A Simple Approximation for Modeling Nonstationary Queues
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Abstract

FEvaluation of the behavior of queues with nonsta-
tionary arrival processes 1s of itmportance in several
applications including communication networks. How-
ever, the analysis of nonstationary queues is in general
computationally complex, and seldom produces closed
form expressions. Thus approzimation methods may be
more appropriate. In this paper, the pointwise station-
ary flurd flow approzimation (PSFFA) for determining
the mean queue length of nonstationary queues is pre-
sented. The PSFFA combines steady state queueing
results with a stmple fluid flow model to develop a sin-
gle nonlinear differential equation model of the queue.
Numerical integration techniques are used to solve the
PSFFA model and the method is illustrated by several
examples. The power of this approach is that it can
handle very general queueing systems.

1 Introduction

In many real world queueing systems, including
communication networks, the customer arrival process
1s nonstationary with the arrival process parameters
depending on the time of day [6]. Communication
networks 1n particular are subject to a variety of phe-
nomena that give rise to transient/nonstationary con-
ditions such as load sharing, changes in routing and
flow control parameters, failure of links, nodes or other
network resources and most commonly, nonstationary
input loads. There is empirical evidence that the user
demand for communication is nonstationary in many
networks, varying with the time of day [3]. Further-
more, as communication networks evolve to encom-
pass a wide range of data rates which are utilized to
transport complex traffic types with various quality of
service requirements, the traffic in the network is ex-
pected to be very bursty and nonstationary in nature.

The relatively scarce literature that exists on
transient/non-stationary analysis can largely be
grouped into four areas: i) simulation techniques ii)
transient analysis techniques, iii) nonstationary anal-
ysis techniques and iv) applications of the analysis
methods. Note that a distinction is made between
transient behavior and nonstationary behavior since
transient behavior describes the system going from one
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stationary load to another, whereas, nonstationary be-
havior occurs when the arrival and/or service rate vary
continuously with time.

Simulation methods observe the behavior of the sys-
tem over an ensemble of statistically identical but dis-
tinct independent replications. This is accomplished
by running the simulation a large number of times and
averaging the quantities of interest across an ensemble
of independent runs at a particular time instant. Many
such points may be obtained at different time instants
and the behavior of the system studied as a function of
time. The principle difficulty in conducting simulation
studies of this type is the large number of independent
runs that must be generated in order to get a repre-
sentative ensemble from which a statistically accurate
portrayal of the system behavior can be determined.
Hence, very large amounts of computer run time for
even moderate sized networks are required [13].

Analytical transient analyses usually involve the use
of transform techniques to solve differential/difference
equation models from an embedded Markov pro-
cess/chain. The result of the analysis is normally a

transform expression for p'(t), the time varying prob-
ability of ¢ customers in a single queueing system. Only
in some special simple cases are the transform expres-
sions invertible to yield a closed form expression and
even then the result i1s usually computationally com-
plex to evaluate. Hence, there has been an effort to
numerically determine the transient behavior rather
than deriving a closed form expression.

Numerical approaches have largely focused on two
methods: uniformization and numerical analysis tech-
niques. The basic idea in uniformization is to convert
a finite state space Markov process into an equivalent
discrete time Markov chain and Poisson process [5].
One then works with the state transition matrix of the
Markov Chain and a truncated version of the Poisson
random variable to find the transient behavior as dis-
cussed in [5]. In contrast, for the numerical methods
approach the underlying differential /difference equa-
tion model is numerically solved using standard numer-
ical analysis techniques (e.g., Runge-Kutta method).
The two approaches are compared in terms of compu-
tational complexity and accuracy in [18]. The princi-
pal disadvantage of both methods is that the compu-
tational complexity grows with the queue state space
and one 1s limited to considering Markovian type sys-



