMs is due to the
MPMC implementation of FIFOs for each input/output memory port, in order
to improve timing and performance [12].

Performance and scalability results are shown in Fig. 5b. For most datasets the
parallel algorithm execution time improves as more MicroBlaze microprocessors
(Processing Elements - PEs) are being used in parallel. The MPMC FIFOs for
the fourth microprocessor are implemented using shift register lookup tables
instead of BlockRAMs, which can contribute to create stalls in the datapath
and, hence, worsen the overall performance of the microprocessor.

Finally, it is clear that interactive performance is not yet achieved. How-
ever, an Application-Specific Integrated Circuit (ASIC) implementation of such
application-specific MPSoC design, instead of FPGA, could most probably run
faster, with lower area and power consumption, as in [6].

(a) FPGA area occupancy (4 PEs). (b) Execution times for 640× 480 res.

Fig. 5. MPSoC synthesis and scalability, for up to 4 parallel microprocessors

6 Conclusions

In this paper, three un-optimized implementations of our volume ray-casting
algorithm are discussed and compared. The GPU-based implementation is up
to 90 times faster when a dual-GPU configuration is used, in comparison to the
OpenMP-based implementation. One of the reasons for such speed up gain is
because thousands of lightweight threads can be executed in parallel on GPU,
while in the OpenMP-based implementation only 8 threads are executing in par-
allel. Furthermore, the overhead of changing between threads in GPU is much
lower. The MPSoC-based implementation on a single Virtex-5 FPGA can exe-
cute up to four MicroBlaze microprocessors in parallel, running at 125MHz. As
more microprocessors are used, the better is the performance achieved. How-
ever, interactive performance is not yet achieved, although in ASIC technology
it could most probably run at higher frequencies, with more dedicated hardware.
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Summing up, we demonstrated that the un-optimized GPU implementation of
our volume ray-casting algorithm is able to deliver a high performance, between
60 and 90 times higher than that of our OpenMP-based implementation. For
most datasets, high-resolution interactive visualization is achievable. Also, if we
would make use of the texture and constant memories of the GPU, we would very
likely achieve much higher frame rates, since the latency of these memories is
much lower than the global memory latency. On the other hand, interactive per-
formance may only be achieved in OpenMP unless several optimizations are ap-
plied to the algorithm. Furthermore, since the GPU implementation introduces
more hardware overhead comparing to an MPSoC-based ASIC implementation,
a MPSoC-based ASIC is expected to have lower area/power consumption.
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Abstract. We present the automatic synthesis of the HPC Challenge’s Global
FFT, a large 1D FFT across a whole supercomputer system. We extend the Spiral
system to synthesize specialized single-node FFT libraries that combine a data
layout transformation with the actual on-node FFT computation to improve the
network performance through enabling all-to-all collectives. We run our opti-
mized Global FFT benchmark on up to 128k cores (32 racks) of ANL’s Blue-
Gene/P “Intrepid” and achieved 6.4 Tflop/s, outperforming ANL’s 2008 HPC
Challenge Class I Global FFT run (5 Tflop/s). Our code was part of IBM’s win-
ning 2010 HPC Challenge Class II submission. Further, we show first single-
thread results on BlueGene/Q.

1 Introduction

The HPC Challenge (HPCC) [1] has been developed to provide more in-depth
benchmarking of supercomputers beyond the HPL benchmark used for the TOP500
ranking [2]. HPCC contains seven benchmarks: HPL, STREAM, RandomAccess,
PTRANS, FFT, DGEMM, and b eff. In this paper we focus on the Global FFT bench-
mark, which computes a large 1D FFT across a large distributed-memory machine, us-
ing FFTE [3]. Given network bandwidth and node (CPU) performance developments,
Global FFT is on large machines dominated by the machine’s cross-sectional band-
width and thus the three global transposes required to compute a 1D FFT where input
and output are in natural order.

An optimized Global FFT implementation must combine an optimized communi-
cation library (e.g., the vendor MPI library) with an optimized FFT library (e.g., the
vendor FFT library). However, performance does not compose. To obtain the best per-
formance within each of these two libraries, incompatible data formats are required:
(1) The MPI library typically is best optimized to send large messages through collec-
tive communication functions (e.g., MPI all-to-all), which requires all data for the same
destination processor to be packed into one contiguous memory area. (2) Conversely,
FFT libraries usually require the data for FFTs to be contiguous in the node memory to
obtain best performance. However, the Global FFT algorithm requires sending neigh-
boring data elements to different target processors. Thus, one either needs to convert
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the data between the storage formats in between library calls to the two libraries or
one needs to resort to less efficient library functions (e.g., MPI all-to-allv instead of
all-to-all). In either case the overhead can be significant.

Contribution. In this paper we present a novel distributed memory 1D FFT algorithm
for large processor counts. Our algorithm blocks the FFT’s three global transposes so
that for each transpose every processor sends only one large message (that is contiguous
in memory) to each other processor, using the most optimized collective communication
call. The necessary data scrambling before sending and after receiving and the twiddle
factor scaling becomes part of modified node FFT libraries. We extend the program
generation and autotuning framework Spiral to automatically generate and optimize
these modified FFT libraries, and use UPC as communication layer. Our optimized
Global FFT reaches 6.4 Tflop/s on 128k cores (32 racks) of ANL’s BlueGene/P while
FFTE (the original HPCC Global FFT) reached 5 Tflop/s on the same machine in the
2008 Class I HPC Challenge award. Finally, we make a first step towards targeting
BlueGene/P’s successor—the BlueGene/Q system—and demonstrate Spiral’s ability to
automatically generate highly optimized single threaded code taking full advantage of
the new QPX SIMD vector instruction set.

Related Work. One and multi-dimensional FFT algorithms for distributed memory
are an extensively studied topic. Most 1D FFT algorithms are building on the Six Step
FFT Algorithm [4], which breaks a large 1D FFT into two stages of local FFTs on
contiguous data plus a twiddle stage and three global transposes. FFTW [5] provides
a well-optimized open source single node and MPI FFT library. FFTE is specifically
designed for large 1D distributed memory FFTs [3], and the reference implementation
of the HPC Challenge’s FFT benchmark (Global FFT) [1]. In this work we extend the
program generation system Spiral [6, 7], and builds on Spiral’s code generation for
BlueGene/L’s Double FPU [8], and multicore CPUs [9]. Our system uses IBM’s UPC
runtime [10] as communication layer. We are building on Spiral’s experimental MPI
FFT code generation for fixed problem-size and small and fixed processor count (up
to 16) [11]. We are extending these concepts to automatically generate the whole FFT
computation required for the Global FFT HPCC benchmark, which needs to be a single
library working for any problem size and processor count without recompilation.

2 Background

In this section we discuss the necessary background for this paper. We review the Kro-
necker product formalism to describe fast Fourier transform (FFT) algorithms, the au-
totuning and program generation system Spiral, and the BlueGene/P supercomputer.

Fast Fourier Transform. Given n real or complex inputs x0, . . . , xn−1, the discrete
Fourier transform (DFT) is defined as

yk =
∑

0≤�<n

ωk�
n x�, 0 ≤ k < n, (1)

with ωn = exp(−2πi/n), i =
√−1. Stacking the x� and yk into vectors x =

(x0, . . . , xn−1)
T and y = (y0, . . . , yn−1)

T yields the equivalent form of a matrix-
vector product:
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y = DFTn x, DFTn = [ωk�
n ]0≤k,�<n. (2)

Computing the DFT by its definition (2) requires Θ(n2) many operations. FFT algo-
rithms reduce the runtime to O(n log(n)) and can be written in the form of structured
sparse matrix factorization using the Kronecker product formalism [6, 12]. The two-
point FFT is given by the butterfly matrix,

DFT2 =

[
1 1
1 −1

]

. (3)

In the following, we use In to denote an n× n identity matrix, and

A⊗B = [ak�B], A = [ak�]

for the tensor (Kronecker) product of matrices. It replaces every entry ak,� of A by
the matrix ak,�B. Most important for FFTs are the cases where A or B is the identity
matrix. As examples consider

I4 ⊗DFT2 =

⎡

⎢
⎢
⎢
⎢
⎣

1 1
1 −1

1 1
1 −1

1 1
1 −1

1 1
1 −1

⎤

⎥
⎥
⎥
⎥
⎦

and DFT2 ⊗ I4 =

⎡

⎢
⎢
⎢
⎢
⎣

1 1
1 1

1 1
1 1

1 −1
1 −1

1 −1
1 −1

⎤

⎥
⎥
⎥
⎥
⎦
.

Further we introduce the stride permutation matrix defined by

Lmn
m : jn+ i �→ im+ j, 0 ≤ i < n, 0 ≤ j < m.

Lmn
m can be seen as transposing a n×m matrix which is stored in row-major order and

is derived from reshaping a mn-dimensional vector into a n × m matrix. As example
consider

L8
2 =

⎡

⎢
⎢
⎢
⎢
⎣

1
1

1
1

1
1

1
1

⎤

⎥
⎥
⎥
⎥
⎦
.

Equation (4) shows the general mixed-radix Cooley-Tukey FFT algorithm:

DFTmn =
(
DFTm ⊗ In

)
Tmn

n

(
Im ⊗DFTn

)
Lmn
m . (4)

In (4), Tmn
n is a complex diagonal matrix [12]. Using (3) and (4), an 8-point FFT can

be derived by two recursive applications:

DFT8 = (DFT2 ⊗ I4)T
8
4

(
(DFT2 ⊗ I2)T

4
2(I2 ⊗DFT2) L

4
2)
)
L8
2 .
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Formulas can be manipulated using formula identities like

In ⊗(BC) = (In ⊗B)(In ⊗C) (5)

(BC)⊗ In = (B ⊗ In)(C ⊗ In) (6)
(
Lmn
m

)�
= Lmn

n (7)

(BC)� = C�B� (8)

A⊗B = Lmn
m (B ⊗A) Lmn

n (9)

(A⊗B)� = A� ⊗B� (10)

Lkmn
n = (Lkn

n ⊗ Im)(Ik ⊗Lmn
n ) (11)

Lkmn
km = (Ik ⊗Lmn

m )(Lkn
k ⊗ Im) (12)

Lkmn
k = Lkmn

km Lkmn
kn . (13)

In (5)–(10), A is a m ×m matrix and B and C are n× n matrices. Further we denote
the conjugation of a matrix A by a permutation P by AP = P�AP and note that for
permutation matrices P−1 = P�.

void FFT8(_Complex double *Y, _Complex double *X) {
__alignx(16,Y);
__alignx(16,X);
_Complex double s34, s35, s36, s37, s38, t100, t101, t102

, t103, t104, t94, t95, t96, t97, t98, t99;
t94 = (*(X) + *((X + 4)));
t95 = (*(X) - *((X + 4)));
t96 = (*((X + 2)) + *((X + 6)));
s34 = (__I*(*((X + 2)) - *((X + 6))));
t97 = (t94 + t96);
t98 = (t94 - t96);
t99 = (t95 + s34);
t100 = (t95 - s34);
t101 = (*((X + 1)) + *((X + 5)));
t102 = (*((X + 1)) - *((X + 5)));
t103 = (*((X + 3)) + *((X + 7)));
s35 = (__I*(*((X + 3)) - *((X + 7))));
t104 = (t101 + t103);
s36 = (__I*(t101 - t103));
s37 = ((0.70710678118654757 + __I * 0.70710678118654757)*(t102 + s35));
s38 = ((-0.70710678118654757 + __I * 0.70710678118654757)*(t102 - s35));
*(Y) = (t97 + t104);

*((Y + 4)) = (t97 - t104);
*((Y + 1)) = (t99 + s37);

*((Y + 5)) = (t99 - s37);
*((Y + 2)) = (t98 + s36);
*((Y + 6)) = (t98 - s36);

*((Y + 3)) = (t100 + s38);
*((Y + 7)) = (t100 - s38);

}

Fig. 1. 8-point FFT, using complex C99 data types and the IBM XL C dialect

Spiral. Recursive application of rules like (3) and (4) yields many different algorithms
for a FFT size. Spiral [6] uses this fact to search for the fastest on a given platform. A
user-specified transform (likeDFT256) is expanded by Spiral using rules into a formula,
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Table 1. Compiling SPL into code is done by recursively using the above correspondences. x
denotes the input and y the output vector. We use Matlab-like notation: x[b:s:e] denotes
the subvector of x starting at b, ending at e, and extracted at stride s. T km k is a array of
pre-computed constants.

SPL construct code

y = (AnBn)x
t[0:1:n-1] = B(x[0:1:n-1]);
y[0:1:n-1] = A(t[0:1:n-1]);

y = (Im ⊗An)x
for (i=0;i<m;i++)

y[i*n:1:i*n+n-1] = A(x[i*n:1:i*n+n-1]);

y = (Am ⊗ In)x
for (i=0;i<m;i++)

y[i:n:i+m-1] = A(x[i:n:i+m-1]);

y = Lkm
k x

for (i=0;i<k;i++)
for (j=0;j<m;j++)

y[i+k*j]=x[m*i+j];

y = Tkm
k x

for (i=0;i<k*m;i++)
y[i]=T_km_k[i]*x[i];

which is then translated into a C program by a special formula compiler. The formula
compiler is based on a translation table similar to Table 1 and uses traditional compiler
techniques like unrolling, array scalarization, constant folding, and strength reduction
to produce high quality fixed-size FFT functions from a given formula. The runtime of
the program is measured and fed into a search module, which triggers, in a feedback
loop, the generation of a modified formula based on a search strategy. Upon termination,
Spiral out the fastest program found. Figure 1 shows an 8-point FFT generated by Spiral
for BlueGene/P, using the complex data type extension of C99.

For sizes too large to be implemented as a single basic block, Spiral is automatically
generating a recursive mixed-radix FFT library [7] similar to FFTW [5]. Spiral employs
a rewriting system to symbolically expand breakdown rules like (4) to find a closure of
recursive functions that is needed to implement the recursive FFT library. It then auto-
matically implements these recursive functions as well as recursion leafs (codelets) for
a sufficiently large set of sizes. At runtime, a planner autotunes the recursive decompo-
sition of the FFT in an one-time setup effort. After tuning, a fast FFT library call for the
respective problem size is available.

The key insight is that a straightforward implementation of (4) suggests four steps
corresponding to the four factors, where two steps call smaller DFTs. However, to im-
prove locality, the initial permutation Lmn

m is usually not performed but interpreted as
data access for the subsequent computation, and the twiddle diagonalTmn

n is fused with
the subsequent DFTs. This strategy is chosen, for example, in the library FFTW 2.x and
the code can be sketched as shown in Figure 2. A simplified description of performing
this process by hand can be found in [13].

BlueGene/P. BlueGene/P is the second generation BlueGene architecture from IBM,
succeeding BlueGene/L [14]. In its compute nodes BlueGene/P uses four PowerPC 450
cores operating at 850 MHz with a double precision, dual pipe floating point unit per
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void dft(int n, complex *y, complex *x) {
int k = choose_factor(n);
// t1 = (I_k tensor DFT_m)L(n,k)*x
for(int i=0; i < k; ++i)

dft_iostride(m, k, 1, t1 + m*i, x + m*i);
// y = (DFT_k tensor I_m) diag(d(j))
for(int i=0; i < m; ++i)

dft_scaled(k, m, precomp_d[i], y + i, t1 + i);
}

// DFT variants needed
void dft_iostride(int n, int istride, int ostride, complex *y, complex *x);
void dft_scaled(int n, int stride, complex *d, complex *y, complex *x);

Fig. 2. Recursive FFT implementation in the style of FFTW 2.X.

core. Each node has 13.6 Gflop/s peak performance (3.4Gflop/s per core) and 2 GB
RAM with 13.6 GB/s memory bandwidth. Each core has a private 32 kB L1 cache and
the four cores of a node share an 8 MB L3 cache. The compute nodes are connected
with multiple interconnection networks including a 3-D torus (used for standard mes-
saging), a global collective network (used for reductions), and a global barrier network.
Each node has six bi-directional network links supporting 425 MB/s in each direction
into the torus network leading to 5.1 GB/s bidirectional bandwidth per node. The Blue-
Gene/P system “Intrepid” installed at Argonne National Laboratory (ANL) consists of
40 BlueGene/P racks. Each rack contains 1,024 compute nodes (32 node cards, each
holding 32 compute nodes), and each compute node four cores (one quad-core CPU).

BlueGene/P Messaging Layer. We use the IBM UPC runtime system as messaging
layer. It provides an equivalent to the MPI all-to-all collective operation that fully uti-
lizes BlueGene/P’s 3D torus interconnection network. To achieve best performance,
exactly one large message of equal size that is contiguous in the node memory should
be sent from every processor to every other processor.

BlueGene/Q. BlueGene/Q is the third generation BlueGene architecture from IBM,
succeeding BlueGene/P [15]. The Blue Gene/Q Compute chip [16] is a system-on-a-
Chip (SOC) ASIC with 16 user-accessible 4-way SMT (Symmetric Multi Threading)
A2 cores clocked at 1.6 GHz. A quad floating unit implementing the QPX instruction
set is associated with each core. The BlueGene/Q A2 chip achieves 204.8 Gflop/s peak
performance. At 1024 chips per rack, the 48 rack ANL “Mira” systems achieves a
peak performance of 10 Pflop/s and the 96 rack LLNL “Sequoia” system 20 Pflop/s,
respectively.

3 Global FFT Algorithm

We now derive our novel 1D Global FFT algorithm, which is a variant of the Six Step
FFT algorithm. Like the Six Step FFT algorithm, it has three global data exchanges.
However, we block the global transpositions so that exactly one pair of large messages
that are contiguous in memory are exchanged between every pair of processors in every
communication step. This can be mapped efficiently to collective communication func-
tions (all-to-all). We formally merge the ensuing data scrambling necessary to produce
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consume the contiguous messages with the on-node FFT computations and derive mod-
ified FFT libraries (working on custom scrambled data format) that perform the reorder-
ing at no extra cost compared to standard FFT libraries. We use the Kronecker product
formalism to derive the algorithm and use Spiral to automatically build the modified
node FFT libraries from the Kronecker product specification. Finally, we show pseudo-
code for the top-level parallel (single program multiple data, SPMD) function that calls
the modified node FFT libraries.

Communica�on Parallel DFTs Communica�on Communica�onParallel DFTs

L16
4

(
I4 ⊗(

(DFT2 ⊗ I2)T
4
2 (I2 ⊗DFT2)L

4
2

))
L16
4 T 16

4

(
I4 ⊗(

(DFT2 ⊗ I2)T
4
2 (I2 ⊗DFT2)L

4
2

))
L16
4

Fig. 3. Six-step FFT for n = 24 and k = m =
√
n = 4

Algorithm Derivation. Using (5)–(13), the Six Step FFT algorithm can be derived
from (4):

DFTmn = Lmn
m

(
In ⊗DFTm

)
Lmn
n Tmn

n

(
Im ⊗DFTn

)
Lmn
m . (14)

By flipping both tensor products into their parallel form (In ⊗DFTm and Im ⊗DFTn),
the algorithm is guaranteed to perform all DFT computations within the local memory
of each node. This is achieved by reshaping the data vector of length mn into a n×m
matrix and explicitly transposing it back and forth (a total of three transpositions is
required). Typically, choosing m ≈ √

mn and n = mn/m gives the so-called “square-
root decomposition” which maximizes the number of processors that the DFT can be
run on in parallel and provides good load balancing. A visual (data flow) representation
of the 16-point six-step FFT is shown in Fig. 3. Details can be found in [17].

Below assume p processors and p | m, n. Using (5)–(13) and associativity and dis-
tributivity the stride permutation Lmn

m can be expressed as three permutation stages.
First we use (12) to obtain

Lmn
m =

(
Ip ⊗L

mn/p
m/p

)(
Lnp
p ⊗ Im/p

)
. (15)
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Next we use (5) to obtain

Lnp
p =

(
Lp2

p ⊗ In/p
)(

Ip ⊗Ln
p

)
. (16)

Inserting (16) into (15) yields

Lmn
m =

(
Ip ⊗L

mn/p
m/p

)(
Lp2

p ⊗ Imn/p2

)(
Ip ⊗Ln

p ⊗ Im/p

)
(17)

after further simplification.
Equation (17) describes treating the n × m matrix as block matrix of p × p blocks

with block size nm/p×nm/p. Each of the p processor holds p blocks in its local mem-
ory. (17) states that a distributed matrix can be transposed by transposing all blocks (p2

local transpositions, each transposing a local block of size nm/p×nm/p) followed by
transposing the blocks (one p× p transposition moving whole blocks, implemented as
all-to-all collective communication). The mechanics of the Kronecker product formal-
ism requires three factors to describe the two steps. In our algorithm derivation we also
require a transposed version of (17) where we first swap m and n in (17) and the apply
(7) to obtain the transposed expression for Lmn

m , leading to

Lmn
m =

(
Ip ⊗Lm

m/p ⊗ In/p
)(

Lp2

p ⊗ Imn/p2

)(
Ip ⊗Lmn/p

m

)
. (18)

Inserting (17) and (18) into (14) and regrouping the ensuing expression using (5) leads
to the final algorithm (for a more detailed derivation see [11, 18]),

DFTmn =
(
Ip ⊗(Lm

m/p ⊗ In/p)
)

︸ ︷︷ ︸
local transpose

(
Lp2

p ⊗ Imn/p2

)

︸ ︷︷ ︸
all-to-all

(
Ip ⊗(DFTm ⊗ In/p)

)

︸ ︷︷ ︸
inplace FFT library call

(
Lp2

p ⊗ Imn/p2

)

︸ ︷︷ ︸
all-to-all

(Tmn
n )(Ip ⊗Lm

m/p ⊗ In/p)
(
Ip ⊗(Lm

p ⊗ In/p)(Im/p ⊗DFTn) L
mn/p
m/p

)

︸ ︷︷ ︸
out-of-place scaled FFT library call
(
Lp2

p ⊗ Imn/p2

)

︸ ︷︷ ︸
all-to-all

(
Ip ⊗(Ln

p ⊗ Im/p)
)

︸ ︷︷ ︸
local transpose

. (19)

Eq. (19) makes the minimal necessary changes to the Six Step algorithm to make it
compatible to highly optimized all-to-all communication calls, and to allow for special-
ized high-performance local recursive FFT libraries. Reading (19) from right to left,
first each processor performs local data scrambling (local transpose) in their own mem-
ory space to produce the first set of contiguous messages. This cannot be folded into
any FFT library call but could be merged with computation that produces the input
data. Next all processors invoke all-to-all collective communication; all p processors
send one message of size mn/p2 to every of the p processors (including themselves).
Then a modified node FFT—the out-of-place scaled FFT library—is called to perform
the local FFT computation on scrambled data and performs twiddle scaling. Next the
same all-to-all call is invoked a second time, followed by the second modified node
FFT library, an inplace FFT library operating on scrambled data. Note that too make
this stage inplace, one needs to chose (17) and (18) carefully. Lastly, the same all-to-all
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collective communication is called a third time to redistribute the data to the target pro-
cessor and a final local transpose unscrambling phase puts the data back into natural
order. This final scrambling cannot be merged with any of the modified libraries but
could be merged with the code consuming the transformed data.

Specialized FFT Node Libraries. Our derivation extracted the formal definition of
two modified node FFT libraries that are invoked independently but in parallel on all p
processors. The first node library is specified as

(Tmn
n,i )

(Lm
m/p ⊗ In/p)

(
(Lm

p ⊗ In/p)(Im/p ⊗DFTn) L
mn/p
m/p

)
(20)

with Tmn
n,i being the global FFT twiddle factors for processor i. The library specified by

(20) performs an out-of-place batch FFT (m/p FFTs of size n) plus twiddle scaling on
a block-matrix data format. The second library is specified as

DFTm ⊗ In/p (21)

and performs an inplace strided batch FFT (n/p FFTs of size m) that can be viewed
as column FFT. The modified node FFT libraries are automatically generated from the
specification using Spiral’s general size library generation framework [7].

To turn the algorithmic advantage into a performance advantage, the automatically
generated libraries need to be of equivalent performance as FFTW or the vendor library
ESSL. Since we are targeting Global FFT for 128k processors, the largest FFT sizes are
up to mn = 238, and thus m and n can be up to 219. Thus, the node FFT libraries built
from the specifications (20) and (21) need to provide good performance for batches of
large FFTs. The generated libraries must perform all state-of-the-art optimizations in-
cluding SIMD vectorization for the Double FPU [8, 9] and must be parallelized across
the four cores of a BlueGene/P node [9] when running in SMP mode. Further, aggres-
sive memory hierarchy optimizations like buffering and vector recursion need to be
applied [5, 9]. All these optimizations need to be performed fully automatically [7].

Full Global FFT Code. In Figure 4 we show the full HPCC Global FFT algorithm
using a partitioned global address space (PGAS) abstraction similar to Unified Parallel
C (UPC). The data vectors x and y are block distributed (mn/p elements reside in the
local memory of each of the p nodes) and all parallel for loops are run across p nodes
of the parallel machine. For simplicity, on-node threading and SIMD vectorization is
omitted.

4 Experimental Results

We experimentally evaluated our optimized Global FFT benchmark on BlueGene/P
configurations from one node card (32 quadcore nodes or 128 cores) up to 32 racks
(32k quadcore nodes or 128k cores), with one process per node. We used the IBM UPC
runtime for process and thread management and as messaging layer. The benchmark
is executed as UPC program that calls external (C/C++) libraries for the on-node FFT
computation. UPC uses IBM’s XL C compiler as backend, and our generated synthe-
sized on-node libraries were compiled with IBM’s XL C compiler and options “-O3
-qarch=440d”.
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// HPCC Gloabal FFT
// data is block distributed on p processors
// the p iterations of parallel for loops are executed across p nodes

// all to all data exchange
//
// implements a block transpose of a p x p matrix on vectors of n elements
// exchange between all pairs of p processors packets of size n
//
// input/output: x[p*p*n], block distributed across p processors
// x := Lˆ{pˆ2}_p (x) I_n * x
//
void all_to_all(int p, int n, _Complex double *x) {

int i, j;

par_forall (i=0; i<p; i++)
for (j=i+1; j<p; j++)

SENDRECV(i, j, x+n*(i*p+j), x+n*(i+j*p), n);
}

// local transpose
//
// transposes a n x m matrix of vectors of v complex elements,
// stored in row major order in local node memory
// x := Lˆ{mn}_m (x) I_v * x
//
void transpose(int mn, int m, int v, _Complex double x) {

int i, j, k, n = mn/m;

for (i=0; i<n; i++)
for (j=i; j<m; j++)

for (k=0; k<v; k++)
SWAP(x[v*(i*m+j)+k], x[v*(i+j*n)+k]);

}

// global FFT of size m*n on p processors
// y = DFT_mn * x
//
// input: x[m*n], block distributed across p processors
// output: y[m*n], block distributed across p processors
//
void global_fft(int m, int n, int p, _Complex double y, _Complex double x) {

int i, j, k;

par_forall (i=0; i<p; i++)
transpose(n, p, m/p, x+i*m*n/p);

all_to_all(p, m*n/(p*p), x);

par_forall (i=0; i<p; i++)
fft_scaled(n, m, p, n/p, m*n, m/p, m*n/p, x+i*m*n/p, y+i*m*n/p);

all_to_all(p, m*n/(p*p), x);

par_forall (i=0; i<p; i++)
fft_inplace(m, m*n/p, m, n/p, y+i*m*n/p);

all_to_all(p, m*n/(p*p), x);

par_forall (i=0; i<p; i++)
transpose(m, m/p, n/p, y+i*m*n/p);

}

Fig. 4. HPCC Global FFT implementation using a UPC-like PGAS syntax, implementing (19)
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We implemented a baseline Global FFT version that uses IBM’s BlueGene/P ESSL
for local FFTs and UPC coalesced transpose (the equivalent of MPI all-to-all) for mes-
saging. This implementation requires explicit data reordering between the UPC messag-
ing and the invocation of ESSL but provides best performance for the FFT computation
and the messaging in separation. This implementation is part of IBM’s winning 2010
HPC Challenge Class II UPC submission.

Figure 5 summarizes the performance results. We run the UPC+ESSL baseline
benchmark on the IBM T.J. Watson BlueGene/P system for up to eight racks. We run
our Spiral-generated library from one node card to 2 racks on the T.J. Watson machine
and on ANL’s “Intrepid” from 4 racks to 32 racks. The Spiral-generated Global FFT
generally outperforms the UPC+ESSL baseline which shows that (a) Spiral’s automat-
ically generated node libraries offer performance competitive with ESSL, and (b) the
memory traffic savings obtained by merging data scrambling with the node-libraries
improves performance. Finally, the Spiral-generated Global FFT reaches 6.4 Tflop/s
on 32 racks of “Intrepid”. The winning 2008 ANL HPC Challenge Class I submission
reported 5 Tflop/s Global FFT performance on the same machine. Thus, the combina-
tion of algorithmic optimization and library generation improved the Global FFT on
“Intrepid” by 1.4 Tflop/s or 28%.

Single Node Performance. Figure 6 shows single node performance on the Blue-
Gene/P quadcore PowerPC 450D. We compare the GNU Scientific Library (GSL) [19]
to Spiral-generated sequential and multi-threaded scalar and Double FPU-vectorized
code. Spiral-generated scalar single-core code significantly outperforms the GSL for
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in-cache sizes and performs equally to the GSL for memory-bound sizes, demonstrat-
ing the quality of Spiral’s base line code generation on BlueGene/P. Spiral’s Double
FPU two-way SIMD vector code provides between 50% and 2x speed-up on top of the
scalar base-line. Using all four cores of the BlueGene/P multicore CPU yields speed-up
of 2x–2.5x except for the smallest sizes where parallelization overhead makes sequen-
tial code the fastest choice. Using only two threads is never a winning strategy.
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Towards Global FFT on BlueGene/Q. We are in the process of porting the Spiral
Global FFT code generation to the next generation BlueGene machines, BlueGene/Q.
One major difference is that BlueGene/Q features a new 4-way SIMD vector unit called
QPX that is twice as wide as the Double FPU of BlueGene/P. In Figure 7 we show first
performance results of Spiral-generated QPX code run on a single thread of a Blue-
Gene/Q node. We observe that for small FFT sizes Spiral-generated code substantially
outperforms both FFTW and ESSL. We are currently porting and adapting the remain-
ing two levels of parallelism of the Global FFT (intra-node threading and inter-node
message passing) to BlueGene/Q.

5 Conclusion

The increased complexity and performance levels of high performance and supercom-
puting systems makes the automatic generation and tuning of performance libraries
for the petascale and beyond a promising alternative to hand-tuning. In this paper we
present an novel 1D Global FFT algorithm for the HPC Challenge. Extending the Spiral
system, we automatically generate specialized node FFT libraries that support the data
layout required by the messaging layer while providing FFT performance of the native
FFT data layout. The resulting reduction in memory traffic and high node performance
enabled us to reach 6.4 Tflop/s on 128k cores of ANL’s BlueGene/P system, improv-
ing performance by 28% over the previously reported Global FFT Class I benchmark.
Finally, we show first single-node results on BlueGene/Q in which we significantly
outperform FFTW and ESSL.
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Abstract. Blocked matrix multiplication algorithms such as Cannon’s
algorithm and SUMMA have a 2-dimensional communication structure.
We introduce a generalized ’Split-Dimensional’ version of Cannon’s al-
gorithm (SD-Cannon) with higher-dimensional and bidirectional com-
munication structure. This algorithm is useful for torus interconnects
that can achieve more injection bandwidth than single-link bandwidth.
On a bidirectional torus network of dimension d, SD-Cannon can lower
the algorithmic bandwidth cost by a factor of up to d. With rectan-
gular collectives, SUMMA also achieves the lower bandwidth cost but
has a higher latency cost. We use Charm++ virtualization to efficiently
map SD-Cannon on unbalanced and odd-dimensional torus network par-
titions. Our performance study on Blue Gene/P demonstrates that a
MPI version of SD-Cannon can exploit multiple communication links
and improve performance.

1 Introduction

Torus interconnects can scale to hundreds of thousands of nodes because they
achieve good bisection bandwidth while maintaining bounded router degree on
each node. Additionally, many scientific simulation and physically structured
codes can be mapped to exploit locality on torus networks. In particular, 3-
dimensional (3D) tori have been widely deployed in networks (e.g. IBM Blue
Gene/L, Blue Gene/P, and the Cray XT series). The newest generation of high-
end supercomputer networks is beginning to move to higher dimensionality (e.g.
IBM Blue Gene/Q is 5D [6], K computer is 6D [19]). This transition is natural
since the minimal-cost (bisection bandwidth with respect to number of pins)
topology for a network of 100,000 nodes is 3D, while for 1,000,000 nodes it is 5D
or 6D [7]. Higher-dimensional interconnects motivate the design of algorithms
that can use such networks efficiently. In this paper, we adapt a classical matrix
multiplication algorithm to exploit full injection bandwidth on a torus network
of any dimension.

Cannon’s algorithm [5] is a parallel algorithm for matrix multiplication
(C = A ·B) on a square (

√
p-by-

√
p) processor grid. After staggering the initial

matrix layout, Cannon’s algorithm performs
√
p shifts of A and B along the two

dimensions of the processor grid. The algorithm can be done in-place and all
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communication is efficiently expressed in the form of near-neighbor data passes.
Given n-by-n matrices, each processor must send O(n2/

√
p) words of data in

O(
√
p) messages along each dimension. The number of words and messages sent

by each node in Cannon’s algorithm is asymptotically optimal [12,3] assuming
minimal memory usage. However, since each node sends messages to nearest
neighbors in 2 dimensions, at most 2 network links can be saturated per node.
However, a d-dimensional bidirectional torus network has 2d outgoing links per
node that can be utilized.

It is known that a different algorithm, SUMMA [1,17], can utilize all 2d links
and send a minimal number of words. For matrix multiplication of n-by-n ma-
trices, SUMMA sends O(n2/

√
p) data in the form of n outer-products, which

can be pipelined or blocked. Each update requires a broadcast along a row or
column of processors. If a higher-dimensional torus is flattened into each row and
column of the mapping, rectangular collective algorithms [18,9,15] can utilize all
dimensions of the network. Rectangular algorithms subdivide and pipeline the
messages into edge-disjoint spanning trees formed by traversing the network in
different dimensional orders. However, SUMMA typically sends more messages
since it does O(

√
p) broadcasts, rather than the O(

√
p) near-neighbor sends in

Cannon’s algorithm.
Cannon’s algorithm does not employ communication collectives, so it cannot

utilize rectangular collectives. We design a generalization of Cannon’s algorithm,
Split-Dimensional Cannon’s algorithm (SD-Cannon), that explicitly sends data
in all dimensions of the network at once. This algorithm does not need topology-
aware collectives and retains all the positive features of the classical Cannon’s
algorithm. However, like Cannon’s algorithm, SD-Cannon is difficult to general-
ize to non-square processor grids. We get around this challenge by using a virtu-
alization framework, Charm++ [14]. Our performance results on Blue Gene/P
(Intrepid, located at Argonne National Lab) demonstrate that SD-Cannon out-
performs Cannon’s algorithm and can match the performance of SUMMA with
rectangular collectives. The virtualized version of Cannon’s algorithm does not
incur a high overhead but our Charm++ implementation is unable to saturate
all networks links at once.

The rest of the paper is structured as follows, Section 2 introduces the SD-
Cannon algorithm, Section 3 gives a cost analysis of the SD-Cannon algorithm,
Section 4 studies the performance of MPI and Charm++ implementations of
SD-Cannon, and Section 5 concludes.

2 Previous Work

Matrix multiplication computes C = A·B where A ism-by-k, B is k-by-n, and C
ism-by-n. Our algorithms target the case wherem ≈ n ≈ k. Other optimizations
or different algorithms (e.g. 1D blocking) may be worth considering when the
matrices are rectangular but are out of the scope of this paper. The algorithms
are designed for a l-ary d-cube bidirectional torus network (a d dimensional
network of p = ld processors). The algorithms require that the torus network is
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of even dimension (d = 2i for i ∈ {1, 2, ...}). Virtualization will be used to extend
our approach to odd-dimensional networks and rectangular processor grids.

2.1 Matrix Layout

A matrix is a 2D array of data. To spread this data in a load balanced fash-
ion, we must embed the 2D array in the higher-dimensional torus network. We
do not consider algorithms that replicate data (e.g. 3D matrix multiplication
[8,1,2,4,13]. However, the extension is natural, given the replication approach
presented in [16].

Any l-ary d-cube ΠdD, where d is a multiple of 2, can be embedded onto
a square 2D grid. Each of two dimensions in this square grid is of length ld/2

and is formed by folding a different d/2 of the d dimensions. For simplicity we
fold the odd d/2 dimensions into one of the square grid dimensions and the d/2
even dimensions into the other square grid dimension. The algorithms below will
assume the initial matrix layout follows this ordering. In actuality, the ordering is
irrelevant since a l-ary d-cube network is invariant to dimensional permutations.
We define a dimensional embedding for a processor with a d-dimensional index
Id ∈ {0, 1, . . . , l − 1}d, to a two dimensional index (i, j) as

GdD→2D[Id] =

⎛

⎝
d/2−1∑

i=0

liId[2i],

d/2−1∑

i=0

liId[2i+ 1]

⎞

⎠ .

We denote the processor with grid index Id as ΠdD[Id].

2.2 SUMMA Algorithm

Algorithm 1. [C] = SUMMA(A, B, C, n, m, k, Π2D)

Input: m × k matrix A, k × n matrix B distributed so that Π2D[i, j] owns
m√
p
× k√

p
sub-matrix A[i, j] and k√

p
× n√

p
sub-matrix B[i, j], for each

i, j ∈ [0,
√
p− 1]

Output: square m × n matrix C = A · B distributed so that Π2D[i, j] owns
m√
p
× n√

p
block sub-matrix C[i, j], for each i, j ∈ [0,

√
p− 1]

//In parallel with all processors
for all i, j ∈ [0,

√
p− 1] do

for t = 1 to t =
√
p do

Multicast A[i, t] along rows of Π2D

Multicast B[t, j] along columns of Π2D

C[i, j] := C[i, j] + A[i, t] · B[t, j]
end

end

The SUMMA algorithm [1,17] (Algorithm 1), utilizes row and column multi-
casts to performs parallel matrix multiplication. The algorithm is formulated on
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Fig. 1. Rectangular collectives

a 2D grid, with each process owning a block of the matrices A, B, and C. At
each step, the algorithm performs an outer product of parts of A and B. While
SUMMA can be done with k rank-one outer products, latency can be reduced by
performing

√
p rank-(k/

√
p) outer-products. The latter case yields an algorithm

where at each step every process in a given column of the processor grid mul-
ticasts its block of A to all processors in its row. Similarly, a row of processors
multicasts B along columns.

The SUMMA algorithm performs all communication via multicasts 1. There-
fore, the communication-performance of the algorithm is dictated by the perfor-
mance of a multicast on the architecture. The most efficient way to
perform multicasts on a torus network architecture is to employ rectangular
collectives [18,9,15]. Rectangular collectives use edge-disjoint spanning trees of

1 SUMMA can be modified to communicate C rather than A or B via reductions,
which is useful if C is the smaller than A or B. A and B can also be communicated
via all-gathers among rows and columns rather than multicasts.



Matrix Multiplication on Multidimensional Torus Networks 205

the entire processor grid. On a bidirectional torus network of dimension l, 2l
such trees can be constructed (see Figure 1(a) for the l = 2 case). The message
is then subdivided and pipelined in chunks to each of the spanning trees, which
allows the saturation of all torus links simultaneously.

The BG/P architecture has a low level implementation of rectangular collec-
tives. The performance of these optimized topology-aware collectives far exceeds
that of regular collectives, e.g. binomial multicast tree. Further, Figure 1(b)
demonstrates that the rectangular collectives actually become faster on more
processors, the opposite of the behavior of most communication primitives. This
feature is due to the fact that the BG/P partitions become higher-dimensional
as they grow, so there are more links to exploit, which allow more rectangular
trees. Thus, by employing these collectives the SUMMA algorithm can exploit
all links of a torus network.

2.3 Cannon’s Algorithm

Fig. 2. Cannon’s algorithm, stagger and shift. A and B blocks of the same color must
be multiplied together. Notice that the colors (blocks that need to be multiplied) align
after each shift.

Cannon’s algorithm is a parallel matrix multiplication algorithm that uses
shifts blocks among columns and rows of a processor grid. The algorithm starts
by staggering the blocks of A and B leftwards and upwards, respectively. Then
the A and B blocks are shifted rightwards and downwards, respectively. We
describe Cannon’s algorithm on a

√
p-by-

√
p grid (Π2D) (Algorithm 2). The

procedure is demonstrated in Figure 2, where each color corresponds to an outer
product. One of the outer products (the yellow blocks) is numbered, and we
see that after each shift, different blocks are multiplied, and overall all sixteen
distinct block multiplies are performed for that outer product (this also holds
for the other 3 outer products).
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Once we embed the dD grid onto a 2D grid, we can run Cannon’s algorithm
with the matrix distribution according to the ordered 2D processor grid. How-
ever, in this embedded network, Cannon’s algorithm will only utilize 1/d of the
links, since two messages are sent at a time by each processor and there are 2d
links per node.

Algorithm 2. [C] = Cannon(A, B, C, n, m, k, p, Π2D)

Input: m × k matrix A, k × n matrix B distributed so that Π2D[i, j] owns
m√
p
× k√

p
sub-matrix A[i, j] and k√

p
× n√

p
sub-matrix B[i, j], for each

i, j ∈ [0,
√
p− 1]

Output: square m × n matrix C = A · B distributed so that Π2D[i, j] owns
m√
p
× n√

p
block sub-matrix C[i, j], for each i, j ∈ [0,

√
p− 1]

//In parallel with all processors
for all i, j ∈ [0,

√
p− 1] do

for t = 1 to
√
p− 1 do

if t ≤ i then
A[i, j] ← A[i, ((j + 1) mod

√
p)]

/** */

[f]stagger A
end
if t ≤ j then

B[i, j] ← B[((i+ 1) mod
√
p), j]

/** */

[f]stagger B
end

end
C[i, j] := A[i, j] ·B[i, j]
for t = 1 to

√
p− 1 do

A[i, j] ← A[i, ((j − 1) mod
√
p)]

/** */

[f]shift A rightwards
B[i, j] ← B[((i− 1) mod

√
p), j]

/** */

[f]shift B downwards
C[i, j] := C[i, j] + A[i, j] · B[i, j]

end
end

3 Split-Dimensional Cannon’s Algorithm

We can formulate another version of Cannon’s algorithm by using more dimen-
sional shifts. A shift can be performed with a single message sent over a single
link from each processor to the next. Since the shifts will be done along dimen-
sions of the l-ary d-cube network, 2d links will be available. Algorithm 3 performs
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this dimensional shift. Split-dimensional (SD) Cannon’s algorithm will use exclu-
sively this shift for communication. In fact, all shifts operate on a static message
size. Therefore, communication cost can be calculated by counting shifts. The
algorithm achieves complete utilization on any l-ary d-cube network during the
shift stage. We specify the algorithm for a bidirectional network as those are
much more common. However, the algorithms can be trivially simplified to the
unidirectional case.

Algorithm 3. Shift< dim,dir >(l, M , p, ΠdD, Id)

Input: ΠdD[Id] owns sub-matrix M .

Sd ← Id

if dir = +1 then
Sd[dim] = (Sd[dim] + 1) mod l

end
if dir = −1 then

Sd[dim] = (Sd[dim]− 1) mod l
end
Send M to ΠdD[Sd].
/** */

[f]ΠdD[Id] sends to ΠdD[Sd]

Fig. 3. Snapshot of network usage in SD-Cannon. A and B use a disjoint set of 3
network dimensions in the same fashion, so it suffices to pay attention to 3.

Algorithm 4 describes how the stagger step is done inside the SD-Cannon
algorithm. A different shift is done on each sub-panel of A and B concurrently.
These calls should be done asynchronously and ideally can fully overlap. One
interpretation of this stagger algorithm is that sub-panels of each matrix are
being staggered recursively along d/2 disjoint dimensional orders.

Algorithm 5 is a recursive routine that loops over each dimension performing
shifts on sub-panels of A and B. The order of the shifts is permuted for each
sub-panel. Each sub-panel is multiplied via a recursive application of Cannon’s
algorithm over a given dimensional ordering.
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Algorithm 4. SD-Stagger(A, B, nb, mb, kb, l, p, Π
dD,Id)

Input: ΠdD[Id] owns mb × kb sub-matrix A and kb × nb sub-matrix B.

Split A = [A0, A1, . . . , Ad] where each Ah is mb × kb/d.
Split BT = [BT

0 , BT
1 , . . . , B

T
d ] where each Bh is kb/d× nb.

//At each level, apply index shift
for level ∈ [0, d/2− 1] do

//To stagger must shift up to l − 1 times
for t = 1 to l − 1 do

for all dh ∈ [0, d/2− 1] do
h ← (dh + level) mod (d/2) //Shift the ordering
if t ≤ Id[2h+ 1] then

Shift< (2 ∗ h),+1 >(l, Ah, p, Π
dD, Id)

end
if t ≤ l − Id[2h+ 1] then

Shift< (2 ∗ h),−1 >(l, Ah+d/2, p, Π
dD, Id)

end
if t ≤ Id[2h] then

Shift< (2 ∗ h+ 1),+1 >(l, Bh, p, Π
dD, Id)

end
if t ≤ l − Id[2h] then

Shift< (2 ∗ h+ 1),−1 >(l, Bh+d/2, p, Π
dD, Id)

end
end

end
end

Algorithm 5. SD-Contract< level >(A, B, C, nb, mb, kb, l, p, ΠdD,
Id)

Input: ΠdD[Id] owns mb × kb sub-matrix A and kb × nb sub-matrix B.

Split A = [A0, A1, . . . , Ad] where each Ah is mb × kb/d.
Split BT = [BT

0 , BT
1 , . . . , B

T
d ] where each Bh is kb/d× nb.

//Shift and contract l times
for t = 0 to l − 1 do

if level = d/2− 1 then
C ← C + A ·B

else
SD-Contract< level+ 1 >(A, B, C, n√

p
, m√

p
, k√

p
, l, p, ΠdD,

Id)
end
for all dh ∈ [0, d/2− 1] do

h ← (dh + level) mod (d/2)
/** */

[f]Shift the ordering
Shift< (2 ∗ h),+1 >(l, Ah, p, Π

dD, Id)
Shift< (2 ∗ h+ 1),+1 >(l, Bh, p, Π

dD, Id)
Shift< (2 ∗ h),−1 >(l, Ah+d/2, p, Π

dD, Id)
Shift< (2 ∗ h+ 1),−1 >(l, Bh+d/2, p, Π

dD, Id)
end

end
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Algorithm 6. SD-Cannon(A, B, C, n, m, k, l, p, ΠdD, GdD→2D)

Input: m×k matrix A, k×nmatrix B distributed so that ΠdD[I ] owns m√
p
× k√

p

sub-matrix A[GdD→2D[I ]] and k√
p
× n√

p
sub-matrix B[GdD→2D[I ]]

Output: square m × n matrix C = A · B distributed so that ΠdD[I ] owns
m√
p
× n√

p
block sub-matrix C[GdD→2D[I ]]

//In parallel with all processors
for all Id ∈ {0, 1, . . . , l − 1}d do

(i, j) ← GdD→2D[Id]
SD-Stagger(A[i, j], B[i, j], n√

p
, m√

p
, k√

p
, l, p, ΠdD, Id)

SD-Contract< 0 >(A[i, j], B[i, j], C[i, j], n√
p
, m√

p
, k√

p
, l, p, ΠdD,

Id)
end

Figure 3 demonstrates how different network dimensions of a 3-ary 6-cube are
used by SD-Cannon. A and B get shifted along 3 of 6 dimensions, so Figure 3
records usage along 3 dimensions (corresponding to one of A or B). Each outer
product (corresponding to a color) is shifted (each shift corresponds to a circle)
along a different dimension at any given step.

Note that the local multiplication call is the same as in Cannon’s algorithm.
The granularity of the sequential work does not decrease in the SD-Cannon
algorithm but only changes its ordering. This is a virtue of splitting into outer-
products that accumulate to the same buffer.

The control flow of SD-Cannon is described in Algorithm 6. The algorithm can
be elegantly expressed with one-sided communication since the sends should be
asynchronous (puts). Our MPI SD-Cannon code uses one-sided put operations
and is compact (a few hundred lines of C).

4 Analysis

We analyze the communication costs of Cannon’s algorithm, SUMMA, and SD-
Cannon. We consider bandwidth cost, as the total volume of data sent by each
process, and latency cost, as the number of messages sent by each process. As
before, we assume a l-ary d-cube bidirectional torus network.

4.1 Bandwidth Cost

We can analyze the bandwidth cost of these algorithms by the embedding of the
algorithm onto the physical l-ary d-cube network. The bandwidth cost of the
algorithm is proportional to the number of shifts along the critical path.

In traditional Cannon’s algorithm we shift 2
√
p blocks along the critical path

(
√
p times for stagger and

√
p times for contraction) of size mk/p and nk/p.

Given the ordering of the embedding, we can always find a link which has to
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communicate mk/
√
p values and a link that has to communicate nk/

√
p values.

Therefore the bandwidth cost is

WCannon = O

(
max(m,n) · k√

p

)

.

In the bidirectional, split-dimensional algorithm, all shifts in the communication
inner loops (in Algorithm 4 and Algorithm 5) can be done simultaneously (so
long as the network router can achieve full injection bandwidth). So the com-
munication cost is simply proportional to the number of inner loops, which, for
staggering (Algorithm 4) is NT = l · d/2. For the recursive contraction step
(Algorithm 5), the number of these shift stages is

NS =

d/2∑

i=1

li ≤ 2
√
p.

If the network is bidirectional, at each shift stage we send asynchronous messages
of sizes mk/(d · p) and kn/(d · p) values. Ignoring the lower-order stagger term
in SD-Cannon we have a cost of

WSD-Cannon = O

(
max(m,n) · k

d · √p

)

.

So the bandwidth cost of SD-Cannon, WSD-Cannon, is d times lower than that
of Cannon’s algorithm, WCannon. In SUMMA, throughout the algorithm A of
size mk and B of size kn are multicast along two different directions. An op-
timal multicast algorithm would utilize d links for the multicasts of A and B
respectively. So, the bandwidth cost of SUMMA is

WSUMMA = O

(
max(m,n) · k

d · √p

)

,

which is asymptotically the same as the bandwidth cost of SD-Cannon.

4.2 Latency Cost

The latency overhead incurred by these algorithms will differ depending on the
topology and collective algorithms for SUMMA. The SD-Cannon algorithm sends
more messages than Cannon’s algorithm, but into different links, so it incurs
more sequential and DMA overhead, but no extra network latency overhead.
However, both Cannon’s algorithm and SD-Cannon will have a lower latency
cost than SUMMA on a typical network. In each step of SUMMA, multicasts
are done along each dimension of the processor grid. So, on a torus network, a
message must travel l ·d/2 hops at each step, rather than 1 hop as in SD-Cannon.
The Blue Gene/P machine provides efficient multicast collectives that work at
a fine granularity and incur little latency overhead [9]. However, on a machine
without this type of topology-aware collectives, SD-Cannon would have a strong
advantage, as messages would need to travel fewer hops.
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If we count latency as the number of hops a message must travel on the
network and assume processes can send multiple messages at once, we can derive
definite latency costs. For Cannon’s algorithm, which does O(

√
p) near neighbor

sends, the latency cost is unambiguously

SCannon = O (
√
p) .

For SD-Cannon, if we assume messages can be sent simultaneously into each
dimension, the latency cost is

SSD-Cannon = O (
√
p) .

However, the on-node messaging overhead goes up by a factor of O(d). For
SUMMA, there are again

√
p steps, but at each step a multicast happens among√

p processes. On a torus network, the most distant processor would be l · d/2
hops away, giving a hop-messaging cost of

SSUMMA = O (l · d · √p) .

This latency overhead is higher than Cannon and SD-Cannon, though this cost
reflects the number of hops travelled not the number of synchronizations. How-
ever, generally it is reasonable to state that a multicast incurs a larger latency
overhead than near-neighbor sends, so our qualitative conclusion is valid.

5 Results

We implemented version of SD-Cannon in MPI [10] and Charm++ [14]. Both
versions work on matrices of any shape and size, but we only benchmark square
matrices. Both versions assume the virtual decomposition is a k-ary n-cube. In
MPI, the process grid is a k-ary n-cube, while in Charm++ we get a k-ary
n-cube of chare objects. We use Charm++ to explicitly map the objects onto
any unbalanced process grid we define at run time. While we explicitly define
the mapping function to fold the chare array onto a smaller processor grid, the
Charm++ run-time system manages how the sequential work and messaging get
scheduled.

The MPI version uses MPI put operations for communication and barriers
for synchronization. The Charm++ version uses the underlying run-time sys-
tem for messaging between chares, and is dynamically scheduled (no explicit
synchronization).

We benchmarked our implementations on a Blue Gene/P (BG/P) [11] ma-
chine located at Argonne National Laboratory (Intrepid). We chose BG/P as
our target platform because it uses few cores per node (four 850 MHz PowerPC
processors) and relies heavily on its interconnect (a bidirectional 3D torus with
375 MB/sec of achievable bandwidth per link).

Since the BG/P network only has three dimensions, the benefit of SD-Cannon
is limited to trying to exploit the backwards links and the third dimensional links.
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Fig. 4. Performance of SD-Cannon on BG/P

The MPI version of our code is limited to even-dimensional tori, so it could only
exploit 4 of 6 links. We study relative performance of the MPI version of SD-
Cannon on an 8-by-8 torus partition of BG/P. 2

Figure 4(a) details the performance of MPI versions of SUMMA, Cannon’s
algorithm, and SD-Cannon on an 8x8 node 2D torus partition. SD-Cannon im-
proves upon Cannon’s algorithm as it can utilize the backwards as well as the
forwards links simultaneously. The one-dimensional rectangular multicasts used
by SUMMA achieve the same effect. We see that the performance of SD-Cannon
is higher than Cannon’s algorithm (up to 1.5x) and slightly worse than SUMMA.
The performance difference between SUMMA and SD-Cannon is due to the extra
cost of the initial stagger, which SUMMA does not need. The Charm++ versions

2 The partitions allocated by the BG/P scheduler are only toroidal if they have 512
or more nodes. So, we allocated a 512 node partition and worked on the bottom 64
node slice.
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were executed with 1 chare per node. In this case, we see that Charm++ has a
small overhead and we see a small benefit from bidirectionality.

Figure 4(b) shows the performance on a 3D 512 node partition. Since this
partition is odd-dimensional, we cannot efficiently map the MPI version of Can-
non or SD-Cannon. We execute the Charm++ codes in two modes, one with 1
process per node and 8 chares per process (SMP), and one with 4 processes per
node and 2 chares per process (VN). Using multiple processes per node improves
the performance of the Charm++ codes, because it is more efficient to perform a
separate multiplication on each core, rather than execute each multiplication in
sequence across all cores. While the VN-mode version performs almost as well as
SUMMA, neither version benefits from multidimensional shifts. Our Charm++
implementations use two-sided communication, while the MPI version uses one-
sided. It is likely that a Charm++ implementation with one-sided sends would
successfully exploit all of the links.

6 Conclusion

SD-Cannon is an improvement on top of Cannon’s algorithm. While Cannon’s
algorithm has some nice properties, SUMMA has seen more wide-spread adop-
tion. In this paper, we demonstrate how SD-Cannon can get closer to the per-
formance of the SUMMA algorithm, and how virtualization can be used to map
SD-Cannon and Cannon’s algorithm efficiently. On the Blue Gene hardware it
still does not make sense to use SD-Cannon over SUMMA, but SD-Cannon has
advantages that could prove to be faster than SUMMA on other hardware. In
particular, on networks without optimized collectives or with higher latency cost,
the near-neighbor sends performed by Cannon’s algorithm and SD-Cannon are
preferable to SUMMA’s multicasts.

More generally, our work demonstrates how algorithmic design can couple
with topology-aware mapping and virtualization. These techniques are already
important on modern supercomputers with 3D interconnects as demonstrated
by our performance results. As the scale and dimensionality of high performance
networks grow, topology-aware mapping and communication-avoidance are be-
coming pivotal to scalable algorithm design.
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Abstract. We develop efficient CPU kernels for multiphase compress-
ible flows and evaluate different optimization strategies. The presented
software achieves up to 48% of the peak performance on shared memory
architectures, outperforming by 9-14X what is considered to be state-of-
the-art. On 48-core CPUs we observe speedups of 40-45X and measure
up to 360 GFLOP/s over 840 GFLOP/s of the peak.

1 Introduction

Simulations of multiphase compressible flows are a critical testbed for high per-
formance computing as they face performance issues that are often encountered
in other branches of computational science. Such simulations are essential for
studies of shock wave lithotripsy and combustion, problems that do not easily
render themselves to experimental studies. Numerical investigations have there-
fore become an established approach in studying such complex flows [1]. Among
the most modern techniques, we find adaptive mesh refinement (AMR) [2] and
wavelet-based adaptive grids [3], which concentrate the computation on regions
of interest. Although these techniques provide substantial algorithmic improve-
ments, their performance impact in terms of GFLOP/s and hardware utilization
(i.e. fraction of the peak performance) has not been extensively reported except
for a few cases limited to heterogenous multicore/GPUs platforms [4].

In contrast to synthetic benchmarks, for real world applications harnessing the
full potential of current state-of-the-art multicores has been shown to be hardly
possible as they reach only about 1% of the peak [5]. A primary cause of this
issue is the imbalance between the peak performance and the system memory
bandwidth (1-10 TFLOP/s versus 0.1-1 TB/s) meaning that applications should
employ kernels exhibiting ratios of 10 FLOP/B (bytes of off-chip memory traffic)
or more to achieve peak performance. As discussed in this work, such high ratios
in the context of multiphase compressible flows are not always realistic and, in
the few cases they are, reaching them requires revisiting both algorithms and
memory layouts.

Optimization techniques have been proposed to address this widespread chal-
lenge ranging from software autotuning tools [6] to automated code generation
[7] and hardware/software co-design for domain specific problems [8]. Other suc-
cessful optimization techniques [9] are based on the roofline model [10].
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A number of open issues can be identified in the context of fast simulations
for compressible flows. Firstly, there is poor analysis on the performance expec-
tation, which helps contextualizing the measurements. Secondly, it is not clear
how the performance of AMR solvers would compare to a highly optimized uni-
form resolution solver. Thirdly, to the best of our knowledge, for simulations of
compressible flows there are no standard packages to assist the software devel-
opment (such as “High-Performance Linpack” (HPL) [11]) whose performance
can reach a significant fraction of the peak: reported per-core performance of the
most compute intensive kernel (6000 FLOP/grid point) of the fastest existing
software for compressible flows indicate results in the range of 2-3% of the peak
per-core performance [12,13].

In this work, we evaluate a set of optimization techniques for the simulation
of multiphase compressible flows that is tailored to state-of-the-art multicore
platforms and discuss the measured performance. Furthermore, we provide an
a-priori analysis on the expected performance. The paper is organized as follows.
In Section 2 we describe the governing equations and the considered numerical
schemes. In Section 3 we identify the performance bottlenecks in the solver and
we discuss the data structures and techniques adopted in the software used
to mitigate these barriers. In Section 4 we analyze and discuss the resulting
performance for the simulations of the shock-bubble interaction.

2 Governing Equations and Numerical Methods

We model an inviscid multiphase compressible flow described by the Euler equa-
tions using the one-fluid formulation [14]:

∂ρ

∂t
= −∇ · (ρu), (1)

∂ρu

∂t
= −∇ · (ρuuT − pI), (2)

∂E

∂t
= −∇ · ((E + p)u), (3)

∂φ

∂t
= −u · ∇φ, (4)

with ρ being the density, u the velocity vector, p the pressure, E the total energy
of the fluid and φ the interface marker function. To close the system of equations,
we assume that the fluid follows the ideal gas equation of state,

p = (γ − 1)(E − 1

2
ρ|u|2), (5)

with γ being the ratio of specific heats of each phase.
We use the finite volume discretization and solve the integral form of Equa-

tions (1-4) by reconstructing flow quantities and computing the numerical flux
on the finite volume cell interfaces. The computation and summation of fluxes
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are referred to as the computation of the right hand side (RHS) and are coupled
to the low-storage third-order TVD Runge-Kutta time stepping scheme.

One simulation step consists of the following stages: estimation of the time
step, conversion of conserved to primitive quantities, computation of the RHS
and update of the conserved quantities. The RHS computation is itself com-
posed of a series of substeps consisting in 5th order WENO reconstructions [15],
evaluations of the HLLE numerical fluxes [16] and summation of the fluxes.

3 Design and Techniques

Previous works indicate that the computation of the RHS is the most expensive
part of a simulation step [4]. Furthermore, its Operational Intensity (OI), i.e.
the ratio of FLOP to bytes of off-chip memory transfers, is low and therefore it
implies that in order to observe decent performance, we need to increase data
locality. A low OI means that the OI is below the ratio of peak performance to
peak memory bandwidth and indicates that the kernel performance is bound by
the memory bandwidth of the system that runs it.

Our compressible flow simulations rely on a “software stack” with two soft-
ware layers, namely core and node layers. This modular structure separates the
optimization “domains” as it is directly related to the underlying hardware and
increase flexibility and code reusability. These separations in turn facilitate the
software development for new applications, techniques and hardware. Optimiza-
tions that affect the operational intensity are in general applied to the core layer
whereas optimizations related to thread level parallelism and communication are
covered in the node layer.

Data Structures. The governing equations considered in this work involve 6
unknowns, ρ, u, v, w, E and φ, which are organized into an Array of Structures
(AoS) format referred to as grid point, to maintain maximum software flexibility.
To increase the data locality we introduce an intermediate data structure, called
hereafter block, which contains 16-32 grid points per dimension. In order to
further enforce data locality, Morton space-filling is used to index the blocks.
A secondary advantage of introducing blocks is that any technique developed
here can be employed in block-based AMR solvers as well. The main downside
comes from the extra overhead of replicating some grid points (ghosts) required
to process the blocks.

Core Layer. The core layer maps to the processor cores and is thus responsible
for Data Level Parallelism (DLP) and Instruction Level Parallelism (ILP).

As we expect the performance of the kernels to be memory-bound, all data
structures are properly 16- or 32-byte aligned. Our design is also oriented towards
data and computation reordering: temporal locality is improved by processing
blocks slice-by-slice and the memory footprint is reduced by computing on ring-
like buffers composed of a few slices, analogously to [17].
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Table 1. Arithmetic and operational intensities

Kernel AI [FLOP/B] OI [FLOP/B]

dt 1.7 5.1
RHS 1.5 45.4
Update 0.2 0.2

Intermediate data structures for RHS computation are represented in Struc-
tures of Arrays (SoA) format since it is required by some kernels to benefit from
vectorization, which in our solver is implemented with SSE and AVX instruc-
tions. The performance is further increased by the use of division and square
root operations which are less accurate (1.5/2.5 ulps) [18] for the computation
of the WENO values.

