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ABSTRACT
Summary: The fundamental problem of gene selection
via cDNA data is to identify which genes are differentially
expressed across different kinds of tissue samples (e.g. nor-
mal and cancer). cDNA data contain large number of variables
(genes) and usually the sample size is relatively small so the
selection process can be unstable. Therefore, models which
incorporate sparsity in terms of variables (genes) are desirable
for this kind of problem. This paper proposes a two-level hier-
archical Bayesian model for variable selection which assumes
a prior that favors sparseness. We adopt a Markov chain Monte
Carlo (MCMC) based computation technique to simulate the
parameters from the posteriors. The method is applied to leuk-
emia data from a previous study and a published dataset on
breast cancer.
Contact: bmallick@stat.tamu.edu
Supplementary information: http://stat.tamu.edu/people/
faculty/bmallick.html

INTRODUCTION
Microarray experiments typically measure the expression
levels of several thousands of genes simultaneously. In cDNA
data, it is common to have a large number of genes and a rel-
atively small sample size. By removing redundant variables
(genes), it would be possible to highlight those genes that are
most relevant for certain events (for instance, certain diseases
or a certain type of tumor).

Several approaches for finding the differentially expressed
genes have been proposed: the t-test (e.g. Devore and Peck,
1997), a regression modeling approach (Thomas et al., 2001),
mixture model approach (Pan, 2002) and non-parametric
methods (Troyanskaya et al., 2002). All of these are univari-
ate gene selection methods and hence suffer from the fact
that no correlations between the genes are considered in the
selection procedure. Recently, Lee et al. (2003) developed
a multivariate Bayesian model to perform variable selection.
Their method made use of mixture prior distribution, which
is very sensitive toward the choice of some hyper-parameters
like the mixing probability π . In general, the algorithm is
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slow due to complicated mixing structure of the posterior
distribution.

From a machine learning viewpoint, high dimensionality
and sparsity of data points suggest the use of support vector
machines (SVMs) (Campbell, 2002). Usually SVMs achieve
low test error despite small sample sizes. Several papers have
reported results on the application of SVMs for perform-
ing variable selection (Guyon et al., 2002; Weston et al.,
2001). However, this method has a number of disadvantages,
such as the absence of probabilistic output and the neces-
sity of estimating a trade-off parameter in order to utilize
Mercer kernel functions. An alternative approach is to exploit
the Bayesian technique of automatic relevance determination
(ARD). An ARD approach has been used previously for con-
structing a sparse classifier using the relevance vector machine
(RVM) of Tipping (2000, 2001). Li et al. (2002) utilized ARD
to perform variable selection rather than using generalization
bounds from statistical learning theory. Their variable selec-
tion method has a performance similar to SVMs when applied
to gene expression datasets from cDNA microarray data. The
advantage of their approach is that variable sparsity is nat-
urally incorporated into the algorithm—the optimal number
of relevant variables is decided automatically. In contrast, for
an SVM an additional variable selection procedure has to be
added and a further criterion must be used to indicate when
the best variable set has been found. In terms of practical
application, Li et al. (2002) highlight the importance of a small
number of influential genes. They use a zero-mean Gaussian
prior with unknown variance for the unknown regression para-
meter β that favors sparseness in estimating β. This choice of
prior for β shows very good performances (Williams, 1998;
Williams and Barber, 1998) but the main disadvantage is that
it does not control the structural complexity of the resulting
functions. That is, if one of the components of β happens to be
irrelevant, a Gaussian prior will not set it exactly to zero but
instead to some small value (shrinkage rather than selection).