tems. In order to determine the transient behavior
of nonMarkovian queues, several approximate analysis
methods have been proposed such as diffusion models
[2], fluid flow models [20, 15], and service time con-
volution [11]. In [20] we have extended the numeri-
cal analysis method for transient Markovian queueing
analysis to the more general nonstationary case. The
approach is to approximate the time varying queue ar-
rival and/or service rates by constants over a small
time interval and then numerically solve the underly-
ing differential/difference equation model. The pro-
cedure is then repeated for all the time intervals of
interest. Similar approaches to extending transient nu-
merical analysis techniques to approximate the general
nonstationary behavior for Markovian systems using
uniformization [21] and Floquet’s method [22] have
recently appeared. These methods have the draw-
back that they are computationally intensive, the com-
putation required depends on the state space of the
queue and they are limited to Markovian systems. For
more general nonMarkovian queues a few approxima-
tions have been proposed namely; diffusion models,
fluid flow models, the pointwise stationary approxima-
tion [7] and the modified offered load approximation
[10, 14].

Here we are interested in identifying techniques that
can be used for the design of network controls and the
performance evaluation of communication networks.
Since many network controls and performance studies
are done on the basis of average quantities, we focus on
determining the mean transient/nonstationary behav-
ior of queueing systems. In this paper we present an
approximate fluid flow modeling method for determin-
ing the mean behavior of queues with general arrival
and service distributions. This work was motivated
in part by the results presented by Greene et al. [7]
using the Pointwise Stationary Approximation (PSA).
The PSA is obtained by computing performance mea-
sures at each time point during the period of interest
using the steady state (i.e., stationary) queueing for-
mulas with the arrival rate that corresponds to each
point in time. The instantaneous arrival rate is de-
termined from the time varying arrival process. This
instantaneous rate is then substituted into steady state
queueing formulae for the particular queueing system
under study. This process can be carried out over a
desired time interval, and for periodic arrival processes
the time average number in the system over a period
can be computed. We describe below how the PSA
method can be coupled with a fluid flow model to form
the Pointwise Stationary Fluid Flow Approximation
(PSFFA) modeling technique.

The PSFFA models the average number in the sys-
tem at a queue by a single nonlinear differential equa-
tion which is solved numerically. The PSFFA approach
derives the form of the fluid flow differential equation
from the steady state queueing relationships for the
model. The use of the approach to determine the non-
stationary behavior of general finite and infinite capac-
ity queueing systems is discussed below. The model is
shown to be reasonably accurate for the cases consid-
ered and a considerable improvement over the PSA
method. Note that we have modeled non-Markovian

queues and 1t would appear that the approach is quite
general in nature and represents a generalization of our
earlier results on fluid flow modeling [20, 19]. In fact, it
may be possible to develop the fluid flow model from
measurement data. The principal advantages of this
approach are its generality, its simplicity in modeling
queueing systems and computational efficiency. Ad-
ditionally, these methods could be used as the basic
mathematical model for developing dynamic network
control mechanisms along the lines of [16] and [9].

2 The Pointwise Stationary Fluid Flow

Approximation

Consider a single server queueing system with a
nonstationary arrival process. Let u denote the av-
erage queue service rate and A(t) denote the ensemble
average arrival rate at time ¢t. We define z(t) as the
state variable representing the ensemble average num-

ber in the system at time ¢. Let &(¢) = dxd(tt) be the

rate of change of the state variable with respect to
time. From the flow conservation principle, the rate of
change of the average number in the system is equal to
the difference between the average arrival and depar-
ture rates. Let fin(¢) and fou:(2) denote the ensemble
average flow in and flow out of the system at time ¢,
respectively. The rate of change of the state variable
can be related to the flow in and flow out by

(1) = —four(t) + fin(t) - (1)

This type of equation is commonly referred to as a
fluid flow or dynamic flow equation [1, 9, 13, 20, 4].
The flow out of the system fou:(¢) can be related to
the ensemble average utilization of the server p(t) by
Fout(t) = pp(t). If the queue waiting space is infinite,

then the flow into the system is just the arrival rate (
e, fin(t) = A(?) ) and the fluid flow model of Eqn.