In order to increase the Arithmetic Intensities (AI), i.e. ratios of FLOP over
total amount of bytes transferred, the AoS/SoA conversion is “fused” with the
conversion of flow quantities from conserved to primitive (Figure 1). Similarly,
copying back the RHS from SoA to AoS is fused with the first stage of the low-
storage Runge-Kutta time stepper. We further replace the conditional branches
with conditional moves in the HLLE fluxes.

xz

y

AoS AoSSoA SoA

1 2 3

Fig. 1. Slice-wise processing of one block with ring buffers made of two slices (left to
right). The two slices undergo a conversion stage (denoted as stage 1) from AoS to SoA
format (colors differentiate the 6 flow quantities). This data is then processed by the
computing kernels (denoted as stage 2) and the computed RHS (blue) is written back
(stage 3) to the associated slice (gray) in the block.

The core layer is composed of three kernels: the RHS, the dt (which computes
the time step based on the maximum characteristic velocity) and the update
(which updates the conserved quantities) kernels.

The respectives AIs and OIs for the three kernels considered in this work are
shown in Table 1. The RHS kernel has an OI that is dependent on the block
size and is of 45.4 FLOP/B for a block size of 32, meaning that potentially it
could reach peak performance. The update and dt kernel, on the other hand,
have fixed OIs of 0.17 and 5 FLOP/B respectively. Without the use of blocks,
the OI of the RHS kernel decreases 3.6 FLOP/B, whereas the other two kernels
are not affected. The AIs for RHS, dt and update are 1.5, 1.7 and 0.17 FLOP/B
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respectively, which means that they cannot reach peak performance without
exploiting caches.

Node Layer. This layer relies on the core layer and runs simulations on a single
computing node, i.e. a full multiprocessor node by using the block size as the
parallel grain size. The choice of the concurrency level, i.e. the number of logical
threads, is not obvious since one of the considered platforms features multiple
hardware threads per core. Since computing the RHS in our solver is limited by
the memory bandwidth, we choose to have a fully-subscribed node as we expect
that the resource contention is hidden by the memory access costs.

Load imbalance in our solver is not as dramatic as that encountered by spa-
tially adaptive solvers, as the number of blocks contained in our grid remains
constant in time. It is however an existing concern due to the presence of ghosts
in conjunction with the use of NUMA architectures which make the computa-
tion asymmetrical with respect to the cores. To mitigate this issue, we employ
OpenMP to maximize the thread-level parallelism (TLP), and by way of static
scheduling to initialize the data on ccNUMA platforms, which are subject to the
“first-touch” policy.

4 Results and Analysis

In the development of our software we target both supercomputing clusters and
high-end desktop machines and in this work we consider a platform for each of
these two classes.

Intel Sandy Bridge. The high-end desktop system is represented by an Intel
Core i7-2600K (released in January 2011), a quad-core processor featuring Intel’s
Hyper-Threading Technology and running at 3.4 GHz. The processor is based
on the Sandy Bridge micro-architecture and supports the AVX instruction set.
The machine has 16 GB of DRAM memory, its measured peak performance is
213 GFLOP/s in single precision and its measured peak DRAM bandwidth is
20.5 GB/s.

AMD Magny-Cours. The supercomputing cluster node is an AMD Magny-
Cours (released in March 2010), a 4P 12-cores AMD Opteron 6174 based on
the Barcelona micro-architecture with 48 cores at 2.2 GHz and support for the
SSE instruction set. One socket contains two ccNUMA nodes (exa-cores), each
with one dedicated dual-channel memory controller. The node features 16 GB of
DRAM memory per socket for a total of 64 GB. The measured peak performance
is 842 GFLOP/s in single precision and the measured peak DRAM bandwidth
is 96 GB/s.

Computational Settings. We consider a 3D computational domain size of
(1,0.5,0.5) for the simulation of a shock-bubble interaction. A helium bubble
with an initial radius of 0.05 is centered at (0.15,0.25,0.25) and a shock wave of
M = 3 is placed at x = 0.075 in air. The specific heat ratios of air and helium
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are γ = 1.4 and γ = 1.667 respectively, whereas the helium to air density ratio
is set to 0.138.

Figure 2 shows the isosurface of the helium/air interface location at t̃ = 2
(left) and the volume rendering of the density field for this simulation at the same
time (right). The shock passage compresses the bubble and deposits vorticity on
the helium/air interface. The counter-rotating vorticity pair advects the bubble
downstream, turns it inwards and forms a primary vortex ring (PVR) and a
smaller secondary vortex ring (SVR).

Fig. 2. Shock-Bubble interactions at Mach 3: Isosurface rendering of the interface lo-
cation (left). Volume rendered image of the vorticity magnitude field for a simulation
with 2 billion grid cells (right).

Core Layer. The core layer results presented in the following are obtained by
running single precision computations of the same kernels on all cores, in order to
capture possible resource contentions. On Magny-Cours, each kernel is explicitly
vectorized with SSE whereas on Sandy Bridge AVX is used.

Since the RHS kernel is the most expensive, the studies on the core layer
reported are focused on this kernel. We investigate the performance impact of
the block size, which represents a tradeoff between spatial locality and memory
footprint of the working data set. The left picture of Figure 3 shows the per-
core RHS performance versus the block size. We observe that this kernel reaches
35-45% of the peak. Secondly, we note that the performance on Sandy Bridge
system is 3-4X than on Magny-Cours, which delineates an important difference
between the two platforms: the former’s computational power is given by a few
cores at high frequency and vector width while the latter enjoys the performance
from many cores running at lower frequency. Using a block size of 32 with respect
to a block size of 16, we observe an improvement of 4-12% in performance.

With the best block size found in the first performance benchmark, we ex-
amine the performance gains provided by the individual optimization techniques
applied, namely the use of ring buffers, vectorization and 1.5/2.5 ulps operations.
As illustrated in Figure 3 (right), the overall performance gain over the baseline
is 14X on Sandy Bridge and 9X on Magny-Cours. The vectorization yields the
largest contribution: 9X with AVX and 5X with SSE. Ring buffers contribute
another extra 1.2-3.4X. A comparison between the columns for the block-based
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Fig. 3. Performance of the core layer versus block size for the RHS computation (left)
and improvements brought by the optimization techniques (‘B’ indicates block-based
memory layout and ‘R’ stands for ring buffers) (right).

memory layout and the ring buffers further shows that ring buffers also posi-
tively affect the performance gain provided by vectorization. We observe that
the 1.5/2.5 ulps operations on Sandy Bridge provide a further improvement of
2.3X, whereas for the Magny-Cours platform the gain is only 30%.

We further assess the performance of the kernels by comparing it with the
range of the achievable performance estimated with the roofline model. For each
kernel, the maximum is computed with its OI (see Table 1), which in our case
represents an optimal use of caches, whereas the lower bound is estimated by
its AI (see Table 1), which represents a case where the memory hierarchy is not
exploited.

As shown in Table 2, we clearly see that, for all kernels, the measured per-
formance is within the estimated intervals. The column “efficiency” denotes the
fraction of the peak achievable performance reached by the kernel given its OI,
whereas “HU”, which stands for hardware utilization, represents the fraction of
absolute peak performance.

The RHS and dt kernels reach 48% and 42% of the peak on the Sandy Bridge,
with the former kernel being compute bound and the latter being memory bound.
Due to its low OI, the update kernels is strongly bound by memory bandwidth
and only reaches 2% of the peak performance, although it shows a 100% effi-
ciency. However, because of its simplicity and its total lack of temporal locality,
the update kernel has no space for improvement.

Node Layer. We investigate the additional costs incurred by the necessary
copying of ghost values between blocks, by the increased memory footprint re-
quired to run a simulation and by potential load imbalance issues.

We consider a weak scaling benchmark in terms of GFLOP/s for a system size
of 512×256×256, shown in Figure 4. On the Magny-Cours, the thread placement
scheme for the benchmark was chosen so that NUMA nodes are filled first and
thread-data affinity is maintained. This causes the piecewise behavior of the (OI-
based) predicted performance shown by the solid line: each step represents the
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Table 2. Measured performance of the core layer and predicted range, efficiency w.r.t.
the maximum achievable performance, nominal peak and fraction of the peak (HU)

Kernel Platform Measured Range Efficiency Peak Perf. HU
[GFLOP/s] [GFLOP/s] [-] [GFLOP/s] [-]

RHS Sandy Bridge 26.0 7.8 - 54.4 48% 54.4 48%
Magny-Cours 6 3 - 17.6 34% 17.6 34%

update Sandy Bridge 0.9 0.9 - 0.9 100% 54.4 2%
Magny-Cours 0.3 0.3 - 0.3 100% 17.6 2%

dt Sandy Bridge 22.8 8.7 - 26 88% 54.4 42%
Magny-Cours 4.6 3.4 - 10.2 45% 17.6 26%

Fig. 4. Weak scaling plot for the RHS (left), dt (center) and update (right) kernels

addition of a NUMA node, and therefore an increase in bandwidth available, to
the group of nodes on which the test runs.

On Sandy Bridge we observe speedups up to 3.7X (over 4 cores), whereas on
Magny-Cours the speedup reaches 45X (over 48 cores). As illustrated in Figure
4 (left), on Magny-Cours the RHS performance scales almost linearly, attaining
246 GFLOP/s. On Sandy Bridge we observe similar results, with the addition of
a point representing the performance obtained by running two hardware threads
per core, which increases the performance from 80 GFLOP/s to 92 GFLOP/s,
leading to 42% of the peak. A similar behavior is observed for the dt kernel
(Figure 4, middle). On Sandy Bridge, the kernel reaches 81 GFLOP/s, corre-
sponding to 37% of the peak, whereas for the same kernel Magny-Cours yields
362 GFLOP/s, corresponding to 43% of the peak performance. We note that the
expected peak performance on the two platforms changes from compute bound
to memory bound as the number of threads increases, due to contention of the
memory bandwidth which decreases the resources available per core.

Figure 4 (right) shows the measured performance for the update kernel. On
Sandy Bridge the bandwidth is already saturated with a single thread and the
performance reached is around 3.5 GFLOP/s. With two threads the performance
of the kernel is slightly above the prediction: we attribute this to caching effects
in the LLC. On Magny-Cours the measured performance is 2.3 GFLOP/s with
one NUMA node and 16 GFLOP/s with 8 nodes.
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For the considered simulation of SBI, the time spent on Magny-Cours for a
single time step is measured to be 2.9 seconds with 98% of the time spent in the
RHS kernel and 1% in the update and the dt kernels, which further justifies the
effort spent on the RHS kernel.

5 Conclusions and Outlook

We have developed efficient CPU kernels for compressible multiphase flows and
performed an a-priori analysis to estimate the maximum achievable performance
using the roofline model. We have presented a high performance uniform resolu-
tion simulation software for multiphase compressible flows tailored to state-of-
the-art multicores, capable of reaching up to 48% of the peak performance on the
considered platforms. To the best of our knowledge, this is the highest fraction
of the peak performance obtained for a compressible flow simulation software
on shared memory architectures. These results outperform by 9-14X the ones
considered to be state-of-the-art.

On the core layer, the improvement brought by the optimization techniques
have provided a performance gain of one order of magnitude over the baseline
C++ implementation. Furthermore, all of our measurements are within the per-
formance bounds predicted by the roofline model.

On Magny-Cours, we have reported a speedup of 40-45X over 48 cores, reach-
ing 360 GFLOP/s which corresponds to 42% of the peak performance and of
3.7X over 4 cores on a single-socket Sandy Bridge platform.

Because of the block-based nature of the present solver, the optimizations
considered here are also applicable to other frameworks such as AMR. These are
currently being applied to wavelet-based adaptive solvers [4] for compressible
flow simulations with and without solid boundaries.

Acknowledgments. The authors wish to thank Dr. Olivier Byrde, Teodoro
Brasacchio and Adrian Ulrich of the Brutus cluster support team at ETH Zurich
for their crucial assistance.
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Abstract. We consider an eigenproblem derived from first-principles
electronic-structure calculations. Eigensolvers based on a rational filter
require solutions of linear systems with multiple shifts and multiple right
hand sides for transforming the spectrum. The solutions of the linear sys-
tems are the dominant part of the eigensolvers. We derive an efficient al-
gorithm for such linear systems, and develop implementation techniques
to reduce time-consuming data copies in the algorithm. Several experi-
ments are performed on the K computer to evaluate the performance of
our algorithm.

The first-principles electronic-structure calculation based on the density func-
tional theory (DFT) is currently one of the best choices for understanding and
predicting phenomena in material sciences. In terms of parallelization on dis-
tributed parallel computers, the real-space method in which the basic equation
of DFT, the Kohn-Sham equation, is solved as a finite-difference equation is a
promising idea due to small communication costs comparing to the other method
such as the reciprocal-space method with fast Fourier transformations [1, 2, 3]. A
real-space first-principles calculation of a large system, which consists of about
100,000 Si atoms, was performed on the K computer [3]. In such calculations, we
have to solve eigenproblems of large Hermitian matrices called the Hamiltonians
self consistently, because the Hamiltonian depends on the charge density that is
constructed from its eigenvectors correspond to a certain number of the smallest
eigenvalues. Thus it is an exterior eigenproblem.

By using the self-consistent charge density, various physical quantities can
be calculated. The electronic band structure around the Fermi energy is impor-
tant information on the electric current flow of the system. In order to get the
band structure, eigenproblems of the self-consistent Hamiltonian with several
different parameters need to be solved. However, we need only the eigenval-
ues within a certain range in this case. Thus it is an interior eigenproblem. In
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the self-consistent calculation, the exterior eigenproblem with a large number
of eigenpairs is inevitable. On the other hand, the band structure calculation is
just the interior eigenproblem with relatively small number of eigenpairs, and
we can reduce much computational time by utilizing the eigensolver suitable for
interior eigenproblems.

In this study, we solve this interior eigenproblem in band structure calculations
with the Sakurai-Sugiura (SS) method [4]. The SS method is proposed as a
solver for interior eigenproblem. In the method, solutions of linear systems with
multiple shifts and multiple right hand sides (RHSs) are required. Ohno et al. [5]
and Mizusaki et al. [6] solve them by a conjugate gradient (CG) type methods for
linear systems with multiple shifts. They consider a restricted case of single RHS.
We extend these approaches to deal with both multiple shifts and multiple RHSs
on an additional degree of freedom. In addition, we introduce implementation
techniques to reduce time-consuming data copies of the dominant part in our
approach.

The present paper is organized as follows. Section 1 describes a brief introduc-
tion of the Sakurai–Sugiura method and linear systems solved in the method.
We propose an algorithm of a CG type method for multiple shifts and multiple
RHSs in Section 2. We also describe implementation techniques to reduce time-
consuming data copies for the algorithm. In Section 3, we show the performance
evaluation of our algorithm on the K computer. Conclusions and future work
are presented in Section 4.

1 Linear Systems in the Sakurai–Sugiura Method

The Sakurai–Sugiura method is an eigensolver which seeks eigenvalues in speci-
fied closed curve and their corresponding eigenvectors. Let A = AH ∈ Cn×n. Let
us describe the Rayleigh-Ritz projection type method for standard eigenproblem.
In the SS method, we calculate matrices

Sk ≡ 1

2πi

∫

Γ

zk (zI −A)
−1

V dz

where, V ∈ Cn×L is an arbitrary nonzero matrix, Γ is an Jordan curve, i is the
imaginary unit, I is the n dimensional unit matrix, L is called block size usually
L << n, z ∈ C and k = 0, 1, . . . ,M−1. Assume that L is greater than maximum
multiplicity of eigenvalues in Γ , L×M is greater than number of eigenvalues in
Γ and M ≤ N . So as to calculate Sk numerically, the N -point trapezoidal rule
is applied, and we approximate Sk by

Ŝk ≡
N−1∑

j=0

wjζ
k
j (zjI −A)−1V, (1)

where zj and wj are a quadrature point and a weight, respectively. The condi-

tion for ζj and wj is given in [5]. Let S ≡ [Ŝ0, Ŝ1, . . . , Ŝm−1] ∈ C
n×(LM) and
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U ∈ Cn×(�m) be an unitary matrix given by the QR decomposition of Ŝ. Let λ̃
and x̃ be eigenvalues and corresponding eigenvectors that obtained by diagonal-
izing UHAU . Eigenpairs of A are approximated by λ ≈ λ̃x ≈ U x̃. To calculate
(1), we should solve linear systems with multiple shifts and multiple RHSs. This
process often become the most time-consuming part of the SS method.

2 Solver for Linear Systems with Multiple Shifts and
Multiple Right Hand Sides

In the SS method, the linear systems with multiple shifts and multiple RHSs
should be solved. From this section, we refer to the target shifted linear systems
as

(A+ σjI)Xj = B, j = 0, 1, . . . , N − 1. (2)

Here, Xj, B ∈ Cn×L. We refer AX = B as the seed system. Ohno et al. [5]
and Mizusaki et al. [6] solve them by conjugate gradient (CG) type methods
in case of L = 1. They compare the SS method with a widely used method,
the Lanczos method, and found that the methods are comparable. When seed
system is Hermitian, the linear systems with multiple shifts can be solved by
the shifted CG method [7] even if σj are complex numbers [5]. Using the shift
invariance of the Krylov subspace, the update of solution vectors for shifted
systems can be performed without time-consuming matrix-vector products, i.e.
matrix-vector products are only required for the seed system. In this study, we
deal with multiple RHSs in addition to multiple shifts to reduce the iteration
count by exploiting this additional degree of freedom. A GMRES algorithm
for both multiple shifts and multiple RHSs was proposed by Darnell et al. [8].
Since we consider the case that the seed system is Hermitian, we choose the CG
method as the base method. Thus, we propose the CG method for multiple shifts
and multiple RHSs. We refer to the approach shown in [5] as the conventional
approach.

2.1 Shifted Block CG-rQ Method

We derive the CG method for multiple shifts and multiple RHSs by extending
the block CG method [9] for shifted systems. The block CG method solves sys-
tems with multiple RHSs by using the block Krylov subspace [10]. In the block
CG method, the search space is extended by L basis per iteration. The block CG
method often requires fewer iteration count than the CG method. Several tech-
niques and variants to stabilize the block CG method are presented in [9, 11, 12].
Dubrulle [12] showed that a variant BCGrQ (we refer this as the block CG-rQ
method) is the best variant in terms of execution time by numerical experiments.
Therefore we choose the block CG-rQ method as the base method of extension
for shifted systems. In a similar way as the standard Krylov subspace, the block
Krylov subspace also has the shift invariance. Thus there is a relation between
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the orthonormalized residual matrix Qk in the block CG-rQ method for the seed
system and the residual matrix of R

σj

k in the block CG method for the shifted
systems, that is R

σj

k = ξ
σj

k Qk. Here, ξ
σj

k ∈ CL×L. By using this relation, an algo-
rithm of the block CG-rQ method for multiple shifts can be obtained. We refer
to this algorithm as the shifted block CG-rQ (SBCGrQ) method . The pseudo
code of the algorithm is shown in Fig.1. Note that the time-consuming matrix-
vector products with (A+ σjI) do not appear in the algorithm of the SBCGrQ
method. The computational cost for the SBCGrQ method is much smaller than
that of the case that block CG-rQ method is applied for each shifted system.

If a preconditioner is applied, preconditioned coefficient matrices of shifted
linear systems are no longer shifted matrices in general. Thus applicable precon-
ditioners are limited (e.g. the incomplete LU preconditioner can not be applied)
for block Krylov subspace methods that use the shift invariance. For this reason
we omit considering preconditioners in this study.

1: X
σj

0 = On×L, ξ
σj

−1 = α−1 = IL,
2: Q0ρ0 = qr(B)
3: ξ

σj

0 = Δ0 = ρ0, P
σj

0 = P0 = Q0

4: for k = 0, 1, . . . until solutions converge do
5: αk =

(
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)−1
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k+1

13: β
σj

k = αk

(
ρk+1

)−1
ξ
σj

k+1

(
ξ
σj

k

)−1(
αk

)−1
ρHk+1

14: X
σj

k+1 = X
σj

k + P
σj

k α
σj

k

15: P
σj

k+1 = Qk+1 + P
σj

k β
σj

k

16: end for
17: end for

Fig. 1. Pseudo code of the SBCGrQ method. On×L is the n × L dimensional zero
matrix. IL is the L dimensional unit matrix. qr(C) indicates the QR decomposition of
matrix C.

To implement the SBCGrQ method for distributed parallel computers, we
introduce the row-wise distribution. We implement our distributed parallel code
with Message Passing Interface (MPI). In row-wise distribution, matrix-matrix
product with a Hermitian transpose matrix in the third line and the QR decom-
position in the 7th line are performed with MPI Allreduce to sum local results.
The parallel implementation for the matrix-vector products APk depends on the
application. The calculations in lines 8,11-13 are replicated. Other lines can be
executed without MPI communications.
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2.2 Efficient Implementation with Recurrence Unrolling

In the SS method, a number of shifted systems should be solved. In such a case,
computational cost for lines 11-15 becomes dominant. Especially lines 14,15 are
the most time-consuming part of the algorithm. In addition, the computational
cost of lines 14,15 increases O(L2) with increasing L. We reduce execution time
for this computation by following techniques. Fig.2 shows an naive implemen-
tation of the 9th line. Note that we reuse the memory area of the variables
with subscript k for corresponding variables with subscript k + 1. We use sim-
plified notations of the two BLAS subroutines ZGEMM and ZCOPY. Here,
ZGEMM(A,B,C) operates C ← AB+C and ZCOPY(A,B) operates B ← A. To

ZGEMM(P
σj

k , α
σj

k , X
σj

k+1)
ZCOPY(Qk+1, T )
ZGEMM(P

σj

k , β
σj

k , T )
ZCOPY(T , P

σj

k+1)

Fig. 2. Naive implementation. T ∈ C
n×L is a temporary variable.

exploit the efficiency of the cache blocking of ZGEMM, we operate the products
P

σj

k α
σj

k and P
σj

k β
σj

k in block as P
σj

k [α
σj

k , β
σj

k ]. The drawback of this approach
is that additional 2 ZCOPY calls for Xσj are required. We reduce the total
number of ZCOPY calls by unrolling the recurrences for Xk+1 and Pk+1. The
recurrences can be unrolled as

X
σj

k+1 = X
σj

k−u +
u−1∑

h=0

Qk−hγ
σj

h + Pk−uγ
σj
u

and

P
σj

k+1 = Qk+1 +

u−1∑

h=0

Qk−hδ
σj

h + P
σj

k−uδ
σj
u .

Here,

{
γ
σj

0 = α
σj

k

γ
σj

h = α
σj

k−h + β
σj

k−hγ
σj

h−1

,

{
δ
σj

0 = β
σj

k

δ
σj

h = β
σj

k−hδ
σj

h−1

and

θ
σj

h = [γ
σj

h , δ
σj

h ].
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Fig.3 shows the implementation which uses these relations. By this implemen-
tation, the total number of ZCOPY calls is reduced from 2K to 4K/u when
u > 2 since ZCOPY is only called every u iterations. Here K is the number
of iterations which is required to satisfy the stopping criterion. Simular to the
implementation in Fig.2, we reuse the memory area of the variables with sub-
script k−u for corresponding variables with subscript k+1. The problem is that
the implementation shown in Fig.3 requires an additional memory requirement,
mainly that of Qk−h (h = 0, 1, . . . , u − 1). Note that this memory requirement
is comparable with that of X

σj

k and P
σj

k (j = 0, 1, . . . , N − 1) when u ≈ N .

if mod(k + 1,u+ 1)= 0 then
ZCOPY(X

σj

k−u, T2(:,1:L))
ZCOPY(Qk+1, T2(:,L+ 1:2L))
for h = 0, 1, . . . , u− 1 do

ZGEMM(Qk−h, θh, T2)
end for
ZGEMM(P

σj

k−u, θu, T2)

ZCOPY(T2(:,1:L), X
σj

k+1)

ZCOPY(T2(:,L+ 1:2L), P
σj

k+1)
end if

Fig. 3. Implementation with recurrence unrolling. T2 ∈ C
n×2L is a temporary variable.

3 Numerical Experiments

In this section, we perform numerical experiments to evaluate the efficiency of
the SBCGrQ method and the recurrence unrolling technique described in the
previous section. In the experiments, all examples are performed on the K com-
puter. The K computer is a distributed memory supercomputer system which
has more than 80,000 compute nodes. It is currently under development at the
RIKEN Advanced Institute for Computational Science as a Japanese national
project. A SPARC64TM VIIIfx CPU which has eight cores is equipped for a
compute node. The clock frequency and the peak performance of the CPU are
2 GHz and 128 giga-flops, respectively. The target system is a silicon nanowire
which consists of 9924 Si atoms [3]. The dimension of the Hamiltonian matrix
A is n = 8, 719, 488. Our code is compiled with Fujitsu Fortran Compiler. We
describe common parameter setting for all experiments as follows. The contour
pass for the SS method is a circle with a center of 0.05 and a radius of 0.01.
The number of quadrature points is N = 32. The RHS vectors are generated
by random numbers. We executed the experiments with 768 MPI processes and
each MPI process had 8 OpenMP threads. Note that the results of the numer-
ical experiments are tentative since they are obtained by early access to the K
computer.
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First, we evaluate the execution time of the SS method, the number of eigen-
values that can be obtained by the SS method, and the iteration count and the
execution time for the SBCGrQ method. The results of experiments are shown
in Table 1. The parameter u is set to u = 32. Table 1 shows the elapsed time for
the SS method is mostly occupied by the solutions of the linear systems with the
SBCGrQ method in all cases. Large #eig is obtained by large L. This result is
predictable since large subspace is given by large number of RHSs. The remark-
able thing is that although the number of linear systems to be solved increase
L-fold, linsol time does not. This trend is mainly supported by the behavior that
#iter decreases with increasing L as is the case in the block CG method [11].
We have succeeded to extend this feature for multiple shifts by developing the
SBCGrQ method. Note that the case L = 1 and the conventional approach
described in [5] are equivalent except that scaling of the vectors are different
and the conventional approach was not implemented with recurrence unrolling.
Thus, we can find in the column Speed-up for the case L = 32 that the SBCGrQ
method is more than five times faster than the case that the shifted CG method
is sequentially applied to each RHS if these is no significant difference in the
iteration count for different RHSs.

Table 1. #iter and linsol time are iteration count and elapsed time for SBCGrQ
method, respectively. #eig is the number of eigenvalues derived in contour pass with
relative residuals less than 1e−2. SS time is elapsed time for the SS method. Speed up
is the speed-up ratio of average elapsed time for one RHS comparing to L = 1, i.e.
(128.2 × L) / linsol time.

L 1 2 4 8 16 32 64

#iter 10626 10560 9999 8382 6501 4455 4026
#eig 10 21 43 82 159 212 271
SS time [sec] 131.8 197.7 247.0 395.2 442.5 721.1 1714.6
linsol time [sec] 128.2 195.3 246.3 349.3 432.8 698.1 1600.5
Speed-up 1 1.31 2.08 2.93 4.74 5.87 5.12

Next we see the detailed data that support the remarkable results described
above. Fig.4 shows the results of experiments to see the behaviors of the domi-
nant parts of the SBCGrQ method with increasing L. Matvec is the elapsed time
of the matrix-vector products with A in the 5th line of Fig.1. QR is the elapsed
time of the QR decomposition for the 7th line of Fig.1. Shift is the elapsed time
of the calculations for lines 11-15 of Fig.1. Note that the time data are average
data for one RHS of one iteration. Matvec slightly decreases with increasing L
since latency for communication was reduced by sending or receiving L-fold data
at once. QR increases with increasing L since the computational cost increases
O(L2). The most time-consuming item Shift decreases until L = 16. This result
indicates that the efficiency of cache blocking of ZGEMM hides the growth of the
computational cost. However, Shift increases when L = 32, 64 due to the high
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complexity. Fig.5 shows the results of experiments to see the behaviors of the
dominant parts of Shift with increasing u of the recurrence unrolling technique.
The number of RHSs is fixed to L = 32. Square is the elapsed time for calcula-
tions that involve L dimensional square matrices in lines 11-13 of Fig.1. ZCOPY
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and ZGEMM are the elapsed time for ZCOPY and ZGEMM in Fig.2 or Fig.3
that implement the calculations for lines 14-15 of Fig.1. Note that the time data
indicates average data for one shift of one iteration. The computational cost for
Square other than naive is larger than that of naive due to calculations for θh.
Practically, the elapsed time of all cases rarely different since this additional
computational cost is negligible. We can find that elapsed time for ZGEMM is
reduced by the recurrence unrolling technique. This is because the cache hit ratio
is improved by merging two calls of ZGEMM into once. Moreover the elapsed
time for ZCOPY decreases linearly with increasing u, since ZCOPY is only called
every u iterations. We can find in these details that the efficient use of ZGEMM
and the reduction of total call for time-consuming ZCOPY contribute to the
remarkable efficiency of the SBCGrQ method.

4 Conclusions and Future Work

We have proposed a CG type method for linear systems with multiple shifts
and multiple RHSs and efficient implementation techniques that reduce time-
consuming data copies in the method. The proposed method can be used for
linear systems that arise in solutions of eigenproblems by an interior eigensolver
such as the SS method. We utilized the proposed method for the electronic-
structure calculation of a large system which consists of about 10,000 Si atoms.
We have found that the proposed method solves the linear systems more than
five times faster than the conventional approach and have shown how much our
implementation techniques contribute to efficiency of the proposed method. For
future work, we will apply the proposed method in unprecedented simulations
to clarify important physical properties.
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for Scientific Research of Ministry of Education, Culture, Sports, Science and
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Abstract. In this paper, we propose “control formats” to obtain better thread 
performance of sparse matrix–vector multiplication (SpMV) for unsymmetric 
and symmetric matrices. By using the control formats, we established the 
following maximum speedups of SpMV in 16-thread execution on one node of 
the T2K Open Supercomputer: (1) 7.14× for an unsymmetric matrix by using 
the proposed Branchless Segmented Scan compared to the original Segmented 
Scan method; (2) 12.7× for a symmetric matrix by using the proposed Zero-
element Computation-free method compared to a simple SpMV 
implementation. 

Keywords: Sparse Matrix–Vector Multiplication (SpMV), Control Formats, 
Zero-element Computation-free, Branchless Segmented Scan.  

1 Introduction 

Current computer architectures are very complex due to their hierarchical caches and 
unsymmetric memory accesses. With the increasingly pervasive use of multicore 
CPUs, highly threaded parallelism is required. To solve this hardware complexity, 
many numerical libraries with an auto-tuning (AT) facility have been studied and 
developed [1][2][3][4]. 

In this paper, we focus on a sparse iterative solver for linear equations. The main 
part of the solver is sparse matrix–vector multiplication (SpMV). The performance of 
SpMV depends on the computer architecture, the number of parallel threads, and the 
locations of non-zero elements in the input sparse matrix. Hence, it is desired to adapt 
AT technologies. 
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Before actually adapting these AT technologies, it is important to know the 
variants of SpMV implementation, since the total performance of sparse iterative 
solvers affects the AT performance with respect to SpMV. In particular, controlling 
the thread parallelism for CPUs is crucial in current multicore architectures. This is 
because the number of parallel threads can reach more than 100. 

The objective of this paper is to obtain better performance in thread execution. We 
accomplish this by introducing “control formats” for SpMV. The control format, 
which is a different concept from the sparse matrix format, controls sequential and 
parallel (thread) optimizations for symmetric and unsymmetric SpMVs.  

The contributions of this paper are summarized as follows. First, we propose a new 
control format for a symmetric SpMV. Second, we evaluate three kinds of control 
formats for symmetric and unsymmetric cases on one node of a parallel machine. 

This paper is organized as follows. Section 2 explains the control formats and their 
SpMV implementations. Section 3 is a performance evaluation of control formats on 
one node of the T2K supercomputer (U. Tokyo). Section 4 shows related work. 
Finally, we present our conclusions about this research. 

2 Control Formats of SpMV 

2.1 Definition of Computation 

SpMV is defined as 

y = A x, (1) 

where y and x are dense vectors in nℜ , and A is a sparse matrix in nn×ℜ . Since A is 
a sparse matrix, we need to reduce the amount of memory. We can use several 
formants to represent sparse matrices. For example, Compressed Row Storage (CRS), 
Coordinate (COO), Ellpack (ELL), and DIA (Diagonal) are widely used. We focus on 
the CRS format because it is an easy and widely used format in several numerical 
libraries.  

The CRS format uses the following three arrays to represent a space matrix: 
IRP(1:N+1) for row index pointers of the matrix, ICOL(1:NNZ) for indexes of the 
columns of the matrix, and VAL(1:NNZ) for the values of non-zero elements, where 
N is the total number of rows, and NNZ is the total number of non-zero elements.  
If the matrix is symmetric, lower elements of A are not stored in order to reduce the 
amount of memory. This is a restriction of the design policy of Xabclib.  

2.2 Control Formats for SpMV 

First we define the control format for SpMV. To represent sparse matrices, we should 
select a sparse matrix format, such as CRS. 

SpMV from the viewpoint of computational components is organized according to 
the following formula (2). 



238 T. Katagiri et al. 

SpMV := Sparse Matrix Format + Control Format. (2) 

As seen in formula (2), we need an additional format to control computations in 
SpMV to implement effective computation of SpMV with a sparse matrix format. We 
call the additional format for computations the control format. 

For example, the control format keeps its own row indexes for each thread for the 
sparse matrix to increase thread parallelism. The control format to manage the 
computational complexity of SpMV has other potential abilities. Increasing sequential 
efficiency is also a crucial factor to be considered. 

In the next paragraphs, we will show examples of control formats. 
 
Control Format to Establish Load Balancing 
With respect to thread parallelization, load imbalance occurs when the total number of 
rows is not equally divisible by the number of threads. Fig. 1 shows an example of 
this load imbalance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. An example of a load imbalance. The number of threads is 4, the number of sparse rows 
is 6, and the number of non-zero elements (NNZ) is 12. The U1 and U2 are SpMV 
implementations for non-symmetric matrices. The S1, S2, and S3 are SpMV implementations 
for symmetric matrices. 

Fig. 1 shows that a heavy load imbalance is caused by the division (Number of 
rows)/(Number of threads) = floor(6/4) = 1. Thread #4 owns all of the remaining 
rows, which are three rows in this case. Consequently, a heavy load imbalance for 
execution time is also caused by OpenMP parallelization. We call this conventional 
parallelization method the Row-decomposition Base method. 

To solve the load imbalance problem in the Row-decomposition Base method, we 
reallocate its load according to the number of non-zero elements per thread. In Fig. 1, 
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NNZ is 12; hence, perfect load balancing is established with NNZ/(Number of 
threads) = 12/4 = 3 elements per thread. That is, thread #1 owns three rows while the 
others own one row in this example. We call this the Non-zero Element Base method. 

To establish load balancing, we introduce a new control format. Let 
KBORDER(0:4) be the control format that keeps its own rows for each thread. For 
example, the number of rows to be owned for thread #1 is represented by 
KBORDER(1). Determining the number of rows to maintain good load balancing is 
one of the crucial issues. We implemented a method to find better splitting points by 
utilizing the divide-and-conquer approach [5]. 

 
Branchless Control Format 
The Segmented Scan (SS) method [6] is known as an efficient implementation for 
vector computers. In the control format of SS, a flag array, FLAG(1:NNZ), is used to 
know the row ends. However, one disadvantage of SS is inefficient execution of the 
innermost loop, which has an IF-line to prevent branch prediction. The IF-line 
prevents several optimizations of current cache machines (both compiler and 
hardware).  

To solve this problem, we propose a pair of new control formats, which are 
JFSTART(1:JL) and MFLAG(1:*). We call computation of SpMV with these new 
formats the Branchless Segmented Scan (BSS) method.[5] Fig. 2 shows the control 
formats.  

 

 

Fig. 2. Control formats of Segmented Scan (SS) and Branchless Segmented Scan (BSS). 
FLAG(1:NNZ) is the flag to know row ends. JFSTART(1:JL) and MFLAG(1:*) are stride 
information to know the loop start and loop end. 



240 T. Katagiri et al. 

JFSTART holds the last element indexes for each row of MFLAG. MFLAG holds 
row-continuous information. This information shows continuous access in the 
innermost loop, which means the access information of the computation for each 
segment vector with respect to the CRS format. By using these two control formats, 
we can establish an “IF-line-free” version of SS. This is why we refer to this method, 
BSS, as Branchless SS. 

In Fig. 2, segment vector #3 starts with the third element in the fourth row. To 
know the row end, the original SS holds information about the row end in the third 
row of the array of FLAG. The BSS holds this information in the array of MFLAG. 
To know the MFLAG information, we refer to the array of JFSTART. 

 
Zero-Element Computation-Free Control Format 
If the matrix is symmetric, a workspace is required to maintain parallelism on an 
OpenMP implementation. One easy way to remove the workspace is to copy elements 
from the upper part to the lower part. Then, an unsymmetric SpMV is performed. This 
is against our library design policy. 

This procedure raises another issue. The memory space for the working space 
depends on the number of threads if we use symmetricity for the sparse matrix format. 
Using symmetricity makes additional computations, such as additions to all 
workspace areas. The computational costs increase according to the number of 
threads; hence, this can degrade the parallelization performance. Once again, please 
note that this additional computation for the working space is not needed when taking 
an unsymmetric sparse matrix format for symmetric SpMV.  

If the matrix is a band matrix, most elements of the workspace must be  
zero-elements, since there are no off-diagonal non-zero elements. In this situation, we 
can omit the additions for the off-diagonal part of the workspace. The difficulty is that 
the input matrix determines whether the omission is performed.  

 

Fig. 3. An example of removing zero-element computations in symmetric SpMV 



Control Formats for Unsymmetric and Symmetric SpMV on OpenMP Implementations 241 

To address this issue, we introduce a new control format, the Zero-element 
Computation-free method. With respect to the locations of non-zero elements of A, 
we determine the locations of the additions before calling the symmetric SpMV. Fig. 
3 gives an example. 

As shown in Fig. 3, JLS(1:n) represents the start rows of the index for non-zero 
elements. JLN(1:n) represents the end rows of the index for non-zero elements. 

By using these two control formats, we can compute non-zero elements only for 
the working space. This is very crucial if the input matrix is a stencil or a band matrix. 

2.3 Implementation Details of SpMV on OpenMP 

Fig. 4 shows the SpMV implementation of unsymmetric matrices using the control 
format KBORDER, explained in Section 2.2. 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4. SpMV for unsymmetric matrices with KBORDER 

With KBORDER, the computation load from lines <4> to line <6> is almost 
balanced if it works well. Fig. 5 shows a BSS implementation with JFSTART and 
MFLAG. 

In Fig. 5, by using MFLAG, no IF-line is needed in the innermost loop of the BSS. 
(See lines <4> to <6>.) 

Fig. 6 also shows a simple SpMV implementation for symmetric matrices. Lines 
<9> to <14> in Fig. 6 cannot be parallelized since a data dependency exists. 

Fig. 7 shows the implementation of the SpMV for symmetric matrices with the 
Non-zero Element Base and Zero-element Computation-free methods. 

 
 
 
 
 
 

!$OMP PARALLEL DO PRIVATE(S, J_PTR, I) 

<1>DO K=1,NUM_SMP 

<2>  DO I=KBORDER(K-1)+1,KBORDER(K) 

<3>    S=0.0D0 

<4>    DO J_PTR=IRP(I),IRP(I+1)-1 

<5>      S=S+VAL(J_PTR)*X(ICOL(J_PTR)) 

<6>    END DO 

<7>    Y(I)=S 

<8>  END DO 

<9>END DO 

!$OMP END DO PARALLEL 
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Fig. 5. SpMV for unsymmetric matrices of BSS with JFSTART and MFLAG 

  

 

 

Fig. 6. Simple SpMV for symmetric matrices 

!$OMP PARALLEL DO 

           PRIVATE(K,K1,S,I) 

<1>DO J=1,JL 

<2>  DO K=JFSTART(J), 

            JFSTART(J-1)+1,-1

<3>    K1=K+1; S=0.0D0; 

<4>    DO I=MFLAG(K1)-1, 

          MFLAG(K),-1 

<5>     S=VAL(I)*X(ICOL(I))+S

<6>    END DO 

<7>    VALSS(K)=S 

<8>  END DO 

<9>END DO 

!$OMP END DO PARALLEL 

* Make spanning array 

!$OMP PARALLEL DO 

<10>DO J=2,JL 

<11>  IF(JSFLAG(J).EQV. 

          .FALSE.) THEN 

<12>    SUM(J-1)= 

       VALSS(JFSTART(J-1)+1) 

<13>  END IF 

<14>END DO 

!$OMP END DO PARALLEL 

* Sum up SUM array 

<15>DO J=JL-1,1,-1 

<16>  IF(PRESENT(J+1) .EQV.  

          .FALSE.) THEN 

<18>  SUM(J)=SUM(J)+SUM(J+1) 

<19>  END IF 

<20>END DO 

*  Spanning sum 

!$OMP PARALLEL DO 

<21>DO J=1,JL 

<22>  VALSS(JFSTART(J))= 

    VALSS(JFSTART(J))+SUM(J) 

<23>END DO 

!$OMP END PARALLEL 

*  Make output 

!$OMP PARALLEL DO  

      PRIVATE(IN,JN,I) 

<24>DO J=1,JL 

<25>  IN=JFSTART(J); 

<26>  JN=JSY(J); 

<27>  DO I=JYN(J),1,-1 

<28>    Y(JN)=VALSS(IN) 

<29>    IN=IN-1; JN=JN-1;  

<30>  END DO; END DO; 

!$OMP END DO PARALLEL 

!$OMP PARALLEL DO PRIVATE 

(S,JJ,JC,I) 

<1>DO I=1,N 

<2> S=0.0D0 

<3> DO JC=IRP(I),IRP(I+1)-1 

<4>   JJ=ICOL(JC) 

<5>   S=S+VAL(JC)*X(JJ) 

<6> ENDDO 

<7> Y(I)=S 

<8>ENDDO 

!$OMP END DO PARALLEL 

<9>DO I=1,N 

<10> DO JC=IRP(I)+1, 

           IRP(I+1)-1 

<11>  JJ=ICOL(JC) 

<12>  Y(JJ)=Y(JJ) 

          +VAL(JC)*X(I) 

<13> ENDDO 

<14>ENDDO 
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Fig. 7. SpMV for symmetric matrices with control formats KMBORDER, JLS, and JLN 

In Fig. 7, lines <20> to <22> indicate the kernel of the Zero-element Computation-
free method with JLS and JLN. 

3 Performance Evaluation 

We used the T2K Open Supercomputer (HITACHI HA8000) installed at the Information 
Technology Center at the University of Tokyo. Each node contains four sockets with 
AMD Opteron 8356 processors (Quad core, 2.3 GHz). The L1 cache is 64 KB/core, the 
L2 cache is 512 KB/core, and the L3 cache is 2 MB/4 cores. The memory on each node 
is 32 GB with 667 MHz DDR2. The theoretical peak is 147.2 GFLOPS/node. 

We used Intel Fortran Compiler Professional Version 11.0 with the options “-O3 -
m64 -openmp -mcmodel=medium.” We used 20 types of symmetric matrices and 22 
types of asymmetric matrices from the University of Florida sparse matrix collection 
(referred to hereinafter as UF collection) [7]. 

We implemented the SpMV with the proposed control formats in OpenATLib [8]. 
In OpenATLib, the AT of the SpMV is implemented as the first call of the SpMV 
routine to survey the performances of the implemented SpMVs. In the current 
version, three kinds of SpMVs were implemented with an AT switch for symmetric 
and unsymmetric matrices. 

The switch of implementations of the SpMVs is summarized as follows: (1) simple 
SpMV (U1 for unsymmetric, S1 for symmetric); (2) Non-zero Element Base (U2 for 
unsymmetric, S2 for symmetric with a simple workspace for each thread); (3) BSS 
(U3, unsymmetric only); (4) original SS (U4, unsymmetric only); and (5) Zero-
element Computation-free with Non-zero Element Base (S3, symmetric only). In this 
section, we evaluate these implementations of SpMV to know the AT effect of 
OpenATLib. 

!$OMP PARALLEL DO PRIVATE 

(S, XDIAG, AA, JJ, I, JC) 

<1>DO K=1,NUM_SMP 

<2>  DO I=KMBORDER(K-1)+1, N 

<3>    WK(I,K)=0.0D0 

<4>  ENDDO 

<5>  DO I=KMBORDER(K-1)+1,  

        KMBORDER(K) 

<6>    XDIAG=X(I) 

<7>    S=VAL(IRP(I))*XDIAG 

<8>    DO JC=IRP(I)+1, 

           IRP(I+1)-1 

<9>      JJ=ICOL(JC) 

<10>      AA=VAL(JC) 

<11>      S=S+AA*X(JJ) 

<12>      WK(JJ,K)=WK(JJ,K) 

            +AA*XDIAG 

<13>    ENDDO 

<14>    Y(I)=S 

<15>  ENDDO 

<16>ENDDO 

!$OMP END DO PARALLEL 

 

!$OMP PARALLEL DO PRIVATE(S) 

<17>DO K=1, NUM_SMP 

<18>  DO I=KWBORDER(K-1)+1, 

       KWBORDER(K) 

<19>    S=0.0D0 

<20>    DO J=JLS(I), JLN(I) 

<21>      S=S+WK(I,J) 

<22>    ENDDO 

<23>    Y(I)=Y(I)+S 

<24>  ENDDO 

<25>END DO 

!$OMP END DO PARALLEL  
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3.1 Performance of Unsymmetric SpMV 

Fig. 8 shows the performance of the unsymmetric SpMV. 

 

 
 

 
 
 

Fig. 8. Performance of unsymmetric SpMV on one node of T2K 

 
 
 

(a) #threads=1 

(b) #threads=16 
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According to Fig. 8, we can establish the following speedups compared to U4 (SS): 
(1) #thread=1: from 1.72× (torso1) to 2.57× (epb1); (2) #threads=16: from 1.63× 
(epb1) to 7.14× (xenon1) with the BSS control format. The average number of non-
zero elements per row (NZEPR) for the UF collection of xenon1 is 24.3. Its NNZ is 
1,181,120. One of reasons why we can obtain such a high performance for xenon1 is 
the decreased cache miss–hit ratio by adapting the branchless control format, since 
xenon1 is almost a stencil matrix, which is suitable for access optimization for the 
right-hand-side vector b. 

Moreover, we can establish the following speedups compared to U1 with the Non-
zero Element Base control format: #threads=16: from 0.95× (ex19) to 2.81× 
(viscoplastic2). The average number of NZEPR for viscoplastic2 is 11.6. The 
derivation ratio of NZEPR is 13.9. Since the derivation ratio is very close to the 
average number of NZEPR for this matrix, a load imbalance easily occurs with highly 
threaded execution; hence, U2 is very crucial in this situation. 

3.2 Performance of Symmetric SpMV 

Fig. 9 shows the performance of the symmetric SpMV. 
 

 (a) # of threads=1 

Fig. 9. Performance of symmetric SpMV on one node of T2K 
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Fig. 9. (continued) 

According to Fig. 9, we can establish the following speedups compared to S1: (1) 
#thread=1: from 1.22× (Lin) to 1.61× (gyro); (2) #threads=16: from 2.14× (c-71) to 
12.7× (gyro) with the control format of the Zero-element Computation-free method. 

The UF collection gyro forms almost a block diagonal matrix, but two big blocks 
appear in its central part. We think that the reduction of the zero-element computation 
for these two blocks works well. As a result, great performance improvement was 
established in gyro. 

4 Related Work 

Although several new sparse matrix formats have been proposed to establish high 
performance for current CPU architectures, almost no method has been proposed for 
the control format of SpMV with the CRS format. For example, BELLPACK [9] is a 
new blocking format for the ELL format. SCSR [10] is a new stream format for the 
CRS format. These new matrix formats are suitable for current CPU architectures, 
including graphics processing units (GPUs). 

In particular, controlling thread level parallelism (TLP) of SpMV is one of crucial 
tasks for multicore processors because their parallelism can reach more than 100 
threads in the current trend of CPU architectures. Our proposed Non-zero Element 
Base method to increase TLP is a new control format that supports TLP. 

Moreover, the conventional Segmented Scan (SS) method has a drawback for 
optimization of instruction level parallelism (ILP) in CPUs. To increase ILP, our 
proposed new control format, BSS, enables us to remove IF-lines from the  
 

(b) # of threads=16



Control Formats for Unsymmetric and Symmetric SpMV on OpenMP Implementations 247 

computational kernel of the original SS. We think that BSS is the first control format 
for SpMV with CRS that is aimed at the increase of ILP in CPUs. 

Several approaches focusing primarily on TLP to increase parallelism in GPUs are 
also in demand for SpMVs. 

5 Conclusion 

In this paper, we proposed new “control formats” to obtain better thread performance 
in computations of SpMV for unsymmetric and symmetric matrices. Especially, the 
control format for symmetric matrices to reduce computations of zero-elements is a 
contribution of this paper. 

By using these control formats, we established maximum speedups in 16-thread 
execution on one node of the T2K Open Supercomputer: (1) 7.14× for an 
unsymmetric matrix using the BSS method compared to the original SS method; (2) 
12.7× for a symmetric matrix using the Zero-element Computation-free method 
compared to a simple symmetric SpMV implementation. These speedups are crucial 
for applications with SpMVs. 

We implemented these control formats for a sparse iterative solver with an AT 
facility, named Xabclib [8]. The AT in Xabclib was implemented with a run-time 
selection function for all implementations of the SpMV in the first call of the library. 
The effects of AT, hence, depend on the performance of the SpMV. 

Evaluating Xabclib with the SpMV by utilizing the proposed control formats in 
real applications is important future work. 
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Abstract. Spectral clustering is one of the most relevant unsupervised
method able to gather data without a priori information on shapes or
locality. A parallel strategy based on domain decomposition with over-
lapping interface is reminded. By investigating sparsification techniques
and introducing sparse structures, this parallel method is adapted to
treat very large data set in fields of Pattern Recognition and Image Seg-
mentation.

1 Introduction

Spectral clustering selects dominant eigenvectors of a parametrized affinity ma-
trix in order to build a low-dimensional data space wherein data points are
grouped into clusters [1]. This method based on eigendecomposition of affinity
matrix is used in Pattern Recognition or image segmentation to cluster non-
convex domains without a priori on the shapes. The main difficulties of this
method could be summarized by the two following questions: how to automati-
cally separate clusters one from the other and how to perform clustering on large
dataset, for example on image segmentation. This means that we look for some
full-unsupervising process with parallelization. Several studies exist for defining
a parallel implementation which exploits linear algebra [3], [4] for the affinity
computation of the whole data set [2]. But the input parameters which are the
affinity parameter and the number of clusters limit these methods. To address
this limitation, a fully unsupervised parallel strategy based on domain decompo-
sition was proposed in [6] which preserves the quality of global partition thanks
to overlapping interface. From the first results, we have observed that the main
part of the time is spent in the spectral clustering step and we encountered
memory limitation with large problems.

In this paper, we study the robustness of the parallel spectral clustering with
overlapping interface presented in [6] by investigating sparsification techniques
and introducing sparse structures and adapted eigensolvers in order to treat
larger problems. Then we test this improvements on geometrical examples and
image segmentations.

2 Parallel Spectral Clustering

Let consider a data set S = {xi}i=1..n ∈ Rp. Assume that the number of targeted
clusters k is known. First, the spectral clustering consists in constructing the
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affinity matrix based on the Gaussian affinity measure between points of the
dataset S. After a normalization step, the k largest eigenvectors are extracted.
So every data point xi is plotted in a spectral embedding space of Rk and the
clustering is made in this space by applying K−means method. Finally, thanks
to an equivalence relation, the final partition of data set is defined from the
clustering in the embedded space. Algorithm 1 presents the different steps of
spectral clustering.

Algorithm 1. Spectral Clustering Algorithm

Input: data set S, number of clusters k

1. Form the affinity matrix A ∈ R
n×n defined by:

Aij =

⎧⎨
⎩
exp

(
−‖xi−xj‖2

(σ/2)2

)
if i �= j,

0 otherwise,
(1)

2. Construct the normalized matrix: L = D−1/2AD−1/2 with Di,i =
∑n

j=1 Aij ,

3. Assemble the matrix X = [X1X2..Xk ] ∈ R
n×k by stacking the eigenvectors asso-

ciated with the k largest eigenvalues of L,
4. Form the matrix Y by normalizing each row in the n× k matrix X,
5. Treat each row of Y as a point in R

k, and group them in k clusters via the K-means
method,

6. Assign the original point xi to cluster j when row i of matrix Y belongs to cluster j.

This spectral clustering method could be adapted for parallel implementation
[6] as a fully unsupervised method (see Figure 1). This avoid extracting the
largest eigenvectors of a fully affinity matrix which complexity is of O(n3) [5].

The principle is based on domain decomposition with overlaps. By dividing
the data set S in q sub-domains, each processor applies independently the spec-
tral clustering algorithm on the subsets and provide a local partition. For each
subdomain, a quality measure which exploits the block structure of indexed affin-
ity matrix per cluster is used to determine the number of clusters. This heuristic
avoids us to fix the targeted of clusters k. The final number of clusters k will
be provided after the grouping step. The gathering step is dedicated to link the
local partitions from the sub-domains thanks to the overlapping interface and
the following transitive relation: ∀xi1 , xi2 , xi3 ∈ S,

if xi1 , xi2 ∈ C1 and xi2 , xi3 ∈ C2 then C1 ∪ C2 = P and xi1 , xi2 , xi3 ∈ P (2)

where S is a data set, C1 and C2 two distinct clusters and P a larger cluster
which includes both C1 and C2. By applying this transitive relation (2) on the
overlapping interface, the connection between subsets of data is established and
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Fig. 1. Principle of the parallel spectral clustering

provides a global partition. We can summarize this Master-Slave implementation
with Algorithm 2 and Algorithm 3.

We can notice that when we split the original data set into overlapping sub-
pieces of data set, we gain on two aspects:

– memory consumption: the local spectral clustering analysis of each sub-piece
involves the creation of a local affinity matrix. The size of the matrix is n2,
n being the cardinal of the data subset. The sum of the memory needs for
all these local affinity matrix is much less than that needed for the affinity
matrix covering the global data set. The consequence is that we can manage
bigger data set, data set whose size cannot permit us to run with only one
processor.

– floating point operations: the analysis of each subproblem is made from the
extraction of eigenvectors in the scaled affinity sub-matrix: one extracted
eigenvector for each identified cluster of the data subset. In that respect, the
parallel approach enables us to decrease drastically the cost of this eigenvec-
tor computation: each subproblem will include a number of clusters much
less than the total number of clusters in the whole data set.

Nevertheless, as we want to be able to consider larger and larger data sets, as,
for instance, in image segmentation (see 4.2) or genomic applications, we still
encounter memory limitation when the number of points in a local data subset
is too much for the memory capacity of one processor.

3 Sparsification of Spectral Clustering

Despite the domain decomposition, the most time consuming is dedicated to
the spectral clustering algorithm. To address this limitation and the memory
consumption ones, we investigate a thresholding as sparsification technique.
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Algorithm 2. Parallel Algorithm: Master

1: Pre-processing step
1.1 Read the global data and the parameters
1.2 Split the data into q subsets
1.3 Compute the affinity parameter σ with the formula given in paper [6];

the bandwidth of the overlapping is fixed to 3× σ
2: Send the sigma value and the data subsets to the other processors (Mpi Send)
3: Perform the Spectral Clustering Algorithm on its subset

3.1 Computation of the spectrum of the affinity matrix (1): classical routines
from LAPACK library [7] are used to compute selected eigenvalues,
eigenvectors of the normalized affinity matrix A for its subset of data points

3.2 Number of clusters: the number of clusters k with the heuristic [6]
3.3 Spectral embedding: the centers for K-means initialization in the spectral

embedding are chosen to be the furthest from each other along a direction
4: Receive the local partitions and the number of clusters from each processor

(Mpi Recv)
5: Grouping Step

5.1 Gather the local partitions in a global partition thanks to the transitive relation
given in paper [6]
5.2 Output a partition of the whole data set S and the final number of clusters k

Algorithm 3. Parallel Algorithm: Slave

1: Receive the sigma value and its data subset from the Master processor (MPI CALL)
2: Perform the Spectral Clustering Algorithm on its subset
3: Send the local partition and its number of clusters to the Master processor (MPI

CALL)

3.1 Theoretical Interpretation

From the definitions of both the Gaussian affinity Aij between two data points
xi and xj and the Heat kernel Kt(x) = (4πt)−

p
2 exp

(−‖x‖2/4t) in free space
R∗

+ × Rp, we can interpret the gaussian affinity matrix as discretization of heat
kernel by the following equation:

Aij = (2πσ2)
p
2Kt

(
σ2/2, xi − xj

)
. (3)

So, we can prove that eigenfunctions for bounded and free space Heat equation
are asymptotically close [8]. With Finite Elements theory, we can also prove that
the difference between eigenvectors of A and discretized eigenfunctions of Kt is
of an order of the distance between points include inside the same cluster. This
means that applying spectral clustering into subdomains resumes in restricting
the support of these L2 eigenfunctions which have a geometrical property: their
supports are included in only one connected component. In fact, the domain de-
composition by overlapping interface does not alter the global partition because
the eigenvectors carry the geometrical property and so, the clustering property.

Let now interpret a thresholding of the affinity matrix on the clustering result.
This leads to restrict the approximation to the finite elements which satisfy
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homogeneity mesh condition in the interpretation. In other words, this means
that it strengthens the piece-wise constancy of the dominant eigenvectors from
the normalized Gaussian affinity matrix. But the threshold should be well-chosen
and should be coherent according to the data distribution. So it should be defined
function of both dimension of the data and number of data as defined in [8].
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(b) With thresholding

Fig. 2. Thresholding of the weighted adjacency graph

From another point of view, the affinity matrix could be also interpreted as a
Gaussian weighted adjacency graph. The thresholding will control the width of
the neighborhoods. This parameter chosen according to the affinity parameter
plays a similar role as the parameter ε in case of the ε-neighborhood graph. A
thresholding of the largest distances is equivalent to cancel edges which con-
nect data points very distant from each other as represented in Figure 2. So
it strengthens the affinity between points among the same cluster and, so, the
separability between clusters.

3.2 Thresholding

However a threshold should be heuristically defined to build an automatic spar-
sified matrix. We define the threshold that should represents a distance adapted
to any distribution of input data. To do so, we start by defining a distance Dunif

as the distance in the case of the uniform distribution of n points in this enclosing
p-th dimensional box in which the data are equidistant each other. This uniform
distribution is reached when dividing the box in n smaller boxes all of the same
size, each with a volume of order Dp

max/n where Dmax is the maximum of the
distance between two data point xi and xj , ∀i, j ∈ {1, .., n}. The corresponding
edge size which defines Dunif is given by:

Dunif =
Dmax

n
1
p

(4)

The thresholding will be function of Dunif for any kind of data distribution S.

4 Numerical Experiments

As numerical experiments, we first begin by testing the thresholding on geomet-
rical examples for data set of small size. Then some tests on larger data set are
investigated on image segmentation examples.
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(a) Clustering result with thresholding (b) Affinity matrix : lower tri-
angular without threshold, up-
per triangular with threshold
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Fig. 3. Example 1: data set, sparsity of the affinity matrix, memory cost and timings

4.1 First Validations

For first validations, we consider two geometrical examples represented in Fig. 3
(a) and Fig. 4 (a) in which the clusters could not be separated by hyperplanes: the
first one with four rectangles of n = 1200 points and the second one with a target
of n = 600 points. The eigenvectors were provided by the reverse communication
required by the Fortran library ARPACK [9].

We measure the timings in seconds, in function of the threshold, of the con-
struction of the affinity matrix and of the computation of eigenvectors. The
memory cost is evaluated in function of the threshold by the number of non-
zeros elements in the affinity matrix.

We can notice on (c) sub-figure that we gain a lot of memory when we decrease
the threshold i.e. when we drop the connections of points at a distance larger
than it. In fact, this sub-figure shows the memory space required for the storage
of the affinity matrix by using a sparse structure (i, j, value(Aij)).

We also remark on (d) sub-figure that the time to construct the affinity matrix
decreases in this case. Indeed, the computation of the component Aij requires to
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(a) Clustering result with thresholding (b) Affinity matrix : lower
triangular without threshold,
upper triangular with thresh-
old
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Fig. 4. Example 2: data set, sparsity of the affinity matrix, memory cost and timings

compute an exponential (1). So because the selection of the connections we keep
is done only with the distance, we don’t compute the non-useful components
and save a lot of floating point operations.

So we have a response to the memory consumption and timing limitations
we mentioned previously. As we can see on the first validations, a thresholding
strategy allows for considerable gains in terms of memory requirements and
computational performance.

If we look the timing for the extraction of the eigenvectors, the time remains
the same for acceptable values of the threshold. But we encounter a limit to
the sparsification technique with example 2: a strong threshold could imply a
very sparsified affinity matrix and an ill-conditioned matrix. In this case, the
eigenvector computation becomes the most time consuming task in the sense
that the algorithm from Arnoldi method does not converge.
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4.2 Another Application: Image Segmentation

For image segmentation, the domain decomposition is applied geometrically on
the image and also on the brightness distribution (or color levels) as shown
in the figure 5. In fact, we include both 2D geometrical information and 1D
brightness (or 3D color levels) information in the spectral clustering method in
the sense that there does not exist some privileged directions with very different
magnitudes in the distances between points along theses directions. The step
between pixels and brightness (or color levels) are about the same magnitude.
Thus, a new distance in the affinity measure is defined for image. In the same
way, a global heuristic for the Gaussian affinity parameter is proposed in which
both dimension of the problem as well as the density of points in the given 3D
(or 5D for colored image) are integrated. By considering the size of the image I,
the Gaussian affinity Air is defined as follows:

Air =

{
exp
(
− d(Iij ,Irs)

2

(σ/2)2

)
if (ij) �= (rs),

0 otherwise,

with the distance between the pixel (ij) and (rs) defined by:

d (Iij , Irs) =

√(
i− r

l

)2

+

(
j − s

m

)2

+

(
Iij − Irs

256

)2

(5)

Parallel spectral clustering was used for image segmentation [6] and we present
now the first results of the sparsified parallel spectral clustering applied on image
segmentation.

Computational Environment
The parallel numerical experiments were carried out on the Hyperion supercom-
puter1. Hyperion is the latest supercomputer of the CICT (Centre Interuniver-
sitaire de Calcul de Toulouse). With its 352 bi-Intel ”Nehalem” EP quad-core
nodes it can develop a peak of 33TFlops. Each node has 4.5 GB memory ded-
icated for each of the cores and an overall of 32 GB fully available memory on
the node that is shared between the cores.

3D Image Segmentation
The first example is a Mahua illustration of Benjamin Zhang Bin which presents
some continuous degradation of grayscale levels. This grayscale image of 232764
data points is divided in 20 subdomains. We perform experiments with differ-
ent values of the factor. The threshold is given by the product of the factor
with Dunif defined by (4). Fig. 6 summarizes the memory consumption (black:
maximum consumption on one sub-domain, red: average consumption, blue:
minimum).

1 http://www.calmip.cict.fr/spip/spip.php?rubrique90

http://www.calmip.cict.fr/spip/spip.php?rubrique90
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Fig. 5. Example of domain decomposition for image segmentation : geometrical de-
composition on the left, brightness distribution and decomposition on the right

Fig. 6. Example of image segmentation in grayscale: memory cost function of the factor

As we can observe, we are able to decrease this memory consumption by a
factor two on average without losing the quality of image segmentation as we
can see in Fig. 7. There is no significant difference between the result with the
full matrix and the one with sparsification with a factor 3.