In this paper, we consider a multivariate Bayesian regres-
sion model and assign priors that favor sparseness in terms
of number of variables (genes) used. We introduce the use
of different priors to promote different degrees of sparseness
using a unified two-level hierarchical Bayesian model. In our
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first model, we assign a zero-mean Gaussian prior to β with
an independent prior distribution for the unknown variance of
β. This model is related to ARD, although we perform full
Bayesian analysis rather than marginal-likelihood maximiza-
tion. We use a Laplace prior in our second model as it is known
to promote sparseness (Williams, 1995), which is equivalent
to the Lasso model. Our third model is based on the non-
informative Jeffreys prior suggested by Figueiredo (2001).
This particular prior does not contain any hyper-parameter by
which we can implement variable selection automatically as
well as strongly induce sparseness in the model. Importantly,
the number of selected genes is decided automatically. Unlike
other approaches, which are based on approximations, we will
perform full Bayesian analysis exploiting simulation based on
Markov chain Monte Carlo (MCMC) methodology (Gelfand
and Smith, 1990; Gilks et al., 1996) to derive the estim-
ates (as well as the uncertainty distributions) of the unknown
parameters.

We apply our methods to a leukemia dataset from Golub
et al. (1999) and also to a dataset from Hendenfalk et al.
(2001). The idea is to identify a small number of genes
having the greatest discriminating power, thereby allowing
researchers to quickly focus on the most promising candidates
for diagnostics and therapeutics.

MODEL
Suppose that n independent binary random variables (e.g.
normal and cancer), Y1, . . . , Yn are observed. Yi = 1 indic-
ates that sample i is cancer or one type of cancer (e.g. ALL,
BRCA1) and Yi = 0 indicates that sample i is normal or the
other type of cancer (e.g. AML, BRCA2 and sporadic). For
each sample, we measure gene expression levels for a set. Let
Xij denote the gene expression level of the j -th gene for the
i-th sample and we form the data matrix X as

X =


X11 X12 · · · X1p

X21 X22 · · · X2p

...
...

...
...

Xn1 Xn2 · · · Xnp

 .

Define the binary regression model as pi = P(Yi = 1) =
�(Xiβ), i = 1, . . . , n, where β is the vector of unknown
regression parameters, Xi is the i-th row vector of the matrix
X and � is the standard normal cumulative density function
linking the probability pi with the linear structure Xiβ. This
is known as probit model.

Albert and Chib (1993) introduce n independent lat-
ent variables Z = (Zi , . . . , Zn) into the problem, where
Zi ∼ N(Xiβ, 1) and define Yi = 1 if Zi > 0 and Yi = 0
if Zi ≤ 0. This approach connects the probit binary regres-
sion model for Yi to a normal linear regression model for the
latent variable Zi .

We consider different priors for β in a two-level hierarchical
Bayesian model. This model involves a zero-mean Gaussian

prior for β with unknown variances. Then, we assign choices
of priors for the variances assuming that they are independent.
So, the prior distribution of β is

β|� ∼ N(0, �),

where 0 = (0, . . . , 0)′, � = diag(λ1, . . . , λp) and λi is the
variance of βi . We assign three different choices of prior
distributions for � which develop three different models
inducing different degrees of sparsity to select the number
of genes used.

Prior distribution for the �

For Model I, we assign a conjugate Inverse Gamma prior
for each λi in � as IG(a/2, 2/b). Here a random vari-
able X is said to follow Inverse Gamma distribution
if IG

(
a
2 , 2

b

) ∼ ( 1
X

)(a/2)+1
exp

( − b
2X

)
. Note that we have

two hyper-parameters, a and b, to be adjusted. Usually we
adjust a and b in such a way that the variance of λ is very large.
This model is equivalent to ARD model of Li et al. (2002).
Assuming independence among λis, the prior distribution of
� is given by

� ∼
p∏

i=1

IG

(
a

2
,

2

b

)
.

In Model II, we assign a Laplace prior for β to promote sparse-
ness (so that irrelevant parameters are set exactly to zero). We
can express the Laplace prior distribution as a scale mixture
of Normal priors, which is equivalent to a two-level hierarch-
ical Bayesian model. The Laplace prior can be expressed as a
zero-mean Gaussian prior with an independent exponentially
distributed variance:

π(βi |γ ) =
∫ ∞

0
π(βi |λi)π(λi |γ )dλi ∼ Laplace

(
0,

1√
γ

)
.

We assign an exponential distribution for the prior distribution
of λi , which is equivalent to assigning a Laplace prior for β.
Here, a random variable X is said to follow exponential distri-
bution with parameter γ denoted as expon(γ ) and expressed
as expon(γ ) = γ

2 exp
(− γ x

2

)
.