1) becomes

#(t) = —pplt) + M(1) . 2)

The expression for p(t) in Eqn. (2) will depend on the
queueing system under study. In general, determining
an exact expression for p(t) is quite difficult even for
the simplest queues. Hence, an approximate method
based on the PSA method is adopted. The general idea
is to determine the values for p(¢) at particular instants
of time by a pointwise mapping from the current value
of (t) into p using the steady state queueing relation-
ships. Then the value of p thus obtained is used to
numerically solve (2) over a small time interval to get
a new (1) and the procedure is repeated for the next
time step.

Considering the infinite queue case of Eqn. (2), we
assume that at steady state (i.e., #(¢) = 0) the follow-
ing functional relationship can be determined:

= Chlp) . 3)

Additionally, we assume that the functional relation-
ship G1(p) is numerically invertible, that is p =

Gl_l(x). This results in the PSFFA model
(1) = —p(GTH(=(1))) + At) - (4)



Note that Eqn. (4) is quite general in nature — the
only requirement being that the functional relationship
(1 be determined and invertible. For many queueing
systems the function (7 is well known in closed form.
Furthermore, for some queueing systems G (p ) 18 in-
vertible and one can derive a closed form expression for
the PSFFA model as per Eqn. (4). This is however not
a requirement, as the function (G; can be determined
numerically or by curve fitting from measurements for
an existing system. One advantage of determining the
approximate expression for p(t) in (2) using the ap-
proach above is that the resulting fluid flow model 4)
i1s exact under steady state conditions. Hence, in so-
lution of the PSFFA model for the transient response,
the model will always converge to the correct steady
state value.

The PSFFA model for the infinite queue (4) can
easily be numerically solved to determine the time
varying mean behavior of the queueing system [20].
The basic solution procedure is described here. We
identify the initial condition for the state variable at
time zero as z(0) and assume the arrival rate to be
a constant over a very small time step [0, A?] (i.e.,
A(t) = A(At/2) fort € [0,At]. Then Eqn. (4) can
be numerically integrated for the value of the state
variable at the end of the time interval, #(At). Note
that in solving the fluid flow model over a small time
interval one may need to apply a numerical procedure
to find G7'(x). The state variable value at the end
of the time interval, z(At), then becomes the initial
condition for the next time step [At,2At]. We then
adjust the arrival rate for the new time step. This
procedure is repeated for each time interval in the time
horizon. For all numerical solutions to the differential
equations used in this paper, the fifth order Runge-
Kutta routine provided in MATLAB was utilized. Our
numerical results have been validated by simulations
carried out in SLAM [17] using the ensemble averaging
technique of [13]. Specifically, we conducted 10,000 in-
dependent simulation runs of the system under study
and determined average values across the 10,000 sim-
ulations at each time point to construct the ensem-
ble average curves shown. For all simulation results
three curves are shown, the middle curve represents
the estimate from simulation and the upper and lower
curves correspond to the 95% confidence intervals. As
an illustration of the PSFFA method several queueing
systems have been modeled in the following sections.

2.1 The M/G/1 Queue

Consider an M/G/1 queue where the arrival process
1s Poisson and the service time is arbitrarily distributed
with successive service times being independent and
identically distributed. The well-known Pollaczek-
Khintchine (P-K) formula [8], gives the average num-

ber in the system at steady state, x (i.e., the state
variable) as
2 2
p (1+C5)
r=p+———3. 5
2(1-p) ®

where C? is the squared coefficient of variation of the
service time distribution. Note that Eqn. (5) cor-

M/D/1 | &=—pl(x+1)— Va2 +1] +A
M/E/1 | & = —p {k(kx_-l—ll) _ w/k2x2k+_21kx+k2J + A
M/M/T | i = = (G2) +)

Table 1: M/G/1 PSFFA Models

responds to the functional relationship # = G1(p) of
FEqn. (3) and in this case it can be inverted in a closed
form to yield

e+1—/2?24+2C2c+1
p= : (6)

-2

Hence the PSFFA equation for the M/G/1 queue is
given, using Eqns. (4) and (6), as

r+1—+/e24+2C2x 4+ 1
+ A() .