5D Image Segmentation
The second example represents a photo of Yann Arthus Bertrand of colored fields
in Vaucluse. This is a color image of 128612 points which is also divided in 20
subdomains. In Fig. 8, the memory consumption is plotted.

With this example we are able to divide by 10 this consumption when we take
a factor of 1 without loss of quality as we can see in Fig. 9.

However with this example, we tried to further reduce the factor. We experi-
ment that with the value 1, we reach a limit because with factors lower than 1 we
notice a significant loss of quality in the segmentation as we can see in subfigure
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(a) original (b) full

(c) factor=3

Fig. 7. Example of 3D image segmentation: original data set, clustering result without
thresholding and with thresholding (factor 3)

Fig. 8. Example of 5D image segmentation in colors: memory cost function of the
factor
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(a) original (b) full

(c) factor=1 (d) factor=0.9

Fig. 9. Example of image segmentation: original data set, clustering result without and
with thresholding (factor = 1 and factor = 0.9)

(d) of Fig. 9 that presents the results with a factor of 0.9. As Dunif defined by
(4) represents the distance for an uniform distribution, clusters may exis if there
are data points which are separated by a fraction of Dunif . So for a value of
factor lower than 1, the thresholding could affect the clustering result.

5 Conclusion and Ongoing Works

As we mentioned in the conclusion of our work at the previous VECPAR con-
ference [6], we have begun to study sparsification techniques in the construction
of affinity matrix by dropping some components that correspond to points at a
distance larger than a threshold. We validate this approach in matlab by showing
that the number of non zero of the affinity matrix decreases with still some good
results in terms of spectral clustering and even some gains in the time spent to
compute the affinity matrix.

These results are confirmed when we use sparsification with our parallel spec-
tral clustering solver. We are able to show that we are able to reduce significantly
the size of the affinity matrix without loosing the quality of the segmentation
solution.
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We have still more experiments to perform and some improvements to achieve.
First, we have to investigate in all the available tunings in ARPACK to be sure
to use the less memory when computing the eigenvectors and eigenvalues. We
will then be able to compare the timings with or without sparsification. And
finally, we have to perform experiments with bigger images for which we can’t
have solution if we don’t use sparsification.

References

1. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm.
In: Proc. Adv. Neural Info. Processing Systems (2002)

2. Chen, W.-Y., Yangqiu, S., Bai, H., Lin, C.-J., Chang, E.Y.: Parallel Spectral Clus-
tering in Distributed Systems. IEEE Transactions on Pattern Analysis and Machine
Intelligence (2010)

3. Song, Y., Chen, W.Y., Bai, H., Lin, C.J., Chang, E.Y.: Parallel spectral clustering.
In: Processing of European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (2008)

4. Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral grouping using the Nystrom
method. IEEE Transactions on Pattern Analysis and Machine Intelligence (2004)

5. Yan, D., Huang, L., Jordan, M.I.: Fast approximate spectral clustering. In: Proceed-
ings of the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (2009)

6. Mouysset, S., Noailles, J., Ruiz, D., Guivarch, R.: On a strategy for spectral clus-
tering with parallel computation. In: Palma, J.M.L.M., Daydé, M., Marques, O.,
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Abstract. The increasing complexity, heterogeneity, and rapid evolu-
tion of modern computer architectures present obstacles for achieving
high performance of scientific codes on different machines. Empirical
performance tuning is a viable approach to obtain high-performing code
variants based on their measured performance on the target machine. In
previous work, we formulated the search for the best code variant as a
numerical optimization problem. Two classes of algorithms are available
to tackle this problem: global and local algorithms. We present an exper-
imental study of some global and local search algorithms on a number
of problems from the recently introduced SPAPT test suite. We show
that local search algorithms are particularly attractive, where finding
high-preforming code variants in a short computation time is crucial.

Keywords: automatic performance tuning, search, black-box optimiza-
tion.

1 Introduction

The rapid rate of innovations in computing architectures has widened the gap
between the theoretical peak and the achievable performance of scientific codes
[1]. Often, scientific application programmers address this issue by manually
rewriting the code for the target machine, but this approach is neither scalable
nor portable. Empirical performance tuning or automatic performance tuning (in
short, autotuning) is a promising approach to address the limitations of manual
tuning. This approach consists of identifying relevant code optimization tech-
niques (such as loop unrolling, register tiling, and loop vectorization), assigning
a range of parameter values using hardware expertise and application-specific
knowledge, and then either enumerating or searching this parameter space to
find the high performing parameter configurations for the given machine. Using
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this approach, several researchers have achieved considerable success in tuning
scientific kernels for both serial and multicore processors [1].

In large-scale empirical performance tuning, the computation time needed to
enumerate all parameter configurations in a large decision space is prohibitively
expensive. Hence, effective global and/or local search algorithms that examine
a tiny subset of the possible configurations are required. Typically, global algo-
rithms can be characterized by their dynamic balance between exploration of
the search space and exploitation of the accumulated search history. They are
theoretically guaranteed to find the globally best configuration at the expense
of a long search time. In practice, however, they are run until user-defined stop-
ping criteria are met. Examples include branch and bound, simulated annealing,
genetic algorithms, and particle swarm optimization. In contrast, local search
algorithms do not emphasize exploration and instead repeatedly try to move
from a current configuration to a nearby improving configuration. Typically, the
neighborhood of a given configuration is problem-specific and defined by the user
or algorithm. These algorithms terminate when a current configuration does not
have any improving neighbor and hence is locally optimal. Examples include
the Nelder-Mead simplex, orthogonal search, variable neighborhood search, and
trust region methods. The disadvantage of local search algorithms is that, de-
pending on the search space and initial configuration, they can terminate with a
locally optimal configuration that performs much worse than a globally optimal
configuration.

Search problems in empirical performance tuning are defined by a specific
combination of a kernel, an input size, a set of tunable decision parameters,
a set of feasible parameter values, and a default/initial configuration of these
parameters for use by search algorithms [2]. Several global and local search al-
gorithms have been deployed for empirical performance tuning. Seymour et al.
[9] performed an experimental comparison of several global (random search, a
genetic algorithm, simulated annealing, particle swarm) and local (Nelder-Mead
and orthogonal search) optimization algorithms. Similarly, Kisuki et al. [6] com-
pared random search, a genetic algorithm, and simulated annealing with pyramid
search and window search. In both these studies, the experimental results showed
that the random search was more effective than the other algorithms tested. A
reason is that in the tuning tasks considered, the number of high-performing
parameter configurations is large and hence it is easy to find one of them. More-
over, we suspect that the adopted local search algorithms were less effective
because they were not customized. Although Norris et al. [7] implemented the
Nelder-Mead simplex method, simulated annealing, and a genetic algorithm in
the empirical performance tuning framework Orio, the authors did not conduct
an experimental comparison. A number of works deploy local search algorithms
for empirical performance tuning. Examples include orthogonal search in AT-
LAS [11], pattern search in loop optimization [8], and a modified Nelder-Mead
simplex algorithm in Active Harmony [10]. However, a comparison with global
search algorithms was not available. From the literature, it is not clear whether
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local search or global search is best suited for empirical performance tuning and,
in particular, under what conditions one class may be better than another.

In this paper, we focus on a setting where the available computation time
for tuning is highly limited. Our hypothesis is that appropriately modified local
search algorithms can find high-performing code variants in short computation
times. This is based on the rationale that the exploration component of global
search algorithms is less beneficial in empirical performance-tuning problems
where finding high-performing configurations in short computation time is more
important than finding the optimal configuration. We conduct an experimental
study of some global and local search algorithms on a number of problems from
the SPAPT test suite [3]. The main contribution of the paper is empirical evi-
dence for the effectiveness of the local search algorithms under short computation
times.

2 Search Algorithms

For global search algorithms, we consider random search, a genetic algorithm,
and simulated annealing. For local search algorithms, we use the Nelder-Mead
simplex method and a surrogate-based search.

Random search has been shown to be effective on a number of performance-
tuning tasks. The parameter configurations are sampled uniformly at random
from the feasible domain D without replacement. At iteration k, each x ∈ D not
already sampled has probability 1

|D|−k+1 of being selected as the point x(k). In

the absence of other criteria, the algorithm terminates after |D| iterations with
the global minimum.

Genetic algorithms are among the most widely used global search algo-
rithms. These algorithms follow a common framework that consists of iteratively
modifying a population of configurations by applying a set of evolutionary op-
erations such as reproduction, recombination, and mutation. Several variants
exist; the best one depends on the problem at hand and the parameters of the
algorithm. We use a genetic algorithm based on [4].

Simulated annealing is inspired by the physical process of annealing. The
key algorithmic component is an annealing schedule that slowly reduces the
value of a temperature parameter T so that the probability of accepting a worse
configuration decreases as the search progresses [5]. The mechanism of accepting
worse configurations during the search helps the algorithm escape from bad local
configurations encountered in the early stages of the search.

The Nelder-Mead simplex method was originally developed to solve un-
constrained continuous optimization problems. It works with a simplex of n+ 1
vertices, where n is the number of parameters. At each iteration, the simplex
moves away from less promising regions of the search space using reflection,
expansion, contraction, or shrink operators. We use a Nelder-Mead simplex al-
gorithm that is customized for empirical performance tuning task; see [2] for
implementation details.

Surrogate-based search is an algorithmic framework that uses inexpen-
sive surrogates to approximate the computationally expensive objective. For our
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experiments, we consider a basic trust-region algorithm [12] that operates on
discrete values. It starts by constructing a quadratic surrogate function by eval-
uating a few configurations. At each iteration, a configuration that minimizes
the surrogate is evaluated, and the ratio between the true function value and
the predicted surrogate value is used to monitor the quality of the surrogate.
When the surrogate is accurate enough, the trust region is expanded; otherwise,
the region is contracted, and a promising neighbor of the current configuration
is evaluated to improve the surrogate.

3 Numerical Experiments

We evaluate the algorithms on problems from the SPAPT test suite [3], a col-
lection of extensible and portable search problems in automatic performance
tuning. These problems are implemented in an annotation-based language that
can be readily processed by Orio [7]. Originally, the SPAPT problems had inte-
ger and binary parameters (scalar replacement, array copy, loop vectorization,
and OpenMP) with both bound and algebraic constraints. Since the focus of
our study is on bound-constrained problems with integer parameters only, we
removed all algebraic constraints and binary parameters from the problems. The
numerical parameters include loop unroll/jamming ∈ [1,. . .,50], cache tiling ∈
[1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048] (treated as [1,. . .,12]), and reg-
ister tiling ∈ [1,. . .,32]. The number of parameters ni ranges between 8 and 38,
and the size of search space |D| ranges between 5.31× 1010 and 1.24× 1053. Of
the 18 problems in the SPAPT test suite, we use only 12. On the remaining 6
problems, since the algebraic constraints are required for the correctness of the
transformation, we did not use it.

Random search (RS), the genetic algorithm (GA), simulated annealing (SA),
modified Nelder-Mead simplex (mNM), and modified surrogate-based search
(mSBS) were implemented and run in MATLAB version 7.9.0.529 (R2009b). We
adopted the default parameter values for all the algorithms. Experiments were
carried out on dedicated nodes of Fusion, a 320-node cluster at Argonne Na-
tional Laboratory, comprising 2.6 GHz Intel Xeon processors with 36 GB of
RAM, under the stock Linux kernel version 2.6.18 provided by RedHat.

We considered the objective value f(x) at a parameter configuration x as the
average computation time over 10 generated code runs. Other objective functions
can be adopted, such as the median or minimum; see [3] for a discussion. For
the initial configuration from which the algorithms start, we set each parameter
to its lower bound. This corresponds to a code variant without any transforma-
tion. We used 100 code evaluations as the stopping criterion for each algorithm.
Given a parameter configuration, a code evaluation consists of code transforma-
tion, compilation, and execution. For the size of the search space that we have,
this corresponds to the evaluation of only 8.05 × 10−50% (|D|=1.24 × 1053) to
0.00000018% (|D|=5.31× 1010) of the total configurations.

Figure 1(a) shows a bar chart of the speedups at different time intervals. We
compute “x% of max T” as follows: For each problem, max T is the maximum
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(a) Default initial configuration; default
input size; 100 function evaluations

(b) Default initial configuration; large
input size; 100 function evaluations

(c) Poor initial configuration; default in-
put size; 100 function evaluations

(d) Default initial configuration; default
input size; 500 function evaluations

Fig. 1. Speedups obtained by each algorithm as a function of % of the budget
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elapsed time that any of the five algorithms took to complete 100 evaluations.
The speedups obtained by each algorithm after 10%, 25%, 50%, and 100% of
the max T is computed and shown in the figure. From the speedups obtained
at these intervals, we observe that the two local search algorithms, mNM and
mSBS, obtain high-quality configurations in short computation time. The main
advantage here comes from the time required for the algorithms to complete 100
code evaluations. RS and GA require longer search times because they spend
more time exploring the domain and tend to be slower than mNM and mSBS.
The performance advantage of mNM and mSBS comes from the fact that the
time per evaluation tends to be shorter once a good configuration has been found.
On 9 of 12 problems, we found that the local algorithms outperformed the global
algorithms. The observed speedups are between 1.15 and 3.0, respectively. On
adi and correlation, we cannot detect a significant speedup.

Under the same computation budget of 100 code evaluations, we tested the
behavior of the algorithms on larger input sizes (the size of the arrays and
matrices in the kernels) by doubling the input size for each problem. The results
are shown in Fig. 1(b). Although the times to complete 100 code evaluations are
larger than those observed with smaller input sizes, the trend in the behavior
of the algorithms is similar: the local search algorithms obtain high-performing
code variants in short computation time. Out of 12 problems, on 8 problems the
local search algorithms are better than the global search algorithms. Although
mNM and mSBS find high-quality configurations in short computation time,
on gessumv, given enough time GA obtains a better configuration than mNM
and mSBS. On mm and correlation, we cannot detect a significant difference
between the results of the global and local search algorithms.

Figure 1(c) shows the results when the starting point is set to the upper-
bound values. From the exploratory studies, we found that the initial configu-
rations with lower-bound values are reasonably good starting points and that
those at the upper bounds are extremely poor. We found that mNM and SA
tend to be sensitive to the starting point and obtain poor results. These algo-
rithms also required longer search times because the parameter configurations
closer to the upper bounds have longer transformation time and consequently
longer compile time. Whereas SA tries to escape from the nonpromising region,
mNM stagnates, spending most of the search time exploring the neighborhood
of the current configuration. We found mSBS to be less sensitive than mNM or
SA to the starting point because it uses randomly sampled configurations within
a larger initial neighborhood to form the initial surrogate. GA uses the initial
configuration only as an individual of the population in the first iteration. Since
RS is independent of the starting point, it found better code variants than did
mNM and SA in short computation times. The results show that the poor start-
ing points significantly reduce the effectiveness of the local search algorithms.
Out of 12, only on 6 problems did the local search algorithms, in particular,
mSBS, outperform the global search algorithms. We also used the center of the
hyperrectangle D as a starting point. The results observed are similar to those



Global and Local Search Algorithms in Performance Tuning 267

(a) GAs on atax; |D| = 2.81 × 1021 (b) SAs on atax; |D| = 2.81× 1021

Fig. 2. Best objective value obtained by each algorithm as a function of search time.
Each algorithm is allowed to perform 100 function evaluations. Markers are placed at
every 20 evaluations.

with lower bounds as in Fig. 1(c), local algorithms being better than the global
algorithms despite a slightly worse starting value than the lower bounds.

Figure 1(d) illustrates the behavior of the algorithms using a slightly larger
computation budget (500 code evaluations) as the stopping criterion. The al-
gorithms start from initial configurations in which each parameter is set to its
lower-bound value. Global search algorithms benefit from a larger number of
iterations. On 7 out of 12 problems local search algorithms dominate global
search algorithms, but the difference in the speedups between global and local
algorithms is smaller than that observed with 100 evaluations. Although local
search algorithms find high-quality code variants in short times, they spend the
search effort in exploring the neighborhood of a local configuration to certify
local optimality.

To further test that the exploration component is the major factor affect-
ing the performance of global search algorithms, we reduced their degree of
exploration. Specifically, for GA and SA, we reduced the values of the muta-
tion parameter μ and starting temperature parameter T , respectively. We used
three GAs: GA-I (default μ = 0.5), GA-II (μ = 0.1), and GA-III (μ = 0.001).
Similarly for SA, we used SA-I (default T = 1.0), SA-II (T = 0.1), and SA-III
(T = 0.001). Figures 2(a) and 2(b) illustrate the results of the algorithms on
atax for 100 code evaluations. The default lower-bound configuration is used as
a starting point. The results of our study show that reducing the exploration
in global search algorithms is beneficial but the appropriate reduction depends
on the algorithm characteristics, the problem, and the starting point. GA-I and
GA-II obtain configurations with similar runtime, but the latter obtains this
configuration in a shorter period of time (1200 CPU-seconds). However, an ex-
tremely small degree of exploration in GA-III leads to stagnation. In contrast,
although slightly slower, SA-III obtains a better configuration than do SA-I and
SA-II. Our conjecture is that given a good starting point, SA with a very low
degree of exploration can be effective.
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4 Conclusion

We investigated the issue of global versus local search in empirical performance
tuning under short computation times. We tested illustrative global and local
algorithms on bound-constrained search problems with integer parameters. We
used different initial configurations, input sizes, and stopping criteria. The re-
sults show that (1) the exploration capabilities of global search algorithms are
less useful; (2) given good initial configurations, local search algorithms can
find high-performing code variants in short computation time; and (3) poor
initial configurations can significantly reduce the effectiveness of both global
and local search algorithms that are sensitive to the starting point. From the
results, we conclude that when the available tuning time is severely limited,
carefully customized local search algorithms are promising candidates for em-
pirical performance-tuning problems that have integer parameters and bound
constraints.

Our future work includes the following: (1) problem-specific techniques to
handle binary parameters and constraints for both global and local search algo-
rithms, (2) effective restart and multi start strategies for local search to escape
from poor local configurations, (3) global algorithms that automatically adopt
exploration and exploitation parameters , (3) tuning of parallel scientific codes
using search algorithms, and (4) analysis of the impact of different target ma-
chines on various performance objectives.

Acknowledgments. We are grateful to the Laboratory Computing Resource
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paper.
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Abstract. This paper describes a performance model for read align-
ment problem, one of the most computationally intensive tasks in bioin-
formatics. We adapted Burrows Wheeler transform based index to be
used with GPUs to reduce overall memory footprint. A mathematical
model of computation and communication costs was developed to find
optimal memory partitioning for index and queries. Last we explored the
possibility of using multiple GPUs to reduce data transfers and achieved
super-linear speedup. Performance evaluation of experimental implemen-
tation supports our claims and shows more than 10fold performance gain
per device.

1 Introduction

Faster and faster computing systems are developed every day to cope with ever-
increasing complexity of problems that emerge in various areas of science and
technology. Performance growth comes from technological advancements and
mainly form architectures facilitating parallel data processing in various forms
(i.e. recently GPUs). At the same time algorithms known to solve particular
tasks themselves have many possibilities of improvement, taking into consider-
ation fact that overall performance comes not just from better algorithm, but
also on how it fits certain peculiarities of hardware platform and different pat-
terns of data distribution in heterogeneous systems. GPUs and clusters of GPUs
have recently become one of the main threads of supercomputing. Their compu-
tational characteristics are different from those of traditional systems and they
are relatively new to software developers, which makes the above-stated issues
even more important. Also while some applications have a pretty uniform data
model, like those solving various matrix-based mathematical problems, in other
applications data model itself is heterogeneous and its decomposition requires
a profound study of balancing storage and distribution of workload parts so
that we could better meet the platform characteristics and improve the overall
performance.

This paper focuses on the pairwise local DNA sequence alignment problem.
It is extremely computationally intensive as constant progress in sequencing
technology leads to ever-increasing amounts of data to be processed. We target
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GPU-based systems that have been shown to allow for greater performance in
sequence processing tasks due to their extreme parallel capacities [1].

Read alignment is basically a string matching problem and is typically done
by building index of a reference and then matching queries against it. There are
several types of indexes and corresponding match algorithms which were being
used for alignment problem. We made a survey of existing solutions [2],[3],[4],
and found that memory limitation is the performance bottleneck in all cases.
Workload size for both reference sequence and query set can dramatically sur-
pass available device memory and each index subdivision into smaller chunks
to fit into memory simply doubles execution time. For example human genome
contains approximately 3 billion of bases. Suffix array (array of integers giv-
ing the starting positions of suffixes of a string in lexicographical order) needs
9 bytes per base, so it will require 27 gigabytes of memory, while top modern
GPUs have about 6GB. To index bigger references 64 bit integers are required
and suffix array space complexity will be 17 bytes per base.

To reduce memory consumption we propose using matching algorithm based
on Burrows Wheeler Transform. This algorithm is mainly used for data com-
pression, but possibility of pattern matching using this transform was recently
described[5]. Index based on BWT is more than ten times smaller than index
based on suffix array. We perform an analysis of how this algorithm fits GPU
characteristics and do model implementation to see if we can actually get sig-
nificantly better execution time with this smaller memory footprint algorithm.
This is the first contribution of this paper.

The second one is the performance model of possible memory utilization
strategies. This model allowed us to find best proportions and succession of
memory allocations and data transfers to maximize overall performance. We
found that optimal performance is possible to achieve by using multiple GPU
devices.

2 Background

In most living organisms the genetic instructions used in their development are
stored in the long polymeric molecules called DNAs. To decipher this information
we need to determine the order of nucleotides - the elementary building blocks
of a DNA that are also called bases. This task is important for many emerging
areas of science and medicine.

Modern sequencing techniques split the DNA molecule into pieces that are
also called reads. Reads are processed separately to increase the sequencing
throughput. Then they are aligned to the reference sequence to determine their
position in the molecule. This process is called read alignment and is extremely
computationally intensive, as a complete genome of such complex organisms as
humans is billions of bases long, and the amount of reads data produced by
sequencing machines is usually an order of magnitude bigger [6][7].

Technically read alignment is a substring matching operation: we search for
a pattern of length m in reference string of length n, where n>>m.
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Straight-forward naive approach has daunting asymptotic performance of
O(mn), so aligning is done by building index and than matching reads against it.

While theoretically fastest search algorithm uses suffix tree, its space com-
plexity makes it inefficient for big references[8]. There were successful attempts
to decrease memory footprint of matching algorithm or even to trade compu-
tational complexity for space consumption. In MummerGPU++ the authors
replaced search algorithm based on suffix tree with one based on suffix array,
which lead for another performance improvement[4].

Space complexity of suffix array is also linear, and constant multiplier under
O(n) is 9 bytes per symbol in case of two-bit implementation. Search complexity
for suffix array is O(m+logn) where m is the length of query and n is the length
of reference.

Evaluation of MummerGPU++ showed that on references over 100MB the
memory limit is still taxing performance, since it leads to splitting the index into
small pieces to fit into GPU memory and repeating search for each part. Search
complexity does not depend (or depends very little) on index size, so splitting
index in chunks increases computation time linearly. Copying index and queries
to the device also takes its share of time of time. We will provide a more detailed
analysis of time consumed by data transfers later on.

As the chief way to increase performance we propose using an algorithm with
lesser memory footprint. Such an algorithm can be based on Burrows-Wheeler
transform and some additional data structures (FM-Index) instead of suffix ar-
ray. BWT was introduced in 1994 by Burrows and Wheeler[9] and was used
mainly for data compression. There are some recent sequence alignment solu-
tions using BWT, some of them are not parallel (Bowtie [10]), some are using
GPUs, but for different class of alignment [11]. Also in [12] authors discuss the
potential of using GPUs for exact sequence matching on single GPU.

3 BWT Based Aligner

The Burrows-Wheeler Transformation of a text T, BWT(T), is constructed as
follows: The Burrows-Wheeler Matrix of T is the matrix whose rows are all
distinct cyclic rotations of T$ sorted lexicographically. BWT(T) is the sequence
of characters in the rightmost column of the matrix[9]. It is possible to use
BWT for substring search. We adopted backward search algorithm proposed by
Manzini and Ferragana [5] for GPU. Here Occ is the number of occurrences of
given symbol before given position in transformed sequence. Array C contains
total number of occurrences of each symbol.

BWT has a property called LF mapping: the ith occurrence of character X
in the last column of the BWT matrix corresponds to the same character in
original text as the ith occurrence of X in the first column. Backward search
procedure (fig. 1) uses LF mapping to calculate in rounds the rows of the matrix
that begin with progressively longer suffixes of the query string.

The running time of the Backward search procedure is dominated by the
cost of evaluating Occ(c, q). If we build a two-dimensional array OCC such that
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OCC[c][q] = Occ(c, q) the backward search procedure runs in O(m) time and it
requires O(|Σ|n logn) = O(n log n) bits.

The result of the Backward search procedure is not the position(s) of matches
in the reference sequence but the range of elements in the corresponding suffix
array, containing indexes of actual matches in the reference. We suggest using
suffix array on a host (which usually has enough memory to store it entirely) to
decipher output of Backward search procedure in O(1) time. While it is possible
to resolve positions of matches using the transformed text and OCC, generat-
ing all match positions on GPU will provide unpredictable amount of results per
query, i.e. each execution thread will need to use unpredictable amount of device
memory, and that is unsuitable for CUDA execution model. It will also cause
additional overhead for moving data from device to host. To decipher search re-
sults on the host side we simply iterate suffix array elements bound by backward
search procedure output values.

We use straightforward 2bits
i :=p , c :=P[ p ] ,
F i r s t :=C[ c ]+1 , Last :=C[ c +1] ;
wh i l e ( ( F i r s t <= Last )

and ( i >= 2) ) do
c :=P[ i −1] ;
F i r s t :=C[ c ]+Occ ( c , F i r st −1)+1;
Last :=C[ c ]+Occ ( c , Last ) ;
i := i −1;
i f ( Last<F i r s t )

then re turn no matches
e l s e re turn <First , Last >.

Fig. 1. Procedure Backward search

encoding for BWT itself. To compress
OCC we split the transformed text
into buckets of arbitrary size. For each
bucket we will store the number of oc-
currences of each symbol in the trans-
formed text before the first symbol of
this bucket. For example, in 64 bit im-
plementation for buckets of 32 sym-
bols we will need 8 bits per symbol
to store compressed OCC and 8 con-
sequent memory reads to count the number of occurrences for any symbol. It
gives us 10 bits of index per 8 bits of reference sequence and it is possible to
change this ratio by varying OCC bucket size. 64 bit suffix array need 17bytes
of memory, which is 13.5 times bigger. By merely replacing suffix array with
BWT we already achieved 3-4 times performance improvement for cases where
the size of data is too big to fit in memory for suffix-array based software but
can be processed in one pass with our approach. Fig.2a) show how increasing
reference size affects performance whether index can (BWT) or can not (suffix
array) fit into GPU memory. We used NVIDIA Tesla 2050 card (2.6Gb memory)
on the machine with 2.67GHz 4 cores Intel Core i7 920 CPU and 12GB of RAM
running under CentOS 5.4.

Experimental implementation takes reference and a set of named queries in
FASTA format as input. Output is a set of positions in the reference where
queries are mapped. We chose CUDA as target architecture as it is de facto
standard for GPGPU programming. The algorithm was implemented in C++
for CUDA programming language.

The CUDA kernel that performs the query search is an almost straight-
forward implementation of procedure Backward search, where each thread is
processing its own query independently. Each thread stores results in its own
preallocated global memory and accesses the reference index only by reading.
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Therefore there are no race conditions and no need for synchronization. Perfor-
mance profiling showed that major share of time is consumed by loading data
from global memory. On references over 100mb MummerGPU++ starts to sub-
divide index and loses performance, while with our approach index up to several
gigabytes (i.e. complete human genome) can be stored in GPU memory. For big-
ger reference sequence still must be subdivided. In the next chapter we present
mathematical model of how memory partitioning affects performance and use it
to find optimal parameters.

(a) Vs MummerGPU++ (b) Effect of memory partitioning

Fig. 2. Performance evaluation

4 Performance Model and Workload Balancing on
Single-GPU

The theoretical complexity of matching algorithm itself is O(q), where q is query
length. In case of sequential execution increasing number of queries to process
obviously increases execution time in the same linear manner. So we can say
that the overall execution time depends linearly on the overall size of query set.
We just need to keep in mind need to have query set bigger than amount of data
necessary to saturate GPU parallel capacity (which is in our case approximately
10mb, much is negligibly small).

Let us call memory size Smem, index size Sidx and query set size Sqry. The
overall execution time consists of the computation time itself and the time spent
on moving data between host and device: T = Tcmp + Tmem. This formula as-
sumes the worst case scenario when there is no overlapping between computation
and data transfers. Cases where such overlapping is possible will be discusses be-
low.

Suppose we have to split the index into Nidx chunks of size Pidx each and the
query set into Nqry chunks of Pqry bytes. There is an obvious correlation between
Nidx and Nqry, but for the time being we shall not include it in the model to
keep it simpler. We have to match each chunk of query set against each part
of index, one such iteration (kernel launch) taking C ∗ Pqry time as complexity
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does not depend on index size. We have to repeat the matching procedure for
each part of index and for each part of query set, which gives as execution time
Tcmp = C ∗Nidx ∗Nqry ∗ Pqry = C ∗ Sqry ∗Nidx.

Now let’s consider the communication expenses of moving index and query
set parts from host to device. We have two basic options here. One option is to
place one part of index on device, processing all subsets of query set one by one
and then doing the same procedure for next part of index. The other option is to
do the matching vice versa, i.e. matching one part of query set against all parts
of index and then proceed to the next chunk of query set.

In the first case we need to copy Pidx bytes for each part of index, then
Nqry times Pqry bytes of query subsets which equals to Sqry bytes and then
to repeat this process Nidx times. Given host-to-device transfer bandwidth β
communication will take Tmem = β(Pidx + Sqry) ∗ Nidx = βSidx + βSqryNidx

time. The overall time will be T = C ∗ Sqry ∗ Nidx + βSidx + βSqryNidx =
(C + β)SqryNidx + βSidx.

For the second case using the same logic we get T = C ∗Sqry ∗Nidx+βSqry +
βSidx ∗Nqry overall execution time.

Let α be the share of memory occupied by index. Then each chunk of index
will use αSmem bytes and each chunk of queries (1 − α)Smem bytes. We will
have to split index into Nidx = Sidx/αSmem chunks and query set into Nqry =
Sqry/(1−α)Smem chunks. Figure 2b shows how variation of α changes the overall
execution time and that the first case allows for a potentially higher performance.

Actual value of C is retrieved form experiment and it depends on many pa-
rameters, like minimal required match length etc, but the asymptotic behavior
will be the same. Performance of test implementation on big workloads confirms
the predicted model (figure 2b).

So in the first case the overall performance increases as the index size is in-
creased. This process continues up to the point where the memory remaining for
queries is enough to run kernels with full memory saturation, which is relatively
small and is not shown in figure2b.

In the second case we increase index size up until the point where communi-
cation expenses of repeating transfers of big index chunks are equal to the time
spent on processing queries on extra number of index chunks. Maximal perfor-
mance is better in the first case and it seems preferable from the point of view
of pure GPU productivity. Moreover, it allows us to overlap communication and
computation, as we can split queries without much penalty making performance
even closer to ideal.

However, in this model we do not take into account the fact that results of
matching of each subset of queries against each part or index need to be merged
with each other. In the first case we have to store results of matching against
each part of index somewhere until we process all queries and it will tax CPU-
side memory/storage. This approach is completely inapplicable in a situation
where queries are being streamed from some source (i.e. a sequencing machine)
and we need to process each query block as it comes so we have to stay with
worst case model - or we can try using multiple GPUs.
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5 Multiple GPUs

Index chunk distribution among multiple GPU devices allows for smaller amount
of repeatedly loaded index chunks per device. Ideally index chunks are not being
moved at all. In this case theoretical performance in terms of pure GPU produc-
tivity will be even better, though not significantly, than that provided by the
first approach on a single GPU device. On each device we spend C ∗Sqry+βSqry

time for moving and processing all queries (once again, overlapping is possible
in this case).

The process of deciphering and join-

Fig. 3. Performance details

ing results consists of following stages.
We get the ranges of suffix array ele-
ments as output of each GPU matching
routine and restore actual positions of
matches in reference sequence. For each
device output we will have such list of
positions. Then we need to merge these
lists together and sort resulting list. It does indeed look like time consuming
routine, but it obviously has O(Nidx) complexity, the same as complexity of
search procedure itself. The exact multiplier depends on implementation, CPU
characteristics and average number of matches for each query. However, given
realistic search output, our sequential test implementation performed merging of
8 chunks of one million results in less then one second, which is definitely faster
than processing corresponding amount of data on GPU (fig. 3). In previous ex-
periments we used queries of 100 bases long, so 1 million results correspond to
100Mb of query data. In tests on both real and generated sequences multi GPU
performance per device was same as for single GPU case 1. We performed bench-
marking on one of the Tsubame 2.0 supercomputer nodes with 2 six-core Intel
Xeon X5670 CPUs and 54GB of RAM running under SUSE Linux Enterprise
Server 11 SP1 for this test. The node has three NVIDIA Tesla 2050 GPUs con-
nected with 16 lanes of PCI Expression 2 on it. We used 100 bases long queries
and set minimal match length to 40 bases. For 6GB reference sequence aligning
efficiency per device was 3.55 million bases per second for single GPU and 3.7 for
multi GPU implementation when all 3 devices were used. So 3 GPUs compared
to single one gave us 3.11 times speed-up, i.e. 1.04 efficiency. Optimal number
of devices is equal to the number of index chunks of optimal size. Increasing
number of GPUs further will negatively affect the efficiency as index chunk size
will be decreased.

6 Conclusion

Better software performance does not necessarily come from computational com-
plexity of underlying algorithms. Choice of particular data structures and corre-
sponding algorithms depends on how they meet characteristics and features of
target hardware. This is particularly true for GPU devices.
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This paper shows that using more compact data structures can lead to
performance improvement in short read alignment problem. We refactored Mum-
merGPU++, previous highly-efficient GPU exact-matching read alignment soft-
ware by replacing suffix array with BWT and rewriting the corresponding search
algorithms and get 3-4 times performance improvement. The analysis of applica-
tion behavior for the case of workload size considerably exceeding device memory
proves that higher performance can me achieved by intelligent strategy for data
decomposition. We also showed that best performance per device for read align-
ment problem can be achieved by using multiple GPUs, and the optimal number
of GPU devices for a particular task can be estimated from reference size.
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Abstract. While ILU preconditioner is a powerful and popular precon-
ditioning method for Krylov iterative solvers on sparse matrices derived
from finite element analysis, it have been exploerd the scalable hybrid
parallelization scheme for ILU preconditioner targetting multi/many-
core clusters. Hierarchical Interface Decompostion (HID) is a robust and
efficient parallel method for ILU preconditioner. The extended version of
HID (ExHID), our proposed method, introduces thicker level-2 connector
in order to consider fill-ins. Basing on HID and ExHID we developed hy-
brid parallel ILU preconditioner with fill-ins using OpenMP/MPI hybrid
parallel programing models. While inter-node parallelization is based
on HID/ExHID, we applied two different methods, multicolor based re-
ordering and HID/ExHID to intra-node parallelization. The two imple-
mentations according to different hybrid strategy, HID(inter-node)-HID
(intra-node) and HID(inter-node)-MC(intra-node), are evaluated
through strong scaling tests and the better hybrid strategy is explored.
HID-HID generally results with better convergence and less fill-ins. On
the other hand, HID-MC could be more stable strategy than HID-HID
when increasing the number of threads per process.

1 Introduction

Domain decomposition method(DDM) is widely used parallelization method in
many finite element applications. Then distributed sparse linear systems derived
from each subdomain is considered as distributed objects[1,2] on each process.
On the other hand, preconditioining method using incomplete LU factorization
without fill-in (ILU(0)) is popular and effective preconditioner for finite element
applications. Under the parallelization based on DDM, block Jacobi-type local-
ized preconditioner are widely used for parallel iterative solvers[3,4]. While they
provide excellent parallel performance for well-defined problems, the number of
iterations for convergence increases gradually according to the number of pro-
cessors. Moreover this preconditioner decreases its robustness for ill-conditioned
problems with many processors, since it ignores the global effect of external nodes
come of inherently sequential natures of ILU preconditioner. The common rem-
edy is to extend the overlapped elements between domains[5,6]. At the expenses
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of additional computation and communications it still only allows us to consider
the global effect without updates from previous row operations. Another com-
mon remedy to parallelize ILU preconditioner is multicoloring based ordering.
Multicoloring the subdomains which is assigned to processors, yeilds the paral-
lelism from a global ordering[7]. But the archieved parallelism is limited to the
color number and fiding optimal color number becomes another difficulty which
relates to the performance. The Parallel Hierarchical Interface Decompostion
Algorithm (PHIDAL) provides robustness and scalability for parallel ILU/IC
preconditioners basing on “hierarchical interface decompostion (HID)“[8]. HID
exploits a hierarchical decompostion of the graph which yields natural parallelism
in the factorization process. For taking into account fill-ins, we introduced addi-
tional layers in higher level connectors defined in HID. The proposed method is
called Extended HID (ExHID). We developed parallel ILU preconditioners with
fill-ins (ILU(k)) basing on HID/ExHID.

To enhance our parallel ILU(k) preconditioner for multi-core environment, we
applied a hybrid parallel programming model. A hybrid parallel programming
model is often employed in order to archieve minimal parallelization overheads
on multi-core clusters. Corse-grained parallelism is archieved through domain
decompostion by message passing among nodes, while fine-grained parallelism is
obtained via loop-level parallelism inside each node using compiler vased thread
parallelisation techniques, such as OpenMP. HID/ExHID is applied to inter-node
parallelization using message-passing interface (MPI), while two different meth-
ods are applied for intra-node parallelization using multi-threading(OpenMP).
One is HID/ExHID and the other is multicolor-based reordering method. Both
method are applied to distributed local data to yield the thread-level paral-
lelism. We call the former strategy HID-HID since HID/ExHID is used for
both intra-node and inter-node parallelization. And the latter is called HID-
MC since HID/ExHID is used for intra-node parallelization and multicoloring
is used for inter-node parallelization. Using OpenMP/MPI hybrid parallel pro-
gramming model, we implemented finite element based simulations of linear
elasticity problem solved by Krylov iterative solver with these hybrid parallel
ILU(k) preconditioners. Developped codes are evaluated through strong scaling
tests on multicore cluster called “T2K Open Supercomputer using up to 256
cores. Numerical experiments showed HID-HID generally leads to better conver-
gence and less fill-ins. On the other hand, HID-MC could be more stable strategy
than when increasing the number of threads per process.

The rest of this paper is organized as follows. Section 2 gives a overview
of Hierarchical Interface Decompostion (HID) and parallel ILU preconditioning
algrithm based on HID. And it descibes how fill-ins are introduced in the parallel
ILU preconditioning algorithm by the extended HID. Section 3 describes tatget
application based on finite element method and detailed implementations focus-
ing on the thread level parallelization for two strategies, HID-HID and HID-MC.
Section 4 contains the details on the test environment and numerical experiments
followed by the conclusions section.
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2 Hierarchical Interface Decompostion(HID) and
Extended HID

By exploiting a static “hierarchical” decompostion of the graph, Hierarchical In-
terface Decompostion (HID) yeilds natural parallelism in the factorization and
consider the global effect from external domain in parallel ILU/IC precondi-
tioning process. However we cannot consider fill-ins from external domain in
parallel ILU/IC preconditioning via HID. In order to consider fill-ins from ex-
ternal domains, we developed extended version of HID(ExHID). In this section
we explain HID and our proposed method, ExHID. HID can be viewed as the
methods from the angle of an ILU factorization combined with a form of nested
dissection ordering in which cross points in the separators play a special role.
The hierarchical decompostion starts with a partioning of the graph with one
layer of overlap. Then “stages” or “levels” are defined from thie partioning, with
each level (or stage) consisting of a set of vetex grpups (small connected sub-
graphs). Each vertex group of a given stage is a separator for the vertex groups
of a lower stage. The incomplete factorization process proceeds level by level
from lowerst to higherst. Due to the separation property of the vertex groups
at different levels, this process can be carried out in a highly parallel manner.
These vertex groups are called connectors in definition of HID. The concept of
connectors of different levels and keys are introduced for the purpose of applying
this idea to general graphs as follows:

– Connectors of level-1 (C1) Are the sets of interior points. Each set of interior
points is called a sub-domain.

– A connector of level-k (Ck) (k¿1) is adjacent to k sub-domains.
– Connectors in the same level never be adjacent to each other.
– Key(u) is the set of sub-domains (connectors of level-1, C1) connected to

vertex u.

Fig.1 (left) shows the example of the partition of a 9-point gird into 4 domains.
In this case, there are 4 connectors of level-1 (C1, sub-domain), 4 connectors of
level-2 (C2) and 1 connector of level-4 (C4). Note that different connectors of the
same level are not connected directly, but are separated by connectors of higher
levels. These properties provide the block structure of the coeficient matrix A
through reordering the unknowns by this decompostion. By reordring the un-
knowns according to their level numbers, from the lowest to highest, the block
strucuture would be appeared as shown in Fig.1 (right). This block strucutre
leads to natural parallelism in ILU/IC decomposition or forward/backward sub-
stitution processes. Fig.2 shows pseudo code of forward substitution in ILU(0)
preconditioning. The most outer loop is for levels. At the end of each level global
communication is performed according to hierarchical communication table. Hi-
erachical communication table is communication table in which export/import
nodes communicated between neighbor processes are arranged by level hierar-
chy. This communication performed at the end of each level transfers the update
information calculated in the present level to the next level. Thus HID allows us
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to consider the global effect of external domains in parallel ILU precondition-
ing, which leads to more robust parallel preconditioning than block Jacobi-type
localized preconditioners.

However global effect from external doamains which can be considered via
HID is confined within the case of ILU(0)/IC(0). Fig.3 shows example of domain
decomposition of two dimentional 9-point grid into two domains via HID (left)
and how the local data are distributed on two processes. Though it depends on
the numbering assined to node A and node B, these two nodes are in the distance
which can affect each other when considering 2nd level of fill-ins. Suppose node
A will affect on node B as a 2nd level of fill-in, we cannot take into account the
effect from node A by the given distirubted local data sets since node A and node
B are in the different distributed data sets. The first remedy is simply extending
overlapped elements between domains. This allows us to consider the fill-in effect
on node B from node A. But the fill-in effect from node A can only be calculated
without any updates even which might have been occured on node A from other
nodes related to A. Thus it fundamentally results the same as blcok jacobi-type
preconditioning. Then thicker layer of separators is introduced in HID. Fig.4
illustrates the level-2 connector is extended from one layer to three layers. Then
node A which was in level-1 connector in Fig.3, becomes in the level 2 connector.
Since the nodes are reordered according to the level from lower to higher, ILU
preconditioning process proceeds level by level from lower to higher. Node A in
the lowe level is always calculated prior to node B. This allows us to calculate the
fill-in effect on node B from node A with updates already calculated. Extension
of layer of higher level connector allows us to consider fill-ins but also leads to
load inbalance in general.
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Fig. 1. Partitionoing of a 9 point grid into 4 subdomains by Hierarchical Interface De-
compostion, resulted with four C1 connectors(sub-domains), four C2 connectors, one
C4 connectors. The numbers showed on the nodes are keys. The number of keys cor-
responds the level (left). Block structure is appeared in the coefficient matrix through
HID reordering (right).
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Fig. 2. Forward substitution process in preconditioning. Global communication is per-
formed at the end of each level, which allows us to caluculate the next level using
updated data from previous level. This makes us parallel ILU(0) more consistent by
HID than Block Jacobi-type localized method.

B A B A

Fig. 3. Internal nodes assigned to two processes by domain decomposition via HID
(left). There are two level-1 connectors (C1, sub-domains) shown by Black nodes and
one level-2 connector(C2). The distributed local mesh is given with one overlapped
layer (right).

3 Test Application and the Implementation

In this section test problems is discribed and the detailed implementations fo-
cusing on the intra-node parallelization are explained on each method employed
in our two strategies, HID-HID and HID-MC.

3.1 Finite Element Based Simulations of Linearelasticity Problems

The test problem is finite element based simulations of three dimensional lineare-
lasticity problem. Simple cube shaped analysis model is discritised by tri-linear
hexahedral elements. Poisson’s ratio and Young’s modulus are given homoge-
neously for all elements and set to 0.25 and 1.0 respectively. The boundary
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B BA A

Fig. 4. The distributed local data sets when introducing thicker separator in HID (left).
The level-2 connector (C2, gray nodes) is extended to three layers. Thicker separator
expand the range for global operations (right).

conditions are described in Fig.5. The Generalized Productive-type BiCG iter-
ative solver with ILU(k) preconditioner is applied. Iterations are repeated until
the norm ‖r‖ / ‖b‖ is less than 10−8. The code is based on the framework for
parallel FEM procedures of GeoFEM[9], and GeoFEM’s local data structure is
applied. The local data strucutres in GeoFEM are node-based with overlapping
elements[9]
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Fig. 5. Test model of simple cube geometry and the boundary conditions

3.2 HID/ExHID Ordering for Distributed Data

To yield the parallelism in the each distributed local data sets obtained by HID,
we again apply HID/ExHID to the disributed data sets. We apply HID for
ILU(0) and ExHID for ILU(k) to the disributed data sets on each MPI process
and the resulted sub-domains (C1) are assigned to threads and the adjacent Ck

connectors to C1s are also distributed among threads. Thus the number of sub-
domains resulted by HID/ExHID corresponds to the number of threads in our
implementation. And in our implementation of ExHID, extension of connector
is applied in only level-2 connectors. No extensions in Ck connectors (k > 2).
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Depending on the level of fill-ins to be considered we set the thickness. Fig.6
(right) illustrates our implementation of ExHID for the same example of 2D
9-point grid mesh. The dashed line shows the distribution of conncectors among
threads. In Fig.6 (left) the decomposition by HID is illustlated for comparison.
Without thicker separator node A and node B are in the same level in HID
(left). Thus they are to be processed in parallel by different threads. If consider
the fill-in effect on node A from node B, no updates on node B are avairable for
node A. Moreover this trigger the data dependency problem between threads
since one thread having node A is going to read the data on node B to calculate
fill-ins on node A while another thread having node B is going to write the data
on node B. By introducing thicker separator as in Fig.6 (right) put node B in
level-2. Nodes in the higher level are processed after the nodes in the lower level
so node B is processed after node A. This removes the data dependency and
allows us to calculate the fill-in effect with update information.

However thicker separator is now applied for only level-2 connector, the same
data dependency problem can happen between nodes in the higher level connec-
tors than level 2, for example node C and node D in Fig.6 (right). Although they
are in the distance which can affect when considering the 2nd level of fill-ins,
they are in the same level. If these nodes are assigned to different threads, the
same data dependency occurs between the threads. For avoiding such possible
data dependencies in high level connectors, we ignore the fill-in effect from the
node in the same level but on the different thread in our implementation.

Level1

Level2

Level3

Level4

A B

C

D

Level1

Level2

Level4

A B

thread# 3 thread# 2

thread# 1thread# 0

thread# 3 thread# 2

thread# 1thread# 0

Fig. 6. The partitioning of a 9 point grid in to 4 subdomains by HID (left) and that
by ExHID (right). Introducing thicker level-2 connector allows us to consider the fill-in
effect on node A from node B and it also remove data dependency on it. Dashed line
shows how connectors are distributed among threads.

3.3 Multicoloring Based Ordering for Distributed Data

As another parallelization method applied to distributed local data set is mul-
ticoloring, which is commonly used for parallelization of ILU factorizations. For
taking into account the effect of fill-ins we apply the coloring rule which becomes
strict according to level of fill-ins. For example, if we don’t consider fill-ins at
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all, it is enough to color the nodes avoiding the adjacent nodes being in the
same color. On the contrary, we apply the coloring rule so that every node are
in different color from its neighbors’ and “neighbors’ of neighbors”. Thus the
number of colors increases in accordance with the level of fill-ins considered.

Fig. 7. Coloring rule for ILU(0) is simply to chose the color for each node avoiding
the node in the same color with its adjacencies (right). For parallelization of ILU(1)
each node has to be colored avoiding it in the same color with its adjacencies and
the adjacencies of its adjacencies. The more colors are needed acording to the level of
fill-ins to be considered.

3.4 Optimization for Memory Access

In the developed code, first touch data placement is considered. And appropri-
ate command lines for NUMA control is applied, which is suppoted by Linux
system, for efficient memory access to local memory. Minimizing memory access
overhead is important for cc-NUMA architecture, such as T2K/Tokyo[10]. In
order to reduce memory traffic in the system, it is important to keep the data
close to the cores that runs with the data. On cc-NUMA architecture, this corre-
sponds to making sure the pages of memory are allocated and owned by the core
that works with the data contained in the page. The most common cc-NUMA
page-placement algorithm is the first touch algorithm[11], in which the core first
referencing a region of memory has the page holding that memory assigned to
it. Very common technique in OpenMP program is to initialize data in parallel
using the same loop schedule as it will be used lated in the computations.

4 Numerical Experiments

We tested two different types of hybrid parallel strategies HID-HID and HID-MC
for solving the same problem discribed in section. To compare the performance
for hybrid parallel method as iterative solver with ILU(k) preconditioing, we
execute two numerical experiments. In both experiments we applied a strong
scaling. The first test is run to compare the performances of these strategies
using up to 16 nodes (256 cores) where the problem size is fixed at 3, 090, 903
DOF (1003 elements). The hybrid programming model applied is also fixed as
4x4 through this test. The second test is run to see their perfromances when the
number of threads per process is incrased. The number of processes is fixed at
eight and the problem size is fixed at 1, 590, 000 DOF (803 elements).
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4.1 Hardware Environment

Test environment is “T2K Open Super conputer (Todai Combined Cluster)
(T2K/Tokyo), which was developed by Hitach under “T2K Open Supercom-
puter Alliance”[12]. T2K/Tokyo is an AMD Quad-core Opteron based combined
cluster system with 952 nodes, 15,232 cores and 31 TB memory. Total peak per-
formance is 140 TFLOPS. T2K/tokyo is an integrated system of four clusters.
Number of nodes in each cluster is 512, 256, 128 and 56 respectively. Each
node includes four “sockets” of AMD Quad-core Opteron processors(2.3GHz),
as shown in Fig. Peack performance of each core is 9.2 GFLOPS and that of each
node is 147.2 GFLOPS. Each node is connected via Myrinet-10G network. In the
present work, up to 64 nodes of the system have been used. Because T2K/Tokyo
is based on cache-coherent NUMA (cc-NUMA) architecture, careful design of
software and data configuration is required for efficient memory access to local
memory as stated in the previous section. We applied 4x4 hybrid programming
model(four MPI processes x four OpemMP threads where one MPI process per
one socket and four OpenMP threads per one MPI process) which is the most
efficient case for this type of application on T2K.

Fig. 8. The node specification of T2K/Tokyo. Each node includes four “sockets” of
AMD Quad-core Opteron processors(2.3GHz). 16 cores per node.

4.2 Configuration of Hybrid Parallel Executions

We consider the fill-ins up to 2nd level of fill-ins. Thus ILU(0), ILU(1), and
ILU(2) are applied to the iterative solver. In HID-HID strategy, we apply HID(3)
for both ILU(1) and ILU(2). HID(3) is ExHID whose level-2 connector is ex-
tended to three layer of thickness. On the other hand, the number of colors
required for parallelization of ILU(k) become larger the fill-in level k increases.
In HID-MC strategy we set the number of colors for to the minimum number of
colors required to yeild parallelism. The number of colors tested in the numerical
experiments are eight for ILU(0), 27 for ILU(1), 64 for ILU(2).
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4.3 Strong Scaling Test Up to 256 Cores

Fig.9 shows a comparison of elapsed time per iterations between HID-HID and
HID-MC as increasing the number of nodes under 4x4 hybrid programming
model where the problem size is fixed at 3, 000, 000 DOF. For parallelization of
ILU(k), we apply HID(3) while the number of colors in HID-MC is set to the
minimum. Up to 256 cores(16 nodes), the similer scalabilities are observed for
both strategy. Fig.10 and Fig.11 shows another comparisons on convergence and
memory requirement between HID-HID and HID-MC. Fig.10 shows the itera-
tions required for convergence and Fig.11 shows the number of fill-ins occured
for ILU(1) and ILU(2). HID-HID leads to smaller values in both iterations and
memory than HID-MC. Finally Fig.12 show the comparison on total solver time
(elapsed time for total iterations) between HID-HID and HID-MC. Due to the
larger iterations and larger number of fill-ins which is directly related to the
computational the total solver time becomes larger by HID-MC than HID-HID
larger iterations.

4.4 Strong Scaling Test with Different Hybrid Programming
Models

Fig.13 shows solver time (elapsed time for total iterations) as the number of
threads per process incrases. The number of threads is increased from one to 16
while process is fixed at eight. The problem size is here 1, 590, 000 DOF. Fig.13
again shows it cost longer time by HID-MC than HID-HID. Fig.14 shows the it-
erations required for convergence as the number of threads per process increases.

Fig. 9. Time per iteration with increase of the number of nodes under 4x4 hybrid
parallele programming on the 1003 elements problem. GPBiCG preconditioner with
ILU(0), ILU(1), and ILU(2) preconditioner are applied. Intra-node parallelization for
ILU(1) and ILU(2), HID(3) (ExHID adopted with thickness three) are used in HID-
HID. On the other hand, the minimum number of colors, 27 colors for ILU(1) and 64
colors for ILU(2), is set in HID-MC. The result by HID-HID is shown in the left and
HID-MC in the right.
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Fig. 10. Iteration with increase of the number of nodes under 4x4 hybrid parallele pro-
gramming. GPBiCG preconditioner with ILU(0), ILU(1), and ILU(2) preconditioner
are applied. Intra-node parallelization for ILU(1) and ILU(2), HID(3) (ExHID adopted
with thickness three) are used in HID-HID. On the other hand, the minimum number
of colors, 27 colors for ILU(1) and 64 colors for ILU(2), is set in HID-MC. The result
by HID-HID is shown in the left and HID-MC in the right.

Fig. 11. The number of Fill-ins with increase of the number of nodes under 4x4 hybrid
parallele programming which is resulted in ILU(1)/ILU(2) for each strategy. The result
by HID-HID is shown in the left and HID-MC in the right.

The iterations are also larger by HID-MC than HID-HID. But it is observed that
the more iterations are required for ILU(1) and ILU(2) case as increasing the
number of therads per processe in HID-HID, while those stay almost the same
for the number of threads in HID-MC. This is because our ILU(k) implementa-
tion based on ExHID can only avoid data dependency between C1 connectors.
In our implementation, we ignore the fill-in effect when the fill-in node has data
dependency (i.e. the fill-in node is assigned to different thread and is in the same
level) from higher level connectors, as discribed in section3.2. Such nodes to be
ignored due to data dependency exist more and more in the higher level when
the number of C1 connectors increases (i.e. the number of threads increases).
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Fig. 12. Solver time (elapsed for total iterations) with increase of the number of
nodes under 4x4 hybrid parallele programming. GPBiCG preconditioner with ILU(0),
ILU(1), and ILU(2) preconditioner are applied. Intra-node parallelization for ILU(1)
and ILU(2), HID(3) (ExHID adopted with thickness three) are used in HID-HID. On
the other hand, the minimum number of colors, 27 colors for ILU(1) and 64 colors for
ILU(2), is set in HID-MC. The result by HID-HID is shown in the left and HID-MC
in the right.

Fig. 13. Solver time (elapsed for total iterations) with increase of the number of threads
per processes by GPBiCG with ILU(0), ILU(1), and ILU(2) for problem of 803 elements.
The number MPI process is fiexed at eitht. 803 elements. HID-HID case is shown in
left and HID-MC in right.

4.5 Number of Colors in HID-MC

For HID-MC we set the minimum number of colors needed for parallelization in
previous execution. Now we increase the number of colors and compare the con-
vergence and computation time between HID-HID and HID-MC. Fig.15 shows
iterations and solver time for ILU(0)+GPBiCG executed by Hybrid 4x4 case
using 16 nodes(256 cores) on small test model (803 elements, 1, 594, 323 DOF).
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Fig. 14. Iterations with increase of the number of threads per processes by GPBiCG
with ILU(0), ILU(1), and ILU(2) for problem of 803 elements. The number MPI process
is fiexed at eitht. 803 elements. HID-HID case is shown in left and HID-MC in right.

Fig. 15. 803elements ILU(0)+GPBiCG, Intranode parallelization for ILU(0) HID-HID
(no thicker separator), HID-MC (color number 8(minimum))

As Fig.15 displays, the iterations become shorter, while the solving time become
shorter once and gradually become larger again in accordance with increase of
the number of colors. This is simply because the larger number of colors leads
the more frequent syncronization among threads. Thus the performance of HID-
MC is directly related to the number of colors and if we can find the optimal
number of colors (in this case 100 is the optimal), HID-MC can archive the close
performance to HID-HID.
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5 Concluding Remarks

ILU(k) preconditioner is widely used powerful preconditioner in many finite ele-
ment applications and it is important to establish the hybrid parallel scheme for
ILU(k) preconditioner. HID and ExHID is a robust and effective parallelization
method of ILU(k) and we developed hybrid parallel scheme for ILU(k) precon-
ditioner based on HID and ExHID. For intra-node parallelization we can have
several variations of methods. In order to find more efficient strategy for hy-
brid parallel ILU(k), we implemented using two differetn strategies, HID-HID
and HID-MC. By applying OpenMP/MPI hybrid programming model, our two
implementation are evaluated on multi-core cluster using up to 256 cores. HID-
HID strategy leads better convergence and fewer fill-ins than HID-MC gener-
ally. However towarding many core environment more than 100, HID-MC can
be more stable strategy than HID-HID. Multicoloring brings us another task
how to find optimal number of colors but the flexibiliy of multicoloring which is
easily applicable to the case of the large number of threads becomes advantage to
HID-HID. Depending the test environment, tactical selection of hybrid strategy
is important for ILU(k) preconditioner on multi/many- core clusters.
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Abstract. This paper describes parallelization techniques for a multi-
grid solver for finite difference analysis of three-dimensional Poisson
equations. We first apply our block red-black ordering for parallelization
of a Gauss-Seidel (GS) smoother, whose sequentiality is often problem-
atic in parallelization of multigrid methods. Furthermore, we introduce
a new multiplicative Schwarz smoother, in which multiple GS iterations
are performed in each of red-black ordered blocks. Numerical tests are
conducted on a cluster of multi-processor nodes comprising four quad-
core AMD Opteron processors to examine the effectiveness of these par-
allel smoothers. The multi-process test using 216 processes in flat-MPI
model shows that the block red-black GS smoother and its multiplicative
Schwarz variant achieve 1.3 and 1.8 times better performance than the
conventional red-black GS smoother, respectively.

1 Introduction

Solving Poisson equation problems often plays an important role in computa-
tional science simulations. To accelerate these simulations, the development of
a fast Poisson solver is demanded. This paper focuses on the finite difference
method for three-dimensional Poisson equation problems. In the finite difference
analysis, it is important to efficiently solve the derived linear system of equa-
tions. In this paper, the multigrid method is used as the solver of the linear
system. This method is suitable for large-scale problems, because it achieves a
convergence rate independent from the number of degree of freedoms [1]. In this
paper, we discuss the parallelization of the multigrid solver.

It is well known that the Gauss-Seidel (GS) smoother shows good convergence
for the linear system arising in the discretized Poisson equation, and is superior
to other smoothers such as (weighted) Jacobi. However, the GS smoother can-
not be parallelized straightforwardly due to its data-dependency. Accordingly,
several GS-based smoothers have been proposed for parallelization. The hybrid
smoother combining weighted Jacobi and GS smoothers is a well-known easily
parallelizable smoother based on the additive Schwarz method. Another popular
method is to impose red-black ordering on GS smoothing to have a convergence
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rate superior to the hybrid smoother as well as a large degree of parallelism [2].
However, when the red-black GS smoother is implemented with stride memory
accesses to the data array elements, the computational time for a smoothing step
becomes longer than the sequential GS smoother due to poorer cache utilization.

To remedy this problem, we first introduced the block red-black ordering to
parallelize the GS smoother [3]. Next, for further improvement of the solver per-
formance, we have proposed a parallel multiplicative Schwarz smoother based on
the block red-black ordering [4]. The smoothing step of the proposed smoother
is faster than that of the red-black GS smoother, while it attains a good conver-
gence rate comparable to the sequential GS smoother. In this paper, we mainly
verify the effectiveness of the block red-black GS smoother and its variant in
numerical tests of multi-process implementations, the solver performance on a
multi-threaded environment was reported in [4].

2 Multigrid Solver for Three-Dimensional Poisson
Equation

This paper deals with a multigrid solver for the finite difference analysis of a
three-dimensional Poisson equation given by

−∇2φ = ρ on Ω, (1)

where ρ is the given source, φ is the unknown spatial function, and Ω is the
analyzed domain. Applying a 7-point finite difference scheme to (1), we obtain
a linear system of equations to solve:

A(0)u0 = f0. (2)

In this paper, we solve (2) by means of geometrical multigrid method, in which
multiple coarse grids are generated from the original grid. Using these grids, the
solution process of the multigrid method is given by Alg. 1. In the algorithm,
A(i), Ii+1

i , Ii
i+1 and L denote the coefficient matrix on i-th level grid, the re-

striction operator from i-th level to i+1-th level, the prolongation operator from
i+1-th level to i-th level, and the number of grids, respectively. The vectors ui

and ũi are for i-th level unknowns and their approximation, respectively. In the
analysis, the i-th level grid is twice as fine as the i+1-th level grid in each direc-
tion. We use the full-weighting restriction operator and tri-linear prolongation
operator shown in, for example, [2] on the grids.

3 Parallelization of Geometric Multigrid Poisson Solver

3.1 Parallelization of Multigrid Method

The major components of a multigrid solver are a smoother and operators for
restriction and prolongation. Since the restriction and prolongation operations
are naturally parallelized by an usual domain decomposition, these operations



294 M. Kawai et al.

Smoothing on A(0)u0 = f0

f1 = I1
0

(
f0 −A(0)ũ0

)

Smoothing on A(1)u1 = f1

...

Solve A(L−1)uL−1 = fL−1

...

Smoothing on A(1)u1 = f1

ũ0 ← ũ0 + I0
1 ũ

1

Smoothing on A(0)u0 = f0

Alg. 1. Procedure of L-level V-cycle multigrid method

on a grid point are mutually independent from others. On the other hand, the
parallelization of the smoother is often problematic. For example, the weighted
Jacobi smoother can be easily parallelized, but its convergence rate is inferior to
the GS smoother. In the following subsection, we describe conventional GS-based
parallel smoothers which have been used in many practical applications.