The prior distribution of � (again with the assumption of
independence among λi) is given by

� ∼
p∏

i=1

expon(γ ).

Here again we need to fix the hyper-parameter γ in such a
way that the variance of λ is high. This is similar to the Lasso
model but has added flexibility due to the choices of multiple
λs as against one choice in the Lasso method.

In Model III, we attempt to avoid the problem of fixing the
hyper-parameters by letting the prior distribution of � be a
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non-informative Jeffreys prior as

� ∼ |I(�)|1/2 =
p∏

i=1

1

λi

.

As already shown in Figueiredo (2001) and in our experi-
mental results, this prior strongly induces sparseness and
yields good performance.

COMPUTATION
The posterior distribution is not available in explicit form so
we use the MCMC method (Gilks et al., 1996), specifically
Gibbs sampling (Gelfand and Smith, 1990) to simulate the
parameters from the posterior distribution.

The full conditional distribution of Z has a truncated
normal distribution. The random variables Z1, . . . , Zn are
independent with

Zi |β, Yi = 1 ∝ N(Xiβ, 1) truncated at the left by 0

Zi |β, Yi = 0 ∝ N(Xiβ, 1) truncated at the right by 0.

We generate random numbers Zi using Robert’s (1995)
optimal exponential accept-reject algorithm.

In the two-level hierarchical Bayesian model with zero-
mean Gaussian priors and independently distributed variances
for β, the full conditional distribution of β is as follows.

π(β|Z, Y , �) ∝ N(�X′Z, �),

where, � = (X′X + �−1)−1. We have used the Woodbury–
Sherman–Morrison matrix identity to reduce the dimension
of the matrix, from p to n. This makes the computation
much faster because we have cDNA data which has a high
dimensionality corresponding to the small sample (n << p).

� = � − �X′(X�X′ + I)−1X�.

The full conditional distribution of � for the Inverse Gamma
prior (Model I) is the following:

π(�|Z, Y , β) ∝
p∏

i=1

IG

(
a + 1

2
,

2

b + β2
i

)
.

The full conditional distribution of � for the exponential prior
(Model II) is the following:

π(�−1|Z, Y , β) ∝
p∏

i=1

InvGauss

(√
γ

βi

, γ

)
,

where InvGauss denotes the inverse Gaussian distribution.
The inverse Gaussian distribution for a random variable X

is expressed as

InvGauss(µ, λ) =
√

λ

2πx3
exp

(
− λ

2µ2

(x − µ)2

X

)
, X ≥ 0.

We use the algorithm of Michael et al. (1976) to generate the
random number from the inverse Gaussian distribution.

The full conditional distribution of � with the Jeffreys prior
(Model III) is the following:

π(�−1|Z, Y , β) ∝
p∏

i=1

G

(
1

2
,

2

β2
i

)
,

where G is the Gamma distribution.
In practice, many of the λi approach zero, implying those

genes can be pruned from the model. During MCMC itera-
tion we delete genes using the criterion λi < 10−12 as in
Li et al. (2002). Also we re-introduce a gene which has
been eliminated if it has large enough variance (10 or more).
However, we found little change in performance on varying
this re-introduction bound.

Finally, we obtain the predictive classification of a new
observation Ynew, conditioning on the gene expression level
X using the Monte-Carlo estimate:

P̂ (Ynew = 1|X) = 1

m

m∑
t=1

p(Ynew = 1|X, βt , Zt , �t), (1)

where βt , Zt , and �t are the MCMC samples from the
posterior distribution.