1—C?

(7)

T =—pu

For a specified coefficient of variation of the service
time distribution C'? Eqn. (7) can be solved numeri-
cally for the time varying behavior of the average num-
ber in the system. Table 1 lists some special cases of
the M/G/1 PSFFA for various common service time
distributions namely: D - deterministic service times
with C? = 0; Ej - Erlang-k distributed service times
with C? = 1/k,k > 1; and M - exponentially dis-
tributed service times with C? = 1. Note that for the
special case of the M/M/1 queue, the service distribu-

tion is exponential with C? = 1 which results in the
expression for p(¢) in Eqn. (6) becoming an indetermi-
nate form of 0/0 and L’ Hospital’s rule must be applied
to obtain the expression given in Table 1.

The accuracy of the M/G/1 PSFFA model has been
studied by extensive comparison with simulation, and
for the sake of brevity we summarize typical results
here (see [23] for additional M/G/1 results and for
additional M/M/1 and M/D/1 results see our earlier
work in [20] and [19]). In order to illustrate the ac-
curacy of the PSFFA  different numerical cases were
considered, for various traffic patterns. From our nu-
merical studies (including results not given here, see
[23]) we conclude that the PSFFA model transient re-
sponse in general exceeds the simulation results for
heavy loads, on the other hand it under estimates the
simulation results for light loads.

Following the previous literature on nonstationary
analysis of communication networks [3, 6, 20], we con-
sider the nonstationary load to follow a sinusoidal
mean behavior representing the cyclic load pattern
over a fixed time interval period (e.g., day), specifi-
cally A(t) = A+ Bsin(wt + D). The effects of other
nonstationary arrival patterns are given in [23] and
[19]. Typical results for the nonstationary behavior



of the M/G/1 PSFFA models of Table 1 are given
in Figures 1, 2, and 3 for the M/D/1, M/FE5/1 and
M/M/1 models respectively. In Figures 1, 2, and 3,
the average number in the queueing system x 1s plot-
ted versus time for the nonstationary traffic A(t) =
0.5+0.4sin(0.2({+20))* with mean service rate g = 1.0
and initial condition #(0) = 0.1. Additional numerical
results for the nonstationary behavior of other M/G/1
type models are given in [23]. Tt is readily seen for Fig-
ures 1, 2, and 3 that the PSFFA model produces the
same form of response as the corresponding simulation
(i.e., the curves have the same shape) and overshoots
the magnitude of peaks and valleys in the response.
Comparing the figures it can be seen that the error
between the PSFFA model and the simulation results
increases with increasing C'2. This was found to hold
for the transient results as well. However, the model
1s reasonably accurate and has considerable computa-
tional advantage over the corresponding simulation.

2.2 The GI/M/1 Queue

In this section, we concentrate on the G/M/1 queue-
ing model where the service time is exponentially dis-
tributed and the interarrival process is generally dis-
tributed with successive interarrival times independent
and identically distributed. Let A(#) denote the inter-
arrival time distribution. Following [8] the GI/M/1
queue steady state analysis is performed by embed-
ding a Markov chain at the customer arrival instant.
The steady state distribution for the number of cus-
tomers found in the system by a new arrival for the
GI/M/1 queue is a geometric distribution:

= (1—0)o" .

The parameter ¢ 1s the unique real root in the range
0 < 0 < 1 of the transcendental equation

o= fa(s) ls=n(1-0) (8)

where f¥(s) is the Laplace-Stieltjes transform of the
interarrival time distribution A(%), that is

ﬁ@zﬁmwnzlwf%mw. (9)

Note, that in solving Eqn. (8), o = 1 is always a root
of the equation. From the standard GI/M/1 queueing
formula [8], at steady state the average number in the
system, x, is

__ A
S R (s R

In determining the PSFFA model, Eqn. (10) corre-
sponds to the needed steady state relationship (3) and
inverting (10) for p result in

p=2()(1-a(1)) - (11)

1 The sine wave traffic pattern is shifted in time by 20 units,
to allow the corresponding simulation program to warm up.