3.2 Conventional Parallel Smoothers

Hybrid Smoother. The hybrid smoother consists of the weighted Jacobi
and the GS smoothers. It uses the weighted Jacobi method for boundaries of
each domain-decomposed region allocated to a process/thread so that the GS
smoother works on the interior region independently from those of other pro-
cesses or threads. The smoother can be regarded as an additive Schwarz
smoother, in which the GS method is used for the subdomain solver. The hybrid
smoother is included in the popular multigrid solver library, BoomerAMG [5].
Although the hybrid smoother has the advantage of implementation easiness, it
often entails a degradation in convergence. The convergence rate of the hybrid
smoother depends on the number of processes/threads, and it is often worsen
when that number is increased.

Red-black GS Smoother. In the 7-point finite difference scheme, each grid
point has data dependence only on adjacent 6 points. Consequently, when we
paint the grid points alternately by red and black, the grid points having an
identical color can be updated independently of each other. That is, after the GS
smoothing step is performed for red grid points in parallel, the smoothing step for
black grid points is also processed in parallel. This parallel smoothing technique
is called red-black GS (RB-GS) smoother. The convergence rate of the RB-GS
smoother can be different from that of the sequential GS smoother in general.
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However, it is known that the RB-GS smoother has good convergence when
compared to the sequential one in homogeneous Poisson equation problems.
Accordingly, the RB-GS smoother is the most widely-used parallel smoother for
the problems.

In finite difference analyses, the RB-GS smoother is usually implemented with
stride memory accesses of unknown and right-hand vector elements, because they
are mapped from three-dimensional grid points with lexicographical ordering and
thus red and black elements are arrayed alternately. This ordering is expedient
for easy and efficient implementation of the whole of a simulation problem, and
so it is for those of the restriction and prolongation. However, the efficiency
of the smoother itself is degraded from the GS smoother because the stride
accesses have poorer cache-line utilization causing lower cache-hit ratio and thus
performance.

4 Block Red-Black Gauss-Seidel Smoother and Its
Variants

In this paper, we aim to present a parallel smoother free from stride accesses for
high-performance while keeping a convergence rate comparable to the conven-
tional RB-GS smoother. For this, we first introduce block red-black ordering,
which we originally proposed was for parallel ILU preconditioning [3], to paral-
lelize a GS smoother. Next, we present a new multiplicative Schwarz smoother,
being an enhanced version of the block red-black GS smoother.

4.1 Block Red-Black Ordering

Block red-black ordering is one of the parallel ordering techniques. In the order-
ing, the entire grid is first divided into multiple blocks. Next, red-black ordering
is applied to the blocks as shown in Fig. 1, where a block of a color never has
direct data-dependency on other blocks of the same color. This feature allows us
to parallelize the smoothing step of the block red-black GS (BRB-GS) smoother,
so that the GS smoothing is applied to all red blocks in parallel and then to all
black ones also in parallel.

It is important that arbitrary ordering can be used in a block and thus the
lexicographical one is used in the analysis. Consequently, this ordering makes
the block-level GS smoother implemented without stride memory accesses. That
is, by choosing the block size sufficiently large especially for the axis conforming
to the memory address ordering, the accesses of unknown and right-hand vector
elements in the GS smoothing in the block are made almost sequential. This
means that a cache-line having a series of vector elements is almost fully utilized
by a series of smoothing operations resulting in higher cache-hit ratio and thus
more performance than the conventional (i.e., element-wise) RB-GS smoother.

As for the convergence rate, it is strongly expected that the BRB-GS’s rate is
sufficiently high and comparable to the RB-GS’s and the sequential GS’s. This
expectation is based on the fact that the BRB-GS with the block size of one for
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Fig. 1. Concept of block red-black ordering

each axis is just identical to the RB-GS while extremely large block size virtually
gives us the sequential GS smoothing. Though the convergence with block sizes
between these two extremes above needs to be investigated with real problems,
our numerical tests discussed afterward support our expectation.

Furthermore, the cache-blocking technique for smoothing and other compo-
nents, namely the restriction and the prolongation operations, shown in a context
of the sequential multigrid solver in [6], can be easily applied to the BRB-GS. To
use the technique in the BRB-GS, we only need to set the block size to match
the cache size, and to execute the restriction or the prolongation operation just
after/before the smoothing step in each block. Since this technique doubles the
utilization of a cache line, it should significantly improve cache-hit ratio and thus
performance.

4.2 Modified Block Red-Black Gauss-Seidel Smoother

In this subsection, we introduce a modified version of the BRB-GS smoother
to increase the total solver performance. In this version, we simply increase
the number of GS iterations in each red/black block from 1 to α > 1. The
smoother, denoted by mBRB-GS(α) hereafter, is regarded as a multiplicative
Schwarz smoother rather than a parallel GS smoother based on parallel ordering.
In the following, we discuss the advantage of this multiple iterations of block
smoothing.

In general, increasing the number of iterations, namely β, in a smoothing
step for the whole grid space, leads to improved convergence. However, since
grids are usually much larger than the cache size, the computational cost for one
smoothing step is also increased in proportion to β. As the smoother is dominant
in the multigrid solver in term of computational cost, the total computational
time is also proportional to β. Consequently, increasing β rarely reduces the
total computational time unless the convergence is improved by a factor of β or
more.

On the other hand, increasing the number of GS steps α for a block in the
BRB-GS is expected to have different behavior. Let ts be the computational
time required for the first smoothing step in a block. When we set the block
size less than the cache size, we can expect that the computational time for
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the succeeding smoothing step t̃s is much less than ts because of on-cache com-
putation. Consequently, the computational time tm for one smoothing step of
mBRB-GS(α) is given by

tm ≈ ts + (α− 1)t̃s < αts. (3)

From (3), even when the improvement in the convergence does not reach a factor
of α, the total computational time can be reduced by increasing the number of
GS steps in a block.

5 Numerical Results

5.1 Test Model and Used Parallel Computer

Numerical tests were conducted on the T2K Open Supercomputer at Kyoto
University to examine the developed multigrid Poisson solver. The parallel su-
percomputer consists of SMP nodes, each consisting of four AMD quad-core
Opteron 8356 (2.3 GHz) and 32 GB (DDR2-667) shared memory. The internal
network between computational nodes, which is based on the DDR-InfiniBand
technology, provides full bisection bandwidth and 8 GB/s for each node. The
code was written in Fortran90 and MPI. In the present study, we only use the
flat-MPI parallel programming model. It is noted that the multi-threaded im-
plementation reported in [4] is based on OpenMP.

In the test model, the analyzed domain Ω is given by [−0.5, 0.5]3 together
with Dirichlet boundary condition of φ = 0, and the source term is defined as

ρ(r) =

{
1 if r ≤ 0.015
0 otherwise

(4)

where r is the distance from the origin. To evaluate weak scalability, we fix the
finest grid size per process at 1283.

5.2 Performance Evaluation of the Multigrid Solver

Table 1 lists the computational time and the number of cycles of the multi-
grid solver with 1, 8, 64 and 216 cores (processes). Because the convergence
of the hybrid smoother is 1.7 times slower than the sequential GS smoother,
its parallel speedup is limited. On the other hand, the RB-GS and the BRB-
GS smoothers attain a convergence rate comparable to that of the sequential
GS smoother. However, the computational time for one multigrid cycle of the
RB-GS is longer than that of the sequential GS because of the stride memory
access. Consequently, only 63.7-fold (weak scaling) speedup is obtained by 216
processes compared with the sequential GS smoother. It is noted that the weak
scaling speedup ratio is given by (Ts×P )/T , where P is the number of processes
(cores), and Ts and T are the elapsed time in sequential and parallel computa-
tions, respectively. Table 1 also indicates that the BRB-GS has advantage in
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Table 1. Comparison of the computational time (s) and the number of cycles(in paren-
thesis) of parallel smoothers

Number of processes
1 8 64 216

Seq.GS 3.55(10) -

Hybrid - 9.99(17) 14.08(17) 15.08(17)

RB-GS 4.84 (9) 8.83(11) 11.39(10) 12.22(10)

BRB-GS 4.33(11) 6.22(11) 8.40(11) 9.43(11)

Table 2. Computational time (s) and the number of cycles(in parenthesis) of the

multigrid solver using mBRB-GS on 216 processes

po
1 2 3 4 5 6

pr

1 10.38/11 8.23/9 8.33/9 7.58/8 7.84/8 8.12/8
2 8.10/ 9 7.42/8 6.69/7 7.21/7 7.11/7 7.58/7
3 7.54/ 8 6.75/7 6.78/7 7.05/7 7.30/7 7.59/7
4 7.52/ 8 6.86/7 6.96/7 7.13/7 7.53/7 7.68/7
5 7.85/ 8 7.16/7 7.45/7 7.80/7 7.92/7 8.24/7
6 8.31/ 8 7.36/7 7.45/7 7.80/7 7.92/7 8.24/7

the computational time per cycle than the RB-GS, because of the more effi-
cient cache utilization. Therefore the BRB-GS attains better solver performance
than the conventional RB-GS smoother. The weak scaling speedup ratio of the
BRB-GS reaches 81.3 by 216 processes.

Next, the performance of the mBRB-GS is examined. We carried out a pre-
liminary test on single node using 16 treads for checking the computational time
for the first and the second smoothing steps for the block, ts and t̃s. On the grid
of 5123, ts and t̃s were measured 0.67 s and 0.11 s, respectively. The preliminary
test confirms the inequality(3) because t̃s is approximately one sixth of ts.

Table 2 shows the computational time and the number of iterations of multi-
process parallel processing with 216 processes when the mBRB-GS(pr) and the
mBRB-GS(po) are used for the pre- and post-smoothing steps, respectively. Ta-
ble 2 confirms that increasing the smoothing steps in the block leads to the
improvement in the solver performance. The best result of the mBRB-GS was
obtained when (pr, po)=(2, 3) for 216 processes. Figure 2 shows the weak scaling
speedup ratio of the solver with various parallel smoothers. In the test, (pr, po)
of the mBRB-GS was set to (2, 3). The numerical result shows the advantage
of the BRB-GS and the mBRB-GS over conventional parallel smoothers. In the
multi-process parallel processing, increasing the number of GS steps in the block
of the mBRB-GS improves the convergence without increasing the number of
MPI communications. Consequently, the mBRB-GS achieves 1.80 times better
performance than the RB-GS.



Parallel Smoother Based on Block Red-Black Ordering 299

 0

 20

 40

 60

 80

 100

 120

 0  50  100  150  200

pa
ra

lle
l s

pe
ed

up

Number of process

mBRB-GS
BRB-GS

RB-GS
Hybrid

Fig. 2. Weak scaling speedup of parallel multigrid solver with various smoothers com-
pared to a sequential solver with GS smoother

6 Conclusion

In this paper, we investigated the parallelization of a multigrid solver for three-
dimensional Poisson equation problems, focusing on the parallel processing of
the Gauss-Seidel (GS) smoother. First, we introduced the block red-black or-
dering technique to parallelize the GS smoother. In this method, the analyzed
grid is divided into multiple blocks, to which the red-black ordering is applied.
Numerical tests on 216 processes showed that the block red-black GS smoother
can be 1.3 times faster than the conventional red-black GS smoother due to
more efficient cache utilization. Next, we presented the modified version of the
block red-black ordering GS smoother (mBRB-GS). In this version, we iterate
GS smoothing in each block twice or more to have a like multiplicative Schwarz
smoother. The smoother improves the convergence without largely increasing
the computational time of one smoothing step. Consequently, the mBRB-GS
can be 1.8 times faster than the RB-GS on 216 processes.
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Abstract. This paper shows the runtime and cache-efficiency of par-
allel implementations of the Conjugate Gradients Method based on the
three paradigms Software Transactional Memory (STM), OpenMP and
Pthreads. While the two last named concepts are used to manage paral-
lelization as well as synchronization, STM was designed to handle only
the latter. In our work we disclose that an improved cache-efficiency does
not necessarily lead to a better execution time because the execution time
is dominated by the thread wait time at the barriers.

Keywords: Software Transactional Memory, OpenMP, Pthreads, Con-
jugate Gradients Method, Case Study.

1 Introduction and Motivation

Parallelization is state of the art in scientific computing for a long time, but
also comes with the need to synchronize parallel threads of execution. Efficient
synchronization is the key towards maximum performance on (shared mem-
ory) multicore architectures. Traditional synchronization primitives in OpenMP
(e.g., omp critical) and Pthreads (e.g., locks) achieve synchronization through
enforcing mutual exclusion. Threads may experience long delays when waiting
for a lock to become available. In the last decade Transactional Memory (TM)
has been proposed for synchronization. Instead of following the traditional pes-
simistic scheme of avoiding memory conflicts, TM favors an optimistic scheme
that detects and resolves conflicting accesses. The goal of this strategy is to
increase the scalability in regard to a high number of threads and coevally to
decrease the time needed for synchronization.
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In this paper, we evaluate the applicability of TM for the method of Conjugate
Gradients (CG), a solver for linear systems of equations that is frequently used
in many fields of application, especially in the area of structural mechanics and
computational fluid dynamics.

This paper is structured as follows. Section 2 reviews related work in the area
of Transactional Memory research and describes the method of CG. In Section 3
we will discuss our implementations which leads us to Section 4 where we present
our results. Section 5 concludes our work and presents ideas for future work.

2 Background on Transactional Memory

Writing efficient, highly scalable and correct parallel software is a challenging
task for programmers. They are in charge of the synchronization and communi-
cation of the involved threads in order to avoid memory conflicts and deadlocks.
Furthermore, one should have consolidated knowledge of the mechanisms of the
underlying runtime/operating system.

The idea behind TM is to simplify the process of writing parallel code by
providing basic constructs for synchronization. Originally Herlihy and Moss in-
vented TM in 1993 as an architectural extension to enable lock-free data struc-
tures [17]. The basic construct is called a transaction and guarantees to execute
the comprising load and store commands with three properties: atomicity, con-
sistency and isolation [11]. In contrast to traditional synchronization approaches
that enforce mutual exclusion, transactions are executed optimistically in paral-
lel and conflicts are detected and resolved by a TM run time system. The TM
system can be implemented in hardware [21,20], software [12,13,14] or as a com-
bination of both as hybrid TM [19,16,18]. In case of a Software Transactional
Memory (STM) system a user-level library fulfills this task. All transactional
accesses to shared memory are performed through this STM. Often this library
comes with compiler support. Then a programmer can use a specific keyword
to mark a transaction in the code. For this region of code the compiler inserts
calls into the STM instead of performing accesses to shared memory directly.
This approach offers the most convenience for the programmer, but also comes
at some cost. The compiler makes pessimistic assumptions and, thus, may in-
strument more memory accesses than absolutely necessary. This phenomenon is
known as over-instrumentation [22]. Further, STMs suffer from overheads due
to the managing of meta data and acquiring and releasing locks [15]. In our
work, we use an STM-only approach with manually instrumented memory ac-
cesses, which has the advantage that the resulting binary does not suffer from
over-instrumentation through the compiler. OpenMP [6] and Pthreads APIs [7]
provide the thread management for the STM.

2.1 Conjugate Gradients

The Method of Conjugate Gradients (CG) is a common solver in many fields
of application, especially in the area of structural mechanics and computational
fluid dynamics. There, finite element and volume methods (FEM/FDM) are
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frequently employed. Within most linearization methods linear systems have to
be solved, consuming often most of the time within the solution process. If those
systems are symmetric and positive definite, CG can be applied. Usually, CG
is used in combination with an appropriate preconditioning depending on the
problem that is solved. Within this paper, we evaluate a pure version of CG.

Algorithm 1. Conjugate Gradi-
ents
1: r0 = b− Ax0, p0 = r0, A spd
2: for i = 0, 1, 2, ... do
3: αi =

rTi ri
pTi Api

4: xi+1 = xi + αipi
5: ri+1 = ri − αiApi

6: βi =
rTi+1ri+1

rT
i
ri

7: pi+1 = ri+1 + βipi
8: end for

CG is an improvement of the methods
of Steepest Descent and Conjugate Direc-
tions where the disadvantage in building the
search directions disappears. By conjugation
of the residuals the search directions are con-
structed and it is no longer needed to store
the old search vectors (see [5] for a detailed
explanation).

In the following, n denotes the dimension
of the matrix A that is introduced in Algo-
rithm 1. There are one matrix-vector prod-
uct, three vector updates and two dot-products per iteration cycle. In general
the matrix-vector product for computing Apj needs n2 floating-point multipli-
cations and n2 − n summations, leading to a asymptotic complexity of O(n2).
The complexity for the vector updates is O(n), because n multiplications and n
summations for each update are needed. The inner product has also a complex-
ity of O(n). Hence the total complexity per iteration step is dominated by the
matrix-vector product. If sparse matrices are used and only nonzero entries are
saved the complexity decreases. Supposing a matrix having nnz nonzero entries
and nnz << n2. Now, nnz floating-point multiplications are needed and at most
nnz− 1 summations. The total complexity is O(nnz) compared to O(n2) in the
dense case.

3 Implementations

In the first step we implemented the CG-algorithm as described in Section 2.1
using the C programming language and OpenMP. Then this code was trans-
formed to a similar Pthreads variant and afterwards this version was modified
using TM commands. With this approach, we were able to get results that were
comparable to each other. The main calculation takes part in five for-loops, cor-
responding to lines 3 to 7 in Algorithm 1, each iterating n times where n still is
the dimension of the underlying matrix of the algorithm.

3.1 OpenMP

In our OpenMP program the parallelization is achieved by inserting #pragma
omp for -statements on top of each for-loop. Because a for-loop has an implicit
barrier, we did not have to care about data dependencies between the several
for-loops.

Listing 1.1 shows the five for-loops where most of the execution time is spent.
In line 4 and 10 we make use of an OpenMP feature that is called reduction.
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Every thread, that is part of the calculation, gets its own private copy of the
variable scp_temp. Each thread then uses this copy for calculations inside of
the loop. Afterwards an addition takes place and the variable scp_temp can
be used as the sum of all thread-private variables. As this reduction is gen-
erated by the OpenMP compiler and hence is hidden from the programmer,
this is exactly where we had to insert commands to achieve mutual exclu-
sion when writing the Pthreads versions (with and without TM, respectively).

Listing 1.1. OpenMP parallelization

1 #pragma omp for p r i v a t e ( . . . ) s chedu le ( static )
2 for ( i =0; i<n ; i++){ . . . }
3 . . .
4 #pragma omp for r educt ion (+: scp_temp ) schedu le ( static )
5 for ( i =0; i<n ; i++) scp_temp += p [ i ]∗ v [ i ] ;
6 . . .
7 #pragma omp for s chedu le ( static )
8 for ( i =0; i<n ; i++){ . . . }
9 . . .

10 #pragma omp for r educt ion (+: scp_temp ) schedu le ( static )
11 for ( i =0; i<n ; i++) scp_temp += r [ i ]∗ r [ i ] ;
12 . . .
13 #pragma omp for s chedu le ( static )
14 for ( i =0; i<n ; i++){ . . . }

3.2 Pthreads

The basic idea of the OpenMP-to-Pthreads transformation was to pass the main
calculation to each created thread modifying the start and end index of each
for-loop. With this practice we tried to keep very close to the internal imple-
mentation of our OpenMP model. Of course, we also had to reproduce the im-
plicit barriers in OpenMP. We achieved this by inserting explicit barriers that
are implemented using the simple function shown in Listing 1.2.

3.3 Transactional Memory

The third model of the CG-algorithm was written using our Pthreads program as
basis. Only a few lines in the TM-implementation differ from this code. We used
the same thread creation concept and also the same barriers. We customized our
code mainly in two places by inserting TM instructions to generate a transac-
tion. With this transaction, threads will optimistically read and write the shared
variable scp_temp concurrently. Listing 1.3 shows a TM version of the reduction
that was previously mentioned in Section 3.1.
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Listing 1.2. Pthreads barrier implementation

1 typedef struct ba r r i e r {
2 pthread_cond_t complete ;
3 pthread_mutex_t mutex ;
4 int count ;
5 int c r o s s i n g ;
6 } bar r i e r_t ;
7
8 void ba r r i e r_c ro s s ( bar r i e r_t ∗b) {
9 pthread_mutex_lock (&b−>mutex ) ;

10 b−>cro s s i n g ++;
// one more thread through

11 i f (b−>cro s s i n g < b−>count ) {
// i f not a l l here , wai t

12 pthread_cond_wait(&b−>complete , &b−>mutex ) ;
13 } else {
14 pthread_cond_broadcast(&b−>complete ) ;

// l a s t thread a r r i v ed
15 b−>cro s s i n g = 0 ;

// Reset f o r next time
16 }
17 pthread_mutex_unlock(&b−>mutex ) ;
18 }

Listing 1.3. TM reduction

1 for ( i = thread−>s t a r t ; i < thread−>end ; i++) {
2 scp_temp_private += p [ i ]∗ v [ i ] ; }
3 START( thread−>id , RW) ;
4 scp_temp_private += (double )LOAD_DOUBLE(&scp_temp ) ;
5 STORE_DOUBLE(&scp_temp , scp_temp_private ) ;
6 COMMIT;

4 Numerical Experiments

4.1 Hardware and Software Environment

All experiments were run on two computers C1 and C2 which are described in
detail in Table 1. As compiler, gcc-4.4 was invoked with options -O3 and -g3.
As Software Transactional Memory library we chose TinySTM [9,10]. TinySTM
is a lightweight and efficient word-based STM implementation. Its time-based
algorithm is derived from LSA and its lock-based design borrows several key
elements from other word-based STMs, such as TL2.



Software Transactional Memory, OpenMP and Pthread Implementations 305

Table 1. Experimental Setup

Computer 1 (C1) Computer 2 (C2)
CPU name Intel Xeon X56701 AMD Opteron 23782

#Sockets two two
CPU frequency 2.93 GHz 2.36 GHz
RAM 12 GB 16 GB
Size of L1 32 KB 64 KB
Size of L2 256 KB 512 KB
OS GNU/Linux (Ubuntu) GNU/Linux (Ubuntu)
Kernel version 2.6.32-29-server 2.6.38-12-server
Architecture x86_64 x86_64
Hyper-threading yes no
NUMA yes yes

4.2 Numerical Results

Each of our tests were run several times (>15) taking into account the exclusive
computing time for the process. Afterwards we calculated the arithmetic mean
of the results omitting the fastest and the slowest run. Thus, every value in the
subsequent figures is an arithmetic average of at least 14 executions.

We evaluated the performance assuming a sparse matrix described by means
of a CSR format. The linear system is obtained from a finite element discretiza-
tion of the stationary heat equation without heat source (homogeneous case)
which represents a prototype of Laplace’s equation. It is equivalent to a finite
differences discretization based on the 3-point-stencil. The matrix has a dimen-
sion of 5 000 000 and 14 999 998 nonzero entries (nnz). The residual stopping
criteria for the residual is set to 10−13.

Performance. As expected, with all three paradigms we could achieve signif-
icant speedups over the respective single thread execution time by increasing
the number of threads from one to two, three, four and more. On Computer
1 we achieved a speedup of S8 = 2.72 (OpenMP), S8 = 3.42 (Pthreads) and
S8 = 3.79 (STM) by increasing the number of threads from one to eight. See
Figure 1. The dimension of the underlying matrix was set to 5M in this case.
Although there are clear differences in the above-named speedups, the execution
time does not differ much with eight threads on C1. The good speedup with
STM is also due to the high single thread overhead. A special case is 24 threads
and OpenMP: the calculation takes slightly longer than with the single threaded
concept. A model that describes the effects of the scheduling on the run time of
the application explains the peak with 24 threads. Christmann et al. developed
this model when they where researching the impact of oversubscription on the
application throughput [8]. The scheduling algorithm must be fair (each process
1 Registered Trademark by Intel Corporation.
2 Registered Trademark by AMD.



306 V. Heuveline et al.

gets a fair share of time), balance the load across cores (or hardware threads)
and pins a process to a processing element as long as possible. Our case meets
all of these assumptions. The explanation for the peak in execution time is that
a fully loaded node (with 24 OpenMP threads) competes with some background
process for computing resources. Eventually, after a long stall time, one of the
OpenMP threads gets migrated leading to a prolonged overall execution time.
Later experiments verified that a later Linux kernel (with version number 3.0.0-
23-server) that enables a fair scheduling of groups instead of processes does not
show this behavior anymore.

Fig. 1. Runtime analysis of the CG method (OpenMP, Pthreads, STM)

Another finding of our research is that the Pthread-program (and also the TM-
program) is in the majority of cases slightly slower than the OpenMP-variation.
We see mainly two causes therefor: a) more cache misses (see Section Cache-
Efficiency Analysis) and b) more time is spent at the barriers. We will discuss
the second argument in more detail now. We measured the time that the threads
had to wait at each barrier in the Pthreads-program on C2. For two threads it
took 7-15% of the overall execution time to wait at the barriers. Four threads
waited about 25%, six threads about 43% and eight threads even about 70% of
the execution time. What we discovered with this analysis is, that the time at
the barriers increases rapidly if there are pairs of threads that have the same
Hardware-Thread-ID. That means these threads cannot be executed in parallel
because they are mapped to the same hardware entity and hence have to run
one after the other. Those pairs appear even if the number of threads is less than
the number of possible hardware threads in the system, which is an important
insight. Apparently this is nothing the software developer is able to control.

PARSEC Barrier Tests. Another test concerning the barriers was the com-
parison of two slightly varying Pthreads programs. On the one hand, we used
the constructs for the barriers as described in Listing 1.2, on the other hand, the
PARSEC barriers were tested [2]. When using the PARSEC barriers, one can
choose between two modes: 1) spinning ON and 2) spinning OFF. The results
(executed on C2) are shown in Figure 2.
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Fig. 2. PARSEC barrier comparison

Fig. 3. Level 1 data cache misses

In general, using the PARSEC barriers did not bring strong advantages over
the simple implementation which we used earlier. On the contrary, it was even
slower for most configurations. Only for four to eight threads, if the spinning
option was set to ON, it resulted in a faster runtime. As shown in Figure 2,
the execution time increases for more than eight threads. That is exactly as we
expected. In this example, spinning does not make any sense for a higher number
of threads.

Cache-Efficiency Analysis. In order to understand the differences in runtime
we also studied the cache behavior in detail. Our main focus was on the data
cache, because the instruction cache analysis did not reveal noticeable results.
The following designations apply to C2. As one can see in Figure 3, the data
cache misses of the first level cache (L1 DCM) do not change with an increasing
number of threads3, whereas the L2 DCMs increase at the same time (see Figure
4). This holds as long as the number of threads is less or equal the number of
possible hardware threads (here 8) in the system. Beyond this point the L2
DCMs are not increasing anymore. From Figure 4 we educe that there is no
direct correlation of the L2 DCMs and the execution time of the program. Rising
3 The DCMs of OpenMP are hidden behind the DCMs of Pthreads.
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Fig. 4. Level 2 data cache misses

L2 DCMs do not necessarily bring a slower execution time and on the contrary,
falling L2 DCMs do not always result in a faster execution time. This holds for
all three programs.

If we now compare Figure 4 and 2, it becomes apparent that the waiting time
at the barriers dominates the execution time of the programs. As one can see in
Listing 1.2, the main function of the barrier construct is to pause a thread at a
specific point of execution until all other threads reach the barrier. That means,
that the last thread significantly increases the execution time. Thus, increasing
the number of threads only makes sense, if the time that is spent at the barriers
is improved, too.

4.3 Experiments with Matrices from Structural Engineering

In this section we will add additional experiments with two more matrices to
provide a richer evaluation of the implemented CG variants. In order to com-
plement the findings from the previous section, we also distinguish two more
implementation variants that differ in the implementation of the reduction. The
two reductions in CG are each implemented in two ways: Fast, and Slow. Fast
uses a thread-local variable to accumulate the results over a private part of the
vector that is assigned to this specific thread. Then, a single update adds the
thread-local variable to the shared memory one that is guarded by a critical
section or transaction. Thus, contention between threads only arises from the
update of the shared memory variable. The Fast version of CG updates one
shared memory location per thread and reduction pattern. Thus, the number
of executed transactions equals the number of threads times the number of re-
ductions per iteration. This is the reduction pattern that has also been used for
the previous experiments presented in this paper. The Slow version updates the
shared memory location in one transaction or critical section and does not use
thread-local variables. Because each reduction only updates one shared mem-
ory location, OpenMP atomic is a perfect fit because it maps to a processor
instruction that assures the atomicity of the update (if the processor supports
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Fig. 5. Run times with OpenMP and all variants of synchronization mechanisms

atomics). The Fast version, again, uses thread-local variables whereas the Slow
version does not. This atomicity is limited to one memory location and can not
be extended. Thus, the Atomic Fast uses the thread-local variables to update
the shared memory locations and the Atomic Slow updates the shared memory
location for each new value. Since each value must be updated with a separate
atomic instruction there is no need to distinguish between long and short sec-
tions. These self-made reductions are complemented by the OpenMP reduction,
denoted as Reduction, that the programmer specifies through using a #pragma
omp for reduction(+:var) schedule(static).

The two additional matrices are taken from the matrix market4. This assures
that other researchers may compare their results with ours. The first matrix is
called bcsstk14, has a dimension of 1806 with 32630 entries. The matrix has a
Frobenius norm of 6.5 ∗ 1010 and an estimated condition number of 1.3 ∗ 1010.
The matrix is used for static analysis in structural engineering and models the
roof of the Omni Coliseum in Atlanta. The second matrix, called bcsstk18, has
a dimension of 11948 with 80519 entries, a Frobenius norm of 2.4 ∗ 1011 and an
estimated condition number of 65. Both matrices are from the set BCSSTRUC2
of Prof Mac Will, Georgia Institute of Technology. As experimental setup, we
use again C1 with OpenMP parallelization only this time running Linux kernel
version number 3.0.0-23-server that enables a fair scheduling of groups instead
of processes and, thus, does not show the peak in the run time with 24 threads
(cf. to Section 4.2).

Figure 5 highlights the run time and shows that the implementation strat-
egy of the reduction is more important than the choice of the synchronization
mechanisms for this reduction. Clearly all Slow variants perform worse than
their single-threaded counter parts. This is due to the contention on the shared
variables that are updated in each loop iteration. The Fast variants show a far
better scalability due to a reduction in time with an increasing thread number.
4 http://math.nist.gov/MatrixMarket

http://math.nist.gov/MatrixMarket


310 V. Heuveline et al.

        1

      1.5

        2

      2.5

        3

      3.5

        4

      4.5

 5  10  15  20

Sp
ee

du
p

#Threads

Reduction
Critical Fast

STM Fast
Atomic Fast

(a) Matrix bcsstk14.

        1

      1.5

        2

      2.5

        3

      3.5

        4

      4.5

 5  10  15  20

Sp
ee

du
p

#Threads

Reduction
Critical Fast

STM Fast
Atomic Fast

(b) Matrix bcsstk18.

Fig. 6. Speedup of the Fast synchronization variants over the respective single thread
performance

 8.19e+03

 1.64e+04

 3.28e+04

 6.55e+04

 1.31e+05

 2.62e+05

 5.24e+05

 1.05e+06

  2.1e+06

 4.19e+06

 5  10  15  20

#L
1 

IC
M

s

#Threads

Reduction
Critical Fast

STM Fast

Atomic Fast
Critical Slow

STM Slow

Atomic Slow

(a) Matrix bcsstk14.

 2.62e+05

 5.24e+05

 1.05e+06

  2.1e+06

 4.19e+06

 8.39e+06

 1.68e+07

 3.36e+07

 6.71e+07

 1.34e+08

 2.68e+08

 5  10  15  20

#L
1 

IC
M

s

#Threads

Reduction
Critical Fast

STM Fast

Atomic Fast
Critical Slow

STM Slow

Atomic Slow

(b) Matrix bcsstk18.

Fig. 7. L1 instruction cache misses with different synchronization variants

In Figure 6 the speedup over the respective single thread performance of the
Fast variants. Atomic Fast achieves the highest speedup for bcsstk14 with 8 and
for bcsstk18 with 12 threads. For bcsstk18 STM Fast also performs almost as
good as Atomic Fast.

Figure 7 shows the L1 instruction misses for both matrices. The Slow vari-
ants have a significant higher number of instruction cache misses than the Fast
variants. The interesting observation is that for bcsstk14 Atomic Slow is almost
as good as STM Fast. This shows the large overhead in terms of instructions
that is associated with using an STM system. The Reduction and Atomic Fast
utilize the instruction cache the most efficiently.

For the L1 data cache misses, shown in Figure 8, the trend is similar as with the
L1 instruction cache miss but the gap between STM and the other mechanisms
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Fig. 8. L1 data cache misses of all different synchronization variants
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Fig. 9. L2 data cache misses with OpenMP and all variants of synchronization mech-
anisms

is not as big when it comes to the Fast variants. The Slow versions again have
significantly more misses due to the contention on the shared variable.

Figure 9 highlights the L2 data cache misses of both matrices and implemen-
tation variants across thread counts. Again STM Fast is slightly worse than the
other Fast variants but still significantly better than the Slow variants. For ma-
trix bcsstk18 the gap between STM Fast and the rest seems smaller which may
be due to the larger size of the matrix. Calculating the L2 data cache miss rate
according to L2 data cache misses

L2 data cache accesses yields the following results. For the Fast vari-
ants there is an almost linear increase in the L2 data cache miss rate with the
number of threads whereas the Slow variants follow a logarithmic curve which
results in a rate of more than 80%. For Fast the rate stays well below 20% for
bcsstk18 and 30% for bcsstk14.
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5 Conclusion and Future Work

In our work we compared three similar implementations of the Conjugate Gra-
dients Method. One that uses OpenMP, one that uses Pthreads without TM
and one that uses Pthreads with TM constructs. The results showed that it is
very important to reduce the waiting time at the barriers in order to improve
execution time of these programs. Complementary experiments reveal that the
choice for implementing the reduction is even more important than the choice
of the synchronization primitive. Using thread-local variables for implementing
the reduction is indispensable for a well-performing implementation. Further,
these experiments with two additional matrices, lent from the static analysis in
structural engineering, confirm the findings of the previous experiments regard-
ing the cache efficiency of STM. In most cases, OpenMP is the fastest approach
on both machines. This is the case because STM suffers from significantly more
L1 cache misses compared to a pure OpenMP or Pthread implementation. In
terms of performance, OpenMP is the first choice if the CG algorithm is used
as done in this paper. As future work, the above-mentioned programs should be
compared to other formulations of the Conjugate Gradients Method, such as the
pipelined CG-algorithm described in [1] in order to benefit from advantages with
TM. Further, we want to research the influence of using a NUMA machine (e.g.,
through employing a first touch policy for memory pages) on the performance
of the different implementations of the CG method.
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Abstract. In this paper, we propose a smart tuning strategy that uses the cache 
size hierarchy of current multicore architectures. Both increase and decrease 
auto-tuning (AT) strategies for the restart frequency of GMRES(m) 
(Generalized Minimum Residual) are evaluated with the proposed hierarchical 
cache sizes. This evaluation, using one node of the T2K Open Supercomputer 
(Univ. Tokyo), demonstrates that the proposed strategies are very efficient 
compared to previous strategies without hierarchical cache sizes. We test both 
strategies with 22 matrices from the University of Florida Sparse Matrix 
Collection. As a result, we find an average speedup of 1.13× (maximum 2.06×) 
using an increase strategy (an implementation of Xabclib), and an average 
speedup of 4.25× (maximum 15.1×) with a decrease strategy (Aquilanti’s) using 
the proposed method.  

Keywords: Auto-tuning, GMRES(m), Dynamic Restart Frequency Adjustment, 
Xabclib.  

1 Introduction 

Current computer architectures have complex structures, with multicore systems 
commonly utilizing non-uniform memory access and hierarchical caches. In terms of 
cache organization, several multiple caches are independent of cores, but one cache is 
shared across multiple cores. Thus, tuning the performance of software is becoming 
increasingly difficult. To solve this problem, auto-tuning (AT) technology is 
frequently used by non-experts to establish high performance computing on current 
architectures. 

A wide range of problems is expressed through a linear system. Hence, solving 
sparse linear systems, such as the following, is a crucial task for scientific computing: 
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 (1)

When the operator A is sparse, it is common to use iterative solvers. The Generalized 
Minimum Residual (GMRES) algorithm [1] is considered to be powerful and can be 
applied to a wide range of cases. For the iterative approximation of the solution 
vector, the Krylov subspace is used to determine the direction in which the solution of 
the linear system lies, such that: 

 (2)

where },,,{),( 0
1

000 rAArrspanrA mm −≡Κ   is the Krylov subspace of dimension m, x0 is 

the initial guess, x1 is the estimated vector in the first iteration, and r0 is the initial 
residual.  

As GMRES iterates, its computing power and memory requirements are likely to 
increase when the dimension of the Krylov subspace is large. As memory is limited in 
practice, it is common to restart GMRES after m iterations. This variant is known as 
the restarted GMRES [1]. The parameter m controls the restart; hence, we call this 
parameter the “restart frequency.” It has been demonstrated that m is a critical 
argument, driving not only memory consumption but also the execution time required 
for the solver to converge. Determining m is thus a very important issue, affecting not 
only high-performance libraries but also research topics in AT. 

1.1 Categories of AT for the Restart Frequency of GMRES(m) 

As the restart frequency of GMRES(m) is very crucial for performance, several AT 
strategies have been proposed. In this section, we categorize the strategies as follows. 

 Increase Strategy  
The increase strategy is defined as follows. In the first phase, the restart frequency 
is assigned a small number, say m = 2. In the next phase, the frequency is increased 
using run-time information. Previous strategies in this category include that of 
Sosonkina et al. [2] and the strategy implemented in Xabclib [3]. Obviously, this 
strategy is good for easy problems that require only a small number of restarts to 
converge. 
 Decrease Strategy 
The decrease strategy is the opposite of the increase strategy. In the first phase, the 
frequency is assigned a maximum size. In the next phase, the frequency is 
decreased using run-time information. The major strategy in this category is that of 
Baker et al. [4]. Obviously, this strategy is good for difficult problems, which 
require a large number of restarts. One of the drawbacks of this strategy concerns 
the difficulty of finding the optimal maximum size for m. 
 Hybrid Strategy 
This strategy is a hybrid of the increase and decrease strategies. The frequency is 
dynamically increased or decreased according to run-time information. As the 

.bAx =

),,( 001 rAxx mΚ+∈



316 T. Katagiri, P.-Y. Aquilanti, and S. Petiton 

hybrid strategy needs an initial restart frequency, we can define two subcategories 
according to whether the initial frequency increases or decreases.  

The strategy proposed by Habu et al. [5] starts from a small initial frequency; 
hence, this is categorized as an increasing hybrid. On the other hand, the strategy 
proposed by Aquilanti et al. [6] starts from a maximum size, hence this is a 
decreasing type. As for the previous strategies, it depends on the convergence as to 
which type is better suited to the problem. 
 Other Considerations: The Target 
Although the strategies shown above have general properties, the target of their 
evaluations is limited to GMRES(m). There are a few implementations and 
preliminary evaluations for the adaptation of these strategies to other algorithms. 
The strategy used in Xabclib [3] has been extended to the restarted Lanczos and 
explicit restarted Arnoldi problems. The codes have been released to the public as a 
free (GNU licensed) library. 

1.2 Originality of This Paper 

With respect to the above categorization, we summarize the originality of this 
research as follows: 

 Showing Effectiveness of AT with Hierarchical Caches on Multicore 
Architectures 
In general, the parameter search space in restart parameter AT is huge; hence, 
we need some heuristics to avoid using a brute force search and to obtain 
reasonable parameter settings. One of the candidates for finding reasonable 
parameter settings for AT is to use hardware parameters. We use an AT 
strategy with cache information to demonstrate the effectiveness of this 
approach. The key to our strategy is that the cache information helps to 
restrain the search of m.  
Aquilanti et al. [6] first proposed the hybrid method of decreasing type to 
utilize hierarchical caches for AT of the GMRES(m) algorithm. We re-
evaluate this strategy from the following two viewpoints: (1) Supposing 
“real” multicore architectures with three kinds of cache, i.e., two levels of 
independent cache and one level of shared cache; (2) Evaluating the AT effect 
using an increase strategy. 

 Evaluating AT Strategies with Different Methods 
AT methods vary amongst the different strategies. The principal method takes 
the current and past (one) residual vectors, and calculates the angle between 
them to find a stagnation point [4,5,6]. Xabclib, however, uses a method 
based on multiple norms from past residuals, which are taken as “sampling” 
points. It then uses the ratio among these sampling points, called the MM 
(Maximum Minimal) ratio, to find stagnation. Our research includes a 
comparison between the angle calculation method and the MM ratio method. 
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1.3 Organization of the Paper 

This paper is organized as follows. In Section 2, we explain the GMRES(m) method 
and the AT strategy for the restart frequency. Section 3 describes the proposed AT 
strategies (increase and decrease) for hierarchical caches. We use the strategies of 
Aquilanti et al. [6] and Xabclib [3] as examples of the two categories. In Section 4, 
we evaluate the proposed strategies on a multicore architecture. We use one node of 
the T2K Open supercomputer (Univ. Tokyo), which uses the AMD Quad Core 
Opteron. Finally, we summarize the findings of this paper in Section 5.  

2 GMRES(m) and AT Strategy for the Restart Frequency 

2.1 The GMRES(m) Algorithm 

The GMRES(m) algorithm for this paper is based on [1]. The algorithm is shown in 
Fig. 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. GMRES(m) algorithm 

 

 <1> Compute 
00 Axbr −= ; 

20r=β ; βν /01 r= ; 

 <2> if (
20r  .le. ε ) then goto <16>. 

 <3>   Let the mm ×+ )1(  matrix be 
mjmiijm hH ≤≤+≤≤= 1,11}{ . Set 0=mH . 

 <4>   do  j = 1, m  
 <5>     Compute 

jj Av=ω  

 <6>     do  i = 1, j 
 <7>        ),( jjijh νω=  

 <8>        
jijjj h νωω −=  

 <9>     enddo  
<10>     

2,1 jjih ω=+
. If 0,1 =+ jih  then Set m = j; goto <12> 

<11>     
jjjj h ,11 / ++ = ων  

<12>   enddo 
<13>   Let the },...,,{ 21 mννν  be 

mV . 

<14>   Compute 
my to minimize 

21 yHe m−β ; 
mmm yVxx += 0

; 

<15>   
mxx =0

; goto <1>; 

<16> continue 
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2.2 AT Strategies for the Restart Frequency of GMRES(m) 

To perform AT on the restart parameter m in Fig. 1, we append the following to line 
<1>: 
 
 
 
 
 
 
 

The function ),( prevculAT rrf  forms the AT strategy. 

We first take the Xabclib strategy, which is categorized as an increase strategy. The 
definition of ),( prevculAT rrf  is shown in Fig. 2.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Restart Frequency AT for Xabclib (Increase Strategy). In this example, the 
OpenATI_DAFRT finds stagnation using the norms of the past five residual vectors. The “5” 
is an AT parameter. If stagnation is found, the frequency is increased by IATPARAM(5), 
which is set to 5 as a default value. The increase value “5” is also a tunable parameter. 

Note that the stagnation state is found via the API of OpenATI_DAFRT, which is 
provided by OpenATLib [3]. In this example, it requires the past five residual norms. 
The number of past residual norms is a tunable parameter. The default 
implementation of Xabclib is to use five points. 

To demonstrate a decrease strategy, we consider Aquilanti’s method (Fig. 3). There 
are also tunable parameters in this strategy: maximum frequency (TRestart%m_max), 
default frequency (TRestart%m_def), and maximum count of decrease cycles 
(TRestart%m_count_max).  
 
 
 

<0> SAMP = 
2culr  

<1>CALL OpenATI_DAFRT 
      (5, SAMP, IRT, IATPARAM, RATPARAM, INFO) 
<2> if (IRT .EQ. 1) then 
<3>   MOLD = M 
<4>   M = M + IATPARAM(5) 
<5>   if (M .GT. MSIZE) then 
<6>     M = MSIZE 
<7>   endif 
<8> endif 
<9> return M 

<1-1> 
prevr  is set to previous residual vector. If this is the first iteration, then 

set 
0rrprev = . 

<1-2> Line <1> in Fig.1. 
<1-3> 

0rrcul = ; ),( prevculAT rrfm = ; 
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Fig. 3. Restart Frequency AT for Aquilanti’s (Decrease) Strategy. The maximum frequency 
(TRestart%m_max), default frequency (TRestart%m_def), and maximum count of decrease 
cycles (TRestart%m_count_max) are tunable parameters in this strategy. 

 

<0> resid = 
2culr ; presid = 

2prevr ; 

<1> max_cr = cos(8.*PI/180.); min_cr = cos(80.*PI/180.); 
<2> cr = resid / presid    !! get the angle 
<3> if (cr .gt. max_cr) then  !! normal cycling 
<4>   M = TRestart%m_max 
<5> else  
<6>   if ( (cr .lt. min_cr) .or. (TRestart%m_count_max  

.lt. TRestart%m_count) ) then   !! enter an aug cycle 
<7>     if (TRestart%m_aug .eq. 0) then 
<8>        TRestart%m_aug = 1; TRestart%m_floor = 1; 
<9>     else   !! or continue it 
<10>       TRestart%m_floor = TRestart%m_floor + 1 
<11>    endif 
<12>    TRestart%m_count = 0; 
<13>    M = TRestart%m_floor * TRestart%m_max 
<14>  else 
<15>    if (M - TRestart%m_incr .ge. TRestart%m_min) then 
<16>      M = M - TRestart%m_incr 
<17>    else 
<18>      M = TRestart%m_max 
<19>    endif 
<20>    if ((TRestart%m_aug .eq. 1) .and. (TRestart%m_count .le. 
<21>       TRestart%m_count_max) ) then  !! if in aug cycle 
<22>       if (TRestart%m_def * TRestart%m_floor  

.lt. TRestart%m_max) then 
<23>       M = TRestart%m_def * TRestart%m_floor 
<24>       TRestart%m_count = TRestart%m_count + 1 
<25>    else 
<26>       M = TRestart%m_def;  TRestart%m_aug = 0; 
<27>    endif 
<28>  endif 
<29> endif 
<30> return M 
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3 A Smart Tuning Strategy with Hierarchical Cache Sizes 

3.1 Using the Vector Size of Caches to Better Estimate m  

Most of the computational cost of GMRES(m) is due to the orthogonalization process 
in lines <4>–<12> in Fig. 1. The computational complexity of orthogonalization 
depends on the restart frequency m, i.e., O(nm2), where n is the dimension of  
matrix A. 

Orthogonalization is performed in a space of dimension n × m. The 
orthogonalization process can be parallelized by threads based on the rows of the 
space. (See parallel Classical Gram–Schmidt or Modified Gram–Schmidt 
procedures.) With respect to parallel implementation with threads, we can estimate a 
better value m* with a double-precision computation using the following formula: 

 (3)

where the Memory Size corresponds to the sizes of the L1 cache (Independent), L2 
cache (Independent), and L3 cache (Shared), etc. The memory size of the sparse 
matrix A is not considered in this model. It will, however, give a good estimate for the 
orthogonalization complexity, as all computations are performed with vectors that 
must be orthogonalized. In addition, if m is large, the most demanding process of 
GMRES(m) will be the orthogonalization. With this in mind, we consider this to be a 
reasonable estimation for m*. 

3.2 Principle of AT Using Hierarchical Caches 

We use one socket of the AMD Opteron (Barcelona) to explain AT with hierarchical 
caches. The AMD Opteron has three types of cache: L1 cache (Independent, 64 KB), 
L2 cache (Independent, 512 KB), and L3 cache (Shared between four cores, 2 MB). 
Taking into account the real configuration of the caches, the idea to improve the AT 
strategy is summarized as follows: 

 Use cache information to set maximum values of m for the AT. In the AMD 
Opteron case, the following hierarchy is formed (although this is not 
necessarily limited to the specific configuration): 

 M_MAXL1 : maximum size of m on the L1 cache. 
 M_MAXL2 : maximum size of m on the L2 cache. 
 M_MAXL3 : maximum size of m on the L3 cache. 
 M_MAXMM : maximum size of m on the main memory. 

3.3 AT for an Increase Strategy with Cache Hierarchy 

Fig. 4 shows the proposed AT method with cache hierarchy for the Xabclib strategy. 
 
 
 

,/8/* threadsofnumberThenSizeMemorym =
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Fig. 4. Increase strategy (Xabclib) with cache hierarchy. Additions to line <3> in Fig. 2 are 
shown. Set MLEVEL = 1 before the main loop of GMRES(m) in Fig. 1. 

3.4 AT for a Decrease Strategy with Cache Hierarchy 

Fig. 5 shows the proposed AT method with cache hierarchy for Aquilanti’s strategy. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Decrease strategy (Aquilanti’s) with cache hierarchy. The modifications to lines in Fig. 
3 are shown. Set TRestart%mlevel = 1 before the main loop of GMRES(m) in Fig. 1. 

3.5 Implementation Variants of the Decrease Strategy 

There are some variants to the cache hierarchy strategy for Aquilanti’s method. 
Roughly speaking, there are three ways to adapt the cache sizes: (1) using the 
maximum value; (2) using the minimum (default) value; or (3) a mixture of both.  

We take option (3)—the maximum value for the cache hierarchy in the current 
level (see lines <3’> and <18’> in Fig. 5) and the default values for current level (see 
line <26’> in Fig. 5). The reason for this approach is to prevent setting too small a 
default size with respect to the execution on the previous level.  

 
 

<3-1>  if (MLEVEL .eq. 1) then 
<3-2>    M = M_MAXL1; MLEVEL = 2; 
<3-3>    else if (MLEVEL .eq. 2) then 
<3-4>       M = M_MAXL2; MLEVEL = 3; 
<3-5>    else if (MLEVEL .eq. 3) then 
<3-6>       M = M_MAXL3; MLEVEL = 4; 
<3-7>   else 
<3-8>      M = M + IATPARAM(5) 
<3-9>   endif 
<3-10> if (M .GT. MSIZE) then 
<3-11>    M = M_MAXMM 
<3-12> endif 

<3’> m = TRestart%m_maxs(mlevel) 
<4’> if (TRestart%mlevel .le. 3) TRestart%mlevel = TRestart%mlevel + 1 

       else TRestart%mlevel = 1 
<13’> m = TRestart%m_floor * TRestart%m_maxs(TRestart%mlevel) 
<18’> m = TRestart%m_maxs(TRestart%mlevel) 
<22’> if (TRestart%m_maxs(TRestart%mlevel) * TRestart%m_floor .lt.  
        TRestart%m_max) then 
<23’>  m = TRestart%m_maxs(TRestart%mlevel) * TRestart%m_floor 
<26’> m = TRestart%m_maxes(TRestart%mlevel); TRestart%m_aug = 0; 
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At the end, we add the following parameters to the original strategy: 

 m_max = M_MAXMM 
 TRestart%m_maxs(1) = M_MAXL1 
 TRestart%m_maxs(2) = M_MAXL2  
 TRestart%m_maxs(3) = M_MAXL3  
 TRestart%m_maxs(4) = 200 (this is m_max, which is the maximum 

frequency parameter in Aquilanti’s original strategy) 

4 Numerical Experiments 

4.1 Computer Environment 

We used the T2K Open Supercomputer, which is a HITACHI HA8000 installed at the 
Information Technology Center, University of Tokyo. Each node contains four 
sockets of the AMD Opteron 8356 (Quad core, 2.3 GHz). The L1 cache is 64 
KB/core, the L2 cache is 512 KB/core, and the L3 cache is 2 MB/4 cores. The 
memory on each node is 32 GB with DDR2-667 MHz. The theoretical peak is 147.2 
GFLOPS/node. The inter-node connection comprises four lines of the Myri-10G with 
a full bisection connection. This attains 5 GB/s in both directions. We used the Intel 
Fortran Compiler Professional Version 11.0 with options “-O3 -m64 -openmp –
mcmodel=medium.”  

4.2 Experimental Conditions 

We used a pre-release version of Xabclib ver.1.0 [3] for the GMRES(m) 
implementation of both strategies. The GMRES(m) subroutine on Xabclib is 
OpenATI_GMRES. ILU(0) was chosen as a preconditioner. The convergence 
tolerance was set to 1.0e-08, and the time tolerance was set to 600 s. If an iteration 
had not converged after 600 s, the routine was forcibly stopped. This is the 
fundamental function of Xabclib.  

We formed a solution vector x whose elements were set to 1. The right-hand-side 
(RHS) vector was then generated by Ax. The initial guess x0 was set to 0. 

For Aquilanti’s original strategy (Fig. 3), we required a number of default 
parameters, which were set as follows in this experiment. 

 m_def = 20 
 m_min = 3 
 m_max = 200 
 m_incr = 3 
 m_count_max = 5 
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4.3 Test Matrices 

We used 22 non-symmetric, real matrices from the University of Florida Sparse 
Matrix Collection (referred to hereafter as the UF collection) [7]. The test matrices are 
shown in Table 1. Equation (3) was used to calculate the cached m* size. 

According to Table 1, the cached m* sizes for L2 and L3 are the same. This is 
because the size of the shared L3 per core is the same as the L2 (512 KB) when we 
use 16 cores on the AMD Opteron. We set the cached sizes of m* to M_MAXL1, 
M_MAXL2, and M_MAXL3, respectively. 

Table 1. Test matrices from the UF collection and cached m* sizes on the AMD Quad Core 
Opteron. N is the dimension of the matrix, and NNZ is the number of non-zero elements.  

Name N NNZ 
L1 Cached 
m* Size

L2 Cached 
m* Size

L3 Cached m* 
Size (16 cores) 

chipcool0 20082 281150 6.5 52.2 52.2 
chem_master1 40401 201201 3.2 26.0 26.0 
torso1 116158 8516500 1.1 9.0 9.0 
torso2 115967 1033473 1.1 9.0 9.0 
torso3 259156 4429042 0.5 4.0 4.0 
memplus 17758 126150 7.4 59.0 59.0 
ex19 12005 259879 10.9 87.3 87.3 
poisson3Da 13514 352762 9.7 77.6 77.6 
poisson3Db 85623 2374949 1.5 12.2 12.2 
airfoil_2d 14214 259688 9.2 73.8 73.8 
viscoplastic2 32769 381326 2.0 32.0 32.0 
xenon1 48600 1181120 1.3 21.6 21.6 
xenon2 157464 3866688 0.4 6.7 6.7 
wang3 26064 177168 2.5 40.2 40.2 
wang4 26068 177196 2.5 40.2 40.2 
ecl32 51993 380415 1.3 20.2 20.2 
sme3Da 12504 874887 5.2 83.9 83.9 
sme3Db 29067 2081063 2.3 36.1 36.1 
sme3Dc 42930 3148656 1.5 24.4 24.4 
epb1 14734 95053 4.4 71.2 71.2 
epb2 25228 175027 2.6 41.6 41.6 
epb3 84617 463625 0.8 12.4 12.4 

4.4 Results and Discussion 

Effect on the Increase Strategy (Xabclib) 
Fig. 6 shows the effect of AT with hierarchical cache sizes for the increase strategy 
(Xabclib) on the T2K (16 threads).  

According to Fig. 6, the performance for several matrices is improved. The average 
speedup of execution time compared to the original is 1.13×. In particular, the 
airfoil_2d matrix from the UF collection establishes a speedup of more than 2×. We 
examined the evolution of the restart frequency for this case. Fig. 7 illustrates the 
change in m using the original Xabclib method and our proposed cache size AT 
strategy for airfoil_2d. 
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According to Fig. 7, the frequency of m is increased dramatically, from 9 to 73, 
after the first restart process. This is because airfoil_2d is not a large matrix; the 73 
vectors are all cached in L2. Hence, after the first restart, our strategy can suddenly 
increase m up to 73. This causes faster convergence than in the original strategy. 

 

Fig. 6. Effect of AT with hierarchical cache sizes for the increase strategy (Xabclib) on the T2K 
(16 threads). Execution time of the original is normalized to 1. Speedup factor greater than 1 
implies faster convergence than the original. The ex19 and xenon2 matrices do not converge in 
the ILU(0) preconditioner, whereas xenon1 converges if we use the cache size strategy. 

 

Fig. 7. Change in restart frequency using the Xabclib strategy in the airfoil_2d 



 A Smart Tuning Strategy for Restart Frequency of GMRES(m) 325 

Effect on the Decrease Strategy (Aquilanti’s) 
Fig. 8 shows the effect of AT with hierarchical cache sizes for the decrease strategy 
(Aquilanti’s) on the T2K (16 threads).  

 

 

Fig. 8. Effect of AT with hierarchical cache sizes for the decrease strategy (Aquilanti’s) on the 
T2K (16 threads). Execution time of the original (Aquilanti’s) is normalized to 1. Speedup 
factors greater than 1 implies faster convergence than the original. Speedup compared to the 
original Xabclib increase strategy is also shown. The ex19, xenon1, and xenon2 matrices did 
not converge in the ILU(0) preconditioner. 

According to Fig. 8, the performance for several matrices is strongly improved. 
The average speedup factor is 4.25×. In addition, the average speedup compared to 
the original Xabclib strategy is 1.29×, which is considerable. Therefore, this implies 
that the crucial effect is due to our cache size strategy. 

The torso2 matrix, in particular, established a speedup of more than 15× the 
original decrease strategy, and torso1 achieved a 4× speedup compared to the original 
Xabclib increase strategy. We examined the evolution of the restart frequency for 
both of these matrices, and have plotted these in Fig. 9 in order to help explain these 
phenomena. 

According to Fig. 9 (a), the maximum frequency in the proposed strategy is 
limited, as it still uses the cached m sizes for L1 and L2. The torso2 matrix is large, 
hence the cached m for L2 is only 9, whereas the original strategy uses m = 200, the 
default maximum. In addition to this, torso2 needs a very small value of m to 
converge. This fact leads to the enormous speedup compared to the original. 

In contrast, torso1 is a difficult problem in that it requires almost maximum 
frequency, i.e., 200, to converge. In the first phase, the cache size strategy is trying to 
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find better values for m within L1, L2, and L3; however, this does not give 
convergence because m is very small i.e., 9, in this case. After searching all cache 
sizes, the strategy retains the default maximum size, i.e., 200. On the other hand, the 
Xabclib strategy is to increase m step-by-step until it reaches 200. This causes very 
slow convergence compared to Aquilanti’s strategy. 

 

 

(a) torso2 

 

(b) torso1 

Fig. 9. Change in restart frequencies for Aquilanti’s strategy on (a) torso2 and (b) torso1  
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From the above discussions concerning the statistically significant gains in 
speedup, we can conclude that our proposed cache size strategy is crucial to AT for 
both increase and decrease strategies.  

It is difficult to implement a good decrease strategy without cache information; this 
is because it is generally difficult to set a better maximum restart frequency. Using the 
cache size strategy, it is clear that no additional cost is needed to set the maximum 
value. As a result, the decrease strategy is faster than the increase strategy in terms of 
average speedup. 

5 Conclusion 

In this paper, we proposed a smart tuning strategy using hierarchical cache sizes for a 
current multicore architecture. We have proposed an auto-tuning (AT) strategy for the 
restart frequency of both increase and decrease GMRES(m) methods. 

As a result of performance tuning using one node of the T2K Open Supercomputer 
composed of an AMD Quad Core Opteron (16 cores), the proposed AT strategies 
were found to be very efficient compared to the original strategies without 
hierarchical cache sizes.  

We evaluated the proposed strategies on 22 matrices from the University of Florida 
Sparse Matrix Collection. The results showed an average speedup of 1.13× for the 
increase method (an implementation of Xabclib) and an average speedup of 4.25× for 
the decrease method (Aquilanti’s) using the proposed strategy.  

One of the drawbacks to the traditional decrease strategy is the difficulty in 
determining the optimal maximum restart frequency—if too large a value is specified, 
the algorithm takes a long time; however, if too small a value is specified, it may not 
converge at all. According to the results of our numerical experiment, we found that 
the performance of the decrease strategy was improved by a factor of 15. This was 
caused by the selection of appropriate values for the maximum restart frequency 
based on cache size information. 

In addition, we found that the decrease strategy is better than the increase strategy, 
in terms of the average speedup, if the maximum frequency is set appropriately. The 
hierarchical cache information is a crucial factor in setting an appropriate maximum 
frequency. 

As the L2 and L3 cache sizes are the same when we use 16 cores for the AMD 
Quad Core Opteron, the evaluation of several multicore architectures is important 
future work. The proposed strategy does not permit “multiple” re-use of the cache 
information. Constructing such a strategy is also vital in future research.  
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S-581 83 Linköping, Sweden

{lu.li,usman.dastgeer,christoph.kessler}@liu.se

Abstract. In recent years heterogeneous multi-core systems have been
given much attention. However, performance optimization on these plat-
forms remains a big challenge. Optimizations performed by compilers
are often limited due to lack of dynamic information and run time en-
vironment, which makes applications often not performance portable.
One current approach is to provide multiple implementations for the
same interface that could be used interchangeably depending on the call
context, and expose the composition choices to a compiler, deployment-
time composition tool and/or run-time system. Using off-line machine-
learning techniques allows to improve the precision and reduce the run-
time overhead of run-time composition and leads to an improvement of
performance portability. In this work we extend the run-time composition
mechanism in the PEPPHER composition tool by off-line composition
and present an adaptive machine learning algorithm for generating com-
pact and efficient dispatch data structures with low training time. As
dispatch data structure we propose an adaptive decision tree structure,
which implies an adaptive training algorithm that allows to control the
trade-off between training time, dispatch precision and run-time dispatch
overhead.

We have evaluated our optimization strategy with simple kernels
(matrix-multiplication and sorting) as well as applications from RO-
DINIA benchmark on two GPU-based heterogeneous systems. On av-
erage, the precision for composition choices reaches 83.6 percent with
approximately 34 minutes off-line training time.

Keywords: Autotuning, Heterogeneous architecture, GPU.

1 Introduction

Recently GPU-based heterogeneous multi-core system have been given much
attention, because GPUs have shown remarkable performance advantage over
CPUs for suitable computations with sufficiently large problem size. However,
effective utilization of those systems often requires much programming effort

M. Daydé, O. Marques, and K. Nakajima (Eds.): VECPAR 2012, LNCS 7851, pp. 329–345, 2013.
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(programmability problem), and moreover, we often observe a performance de-
crease when porting the code to a new platform without re-optimization (per-
formance portability problem).

For building performance portable applications, one solution is to provide
multiple implementation variants of the same functionality that may execute
on different platforms, internally use different programming models, different
algorithms and/or different compilation settings, or encapsulate library calls or
accelerator-specific code. The execution time of such variants will generally de-
pend on the resources available for execution (e.g., cores or accelerator) and other
call context properties such as problem sizes, but also on tunable parameters of
the implementation variants themselves such as buffer sizes or tiling factors.

The PEPPHER [6,4] component model provides a XML-based metadata lan-
guage that allows to specify descriptors that externally annotate PEPPHER
components and interfaces. A component is an annotated software module adher-
ing to an PEPPHER interface for which multiple implementation variants may
be available. Beyond the traditional functional interface properties such as pa-
rameter types and direction, component metadata of an implementation variant
includes the implemented interface (functionality), dependences on other PEP-
PHER components or third-party software packages, compilation commands,
tunable parameters, platform and resource requirements, and possibly also stat-
ically provided performance models that allow to predict average-case execution
time as a function of values taken from a call context instance. Hence, PEP-
PHER allows to delay and expose the selection decisions to later stages (e.g.,
at runtime) when more information about the invocation context and resource
availability (e.g. from the run-time environment) is available. In this way, the
selection of an implementation variant for an interface function call is completely
automatized and not hardcoded in the application, allowing for automated re-
optimizing of the selection mechanism when porting a PEPPHER application
to a new platform.