APPLICATION OF GENE SELECTION
Leukemia dataset
We apply our method to the Leukemia dataset that has been
extensively studied by Golub et al. (1999). The authors
gathered bone marrow or peripheral blood samples from 72
patients with either acute myeloid leukemia (AML) or acute
lymphoblastic leukemia (ALL). The data are split into a train-
ing set consisting of 38 samples of which 27 are ALL and 11
are AML, and a test set of 34 samples, 20 ALL and 14 AML.
The gene expression levels for 7129 human genes are pro-
duced. Golub et al. (1999) investigated the use of a weighted
voting scheme on the training samples and correctly classified
36 of the 38 training samples and also correctly classified 29
of the 34 test sample, failing to predict correctly on 5. Using
Golub’s training data, we identify the 500 most significant
genes by using two sample t-test statistics. We start with the
500 genes out of 7129, which include all the significant genes
identified by Lee et al. (2003) and Li et al. (2002). We run
the MCMC sampler (in our case, Gibbs sampling with 50 000
iterations and 20 000 burn-in). The priors are as follows. We
assume E(λi) = 10 and var(λi) = 100 a priori for Models I
and II and fix the hyper-parameters in that way.

We obtain samples from the marginal posterior distribution
and obtain the estimates for βis and λis. We plot the abso-
lute values of βi in Figure 1. The sparseness of βi has been
seen significantly in Model III and we can also see that abso-
lute values of βi in Model I are usually bigger than those in
Model II.

We select genes using the posterior variance of β while
keeping in mind that variables with smaller variance will have
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Fig. 1. Leukemia data: absolute value of βi for three models. y-axis shows the absolute value of βi and the x-axis shows the Frequency ID.

no effect and should be excluded from the model. Figure 2
shows the variance of βi for each model. We can identify the
genes having significantly larger variances than the others.
Both Models I and II contain 20 genes which have signific-
antly larger variance than the others. For Models I and II, we
use these genes to perform prediction on the test data. The res-
ults are in Table 1 (we not only predict the correct classification
but also the probability related to it). There are two misclas-
sifications (5th and 6th) by both Models I and II. The top four
selected genes are common to both of them: Zyxin (which
encodes a LIM domain protein localized at focal contacts
in adherent erythroleukemia cells; Maccalma et al., 1996);
cell division control related protein (hCDCrel-1) mRNA
(which is a partner gene of MLL in some Leukemias; Osaka
et al., 1999); HoxA9 mRNA (which collaborates with other
genes to produce highly aggressive acute leukemia disease;
Thorsteinsdottr et al., 1999) and MacMarcks (this gene tran-
scription is stimulated rapidly by tumor necrosis factor-α in
human promyelocytic leukemia cells (Harlan et al., 1991).

In Model III, only Zyxin is selected due to significantly lar-
ger variance than others. Zyxin has the third and second rank
according to Models I and II, respectively. The selected Zyxin
is also one of leading genes in Lee et al. (2003) and Golub
et al. (1999). Our prediction result based on Model III is in

Table 1, which shows that there are three misclassifications
using only one gene. Golub et al. (1999) used 50 genes to pre-
dict and had five misclassifications on test data. These results
appear to improve predictions done by Golub et al. (1999),
having fewer misclassifications while also using fewer genes.

In these small data and high-dimensional problems, several
models can fit the data well, each using a distinct set of genes.
To investigate the issue, Li et al. (2002) randomly partition the
data into two disjoint subsets of equal size and fit the model on
both sets. After training they match the common number of
genes to both models. These data are heterogeneous as all 38
training samples were obtained from adult bone marrow; some
test samples came from peripheral blood or pediatric patients.
This type of random partitioning and resampling of the data
will make the data more homogeneous (Smith et al., 2002).
Following this idea, we make new training and test datasets by
randomly splitting the 72 samples in half (36 + 36 samples).
We perform 50 re-samplings and select the top 20 genes. The
top 20 selected genes for all the three models were in common
at least 24% of times in the re-sampling results. The top four
genes for Models I and II were in common 50–70% of times.
For Model III, we found Zyxin was in common 80% of times.

These data are not very homogeneous as observations were
taken from different cells and to control the variability we
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Fig. 2. Leukemia data: the variance of βi for three models. y-axis shows the variance of βi and the x-axis shows the Frequency ID.

Table 1. Leukemia data: the prediction of the test data

Y Normal P(Y |Xtest) Laplace P(Y |Xtest) Jeffrey P(Y |Xtest) Y Normal P(Y |Xtest) Laplace P(Y |Xtest) Jeffrey P(Y |Xtest)

1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 1 1 1 1 1
1 0 0 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 0.939 0.999 0
0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
1 1 1 0 1 1 1 1

re-analyze on a subcategory of the data. For example, ALL
cells can be either T-cells or B-cells and we apply this
method to determine genes which are likely to be differentially
expressed between ALL T-cells and ALL B-cells (Yeoh et al.,
2002). In this manner, we controlled the heterogeneity of the
sample type as much as possible by focusing on the B-cells

and the T-cells experiments within the ALL group. This gives
two reasonably homogeneous sample types, for which we still
have many observations. We use 38 samples as training data-
set and use the 9 samples as the test dataset, which is the
same procedure as that of Grant et al. (2002). The top four
selected genes in Model I are ID 6855, 5542, 1882 and 1962.
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Fig. 3. Breast cancer data: the variance of βi for three models. y-axis shows the variance of βi and the x-axis shows the Clone ID.

The top selected gene, ID 6855 is TCF-3 transcription factors
(E2A immunoglobulin enhancer binding factors E12/E4.
Heterodimers between TCF3 and tissue-specific basic helix–
loop–helix (bHLH) proteins play major roles in determining
tissue-specific cell fate during embryogenesis, such as muscle
or early B-cell differentiation (Kamps et al., 1990). They are
involved in a form of pre-B-cell acute lymphoblastic leuk-
emia (B-ALL) through a chromosomal translocation which
involves PBX1 and TCF3. T-cell Antigen CD7 precursor (ID
5542), is one of two common selected genes by Dudoit et al.
(2000) and Grant et al. (2002). The top four genes selec-
ted by Model II are ID 6967, 1882, 6855 and 4342. The
top selected gene, ID 6967 is SELL Leukocyte adhesion pro-
tein beta subunit (ITGB2). The ITGB2 protein product is the
integrin-β chain β2. Integrins are integral cell-surface pro-
teins composed of an α-chain and a β-chain. A given chain
may combine with multiple partners resulting in different
integrins. For example, β2 combines with the αL chain to
form the integrin LFA-1, and combines with the αM chain to
form the integrin Mac-1. Integrins are known to participate
in cell adhesion as well as cell-surface-mediated signaling.
The gene TCF7 transcription factor 7 (T-cell specific) (clone
ID 4342) is selected by the Model III. This gene is one of
the two common selected genes by Dudoit et al. (2000) and
Grant et al. (2002). The Tcf7 gene encodes a transcription
factor that is a member of the high mobility group protein

family. Expression of Tcf7 is specific to T-cells, and the
gene product was originally designated TCF-1, as a T-cell-
specific transcription factor. A closely related factor, LEF-1
(lymphocyte transcription factor) is expressed in both T- and
B-cell lineages. Both TCF-1 and LEF-1 arise from the same
gene, Tcf7, by alternative splicing and the use of dual pro-
moters (Kingsmore et al., 1995). The detailed results of the
analyses are in the Supplementary website.

Hereditary breast cancer dataset
As a second study we also apply our method to a breast
cancer dataset (Hendenfalk et al., 2001) from patients carry-
ing mutations in the predisposing genes, BRCA1 or BRCA2
or from patients not expected to carry a hereditary predis-
posing mutation. Pathological and genetic differences appear
to imply different but overlapping functions for BRCA1 and
BRCA2. Hendenfalk et al. (2001) examined 22 breast tumor
samples from 21 breast cancer patients. A total of 15 women
had hereditary cancer, 7 having tumors with BRCA1 and 8
having tumors with BRCA2. A total of 3226 genes were used
for each breast tumor sample. We use our method to classify
BRCA1 versus the others (BRCA2 and sporadic).