In order to better utilize different kinds of processing units by appropriate
automatic selection, a reasonably good performance model for predicting the
fastest implementation variant for a given context instance is required. The two
trends for building such performance models are towards an analytical model
and an empirical model. It is normally considered that modern computer systems
(including heterogeneous ones) are too complex for a reasonably good analytical
performance model, thus empirical models constructed from measurements of
test code on the target system have become more practical nowadays. Machine-
learning techniques have shown potential for building such empirical performance
models. In essence, machine learning constructs from results of example runs a
surrogate function that approximates an unknown selection function for a (new)
target architecture.

Empirical automated performance tuning (or autotuning for short) of best-
variant selection by measurements and learning can be performed on-line or off-
line. On-line learning is done at runtime, after first instrumented invocations of
components have been executed with random selection decisions, and represents
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the selection function in an internal data structure, such as a hash table as
applied in StarPU [3].

On-line machine learning performs selection decisions purely based on recorded
performance history data and thus does not require any additional performance
modeling information by the component provider, but can not offer good pre-
diction results until enough representative example measurements are collected,
and incurs additional runtime overhead for that. Off-line tuning can ease the
problem by actively invoking those representative training examples manually
or automatically; however, the number of training examples generated with a
straightforward strided scanning of context property values (e.g., problem sizes)
grows very large if suitable precision of performance prediction and best-variant
selection shall be achieved.

In this work we suggest a new approach to off-line tuning with a novel adap-
tive generation of training data and representation of the constructed selection
(dispatch) function. In our approach, the training time can be reduced remark-
ably while a reasonable prediction precision can still be achieved. It can also
be integrated with compile time tools such as composition tools, thus enhance
static composition by better precision. Furthermore, it can be integrated with
run-time systems such as StarPU by dynamically exposing only the best imple-
mentations of the different kinds of processing units to reduce run-time selection
overhead.

The remainder of this paper is organized as follows: Section 2 introduces the
PEPPHER component model and composition tool. In section 3 we discuss our
adaptive offline tuning approach in detail. In section 4 we show and discuss ex-
perimental results. Section 5 lists related work; section 6 concludes and discusses
future work.

2 PEPPHER Components and Composition

A PEPPHER component is an annotated software module that implements a
specific functionality declared in a PEPPHER interface. A PEPPHER interface
is defined by an interface descriptor, an XML document that specifies the name,
parameter types and the access types (read, write or both) of a function to be
implemented, and in addition specifies which performance metrics (e.g. average
case execution time) the prediction functions of component implementations
must provide. Interfaces can be generic in static entities such as element types
or code; genericity is resolved statically by expansion, as with C++ templates.

Applications for PEPPHER are currently assumed to be written in C/C++.
Several component variants may implement the same functionality (as defined
by a PEPPHER interface), e.g. by different algorithms or for different execu-
tion platforms. These implementation variants can exist already as part of some
standard library (e.g. CUBLAS components for CUDA) or can be provided by
the programmer. The PEPPHER framework provides support for implementa-
tion repository to manage evolution of implementation variants to increase the
re-use potential in the long run. Also, more component implementation variants
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may be generated automatically from a common source module, e.g. by spe-
cial compiler transformations or by instantiating or binding tunable parameters.
These variants differ by their resource requirements and performance behavior,
and thereby become alternative choices for composition whenever the (interface)
function is called.

In order to prepare and guide variant selection, component implementations
need to expose their relevant properties explicitly to the composition tool. Each
PEPPHER component implementation variant thus provides its own compo-
nent descriptor, an XML document that contains information (meta-data) about
properties such as the provided and required interface(s), source files, compi-
lation commands and resource requirements, tunable parameters, further con-
straints on composition, and a reference to a performance prediction function.

The main module of a PEPPHER application is also annotated by its own
XML descriptor, which states e.g. the target execution platform and the overall
optimization goal.

The PEPPHER framework automatically keeps track of the different imple-
mentation variants for the identified components, technically by storing their
descriptors in repositories that can be explored by the composition tool. The
composition tool reads the metadata of interfaces and components used in the
application and generates, for each call to a PEPPHER interface, the necessary
code for pre-selecting (dispatching) a suitable implementation variant and creat-
ing a task for the PEPPHER runtime system that will execute that call. Compo-
sition points of PEPPHER components are restricted to calls on general-purpose
execution units only. Consequently, all component implementations using hard-
ware accelerators such as GPUs must be wrapped in CPU code containing a
platform-specific call to the accelerator.

Component invocations result in tasks that are managed by the PEPPHER
run-time system and executed non-preemptively. PEPPHER components and
tasks are stateless. However, the parameter data that they operate on do have
state. For this reason, parameters passed in and out of PEPPHER components
may be wrapped in special portable, generic, STL-like container data structures
such as Vector and Matrix with platform-specific implementations that inter-
nally keep track of, e.g., in which memory modules of the target system which
parts of the data are currently located or mirrored (smart containers). The con-
tainer state becomes part of the call context information as it is relevant for
performance prediction.

Composition tool Composition is the selection of a specific implementation vari-
ant (i.e., callee) for a call to component-provided functionality and the allo-
cation of resources for its execution. Composition is made context-aware for
performance optimization if it depends on the current call context, which con-
sists of selected input parameter properties (such as size) and currently avail-
able resources (such as cores or accelerators). The context parameters to be
considered and optionally their ranges (e.g., minimum and maximum value)
are declared in the PEPPHER interface descriptor. We refer to this considered
subset of a call context instance’s parameter and resource values shortly as a
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context instance, which is thus a tuple of concrete values for context properties
that might influence callee selection. Hence, composition maps context instances
to implementation variants [12].

Composition can be done either statically or dynamically. Static composition
constructs off-line a dispatch function that is evaluated at runtime for a context
instance to return a function pointer to the expected best implementation variant
[12]. Dynamic composition generates code that delegates the actual composition
to a context-aware runtime system that records performance history and con-
struct a dispatch mechanism on-line to be used and updated as the application
proceeds.

Composition can even be done in multiple stages: First, static composition
can narrow the set of candidates for the best implementation variant per context
instance to a few ones that are registered with the context-aware runtime system
that takes the final choice among these at runtime.

Dynamic composition is the default composition mechanism in PEPPHER. In
the special case where sufficient meta-data for performance prediction is avail-
able for all selectable component variants, composition can be prepared com-
pletely statically and co-optimized with resource allocation and scheduling, thus
bypassing the runtime system; see e.g. [11,12].

The PEPPHER composition tool [6] deploys the components and builds an
executable PEPPHER application. It recursively explores all interfaces and com-
ponents that (may) occur in the given PEPPHER application by browsing the
interfaces and components repository.

The composition tool processes the set of interfaces (descriptors) bottom-up
in reverse order of their components’ required interfaces relation (lifted to the
interface level) [12]. For each interface (descriptor) and its component imple-
mentations, the composition tool performs the following tasks:

1. It reads the descriptors and internally represents the metadata of all com-
ponent implementations that match the target platform, expands generic
interfaces and components, and generates platform-specific header files from
the interface descriptor.

2. It looks up prediction data from the performance data repository or runs
microbenchmarking code on the target platform, as specified in the compo-
nents’ performance meta-data.

3. It generates composition code in the form of stubs (proxy or wrapper func-
tions) that will perform context-aware composition at runtime. If sufficient
performance prediction metadata is available, it constructs performance data
and dispatch tables for static composition by evaluating the performance
prediction functions for selected context scenarios [11,12], which could be
compacted by machine learning techniques [5]. Otherwise, the generated
composition code contains calls to the PEPPHER run-time system to del-
egate variant selection to runtime, where the runtime system can access its
recorded performance history to guide variant selection, in addition to other
criteria such as operand data locality.
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4. It calls the native compilers, as specified for each component, to produce a
binary of every patched component source.

Finally, it links the application’s main program and its compiled components
together with the generated and compiled stubs, the PEPPHER library and the
PEPPHER runtime system to obtain an executable program.

3 Adaptive Off-Line Tuning

3.1 Motivation

Consider a typical example where a component’s implementation variants for
execution on different kinds of processors show performance advantages for dif-
ferent variants with respect to different input sizes, as shown in Figure 1. In a
subrange of call context instance values (here, of the number of array elements to
sort) where one implementation variant runs fastest among all implementations
variants we call that implementation variant the winner for that range of input
sizes.

We can map a n-dimensional range to a n-dimensional space. A specific con-
text instance can also be considered as a point in a n-dimensional space. Some
points or hyperplanes divide winning ranges of different implementations, we
call those the transition points or hyperplanes. Ideally if all those points or hy-
perplanes can be found effectively, we can construct a compact representation
which requires small overhead for both store and look-up, and it will provide
100 percent precision of winner prediction.

One may argue that the characteristics shown in Figure 1 may not apply for
other problems. In this paper, we test three other benchmark applications, and
these applications surprisingly conform to the characteristics of Figure 1, which
shows an interesting property: The winning range for each implementation vari-
ant is convex, i.e., if two points on a one-dimensional space have the same winner,
then it wins on all points between these. Our pruning strategy in this paper is
based on this convexity assumption: for n-dimensional space, if all vertices of a
space have the same winner, then it wins on all points in the space. Based on
this assumption, we construct an algorithm and data structure to approximate
and represent these transition points.

3.2 Hybrid Static/Dynamic Composition with Off-Line Training

Unlike static composition, dynamic composition can be guided by access to the
run-time context for each invocation, and thus owns prerequisites for better
selection precision at the cost of some run-time overheads. The hope is that the
time saved by invoking the fastest implementation variant is larger than the
overhead of the dynamic selection process, and thus portable performance is
increased.

Dynamic composition with on-line training by the runtime system shows some
disadvantages: it requires a certain number of representative executions before
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Fig. 1. Performance for matrix-matrix
multiplication variants

it can offer acceptable selection precision for dynamic composition; however, it
is often not guaranteed that those representative executions will happen during
a sufficiently long period of time. As an alternative, we consider off-line training
and dynamic composition. In off-line training, measuring performance for every
possible runtime context instance (which would offer perfect selection and precise
representation of this information) is often not feasible, thus a dynamic composer
is forced to make predictions based on a limited set of training examples.

The space C = I1 × ...ID of context instances for a component with D at-
tributes in the context instances is spanned by the D context attribute axes
with considered (user-specified or default) finite intervals Ii of discrete values,
for i = 1, ..., D. A continuous subinterval of an Ii is called a range, and any cross
product of such subintervals on the D axes is called a subspace of C. Hence,
subspaces are ”rectangular”, i.e., subspace borders are orthogonal to the axes
of C.

In an experimental version of our composition tool, we offer a precision-
controllable offline-trainer and dynamic composer based on ranges, i.e. it tries
to automatically approximate the (usually, non-rectangular and possibly non-
convex) subsets in C where one particular implementation variant performs bet-
ter than all the others, by a set of subspaces.

Our idea is to find sufficiently precise approximations by adaptively recursive
splitting of subspaces by splitting the intervals Ii, i = 1, ..., D. Hence, sub-
spaces are organized in a hierarchical way (following the subspace inclusion re-
lation) and represented by a 2D-ary tree (cf. binary space partitioning trees and
quadtrees/octrees etc.).

Our algorithm for off-line measurement starts from a trivial tree TC that has
just one node, the root (corresponding to the whole C), which is linked to its
2D corner points (here, the 2D outer corners of C) that are stored in a separate
table of recorded performance measurements. The implementation variants of
the component under examination are run with each of the corresponding 2D

context instances, possibly multiple times for averaging, using a context instance
generator provided with the metadata of the component; a variant whose exe-
cution exceeds a timeout for a context instance are aborted and not considered
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further for that context instance. Now we know the winning implementation
variant for each corner point and store it in the performance table, too, and TC
is properly initialized.

Fig. 2. Cutting a space recursively into subspaces, and the resulting dispatch tree

Consider any leaf node v in the current tree Tt representing a subspace
Sv = Rv

1 × ... × Rv
D. If the same specific implementation variant runs fastest

on all context instances corresponding to the 2D corners of Sv, we stop further
exploration of that subspace and will always select that implementation when-
ever a context instance at run-time falls within that subspace. Otherwise, the
subspace Sv may be refined further. Accordingly, the tree is extended by creating
new children below v which correspond to the newly created subspaces of Sv.

By iteratively splitting the ranges in FIFO order, we generate an adaptive
tree structure to represent the performance data and selection choices, which we
call dispatch tree.

The user can specify a maximum depth (training depth) for this iterative
refinement of the dispatch tree, which implies an upper limit on the runtime
lookup time, and also a maximum tree size (number of nodes) beyond which
any further refinement is cut off. Third, the user may specify a timeout for
overall training time, after which the dispatch tree is considered final.

Run-time lookup searches through the dispatch tree starting from the root
and descending into subspace nodes according to the current runtime context
instance. If the search ends at a closed leaf, i.e., a leaf node with equal winners
on all corners of its subspace, the winning implementation variant can be looked
up in the node. If the search ends in an open leaf with different winners on its
borders (e.g., due to reaching the specified cut-off depth), we perform an ap-
proximation within that range by choosing the implementation that runs fastest
on the subspace corner with the shortest Euclidean distance from the run-time
context instance.

The deeper the algorithm explores the tree, the better precision the dynamic
composer can offer for the composition choice; however, it requires more off-line
training time and more runtime lookup overhead as well. We give the option to
let the user decide the trade-off between training time and precision by setting
the cut-off depth, size and time in the component interface descriptor.
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3.3 Example for Hybrid Composition with Adaptive Off-Line
Training

Let us consider a matrix-matrix multiplication example with two implementation
variants, the well-known sequential version and a parallel version parallelized by
pthreads with a fixed number of 4 threads. In the off-line training phase, per-
formance data is measured by one execution per context instance; at execution
time of the composed code with dynamic selection, performance is averaged over
10 runs per context instance.

Fig. 3. Execution time for hybrid com-
position with a 41-node lookup tree de-
termined by the adaptive refinement
training algorithm with cut-off depth
3. — The hardware we use is a multi-
core system with 16 CPUs, where each
CPU is an Intel(R) Xeon(R) CPU
E5520 running at 2.27GHz with 8192
KB cache. The operating system is
Linux 3.0-ARCH and the compiler is
gcc 4.6.1.

As the resources (here, number of threads for OpenMP) was fixed, a context
instance is just a triple consisting of the three problem sizes that define the
operand matrix dimensions. The training space of context instances was chosen
as [1 : 1000, 1 : 1000, 1 : 1000], i.e., comprising 109 possible context instances
(input sizes). As tree data structure we used an octree with simultaneous refine-
ment of subspaces along all three dimensions. The cut-off depth for the tree was
set to 3. With these settings, the off-line training time (i.e., for the tree construc-
tion including the measurements on the target system) takes 228 seconds and
the constructed tree has 41 nodes, where the adaptive tree refinement is done
mostly for subspaces with smaller problem sizes. By comparing the composed
code at runtime with the actually fastest component for each context measured
for square test matrices (see Figure 3), we find that the tree lookup yields a
dynamic selection precision of 92%. From Figure 3 we can also see that the
overhead for performing dynamic selection is rather negligible. For some context
instance the dynamically selected implementation variant runs even faster than
the same one without dynamic selection; such anomalies are mostly due to the
operating system’s interruptions during measuring; in principle, the composed
code should always run slightly slower than the best individual component, due
to run-time lookup overhead.
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3.4 Selection

At initialization time, we read the dispatch tree from the file generated in the
training phase, and add a translation table that maps each implementation vari-
ant’s symbolic name to its function address.

The wrapper function generated by the composition tool selects the relevant
parameter values from the call context and uses them to look up the dispatch
tree and thereby the right function address, which is filled in the descriptor for
the task to be submitted to the runtime system. For open leaves, it chooses the
winner of the corner that has the shortest Euclidean distance from the actual
context instance.

4 Experimental Results

Platform. We use two GPU based heterogeneous systems called Fermi and
Cora. A brief description of the two platforms is shown in Table 1.

Table 1. Platform description

Machine
name

CPU
cores

CPU type GPUs GPU type OS Compiler

Fermi 16 Intel(R) Xeon(R) CPU
E5520 @ 2.27GHz

2 two Tesla M2050 3.2.1-2-
ARCH

gcc 4.6.2 and nvcc
V0.2.1221

Cora 16 Intel(R) Xeon(R) CPU
X5550 @ 2.67GHz

3 two nVidia Tesla C2050 and
one Tesla C1060

RHEL 5.6 gcc 4.1.2 and nvcc
V0.2.1221

Benchmark. For the evaluation we have chosen 4 benchmark problems: matrix-
matrix multiplication, sorting, and two RODINIA benchmarks: path finder and
backpropagation. A detailed description is shown in Table 2.

Table 2. Benchmark test settings

Benchmark feature modeling Range space size Implementation variants

Matrix-matrix
multiplication

row size, column size of first
matrix; column size of sec-
ond matrix

(1, 1, 1) to
(3000, 3000,
3000)

2.7E+10 Sequential implementation, CUDA im-
plementation, Blas implementation,
Pthread implementation

Sorting array size; discretization of
array values distribution (
sampled number of inver-
sions )

(1,0) to
(100000,10)

1000000 bubble sort, insertion sort, merge sort,
quick sort, CUDA thrust sort (only on
Fermi)

Path finder row; column (1,1) to
(10000,20000)

200000000 OMP implementation, CUDA imple-
mentation

Back propoga-
tion

array size (1000) to
(100000)

99000 OMP implementation, CUDA imple-
mentation

Methodology. We first train each benchmark problem with training depth
from 0 to 4. If the training time exceeds 3 hours then we terminate the training
process. Each benchmark is trained twice, with one version which prunes closed
space in the tree representation and another which performs no pruning at all.

The test points are chosen evenly from the training space so that every sub-
space in the dispatch tree is used for performance prediction.
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Table 3. Test results for 4 benchmarks on Fermi (td: Training depth; tt: Training
time; ato: average time overhead on dynamic selection; nn: Number of nodes generated
in the tree representation)

Matrix-matrix multiplication on Fermi, 343 test points
td pruning closed space no pruning for closed space

tt (s) Precision (%) ato (µs) nn tt (s) Precision (%) ato (µs) nn
0 85 51 17 1 88 50 15.9 1
1 755 48 21 9 762 48 20.4 9
2 6118 62 23 73 6252 62 23 73

Sorting on Fermi, 110 test points
pruning closed space no pruning for closed space

0 233 36 4 1 233 36 3.6 1
1 1035 61 4.9 5 1035 64 4.9 5
2 2485 80 5.5 17 4071 80 5.6 21

Back propagation on Fermi, 20 test points
pruning closed space no pruning for closed space

0 7 55 9 1 6 55 9 1
1 7 80 11 3 6 80 10 3
2 8 90 13.6 5 8 90 11.8 7
3 7 95 12 7 13 95 12.5 15
4 8 100 13.1 9 18 100 14 31

Path finder on Fermi, 200 test points
pruning closed space no pruning for closed space

0 36 59 12.6 1 29 59 12.7 1
1 161 77 16.5 5 122 77 14.5 5
2 371 86 16.5 17 497 86 15.8 21
3 609 95 16.8 45 1992 95 20.9 85

Experimental Results on Two Machines. The test results for 4 benchmarks
on Fermi are shown in Table 3. In particular, for backpropagation, the perfor-
mance behavior for different training depths on Fermi are shown in Figure 4.

The results for the 4 benchmarks on Cora are shown in Tables 4.

Discussion. The sorting, pathfinder and backpropagation benchmarks have
shown a good result. The result for the matrix-matrix multiplication benchmark
is a little disappointing, because it has a relatively large training space. Most
subspaces in its tree are open ones and for the points near their corners the
Euclidean distance criterion can give a better approximation while in the large
central area of these subspaces, the precision can not be guaranteed. Since we
train on a large space, which means large input sizes, a single training execution
may take a long time; for this reason, training depths larger than 3 become not
practical and not considered in this benchmark testing.

From the test results we can see that in most cases the precision of prediction
of the winner implementations increases with the depth of the dispatch tree.
This is expected because, as open subspaces can be partly closed by exploring
deeper levels, the precision increases. This trade-off is exposed to the users.

We also can see that for a relatively short training time, we get a reasonable
prediction precision in total which means pruning closed subspaces works and
the assumption that we can treat all points in a closed subspace equally holds
for those benchmarks. Another evidence for the assumption is the comparison
between two version of test results, one which perform closed subspace pruning
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Fig. 4. Performance with
maximum depths 0 to 4
for the backpropagation
benchmark on Fermi

and one which does not. We get almost the same results from the two set of
tests on all benchmarks we use, thus it is safe not to explore closed space in the
training phase.

The time overhead for run-time selection is acceptable, on the level of mi-
croseconds. Since we only explore a shallow depth of a dispatch tree, the number
of nodes generated is small, too, so the memory overhead is acceptable as well.

As for the relation between precision and performance, we can illustrate it in
Figure 4 for backpropagation. Comparing constant invocation of the OpenMP im-
plementation variant with dynamic selection among all available variants, we see
that for subspaceswhere the OpenMPvariantwins, the performance of all variants
only differs by a few microseconds; for the subspace where OpenMP does not win,
we gain performance.The performance gainedmight be remarkable if some variant
scaling badly is constantly invoked. From the figures we can also see that wrong
decisions for points within open subspaces often happen near transition points be-
tween different winners, and often the performance difference of implementation
variants at points near transition points is low, thus a wrong decision does not yield
a performance penalty as large as in other points in the subspace.

In general, our approach can pick the best implementation variant for most
of the cases for the different platforms.

We observed an anomaly for exploration of subspace in matrix-matrix multi-
plication on Fermi. When the depth increases from 0 to 1, with more training
time, the precision drops. One possible explanation is that when splitting some
space where the winner on one of the corners is shared by a minority of the other
corners, the Euclidean distance criterion will cause a majority of points to be
predicted wrongly, which with the coarser dispatch tree are predicted correctly.
Continuing to refine that subspace may make the precision increase again; how-
ever, continuing the exploration for matrix-matrix multiplication on such large
space is so time-consuming that we have to postpone further investigation of
this problem to future work.
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Table 4. Test results for 4 benchmarks on Cora

Matrix-matrix multiplication on Cora, 343 test points
td pruning closed space no pruning for closed space

tt (s) Precision (%) ato (µs) nn tt (s) Precision (%) ato (µs) nn
0 67 48 17.6 1 63 48 18.3 1
1 634 49 22.5 9 621 49 22.2 9
2 5115 67 26.4 73 5009 68 26.2 73

Sorting on Cora, 110 test points
pruning closed space no pruning for closed space

0 162 34 5.3 1 159 35 5.5 1
1 714 62 7.1 5 710 62 8.5 5
2 1747 80 8.6 17 2809 78 8.6 21

Back propagation on Cora, 20 test points
pruning closed space no pruning for closed space

0 3 55 11.9 1 3 60 13 1
1 4 85 12.6 3 4 90 14.7 3
2 4 95 16.1 5 5 95 14 7
3 4 100 13.4 7 7 95 15.2 15

Path finder on Cora, 200 test points
pruning closed space no pruning for closed space

0 21 39 12.5 1 21 39 12.1 1
1 97 67 14.5 5 92 67 16.1 5
2 219 82 15.6 17 400 82 16.2 21
3 367 95 15.9 45 1511 95 18.1 85

5 Related Work

Techniques for automated performance tuning have been considered extensively
in previous work; they are applied e.g. in generators of optimized domain-specific
libraries (such as basic linear algebra [25,14,21], reduction [26], sorting [15,21]
or signal transforms [8,20,17,7]), iterative compilation frameworks (e.g. [16]), or
for the optimized composition of general program units [11,13,2,1,24], e.g. the
components in our case.

Automated performance tuning usually involves three fundamental prepara-
tory tasks: (1) search through the space of context property values, (2) generation
of training data and measurements on the target system, (3) learning a decision
function / rule (e.g. for best variant selection, decomposition, or settings for
tunable parameters), or alternatively (3a) learning a predictor for performance
and then (3b) decide / optimize based on that predictor among the remain-
ing options. In our approach, these three tasks are tightly coupled to limit the
amount of measurement time and representation size required, while most other
approaches decouple at least two of these tasks.

Search, measurements and learning can each be performed off-line (i.e., at de-
ployment time or compile time) or on-line (i.e., at run time), or as a combination
of both. In our approach, all tasks are done off-line at component deployment
time, while all are performed at runtime in the StarPU runtime system by con-
tinuously recording measurements from the running program and using these
data for future decisions [2].

Kessler and Löwe [11] propose a methodology for optimized composition of
grey-box components. The component provider offers additional knowledge such
as time functions for performance prediction, which might include data obtained



342 L. Li, U. Dastgeer, and C. Kessler

from microbenchmarking, measuring, direct prediction or hybrid prediction. Pre-
dictions are made for a regularly sampled (dense) space of context instances,
including composition of prediction functions for recursive components in a dy-
namic programming algorithm. Based on those predictions, a dispatch table and
dynamic selection code are generated and injected into the components for run-
time selection. The dispatch tables can be a-posteriori compressed using various
machine learning techniques such as decision tree, decision graph, Bayesian clas-
sifier and SVM, where the decision tree was empirially found to be most effective
[5]. In contrast, our current work does the compression a-priori, thus avoiding
excessive prediction or measurements.

PetaBricks [1] provides a framework with language and compiler support for
exposing implementation variant choices. It also contains an off-line autotun-
ing system which starts to test with a small input size and doubles the size of
the input on each later iteration. They assume that optimal choices for smaller
subproblems are independent of the larger problem, so they construct new com-
position candidates incrementally from small input sizes to larger ones. The
algorithmic choices are made off-line in the output of the compiler.

Elastic computing [24] lets the programmer transparently utilize the hetero-
geneous computing resources by providing a library of elastic functions. The
autotuner trains itself from measurements (which are not further specified) and
then uses a linear regression model for predicting performance of untested input
values.

Grewe and O’Boyle [9] suggested an approach for statically choosing the best
mapping between tasks and unit types (CPU, GPU). Static features such as
numbers of float operations, are extracted from a set of programs, and and
scheduling decisions are fed to a SVM classifer. Then at compile time, the deci-
sion for distribution of work load on different kinds of processors is made.

ABCLibScript[10] is a directive system that provides autotuning function-
ality on numerical computations within the FIBER framework. The choice of
performance-related parameters, such as unrolling depth and block length, is
specified for training execution. A performance model is also specified by the
users, and generated together with training results. At run-time, best code re-
gions are selected.

Danylenko et al. [5] compares 4 different machine-learning approaches, Deci-
sion Trees, Decision Diagrams, Naive Bayes and SVM on sorting benchmark in
the field of context-aware composition for a-posteriori compression of the dis-
patch function. Results show Decision Diagram performs better in scalability,
and almost the same in prediction accuracy and decision overhead comparing
with other 3 approaches.

Singer and Veloso [19] applied a back-propagation neural netork for perfor-
mance prediction in the field of signal processing. Results show that choices of
different combination of features affect remarkably the prediction precisions.

[22] presents an unsupervised learning approach (fuzzy clustering algorithm)
for a machine learning based compiler. Significant reduction in the training cost
is achieved by grouping training programs into clusters using ’ratio of assembly



Adaptive Off-Line Tuning for Optimized Composition of Components 343

instructions to the total program instructions’ as a feature vector. After cluster-
ing, they carried training executions on one (randomly selected) representative
from each cluster, recording the best execution configuration for each of the
selected programs. This is an alternative approach to reduce training time.

In [23], Wang and O’Boyle developed two predictor functions (data-sensitive
and data-insensitive) to predict the best OpenMP execution configuration (num-
ber of OpenMP threads, scheduling policy) for an OpenMP program on a given
architecture. They use two machine learning algorithms (Artificial Neural Net-
work and Support Vector Machine) and train them using code, data and runtime
features extracted via source to source instrumentation.

Our approach can be considered as an adaptive variant of decision tree learn-
ing. Decision tree learning, often based on C4.5 [18] or similar tools, is also
used in many other approaches, e.g. in [20,21,26,7]. A direct comparison of our
learning algorithm with C4.5 and other learning methods is planned for future
work.

6 Conclusions and Future Work

We have developed an adaptive off-line training algorithm and dispatch tree
representation that allows to pick the best implementation variants for most
of the cases on different GPU-based heterogeneous machines, hence it improves
performance portability. Our method allows to reduce training time and enables
the user to trade off prediction precision, runtime overhead and training time.

Our approach for pruning closed space is based on the assumption that, if
corners of a space show a common winner, all points in the space would have the
same winner, which holds in most of our benchmark applications. The assump-
tion needs to be further investigated with more applications, and refined pre-
diction methods for open spaces should be developed. Note that, in cases where
the user knows that the assumption does not hold, a better accuracy could then
be enforced by also refining closed space within the given depth limit, at the
expense of a larger dispatch tree and longer training time.

Further improvements of our method are possible and will be considered in
future work. For instance, timeouts for individual measurements (applicable on
CPUs) and aborting variants under measurement that exceed the current winner
of a training point can save more training time. Also, the user may accept a
tolerance such that even suboptimal variants not slower than the winner by that
tolerance could also be considered winners in order to close spaces earlier.
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Abstract. We present a prototypical linear algebra compiler that
automatically exploits domain-specific knowledge to generate high-
performance algorithms. The input to the compiler is a target equation
together with knowledge of both the structure of the problem and the
properties of the operands. The output is a variety of high-performance
algorithms, and the corresponding source code, to solve the target equa-
tion. Our approach consists in the decomposition of the input equation
into a sequence of library-supported kernels. Since in general such a de-
composition is not unique, our compiler returns not one but a number
of algorithms. The potential of the compiler is shown by means of its
application to a challenging equation arising within the genome-wide
association study. As a result, the compiler produces multiple “best”
algorithms that outperform the best existing libraries.

1 Introduction

In the past 30 years, the development of linear algebra libraries has been tremen-
dously successful, resulting in a variety of reliable and efficient computational
kernels. Unfortunately these kernels are limited by a rigid interface that does
not allow users to pass knowledge specific to the target problem. If available,
such knowledge may lead to domain-specific algorithms that attain higher per-
formance than any traditional library [1]. The difficulty does not lay so much
in creating flexible interfaces, but in developing algorithms capable of taking
advantage of the extra information.

In this paper, we present preliminary work on a linear algebra compiler, writ-
ten in Mathematica, that automatically exploits application-specific knowledge
to generate high-performance algorithms. The compiler takes as input a target
equation and information on the structure and properties of the operands, and
returns as output algorithms that exploit the given information. In the same
way that a traditional compiler breaks the program into assembly instructions
directly supported by the processor, attempting different types of optimization,
our linear algebra compiler breaks a target operation down to library-supported
kernels, and generates not one but a family of viable algorithms. The decompo-
sition process undergone by our compiler closely replicates the thinking process
of a human expert.
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We show the potential of the compiler by means of a challenging operation
arising in computational biology: the genome-wide association study (GWAS),
an ubiquitous tool in the fields of genomics and medical genetics [2,3,4]. As part
of GWAS, one has to solve the following equation

{
bij := (XT

i M
−1
j Xi)

−1XT
i M

−1
j yj

Mj := hjΦ+ (1 − hj)I

with 1 ≤ i ≤ m

and 1 ≤ j ≤ t,
(1)

where Xi, Mj, and yj are known quantities, and bij is sought after. The size
and properties of the operands are as follows: bij ∈ Rp, Xi ∈ Rn×p is full rank,
Mj ∈ Rn×n is symmetric positive definite (SPD), yj ∈ Rn, Φ ∈ Rn×n, and
hj ∈ R; 103 ≤ n ≤ 104, 1 ≤ p ≤ 20, 106 ≤ m ≤ 107, and t is either 1 or of the
order of 105.

At the core of GWAS lays a linear regression analysis with non-independent
outcomes, carried out through the solution of a two-dimensional sequence of the
Generalized Least-Squares problem (GLS)

b := (XTM−1X)−1XTM−1y. (2)

While GLS may be directly solved, for instance, by MATLAB, or may be reduced
to a form accepted by LAPACK [5], none of these solutions can exploit the
specific structure pertaining to GWAS. The nature of the problem, a sequence of
correlated GLSs, allows multiple ways to reuse computation. Also, different sizes
of the input operands demand different algorithms to attain high performance in
all possible scenarios. The application of our compiler to GWAS, Eq. 1, results
in the automatic generation of dozens of algorithms, many of which outperform
the current state of the art by a factor of four or more.

The paper is organized as follows. Related work is briefly described in Sec-
tion 2. Sections 3 and 4 uncover the principles and mechanisms upon which
the compiler is built. In Section 5 we carefully detail the automatic generation
of multiple algorithms, and outline the code generation process. In Section 6
we report on the performance of the generated algorithms through numerical
experiments. We draw conclusions in Section 7.

2 Related Work

A number of research projects concentrate their efforts on domain-specific lan-
guages and compilers. Among them, the SPIRAL project [6] and the Tensor
Contraction Engine (TCE) [7], focused on signal processing transforms and ten-
sor contractions, respectively. As described throughout this paper, the main
difference between our approach and SPIRAL is the inference of properties. Cen-
tered on general dense linear algebra operations, one of the goals of the FLAME
project is the systematic generation of algorithms. The FLAME methodology,
based on the partitioning of the operands and the automatic identification of
loop-invariants [8,9], has been successfully applied to a number of operations,
originating hundreds of high-performance algorithms.
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The approach described in this paper is orthogonal to FLAME. No partition-
ing of the operands takes place. Instead, the main idea is the mapping of opera-
tions onto high-performance kernels from available libraries, such as BLAS [10]
and LAPACK.

3 The Compiler Principles

In this section we expose the human thinking process behind the generation of
algorithms for a broad range of linear algebra equations. As an example, we
derive an algorithm for the solution of the GLS problem, Eq. 2, as it would be
done by an expert. Together with the derivation, we describe the rationale for
every step of the algorithm. The exposed rationale highlights the key ideas on
top of which we founded the design of our compiler.

Given Eq. 2, the first concern is the inverse operator applied to the
expression XTM−1X . Since X is not square, the inverse cannot be distributed
over the product and the expression needs to be processed first. The attention
falls then on M−1. The inversion of a matrix is costly and not recommended for
numerical reasons; therefore, since M is a general matrix, we factor it. Given
the structure of M (SPD), we choose a Cholesky factorization, resulting in

LLT = M

b : = (XT (LLT )−1X)−1XT (LLT )−1y, (3)

where L is square and lower triangular. As L is square, the inverse may
now be distributed over the product LLT , yielding L−TL−1. Next, we process
XTL−TL−1X ; we observe that the quantity L−1X appears multiple times,
and may be computed and reused to save computation:

W := L−1X

b := (WTW )−1WTL−1y. (4)

At this point, since W is not square and the inverse cannot be distributed,
there are two alternatives: 1) multiply out WTW ; or 2) factor W , for instance
through a QR factorization. In this example, we choose the former:

S := WTW

b := S−1WTL−1y. (5)

One can prove that S is SPD, suggesting yet another factorization. We choose
a Cholesky factorization and distribute the inverse over the product:

GGT = S

b := G−TG−1WTL−1y. (6)
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Now that all the remaining inverses are applied to triangular matrices, we are
left with a series of products to compute the final result. Since all operands are
matrices except the vector y, we compute Eq. 6 from right to left to minimize
the number of flops. The final algorithm is shown in Alg. 1, together with the
names of the corresponding BLAS and LAPACK building blocks.

Algorithm 1. Solution of the GLS problem
as derived by a human expert

1 LLT = M (potrf)
2 W := L−1X (trsm)

3 S := W TW (syrk)

4 GGT = S (potrf)
5 y := L−1y (trsv)

6 b := W T y (gemv)
7 b := G−1b (trsv)

8 b := G−T b (trsv)

Three ideas stand out as the guiding principles for the thinking process:

– The first concern is to deal, whenever it is not applied to diagonal or trian-
gular matrices, with the inverse operator. Two scenarios may arise: a) it is
applied to a single operand, A−1. In this case the operand is factored with a
suitable factorization according to its structure; b) the inverse is applied to
an expression. This case is handled by either computing the expression and
reducing it to the first case, or factoring one of the matrices and analyzing
the resulting scenario.

– When decomposing the equation, we give priority to a) common segments,
i.e., common subexpressions, and b) segments that minimize the number of
flops; this way we reduce the amount of computation performed.

– If multiple alternatives leading to viable algorithms arise, we explore all of
them.

4 Compiler Overview

Our compiler follows the above guiding principles to closely replicate the think-
ing process of a human expert. To support the application of these principles,
the compiler incorporates a number of modules ranging from basic matrix al-
gebra support to analysis of dependencies, including the identification of build-
ing blocks offered by available libraries. In the following, we describe the core
modules.

Matrix Algebra. The compiler is written using Mathematica from scratch.
We implement our own operators: addition (plus), negation (minus), multi-
plication (times), inversion (inv), and transposition (trans). Together with
the operators, we define their precedence and properties, as commutativity,
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to support matrices as well as vectors and scalars. We also define a set of
rewrite rules according to matrix algebra properties to freely manipulate
expressions and simplify them, allowing the compiler to work on multiple
equivalent representations.

Inference of Properties. In this module we define the set of supported matrix
properties. As of now: identity, diagonal, triangular, symmetric, symmetric
positive definite, and orthogonal. On top of these properties, we build an
inference engine that, given the properties of the operands, is able to infer
properties of complex expressions. This module is extensible and facilitates
incorporating additional properties.

Building Blocks Interface. This module contains an extensive list of patterns
associated with the desired building blocks onto which the algorithms will
be mapped. It also contains the corresponding cost functions to be used to
construct the cost analysis of the generated algorithms. As with the prop-
erties module, if a new library is to be used, the list of accepted building
blocks can be easily extended.

Analysis of Dependencies. When considering a sequence of problems, as in
GWAS, this module analyzes the dependencies among operations and be-
tween operations and the dimensions of the sequence. Through this analysis,
the compiler rearranges the operations in the algorithm, reducing redundant
computations.

Code Generation. In addition to the automatic generation of algorithms, the
compiler includes a module to translate such algorithms into code. So far,
we support the generation of MATLAB code for one instance as well as
sequences of problems.

To complete the overview of our compiler, we provide a high-level description of
the compiler’s reasoning. The main idea is to build a tree in which the root node
contains the initial target equation; each edge is labeled with a building block;
and each node contains intermediate equations yet to be mapped. The compiler
progresses in a breadth-first fashion until all leaf nodes contain an expression
directly mapped onto a building block.

While processing a node’s equation, the search space is constrained according
to the following criteria:

1. if the expression contains an inverse applied to a single (non-diagonal, non-
triangular) matrix, for instance M−1, then the compiler identifies a set of
viable factorizations for M based on its properties and structure;

2. if the expression contains an inverse applied to a sub-expression, for instance
(WTW )−1, then the compiler identifies both viable factorizations for the
operands in the sub-expression (e.g., QR = W ), and segments of the sub-
expression that are directly mapped onto a building block (e.g., S := WTW );

3. if the expression contains no inverse to process (as inG−TG−1WTL−1y, with
G and L triangular), then the compiler identifies segments with a mapping
onto a building block.

When inspecting expressions for segments, the compiler gives priority to common
segments and segments that minimize the number of flops.
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All three cases may yield multiple building blocks. For each building block —
either a factorization or a segment— both a new edge and a new children node
are created. The edge is labeled with the corresponding building block, and the
node contains the new resulting expression. For instance, the analysis of Eq. 4
creates the following sub-tree:

b := (WTW )−1WTL−1y

b := S−1WTL−1y b := R−1QTL−1y

S := WTW QR = W

In addition, thanks to the Inference of properties module, for each building block,
properties of the output operands are inferred from those of the input operands.

Each path from the root node to a leaf represents one algorithm to solve the
target equation. By assembling the building blocks attached to each edge in the
path, the compiler returns a collection of algorithms, one per leaf.

Our compiler has been successfully applied to equations such as pseudo-
inverses, least-squares-like problems, and the automatic differentiation of BLAS
and LAPACK operations. Of special interest are the scenarios in which sequences
of such problems arise; for instance, the study case presented in this paper,
genome-wide association studies, which consist of a two-dimensional sequence of
correlated GLS problems.

The compiler is still in its early stages and the code is not yet available for
a general release. However, we include along the paper details on the input and
output of the system, as well as screenshots of the actual working prototype.

5 Compiler-Generated Algorithms

We detail now the application to GWAS of the process described above. Box 1
includes the input to the compiler: the target equation along with domain-specific
knowledge arising from GWAS, e.g, operands’ shape and properties. As a result,
dozens of algorithms are automatically generated; we report on three selected
ones.

5.1 Algorithm 1

To ease the reader, we describe the process towards the generation of an algo-
rithm similar to Alg. 1. The starting point is Eq. 1. Since X is not square, the
inverse operator applied to XT (hΦ + (1 − h)I)−1X cannot be distributed over
the product; thus, the inner-most inverse is (hΦ+(1−h)I)−1. The inverse is ap-
plied to an expression, which is inspected for viable factorizations and segments.
Among the identified alternatives are a) the factorization of the operand Φ ac-
cording to its properties, and b) the computation of the expression hΦ+(1−h)I.
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equation = {

equal[b,

times[

inv[times[

trans[X],

inv[plus[ times[h, Phi], times[plus[1, minus[h]], id] ]],

X]

],

trans[X],

inv[plus[ times[h, Phi], times[plus[1, minus[h]], id] ]],

y

]

]

};

operandProperties = {

{X, {‘‘Input’’, ‘‘Matrix’’, ‘‘FullRank’’} },

{y, {‘‘Input’’, ‘‘Vector’’ } },

{Phi, {‘‘Input’’, ‘‘Matrix’’, ‘‘Symmetric’’} },

{h, {‘‘Input’’, ‘‘Scalar’’ } },

{b, {‘‘Output’’, ‘‘Vector’’ } }

};

expressionProperties = {

inv[plus[ times[h, Phi], times[plus[1, minus[h]], id] ]], ‘‘SPD’’ };

sizeAssumptions = { rows[X] > cols[X] };

Box 1. Mathematica input to the compiler

Here we concentrate on the second case. The segment hΦ+ (1− h)I is matched
as the scal-add building block (scaling and addition of matrices); the operation
is made explicit and replaced:

M := hΦ+ (1− h)I

b := (XTM−1X)−1XTM−1y. (7)

Now, the inner-most inverse is applied to a single operand, M , and the com-
piler decides to factor it using multiple alternatives: Cholesky (LLT = M), QR
(QR = M), eigendecomposition (ZWZT = M), and SVD (UΣV T = M). All
the alternatives are explored; we focus now on the Cholesky factorization (potrf
routine from LAPACK):

LLT = M

b : = (XTL−TL−1X)−1XTL−TL−1y. (8)
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After M is factored and replaced by LLT , the inference engine propagates a
number of properties to L based on the properties of M and the factorization
applied. Concretely, L is square, triangular and full-rank.

Next, since L is triangular, the inner-most inverse to be processed in Eq. 8
is (XTL−TL−1X)−1. In this case two routes are explored: either factor X (L
is triangular and does not need further factorization), or map a segment of
the expression onto a building block. We consider this second alternative. The
compiler identifies the solution of a triangular system (trsm routine from BLAS)
as a common segment appearing three times in Eq. 8, makes it explicit, and
replaces it:

W := L−1X

b := (WTW )−1WTL−1y. (9)

Since L is square and full-rank, and X is also full-rank,W inherits the shape ofX
and is labelled as full-rank. As W is not square, the inverse cannot be distributed
over the product yet. Therefore, the compiler faces again two alternatives: either
factoring W or multiplying WTW . We proceed describing the latter scenario
while the former is analyzed in Sec. 5.2. WTW is identified as a building block
(syrk routine of BLAS), and made explicit:

S := WTW

b := S−1WTL−1y. (10)

The inference engine plays an important role deducing properties of S. During
the previous steps, the engine has inferred that W is full-rank and rows[W] >

cols[W]; therefore the following rule states that W is SPD.1

isSPDQ[ times[ trans[ A_?isFullRankQ ], A_ ] /; rows[A] > cols[A]

:= True;

This knowledge is now used to determine possible factorizations for S. We con-
centrate on the Cholesky factorization:

GGT = S

b := G−TG−1WTL−1y. (11)

In Eq. 11, all inverses are applied to triangular matrices; therefore, no more
treatment of inverses is needed. The compiler proceeds with the final decompo-
sition of the remaining series of products. Since at every step the inference engine
keeps track of the properties of the operands in the original equation as well as
the intermediate temporary quantities, it knows that every operand in Eq. 11
are matrices except for the vector y. This knowledge is used to give matrix-
vector products priority over matrix-matrix products, and Eq. 11 is decomposed

1 In Mathematica notation, the symbols , ?, and /; indicate a pattern, a constrained
pattern, and a condition, respectively. The rule reads: the matrix ATA is SPD if A
is full rank and has more rows than columns.
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accordingly. In case the compiler cannot find applicable heuristics to lead the
decomposition, it explores the multiple viable mappings onto building blocks.
The resulting algorithm, and the corresponding output from Mathematica, are
assembled in Alg. 2, chol-gwas.

Algorithm 2. chol-gwas

1 M := hΦ+ (1− h)I (scal-add)

2 LLT = M (potrf)
3 W := L−1X (trsm)

4 S := W TW (syrk)

5 GGT = S (potrf)
6 y := L−1y (trsv)

7 b := W T y (gemv)
8 b := G−1b (trsv)

9 b := G−T b (trsv)

5.2 Algorithm 2

In this subsection we display the capability of the compiler to analyze alternative
paths, leading to multiple viable algorithms. At the same time, we expose more
examples of algebraic manipulation carried out by the compiler. The presented
algorithm results from the alternative path arising in Eq. 10, the factorization
of W . Since W is a full-rank column panel, the compiler analyzes the scenario
where W is factored using a QR factorization (geqrf routine in LAPACK):

QR := W

b := ((QR)TQR)−1(QR)TL−1y. (12)

At this point, the compiler exploits the capabilities of the Matrix algebra module
to perform a series of simplifications:

b := ((QR)TQR)−1(QR)TL−1y;

b := (RTQTQR)−1RTQTL−1y;

b := (RTR)−1RTQTL−1y;

b := R−1R−TRTQTL−1y;

b := R−1QTL−1y. (13)

First, it distributes the transpose operator over the product. Then, it applies the
rule

times[ trans[ q_?isOrthonormalQ, q_ ] -> id,
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included as part of the knowledge-base of the module. The rule states that the
product QTQ, when Q is orthogonal with normalized columns, may be rewritten
(->) as the identity matrix. Next, since R is square, the inverse is distributed
over the product. More mathematical knowledge allows the compiler to rewrite
the product R−TRT as the identity.

In Eq. 13, the compiler does not need to process any more inverses; hence, the
last step is to decompose the remaining computation into a sequence of prod-
ucts. Once more, y is the only non-matrix operand. Accordingly, the compiler
decomposes the equation from right to left. The final algorithm is put together
in Alg. 3, qr-gwas.

Algorithm 3. qr-gwas

1 M := hΦ+ (1− h)I (scal-add)

2 LLT = M (potrf)
3 W := L−1X (trsm)
4 QR = W (geqrf)
5 y := L−1y (trsv)

6 b := QT y (gemv)
7 b := R−1b (trsv)

5.3 Algorithm 3

This third algorithm exploits further knowledge from GWAS, concretely the
structure of M , in a manner that may be overlooked even by human experts.

Again, the starting point is Eq. 1. The inner-most inverse is (hΦ+(1−h)I)−1.
Instead of multiplying out the expression within the inverse operator, we now
describe the alternative path also explored by the compiler: factoring one of the
matrices in the expression. We concentrate in the case where an eigendecompo-
sition of Φ (syevd or syevr from LAPACK) is chosen:

ZWZT = Φ

b := (XT (hZWZT + (1− h)I)−1X)−1

XT (hZWZT + (1− h)I)−1y (14)

where Z is a square, orthogonal matrix with normalized columns, and W is a
square, diagonal matrix.

In this scenario, the Matrix algebra module is essential; it allows the compiler
to work with alternative representations of Eq. 14. We already illustrated an
example where the product QTQ, Q orthonormal, is replaced with the identity
matrix. The freedom gained when defining its own operators, allows the compiler
to perform also the opposite transformation:

id -> times[ Q, trans[ Q ] ];

id -> times[ trans[ Q ], Q ];
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To apply these rules, the compiler inspects the expression hZWZT + (1 − h)I
for orthonormal matrices: Z is found to be orthonormal and used instead of Q
in the right-hand side of the previous rules. The resulting expression is

b := (XT (hZWZT + (1 − h)ZZT )−1X)−1

XT (hZWZT + (1 − h)ZZT )−1y. (15)

The algebraic manipulation capabilities of the compiler lead to the derivation of
further multiple equivalent representations of Eq. 15. We recall that, although
we focus on a concrete branch of the derivation, the compiler analyzes the many
alternatives. In the branch under study, the quantities Z and ZT are grouped
on the left- and right-hand sides of the inverse, respectively:

(XT (Z(hW + (1− h)I)ZT )−1X)−1;

then, since both Z and hW + (1 − h)I are square, the inverse is distributed:

(XT (Z−T (hW + (1− h)I)−1Z−1)X)−1;

finally, by means of the rules:

inv[ q_?isOrthonormalQ ] -> trans[ q ];

inv[ trans[ q_?isOrthonormalQ ] ] -> q;

which state that the inverse of an orthonormal matrix is its transpose, the ex-
pression becomes:

(XTZ(hW + (1− h)I)−1ZTX)−1.

The resulting equation is

b := (XTZ(hW + (1− h)I)−1ZTX)−1

XTZ(hW + (1− h)I)−1ZT y. (16)

The inner-most inverse in Eq. 16 is applied to a diagonal object (W is diagonal
and h a scalar). No more factorizations are needed, hW + (1− h)I is identified
as a scal-add building block, and exposed:

D := hW + (1 − h)I

b := (XTZD−1ZTX)−1XTZD−1ZT y. (17)

D is a diagonal matrix; hence only the inverse applied to XTZD−1ZTX remains
to be processed. Among the alternative steps, we consider the mapping of the
common segment XTZ, that appears three times, onto the gemm building block
(matrix-matrix product):

K := XTZ

b := (KD−1KT )−1KD−1ZT y. (18)

From this point on, the compiler proceeds as shown for the previous examples,
and obtains, among others, Alg. 4, eig-gwas.
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Algorithm 4. eig-gwas

1 ZWZT = Φ (syevx)
2 D := hW + (1− h)I (add-scal)

3 K := XTZ (gemm)
4 V := KD−1 (scal)

5 S := V KT (gemm)
6 QR = S (geqrf)

7 y := ZT y (gemv)
8 b := V y (gemv)

9 b := QT b (gemv)
10 b := R−1b (trsv)

At first sight, Alg. 4 might seem to be a suboptimal approach. However, as we
show in Sec. 6, it is representative of a family of algorithms that play a crucial
role when solving a certain sequence of GLS problems within GWAS.

5.4 Cost Analysis

We have illustrated how our compiler, closely replicating the reasoning of a hu-
man expert, automatically generates algorithms for the solution of a single GLS
problem. As shown in Eq. 1, in practice one has to solve one-dimensional (t = 1)
or two-dimensional (t ≈ 105) sequences of such problems. In this context we have
developed a module that performs a loop dependence analysis to identify loop-
independent operations and reduce redundant computations. For space reasons,
we do not further describe the module, and limit to the automatically generated
cost analysis.

The list of patterns for the identification of building blocks included in the
Building blocks interface module also incorporates the corresponding compu-
tational cost associated to the operations. Given a generated algorithm, the
compiler composes the cost of the algorithm by combining the number of float-
ing point operations performed by the individual building blocks, taking into
account the loops over the problem dimensions.

Table 1 includes the cost of the three presented algorithms, which attained
the lowest complexities for one- and two-dimensional sequences. While qr-gwas
and chol-gwas share the same cost for both types of sequences, suggesting a
very similar behavior in practice, the cost of eig-gwas differs in both cases. For
the one-dimensional sequence the cost of eig-gwas is not only greater in theory,
the practical constants associated to its terms increase the gap. On the contrary,
for the two-dimensional sequence, the cost of eig-gwas is lower than the cost of
the other two. This analysis suggests that qr-gwas and chol-gwas are better
suited for the one-dimensional case, while eig-gwas is better suited for the two-
dimensional one. In Sec. 6 we confirm these predictions through experimental
results.
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Table 1. Computational cost for the three algorithms selected by the compiler

Scenario qr-gwas chol-gwas eig-gwas

One instance O(n3) O(n3) O(n3)

1D sequence O(n3 +mpn2) O(n3 +mpn2) O(n3 +mpn2 +mp2n)

2D sequence O(tn3 +mtpn2) O(tn3 +mtpn2) O(n3 +mpn2 +mtp2n)

5.5 Code Generation

The translation from algorithms to code is not a straightforward task; in fact,
when manually performed, it is tedious and error prone. To overcome this diffi-
culty, we incorporate in our compiler a module for the automatic generation of
code. As of now, we support MATLAB; an extension to Fortran, a much more
challenging target language, is planned. We provide here a short overview of this
module.

Given an algorithm as derived by the compiler, the code generator builds an
abstract syntax tree (AST) mirroring the structure of the algorithm. Then, for
each node in the AST, the module generates the corresponding code statements.
Specifically, for the nodes corresponding to for loops, the module not only gen-
erates a for statement but also the specific statements to extract subparts of
the operands according to their dimensionality; as for the nodes representing the
building blocks, the generator must map the operation to the specific MATLAB
routine or matrix expression. As an example of automatically generated code,
the MATLAB routine corresponding to the aforementioned eig-gwas algorithm
for a two-dimensional sequence is illustrated in Fig. 1.

Fig. 1. MATLAB code corresponding to eig-gwas
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6 Performance Experiments

We turn now the attention to numerical results. In the experiments, we com-
pare the algorithms automatically generated by our compiler with LAPACK
and GenABEL [11], a widely used package for GWAS-like problems. For de-
tails on GenABEL’s algorithm for GWAS, gwfgls, we refer the reader to [12].
We present results for the two most representative scenarios in GWAS: one-
dimensional (t = 1), and two-dimensional (t > 1) sequences of GLS problems.

The experiments were performed on an 12-core Intel Xeon X5675 processor
running at 3.06 GHz, with 96GB of memory. The algorithms were implemented
in C, and linked to the multi-threaded GotoBLAS and the reference LAPACK
libraries. The experiments were executed using 12 threads.

We first study the scenario t = 1. We compare the performance of qr-gwas
and chol-gwas, with GenABEL’s gwfgls, and gels-gwas, based on LA-
PACK’s gels routine. The results are displayed in Fig. 2. As expected, qr-gwas
and chol-gwas attain the same performance and overlap. Most interestingly,
our algorithms clearly outperform gels-gwas and gwfgls, obtaining speedups
of 4 and 8, respectively.
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Fig. 2. Timings for a one-dimensional sequence of GLS problems within GWAS. Prob-
lem sizes: n = 10,000, p = 4, t = 1. The improvement in the performance of our
algorithms is due to a careful exploitation of both the properties of the operands and
the sequence of GLS problems.

Next, we present an even more interesting result. The current approach of all
state-of-the-art libraries to the case t > 1 is to repeat the experiment t times with
the same algorithm used for t = 1. On the contrary, our compiler generates the
algorithm eig-gwas, which particularly suits such scenario. As Fig. 3 illustrates,
eig-gwas outperforms the best algorithm for the case t = 1, chol-gwas, by a
factor of 4, and therefore outperforms gels-gwas and gwfgls by a factor of
16 and 32 respectively.

The results remark two significant facts: 1) the exploitation of domain-specific
knowledge may lead to improvements in state-of-the-art algorithms; and 2) the
library user may benefit from the existence of multiple algorithms, each matching
a given scenario better than the others. In the case of GWAS our compiler
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Fig. 3. Timings for a two-dimensional sequence of GLS problems within GWAS. Prob-
lem sizes: n = 5,000, p = 4, m = 106. chol-gwas is best suited for the scenario t = 1,
while eig-gwas is best suited for the scenario t >> 1.

achieves both, enabling computational biologists to target larger experiments
while reducing the execution time.

7 Conclusions

We presented a linear algebra compiler that automatically exploits domain-
specific knowledge to generate high-performance algorithms. Our linear algebra
compiler mimics the reasoning of a human expert to, similar to a traditional com-
piler, decompose a target equation into a sequence of library-supported building
blocks.

The compiler builds on a number of modules to support the replication of
human reasoning. Among them, the Matrix algebra module, which enables the
compiler to freely manipulate and simplify algebraic expressions, and the Prop-
erties inference module, which is able to infer properties of complex expressions
from the properties of the operands.

The potential of the compiler is shown by means of its application to the
challenging genome-wide association study equation. Several of the dozens of
algorithms produced by our compiler, when compared to state-of-the-art ones,
obtain n-fold speedups.

As future work we plan an extension to the Code generationmodule to support
Fortran. Also, the asymptotic operation count is only a preliminary approach to
estimate the performance of the generated algorithms. There is the need for a
more robust metric to suggest a “best” algorithm for a given scenario.
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Abstract. To implement dense linear algebra algorithms for distributed-memory
computers, an expert applies knowledge of the domain, the target architecture,
and how to parallelize common operations. This is often a rote process that be-
comes tedious for a large collection of algorithms. We have developed a way to
encode this expert knowledge such that it can be applied by a system to gener-
ate mechanically the same (and sometimes better) highly-optimized code that an
expert creates by hand. This paper illustrates how we have encoded a subset of
this knowledge and how our system applies it and searches a space of generated
implementations automatically.

1 Introduction

Parallelizing and optimizing dense linear algebra (DLA) algorithms for distributed-
memory machines is typically accomplished by domain experts very familiar with both
linear algebra and the oddities of the target machine. When a DLA expert has no expe-
rience with distributed-memory code and wants to implement an algorithm, (s)he must
live with an existing library, learn a lot about that architecture, or find an experienced
developer. This is inefficient and, as we argue, unnecessary because the work of an
expert is very mechanical and systematic, and therefore automatable.

We use pipe-and-filter graphs and graph transformations to codify the fundamental
algorithms and distributed-memory expertise used in Elemental [20], a domain-specific
language with functionality similar to ScaLAPACK [8] and PLAPACK [26]. Doing so
enables us to automate the activities of experts: selecting algorithms, composing algo-
rithms, and applying optimizations. In this paper, we show how expert-tuned, high-per-
formance parallel code for a handful of prototypical examples for distributed-memory
architectures can be mechanically produced by a tool.

We call this approach Design by Transformation (DxT) [23,19], pronounced “dext”.
We explain the basic ideas behind DxT that were developed while studying distributed-
memory examples. Further, we describe how we automatically generate code using DxT
and show performance results. Lastly, we explain our future ambitions for DxT.
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Partition A →
(
ATL �

ABL ABR

)
whereATL is 0× 0

while m(ATL) < m(A) do

Repartition
(
ATL �

ABL ABR

)
→

⎛
⎝A00 � �

A10 A11 �

A20 A21 A22

⎞
⎠whereA11 is b× b

Variant 1 Variant 2 Variant 3
A10 := A10tril(A00)

−T

A11 := A11 − tril(A10A
T
10)

A11 := chol(A11)

A11 := A11 − tril(A10A
T
10)

A11 := chol(A11)
A21 := A21 − A20A

T
10

A21 := A21 tril(A11)
−T

A11 := chol(A11)
A21 := A21 tril(A11)

−T

A22 := A22 − tril(A21A
T
21)

Continue with
(
ATL ATR

ABL ABR

)
←

⎛
⎝A00 � �

A10 A11 �

A20 A21 A22

⎞
⎠

endwhile

Fig. 1. Blocked algorithms for computing the Cholesky factorization. m(A) stands for the number
of rows of A and tril(A) indicates the lower triangular part of A. The ‘�’ symbol denotes entries
that are not referenced.

2 What an Expert Does

To appreciate our work, let us examine what steps an expert follows in order to produce
by hand a highly-optimized, parallel implementation of a dense matrix operation in El-
emental. We choose Cholesky factorization, an operation that is simple yet prototypical
of this class of operations, targeting a cluster architecture as a vehicle to illustrate expert
activities. Section 3 explains how we automate this process.

From Specification to Algorithm to Sequential Code. Over the last decade, the
FLAME project has developed a repeatable process by which loop-based families of
algorithms for dense matrix operations, such as those in Basic Linear Algebra Sub-
programs (the BLAS [10,9,16]) and LAPACK [1], can be systematically derived [14].
FLAME uses formal derivation [5] and yields a number of algorithmic variants for each
operation so the best for a given situation can be chosen1. In Figure 1, we show the three
known blocked algorithmic variants that result when applied to Cholesky factorization2.
Blocked algorithms cast most computation in terms of matrix-matrix operations (level-
3 BLAS [10]), which can attain high performance on cache-based architectures. Un-
blocked algorithms can be obtained by setting the block size b = 1. Henceforth, we use
Variant 3 of Cholesky factorization as our running example.

The FLAME project has produced a library, libflame [27], with functionality
comparable to that of the widely-used LAPACK library [1]. The algorithms encoded
in FLAME were systematically derived and then represented in code using an API,
FLAME/C [4], that allows the code to closely resemble the algorithm of Figure 1. Code

1 This expert task of deriving algorithms has been mechanized [3].
2 chol calculates the Cholesky factor of the input, and tril returns the lower-triangular portion.
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Chol( Lower, A11 );

Trsm( Right, Lower, Transpose, NonUnit,
(T)1, A11, A21 );

TriangularRankK( Lower, Transpose,
(T)-1, A21, A21,
(T)1, A22 );

A11_Star_Star = A11;
LocalChol( Lower, A11_Star_Star );
A11 = A11_Star_Star;

A21_VC_Star = A21;
A11_Star_Star = A11;
LocalTrsm

( Right, Lower, Transpose, NonUnit,
(T)1, A11_Star_Star, A21_VC_Star );

A21 = A21_VC_Star;

A21_MC_Star = A21;
A21_MR_Star = A21;
LocalTriangularRankK

( Lower, Transpose,
(T)-1, A21_MC_Star, A21_MR_Star,
(T)1, A22 );

(a) Original code. (b) Inline routines.
A11_Star_Star = A11;
LocalChol( Lower, A11_Star_Star );
A11 = A11_Star_Star;

A21_VC_Star = A21;
A11_Star_Star = A11;
LocalTrsm

( Right, Lower, Transpose, NonUnit,
(T)1, A11_Star_Star, A21_VC_Star );

\\ A21 = A21_VC_Star;
A21_MC_Star = A21_VC_Star;
A21 = A21_MC_Star;

\\ A21_MC_Star = A21;
A21_VC_Star = A21;
A21_MC_Star = A21_VC_Star;
\\ A21_MR_Star = A21;
A21_VC_Star = A21;
A21_MR_Star = A21_VC_Star;
LocalTriangularRankK

( Lower, Transpose,
(T)-1, A21_MC_Star, A21_MR_Star,
(T)1, A22 );

A11_Star_Star = A11;
LocalChol( Lower, A11_Star_Star );
A11 = A11_Star_Star;

A21_VC_Star = A21;

LocalTrsm
( Right, Lower, Transpose, NonUnit,
(T)1, A11_Star_Star, A21_VC_Star );

A21_MC_Star = A21_VC_Star;
A21 = A21_MC_Star;

A21_MR_Star = A21_VC_Star;
LocalTriangularRankK

( Lower, Transpose,
(T)-1, A21_MC_Star, A21_MR_Star,
(T)1, A22 );

(c) Inline communication. (d) Remove redundant communication.