We used initial two-sample t-test statistics to identify the
500 most significant genes and run the MCMC sampler as in
the previous example. We chose the same hyper-parameters
as in the previous example. The variances of 500 genes are
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plotted in Figure 3. Some of the leading genes selected by
these approaches appear among the 10 strongest genes in
the list in Kim et al. (2002) and Lee et al. (2003). For both
Models I and II, we selected 25 genes which have signific-
antly larger variances than others. The leading gene (by both
the approaches) is keartin8 (KRT8), a member of the cytoker-
atin family of genes. Cytokeratins are frequently used to
identify breast cancer metastases by immunohistochemistry,
and cytokeratin8 abundance has been shown to correlate well
with node-positive disease (Brotherick et al., 1998). Another
top selected gene is tumor-associated antigen L-6 (TM4SF1),
a member of a family of integral membrane proteins, several
of which are also overexpressed in tumors (Marken et al.,
1992). Antigen L-6 is frequently overexpressed in carcino-
mas, and antibody binding to L-6 on tumors in nude mouse
models inhibits their outgrowth (Hellstrom et al., 1986).

In Model III, only four genes appeared to be the selected
ones with significantly high variance. Keratin 8 and TM4SF1
are the top leading genes in Kim et al. (2002) and Lee et al.
(2003) as well as in our previous two models. The other two
genes are TOB1 and CTP syntheses which also appeared in all
the previously mentioned lists. The gene TOB1 interacts with
the oncogene receptor ERBB2, and is found to be more highly
expressed in BRCA2 and sporadic cancers, which are likewise
more likely to harbor ERBB3 gene amplifications. TOB1 has
an anti-proliferative activity that is apparently antagonized by
ERBB2 (Matsuda et al., 1996).

We have checked the sensitivity (stability) of our analysis by
adding a Gaussian noise to the expression values as in Lee et al.
(2003). We re-analyzed the data contaminated by Gaussian
noise to obtain the newly selected genes and have reproduced
the results in Supplementary website. The table shows that the
analysis is quite stable, as it is selecting almost similar genes
with a different noise level over the expression values.

We also check the model adequacy by leave-one-out
cross-validation (CV). We exclude a single data point and
predict the P(Y = 1|X) for that data point using Equation
(1). For Models I and II, we use the 25 selected genes and for
Model III the 3 selected genes to perform the CV. We com-
pare the result of this CV with the observed response. Our CV
results are reported in the Supplementary website. There are
no misclassifications by Models I and II and two misclassi-
fications (17th and 18th sample) by Model III. We compare
our CV results with other popular classification algorithms in
Table 2. All other methods have used 51 genes. It is clear from
the results that our methods improve the classification accur-
acy, having fewer misclassifications while also using fewer
genes.

DISCUSSION
We propose two-level hierarchical Bayesian models for vari-
able selection which assume priors favoring sparseness in
parameters. We employ latent variables to specialize the

Table 2. Feature selection for the breast cancer data: 51 features used by
Hendenfalk et al. (2001)

Model Cross-validation errora

1 Feed-forward neural networks 1.5 (average error)
(three hidden neurons, one hidden layer)

2 Gaussian kernel 1
3 Epanechnikov kernel 1
4 Moving Window kernel 2
5 Probabilistic neural network (r = 0.01) 3
6 kNN (k = 1) 4
7 SVM linear 4
8 Perceptron 5
9 SVM nonlinear 6

aNumber of misclassified samples.

model to a regression model. We use simulation-based
MCMC methodology to derive the estimates of the unknown
parameters. All the three models provide good performance
in terms of gene selection but Model III based on Jeffreys
prior is preferable as there is no need to specify the hyper-
parameter or any type of threshold values. Simpler methods
based on scores such as Fisher score or correlation coeffi-
cients can be used for gene selection but usually they would
select a much larger number of genes and due to small sample
size the method may produce instability in the classification
process. Due to Bayesian setup, we have a coherent way to
predict (assign) new samples to particular categories. Rather
than hard rules (in or out) of assignment, we can evaluate
the probability (chance) that the new sample will be in one
of the categories which is more helpful for decision making.
Also use of smaller number of important genes simplifies the
experimental procedure.

Our gene selection method is based on the posterior mean
of λ. We use informal, exploratory plots to find the genes with
significantly large value of λ. A formal choice of cut-off value
to select significant λ based on posterior or predictive criteria
will be a topic of future research.

All through our analysis, we assume data are independ-
ent and consider only binary classifiers. Future research will
consider the gene with interaction situations and extend the
analysis to multi-category models.
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