Fig. 2. Sequence of optimizations of the loop-body in Variant 3 of Cholesky.

in the style of the Elemental library [20] follows this approach; the code closely resem-
bles the algorithm.

Elemental. If one were to code the algorithm in Figure 1 directly in Elemental code,
the loop body would look like Figure 2(a). To see the hidden parallelism for these
operations, we must review Elemental [20]. Elemental is a new dense linear algebra
library for distributed-memory architectures that uses a 2-dimensional, cyclic distribu-
tion of data with blocksize of 1 over a 2-dimensional grid of processors. Specifically,
it views the p processes as an r × c = p grid, and the data is stored, by default, in a
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distribution that cyclically wraps the rows and columns of the matrix around the process
grid (denoted [MC ,MR])3: element (i, j) of a matrix is stored on process (i%r, j%c).

Besides this 2-dimensional distribution, Elemental supports other data distributions
and ways to switch between them. This allows a programmer to parallelize an algorithm
and its sub-operations in many ways. Elemental is implemented in C++, and matrices
are stored in classes that know about distributions4. Switching between distributions in
the code is accomplished by overloading the ‘=’ operator in the matrix classes, mean-
ing that the ‘=’ operator hides specifics about the communication required to switch
between distributions. Behind ‘=’ is code to re-format the data into buffers and call
MPI collective communication routines for combinations of distributions.

We use Elemental because it provides a domain-specific language in which we can
start with a sequential algorithm and apply expertise about distributed-memory systems
to parallelize and optimize an implementation. Two key insights an expert uses that must
be codified are the management of redistributions (an operation that represents pure
overhead due to the communication involved) and the parallelization of sub-operations.
An expert trades more communication (which increases overhead) for more parallelism
(which allows useful computation to complete sooner). We explain these considerations
below using the Cholesky example, but we remind readers they are representative of a
large class of operations in this domain.

Elemental’s code lends itself well to identifying and codifying insights about these
components because all common operations are abstracted and layered to be modular.
The Elemental library uses these common operations across codes. For example there
are a finite number of data redistribution functions that are used repeatedly, hidden be-
hind the ‘=’ operator. That code includes the MPI layer, data storage information, etc.
The local (sequential BLAS and LAPACK-like) functions are called using the familiar
APIs and are wrapped to work with Elemental’s matrix class. Elemental’s distributed
BLAS and LAPACK functionality is built on top of these layers. On top of that layer
is Elemental’s solver functionality. Lastly, user applications are built on top of the Ele-
mental library. All of this layering and modularity makes mechanizing expert selections
of algorithms and optimizations easier because the inherent structure of the domain is
exposed. Further, this results in common patterns of function calls. An expert knows the
optimizations to apply to these repeated patterns across codes for different applications.
From the expert’s perspective, this layering and separation of concerns improves pro-
ductivity and makes the code easier to port [18]. See [20] for more details on Elemental.

How an Expert Optimizes for Distributed-Memory Architectures. With this back-
ground on Elemental, we now give a high-level explanation of how an expert takes
a sequential algorithm and optimizes it for a distributed-memory architecture. Doing
so motivates the codification of domain expertise. Consider the sequential, Variant 3,
lower-triangular Cholesky algorithm of Figure 1. It can achieve very good performance

3 We provide the Elemental notation for distributions so the graphs below can be understood,
but we will not fully explain what the notation means. Please see [20] for more information.

4 In the Elemental coding convention, variables are named by a submatrix and the name of the
data distribution is appended.
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on sequential machines, but it is only implicitly parallel if routines Chol, Trsm, and
TriangularRankK are parallelized.

To optimize this code, an expert focuses on the loop body, which we show again in
Figure 2(a), and inlines the choices of parallelized implementations of its three opera-
tions to yield Figure 2(b):

– A11 is distributed among processes ([MC ,MR]) and Chol(Lower, A11) rep-
resents a small part of all computation. Thus, a convenient way to perform this
operation is to bring all data to all processes ([	, 	]), and to then perform the opera-
tion redundantly. A11 Star Star = A11 performs the allgather that duplicates
data to all processes. LocalChol(...) then locally performs the factorization
on the processes, and A11 = A11 Star Star places the updated data back in
A11 (with no communication).

– Next, consider the update A21 := A21tril(A11)
−T . If one partitions A21 into rows

as A21 =

⎛

⎜
⎝

aT
21,0

aT
21,1

...

⎞

⎟
⎠ and redistributes A21 so that rows are assigned to processes in

a cyclic order ([VC , 	]), then the processes can compute
⎛

⎜
⎝

aT
21,k

aT
21,k+p

...

⎞

⎟
⎠ :=

⎛

⎜
⎝

aT
21,k

aT
21,k+p

...

⎞

⎟
⎠ tril(A−T

11 )

locally in parallel if A11 is duplicated on all nodes ([	, 	]). A21 VC Star = A21
redistributesA21. A11 Star Star = A11 duplicates, again,A11. The local com-
putation is performed by LocalTrsm(...). The data is placed back in A21 by
A21 = A21 VC Star.

– Similarly, the call to TriangularRankK(...) is parallelized by redistributions
of data A21 MC Star = A21 and A21 MR Star = A21 ([MC , 	] and [MR, 	],
respectively) followed by a local computation.

Details of what the distributions are and how exactly they are accomplished are not cru-
cial to our discussion [20]. The resultant code provides a hint as to why optimizations
are needed: the statements A11 = A11 Star Star and A11 Star Star = A11
can be replaced by the more efficient single A11 = A11 Star Star, which elimi-
nates unnecessary communication.

Further, an Elemental expert knows that redistributions like A21 MC Star = A21
can be composed from two or more redistributions via intermediate distributions. Some
choices of possible substitutions are exposed in Figure 2(c). In most instances, this
simply inlines intermediate distributions that were previously hidden. For example re-
placing A21 = A21 VC Star by

A21 MC Star = A21 VC Star; A21 = A21 MC Star.
An expert knows this is inefficient as data is distributed from one distribution to an-
other and back to the original distribution instead of redistributing only as necessary.
However, the astute reader may notice redundant redistributions which, when removed,
yield the code in Figure 2(d) (e.g., A21 MC Star = A21 VC Star is removed).
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Summary. An expert performs (consciously or subconsciously) the previously de-
scribed steps to optimize the code of Figure 2(a). Machine-specific details influence
how updates in the loop body are parallelized and which operations are expensive and
can/need to be optimized. We show in the next section how to mechanize these steps by
codifying knowledge about distributed-memory computing and related optimizations
using graph transformations. The keys are (1) layer algorithms, and (2) explicitly codify
implementation knowledge about (i.e. options for) algorithms, layers, communication,
and target architectures – details that were inlined in this section.

3 Toward a Mechanical Expert

The previous section showed, step-by-step, the process a domain expert uses to paral-
lelize and optimize a sequential algorithm. The process is not only systematic but also
applies to a broad class of operations in the domain of dense matrix computations. In
this section, we discuss how DxT mechanizes this process.

Using Graphs to Model Algorithms and Code. The classic (and arguably greatest
to date) example of automated software development is relational query optimization
(RQO) [24,25]. A query evaluation program (QEP) is represented by a relational al-
gebra expression. A query optimizer rewrites this expression, using relational algebra
identities, to an equivalent expression (program) that has better performance. The op-
timized expression is then translated to code, thereby synthesizing an efficient QEP
implementation. The keys to RQO are (a) representing the design of QEPs as relational
algebra expressions and (b) optimizing these expressions to produce efficient programs.

Chol

Trsm

TriRK 

A11

A22

A21

A11'

A22'

A21'

Fig. 3. Cholesky variant 3 algorithm loop body
in data-flow graph. This uses abstractions (solid
boxes) for component operations; implementa-
tions must be chosen.

We follow the same paradigm but in a
data-flow graph setting using graph
transformations. The starting point for
our optimization is the loop-body in Fig-
ure 2(a) or, equivalently, Figure 1, which
is represented as the data-flow graph of
Figure 3. The inputs to this graph are
the submatrices of A and the results of
the loop body (outputs of the graph) are
the updated submatrices of A. The boxes
represent the update operations of the loop body (e.g. Chol, TriangularRankK,
Trsm). These operations, also called abstractions, have no implementation details. Just
as in the starting algorithm, abstraction boxes only have precondition and postcondi-
tions to specify their functionality (we omit these details here).

Abstractions are implemented by algorithms; the pairing of operations with their al-
gorithms form algebraic identities (a.k.a. refinements) of the domain. Algorithms can
reference lower-level operations, which have their own implementing algorithms, and
this recurses. This codifies the layering of software libraries. There could potentially
be many refinements for an operation, each depending on, for example, architecture-
specific details, the method of parallelization, or numerical stability characteristics.
An expert explores such options or instinctively chooses one out of experience.
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LCholA11 A11'[MC,MR]→[*,*] [*,*]→[MC,MR]

Chol

CholA11 A11'

LTrsm
A21 [MC,MR]→[VC,*]

[MC,MR]→ [*,*]
[VC,*]→[MC,MR]Trsm A21' A21'

Trsm

A22

TriRK [MC,MR]→[MC,*]

[MC,MR] →[MR,*]

LTriRK 

TriRK

A11'

A21

A11'

A21'
A22'

A22

A21'

A22'

(a)

(b)

(c)A21' A21'

Fig. 4. Sample refinements to implement some operations for distributed-memory. The boxes
with → are redistribution operations in Elemental (i.e. ”=” operators) from one distribution, rep-
resented on the left of the arrow, to another, represent on the right of the arrow. The other solid
boxes represent local computation.

[*,*]→[MC,MR]

[MC,MR]→ [*,*]
[*,*]→[MC,MR]

opt1a opt1b

OPT1 OPT1

J
J

K
J

J

K

[VC,*]→[MC,*]J

Opt2b

[VC,*]→[MC,*]
J

[VC,*]→[MC,*]
Opt2a

Opt2

Opt2K

L

K

L

Fig. 5. Sample optimizing graph transformations to remove unnecessary redistribution

In the Cholesky algorithm, an expert replaces abstractions with implementation details
as shown in Figure 2(b), which are represented as graph transformations in Figure 4.
That figure only shows the best refinement for each abstraction in this algorithm; keep
in mind there are others. The boxes represent either redistribution operations (i.e. the
“=” operator in the code) or a sequential LAPACK or BLAS function call. Some of
the redistribution boxes are abstractions that can be further refined with implementation
options like an expert changing code from Figure 2(b) to Figure 2(c). These refinements
are also represented as graph transformations.

Optimizations are identities of the form exp1 = exp2, which allows us to re-
place one expression (DLA subprogram) exp1 with another, often more efficient,
expression exp2. An expert developer recognizes the inefficient redistribution code
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patterns in Figure 2(c) and optimizes the code to end with Figure 2(d). We can rep-
resent these optimizations as graph transformations such as those shown in Figure 5.
The top is equivalent to the optimization needed to replace A11 = A11 Star Star
and A11 Star Star = A11 with just A11 = A11 Star Star and the bottom
removes the redundant A21 MC Star = A21 VC Star in the Cholesky example.

Using a Graph Representation. By refining the operations of the Cholesky algorithm
in Figure 2(a), the top layer of code is flattened to expose redistribution in Figure 2(b).
These redistributions are another layer of operations that can be refined in various ways.
By refining some of them as in Figure 2(c), we can break through this layer to expose
inefficient redistributions that can be removed to create the optimized implementation
in Figure 2(d). All of these steps can be encoded as graph transformations that can be
applied to more algorithms than just this Cholesky example.

By exploring the space of equivalent graphs (implementations) for a given DLA ap-
plication and selecting the graph with the best performance characteristics, an efficient
DLA program is synthesized. Source is produced by translating the optimized graph
to code. These refinements and optimizations are the same as those experts know well
and currently apply repeatedly by hand; they can be thought of as transformations that
incrementally elaborate DLA programs. One goal of our work is to enable experts to
identify and encode these transformations so they can be mechanically applied. Just
as functions are modularized for re-use, these transformations can be modularized for
re-use, hence the name ‘Design by Transformation’.

Given a portfolio of basic, local (sequential) operations and redistribution primitives,
cost functions for each primitive, and a target sequence of DLA operations (e.g. as given
in Figure 2(a)), a mechanical system employs transformations that an expert would
apply by hand. Doing so produces all implementations that have merit (meaning they
are best by some measure for some subset of operands) and a mechanism by which to
choose from these implementations (e.g. cost functions for implementations).

Searching the Space of Implementations. To an observer, an expert implementing an
algorithm appears to follow instincts to select refinements and optimizations. In fact,
though, (s)he explores possibilities and assesses cost (implicitly or explicitly). How do
we enable a mechanical system to choose the best implementation using “instincts”? We
do not (yet). Instead of encoding the heuristics and instincts of an expert, we currently
use a breadth-first (or brute-force) search that works well for all of the algorithms we
have studied thus far. By iteratively applying all possible transformations to an input
algorithm’s graph, our method generates a search space of all implementations, both
good and bad. For all examples we describe in this paper, DxTer takes at most four
hours to generate the search space; Cholesky takes less than 5 seconds. By associat-
ing a cost with every implementation, the best in the search space can, in principle, be
picked out analytically. Thus, our prototype system employs run-time cost estimates
for redistribution and computation operations in Elemental to find the best-performing
codes. We want the system to see that the code of Figure 2(d) is better than the code
of Figure 2(a) by summing operation costs and determining which takes less time to
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Table 1. Representative first-order approximations for the cost of operations

Operation Cost
LocalChol (n× n) γn3/3
LocalTrsm (Right, Lower, n× n, m× n) γmnn
A11 Star Star = A11 (m× n) α�log2 p�+ β p−1

p
mn

A21 MC Star = A21 VC Star (m× n) α�log2 c� + β c−1
c

m
r
n

execute. It should then choose Figure 2(d) out of all implementations in the search
space, just as an expert would.

Finding the optimal implementations by cost estimates requires information about
the machine such as communication costs, computation speed, and the number of pro-
cessors. Further, the problem size affects which algorithm is optimal; different paral-
lelization schemes yield varying performance based on the matrix size. We consider
a range of problem sizes and find implementations that are optimal for some subset of
that range, and use cost functions to then choose which implementation to employ when
at run time the problem size is known. Cross-over points between the best implemen-
tations occur often. To identify these in our system, we need more accurate models of
computation and communication. Fortunately, a mechanical system does not care how
complicated the expressions become, which we hope to investigate in future research.
An expert rarely attempts this degree of optimization and accuracy since it requires
careful analysis that is too error-prone and time consuming to perform by hand. Au-
tomation overcomes this hurdle.5

For DLA we have reasonable cost estimates. First-order approximations for sequen-
tial operations can be given in terms of the number of floating point operations that are
performed as a function of the size of operands. For example the matrix multiplication
C = AB where C, A, and B are m × n, m × k and k × n, respectively, takes time
(costs) γ2mkn where γ is the time for a floating point operation. The cost of every
computation kernel can be approximated by the operation count multiplied by γ. 6

The data redistributions found in Elemental are implemented using MPI collective
communication routines. Lower-bound costs of the common algorithms under idealized
models of communication are known [7] in terms of coefficients α and β, which cap-
ture the latency and cost per item transferred, respectively. For example redistributing an
n×n block of A11 as in line A11 Star Star = A11 on p processes requires an all-
gather operation, which has a lower bound cost of approximately α log2(p) + β p−1

p n2.
Sample cost functions from our Cholesky example are in Table 1. They are a subset

of those necessary to enable the prototype we describe in the next section. They only in-
clude higher-order terms and are first-order approximations meant to distinguish good
(lower-cost) implementations of an algorithm from others that the system generates.

5 Readers may note that this is exactly the RQO paradigm (described above) applied to DLA
implementations.

6 A second-order approximation would take algorithm performance variation into account, but
for now we stick to first-order approximations since this is generally good enough for an expert
implementing algorithms by hand.
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It turns out these estimates are good enough for the examples we have studied so far, but
we expect to improve them to find the best code for more complicated algorithms. For
example, we have encountered situations where collective communications are subop-
timally implemented on a specific architecture while some other architectures provide
hardware support for such redistributions.

4 Experimental Results

We developed a prototype system to test the power of DxT and the cost functions de-
scribed in the previous section. We call this prototype DxTer [17], pronounced “dexter”.
We now describe our initial findings.

The results shown in this section were taken from the Lonestar cluster at the Texas
Advanced Computing Center. We used 20 nodes, each with 2 Intel Xeon hexa-core
processors running at 3.33 GHz.7 The combined theoretical peak performance of all
240 cores is 3200 GFLOPS. For each problem, we tested a range of algorithmic block
sizes and a set of process grid configurations and show the best results. Two-thirds of
peak performance is shown at the top of the graphs.
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Fig. 6. Cholesky Variant 3 estimated runtime in
processor cycles on 240 cores

Cholesky Variant 3. We encoded the
most useful refinements for a handful
of common operations (e.g. BLAS func-
tions) as well as Elemental redistribu-
tions to enable DxTer to implement the
Cholesky example. 8 From Figure 3,
DxTer is able to mechanically produce,
without human intervention, hundreds of
loop body implementations including all
versions in Figure 2. Each of these is Ele-
mental code for Cholesky Variant 3. This
allows DxTer to explore the space of im-
plementations. Additionally, we encoded
more complicated and subtle expert opti-
mizations that are out of the scope of this paper. With these DxTer generates an even
better implementation than that of Figure 2(d). This superior implementation is identi-
cal to that coded by the expert developer of Elemental.

In its current incarnation, DxTer applies all possible graph re-writes to enumerate
the entire search space of implementations. It then uses symbolic cost functions like
those those described in Section 3 to choose the best of all the mechanically generated
implementations (this is a breadth-first search). Figure 6 shows the cost estimates for the
most interesting generated implementations across a range of problem sizes (we omit

7 We used versions 11.1 of the Intel compiler, 1.6 of MVAPICH2, 1.8.0 of ScaLAPACK, and
1.30 of the GotoBLAS.

8 There are currently 88 refinement transformations and 382 optimization transformations (most
of which are exactly the same except the distributions to which they apply). The transforma-
tions presented above are included and are indicative of the complexity of others.
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Fig. 7. Cholesky Variant 3 (left) and SPD Inversion (right) implementation performance. Two-
thirds of peak performance is at the top of the graphs.

clearly sub-optimal choices). To make the choice of which is best, we fixed the machine-
specific parameters that appear in the cost functions. We take the process grid to be
16×15. γ, a measure of machine speed, is set to be 1, and the other machine parameters
are set as reasonable multiples of γ. We then determined the Cholesky implementation
in Elemental has a lower cost, i.e. run-time, than any of the hundreds of automatically
generated implementations. In Figure 6, this implementation’s cost estimate is at the
bottom of the graph, labeled “Optimized 2.”

In Figure 7 (left), we show the performance results of the code of Figure 2(c) (labeled
“Inlined”), the code of Figure 2(d) (labeled “Optimized 1”), and the further optimized
code (labeled “Optimized 2”). DxTer automatically generated all of these implementa-
tions. We leave out the performance of the original code as it is similar to that of the
inlined code. Notice that if a domain expert only implemented the algorithm directly
and did not optimize considering the machine, the inlined code performance would be
what (s)he would see. It shows what happens when one calls high-level operations with
hidden inefficiencies. The difference between “Optimized 1” and “Optimized 2” shows
the performance gained when complex optimizations are understood and applied. It is
clear that expert optimizations are necessary for good performance.

Additional Operations. DxTer was designed to be applied to most, if not all, of the op-
erations supported by libflame, the initial development used Cholesky as the driving
example. Once this worked, DxTer was applied to other operations to examine how eas-
ily the methodology can be applied to new algorithms and extended with new knowl-
edge and reusing knowledge that is already encoded.

Our first experiment was to apply DxTer to a specific algorithm for triangular solve
with multiple right-hand sides (Trsm) that casts the computation in the loop-body
in terms of operations that are very similar to those in the loop-body of Cholesky



Designing Linear Algebra Algorithms by Transformation 373

factorization Variant 3. As expected getting hundreds of implementations from DxTer
took very little work on our part because existing transformations were re-used. DxTer’s
costs models point to the same implementation as the hand-tuned as the best out of the
hundreds that were automatically generated.

Next, we tested DxTer’s implementation of Cholesky Variant 2. It requires a differ-
ent flavor of parallelization since the bulk of computation is in the Gemm operation,
which requires local computations to be summed (reduced) across processes. With this
refinement encoded, DxTer was again able to produce the same optimized implemen-
tation code that an expert created. Adding such a transformation to DxTer was an easy
change, and it will henceforth be explored for any algorithm with a Gemm operation.

DxTer was also applied to triangular matrix multiplication and triangular matrix in-
version. For the former, the expert made an implementation error that produced wrong
results; DxTer generated correct code. For the inversion operation, DxTer generated a
version that had slightly better theoretical numerical properties (with equivalent per-
formance). DxTer had a transformation encoded to use Trsm with a triangular matrix
before inversion instead of Trmm after inversion. The expert developer applied this
transformation to other algorithms, so it was encoded into DxTer, but he forgot to apply
it here. Elemental has been updated with both of the differences DxTer discovered.

Complex Operations. Our greatest triumphs to date came when we applied DxTer to
two much more complex operations, A := L−1AL−H , which is important in reducing
a generalized Hermitian symmetric positive-definite eigenvalue problem to a standard
problem, and a fused symmetric, positive-definite (SPD) matrix inversion algorithm.

A10 := L−1
11 A10

A20 := A20 − L21A10

A11 := L−1
11 A11L

−H
11

Y21 := L21A11

A21 := A21L
−H
11

A21 := W21 = A21 − 1
2Y21

A22 := A22−
(L21A

H
21 +A21L

H
21)

A21 := A21 − 1
2Y21

Fig. 8. Loop body of A :=
L−1AL−H

The parallelization of A := L−1AL−H , or two-sided
triangular solve, is discussed extensively in [21]. The
loop body of one of five algorithmic variants is shown
in Figure 8. This algorithm is significantly more com-
plex than those we described previously, but it is similar
in style to them and many other DLA algorithms. In ad-
dition to the BLAS refinements already encoded, refine-
ments for Axpy had to be added as well as some ad-
ditional parallelization schemes for TriangularRankK.
DxTer will now explore them with any algorithm that
uses them. Lastly, the unblocked operation L−1AL−H ,
specific to this algorithm, was added. After these addi-
tions, DxTer was able to generate tens of thousands of
implementations. The existing optimizations described
above enabled much of this variety; no new optimizations were needed. DxTer’s cost
models were used to automatically choose a “best” implementation from those gener-
ated. The chosen version was slightly better than the optimized version implemented
by the expert developer of Elemental. He had forgotten to apply an optimization that
was used in other algorithms. Our tool had no such excuses and found the superior
implementation.
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A11 := Chol(A11)
A01 := A01A

−1
11

A00 := A00 +A01A
T
01

A12 := A−T
11 A12

A02 := A02 −A01A12

A22 := A22 −AT
12A12

A01 := A01A
−T
11

A12 := −A−1
11 A12

A11 := A−1
11

A11 := A11A
T
11

Fig. 9. Loop body of SPD
matrix inversion

Next, we applied DxTer to a fused-loop algorithm for
SPD matrix inversion. We encoded variant 2 of the algo-
rithm described in [6], the loop body of which is shown in
Figure 9. With no additional transformations, DxTer gener-
ated hundreds of thousands of implementations and chose
the same implementation as the expert developed. Figure 7
(right) shows the resulting performance. The “Optimized”
version is the implementation generated by DxTer. The
“Non-fused” version is the implementation that uses the
optimized Cholesky factorization, triangular matrix inver-
sion, and triangular matrix-matrix multiply operations, de-
scribed above, in succession (also generated by DxTer).
This prohibits some optimizations to reduce communica-
tion allowed by the fused-loop algorithm. ScaLAPACK
uses a non-fused version of the algorithm. Performance is better here than for Cholesky
because the communication is better ammortized over more computation.

To recap these examples demonstrate that it is possible to generate high-performance
DLA code mechanically. Indeed, the original motivation for a tool like DxTer was to
simplify the burden of experts. We believe DxT is a practical basis to do this.

5 Related Work

Our paper takes a giant step forward for a vision that has been part of the FLAME
project since its inception. In the first dissertation that resulted from the project [13],
“The Big Picture” was expressed that already captured the idea of encoding algorithms
and expert knowledge and mechanically transforming it into code. There, too, opti-
mized parallel implementations were the goal. At the time, the PLAPACK library [26]
played the role of a domain specific language much like the Elemental library does in
this paper. Many implementations were generated by a system coded in Mathematica,
and performance estimates were generated from annotations with cost functions of the
algorithms. The present work benefits from an extra ten years of insights during which
dozens of papers were published that slowly filled in the blanks of knowledge that now
enable the current, more sophisticated, approach based graph transformations.

DxT is similar in goal to the SPIRAL project [22], which primarily focuses on the
domain of Digital Signal Processing (DSP). SPIRAL automatically generates high-
performance kernels for target architectures. It starts with a mathematical description
of the operation in a DSL and applies rewrite transformations to recursively replace
operations with implementation code. It uses learning techniques and performance test-
ing to explore the space of implementations. DxT is aimed at higher-level operations,
built on lower-level, architecture-specific functions like the BLAS, which allows us to
use relatively accurate cost models instead of online-search. We can envision building
on SPIRAL-generated kernels, though, instead of the hand-tuned components we use
today. We would need the kernels as well as cost estimates for this to work.

Autotuning is often viewed as a way to automatically improve performance [28].
DxT is different in that it generates the search space from a high-level understanding
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of how algorithms can be transformed. Also, we generate parameterized cost estimates
which then guide us to the best implementation(s). We can envision adding autotun-
ing to this approach in order to then choose the best parameters like, for example, the
algorithmic block size.

The Broadway compiler [15] had a similar goal as ours to encode expert knowledge
to enable optimized code generation. Library function annotations enable Broadway
to choose the best implementation at a call site. Broadway is not able to optimize by
replacing inlined code with a better implementation, though. Further, Broadway does
not search the space of implementations, which is necessary to avoid local minima.

Finally, The Tensor Contraction Engine (TCE) [2] aims to generate high-
performance code for a tensor contraction expressed at a high-level using a DSL. It
does so by applying transformations to reduce computational complexity, space com-
plexity, communication cost, and then data access. The transformations and cost models
of TCE are very similar in spirit and goal to DxT. TCE is geared specifically to tensor
contractions while DxT is more general (i.e. not just DLA algorithms [23]). We aim to
make transformations easy to understand and encode, so DxT can be applied to other
domains.

6 Future Work

Our larger goal is to automatically generate libraries of algorithms for DLA by encod-
ing knowledge about operations and many target architectures. A system would then
transform this knowledge into optimized algorithms based on cost estimates, automat-
ically generating families of implementations for more than just distributed-memory.
Our prototype shows promising results on distributed-memory targets for operations
that are indicative of most operations found in the domain of DLA. Obviously, there re-
main many additional problems before we can reach this goal, such as the topics below.

Adding Knowledge. We have not yet included all possible transformations in our pro-
totype system. Instead, we have incrementally added those needed by algorithms as we
target them for experiments. For example similar to the more advanced optimizations
an expert applies for a particular target architecture, there are likely other target-specific
optimizations that should be added to the system. Also, the cost functions that were used
were first-order approximations for the true cost of the various operations. Better pa-
rameterized costs estimates can eventually be incorporated to predict machine-specific
performance oddities.

Other Target Architectures. We chose first to test with distributed-memory algorithms
for three reasons: (1) We knew a large number of possible algorithms would result; (2)
We suspected first-order approximations for the cost of operations would suffice for
large matrix sizes; and (3) A considerable penalty would observed if a clearly wrong
optimization was chosen, so the benefits of optimization would be clearly visible in
experiments. Another important application of DxT would target optimization of se-
quential and multithreaded dense linear algebra libraries . There, communication would
show up in the form of copying of data into contiguous buffers for performance reasons
and computation would be performed by so-called inner kernels [11,12,28]. While in
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principle this is similar to what we have described in this paper, we suspect that in
practice the cost functions need to be more accurate and sophisticated. With knowledge
encoded to optimize for different architectures, DLA software could be optimized at all
layers of code. We will pursue this in future research.

Pruning the Search Space. For now our breadth-first approach to search is sufficient.
It only takes hours for even the most complex operations. When optimizing at all archi-
tectural levels, though, the search space will become substantially larger, and this cost
will become prohibitive. We must study how to prune the space to limit an explosion of
choices and we must study more advanced searching techniques. This is an active area
of research and will be covered in more detail in a follow-up paper.

7 Conclusion

Using Design by Transformation, we have demonstrated that it is possible to mecha-
nize the actions of an expert dense linear algebra developer to parallelize an algorithm
for a distributed-memory target. We presented multiple non-trivial case studies that
showed we could reproduce automatically what experts today produce manually. One
of the more complicated examples clearly indicates as DLA design problems become
more complex, a mechanized expert can produce even better code than manual designs.
DLA codes targeting distributed-memory architectures and the related optimizations
have similar structure to the examples we have explored. Therefore, we believe our
prototype’s successes thus far indicate potential for success for a large body of DLA
algorithms for distributed-memory computers and even other targets.

The key to DxT is exposing the inherent structure of the DLA domain – this is ac-
complished by capturing the fundamental operations of the domain using layered de-
signs. Further, we codify fundamental algorithms that implement the operations and
optimizations that naturally arise in this domain. Given this structure, we explained that
the manual process that a DLA expert uses to design efficient algorithms is so system-
atic that we could mechanize these tasks. We presented a tool that accomplished this
goal. Further, we explained why we believe DxT is not limited to distributed-memory
and how it can be used to optimize code beyond what is currently possible by hand. As
such we expect this paper to be the first of many to explore the topics described above.
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Abstract. The dLV twisted factorization is an algorithm to compute
singular vectors for given singular values fast and in parallel. However
the orthogonality of the computed singular vectors may be worse if a
matrix has clustered singular values. In order to improve the orthogo-
nality, reorthogonalization by, for example, the modified Gram-Schmidt
algorithm should be done. The problem is that this process takes a longer
time. In this paper an algorithm to accelerate the reorthogonalization of
singular vectors with a multi-core processor is devised.

1 Introduction

Singular value decomposition (SVD) is one of most important matrix operations
[1][2]. SVD is applied for data analysis, signal processing and has many other
applications to engineering. Therefore SVD has been well studied for many years
and some effective SVD algorithms are devised. The QR decomposition, the bi-
section algorithm, the divide and conquer algorithm (D&C), the MR3 algorithm,
and the I-SVD algorithm are known[1][9][8][12][13][17].

Some of those algorithms can be divided to computations of 2 phases. The
first is the computation of singular values. The second is the computation of
singular vectors of the computed singular values. Examples of such algorithms
include the bisection algorithm and the I-SVD algorithm.

We can select an algorithm for computing singular vectors for given singular
values. The dLV twisted factorization [6][7] is one of the possible choices and can
compute singular vectors fast. However if a matrix has clustered singular values,
the orthogonality of singular vectors computed by the dLV twisted factorization
can be worse. In order to improve the orthogonality, we have to use other algo-
rithms to compute singular vectors of such singular values. The inverse iteration
algorithm with the modified Gram-Schmidt reorthogonalization can be used for
this purpose, and the orthogonality becomes better indeed. The algorithm is
known to be slower because the computational complexity is larger than the
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dLV twisted factorization. Furthermore in parallel computation with a multi-
core/many-core processor, it is often that few computation cores are busy for
computation but the others are idle [14][15]. Such a phenomenon occurs because
the ordinary implementation of the modified Gram-Schmidt reorthogonalization
is not parallelized and the task scheduling is not well-done.

In this paper, a new solution for faster computation of the SVD is devised.
The main idea is as follows: we introduce a faster reorthogonalization algorithm
which utilize all of the computation cores. For more efficient computation, We
estimate the computation time to compute the singular vectors, and we arrange
these tasks by the greedy algorithm, which is used for two-dimensional bin pack-
ing problem. The selection and arrangement of all of the tasks and algorithms
for the computation are decided by auto-tuning technique. Finally we do the nu-
merical experiments and examine the usefulness of the new reorthogonalization
algorithm.

2 Algorithms of SVD Which Computes Singular Values
and Singular Vectors Individually

There are some algorithms for SVD which consists of 2 phases of computation.
The procedure of such algorithms is described as follows:

1. Compute singular values.
2. Compute all singular vectors of the computed singular values.

The bisection algorithm and the I-SVD algorihm can be classified to the group
of algorithms. In the first phase, algoirthms which compute singular values are
used. In the bisection algorithm, we prepare the Golub-Kahanmatrix of the given
matrix if the given matrix is bidiagonal. Then we can compute singular values
by the use of the subroutine of the bisection algorithm which is implemented as
the xSTEBZ in LAPACK. In the I-SVD algorithm, the mdLVs algorithm is used
for this purpose.

In the second phase, algorithms which compute singular vectors of designated
singular values are used. Examples of such algorithms include the inverse itera-
tion and the dLV twisted factorization.

In this paper, we assume that given matrices are bidiagonal, and we use the
bisection algorithm to obtain singular values.

2.1 The Hybrid Algorithm for Computing Singular Vectors

The dLV twisted decomposition can compute singular vectors of the given singu-
lar values. However it is known that the orthogonality of the computed singular
vectors may be ill if the singular values are in the clusters. In order to improve
the orthogonality, we have to compute singular vectors of singular values in the
clusters in a different way.

The inverse iteration algorithm with the modified Gram-Schmidt reorthogo-
nalization can also compute singular vectors. The orthogonality of the computed
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singular vectors is better than those of the singular vectors computed by the
dLV twisted decomposition. But the reorthogonalization is slower than the dLV
twisted decomposition. In this paper, we call this algorithm the mGS algorithm.

Thus we can compute all the singular vectors in the hybrid algorithm as
follows (Fig. 1):

1. Compute singular values and some singular vectors.
2. Find clusters of close singular values.
3. Compute singular vectors corresponding to the close singular values with the

mGS algorithm.
4. Compute singular vectors of the other singular values by the dLV twisted

factorization.

In the first phase, all of the singular values are computed with the bisection
algorithm. In the second phase, all of the computed singular values are checked
whether there are any singular values which are very close to the next singular
value, namely, whether the distance of the neighboring singular values is suffi-
ciently small. In the program used for the experiments described in Sect. 4, a
pair of singular values (σi, σi+1) (σi < σi+1) are regarded as close if the pair
satisfies either condition as follows:

σ2
i+1 − σ2

i

‖M‖1 < ortol1,

σi+1 − σi

‖M‖1 < ortol2,

where σi is the i-th singular value, M is the given bidiagonal matrix, ortol1 =
10−8, and ortol2 = 10−3. Note that singular values are nonnegative real numbers.
The groups of such singular values are called clusters. The singular vectors which
are corresponding to the clustered singular values are computed in the first phase
are discarded since the orthogonality may be ill.

In the third phase, the singular vectors corresponding to the clustered singular
values are computed with the mGS algorithm.

In the fourth phase, singular vectors which are not in the clusters are computed
by the dLV twisted factorization.

This idea of the hybrid algorithm can be applied to the I-SVD algorithm. The
detail is described in [15].

2.2 Problems of the Performance

The computation time of the mGS algorithm is O(k2N), where k is the size of
clusters (1 ≤ k ≤ N). Thus if the k is larger, the whole computation time can
be much longer. As a preliminary experiment, we measure the computation time
to achieve SVD by the method described in Sect. 2.1. Here we prepare matrices
of 2 types, M1 and M2. The characteristics of them is described in Table 1 and
Fig. 2. This experiment is done on the computer whose features are described in
Table 3.
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Fig. 1. The main flow of the hybrid algorithm

Table 1. The 3 types of matrices

Matrix type M1 M2

Bidiagonal elements Random 1
Subdiagonal elements Random 1, 10−6

Distribution of singular values Some are clustered Clustered

M2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ŵ 10−6

Ŵ 10−6

. . .
. . .

Ŵ 10−6

Ŵ

⎞
⎟⎟⎟⎟⎟⎟⎠

, Ŵ =

⎛
⎜⎜⎜⎜⎜⎝

1 1
1 1

. . .
. . .

1 1
1

⎞
⎟⎟⎟⎟⎟⎠

Ŵ : N̂ × N̂ matrix, N̂ = 17.

Fig. 2. The distribution of singular values

Table 2. The computation time to achieve SVD

Matrix size N M1 M2

3400 2.6 4.3
6800 9.9 29.7

10200 24.2 130.3

in second: [s]
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Table 2 shows the computation time of several matrix of size N . This shows
that it takes much longer time to achieve SVD of M2 compared to M1.

Fig. 3 shows the number of the working CPU cores during the computation
of the M2 (N = 6800). According to the graph, only 1 core works at the latter
time and it lengthens the total computation time, while the other cores are idle.
It is obviously inefficient.

The M2 contains 17 large clusters. The computer which is used for the nu-
merical experiment has 8 computation cores. Therefore 16 (= 8 × 2) clusters
are computed by each cores, but the left 1 cluster is computed by 1 core after
computing the 16 clusters (Fig. 4).

In this article, we accelerate the total computation of SVD by improving the
above mentioned inefficiency.

Fig. 3. The changes of the number of working cores

Table 3. The features of computers

CPU Intel Xeon CPU X5570 2.93GHz
(2 processors × 4 cores)

Memory 32GBytes
OS Fedora Linux 17 (x86 64bit)

Compiler icpc, ifort 12.1 (-O3 option)
Libraries Intel Math Kernel Library 10.3

3 Accelerating the Reorthogonalization of Singular
Vectors

In order to accelerate the reorthogonalization, we first introduce another in-
verse iteration method in Sect. 3.1. In Sect. 3.2, a hybrid algorithm to utilize the
alternative inverse iteration method as well as the mGS algorithm is explained.



384 H. Toyokawa et al.

Fig. 4. An inefficient task scheduling

3.1 Inverse Iteration Method with the Compact WY
Orthogonalization

The algorithm in this section is based on the idea of the use of the block House-
holder orthogonalization in terms of the compact WY representation[16]. The
calculation mainly consists of the product of matrices and vectors and rank-1
update operation. Thus these operations can be done with the level-2 BLAS.
These computations can be parallelized using the BLAS for parallel computa-
tion such as Intel Math Kernel Library, GotoBLAS 2, and so on. The detail of
the algorithm is explained in [3]. In this paper, this algorithm is called the cWY
algorithm.

During the execution of this algorithm, all of the computation cores are used
for the computation. Consequently the computation finishes faster than the mGS
algorithm, providing that sufficient cores are used for the computation.

3.2 Utilization of the 2 Algorithms

Using the cWY algorithm, we can accelerate the reorthogonalization by using
all of the cores. However the product of CPU time and the number of CPU cores
is apt to be larger than that of the inverse iteration and the modified Gram-
Schmidt reorthogonalization. Therefore we should not use the cWY algorithm
blindly. In fact, we should apply the mGS algorithm to small clusters, and apply
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Table 4. The features of the two algorithms

Algorithm mGS cWY

Required computation cores for 1 cluster 1 core All cores
Computation time Longer Shorter

mGS: The inverse iteration and the modified Gram-Schmidt reorthogonalization
cWY: The cWY algorithm

the cWY algorithm to large clusters, which takes much longer time. Table 4
shows the features of the 2 algorithms.

To utilize the 2 algorithms in a well-defined hybrid form, we have to keep in
mind the 2 points as follows:

1. The algorithm which is applied to a cluster should be selected properly.
2. Computation for all the clusters should be scheduled to each other properly.

These points are described in the next paragraph.

Selection of the Algorithm. Judging from Table 4, the main strategy for
selecting algorithm is that: for clusters of small number of singular values, the
modified Gram-Schmidt reorthogonalization should be selected. For large clus-
ters, the cWY algorithm should be selected. For more proper selection, we should
estimate the computation time for each cluster using the 2 algorithms, and select
the faster one.

However it is difficult to determine the obvious conditions and thresholds to
judge which algorithm is faster before the computation starts.

It is known that the computational complexity of mGS algorithm is O(k2N),
and that of the cWY algorithm is O(k2N), except for coefficients. First we collect
enough sample data of {N, k, ta,mGS, ta,cWY}, where ta,mGS is the actual time
to compute singular vectors by the mGS algorithm, and ta,cWY is the actual
time to compute singular vectors by cWY algorithm. Then we can obtain the
estimated computation times te,mGS and te,cWY of the given {N, k} by using
the least-squares method, where te,mGS is the estimated computation time of
the modified Gram-Schmidt algorithm and te,cWY is the estimated computation
time of the cWY algorithm, respectively.

Assuming that enough data of {N, k, ta,cWY} are given, the procedure to
estimate the computation time te,cWY of the cWY algorithm is as follows:

1. Fix k and regard te,cWY as a linear function of N , and estimate its value at
the given N by the least-squares method by using {ta,cWY}.

2. Repeat Step 1. with several values k = {ki}, and estimate {te,cWY}k=ki
.

3. Regard {te,cWY}k=ki
as a sample data at the given N , and estimate te,cWY

for given {N, k} by the least-squares method.

The computation time te,mGS can also be estimated by the same way.

Scheduling the Tasks. For more acceleration, the computation should also be
scheduled well. Scheduling tasks of computing singular vectors in clusters can be
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regarded as the two-dimensional bin packing problem. By scheduling, the total
computation time should be shorter, but we should not consume time for the
scheduling itself. Therefore we adopt the greedy algorithm, which can make so
good answer and does not cost so longer time.

Assuming that computation time of all of the tasks are estimated by the
technique described above, the procedure of the greedy algorithm which is used
in this paper is as follows:

1. Compute the current total computation time {hi} of each cores, where hi

means the total computation time of tasks which are assigned to core #i
(see Fig. 4).

2. Assign a task to the core whose total computation time hi is minimum.
3. Go to Step 1 until all of the tasks are assigned.

3.3 The New Algorithm

Based on the techniques above, the procedure of the new algorithm can be
described as follows:

1. Only once: Measure the actual computation time for some combinations of
parameters {N, k, ta} and collect the measured sample data.

2. Compute all the singular values by the mdLVs algorithm.
3. Find clusters of close singular values.
4. Select algorithms and schedule the tasks.

(a) Estimate the computation time of all the tasks.
(b) Arrange the tasks by the estimated computation time in descending or-

der.
(c) Set m ← 0.

(d) Estimate the computation time
{
t
(i)
e,mGS

}M

i=m+1
,
{
t
(i)
e,cWY

}m

i=1
of the clus-

ters, and set the estimated computation time
{
t
(i)
e

}M

i=1
=

{
t
(i)
e,mGS (m < i ≤ M)

t
(i)
e,cWY (1 ≤ i ≤ m)

.

(e) Arrange the tasks to minimize the total computation time by the greedy
algorithm.

(f) Check whether the total estimated computation time is shorter than
that of previous trial. If the time is not shorter, we adopt the previous
selection of algorithms and task schedule, and go to Step 5

(g) Set m ← m+ 1 and go to Step 4d.
5. Compute all the singular vectors in clusters by the selected algorithms.
6. Compute other singular vectors by the dLV twisted factorization.

The Step 1 should be done only once. The results of the step can be stored in
a file, and we can load the results from the file and can reuse them. After the
procedure, the computation become more efficient and the total computation
time will be shorter (Fig. 5). The Step 1 should be only once. Once this step is
done, we do not have to do it again. Therefore this step should be done before
the computation, for example, on installing the library or at night. The Step 1
and Step 4 are added to the original procedure described in Sect. 2.1.
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Fig. 5. An efficient task scheduling

4 Numerical Experiments

In order to examine the effect of the new algorithm, we give numerical exper-
iments. In the experiments, we see the length of shortened time by the new
algorithm. The computers described in Table 3 are used for the experiments. For
the experiments, we use the 2 types of matrices {M1,M2}, which are described
in Sect. 2.2. We use several size N of these matrices.

In the experiments, we use the GotoBLAS2 for matrix operations. This library
is called parallelly and individually by working threads, which execute their
own tasks. During the computation of the mGS algorithm, the operation of the
library in 1 task should be done by only 1 core. In order to force the policy, we
use omp set num threads function to adjust the number of threads which are
used for matrix operations.

The results of the experiments are shown in Table 5 for M1, and in Table 6
for M2. The experiments are done under the condition that the number of cores
allocated for the experiments is 1, 2, 4, and 8.
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Result of M1. According to Table 5, any effect in acceleration of the new algo-
rithm is not observed. That is because the new algorithm accelerates only the
computation for clusters. Table 7 shows the distribution of the size of the clusters
of M1 (N = 20400). According to the table, the size of most of the clusters are
less than 10. Only 1 cluster is larger, but the cluster size is not so large compared
to that of M2. Thus the effect of the new algorithm is so little.

Result of M2. According to Table 6, the new algorithm accelerates the orthogo-
nalization if N is large enough and 8 cores are used. The most computation for
M2 consists of the reorthogonalization because there are large clusters. The size
of clusters k = N/17. Furthermore at the end of the computation, the compu-
tation of the remaining 1 large core is done on 1 core while other cores are idle.
Thus the effect of the new algorithm can be observed if enough cores are used
for the cWY algorithm. In this computer, the cWY algorithm is slower than
the mGS algorithm if 2 cores are used. Thus the cWY algorithm is not used
when 2 cores are used, and the computation time is not shorten by the proposed
algorithm.

Table 5. The computation time of M1

Matrix Maximum cluster 1 core 2 cores 4 cores 8 cores
size N size max {k} Org. Org. New Org. New Org. New

3400 52 16 8 9 5 5 3 3
6800 95 64 33 33 18 18 10 10

10200 169 143 73 75 42 42 24 24
13600 237 253 131 135 75 74 45 45
17000 296 396 207 210 119 118 73 72
20400 369 573 306 307 177 176 110 110

Org.: The original algorithm, New: The new algorithm
in second : [s]

Table 6. The computation time of M2

Matrix Maximum cluster 1 core 2 cores 4 cores 8 cores
size N size max {k} Org. Org. New Org. New Org. New

3400 200 16 8 10 6 5 4 4
6800 400 111 58 59 41 42 28 30

10200 600 390 201 203 139 143 126 130
13600 800 912 472 474 328 324 308 304
17000 1000 1725 899 903 639 633 598 585
20400 1200 2901 1509 1509 1059 1065 1037 1020

Org.: The original algorithm, New: The new algorithm
in second : [s]
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Table 7. The distribution of the size of clusters (N = 20400, Matrix: M1)

Cluster size k Count

2 65
3 6
4 5
5 1
6 1

10 1
14 1
25 1

369 1

5 Conclusion

In this paper, a new method to shorten the time for reorthogonalization of sin-
gular vectors and then the time for SVD. If the singular values of a given matrix
are heavily clustered, the reorthogonalization process is apt to take much longer
time in the previous works[14][15]. The new algorithm in this paper can shorten
this process by using 1) the cWY algorithm, 2) selecting algorithm to reorthog-
onalization, and scheduling the tasks. The new algorithm especially works well,
providing that there are some large clusters and the computation for the large
cluster is done on few cores while other tasks completes. The effect of the new
algorithm is checked by some numerical experiments.

As a future work, the predominance in performance and accuracy of the new
algorithm should be examined using more types of matrices. Test matrices which
have designated singular values or whose conditional number is large can be
generated[10][11]. The new algorithm is desired to be compared to existing al-
gorithms implemented in LAPACK.
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Abstract. The matrix powers kernel, used in communication-avoiding
Krylov subspace methods, requires runtime auto-tuning for best perfor-
mance. We demonstrate how the SEJITS (Selective Embedded Just-In-
Time Specialization) approach can be used to deliver a high-performance
and performance-portable implementation of the matrix powers kernel
to application authors, while separating their high-level concerns from
those of auto-tuner implementers involving low-level optimizations. The
benefits of delivering this kernel in the form of a specializer, rather than a
traditional library, are discussed. Performance of the matrix powers ker-
nel specializer is evaluated in the context of a communication-avoiding
conjugate gradient (CA-CG) solver, which compares favorably to tradi-
tional CG.

1 Introduction

Krylov subspace methods (KSMs) are iterative algorithms in linear algebra used
to solve linear systems (given matrix A and vector b, solve Ax = b for x) or to
find eigenvalues and eigenvectors (given A, solve Ax = λx for λ and x) when
the matrix is large and sparse, making direct solvers impractical. The solution
vectors these methods produce in the first i iterations lie in the vector space
spanned by the vectors {x0, Ax0, . . . , A

ix0} for some starting vector x0; this
kind of space is called a Krylov subspace.

Conventionally, KSMs access the matrix A with one or more sparse matrix-
vector multiplications (SpMVs) per iteration. Since an SpMV must read a matrix
entry from memory for every two useful floating-point operations, making it a
highly memory-bound operation, Demmel et al. have proposed communication-
avoiding algorithms that improve performance by trading redundant computa-
tion for memory traffic [1]. In communication-avoiding KSMs, SpMV is replaced
by the matrix powers kernel, which computes Ax,A2x, . . . , Akx (or some equiv-
alent basis that spans the same vector space) for matrix A, vector x, and a small
constant k. Once the computation has been performed, the next k steps of the
solver can proceed without further memory accesses to A by combining vectors
from this set. Thus, memory traffic can be reduced – by up to a factor of k in
the best case – but obtaining the best performance requires substantial tuning.

M. Daydé, O. Marques, and K. Nakajima (Eds.): VECPAR 2012, LNCS 7851, pp. 391–403, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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A difficulty in auto-tuning the matrix powers kernel is that optimal code
depends on not only the machine architecture but also on the specific prob-
lem instance (namely, the placement of nonzeros in the matrix A), so runtime
auto-tuning is necessary to get high performance and performance portability.
Moreover, it is desirable to separate concerns of the application writers using
KSM solvers and programmers implementing auto-tuning. To do this, we take
advantage of SEJITS (Selective Embedded Just-In-Time Specialization) [2], a
programming methodology for maximizing separation of concerns between pro-
grammers working in specific problem domains and programmers who know how
to write efficient low-level code for the kinds of computation used in these do-
mains. The idea is to enable domain experts to express their applications in
code without needing to deal with low-level optimizations. This is accomplished
by defining a domain-specific language (DSL) or API, embedded in a high-level
general purpose language such as Python. The efficiency expert, with the help
of a SEJITS framework such as Asp (“Asp is SEJITS for Python”) [3], writes a
specializer to compile efficient implementations for the domain-specific code.

This can be seen as a generalization of the common practice of writing a library
in a low-level language with bindings allowing it to be called from a high-level
language. The ability to generate code at runtime makes specializers applicable
in cases where a library would not be able to provide sufficient flexibility and
performance. This could be because the computation itself is too general for a
library: an example of this is the domain of stencil computations [4]. It would
not be possible to compile implementations of all possible stencils up front, but
a specializer can lower a stencil function, given as code in its Python-embedded
DSL, down to C++, making it capable of generating optimized code for arbitrary
stencils.

Although the matrix powers kernel’s computation is not application specific,
since SEJITS can generate and compile code at runtime, this approach to de-
livering auto-tuning avoids the combinatorial explosion of code variants implied
by the large space of possible optimizations. Application writers can get both
high performance and performance portability without having to be concerned
with the low-level optimizations making them possible. SEJITS also allows the
tuning logic to be written in the high-level language, making it easier to write
and maintain while still keeping it well separated from applications. These ben-
efits would be difficult to obtain if the kernel were delivered as a conventional
library.

This paper describes a specializer for the matrix powers kernel, which was
built on the Asp framework. Section 2 describes the specializer and the various
optimizations implemented in it, and Section 3 contains performance results. Fi-
nally, discussion of the benefits that SEJITS brings to this kernel is in Section 4.

2 Implementation

The overall structure of the specializer and code using it is shown in Figure 1.
The application first calls the tuner, passing in the sparse matrix A and the
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Fig. 1. Overview of specializer and related code. Solid arrows indicate calls, dotted
arrows indicate processing of code.

constant k to be used. The tuner attempts to produce an optimized plan for
computing matrix powers, comprising both the code to do this computation and
its input data derived from the matrix. To do this, the tuner iterates over feasible
ranges of the optimization parameters described in Section 2. It calls into static
C code to do the necessary transformations on the matrix data, and uses the Asp
infrastructure to generate the specialized computational code from a template
and compile it. Each candidate plan is benchmarked by running it in a loop
until more than a half second has elapsed to get an accurate measurement of its
execution time.

An object representing the fastest plan found is returned back to the applica-
tion, which can then use it in a KSM solver. The solver invokes a method on the
object to execute the matrix powers kernel; for other linear algebra operations
that KSMs need, the specializer module also provides helper functions which are
simply wrappers around Intel Math Kernel Library (MKL) [5] BLAS operations.

2.1 Optimizations

The optimizations of the matrix powers kernel, summarized in Table 1, fall
into two major categories: those that reduce memory traffic by storing data
more efficiently, and those that re-order computation to parallelize it or make
better use of cache. The latter must obey the constraint that if matrix entry
Aij is nonzero, then for each level e : 0 ≤ e < k, component j of Aex must be
computed before it can be used in computing component i of Ae+1x. Because of
this, their effectiveness is highly dependent upon the structure of the matrix’s
nonzero entries, making runtime auto-tuning necessary for best performance.

The first optimization is to allow for parallelism by thread blocking. The ma-
trix rows are partitioned among a number of threads, with each thread being
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Table 1. Summary of optimizations

Optimization Type Restrictions

Thread blocking Re-ordering
Explicit cache blocking Re-ordering Useful only when k > 1
Tiling Size reduction

Symmetric representation Size reduction A = AT ; square tiles only
Implicit cache blocking Re-ordering Useful only when k > 1; square tiles only
Index array compression Size reduction Block must be sufficiently small

responsible for computing the vector components whose indices are that of rows
in its partition. In general, however, one thread’s set of Ae+1x components will
depend on a few components of Aex belonging to other threads. To avoid hav-
ing dependencies across threads which would force synchronization after each
output vector and preclude the cache blocking described later, a thread block
contains not only the rows in its partition, but also any additional rows needed
for redundantly computing other threads’ components as shown in Figure 2.

Fig. 2. Thread blocking of an 18x18 tridiagonal matrix. Colors indicate which thread
computes each component; the striped components are redundantly computed by two
different threads.

Minimizing the redundant computation means choosing a good partitioning,
i.e. one with few dependencies between thread blocks. One way would be to
make a graph with one vertex per matrix row, add an edge between vertex i
and vertex j whenever Aij �= 0, and partition this graph. For a more accurate
model of communication volume, what is implemented is to build a hypergraph
in which each vertex has a net containing all vertices that have a dependency
on it in k steps [6] (that is, net i contains vertex j if (AT + I)kij �= 0, ignoring
cancellation), and partition the hypergraph with the PaToH [7] library. Because
this can be very time-consuming for larger k, the current tuner only partitions
a k = 1 hypergraph regardless of the actual value of k.
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If a thread block is too large to fit in the processor’s cache, then without
further division it would be read from RAM k times. We can improve this with
cache blocking: divide each thread block into sufficiently small cache blocks, and
compute the entries for all k vectors in one cache block before moving on to
the next. This way, the contents of the thread block are only read once for
all k vectors. Explicit cache blocking is done in an identical manner to thread
blocking; each thread block is simply subdivided recursively until each piece is
small enough. An alternative is implicit cache blocking, which is done later on.

Nonzero entries in a sparse matrix are often close together, and this can be
taken advantage of by tiling. By default, blocks are stored in compressed sparse
row (CSR) format, which consists of three arrays: an array of nonzero values
(one floating point number for each nonzero), an array of column indices corre-
sponding to those values (one index for each nonzero), and an array indicating
where each row begins and ends (one index for each row plus one more, since the
end of one row is the start of the next). Tiling a block modifies this to store some
fixed-size tile instead of individual values; a tile is stored if any of its individual
values are nonzero (Figure 3). This results in a larger values array to hold the
extra zeros, but smaller column index and row pointer arrays, which can often
make for a net decrease in size. When either dimension of the tile size is even,
it also becomes possible to use SIMD instructions to do two multiply-adds at a
time, which is implemented via compiler intrinsics.

In many applications, the matrix is symmetric, meaning that Aij = Aji for
all i, j. When this is the case, the leading square of every block is symmetric as
well, since the columns are permuted into the same order as the rows. All entries
below the main diagonal can be omitted without losing any information, as they
are merely reflections of entries above the diagonal; this optimization can reduce
the memory size of a block by almost half. However, it alters the structure of
the computation: computing component i now requires going through not only
the entries in row i, but also any entry with a column index of i. This adds
additional dependencies between components for the purposes of implicit cache
blocking, possibly reducing its efficacy.

Unlike the partitioning of the matrix A into thread blocks or of a thread block
into explicit cache blocks, where each block is internally stored as a separate

⎡
⎢⎢⎣
4 5
6 7

8
9

⎤
⎥⎥⎦

values: 4 5 6 7 8 9
colidx: 0 1 0 1 3 2
rowptr: 0 2 4 5 6

⎡
⎢⎢⎣
4 5
6 7

0 8
9 0

⎤
⎥⎥⎦

values: 4 5 6 7 0 8 9 0
colidx: 0 1
rowptr: 0 1 2

Fig. 3. A 4x4 block and its representation in compressed sparse row format, before
and after 2x2 tiling
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Fig. 4. Implicit cache blocking. Arrows represent the order of computation within each
block; the left block is done first, then the middle block, then the right.

matrix, in implicit cache blocking (Figure 4) the partitioning into cache blocks
is not reflected in the internal data structures in this way. Instead, an array
is created that lists the indices of components that need to be computed at
each level of each cache block; this array determines the sequence to perform
the computation in, which would otherwise simply be one level after another.
Since this array will often contain long sequences of increasing integers, it may be
stanza-encoded. There is no need for any redundant computation: while creating
the array, keep track of what level each entry will have been computed up to at
the current point, and just omit any redundancy.

Finally, arrays of indices in each block can be compressed from 32-bit to 16-bit
if the block is sufficiently small. If a block is implicitly cache blocked and has
fewer than 216 rows, the computation sequence can be compressed. If any block
has no more than 216 columns, its colidx array can be compressed. With fewer
than 216 nonzero tiles, the rowptr array can be compressed as well.

The tuner logic currently works as follows: for each possible number of threads
(specified in the configuration), both explicit and implicit cache blocking are
attempted. For explicit blocking, the tuner iterates over a range of maximum
block sizes (5M bytes down to 250K, dividing by 2 each time) recursively bisect-
ing each thread block until all cache blocks are below the maximum size. For
implicit blocking, it iterates over a range of the number of implicit blocks per
thread (1 to 256, multiplying by 2 each time). With both types of cache blocking,
the tile size of each explicit cache block or thread block is chosen to give the
smallest memory footprint. Symmetric representation and index compression are
used if possible, but implicit blocking is tried both with and without symmetric
representation.

3 Results

To test the specializer in a realistic context, we have implemented in Python
a communication-avoiding variant of the conjugate gradient (CG) method, a
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Krylov method for solving symmetric positive definite linear systems. The basic
structure of communication-avoiding CG is shown in Algorithm 1. It produces a
sequence of solution approximation vectors xi and residual vectors ri = b−Axi,
using a three-term recurrence which relates xi−1, xi, xi+1, and ri (details of this
are described in [8]). On each iteration, it applies the matrix powers kernel to
the current residual vector rki+1; the power vectors, along with vectors from
the previous iteration, form a basis B from which all vectors produced in this
iteration will be a linear combination. The recurrence relation is used to compute
a matrix D giving the iteration’s output vectors in terms of B columns, with
dot products computed using the Gram matrix G = BTB. Finally, the output
vectors are made explicit by multiplying B and D. Constructions of the Gram
matrix and the final output vectors are done by calling the specializer’s BLAS
wrappers.

Algorithm 1. CA-CG algorithm outline
1: x0 ← 0
2: x1 ← initial guess
3: r0 ← 0
4: r1 ← b− Ax1

5: for i = 0, 1, . . . do
6: Use matrix powers kernel to compute [Arki+1, . . . , A

krki+1]
7: B ← [xki, xki+1, rki−i+2, . . . , rki+1, Arki+1, . . . , A

krki+1]
8: G ← BTB
9: Compute matrix D of output vectors in terms of B
10: [xki+i, xki+i+1, rki+2, . . . , rki+i+1] ← BD
11: end for

To demonstrate performance portability, the CA-CG solver was tested on
three different multi-core machines: an Intel Xeon (Figure 5), another Intel Xeon
with a large number of cores (Figure 6), and an AMD Opteron (Figure 7). The
five test matrices are from the University of Florida Sparse Matrix Collection [9]
and were chosen for being positive definite and so compatible with CG, being
reasonably well-conditioned, and having the kind of locality in their structures
that makes it possible to avoid communication. A matrix labeled 149K/10.6M
has 149 thousand rows and 10.6 million nonzero elements. The solver is gener-
ally several times faster than SciPy’s serial implementation of conventional CG,
the baseline performance a high-level language application writer could obtain
without using any additional libraries. When k is allowed to be greater than 1, it
often beats MKL’s parallel CG implementation as well (geometric mean is 159%
faster for matrix powers alone and 35% faster altogether).

For the k > 1 case, the time given is the time per iteration divided by k, since
one iteration is mathematically equivalent to k iterations of conventional CG.
Although CA-CG is more susceptible to accumulating error in the x vectors, for
every matrix tested, if CA-CG did converge to a given tolerance then it did so
in nearly the expected number of iterations. The dark part of each bar shows
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Fig. 5. CG solver performance on 2-socket Intel Xeon X5550 (8 cores, 2.67GHz)
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Fig. 7. CG solver performance on 2-socket AMD Opteron 2356 (8 cores, 2.3GHz)

Table 2. CG solver timing data for Figures 5–7

Platform Solver
Time per step (ms; sparse/dense)

bmwcra 1 boneS01 cant cfd2 Dubcova3

SciPy 16.6/2.4 10.8/2.0 6.4/0.9 5.6/1.8 6.5/2.5
2-socket MKL 5.3/1.0 3.6/0.8 1.8/0.4 1.9/0.8 2.6/1.0

Intel Xeon X5550 CA-CG (k=1) 3.2/2.5 2.9/1.9 1.4/1.1 1.6/1.8 1.7/2.0
(8 cores, 2.67GHz) CA-CG (best) 2.8/1.9 1.8/1.7 0.9/0.8 1.2/1.5 1.2/2.0

k=2 k=2 k=3 k=2 k=2

SciPy 34.0/3.8 21.7/3.1 12.9/1.6 10.2/2.7 12.1/3.8
4-socket MKL 3.0/1.2 2.9/1.0 1.6/0.5 1.1/1.0 1.5/1.3

Intel Xeon X7560 CA-CG (k=1) 0.7/2.0 1.0/1.9 0.2/1.1 0.4/1.7 0.5/2.1
(32 cores, 2.27GHz) CA-CG (best) 0.7/2.0 0.4/1.7 0.3/0.9 0.4/1.7 0.3/1.9

k=1 k=2 k=2 k=1 k=2

SciPy 46.7/6.4 30.1/5.6 17.6/2.6 15.3/5.4 20.7/6.4
2-socket MKL 14.9/3.2 9.6/2.9 5.4/1.1 5.2/2.7 6.6/3.2

AMD Opteron 2356 CA-CG (k=1) 11.1/6.3 9.7/5.0 4.3/2.6 5.1/4.4 5.9/5.7
(8 cores, 2.3GHz) CA-CG (best) 8.6/3.7 6.2/3.2 2.0/1.7 3.1/3.1 2.9/4.2

k=2 k=2 k=3 k=3 k=2
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time spent on matrix powers while the light part shows time in the remainder of
the solver. This does not include time spent in tuning before calling the solver,
which is on the order of a few minutes for each matrix and value of k, or typically
about 4000–10000 SciPy SpMV calls; however, this cost can be amortized across
multiple solves using the same matrix, as tuning need not be repeated. There
is also plenty of room for improvement regarding reducing the tuning time, as
discussed in section 6.

4 Discussion

From the experience of developing this specializer, several benefits of writing a
specializer rather than a traditional library are observable.

One benefit is that the SEJITS framework provides a ready-made templating
system for generating code. SEJITS templates are less work to create, and often
cleaner, than the ad-hoc code generation scripts typically written in developing
auto-tuned libraries. An example of template use is in Figure 8, where normal
and unrolled loops integrate nearly seamlessly, in contrast to the more confus-
ing code that would exist to do the same code generation using direct string
concatenation.

for (jb = A->browptr[ib]; jb < A->browptr[ib+1]; ++jb) {

% for i in xrange(b_m):

% for j in xrange(b_n):

y[ib*${b_m} + ${i}] += A->bvalues[jb*${b_m*b_n} + ${i*b_n + j}]

* x[A->bcolidx[jb]*${b_n} + ${j}];

% endfor

% endfor

}

Fig. 8. Template code for computing one row (having index ib) of the matrix-vector
multiplication y = Ax. b_m and b_n are the tile height and width, respectively. In Asp’s
template language, lines beginning with % are template directives, and ${} substitutes
the value of an expression.

Another benefit of writing a specializer is that it allows the auto-tuning logic
to be written in the high-level language. Not only does this make it easier to
write but it also makes it more extensible; if someone wishes to plug in a more
advanced auto-tuner, this can be done without having to modify and re-install
the specializer.

Finally, being able to generate and compile code at runtime means the combi-
natorial explosion of all possible code variants does not cause exponential growth
in the size of the specializer. Each combination of parameters for basis, tile size,
symmetric representation, implicit cache blocking and index compression re-
quires its own compiled code variant to work efficiently. The set of all possible
combinations already numbers in the hundreds, which would make for a large li-
brary; adding more features and optimizations could render the library approach
unworkable.
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5 Related Work

The idea of using multiple variants with different optimizations is a cornerstone
of auto-tuning. Auto-tuning was first applied to dense matrix computations in
the PHiPAC library (Portable High Performance ANSI C) [10]. Using param-
eterized code generation scripts written in C, PHiPAC generated variants of
generalized matrix multiply (GEMM) with a number of optimizations plus a
search engine, to, at install time, determine the best GEMM routine for the
particular machine. The technology has since been broadly disseminated in the
ATLAS package (math-atlas.sourceforge.net). Auto-tuning libraries include
OSKI (sparse linear algebra) [11], SPIRAL (Fast Fourier Transforms) [12], and
stencils [13,14], in each case showing large performance improvements over non-
autotuned implementations. With the exception of SPIRAL and Pochoir, all of
these code generators use ad-hoc Perl or C with simple string replacement, unlike
the template and tree manipulation systems provided by SEJITS.

The OSKI (Optimized Sparse Kernel Interface) library [11] precompiles 144
variants of each supported operation based on install-time hardware benchmarks
and includes logic to select the best variant at runtime, but applications using
OSKI must still intermingle tuning code (hinting, data structure preparation,
etc.) with the code that performs the calls to do the actual computations.

ABCLibScript [15] is a tool to create auto-tuned libraries from files which,
like SEJITS templates, contain efficiency-level code combined with scripting di-
rectives to control code variant generation. It is geared towards specific kinds
of optimizations and tuning searches, whereas SEJITS tries to provide a more
general framework suitable for any domain.

6 Future Work

There are several ways this specializer might be improved or extended. Varia-
tions on the matrix powers kernel required by more sophisticated solvers could
be added, such as preconditioning, or simultaneous computation of powers of A
and AT as in BiCG. More optimizations could be added based on the extensive
existing knowledge of optimizing sparse matrix-vector multiplication. The tuner
could be made more advanced, by using a performance model or machine learn-
ing, in order to effectively cover a larger search space of possible optimizations
without taking excessively long as the current brute-force approach would; note
that this would not require changes to the underlying C code.

Currently, the hypergraph partitioning used is the most time-consuming part
of the tuning. However, such partitioning is most beneficial when the matrix is
highly non-symmetric. One simple optimization would be to use non-hypergraph
partitioning for symmetric matrices, such as the matrices used with the CA-CG
solver; this could also be extended to other matrices that are not highly non-
symmetric. In addition, the search could be implemented using more intelligent
mechanisms such as hill climbing or gradient ascent. Such search strategies would
also be amenable to cases when the user wants a tuning decision within a specified

math-atlas.sourceforge.net
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time bound, in which case hill climbing or gradient ascent could be used for a
few iterations until the maximum bound is reached.

Tuning decisions could potentially be reused for matrices with the same struc-
ture; such matrices are commonly used in finite element computations, where
the actual values in the matrix may change, but the elements appear in the same
locations across modeling problems.

7 Conclusion

Though originally motivated by domains where a library is unsuitable due to
the generality of the desired computational kernel, the SEJITS methodology
also proves useful for domains where generality comes not from the kernel itself
but from the need to tune it for performance. Although the matrix powers kernel
could plausibly be written as a library, as a specializer it demonstrates how writ-
ing auto-tuners as specializers has benefits for both efficiency-level programmers
and for productivity-level programmers who wish to extend the tuning logic.
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Abstract. Multi-color ordering is a parallel ordering that allows programs to
be parallelized by application to sequentially executed parts of the programs.
While multi-color ordering parallelizes sequentially executed parts with data de-
pendences and increases the number of parts executed in parallel, improved per-
formance by multi-color ordering is sensitive to differences in the architectures
and systems on which the programs are executed. This sensitivity requires us to
tune the numbers of colors; i.e., modify programs for each architecture and sys-
tem. In this work, we develop a code generator based on multi-color ordering and
automatically tune the number of colors using a job-level parallel scripting lan-
guage Xcrypt. Furthermore, we support block multi-color ordering that avoids the
disadvantage of stride accesses in the original multi-color ordering, and evaluate
and clarify the effectiveness of block multi-color ordering.

Keywords: Block multi-color ordering, source-to-source code generation, job-
level parallel execution, scripting parallel language.

1 Introduction

Parallelization is a method applied to programs that allows us to parallelize sequen-
tially executed parts of the program. Parallel orderings are parallelizations that extend
the parts of a program executed in parallel by changing the order of computation in the
program [1]. Why do the parts of a program executed in parallel increase when chang-
ing the order of computation in the program? To answer this, consider the following
program as an example.

x(:) = 0

x(1) = 1

do i = 2, 100

x(i) = x(i-1)

end do

M. Daydé, O. Marques, and K. Nakajima (Eds.): VECPAR 2012, LNCS 7851, pp. 404–419, 2013.
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In the above program, x(i) is initially 0, and then becomes 1 for any i. In this pro-
gram, computation order is significant. If x(3)were computed in advance, x(3)would
remain 0, whereas x(i) would be 1 for all i except 3. This is because x(i) depends
on x(i-1), and this data dependence obviously prevents the loop in the program from
being parallelized.

In the above program, the computation order cannot be changed since the semantics
of the program relies on the order. However, this is not always the case. There are some
programs whose order of computation can be semantically changed. For example, recall
the Gauss-Seidel method for solving systems of linear equations.

The Gauss-Seidel method is an iterative method. Roughly speaking, the point of the
Gauss-Seidel method is to update values immediately, i.e., to use values at the n-th time
step to calculate the n-th time step:

un
i =

1
aii

(bi −
i−1∑

j=1

ai ju
n
j −

n∑

j=i+1

ai ju
n−1
j )

where un
i denotes the i-th column of solution candidates at the n-th step and ai j denotes

the element in the i-th row and j-th column of the coefficient matrix. This calculation is
different from that in the Jacobi method where values at the n-th step are not only used
in the n-th step, but also in the (n + 1)-th step:

un
i =

1
aii

(bi −
i−1∑

j=1

ai ju
n−1
j −

n∑

j=i+1

ai ju
n−1
j ) .

While both the Gauss-Seidel and Jacobi methods are used to solve systems of linear
equations, the values of u at the n-th step in these two methods are different. Neverthe-
less, this is not actually a problem. The aim in solving a system of linear equations is
to find a solution of the system of linear equations. Both the Gauss-Seidel and Jacobi
methods give us solution candidates for each system of linear equations. These solution
candidates can be checked by being substituted into the system of linear equations. In
this sense, differences in intermediate values along the way do not constitute a problem.

The Gauss-Seidel method contains data dependences. If we ignore these data depen-
dences by changing the ordering, that is, we forcibly parallelize sequentially executed
parts of a program, then intermediate values along the way would be different from
those in the original program. Therefore, we must choose a legal ordering that leads to
legal solutions.

In this paper, we propose automatic parallelization by using a parallel ordering called
multi-color ordering. Furthermore, our method supports block multi-color ordering that
avoids the disadvantage of the original multi-color ordering, namely, stride accesses,
which result in degraded performance. Our method relies on code generation using
block multi-color ordering, and job-level parallel execution. The proposed method pro-
vides programmers with an environment in which to modify and tune programs by
block multi-color ordering.

It should be noted that multi-color ordering changes the algorithm, i.e., the semantics
of the program. This distinguishes the work in this paper from studies on compilers.
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Compilers do not change the semantics of programs although they may raise numerical
errors by exchanging the order of operations in programs as a result of optimization1.
This work is beyond the scope of compilers, and targets what compilers should not do.
It is up to the programmers to apply the proposed method to their programs, and in this
respect, great care should be taken.

We formalize the parallelization of block multi-color ordering, thus allowing it to
be implemented by computers. We would also like to handle a large number of pro-
grams instantiated with parameters simultaneously. Using existing tools like Bash for
this seems to be adequate. However, this is not the case. Given that anyone can execute
a program in a parallel or distributed computational environment, higher portability is
required for tools on computers. In reality, parallel and distributed computational en-
vironments often have batch job systems to manage and control the execution of jobs,
and keep the execution of one job separate from that of another. These batch job sys-
tems usually require text files containing job scripts. In other words, when executing
a large number of programs simultaneously in a parallel or distributed computational
environment, we need to create a large number of job scripts. It is tedious to do this
using existing tools like Bash.

In this work we propose using a scripting language domain specific to job-level par-
allel execution, namely Xcrypt [2]. Xcrypt absorbs differences between computational
environments and is suitable for parameter sweeps since it was originally designed for
executing and controlling such programs. Since we have developed a code generator
for block multi-color ordering, i.e., applying block multi-color ordering to programs is
semi-automatic, we can easily automate the execution of programs with block multi-
color ordering in parallel and distributed computational environments using Xcrypt. In
this paper we introduce the method by means of an example.

Outline. In Sect. 2 we introduce multi-color ordering in detail. In Sect. 3 we explain
block multi-color ordering, which overcomes the disadvantage of multi-color ordering
as described in Sect. 2. In Sect. 4 we give an overview of how to automatically tune
programs to which block multi-color ordering has been applied. In Sect. 5 we explain
the code generator based on block multi-color ordering. In Sect. 6 we introduce the
job-level parallel scripting language Xcrypt, which is used to execute block multi-color
ordered programs automatically, while in Sect. 7 we evaluate our method through ex-
perimental results. In Sect. 8 we conclude this work with reference to future work.

2 Multi-color Ordering

Multi-color ordering is a parallel ordering that parallelizes programs with data depen-
dences by exchanging the order of computation of columns of matrices [1]. For the pur-
pose of understanding parallelization, consider the differences in the settings of three-
dimensional real space R3 for the following program:

1 For example, the Intel Composer XE compiler has a compile option -par-report to show
reports on parallelization, while version 12.1 has the option -guide to provide detailed hints.
However, the compiler does not give any hints that change the semantics of the program.
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integer x_num, y_num, z_num

real(8), allocatable :: u(:,:,:), f(:,:,:), dgn(:,:,:)

real(8), allocatable :: axp(:,:,:), axm(:,:,:)

real(8), allocatable :: ayp(:,:,:), aym(:,:,:)

real(8), allocatable :: azp(:,:,:), azm(:,:,:)

integer i, j, k

...

do k = 2, z_num+1

do j = 2, y_num+1

do i = 2, x_num+1

u(i, j, k) = (f(i, j, k)-&

axp(i, j, k)*u(i+1, j, k)-&

axm(i, j, k)*u(i-1, j, k)-&

ayp(i, j, k)*u(i, j+1, k)-&

aym(i, j, k)*u(i, j-1, k)-&

azp(i, j, k)*u(i, j, k+1)-&

azm(i, j, k)*u(i, j, k-1)&

)/dgn(i, j, k)

end do

end do

end do

Fig. 1. Sample code in Fortran 90

un(i, j, k) = ( f (i, j, k)

− ax+(i, j, k)un−1(i + 1, j, k) − ax−(i, j, k)un(i − 1, j, k)

− ay+(i, j, k)un−1(i, j + 1, k) − ay−(i, j, k)un(i, j − 1, k)

− az+(i, j, k)un−1(i, j, k + 1) − az−(i, j, k)un(i, j, k − 1)

) / dgn(i, j, k)

where dgn(i, j, k), f (i, j, k), ax+(i, j, k), ax−(i, j, k), ay+(i, j, k), ay−(i, j, k), az+(i, j, k), and
az−(i, j, k) are various functions from the three-dimensional space to the set of real num-
bers R. un(i, j, k) denotes the value of (i, j, k) at the n-th time step. The equation shows
that un−1(i + 1, j, k), un−1(i, j + 1, k), un−1(i, j, k + 1), un(i − 1, j, k), un(i, j − 1, k), and
un(i, j, k − 1) are used to obtain un(i, j, k). This is done by iterating loops controlled
by the third (z-axis), second (y-axis), and first (x-axis) arguments in order, that is, the
equation is coded as in Fig. 1 where f, axp, axm, ayp, aym, azp, azm, and dgn denote
f , ax+, ax−, ay+, ay−, az+, az−, and dgn, respectively. In the program, no loop can be
parallelized, i.e., iterations in loops cannot be executed in parallel since each pair of
iterations in the loops has data dependences.

Multi-color ordering forces such loops to be parallelized, i.e., some iterations in the
loops are executed in parallel. It appears that parallelization changes the semantics of
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Fig. 2. Multi-color ordering of lattice points

the program. This is true. However, multi-color ordering does not force all iterations in
the loops to be executed in parallel. Adjacent pairs on the three-dimensional lattice are
not executed in parallel. An example with the number of colors set to 3, is illustrated
in Fig. 2 where the lattice points executed in parallel are colored in the same color for
simplicity. Here, R, G, and B are colored in red, green, and blue, respectively.

The program is one for stencil computation. Any lattice point immediately affects
adjacent lattice points. Adjacent pairs should not be considered for parallel execution.
Multi-color ordering executes computations at distinct lattice points. Actually, the se-
mantics of a program to which multi-color ordering has been applied is different from
that of the original program. Therefore, we cannot apply multi-color ordering to all
programs and should take care in applying this ordering to programs.

Iterative methods for solving systems of linear equations are typical examples of pro-
grams to which we can apply multi-color ordering. These methods involve a sequence
of initial values that is iteratively updated to a new sequence, and finally becomes a solu-
tion. Since a sequence is often proved to be a legal solution by substituting the sequence
in the linear equations and analyzing the residual errors, intermediate values on the way
do not matter. A change in ordering affects only the convergence rate. Therefore, we
can apply multi-color ordering to such iterative methods.

We conclude this section by showing the effect of applying multi-color ordering
to a program. In general, there are certain sufficient conditions that prevent adjacent
lattice points from being colored in the same color. To enable us to consider these
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sufficient conditions in this section, we consider an equation in one-dimensional space.
The following program:

do i = 2, x_num+1

u(i) = (f(i)-axp(i)*u(i+1)-axm(i)*u(i-1))/dgn(i)

end do

is translated to

mulco_color_num = 3

do mulco_color = 0, mulco_color_num-1

do i = 2+mulco_color, x_num+1, mulco_color_num

u(i) = (f(i)-axp(i)*u(i+1)-axm(i)*u(i-1))/dgn(i)

end do

end do

where mulco color num denotes the number of colors. Here, it is assumed to be 3. The
mulco color is a loop variable over 0, . . . , mulco color num. When mulco color
is 0, computations at the red lattice points are executed in the loop. Similarly, when
it is 1, computations at the green points are executed, and when mulco color is 2,
computations at the blue points are executed. In other words, multi-color ordering is a
parallelization that executes independent computations (on non-adjacent lattice points)
in parallel.

3 Block Multi-color Ordering

Multi-color ordering parallelizes sequentially executed parts with data dependences and
increases the number of parts executed in parallel. However, the naı̈ve implementation
of multi-color ordering described in the previous section has the disadvantage of stride
accesses, that is, jumps in accessing elements in arrays, thereby decreasing the perfor-
mance of programs.

To avoid this disadvantage, block multi-color ordering, which is called block red-
black ordering when two colors are used, has been proposed [3]. A deterioration in per-
formance is caused by stride accesses to elements in arrays. Block multi-color ordering
prevents iterations in loops from becoming too fine-grained and keeps loop iterations
coarse-grained. Whereas multi-color ordering colors lattice points, block multi-color
ordering colors sets of lattice points called blocks. While computations in blocks are
executed sequentially, blocks are processed in parallel. When the block size is 1, block
multi-color ordering is simply multi-color ordering. Conversely, the larger the grain
size, the more sequential a program with block multi-color ordering becomes.

Block sizes for block multi-color ordering are customizable. The following are ex-
amples of blocks with sizes 1 and 2:

R G B R G B R

R R G G B B R
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where lattice points R, G, and B are colored in red, green, and blue, respectively.
Thus, block multi-color ordering decreases the number of stride accesses in programs
and enables us to benefit from parallel computational environments. Extensions of the
applicable scope of block multi-color ordering are therefore studied [4].

4 Toward Auto-tuning

Block multi-color ordering is one of the parallelizations that can be applied to pro-
grams. As described in Sect. 3, we can customize block sizes and the number of colors.
However, block multi-color ordering requires us to modify the program source code ac-
cording to the block size and number of colors. Moreover, the performance of programs
to which multi-color ordering has been applied is known to be sensitive to the number
of colors [5].

In this work we relieve programmers of modifying their source code in order to
apply block multi-color ordering to their programs. Concretely, we develop a source
code generator for programs written in Fortran 90. The code generator analyzes the
Fortran 90 source code both lexically and syntactically, and returns a program with
block multi-color ordering.

Furthermore, we provide programmers with an environment for automatically tun-
ing their programs with block multi-color ordering. Since the code generator enables
us to apply block multi-color ordering to programs automatically, it is sufficient to set
the block size and number of colors for automatic tuning of our programs. Then, we
use job-level parallel execution. Job-level parallel execution is the coarsest form of par-
allel execution, and does not require any modifications to the programs for execution
in parallel. Job-level parallel execution is suitable for tuning programs with parameter
sweeps. We make it possible to apply block multi-color ordering to programs automat-
ically by using techniques for code generation and job-level parallel execution.

5 A Code Generator for Block Multi-Color Ordering

We have developed a code generator based on block MULti Color Ordering (Mulco).
Mulco takes Fortran 90 source code and returns source code that includes block multi-
color ordering. Mulco supports programs with computations in n-dimensional space
(n = 1, 2, 3). Mulco also takes as parameters, the number of colors and the x-axis block
size. However, this version of Mulco limits the y- and z-axes block sizes to 1. This is
because it is sufficient to allow only the x-axis block size to be customizable for the
purpose of removing stride accesses, which is the main disadvantage of multi-color
ordering.

We reuse the sample code for the three-dimensional space given in Section 2 with
the only difference being that the outermost loop has an annotation !$bmulco(3) as
shown in Fig. 3. Mulco applies block multi-color ordering to a program when it finds
!$bmulco(n) in the source code of the program, where n denotes the number of di-
mensions. Since n is 3 in the sample code, Mulco applies block multi-color ordering
in a three-dimensional space to the program. Mulco translates the sample code into
that given in Fig. 4, in which we have manually added extra carriage returns owing to
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!$bmulco(3)

do k = 2, z_num+1

do j = 2, y_num+1

do i = 2, x_num+1

u(i, j, k) = (f(i, j, k)-&

axp(i, j, k)*u(i+1, j, k)-&

axm(i, j, k)*u(i-1, j, k)-&

ayp(i, j, k)*u(i, j+1, k)-&

aym(i, j, k)*u(i, j-1, k)-&

azp(i, j, k)*u(i, j, k+1)-&

azm(i, j, k)*u(i, j, k-1)&

)/dgn(i, j, k)

end do

end do

end do

Fig. 3. Sample Fortran 90 code with an annotation

the limitations on page size for the paper. Actually, Mulco adds the minimal carriage
returns compatible with the Fortran 90 grammar.

Variables mulco color num and mulco block size n (n = 1, 2, 3) denote the num-
ber of colors and the sizes of blocks (1 : x-axis, 2 : y-axis, and 3: z-axis), respectively.
Although mulco block size 2 and mulco block size 3 give the sizes of the y- and
z-axes blocks, the current version of Mulco does not support them, i.e., they are fixed
at 1. The number of colors and the size of the x-axis blocks are given to Mulco as argu-
ments. Variables mulco block num 2 andmulco block num 3 denote the number of
y- and z-axes blocks, respectively. Since we fix the sizes of the y- and z-axes blocks to
1, the numbers of y- and z-axes blocks correspond with the numbers of y- and z-axes
lattice points, respectively. Variable mulco block num 1 denotes the minimum number
of x-axis blocks containing all colors, i.e., the quotient of the number of x-axis blocks
and the number of colors.

Variable mulco color is the loop variable that represents the color using values 1 or
2, since mulco color num is 2. As mentioned in Sect. 2, when the number of colors is
2, the ordering is called a block red-black ordering. In the language of block red-black
ordering, all blocks in red (or black) are processed before any blocks in black (or red,
resp.).

Directives !$omp parallel and !$omp do are OpenMP directives [6]. The direc-
tive !$omp do dictates that iterations in the loop should be executed in parallel. Mulco
generates source code in which the outermost loop (z-axis) in a space is parallelized. It
should be possible to parallelize a loop of colors when the number of colors is greater
than the number of threads the computer can handle. However, we have not achieved
anything significant in our experimental setting discussed in Sect. 7. Therefore, we re-
frain from referring to this in the paper.
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!$bmulcoed(3)

mulco_color_num = 2

mulco_block_size_3 = 1

mulco_block_size_2 = 1

mulco_block_size_1 = 16

mulco_block_num_3 = ((z_num+1-2)+1)/mulco_block_size_3

mulco_block_num_2 = ((y_num+1-2)+1)/mulco_block_size_2

mulco_block_num_1 = &

((x_num+1-2)+1)/(mulco_color_num*mulco_block_size_1)

do mulco_color = 0, mulco_color_num-1

!$omp parallel

!$omp do

do mulco_block_3 = 0, mulco_block_num_3-1

do k = 2+mulco_block_size_3*mulco_block_3, &

2+mulco_block_size_3*(mulco_block_3+1)-1

do mulco_block_2 = 0, mulco_block_num_2-1

mulco_color_remainder = &

mod((mulco_color+mulco_block_3+mulco_block_2),&

mulco_color_num)

do j = 2+mulco_block_size_2*mulco_block_2, &

2+mulco_block_size_2*(mulco_block_2+1)-1

do mulco_block_1 = 0, mulco_block_num_1-1

do i = 2+mulco_block_size_1*(mulco_color_remainder+&

mulco_block_1*mulco_color_num), &

2+mulco_block_size_1*(mulco_color_remainder+&

mulco_block_1*mulco_color_num+1)-1

u(i, j, k) = ( f(i, j, k)-&

axp(i, j, k) * u(i+1, j, k)-&

axm(i, j, k) * u(i-1, j, k)-&

ayp(i, j, k) * u(i, j+1, k)-&

aym(i, j, k) * u(i, j-1, k)-&

azp(i, j, k) * u(i, j, k+1)-&

azm(i, j, k) * u(i, j, k-1) &

)/dgn(i, j, k)

end do

end do

end do

end do

end do

end do

!$omp end do

!$omp end parallel

end do

Fig. 4. Translation of the Fortran 90 code based on block multi-color ordering
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Variables i, j, and k are loop variables ranging from the initial to terminal points of
the blocks. Note that the initial point of i is offset by mulco color remainder, the sum
of mulco color, mulco block 3, and mulco block 2 modulo mulco color num.
This is the point of block multi-color ordering that prevents any adjacent pair of lat-
tice points from being colored in the same color.

As an aside, Mulco can also generate code with a multi-color ordering as given in
Sect. 2 when finding the annotation !$mulco(1).

6 A Scripting Language for Job-Level Parallel Execution

In this section we introduce the scripting language for job-level parallel execution,
Xcrypt, developed by Hiraishi et al. [2]. In high performance computing, a program
is usually executed as a job through a batch job system to prevent other jobs from in-
terfering with that job. It is necessary to create a text file called a job script in order to
submit a job to a batch job system. In addition, the format of the job script depends on
the particular batch job system, making it difficult or tedious to submit, and moreover,
to control a large number of jobs.

Xcrypt is a domain specific language for controlling jobs. In Xcrypt there are differ-
ent layers for system administrators, module developers, and end users allowing admin-
istrators to configure Xcrypt systems, developers to provide useful modules for Xcrypt
users, and end users to use Xcrypt. With this mechanism, end users can control their
jobs without considering differences in systems.

Xcrypt is implemented almost as a superset2 of the Perl programming language, with
most of the new functionality implemented as functions or modules in Perl. This de-
creases the cost of learning a new scripting language that differs from existing scripting
languages.

The example Xcrypt script shown in Fig. 5 is used to highlight the syntax of Xcrypt.
The statement use base qw (limit core) is a Perl statement that declares super

classes similar to the notion in object oriented programming languages. Module core is
a required module in Xcrypt, while module limit limits the number of jobs submitted
at any one time. Xcrypt has special methods before and after that are executed before
and after executing a job, respectively. Module limit increments and decrements a
semaphore in the method before. These methods are used as hooks for a job, allowing
the number of submitted jobs to be controlled.

Module data extractor provides a way to extract data from text files. Various
methods of data extractor are used to obtain the elapsed time of execution later in
this script.

Function limit::initialize(1) sets the value of the semaphore to control the
number of submitted jobs.

2 Xcrypt has certain additional reserved keywords apart from those in Perl and includes name
spaces. However, Xcrypt supports the complete syntax of Perl, i.e., an interpreter for Xcrypt
can execute any script written in Perl.
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use base qw (limit core);

use data_extractor;

limit::initialize(1);

foreach $j (1..9) {
$c = 2**$j;

foreach $i (0..(9-$j)) {
$x = 2**$i;

spawn {
system("./mulco bmulco3.f90 $c $x;" .

"ifort -openmp bmulco3_mulco.f90;" .

"time ./a.out");

}_after_in_job_{
my $self = shift;

$fh0 = data_extractor->new($self->JS_stderr);

$fh0->extract_line_rn(’real’);

$fh0->extract_column_nn(’end’);

my @output = $fh0->execute();

open ($fh1, ’>>’, ’result.dat’) or die $!;

print $fh1 "$c $x 1 1 $output[0]\n";

};
}

}
sync;

Fig. 5. Example script in Xcrypt

Variables c and x range over the colors and the x-axis block sizes, respectively. Any-
thing executed on computation nodes is written in a block statement spawn3. Since
the statement system executes the string given as an argument as a command, the
command is executed not at hand but on a computation node. Although a job script is
required for communicating with a batch job system as previously mentioned, Xcrypt
automatically creates an appropriate job script from the descriptions in the spawn block.
Program mulco refers to Mulco as explained in the previous section. Mulco takes the
source code written in Fortran 90, the number of colors, and the x-, y-, and z-axes block
sizes as arguments. We use the Intel Composer XE compiler version 12.1 with option
-openmp to use OpenMP. Mulco generates a Fortran 90 file with the name (the file name
of the source code) mulco.f90. Xcrypt also includes a block called after in job . Ev-
erything about extracting data in this block is asynchronously done after the main pro-
cessing of the job. It is implemented by Xcrypt’s special method after as described
before. It is useful to describe this in the terminology of object oriented languages.

3 Strictly speaking, spawn and the following after in job are not block statements, but func-
tions in Perl. Perl and various other modern scripting languages have such mechanisms as
syntax extensions.
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Functions new, extract line rn, and extract column nn are methods in the mod-
ule data extractor as described. Function sync waits for all threads generated by
spawn to complete.

7 Experimental Results

In this section we present experimental results for the elapsed time in executing numer-
ical programs on one computation node4. The computer used in the experiments has the
following specifications:

CPU: Intel Xeon X5650 2.67 GHz
Cores: 12 (6 cores × 2)
Memory: 12 GB
OS: CentOS 6.2
Compiler: Intel Composer XE 12.1.2

In addition, we used -openmp as a compiler option as described in the previous section,
since the programs are parallelized using OpenMP. The program given in Fig. 3 was
used in these experiments. It makes use of nine arrays of real(8). Since the memory
size is 12 GB, the number of elements in a single array cannot be greater than (12 ·
109) /(9 · 23). Thus, we fix the size of a space at 512 ∗ 512 ∗ 512, since (12 · 109) /(9 · 23 ·
(29)3) ≈ 1.24 holds. Through the experiments we set out to investigate the relationship
between the number of colors and the size of blocks. We set the number of colors to be
greater than 1. Since the one-dimensional size of an array is 512, the maximum size of
a block side is 256.

First, we give the results for varying numbers of colors and block sizes in Table 1.
Some values in Table 1 are given as n/a owing to the limitation on the number of colors
and block sizes as explained above.

Next, we investigated the effect of varying the number of colors. Figure 6 illustrates
the results with the block size fixed at 1, i.e., non-block multi color ordering. As de-
scribed in Sect. 4 we can see that the performance of the program is sensitive to the
number of colors in block multi-color ordering, although not to the extent of being
called fragile. In general, there is an optimal threshold for the number of colors for
parallel execution. If the number of colors is less than the threshold, we cannot benefit
from parallel environments. If the number of colors is greater than the threshold, the
overhead of parallel execution contributes the greater part of the elapsed times. How-
ever, we did not obtain any results such as these. In our experiments, two colors was
almost always the best. Even with a lesser number of colors, parallel execution of the
inner loop may contribute to improved performance. Sensitivity to the number of colors
has been mentioned with respect to multi-color ordering. In fact, this can be seen in

4 In parallel and distributed computational environments the outermost loop in a program should
be parallelized not at thread-level, but at process-level, e.g., by using certain MPI libraries and
not OpenMP. This conforms to our proposal in Sect. 6 for using Xcrypt to execute programs
in parallel and distributed computational environments. We assume that this is done manually.
Mulco should be developed as generating a program in which the outermost loop is parallelized
not by OpenMP, but by MPI.
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Table 1. Elapsed times (colors versus block size)

Time Colors
(sec.) 2 4 8 16 32 64 128 256 512

20 3.516 4.304 6.505 6.716 6.716 6.920 6.105 6.107 7.119
21 3.504 4.518 5.316 5.116 5.116 4.715 4.718 4.919 n/a
22 3.503 4.118 4.517 4.517 4.504 4.133 4.117 n/a n/a
23 3.326 3.703 3.923 3.917 3.717 3.726 n/a n/a n/a
24 3.317 3.704 3.514 3.512 3.306 n/a n/a n/a n/a
25 3.103 3.318 3.516 3.305 n/a n/a n/a n/a n/a
26 3.117 3.115 3.304 n/a n/a n/a n/a n/a n/a
27 3.103 3.118 n/a n/a n/a n/a n/a n/a n/a
28 2.903 n/a n/a n/a n/a n/a n/a n/a n/a
29 3.092 3.092 3.092 2.892 3.090 2.891 3.091 2.891 2.893
210 3.091 2.891 2.889 2.893 2.890 2.892 2.891 2.891 n/a
211 2.905 2.891 2.886 2.890 2.889 2.891 2.892 n/a n/a
212 2.896 2.891 2.893 2.892 2.891 2.894 n/a n/a n/a

Block size 213 2.891 2.891 2.891 2.889 2.891 n/a n/a n/a n/a
214 2.892 2.892 2.890 2.891 n/a n/a n/a n/a n/a
215 2.890 2.886 2.888 n/a n/a n/a n/a n/a n/a
216 2.891 2.893 n/a n/a n/a n/a n/a n/a n/a
217 2.891 n/a n/a n/a n/a n/a n/a n/a n/a
218 2.891 2.890 2.891 2.891 2.910 2.893 3.291 3.692 4.490
219 2.891 2.890 2.890 2.893 3.093 3.092 3.701 4.291 n/a
220 2.890 2.892 2.894 3.090 3.093 3.691 4.292 n/a n/a
221 2.891 2.892 3.091 3.091 3.692 4.292 n/a n/a n/a
222 2.891 2.888 3.291 3.691 4.274 n/a n/a n/a n/a
223 2.888 3.290 3.692 4.292 n/a n/a n/a n/a n/a
224 3.093 3.489 4.293 n/a n/a n/a n/a n/a n/a
225 3.491 4.292 n/a n/a n/a n/a n/a n/a n/a
226 4.292 n/a n/a n/a n/a n/a n/a n/a n/a

the histogram in Table 1 with only a single color. However, it seems to be unnecessary
to adjust the number of colors when the block size is large. We have not been able to
obtain any explicit results thus far.

Finally, we fixed the number of colors at 2, and obtained results for varying block
sizes as shown in Fig. 7. The best elapsed time is less than those for block size 1. That
is, the bar graph in Fig. 7 confirms that block multi-color ordering clearly contributes to
better performance of this program than non-block multi-color ordering. The best time
is found when the block size is 223. Since the number of lattice points of an object is
227, the number of iterations is 227/223 = 16. Since the number 16 is the upper bound
of more than the number of computational cores 12, it can be considered to be the best
to coarse-grainedness, an essence of block multi color ordering.
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Fig. 6. Elapsed times (colors)

Fig. 7. Elapsed times (block sizes)
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8 Conclusion, Related Work, and Future Work

In this paper we proposed an auto-tuning method incorporating code generation and
job-level parallel execution. The resulting code generator is based on block multi-color
ordering and we use a domain specific language, Xcrypt, for job-level parallel execu-
tion, making it easy to generate parameters and jobs from programs, and to control
the jobs. Experimental results for varying numbers of colors and blocks sizes were
presented.

As a means for implementing our method, we developed the code generator Mulco.
Using the directive !$bmulco(n) in the source code of a Fortran program instructs
Mulco to generate Fortran code. Thus, Mulco requires a small modification to the orig-
inal Fortran code and exploits existing resources. This is the main difference between
the proposed method and other methods, which require significant modifications to the
original program, or programs to be written from scratch, when parallelizing existing
programs.

ROSE is a well-known auto-tuning method that uses source-to-source program trans-
formation [7]. ROSE provides a framework for development in which programmers can
execute their methods including optimizations and parallelizations. While ROSE pro-
vides such a platform, we provide two tools that can be embedded in any program flow.
Our auto-tuning method consists of a combination of source-to-source code generation
and job-level parallel execution. Programmers can use our tools as components in their
program flow when and wherever they choose. Hitherto we have mostly used the so-
called Unix tools as typified by GNU tools. We are developing our tools with specific
focus on parallel and distributed computational environments.

The current version of Mulco does not support changes in the sizes of y- and z-axis
blocks, that is, Mulco in this version cannot divide a research object into blocks of the
shape except cuboid5. A support for any y- and z-axis blocks remains a future work.
From the results of the experiments in this work we found that larger block sizes are
better; however, we have not yet found the maximum block size that gives optimum
performance. This is also left to a future work.
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Abstract. In this research, we parallelized the dynamic programming
algorithm of calculating edit distance for GPU, and evaluated the perfor-
mance. In GPU computing, access to the device memory is likely to be
one of the primal bottleneck due to its high latency, and this effect gets
noticeable especially when sufficient number of active threads cannot be
secured because of the lack of parallelism or overuse of GPU resources.
Then, we constructed a model that approximates the relations between
the values of parameters and the execution time considering latency hid-
ing, and by using this model, we devised a method of automatic tuning
of parallelization parameters in order to attain high performance stably
even when the problem size is relatively small.

1 Introduction

The problem of analyzing the similarities of a given string with patterns and find-
ing their optimum alignment is called approximate string matching. It is one of
the important problem in information science applied not only to text retrieval
but also to a variety of fields including computational biology. The computa-
tion of approximate string matching, however, includes some computationally
expensive steps. In this research, we worked on acceleration of the algorithm for
calculating Levenshtein edit distance by using graphics processing units (GPUs)
and made an evaluation of its performance.

GPUs, as the name suggests, were originally created as a hardware for image
processing. They have quite a lot of computing units, which produce high peak
performance at a relatively-low cost. Then, the idea to utilize the huge comput-
ing power of GPU for calculation other than image processing was born under
the name of GPGPU (General Purpose computing on GPUs,) and today this
technique has a wide variety of applications. Although GPGPU programming
became easily accessible thanks to the improvement of GPU architectures and
appearance of some useful developing environments including CUDA (Compute
Unified Device Architecture) [7] provided by NVIDIA, it is generally still difficult
to exploit the full performance of GPUs. In order to utilize all of the computing
units in GPUs, it is important to select highly parallelized algorithm and to cre-
ate a large number of threads. The cost of memory access is also a major factor
determining overall performance. To reduce this cost, it is important in terms
of latency hiding to increase the number of simultaneously executed threads by
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setting a limitation on the size of used resource per thread and increasing the
total number of threads itself. Moreover, efficient utilization of low-capacity but
fast shared memory is also a common practice. These optimization can not be
achieved only by the selection of parallel algorithms, but it is also indispensable
to adjust values of parameters related to the parallelization depending on the
capacity of used GPUs.

As for approximate string matching on GPU, there are several researches on
implementation of parallel versions of Smith-Waterman algorithm for GPUs.
The Smith-Waterman algorithm closely resembles the edit distance algorithm
in the dependence relationship between computed elements, so almost the same
parallelization and optimization scheme can be applied.

The origin of the implementation of the Smith-Waterman algorithm for GPUs
dates back to the age before the CUDA became common. Liu et al. [3] imple-
mented the Smith-Waterman algorithm on GPU by mapping the algorithm on
rendering pipeline with using OpenGL API. They parallelized the algorithm by
making use of the fact that the cells on the same anti diagonal in the compu-
tation region can be simultaneously calculated. After the appearance of CUDA,
several researches on the parallel Smith-Waterman algorithm on GPU are con-
ducted. Manavski et al. [5] and Munekawa et al. [6] implemented the algorithm
by using CUDA. These implementations are similar in that alignments of mul-
tiple combination of strings are calculated in parallel, but different in that each
thread computes the whole alignment (inter-task parallelization) in the approach
of Manavski et al, while it is covered by whole threads in a thread block (intra-
task parallelization) in the approach of Munekawa et al. Liu et al. [4] not only
improved the performance but also eased the restriction caused by overuse of
memory on GPU by covering both of the inter-task and inner-task paralleliza-
tion. Ling et al. [2] also resolved the restriction on the length of the strings
arisen from the limitation of available resources of GPUs by adopting a divide
and conquer approach. Dohi et al. [1] improved the performance by using some
technique including the divide and conquer approach and an idea of reducing
the cost of thread synchronization.

Also after those, several implementations appear and show pretty good per-
formance as compared with the ones for CPU accelerated by some heuristic
methods. Most of them put emphasis on the performance when there is a lot of
queries, which enables simultaneous calculation of matchings of multiple com-
binations of strings and patterns, and ensures sufficient number of threads. On
the other hand, they seem to be giving little consideration on the case when
the number of active threads is limited because of the lack of queries relative
to the capacity of the used GPUs. When sufficient number of active threads is
not secured, the performance drops beause of failure in latency hiding or load
balancing.

In this article, we propose a parallel algorithm of calculating edit distance of
a pair of strings on GPU. We analyzed the relationship between computation
time and the values of parameters associated with parallelization: the block size
parameters, and the number of active threads. As a result, we confirmed that
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the latency of the device memory and the hiding of it have the strongest effect
on the performance other than the simple number of arithmetic and memory
reference instructions. Then, considering them, we constructed an estimation
model of execution time, and applied it to our system to automatically select
the optimum block size.

The rest of this article is constituted as follows. First we introduce the parallel
edit distance algorithm with brief explanation of GPU architecture in Chapter
2. Then, in Chapter 3, we present our estimation model of computation time.
Then we show the experimental results in Chapter 4, and finally we conclude
this article in Chapter 5.

2 Edit Distance Algorithm and Parallelization

First, we introduce the definition of edit distance and the serial version of the
dynamic programming algorithm for calculating it. Then we propose our parallel
algorithm after showing the features of CUDA GPUs. Note that in this research
we assume the use of GPUs supporting CUDA whose compute capability is 1.2
or 1.3.

2.1 Dynamic Programming Algorithm

Edit distance of two strings is defined as the minimum number of editing opera-
tions required for transforming one string into the other. There are three types
of operations available: insertion, deletion, and substitution of a character. For
exapmle, edit distance of strings “change” and “hunger” is three, for the former
string can be transformed into the latter one by the following three operations:
deletion of ‘c’, substitution of ‘u’ for ‘a’, and insertion of ‘r’.

In this paper, we let d(str1, str2) denote edit distance of the two strings
str1, str2. Also, |str| denotes the length of string str, str[i] the i-th character
of str (0 ≤ i < |str|), str[i..j] the substring from the i-th character to the j-th
character of str (0 ≤ i ≤ j < |str|).

Edit distance d(str1, str2) can be calculated by using dynamic programming.
Specifically, it can be obtained from edit distances d(str1[0..i], str2[0..j]) of pre-
fixes of the strings. Considering how to match the last characters of str1[0..i] and
str2[0..j] by using one or none of the three editing operations, the edit distance
d(str1[0..i], str2[0..j]) can be calculated according to the following formula:

d(str1[0..i], str2[0..j]) = min(d(str1[0..i − 1], str2[0..j]) + 1,
d(str1[0..i], str2[0..j − 1]) + 1,
d(str1[0..i − 1], str2[0..j − 1]) + c(str1[i], str2[j]))

(1)

where c(str1[i], str2[j]) is 0 if str1[i] equals to str2[j], and otherwise this value
is 1.

Therefore, the edit distance d(str1, str2) can be calculated by completing a
table of edit distances d(str1[0..i], str2[0..j]) of prefixes of str1 and str2 like
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Fig. 1. Table of edit differences of suffixes

one shown in figure 1. First, the values of leftmost cells and topmost ones in
the table are trivially obtained. On the other hand, the value of each inner cell
can be obtained from those of the immediate left, upper left, and upper cells of
its own by using the formula (1), so they can be sequentially calculated from
the upper left corner to the lower right corner. The amount of calculation is
O(|str1||str2|).

The calculation has a certain level of parallelism, and there is also flexibility
in what order to calculate values of cells.

2.2 GPU Architecture

GPU mainly consists of several multiprocessors (MPs) and a device memory. A
MP is a group of eight simple processors called scalar processors (SPs). SPs in
the same MP simultaneously execute the same instruction on different data like
SIMD instructions. GPU provides great performance by making its numerous
SPs carry the same operation in parallel.

The device memory is accessible from CPU and all MPs in the GPU. Gen-
erally, GPU program first copies data from host memory on CPU to the device
memory on GPU. Then, it runs parallel codes, called CUDA kernels, which make
each MP read data from the device memory, perform calculation, and write the
results back to the memory. Finally it transfers the results to the host memory.
Besides the device memory, each MP has its own low-latency memory called
shared memory. Via shared memory, each SP can access computational results
of other SPs in the same MP very fast.

In order to make GPU execute tasks, we have to give it a group of threads
called grid. A grid consists of numerous groups of threads called thread blocks.
The relationship of grid, thread block, and thread corresponds to that of GPU,
MP, and SP. Each thread block is assigned to a MP, and each thread in the
thread block is assigned to a SP in the MP. Each SP (or MP) concurrently
executes several threads (or thread blocks) by frequently switching the thread
(or thread block) to be executed.
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In order to exploit the performance of GPU, there is a lot of things to be
considered. In this research, we put emphasis on mainly two points.

One point is the hierarchical structure of tasks and the hardware. What SPs
can do is restricted in that SPs in the same MP can simultaneously execute only
the same instruction, so the sequence of executed instructions should be made
as nearly equal as possible among threads in the same thread block by avoiding
conditional branching. On the other hand, threads in the same thread block have
advantage in that they can communicate with each other very fast by utilizing
the shared memory and fast synchronization instruction, whereas communication
among threads in different thread blocks is not supported. Therefore, it is an
important matter how to split the entire processing into grids, into thread blocks,
and into threads considering regularity and dependency of calculation.

The other point is the latency hiding. In GPU computing, access to the device
memory is one of the primal bottleneck because of its high latency. Generally, it is
hidden by executing instructions of other threads during the latency. Therefore,
it is important to secure sufficient number of active threads in order to fill the
latency. The number of active threads depends not only on the number of total
threads but also on the amount of resources each thread block uses such as
shared memory and registers.

2.3 Parallelization and Blocking

We parallelized the dynamic programming algorithm for GPU, and in order to
reduce grid execution and access to the device memory, we brought in blocked
algorithm.

Fig. 2. Shape of a block and calculational procedure

Figure 2 shows the shape of a block by which the computational region of
the dynamic programming algorithm is divided in this parallel algorithm, and
how to calculate values of cells in the block in parallel. As explained in Section
2.1, the value of each cell can be directly calculated if those of the immediate
left, upper left and upper cells are available. Therefore, if all the values of gray
cells in Figure 2 are available, values of the leftmost cells in all the W rows of
the parallelogram block can be simultaneously calculated. Once their values are
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calculated, then by using them, values of all their immediate right cells can be
simultaneously calculated. In the same way, values of W diagonally aligned cells
are calculated in parallel, and it takes H steps to complete the processing of all
the cells in the block, in sequence from left cells to right ones.

Fig. 3. Blocking

Figure 3 shows how to divide the computational region into the parallelogram
blocks and what order to process the blocks. The blocks can be processed in
ascending order of the number, and all blocks assigned the same number can
be processed in parallel without inter-block communication. In parallelization
of this algorithm for GPU, a grid is assigned to process all the parallelogram
blocks tagged the same number, and in the grid, each thread block is assigned
to calculate values of cells in a block region. In a block region, just W values of
cells which are in different rows each other can be calculated in parallel at any
step, so the processing of a block region can be evenly parallelized by assigning
each thread calculation of values of all cells in a row in the block.

To be more precise, behavior of a thread block is expressed in Figure 4. First,
threads load necessary data, values of gray part in the left block of Figure 4 and

Fig. 4. Processing of a thread block
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characters in the strings, from the device memory and store them on shared mem-
ory. The values of gray cells are just calculated by the previous grid execution.
Then, each thread starts calculation of values of the assigned cells. W threads in
the thread block act in synchronization, and process diagonally aligned cells in
parallel, receiving necessary data, which was just calculated in the previous step
by the neighbor threads, via shared memory. Finally, after all the cells are pro-
cessed, they store the results which are necessary for the subsequent calculation
in the next grid execution on the device memory. The necessary region includes
only boundary part of the parallelogram block, which is colored gray in the left
block of Figure 4, so the thread block has to store only the values of gray part
in the right block of Figure 4 and do not have to do those of the whole inside of
the block.

Furthermore, we adopted bidirectional calculation. Edit distance can also be
calculated by putting together edit distance of prefixes of the two strings and
that of suffixes. They can be calculated in parallel, and by using this property, the
process of calculating edit distance can be divided into two half-size processings
and post-processing whose amount of calculation is at most proportional to the
length of the strings. By this division, the total amount of calculation slightly
increases by the post-processing. Instead, the parallelism doubles, so the number
of thread blocks per grid, and naturally that of threads, also doubles. In GPU
computing, it is important to increase the number of threads in terms of latency
hidind and load balancing, and as a whole it mostly results in an improvement
in performance.

3 Optimization of Block Size

It is important to configure appropriate values of block size parameters, W and
H in Figure 2, because they determine various quantities related to performance
of the parallel algorithm for GPU.

First, block size parameters determine the number of thread blocks in each
grid, which is important in terms of load balancing. At the same time, they
indirectly influence the number of active threads per MP by determining the size
of resources, such as shared memory and registers, needed by a thread block. In
grid execution, each MP executes multiple thread blocks in parallel by frequently
switching the thread block to be executed. Here, the resources of the MP are
distributed to the concurrently executed thread blocks. Therefore, the number
of active thread blocks is limited by the total size of resources divided by the
size a thread block uses. Basically it is desirable to increase the number of active
threads in terms of latency hiding. Note that the number of active thread blocks
per MP can not be more than eight because of the specification of CUDA, and
accordingly, too small block size reduces not only the number of threads per
thread block but also that of active threads per MP.

The block size parameters also determine the total amount of access to the
device memory and other additional calculation arisen from parallelization, in-
cluding grid executions. Generally, selecting small block size increases such cost.
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Besides, it is also important to appropriately configure the proportion of W to
H in order to reduce the cost.

Therefore, the block size should be carefully chosen considering trade-offs
among these factors. In this research, we constructed a model to estimate the
grid execution time from the parameters, and made the system to choose the
block size which minimize the total computation time estimated on the model.

Considering GPU architecture, there are not so many options of appropriate
values of block size parameters, so we adopted full search: estimating the total
computation time for all of the options, and actually calculating edit distance
on the block size which minimize the estimated execution time.

In the following sections, we introduce a model for estimating the grid execu-
tion time, and then how to estimate values of parameters in the model.

3.1 Model of Grid Execution Time

In order to choose optimum block size parameters, we constructed a model to
estimate the grid execution time from block size parameters W and H , and the
maximum number BMP of thread blocks per MP, which is obtained from the
total number Btotal of thread blocks and the number NMP of MPs as follows

BMP =

⌈
Btotal

NMP

⌉

.

First, we calculated the maximum number Bact of active blocks. It is limited by
the following two factors. One is the used resource size. In our algorithm, the
number of used registers is not so large as to limit the number of active threads,
but the shared memory usage may do. A thread block uses (W +H) of character
size area for storing the compared substring, and (W +H) of integer size area
for sharing values of the cells among the threads. Then, the number of active
blocks is not more than the quotient of the total size of shared memory per MP
and the used amount described above. The other factor is the specification of
CUDA. The maximum number of active threads per MP is 1024, so Bact must
not be more than the quotient of 1024 and the number of thread per thread
block. In addition, the number Bact of active blocks itself is also limited not to
exceed 8. Consequently, Bact is obtained as the maximum number such that all
the above conditions are satisfied.

Then, we introduce our model to estimate the grid execution time from W ,
H , and Bact. In this parallel algorithm, each thread block first loads necessary
data from the device memory all at once. Then, after synchronizing all threads
in the block, threads start calculating values of the cells assigned to themselves
with synchronization and communication with the neighbor threads through
the shared memory. Finally, they write the results back on the device memory.
The amount of main calculation per thread block is approximately proportional
to the number of cells in the block region, that is to say, the product of W
and H . On the other hand, the size of the data read from and written on the
device memory has linear relationship to W and H . Besides, there are trivial
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processing whose amount is at most linear to W or H . Therefore, as the most
fundamental approximation, the total amount of calculation of the grid per MP
can be expressed as BMP (a0WH+a1W+a2H+a3), where each ai is a constant.
This approximation, however, may not be accurate depending on the degree of
latency hiding.

Fig. 5. Latency hiding

Figure 5 represents a simplified model of the flow of instruction execution in a
thread block of the parallel edit distance algorithm. The left figure corresponds
to the case when Bact is three and the latency of the device memory access is not
fully hidden, while the right one corresponds to the case when Bact is five and
the latency is fully hidden. In this algorithm, threads in the same thread blocks
are synchronized before and after the access to the device memory. Therefore,
during the memory access of one thread, only threads in different active thread
blocks can contribute to latency hiding by executing the main task of calculating
edit distance. The latency is completely hidden when the total latancy of one
thread is shorter than the occupation time of computing units by threads in all
active blocks except one.

Based on this model, the grid execution time, if the total number of blocks
BMP is less than Bact, can be simply approximated by the expression

TBS(W,H,BMP ) = BMP · (a00WH + a01W + a02H + a03) +

(a04WH + a05W + a06H + a07).

The first term of the expression represents the main computation time of all the
threads, while the second term represents the latency remained unhidden.

On the other hand, it depends on whether the latency is fully hidden or not
how much extra time is needed for grid execution when the number of thread
blocks in the grid increases by Bact. When the latency is not fully hidden, as
described in the left one of Figure 5, a new thread block should wait for the
completion of an old one without executable instruction in the MP, so the extra
time can be approximated by the turn around time of execution of one thread
block, the expression of which is

TDL(W,H,Bact) = (a14WH + a15W + a16H + a17).
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When the latency is fully hidden, some sort of calculation is always executed
on the MP even during the latency of memory access, so the extra time can be
approximated by the total amount of calculation of Bact thread blocks expressed
as

TDH(W,H,Bact) = Bact · (a20WH + a21W + a22H + a23).

By using these functions, the grid execution time in each condition can be ap-
proximated by the expression

TTL(W,H,BMP , Bact) = TBS(W,H,BMP%Bact) + TDL(W,H,Bact) ·
⌊
BMP

Bact

⌋

if the latency is not fully hidden, and otherwise, it is approximated by

TTH(W,H,BMP , Bact) = TBS(W,H,BMP%Bact)+TDH(W,H,Bact) ·
⌊
BMP

Bact

⌋

.

Whether the latency is fully hidden or not can be determined by comparing
the function values: fully hidden when the value of TDL(W,H,Bact) is smaller
than that of TDH(W,H,Bact), and otherwise, not fully hidden. Therefore, the
execution time is also approximately expressed as

max(TTH(W,H,BMP , Bact), TTL(W,H,BMP , Bact)).

In this way, the problem of estimating grid execution time comes down to that
of estimating parameters aij in the functions TBS, TDL, and TDH . Note that, in
practice, we extended the forms of the functions TDL and TDH into

TDL(W,H,BMP ) = BMP · (a10WH + a11W + a12H + a13) +

(a14WH + a15W + a16H + a17)

TDH(W,H,BMP ) = BMP · (a20WH + a21W + a22H + a23) +

(a24WH + a25W + a26H + a27),

the same in form as TBS , for improving the quality and for convenience sake.

3.2 Parameter Estimation

We introduce the way of estimating values of parameters aij in the functions
TBS, TDL, and TDH from the sample data of block size parameters, the number
of thread blocks, and the grid execution time.

As explained in the previous section, the grid execution time is approximated
by the greater value of the two: linear combination of TBS and TDL, and that
of TBS and TDH . Moreover, the three functions have linear relationships to the
parameters aij . Therefore, values of the parameters aij can be approximated by
using linear least-squares method if it is possible to determine in which case each
performance data belongs to: the case where the latency is fully hidden or the
other.
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Then, we adopted iterative refinement method alternately repeating classifi-
cation and parameter estimation. From the viewpoint of the model introduced
in the previous section, whether latency is fully hidden or not basically depends
on the ratio between the number of times loading from and storing on the device
memory per thread and the total amount of calculation of all active thread blocks
except one. By comparing this ratio to appropriately predetermined threshold,
we can roughly judge in which class each performance data belongs, and by
regarding this result as initial classification, values of the parameters can be
estimated by the linear least-squares method. Once the parameter values are
approximately obtained, the classification can be updated by another criterion:
which of the two estimating function TTH and TTL each sample of performance
data is near to. Repeating this cycle of parameter estimation and classification
a few times, better approximation of values of parameters can be obtained.

4 Experiments and Results

In this chapter, we show some results of estimation of grid execution time, and
efficiency of block size optimization based on this estimation.

Here, we used two GPUs: an old one called Quadro FX 4800, and a relatively
new one called Tesla C2075, which is based on Fermi architecture. Quadro FX
4800 has 24 MPs, each of which has 16384 bytes of shared memory and can
execute at most 1024 threads in parallel, while Tesla C2075 has 14 MPs and
49152 bytes of shared memory at each, and the maximum number of active
threads per MP is 1536.

We measured the grid execution time varying the block size W from 32 to 512
on multiples of 32, H from 16 to (1024−W ) on multiples of 16, and the total
number of blocks Btotal from 1 to 504. Then, we estimated parameter values of
the model of grid execution time by the method introduced in Section 3, and
compared estimated time by the model with the measured value.

The actual grid execution time and estimated one on some H from 160 to
384 at step 32 when W was 32 are shown in Figures 6 - 9. In these graphs,
the horizontal axis corresponds to the number of thread blocks Btotal while the
vertical axis corresponds to the execution time on the millisecond time scale.

When W is 32, the number of active threads per MP is limited by the restric-
tion of that of active blocks per MP, so in this example the latency of the device
memory access was not fully hidden. Therefore, the execution time jumped at
points where Btotal exceeded multiples of Bact ·NMP , which corresponds to the
left case in Figure 5. Broadly speaking, the graph of estimated time reproduced
that of actual time well.

However, they have some errors in detail. Figure 10 and Figure 11 show the
ratio of estimated grid execution time to actual one when W was 32, with Btotal

on the horizontal axis. In both graphs, periodical waves were observed, but
they are qualitatively different. As Figure 6 shows, the slow increment of time,
represented by TBS in the previous chapter, is almost the same independent of
the range of the number of thread blocks on Quadro FX 4800, so its error is
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Fig. 6. Actual grid execution time
(W = 32, Quadro FX 4800)

Fig. 7. Estimated grid execution time
(W = 32, Quadro FX 4800)

Fig. 8. Actual grid execution time
(W = 32, Tesla C2075)

Fig. 9. Estimated grid execution time
(W = 32, Tesla C2075)

Fig. 10. Approximation ratio
(W = 32, Quadro FX 4800)

Fig. 11. Approximation ratio
(W = 32, Tesla C2075)
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Fig. 12. Actual grid execution time
(W = 256, Quadro FX 4800)

Fig. 13. Estimated grid execution time
(W = 256, Quadro FX 4800)

Fig. 14. Actual grid execution time
(W = 256, Tesla C2075)

Fig. 15. Estimated grid execution time
(W = 256, Tesla C2075)

Fig. 16. Approximation ratio
(W = 256, Quadro FX 4800)

Fig. 17. Approximation ratio
(W = 256, Tesla C2075)
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reduced by refining the approximation of TBS . In Figure 8, on the other hand,
the slow increment when the number of thread blocks is from 1 to 104 and that
when it is from 937 to 1040 is visibly different. It seems to be caused by adoption
of device memory cache and development of scheduling system on Tesla C2075.
Therefore, in order to improve the approximation accuracy on new GPUs, it is
indispensable to revise our model itself which approximate the execution time
by the sum of the slow increment TBS and the rapid increment TDH or TDL.

Figures 12 - 15 show the actual and estimated time of grid execution respec-
tively when W was 256. In this case, the number of active threads per MP was
so large that the latency of the device memory access was fully hidden by in-
struction execution of other threads. Therefore, the execution time constantly
increased every NMP threads, which corresponds to the right case in Figure 5.

Figure 16 and Figure 17 show the ratio of estimated grid execution time to
actual one when W was 256.

Just as the case when W was 32, there were some errors in TBS when the
number of blocks is small. In other points, however, the model accurately ap-
proximated the execution time, and the approximation error was within about
3% of the actual value except for the case with too small number of thread
blocks.

The results of experiments suggests that most of the approximation error
in our model was in TBS and TDL, that is to say, the approximation in case
when the latency was not fully hidden. Our model puts emphasis simply on the
number of instructions and the effect of latency hiding of the device memory
access because they have the most powerful influence on the performance, but
there are some other factors we did not considered. For example, it is officially
informed that registers of GPU are also source of generating delays, and it is also
hidden by securing sufficient number of active threads. Moreover, as mentioned
above, the influence of device memory cache is not negligible on new machines.
Our model cannot adapt to the two-stage bends of performance curve caused by
latency hiding of both the device memory and registers, which may be a cause
of the approximation error. This remains to be a future work.

5 Conclusion

In this research, we parallelized the dynamic programming algorithm for calcu-
lating edit distance on GPU. In GPU Computing, the cost of the device memory
access is in many cases a primary factor to slow down the performance because
of its high latency, so it is important to utilize the shared memory as a cache and
to hide the latency by meantime-executed arithmetic instructions, in addition
to merely reducing the number of access itself. Besides, load balancing is also
important in order to exploit the full performance of the GPU’s vast computing
resources.

Considering these facts, we suggested a blocking algorithm, and constructed
a model to estimate grid execution time for the purpose of optimizing block
size. In our model, especially taking into account the latency of memory refer-
ence instructions, we expressed the relationship between the number of active
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threads, the block size, and the grid execution time. By selecting the block size
to minimize the total computation time obtained from this model, we tried to
find optimum trade-off between load balancing and the cost of memory access
and other extra processing accompanied with the block splitting. Consequently,
we succeeded in automatically selecting nearly optimum block size in terms of
computation time.

Our model is specific to the dynamic programming algorithms, but there
are several problems which have similar data dependency, the Smith-Waterman
algorithm, SORmethod, preprocessing of ICCGmethod, and so forth. Therefore,
we think our model has some application range. In the edit distance algorithm,
the number of active threads is determined almost exclusively by the length of
strings, but other algorithms usually consume more GPU resources, and this may
limit the number of active threads. In such cases, it is indispensable to consider
the effect of latency hiding as done in our work. Application of the model for
grid execution time to more complicated algorithms is one of the challenges for
the future, as well as improvement in accuracy of the current model and its
adaptation to new GPUs.
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Abstract. The multigrid method with OpenMP/MPI hybrid parallel 
programming model is expected to play an important role in large-scale 
scientific computing on post-peta/exa-scale supercomputer systems. Because 
the multigrid method includes various choices of parameters, selecting the 
optimum combination of these is a critical issue. In the present work, we focus 
on the selection of single-threading or multi-threading in the procedures of 
parallel multigrid solvers using OpenMP/MPI parallel hybrid programming 
models. We propose a simple empirical method for automatic tuning (AT) of 
related parameters. The performance of the proposed method is evaluated on 
the T2K Open Supercomputer (T2K/Tokyo), the Cray XE6, and the Fujitsu 
FX10 using up to 8,192 cores. The proposed method for AT is effective, and the 
automatically tuned code provides twice the performance of the original one. 

Keywords: Multigrid, Hybrid Parallel Programming Model, Automatic Tuning.  

1 Introduction 

To achieve minimal parallelization overheads on multi-core clusters, a multi-level 
hybrid parallel programming model is often employed. In this method, coarse-grained 
parallelism is achieved through domain decomposition by message passing among 
nodes, and fine-grained parallelism is obtained via loop-level parallelism inside each 
node by using compiler-based thread parallelization techniques such as OpenMP. 
Another often used programming model is the single-level flat MPI model, in which 
separate single-threaded MPI processes are executed on each core. 

In previous works [1,2], OpenMP/MPI hybrid parallel programming models were 
implemented in 3D finite-volume simulation code for groundwater flow problems 
through heterogeneous porous media using parallel iterative solvers with multigrid 
preconditioning. The performance and the robustness of the developed code was 
evaluated on the T2K Open Supercomputer at the University of Tokyo (T2K/Tokyo) 
[3,4] using up to 8,192 cores for both weak and strong scaling computations. 
Furthermore, a new strategy for solving equations at the coarsest level (coarse grid 
solver) was proposed and evaluated in [2], and the new coarse grid solver improved 



436 K. Nakajima 

the scalability of the multigrid solver dramatically. The OpenMP/MPI hybrid parallel 
programming model, in which one MPI process was applied to a single quad-core 
socket of the T2K/Tokyo with four OpenMP threads (HB 4×4) [1,2], demonstrated 
the best performance and robustness for large-scale ill-conditioned problems by 
appropriate optimization and coarse grid solvers. In [5], performance of parallel 
programming models for algebraic multigrid solvers in Hypre Library [6] have been 
evaluated on various multicore HPC platforms with more than 105 cores, such as IBM 
BlueGene/P, and Cray XT5. The MultiCore SUPport library (MCSup) [5] provides a 
framework, in which the optimization processes described in [1,2] are applied 
automatically. Results show that threads of an MPI process should always be kept on 
the same socket for optimum performance to achieve both memory locality and to 
minimize OS overhead for cc-NUMA architecture. This corresponds to HB 4×4 
programming model in [1,2]. 

The concepts of OpenMP/MPI hybrid parallel programming models can be easily 
extended and applied to supercomputers based on heterogeneous computing nodes 
with accelerators/co-processors, such as GPUs and/or many-core processors by Intel 
Many Integrated Core Architecture. Multigrid is a scalable method for solving linear 
equations and for preconditioning Krylov iterative linear solvers, and it is especially 
suitable for large-scale problems. The multigrid method is expected to be one of the 
powerful tools on post-peta/exa-scale systems. It is well known that the multigrid 
method includes various choices of parameters. Because each of these strongly affects 
the accuracy, the robustness, and the performance of multigrid procedures, selection 
of the optimum combination of these is very critical. In OpenMP/MPI hybrid parallel 
programming models, the number of threads strongly affects the performance of both 
the computation and the communications in multigrid procedures [1]. 

In the present work, we focus on the selection of single-threading or multi-
threading in procedures of parallel multigrid solvers using OpenMP/MPI hybrid 
parallel programming models. We propose a new method of automatic tuning (AT) of 
the parameters. The proposed method implemented in the code in [2] is evaluated by 
using up to 8,192 cores of the T2K/Tokyo, the Cray XE6 [7], and the Fujitsu FX10 
[3]. The rest of this paper is organized as follows. In Section 2, an overview of the 
target hardware is provided. In Section 3, we outline the target application and give a 
summary of the results in [1] and [2]. In Section 4, details of our new method for 
automatic tuning and the results of the computations are described, while some final 
remarks are offered in Sections 5. 

2 Hardware Environment 

Table 1 and Fig. 1 summarize features of the architectures of the three target systems 
used in the present work. The T2K/Tokyo was developed by Hitachi under the “T2K 
Open Supercomputer Alliance” [4]. It is a combined cluster system with 952 nodes, 
15,232 cores and 31 TB memory. The total peak performance is 140 TFLOPS. Each 
node includes four sockets of AMD quad-core Opteron (Barcelona) processors (2.3 
GHz), as shown in Fig. 1(a). Each socket is connected through HyperTransport links, 
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and the computing nodes are connected via a Myrinet-10G network, which has a 
multi-stage cross-bar network topology. In the present work, 512 nodes of the system 
are evaluated. Because T2K/Tokyo is based on cache-coherent NUMA (cc-NUMA) 
architecture, careful design of both the software and the data configuration is required 
for efficient access to local memory.  

Table 1. Summary of specifications: Computing node of the target systems 

 T2K/Tokyo Cray 
XE6 

Fujitsu 
FX10 

Core #/Node 16 24 16 
Size of Memory/node (GB) 32 32 32 
Peak Performance/node (GFLOPS) 147.2 201.6 236.5 
Peak Memory Bandwidth/node 
(GB/sec) 

42.7 
8×DDR2 667MHz 

85.3 
8×DDR3 1333MHz 

STREAM/Triad Performance/node 
(GB/sec) [8] 

20.0 52.3 64.7 

B/F Rate 0.136 0.260 0.274 

 
 
 
 
 
 
 
 

 
 
 
 

 
   (a) T2K/Tokyo                          (b) Cray XE6 

 
 
 
 
 
                                                                
 

(c) Fujitsu FX10 

Fig. 1. Overview of a computing node of (a) the T2K/Tokyo, (b) the Cray XE6, and (c) the 
Fujitsu FX10 (C: core, L1/L2/L3: cache, Memory: main memory) 

Each node of the Cray XE6 (Hopper) system at the National Energy Research 
Scientific Computing Center (NERSC), Lawrence Berkeley National Laboratory [7] 
includes two sockets of 12-core AMD Opteron (Magny-Cours) processors (2.1 GHz). 
Each socket of the Magny-Cours consists of two dies, each of which consists of six 
cores. Four dies are connected through HyperTransport links (Fig. 1(b)). The Magny-
Cours has more HyperTransport links than the Barcelona processor, and the four dies 
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are connected more tightly. An entire system consists of 6,384 nodes, 153,216 cores, 
and 212 TB memory. The total peak performance is 1.28 PFLOPS. The computing 
nodes are connected via Cray’s Gemini network, which has a 3D torus network 
topology. In the present work, 128 nodes of the system are evaluated. Both the 
T2K/Tokyo and the Cray XE6 are based on cc-NUMA architecture. Each die with six 
cores of the Cray XE6 corresponds to a socket with four cores of the T2K/Tokyo. 

The Fujitsu FX10 (Oakleaf-FX) system at the University of Tokyo [3] is Fujitsu’s 
PRIMEHPC FX10 massively parallel supercomputer with a peak performance of 1.13 
PFLOPS. The Fujitsu FX10 consists of 4,800 computing nodes of SPARC64™ IXfx 
processors with 16 cores (1.848 GHz). SPARC64™ IXfx incorporates many features 
for HPC, including a hardware barrier for high-speed synchronization of on-chip 
cores [3]. An entire system consists of 76,800 cores and 154 TB memory. Nodes are 
connected via a six-dimensional mesh/torus interconnect called “Tofu” [3]. In the 
present work, 128 nodes of the system are evaluated. On the SPARC64™ IXfx, each 
of the 16 cores can access the memory in a uniform manner (Fig. 1(c)). 

3 Algorithms and Implementations of the Target Application 

3.1 Overview of the Target Application 

In the target application, Poisson’s equations for groundwater flow problems through 
heterogeneous porous media are solved using a parallel cell-centered 3D finite-
volume method (FVM) (Fig.2) [1,2]. A heterogeneous distribution of water 
conductivity in each mesh is calculated by a sequential Gauss algorithm [9]. The 
minimum and the maximum values of water conductivity are 10-5 and 105, 
respectively, and the average value is 1.0. This configuration provides ill-conditioned 
coefficient matrices whose condition number is approximately 1010. Each mesh is a 
cube, and the distribution of meshes is structured as finite-difference-type voxels.  
 
 
 
 
 
 
 
 
 
 

Fig. 2. Example of groundwater flow through heterogeneous porous media 
(a) Distribution of water conductivity, (b) Streamlines 

 
The conjugate gradient (CG) solver with a multigrid preconditioner (MGCG) is 

applied for solving the Poisson’s equations [1,2]. A very simple geometric multigrid 
with a V-cycle, where eight children form one parent mesh in an isotropic manner for 
structured finite-difference-type voxels, is applied [1,2]. The level of the finest grid is 
set to 1 and the level is numbered from the finest to the coarsest grid, where the 

(a) (b)
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number of meshes is one in each domain (MPI process). Multigrid operations at each 
level are done in parallel manner, but the operations at the coarsest levels are executed 
on a single MPI process by gathering the information of entire processes. The total 
number of meshes at the coarsest level is equal to the number of MPI processes. IC(0) 
with additive Schwarz domain decomposition (ASDD) [1,2], because of its 
robustness, is adopted as the smoothing operator at each level. The 3D code is 
parallelized by domain decomposition using MPI for communications between 
partitioned domains [1,2]. In the OpenMP/MPI hybrid parallel programming model, 
multithreading by OpenMP is applied to each partitioned domain. The reordering of 
elements in each domain allows the construction of local operations without global 
dependency to achieve the optimum parallel performance of IC operations in 
multigrid processes. In the present work, Reverse Cuthill-McKee (RCM) with cyclic-
multicoloring (CM-RCM) [10] is applied. The number of colors is set to 2 at each 
level (CM-RCM(2)) for efficiency [1,2]. The following three types of optimization 
procedures for cc-NUMA architectures are applied to the OpenMP/MPI hybrid 
parallel programming models [1,2]: 
 

• Appropriate command lines for NUMA control, with “--cpunodebind” and 
“--localalloc”, where memory locality is kept, and each thread can access 
data on the memory of each socket efficiently [1] 

• First touch data placement [1,2] 
• Reordering for contiguous “sequential” access to memory [1] 

 

Furthermore, optimization of the coarse grid solver proposed in [2] is applied. 

3.2 Results (Weak Scaling)  

The performance of weak scaling is evaluated using between 16 and 8,192 cores of 
the T2K/Tokyo. The number of finite-volume meshes per each core is 262,144 
(=643); therefore, the maximum total problem size is 2,147,483,648. The following 
three types of OpenMP/MPI hybrid parallel programming models are applied as 
follows, and the results are compared with those of flat MPI:  

• Hybrid 4×4 (HB 4×4): Four OpenMP threads for each of four sockets in Fig. 
2(a), four MPI processes in each node 

• Hybrid 8×2 (HB 8×2): Eight OpenMP threads for two pairs of sockets, two 
MPI processes in each node 

• Hybrid 16×1 (HB 16×1): Sixteen OpenMP threads for a single node, one MPI 
process in each node 

 

In Fig. 3, (a) and (b) show the performance of the MGCG solver. An improved 
version of the coarse grid solver (C2) proposed in [2] is applied, where a multigrid 
based on the V-cycle with IC(0) smoothing is applied until convergence (ε=10-12) at 
the coarsest level [2]. Both figures show the scalable features of the developed 
method. The number of iterations until convergence and the elapsed time for MGCG 
solvers at 8,192 cores are as follows:  
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• Flat MPI:  70 iterations, 35.7 sec. 
• HB 4×4: 71 iterations, 28.4 sec. 
• HB 8×2: 72 iterations, 32.8 sec. 
• HB 16×1:   72 iterations, 34.4 sec. 

 
 

 
 

 
 
 
 
 
 
 
 
 

Fig. 3. Performance of MGCG solver with CM-RCM(2) on the T2K/Tokyo using up to 8,192 
cores, weak scaling: 262,144 meshes/core, maximum total problem size: 2,147,483,648. (a) 
Number of iterations for convergence, (b) Computation time for MGCG solvers with improved 
coarse grid solver (C2) applied. 

MGCG is a memory-bound process, and the performance of memory access is very 
critical. The performance of HB 4×4 is the best, primarily because all data for each 
process are guaranteed to be on the local memory of each socket, and so the most 
efficient memory access is possible. HB 4×4 is the best according to both the elapsed 
computation time and the performance in a single iteration [2]. Flat MPI is also better 
than the others for a small number of cores, but it consists of a larger number of MPI 
processes than OpenMP/MPI hybrid parallel programming models. Moreover, the 
problem size for the coarse grid solver is larger than that of these hybrid parallel 
programming models. Therefore, its performance gets worse for a larger number of 
cores due to the overhead of communications and coarse grid solvers.  

3.3 Results (Strong Scaling) and the Optimization of Communication 

The performance of strong scaling is evaluated for a fixed size of problem with 
33,554,432 meshes (=512×256×256) using between 16 and 1,024 cores of the 
T2K/Tokyo [1]. Figure 4(a) provides the parallel performance of the T2K/Tokyo 
based on the performance of flat MPI with 16 cores using the original coarse grid 
solver in [1]. At 1,024 cores, the parallel performance is approximately 60% of the 
performance at 16 cores. Decreasing of the parallel performance of HB 16×1 is very 
significant. At 1,024 cores, HB 16×1 is slower than flat MPI, although the 
convergence is much better [1]. Communications between partitioned domains at each 
level occur in the parallel multigrid procedures. Information at each domain boundary 
is exchanged by using the functions of MPI for point-to-point communications. In this 
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procedure, copies of arrays to/from sending/receiving buffers are made, as shown in 
Fig. 5. In the original code using OpenMP/MPI hybrid parallel programming models, 
this type of operation for the memory copy is parallelized by OpenMP. But the 
overhead of OpenMP is significant if the length of the loop is short at the coarser 
levels of the multigrid procedure and the number of threads is large. If the length of 
the loop is short, operations by a single thread might be faster than those by multi-
threading. 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 4. Performance of MGCG solver with CM-RCM(2) on the T2K/Tokyo using up to 1,024 
cores, strong scaling: 33,554,432 meshes (=512×256×256). (a) Parallel performance based on 
the performance of flat MPI with 16 cores, (a) Initial case, (b) Optimized case: “LEVcri=2” in 
Fig. 7 is applied for OpenMP/MPI hybrid parallel programming models [1]. 

 
 
 
 
 
 
 

 
 
 

Fig. 5. Point-to-point communications for information exchange at the domain boundary 
(sending process), copies of arrays to/from sending/receiving buffers occur 

In [1], the effect of switching from multi-threading to single-threading at coarser 
levels of the multigrid procedure was evaluated. Figure 6(a) shows the results of HB 
16×1 with 1,024 cores (64 nodes) for the strong scaling case. The “communication” 
part includes processes of the memory copies shown in Fig. 5. “LEVcri=0” is the 
original case, and it applies multi-threading by OpenMP at every level of the 
multigrid procedure. “LEVcri=k (k>0)” means applying multi-threading if the level of 
the grid is smaller than k. Therefore, single-threading is applied at every level if 
“LEVcri=1”, and multi-threading is applied at only the finest grid (level=1) if 
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!C
!C-- SEND

do neib= 1, NEIBPETOT
istart= levEXPORT_index(lev-1,neib) + 1
iend = levEXPORT_index(lev ,neib)
inum = iend - istart + 1

!$omp parallel do private (ii)
do k=, istart, iend

WS(k)= X(EXPORT_ITEM(k))
enddo

!$omp end parallel do
call MPI_ISEND (WS(istart), inum, MPI_DOUBLE_PRECISION,   &

&                  NEIBPE(neib), 0, SOLVER_COMM, req1(neib), ierr)
enddo



442 K. Nakajima 

“LEVcri=2”. Generally, “LEVcri=2” provides the best performance at 1,024 cores for 
all of HB 4×4, HB 8×2, and HB 16×1. The optimized HB 16×1 with “LEVcri=2” is 
22% faster than that of the original case, although the effect of switching is not so 
clear for HB 4×4. Figure 4(b) shows the effects of this optimization with “LEVcri=2” 
for all OpenMP/MPI hybrid cases. The performance of HB 8×2 and HB 16×1 are 
much improved at a large number of cores, and HB 8×2 is even faster than HB 4×4 at 
1,024 cores, while the performance with a fewer number of cores does not change. 
 
 

  
 
 
 
 
 
 
 
 
 

Fig. 6. Effect of switching from multi-threading to single-threading at coarse levels of the 
multigrid procedure in operations of memory copy for communications at domain boundaries 
using 1,024 cores for a strong scaling case with 33,554,432 meshes (=512×256×256), 
“LEVcri=0”: applying multi-threading by OpenMP at every level of the multigrid procedure 
(original case), “LEVcri=k (k>0)”: applying multi-threading if the grid level is smaller than k. 
(a) HB 16×1, (b) HB 4×4. 

4 Automatic Tuning (AT) of Multigrid Processes 

4.1 Overview 

In multigrid procedures with OpenMP/MPI hybrid parallel programming models, 
most of the processes are parallelized by OpenMP at each level. But the overhead of 
OpenMP is significant if the length of the loop is short at coarser levels and the 
number of threads is large. If the length of the loop is short, operations by a single 
thread might be faster than those by multi-threading, as shown in 3.3. In 3.3, the 
optimum parameter ("LEVcri=2") is determined by comparing the results of cases 
with different values of LEVcri between 0 and 6. But this optimum parameter depends 
on various conditions, such as problem size, number of processors, number of threads 
per each MPI process, architecture of hardware, performance of computing nodes, 
communication performance of network, etc. Therefore, automatic tuning (AT) is 
helpful for the selection of the optimum parameters.  
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4.2 Method for Automatic Tuning (AT) 

In the present work, we focus on the selection of single-threading or multi-threading 
in procedures of parallel multigrid solvers using OpenMP/MPI hybrid parallel 
programming models. The method for AT of related parameters was proposed, and 
was implemented to the code in [2], which was optimized for cc-NUMA 
architectures, such as the T2K/Tokyo and the Cray XE6. Finally, the proposed 
method is evaluated using the three supercomputer systems. In the present work, the 
following three types of parallel programming models are evaluated: 

 
• Hybrid 4×4/6×4 (HB 4×4/6×4): Four MPI processes on each node. Four 

OpenMP threads/MPI process for the T2K/Tokyo and the Fujitsu FX10, six 
threads/MPI process for the Cray XE6  

• Hybrid 8×2/12×2 (HB 8×2/12×2): Two MPI processes on each node. Eight 
OpenMP threads/MPI process for the T2K/Tokyo and the Fujitsu FX10, 12 
threads/MPI process for the Cray XE6 

• Hybrid 16×1/24×1 (HB 16×1/24×1): One MPI process in each node. Number of 
threads corresponds to the number of cores on each node (16: T2K/Tokyo, 
Fujitsu FX10, 24: Cray XE6) 

 
We focus on the automatic selection of single-threading or multi-threading in the 
following three procedures of parallel multigrid solvers using the OpenMP/MPI 
hybrid parallel programming models:  

 
(A) Smoothing operations at each level of the V-cycle 
(B) Point-to-point communications at domain boundaries with the memory copies 

described in 3.3 
(C) Smoothing operations at each level of the coarse grid solver 

 
Process (A) corresponds to smoothing operations for each MPI process at each level 
of the V-cycle, whereas process (C) corresponds to smoothing operations at each level 
of the coarse grid solver on a single MPI process [2]. The level of the multigrid for 
switching from multi-threading to single-threading is defined as LEVcriA for process 
(A), LEVcriB for process (B), and LEVcriC for process (C). The definition of LEVcriX 
is the same as that of LEVcri in 3.3 [1]. If “LEVcriX=0”, multi-threading is applied at 
every level of the process (X). “LEVcriX=k (k>0)” means multi-threading is applied to 
the process (X) if the level of the grid is smaller than k. The policy for optimization is 
defined as a combination of these three parameters (LEVcriA, LEVcriB, and LEVcriC). 
In the present work, this policy is represented by a three-digit number, where each 
digit corresponds to each LEVcriX. For example, the policy represented by “542” 
means “LEVcriA=5”, “LEVcriB=4”, and “LEVcriC=2”. In the present work, we 
develop a method for AT that can automatically define the optimum policy (i.e., the 
combination of optimum LEVcriX’s) for various kinds of hardware and software 
conditions. LEVcriA and LEVcriC are defined by a critical loop length LOOPcri, 
which is a parameter for selection of single-threading or multi-threading, and is 
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calculated by the simple off-line benchmark 
shown in Fig. 7. This benchmark simulates 
typical and costly processes in smoothing 
operations, such as sparse-matrix-vector 
products and forward/backward substitutions 
for IC(0) operations [1,2]. Six off-diagonal 
components are used because the target 
application is based on cell-centered 
structured 3D meshes with six surfaces. This 
off-line benchmark compares the 
performance of loops with single-threading 
and multi-threading for various loop lengths, 
N, and automatically introduces the critical 
loop length LOOPcri. LOOPcri is a function 
of the number of threads, the computational 
performance of each core and the memory 
bandwidth. Table 2 shows the LOOPcri 
calculated by a single node of each supercomputer system for each parallel 
programming model. LOOPcri of the FX10 is smaller because of its hardware barrier 
for high-speed synchronization of on-chip cores. Generally, this off-line benchmark 
needs to be performed just once, as long as computational environment, such as 
version of the compiler, does not change significantly. We just provide LOOPcri as 
one of the input parameters of the application, in which the proposed method for AT 
is implemented. If the loop length is larger than LOOPcri, multi-threading is applied. 
Optimization of process (B) (i.e., selection of LEVcriB) is done by a run-time tuning 
procedure. This run-time tuning procedure is embedded as one of the subroutines of 
the target application written in FORTRAN. This subroutine (comm_test) is called 
by the main program of the application before starting of the real computations. This 
subroutine (comm_test) compares the performance of single-threaded and multi-
threaded versions of communication functions at each level, and chooses the faster 
one for the real computations, as shown in Fig. 8. This procedure is very convenient 
and reliable because it can evaluate the combined performance for both MPI 
communication and memory copying by the real functions used in MGCG solvers of 
the target application. Moreover, this run-time tuning procedure is not costly: it takes 
less than 0.05 sec. for all cases in the present work. Finally, Figure 9 summarizes the 
procedure of proposed method for AT. 

Table 2. LOOPcri measured by the simple off-line benchmark in Fig. 7 

 T2K/Tokyo Cray XE6 Fujitsu FX10 
HB 4×4/ 6×4 256 64 32 
HB 8×2/12×2 512 128 32 
HB 16×1/24×1 1,024 256 32 

 
 
 
 

!$omp parallel do private (i,k)
do i= 1, N
Y(i)= D(i)*X(i)
do k= 1, 6

Y(i)= Y(i) + A(k,i)*X(i)
enddo

enddo
!$omp end parallel do

do i= 1, N
Y(i)= D(i)*X(i)
do k= 1, 6

Y(i)= Y(i) + A(k,i)*X(i)
enddo

enddo

Fig. 7. Off-line benchmark, which 
defines critical loop length LOOPcri 
for the selection of single-
threading/multi-threading. If loop 
length N is larger than LOOPcri, 
multi-threading is applied. 
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Fig. 8. Procedure of subroutine comm_test for run-time tuning for optimization of 
process (B) (point-to-point communications at domain boundaries with the memory copies) 
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Fig. 9. Procedures for the proposed method of AT 

4.3 Preliminary Results 

The method for AT proposed in 4.2 is implemented with the code in [2]. CM-RCM(2) 
reordering [1,2] is applied at each level; therefore, the loop length at each level is half 
of the problem size. The following three types of problem sizes are evaluated: 

 
• Large:  2,097,152 (=128×128×128) meshes per each node 
• Medium:   524,288 (=128×64×64) meshes per each node 
• Small:      65,536  (=64×32×32) meshes per each node 

 
Tables 3, 4, and 5 show the results for the three types of problem sizes on the 
T2K/Tokyo (512 nodes, 8,192 cores), the Cray XE6 (128 nodes, 3,072 cores), and the 
Fujitsu FX10 (128 nodes, 2,048 cores), respectively. For each case, two types of 
codes are developed and applied.  

The first code is based on the method for AT described in 4.2, and Fig.9. This code 
is implemented so that critical loop length LOOPcri in Table 2 provides the optimum 
LEVcriA and LEVcriC automatically, while the run-time tuning procedure by a 
subroutine (comm_test) of the first code described in Fig. 8 provides the optimum 
LEVcriB automatically. The rows with “AT” in Tables 3, 4, and 5 show the results of 

1. At each level of V-cycle, execution time T(m,level) for point-to-point communications at 
domain boundaries (including memory copies and MPI communications) with multi-threading 
using OpenMP is measured.

2. At each level of V-cycle, execution time T(s,level) for point-to-point communications at domain 
boundaries (including memory copies and MPI communications) with single-threading 
(without OpenMP) is measured.

3. Each of 1. and 2. is repeated for 50 times at each level, and average execution time, 
Tave(m,level) and Tave(s,level) are calculated.

4. If Tave(m,level) > Tave(s,level), single-threading is adopted at this level of V-cycle. Otherwise, 
multi-threading is adopted.

5. Optimum LEVcriB is determined through these procedures. 
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this first code and provide the speed-up compared to that of the original case 
(policy=”000”). The three-digit numbers in parentheses are the policy for 
optimization provided by AT.  

In the second code, each of LEVcriA, LEVcriB, and LEVcriC can be explicitly 
specified, where two of these parameters are fixed as “0” in the present work. 
According to the results by the second code, the best combination of parameters can 
be estimated. The rows with “Estimated Best” in Tables 3, 4, and 5 show the results of 
the second code (speed-up and corresponding policy for optimization). Figures 10, 11, 
and 12 show the effect of the individual parameter. The performance is 1.00 for the 
original case (policy=”000”).  

The effect of tuning by switching from multi-threading to single-threading is 
significant on the T2K/Tokyo and the Cray XE6 if the problem size per node is small 
and the number of threads per node is large. Generally, “AT” provides better 
performance than “Estimated Best” in each case; therefore, the AT procedure works 
well. The optimum policies (i.e., combinations of optimum parameters) provided by 
“AT” and “Estimated Best” in Tables 3, 4, and 5 are similar. The “small” size cases 
for the T2K/Tokyo with HB 16×1, and the Cray XE6 with HB 24×1 provide 1.75–
1.96 times speed-up by AT, compared to the performance of the original cases. In 
contrast, the effect of this type of tuning is very small for the “large” size cases. 
Among the three parameters (LEVcriA, LEVcriB, and LEVcriC), the effect of LEVcriB 
is the most critical in the “small” and “medium” size cases. Therefore, accurate 
estimation of the optimum LEVcriB is important. The optimum value of the parameter 
varies according to the problem size. For example, “LEVcriB=2 (020)” is the best for 
“medium” size cases (Fig. 10), while “LEVcriB=1 (010)” provides the best 
performance for “small” size cases (Fig. 11). The effect of tuning by switching from 
multi-threading to single-threading is very small on the Fujitsu FX10 (Table 5 and 
Fig. 12). This is because of its hardware barrier for high-speed synchronization of on-
chip cores. Multi-threading provides higher efficiency even for short loops on the 
Fujitsu FX10, as shown in Table 2. Finally, Table 6 compares the performance of the 
three types of OpenMP/MPI hybrid parallel programming models on three 
supercomputers for “small” size cases, where the effect of the proposed AT procedure 
is the most significant. Generally, HB 4×4/6×4 provides the best performance for 
original, except Fujitsu FX10. But HB 8×2 for T2K/Tokyo and Fujitsu FX10 
optimized by the proposed AT procedure is even faster than optimized HB 4×4.  

Table 3. Results on the T2K/Tokyo with 512 nodes (8,192 cores): Speed-up compared to the 
original case (policy=”000”) and policy for optimization (three-digit number in parentheses) 

  Large Medium Small 

HB 4×4 
AT 1.02 (522) 1.04 (422) 1.08 (322) 
Estimated Best 1.01 (522) 1.03 (613) 1.14 (612) 

HB 8×2 
AT 1.01 (522) 1.10 (412) 1.40 (311) 
Estimated Best 1.02 (532) 1.08 (412) 1.33 (512) 

HB 16×1 
AT 1.03 (421) 1.22 (421) 1.96 (311) 
Estimated Best 1.02 (633) 1.10 (521) 1.89 (511) 
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Table 4. Results on the Cray XE6 with 128 nodes (3,072 cores): Speed-up compared to the 
original case (policy=”000”) and policy for optimization (three-digit number in parentheses) 

  Large Medium Small 

HB 6×4 
AT 1.02 (522) 1.09 (422) 1.49 (322) 
Estimated Best 1.02 (642) 1.07 (432) 1.40 (612) 

HB 12×2 
AT 1.01 (632) 1.11 (521) 1.57 (311) 
Estimated Best 1.01 (641) 1.08 (621) 1.68 (421) 

HB 24×1 
AT 1.05 (531) 1.18 (531) 1.75 (321) 
Estimated Best 1.05 (641) 1.18 (541) 1.63 (421) 

Table 5. Results on the Fujitsu FX10 with 128 nodes (2,048 cores): Speed-up compared to the 
original case (policy=”000”) and policy for optimization (three-digit number in parentheses) 

  Large Medium Small 

HB 4×4 
AT 1.01 (532) 1.01 (532) 1.06 (422) 
Estimated Best 1.00 (053) 1.01 (023) 1.06 (622) 

HB 8×2 
AT 1.00 (532) 1.02 (532) 1.06 (422) 
Estimated Best 1.00 (042) 1.01 (542) 1.04 (522) 

HB 16×1 
AT 1.00 (042) 1.01 (642) 1.06 (422) 
Estimated Best 1.00 (052) 1.01 (030) 1.08 (532) 
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Fig. 10. Effect of individual parameters on speed-up: LEVcriA (smoother), LEVcriB 
(communication), and LEVcriC (smoother for coarse grid solver), T2K/Tokyo with 512 nodes, 
8,192 cores, HB 16×1, “medium” size case (524,288 (=128×64×64) meshes/node) 
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Fig. 11. Effect of individual parameters on speed-up: LEVcriA (smoother), LEVcriB 
(communication), and LEVcriC (smoother for coarse grid solver), T2K/Tokyo with 512 nodes, 
8,192 cores, HB 16×1, “small” size case (65,536 (=64×32×32) meshes/node) 
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Fig. 12. Effect of individual parameters on speed-up: LEVcriA (smoother), LEVcriB 
(communication), and LEVcriC (smoother for coarse grid solver), Fujitsu FX10 with 128 nodes, 
2,048 cores, HB 16×1, "small" size case (65,536 (=64×32×32) meshes/node) 
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Table 6. Speed-up compared to that of the original case (policy=000) of HB 4×4/6×4 for 
“small” size case (65,536 (=64×32×32) meshes/node) 

  T2K/Tokyo 
512 nodes 

Cray XE6 
128 nodes 

Fujitsu FX10 
128 nodes 

HB 4×4/6×4 
Original 1.00 1.00 1.00 
AT 1.08 1.49 1.06 
Estimated Best 1.14 1.41 1.06 

HB 8×2/12×2 
Original .963 .879 1.03 
AT 1.35 1.38 1.08 
Estimated Best 1.29 1.47 1.06 

HB 16×1/24×1 
Original .572 .652 .866 
AT 1.12 1.14 .920 
Estimated Best 1.08 1.06 .932 

5 Concluding Remarks 

In the present work, we focus on automatic selection of single-threading or multi-
threading in procedures of parallel multigrid solvers using hybrid parallel 
programming models. We propose a simple empirical method for AT of related 
parameters. The proposed method is based on the run-time tuning procedure for the 
optimization of communications as a subroutine of the target application and the 
parameter of the critical loop length for multi-threading derived from a simple off-line 
benchmark. The effect of the proposed method was evaluated on the T2K/Tokyo, the 
Cray XE6, and the Fujitsu FX10 using up to 8,192 cores. The proposed AT method is 
very effective, and the automatically tuned code provides twice the performance as 
the original code on the T2K/Tokyo and the Cray XE6 when the problem size per 
node is relatively small. The proposed method is very useful in strong scaling 
computations in these architectures. The effect is not so significant on the Fujitsu 
FX10, because multi-threading provides a higher efficiency even for short loops on 
the Fujitsu FX10 due to its hardware barrier. Because the original code is optimized 
for cc-NUMA architectures, such as the T2K/Tokyo and the Cray XE6, a different 
strategy for further optimization may be needed for the Fujitsu FX10. Generally 
speaking, NUMA-aware optimizations do not improve performance of the code on 
such architectures like Fujitsu FX10, where each core of the computing node can 
access the memory in a uniform manner. 

In the present work, we focus on the choice of single-threading or multi-threading. 
A more sophisticated method that defines the optimum number of threads at each 
level may further contribute to optimization. For example, current choice is only 16-
threads or a single thread for HB 16×1 of T2K/Tokyo and Fujitsu FX10, but 2-, 4- or 
8-thread procedures at certain levels of the multigrid may provide further 
improvement of the performance. This type of more flexible approach is an 
interesting topic for future works. Because the topic of the present work covers only a 
small aspect of parallel multigrid methods, other directions of optimization, such as 
reducing communications, should also be considered in future works. 

 



450 K. Nakajima 

Acknowledgements. This work is supported by Core Research for Evolutional 
Science and Technology (CREST), Japan Science and Technology Agency (JST), 
Japan.  

References 

1. Nakajima, K.: Parallel Multigrid Solvers Using OpenMP/MPI Hybrid Programming 
Models on Multi-Core/Multi-Socket Clusters. In: Palma, J.M.L.M., Daydé, M., Marques, 
O., Lopes, J.C. (eds.) VECPAR 2010. LNCS, vol. 6449, pp. 185–199. Springer, 
Heidelberg (2011) 

2. Nakajima, K.: New strategy for coarse grid solvers in parallel multigrid methods using 
OpenMP/MPI hybrid programming models. ACM Proceedings of the 2012 International 
Workshop on Programming Models and Applications for Multicores and Manycores, 
ACM Digital Library (2012), doi:10.1145/2141702.2141713 

3. Information Technology Center, The University of Tokyo, 
http://www.cc.u-tokyo.ac.jp/ 

4. The T2K Open Supercomputer Alliance, 
http://www.open-supercomputer.org/ 

5. Baker, A., Gamblin, T., Schultz, M., Yang, U.: Challenge of Scaling Algebraic Multigrid 
across Modern Multicore Architectures. In: Proceedings of the 2011 IEEE International 
Parallel & Distributed Processing Symposium (IPDPS 2011), pp. 275–286 (2011) 

6. Hypre Library, http://acts.nersc.gov/hypre/ 
7. NERSC, Lawrence Berkeley National Laboratory, http://www.nersc.gov/ 
8. STREAM (Sustainable Memory Bandwidth in High Performance Computers), 

http://www.cs.virginia.edu/stream/ 
9. Deutsch, C.V., Journel, A.G.: GSLIB Geostatistical Software Library and User’s Guide, 

2nd edn. Oxford University Press (1998) 
10. Washio, T., Maruyama, K., Osoda, T., Shimizu, F., Doi, S.: Efficient implementations of 

block sparse matrix operations on shared memory vector machines. In: Proceedings of the 
4th International Conference on Supercomputing in Nuclear Applications (SNA 2000) 
(2000) 



A Predictive Performance Model for Stencil
Codes on Multicore CPUs

Andreas Schäfer and Dietmar Fey
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Abstract. In this paper we present an analytical performance model
which yields estimates for the performance of stencil based simulations.
Unlike previous models, we do neither rely on prototype implementa-
tions, nor do we examine the computational intensity only. Our model al-
lows for memory optimizations such as cache blocking and non-temporal
stores. Multi-threading, loop-unrolling, and vectorization are covered,
too. The model is built from a sequence of 1D loops. For each loop we
map the different parts of the instruction stream to the corresponding
CPU pipelines and estimate their throughput. The load/store streams
may be affected not only by their destination (the cache level or NUMA
domain they target), but also by concurrent access of other threads.
Evaluation of a Jacobi solver and the Himeno benchmark shows that the
model is accurate enough to capture real live kernels.

1 Introduction

Some of the largest supercomputing applications are stencil codes [1,2,10,11].
These codes are usually bandwidth limited, which means that their computa-
tional intensity according to the roofline model [15] is below the memory band-
width of the CPU. This situation is aggravated by the increasing core numbers
per chip, which outpace the growth of the memory bandwidth. Better cache
utilization can mitigate the bandwidth starvation [8]. However, not all codes
will benefit equally from multi-threading, cache optimizations or vectorization.
Given the fact that successful implementations may require significant amounts
of development time, it would be desirable to have a performance model which
yields lightspeed estimates – or upper bounds – so that the most profitable
optimizations can be determined.

Another use case of our performance model is to explore which changes to the
simulation model might reduce the execution time. Often the model developer
has several degrees of freedom when formulating the model, e.g. in the case
of multi-phase Lattice Boltzmann methods sometimes two grid sweeps may be
fused into one – at the cost of increasing the stencil radius.

Current multicore processors offer multiple levels of parallelism. The most
obvious one is the threading level, which can be further divided into simultaneous
multi threading (SMT), multicores, and NUMA and multi-socket systems. But
even from a single instruction stream a CPU will try to distill instruction level
parallelism (ILP) via dependency analysis and out-of-order execution in order to

M. Daydé, O. Marques, and K. Nakajima (Eds.): VECPAR 2012, LNCS 7851, pp. 451–466, 2013.
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exploit pipelining and superscalar execution units. Within the execution units
the programmer may additionally use vectorization.

Most current CPU designs are bandwidth-starved, which means that they
feature a high ratio of FLOPS to memory bandwidth. A common technique to
mitigate this shortcoming is cache blocking. The goal is to perform multiple
time step updates within one sweep through the matrix. Cache blocking can be
carried out in two different ways: spatial and temporal blocking.

Spatial blocking [2] is also referred to as tiling. The matrix is split into smaller
blocks (or tiles) which fit into the caches. Boundary elements of the blocks cannot
be updated since their neighbors are not available. For instance if a block of b3
cells is to be updated x steps, then only (b − 2 · x)3 cells can be written back.
The lost elements have to be compensated by overlapping the blocks. Choosing
an optimum block size and number of in-cache update steps is not trivial: the
more steps, the more data is read from cache, but also the more cells are lost.
The larger the blocks, the lesser this influence is, but also the larger the cache
needs to be.

Temporal blocking differs from this by continuously streaming data in the form
of a wavefront from memory and performing multiple updates on consecutive
slices from different time steps [14]. The advantage of this is that fewer boundary
cells are lost. E.g. if the wavefront traveling through the 3D volume is a tile of
b× b cells in size and x updates are performed per sweep, then (b− 2 · x)2 cells
are written back to memory. For this roughly 2 · x + 1 tiles have to be kept in
memory.

2 Loop Model

A performance model with perfect accuracy would have to reimplement not just
the exact behavior of the processor, but also the whole simulation code. The
roofline model considers only the arithmetic intensity and the machine balance,
which represents a huge abstraction. It does not take into account the limita-
tions of superscalar designs, e.g. when a code has to execute excessive shuffle
operations to fill all vector floating point units (FPUs). We attempt to capture
more effects in our model while still keeping its complexity manageable.

Let I be the instruction set and F be the set of function units in the CPU.
A linear, jump-free sequence s of instructions can be described as a tuple s =
(i1, i2, . . . ins). The scheduling function sched(s, j) defines to which function unit
f ∈ F an instruction ij within s will be mapped. In an instruction sequence we
identify sub-sequences sk which are defined by the function unit f ∈ F to which
the instructions ij get mapped. Thanks to pipelining, most CPUs can retire one
instruction per clock cycle and functional unit – at least unless the design is prone
to front-end starvation. Thus we assume the execution time t(sk) (measured in
clock cycles) to be simply the length of the sub-sequence:
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sched : In × N → F

sk = (ij |f(s, j) = k)

t : In → R

t(sk) = |sk|

For our model we consider nested loops of code sequences. Thanks to ILP a CPU
may often execute multiple ij ∈ I in parallel. We disregard the dependency
graph of the individual instructions and assume that out of order execution
sufficiently overlap multiple loop iterations, so that no pipeline stalls caused by
delayed computations occur. This simplification may lead to overly optimistic
performance estimates, but the reorder buffer of today’s CPUs may store 30
micro-ops or more, which is enough to encompass the inner loops of many kernels.

As said, most stencil codes which we have encountered are memory-bound.
Cache blocking can sometimes mitigate this so that codes are add-limited, mean-
ing that their throughput primarily depends on how many floating point addi-
tions the CPU can perform per cycle. In the case of memory-bound, or more
exactly bandwidth-limited loops, we base our model on the model of Treibig et
al. [12], but will now extend this model to encompass an arbitrary number of
data streams:

Data may have to traverse multiple levels, depending on the caches organi-
zation. For instance on Intel CPUs the caches are inclusive, meaning that data
loaded from memory will be present in all cache levels. This also means that
bandwidth from all affected caches is consumed to make the data travel from
the memory controller to the registers. Let Ar be the set of all arrays being read
by s and likewise Aw be the set of all arrays being written. l(a) yields the level
in the cache hierarchy in which a resides and b(a) is the number of bytes being
accessed from a by executing s. We can now calculate the total read traffic br(k)
and write traffic bw(k) on each level k of the cache/memory hierarchy (0: L1
cache, 1: L2 cache, 2:L3 cache, 3: RAM).

br(k) =
∑

a∈Ar,l(a)≤k

b(a) +

{
0 if k = 0
∑

a∈Aw,l(a)≤k b(a) if k > 0

bw(k) =
∑

a∈Aw,l(a)≤k

b(a)

The definition of br(k) includes the write streams Aw because of the additional
read required for write-allocate. Streaming stores could also be modelled, but
are not considered for the sake of simplicity. The number of cycles tmem(k) spent
on memory traffic per level k can be derived from the level’s bandwidth B(k).
The total time for memory traffic required by s is tmem(s).



454 A. Schäfer and D. Fey

tmem(k) =

{
br(k)+bw(k)

B(k) if level k is single-ported
max(br(k),bw(k))

B(k) if level k is dual-ported

tmem(s) =
∑

k

tmem(k)

If the code is multi-threaded, then br(k) and bw(k) have to add up the traffic
from all threads which access a common resource. On current multicores this
typically means that the bandwidth of the L3 cache and memory controller will
be shared. We define bir(k) and biw(k) (i.e. the memory traffic at level k, which
is shared by i threads) as the single threaded traffic, scaled by the number of
threads:

b′r(k) = br(k) · i
b′w(k) = bw(k) · i

This is a simplification, but as our measurements below show, it is still valid
for stencil codes. Most likely this is because they exhibit a very regular memory
access pattern.

All sub-sequences sk of s are assumed to be executed in parallel. The slowest
sub-sequence determines the effective runtime t(s) for arithmetically limited se-
quences. Otherwise it’s the time for memory traffic. We model the runtime t(t)
of a loop l = (s,m) which executes s exactly m times by estimating a certain
overhead toverhead(l) (e.g. for initializing counters or writing back results at the
end) and adding to this the execution times for the code sequence. This overhead
can be determined by analyzing the assembly code of an existing implementation
of the stencil code under test, or by instrumenting and benchmarking the code.
Both ways are tedious, but as we will see in the experimental evaluation below,
a bad estimate for the overhead will only spoil the estimates for small arrays.
For production codes we are generally interested in the performance for large
arrays.

t(s) = max

(

max
f∈F

{t(sf )}, tmem(s)

)

t(l) = toverhead(l) +m · t(s)

3 1D Diffusion Stencil

Consider the code fragment in Fig. 1 which is a naïve implementation of a 1D
diffusion stencil code. We will use this kernel to illustrate how code and model
correspond. For brevity a detailed analysis is given only for the more interesting
2D code below.
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If the compiler doesn’t optimize away the two redundant loads then this code
exhibits four data streams. Because of the preceding load stream of a[i + 1]
from the previous loop iterations, the two other load streams (which read a[i
- 1] and a[i + 0]) will be served from L1 cache, no matter how large the
arrays are. Only the load of a[i + 1] my require accesses to either higher cache
levels or main memory. A premature expectation would be that this code took
two clock cycles per iteration, as each iteration requires two adds, which can be
overlapped with the single multiplication by one third.

However, our model predicts that the loop will take three cycles on a pre-
Sandy Bridge Intel chip, if running in L1 cache: For each loop iteration the CPU
will execute three loads, two floating point additions, one multiplication and
one store.1 The longest sub-sequence in this instruction sequence are the loads,
which get all mapped to the single load unit found in Intel older CPU cores
(Sandy Bridge has two load ports). Each loop iteration performs three FLOPs,
so according to our model we can expect the code to run at 2.8 GFLOPS on
the Core 2 machine in our testbed. Measurements have confirmed this to be
exact. Naturally, such scalar code is not very efficient. Fig. 2 computes the same
function, but uses only two streams.

for ( int i = 1 ; i < n − 1 ; ++i )
b [ i + 0 ] = ( a [ i − 1 ] + a [ i + 0 ] + a [ i + 1 ] ) ∗ ( 1 . 0 / 3 . 0 ) ;

Fig. 1. Naïve 1D stencil

double buf1 = a [ 0 ] ;
double buf2 = a [ 1 ] ;
for ( int i = 1 ; i < n − 1 ; ++i ) {

double buf3 = a [ i + 1 ] ;
b [ i + 0 ] = ( buf1 + buf2 + buf3 ) ∗ ( 1 . 0 / 3 . 0 ) ;
buf1 = buf2 ; buf2 = buf3 ;

}

Fig. 2. Element-reusing 1D stencil

for ( int y = 1 ; y < DIM − 1 ; ++y)
for ( int x = 1 ; x < DIM − 1 ; ++x)

b [ y ] [ x ] =
( a [ y−1] [ x ] + a [ y ] [ x−1] + a [ y ] [ x ] +
a [ y ] [ x+1] + a [ y+1] [ x ] ) ∗ ( 1 . 0 / 5 . 0 ) ;

Fig. 3. Vanilla 2D diffusion stencil

1 The additional jump and counter/index handling are required can for now be ignored
as the relevant function units are not saturated.
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4 Handling Multiple Dimensions

The previous model can capture arithmetic kernels with multiple linear data
streams. We will now show how this model can be extended to cover multi-
dimensional codes. Also, this section serves to bridge the gap between the ana-
lytical formulation of our model and its application to actual implementations.

For brevity we will analyze a 2D code, but 3D codes can be evaluated likewise.
For the following analysis we will assume a single socket, quad-core Sandy Bridge
system as detailed in Tab. 1. Consider the diffusion stencil shown in Fig. 3. A
cell’s new state is determined by averaging it with its four neighbors in the
cardinal directions. The boundaries are constant. Per cell update four additions
and one multiplication have to be performed. The inner loop of the code updates
row y of the destination matrix. During this update the three lines y− 1, y, and
y + 1 of the source matrix have to be read. The key to applying the loop model
to such a 2D code is to determine on which level of the memory hierarchy each
row will reside. As an introductory example we assume that both matrices are
320 × 320 elements in size. At the beginning all caches are empty and both
matrices are stored in main memory. After updating row 1 the first three rows of
the source grid and row 1 on the target grid have been loaded to the L1 cache.
For the update of row 2 and all remaining rows in this timestep, two rows in the
L1 cache can be reused and only one row has to be read from main memory. The
newly updated row can be stored in L1, too. No cache evictions take place as
the L1 cache is large enough to store both matrices. In the subsequent timesteps
all memory accesses are served by the L1 cache.

We can now apply our loop model to this code by counting arithmetic in-
structions and memory accesses. A vectorized assembly version of the inner loop
shown in Fig. 3 can be seen in Fig. 4.2 This analysis could theoretically be done
without the having the source code of a kernel, but just by reasoning which
array elements get read and written, and which computations need to be carried
out. However, we will use the assembly code since be believe that it makes the
analysis much more descriptive.

Per iteration of the loop 8 cells are updated. The code issues 16 loads, 4
stores, 16 floating point additions and 4 floating point multiplications.3 In a
Sandy Bridge CPU all these instructions would be scheduled to different pipelines
(loads: ports 2 and 3, stores: port 4, multiplications: port 0, additions: port 1,
shuffles: port 5)[7]. Equations 1-6 list the execution times in machine cycles
(c), as predicted by our model. Note that the loads get distributed among two
pipelines as Sandy Bridge has two load ports[16].

2 The original C++ code, which is too long to be included here, but possibly easier
to read, is available at
http://svn.inf-ra.uni-jena.de/trac/libgeodecomp/
browser/src/testbed/testbed.cpp

3 We disregard register copies and integer instructions as there are enough functional
units to execute them and they do therefore play a negligible role in our analysis.

http://svn.inf-ra.uni-jena.de/trac/libgeodecomp/browser/src/testbed/testbed.cpp
http://svn.inf-ra.uni-jena.de/trac/libgeodecomp/browser/src/testbed/testbed.cpp
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t(sload_1) = 8 c (1)
t(sload_2) = 8 c (2)
t(sstore) = 4 c (3)
t(smult) = 4 c (4)
t(sadd) = 16 c (5)

t(sshuffle) = 4 c (6)

The slowest sub-sequence in this code is obviously formed by the 16 adds. Thus:

max
f∈F

{t(sf) = t(sadd)

= 16 c

Assuming that all data is in L1, we can now proceed to calculate tmem. In total
3 · 4 · 2 elements (3 arrays, 4x unrolled, 2 double precision numbers per vector
register) are read, and 8 are written array (one array). L1 bandwidth (B(0)) is
assumed to be 48 Bytes per clock cycle[7].

br(0) = 3 · 4 · 2 · 8Byte = 192B

bw(0) = 1 · 4 · 2 · 8Byte = 64B

tmem(s) =
br + bw

48B
c

= 5.333 c

Now, the only number we are lacking is toverhead(l). Overhead is incurred be-
fore/after the inner loop, mostly by loop peeling: the vectorized code in Fig.4
operates on eight (aligned) vector elements per iteration. If the elements which
are to be updated are not properly aligned and/or not a multiple of eight, then
some preceding and trailing elements may have to be updated by slower scalar
code. Additional overhead is caused by incrementing loop counters and updating
array pointers. For our implementation of the 2D diffusion stencil this overhead
is roughly 40 machine cycles.

Finally, we can calculate the total time t(l) which it takes to execute the inner
loop:

toverhead(l) = 40 c

t(s) = max (16 c, 5.333 c)

m =
320

8
= 40

t(l) = 40 c+ 40 · 16 c
= 680 c
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Assuming a clock speed of 3.4 GHz and 5 FLOPs per cell update, we would
estimate that the code delivers 8 GFLOPS for our 320 × 320 example. Our
measurements in Fig. 7 have shown a peak performance of 7.8 GFLOPS, which
corresponds to an error of 2.5 %.

For larger matrices the L1 caches would not be able to hold all data. E.g.
for a matrix of 15024 × 15024 elements L1 would not even be able to hold one
row of the matrix. To update our performance estimate, we only have to update
tmem(s): Per iteration we have to read and write one cache line from/to main
memory. The line which gets written has to be read from memory first because
to serve the write allocate. Our test machine has a memory bandwidth of 9.39
Byte per cycle.

br(2) = 64B

bw(2) = 64B

B(2) = 9.39
B

c

tmem(2) =
128B

9.39B
c

= 13.63 c

The L2 cache has a bandwidth of 32 Bytes per cycle, L1 of 48 Bytes. Two lines
from L2 cache can be reused, none of L1, thus:

br(1) = 192B + 64B

bw(1) = 64B

B(1) = 32
B

c

tmem(1) =
256B

32B
c

= 8 c

br(0) = 192B

bw(0) = 64B

B(0) = 48
B

c

tmem(0) =
192B

48B
c

= 5.33 c

tmem(s) = 5.33 c+ 8 c+ 13.63 c

= 26.97 c

This leads to an estimate of 5.04 GFLOPS, which is close to our measurements
of 5.14 GLOPS.
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0x0403640 : vmovapd %xmm7,%xmm9
0x0403644 : vmovapd %xmm8,%xmm3

0x0403648 : vmovapd 0x20(%rdi) ,%xmm2

0x040364d : add $0x8 ,%edx

0x0403650 : vmovapd 0x30(%rdi) ,%xmm1

0x0403655 : vshufpd $0x1 ,%xmm2,%xmm3,%xmm6

0x040365a : vaddpd %xmm9,%xmm3,%xmm3

0x040365f : vmovapd 0x40(%rdi) ,%xmm0

0x0403664 : vshufpd $0x1 ,%xmm1,%xmm2,%xmm5

0x0403669 : vshufpd $0x1 ,%xmm0,%xmm1,%xmm4

0x040366e : vmovapd 0x50(%rdi) ,%xmm8

0x0403673 : vaddpd %xmm6,%xmm2,%xmm2

0x0403677 : add $0x40 ,% rd i

0x040367b : vshufpd $0x1 ,%xmm8,%xmm0,%xmm7

0x0403681 : vaddpd %xmm5,%xmm1,%xmm1

0x0403685 : vaddpd %xmm4,%xmm0,%xmm0

0x0403689 : vaddpd %xmm6,%xmm3,%xmm6

0x040368d : vaddpd %xmm5,%xmm2,%xmm5

0x0403691 : vaddpd %xmm4,%xmm1,%xmm4

0x0403695 : vaddpd %xmm7,%xmm0,%xmm0

0x0403699 : vaddpd 0x00(%rcx) ,%xmm6,%xmm6

0x040369d : vaddpd 0x10(%rcx) ,%xmm5,%xmm5

0x04036a2 : vaddpd 0x20(%rcx) ,%xmm4,%xmm4

0x04036a7 : vaddpd 0x30(%rcx) ,%xmm0,%xmm0

0x04036ac : add $0x40 ,%rcx

0x04036b0 : vaddpd 0x00(%rsi) ,%xmm6,%xmm6

0x04036b4 : vaddpd 0x10(%rsi) ,%xmm5,%xmm5

0x04036b9 : vaddpd 0x20(%rsi) ,%xmm4,%xmm4

0x04036be : vaddpd 0x30(%rsi) ,%xmm0,%xmm0

0x04036c3 : add $0x40 ,% r s i

0x04036c7 : vmulpd 0x3691(%rip) ,%xmm6,%xmm6

0x04036cf : cmp %edx ,%r13d

0x04036d2 : vmulpd 0x3686(%rip) ,%xmm5,%xmm5

0x04036da : vmulpd 0x367e(%rip) ,%xmm4,%xmm4

0x04036e2 : vmulpd 0x3676(%rip) ,%xmm0,%xmm0

0x04036ea : vmovapd %xmm6, 0x00(%rbx)

0x04036ee : vmovapd %xmm5, 0x10(%rbx)

0 x04036f3 : vmovapd %xmm4, 0x20(%rbx)

0 x04036f8 : vmovapd %xmm0, 0x30(%rbx)

0x04036fd : jg 0x403640

Fig. 4. Assembly code for the inner loop of the 2D diffusion stencil. For clarity we
have highlighted instructions and memory references according to the sub-sequences of
the instruction stream to which they belong. The code is 4x unrolled and vectorized
via SSE. Unaligned loads (for accesses to left and right neighbors) are avoided by
combining aligned loads and shuffle operations. rdi points to the current row in the
source grid while rcx and rsi point to the rows above and below. The target row is
at rbx. The peculiar reference accessed via rip is an operand stored within the code
segment. It contains the factor one-fifth.
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5 Experimental Testbed

Tab. 1 summarizes the machines we used for validating our model. All machines
run Intel chips which use an inclusive cache hierarchy with 64 Byte cache lines.
Stores are handled via write back/write allocate – unless streaming stores are
used. Write allocate means that every cache line which is to be written is read
from memory first. This effectively doubles the bandwidth required for stores.
Streaming stores (e.g. MOVNTPD) may be used by the CPU as hints to avoid this
additional read. To determine basic machine properties, such as the maximum
cache bandwidths, we used the micro benchmarks likwid-bench that come with
the Likwid suite [13]. We did not test our model on AMD chips, as their cache
hierarchy is much different from Intel chips: Opterons use mostly exclusive cache
storage with all caches connected via a common bus. We do not yet have enough
details on their caches hierarchy to adapt our model to it.

Table 1. Hardware details of the servers we used for our benchmarks. The bandwidths
B(k) are shown in Bytes per clock cycle for the caches while the raw memory bandwidth
B(3) is listed in GB/s. The L1 cache is assumed to be dual-ported, we do thus list read
and write bandwidths. All other caches are assumed single-ported.

Core2 Nehalem Sandy Bridge A Sandy Bridge B

Model Core2 Quad Q9550 Xeon X5650 Xeon E31280 Core i7-2600K
Cores 4 6 4 4
Clock 2.83 GHz 2.66 GHz 3.50 GHz 3.40 GHz
L1 Cache 32 KiB 32KiB 32 KiB 32 KiB
L2 Cache 2x 6MiB 6x 256 KiB 4x 256 KiB 4x 256 KiB
L3 Cache - 12MiB 8 MiB 8MiB
RAM DDR2-800 DDR3-1333 DDR3-1666 DDR3-1666
Channels 2 3 2 2
B(0) 16/16 16/16 32/16 32/16
B(1) 32 32 32 32
B(2) - 32 32 32
B(3) 12.8 32.0 26.6 26.6

Table 2. Himeno benchmark on Sandy Bridge. Performance given in MFLOPS.

Size Prediction Benchmark Error

Small (128 x 64 x 64) 3369.75 3365.96 0.00113
Middle (256 x 128 x 128) 3435.51 3345.45 0.02692
Large (612 x 256 x 256) 3469.05 3363.69 0.03132
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6 Measurements and Validation

To verify the soundness of our model, we have tested it against a number of
different stencil codes on multiple generations of CPUs. We present only the
plots of our measurements versus our predictions, as a a detailed analysis for
each stencil, problem size, and CPU, comparable to the one in Sec. 4, would be
would be lengthy, mechanical, and thus beyond the scope of this paper.

In Fig. 5 we have evaluated an 4x loop-unrolled vectorized (SSE) version of
the 1D diffusion stencil on Core 2, Nehalem, and Sandy Bridge CPUs. Despite
good cache hit rates, the performance for small arrays is comparatively low,
which is caused by the fixed overhead. As the arrays grow the overhead becomes
negligible, but after a certain point the arrays drop from L1, L2 and, if available,
L3 cache.

The predictions are most accurate for all architectures if the arrays fit into the
L1 cache. For larger arrays Sandy Bridge performance is still predicted with high
accuracy while Core 2 and Nehalem measurements deviate from the prediction.
The discrepancy is at about 20 %, so improvements are clearly desirable, but
still the model remains usable in the sense that performance critical array sizes
can be detected and their relative performance can be estimated.

The benchmarks show that our model is slightly optimistic and that actual
code will in most cases be slower. A weakness of our model can be seen when
the arrays hit cache size boundaries. The actual measurements reveal that the
performance starts to drop even if the arrays are still slightly smaller than the
caches and can retain some throughput benefits even if the arrays are larger than
the caches. We would need to know how cache eviction is performed on Intel’s
chips to fix this inaccuracy. On the other hand, this would increase the model’s
complexity significantly, so for now we deem this to be an acceptable tradeoff
between simplicity and accuracy.

The 2D code discussed in Sec. 4 has been benchmarked in Fig. 7. This bench-
mark was run on our second Sandy Bridge system. Similarly to the previous
measurement the effects of overhead and cache sizes can be observed and again
the prediction is accurate.

Cache blocking (spatial blocking) and multi-threading are evaluated in Fig. 6.
The code was parallelized via OpenMP. For small arrays we can observe a poor
accuracy of our model. Apparently thread synchronization and loop scheduling
cannot be represented by a fixed overhead. This is not a surprise, but for larger
arrays this error shrinks, which is why we are confident, that our model may still
be applied in situations where the overhead can be determined a priori.

6.1 Himeno Benchmark

So far we have only tested our model against 1D/2D variants of a diffusion
kernel. Actual solvers are more complex: they use more data sets and are usu-
ally 3D. As a more realistic example we chose the Himeno benchmark4, a well
4 http://accc.riken.jp/HPC_e/himenobmt_e.html

http://accc.riken.jp/HPC_e/himenobmt_e.html
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Fig. 5. 1D diffusion stencil results on three Intel architectures. The actual code is a
4x unrolled SSE version of the code seen in Fig. 2. Despite sharing many architectural
traits, the Sandy Bridge system comes much closer to the theoretical limits. The convex
growth on the left side is caused by the fixed initialization overhead (e.g. for setting up
counters and pointers). It becomes negligible as the arrays grow and the loops make up
the major part of the running time. Please mind the logarithmic scale on the x-axis.
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Fig. 6. Multi-threaded implementation of the 1D diffusion. The code is 4x unrolled and
vectorized via AVX. To conserve memory bandwidth we implemented spatial cache
blocking, which is also known as tiling. As predicted by the model, scaling is not
perfect, as multiple cores compete for memory bandwidth. Yet, the speedup is still
about 3.25 for 4 threads. All stores to the destination array are non-temporal stores.
These bypass the caches, which reduces cache pollution. To avoid unaligned loads
and costly cross-lane shuffles for accesses to left/right neighbors, we use an element-
interleaving technique as shown in [3]. All measurements were run on the Sandy Bridge
A system in our testbed. likwid-pin was used for pinning the threads to CPU cores.

established code which is often used to assess the performance of stencil code
implementations [5,9]. Table 2 compares the benchmark’s performance on the
Sandy Bridge A system – measured in MFLOPS – with the performance pre-
dicted by the model. The relative error for all grid sizes is well below 4%. For
each cell update the code issues 33 loads and 2 stores. 20 floating point additions
and 14 multiplications have to be carried out. Because of number of coefficients
required for each cell, a listing of all equations required to calculate t(l) would
take up several pages. In the end, it turns out that our model claims the code is
bandwidth-limited. This matches our experience from analyzing the 2D diffusion
code, which was bandwidth-limited as well. Even small instances of the bench-
mark exceed the CPU’s cache capacity. This explains why the performance does
hardly increase when the problem size is reduced from Large to Small.
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Fig. 7. Comparison of predicted and measured performance of the 2D diffusion code.
The initial rise is caused by a slowly decreasing effect of the fixed overhead. The drops
in performance are caused by the decreasing cache efficiency as the matrices grow.

7 Conclusion

We have presented a generalized analytical model to assess the performance of
stencil code implementations on state of the art multicore CPUs. The model is
applicable not just to 1D and 3D codes alike, it also allows for optimizations
such as vectorization, loop unrolling, cache blocking and multi-threading.

Measurements have shown our model to be reasonably accurate on multiple
generations of Intel CPUs, albeit further work is required to make it applicable to
AMD or SPARC64 [6] and to improve the prediction of thread synchronization
times. For CPUs whose caches are not inclusive, the sum formulas for br(k) and
bw(k) would need to be adapted: in that case the data typically does not have
to travel step by step, from level to level, through the memory hierarchy. For
instance current AMD chips feature a bus which connects all caches.

The advantage of having an analytical mode is that it may be used to guide
application development: implementing a vectorized, multi-threaded code with
cache blocking may require thousands of lines of code. Our model can give an esti-
mate of the approximate performance before investing weeks or possibly months
of work in such an implementation. It relies on basic performance data of the
machine (e.g. memory bandwidth, number of functional units, etc.) and kernel
(number and size of arrays accessed), all of which are either freely available or
can be deduced from a naïve implementation.

A hard to determine parameter in our model is the overhead. A way to remedy
this drawback would be to replace the fixed toverhead(l) by a function which draws
its definition from a series of micro-benchmarks. But, as the multi-threading
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tests in Sec. 6 have shown, even a badly chosen estimate does not hugely affect
predictions for larger and thus relevant problem sizes.

Unlike models based on benchmarking code [4], our model may be applied to
processors of which the basic performance characteristics are known, but which
are not yet available for testing.
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