Therefore, the pointwise stationary fluid flow equation
for the GI/M/1 queueing model is

1) = —pa(D(1 =)+ MD) .  (12)

For a GI/M/1 queue, given the interarrival time distri-
bution A(t), we can use Eqns (8) and (9) to solve for
the parameter ¢, and then the PSFFA Eqn. (12) can
be solved numerically to get the time varying behav-
ior of the queueing system. Note that in some special
cases it is possible to solve (8) to get a closed form ex-
pression for ¢ and the PSFFA model of (12) (e.g., the
Eof M/, M/M/1,Ca/M/1, etc. see [23] for details).
In general one can not get a closed form for o and one
must numerically determine ¢ for each new value of
A(t). This can either be incorporated as an additional
step within the PSFFA solution procedure or ¢ can
be precomputed over a range of A and a table look up
used to find o given A in solving Eqn. (12). The exact
procedure for determining o will depend upon the in-
terarrival distribution A(t), but will normally involve
a root finding algorithm such as Laguerre’s method.
Table 2 lists the PSFFA along with the expression
for o found from (8) for several interesting cases of
the GI/M/1 queue. The D/M/1 case in Table 2 cor-
responds to a deterministic arrival process where the
interarrival time distribution A(¢) is a delta function
(i.e., dA(t) = fo(t)dt and fo(t) = 6(t — 1/A),). The

w/M/1 entry in Table 2 corresponds to an Erlang-k
interarrival distribution. The last entry in the table,
the IPP/M?/1 queue corresponds to a Interrupted
Poisson Process arrival process. The IPP is a Poisson
process whose rate is a function of a two state Markov
process, with the arrival rate in one state being zero.
The IPP is a special case of the more general Markov-
modulated Poisson Process (MMPP) [25]. The IPP is
also called a a 2-state MMPP On—Off model. The IPP
is characterized by the 2-state continuous-time Markov
chain with infinitesimal generator @) and the Poisson
arrival rate A as shown below using the notation of

[25].
—0q 01 .

Q= [ oy —0s ]and A = diag(X,0) .

Here state 1 corresponds to the ON state and state
2 denotes the OFF state. The details of the derivation
of the expression for o given in Table 2 for the D/M/1
anc[l E]k/M/l cases can be found in [8] and for the TPP
in [23].

Several different cases of the general GI/M/1
PSFFA model have been compared with simulation re-
sults in [23] for various traffic loads. Here we summa-
rize representative results. Typical results for the tran-
sient behavior of the G/M/1 PSFFA model is shown
in Figure 4 where the average number in the system
is plotted versus time. Figure 4 shows the transient
behavior of the D/M/1 queue with mean service rate

¢ = 1, initial condition #(0) = 0 and arrival rate
A = 0.4. Notice that for the deterministic arrival
process an arrival rate of A = 0.4 results in a cus-

tomer arrival every 2.5 = 1/ time units and a jump
in the number in the system by 1 at the arrival in-
stance. Hence the system in effect goes through a se-
ries of transients rather than converging to a simple



Queueing System | PSFFA Equation o
D/M/1 #(t) = —px)(1 —o) + A1) | o =ex7D

3
By /M/1 #(t) = —pa(D)(1 = o) + A1) | o = (m)

IPP/M/1 #(t) = —px(t)(1 — ) + A1) A= poFoy)

~ (= po)?+ Ot o1 +02)(u=po)toar

Table 2: GI/M/1 PSFFA Models

steady state value. One can see that the PSFFA closely
tracks the actual system behavior. The nonstationary
behavior of the G/M/1 PSFFA model is illustrated for
the By /M/1 and TPP/M/1 queues in Figures 5 and
6 respectively. Figure 5 plots the nonstationary be-
havior of the number in the system versus time for
the Ey/M/1 queue with £ = 2,4 = 1,2(0) = 0 and
A = 0.340.2sin(0.2(¢+20)). Figure 6 shows the behav-
ior of the state variable #(t) for the for the IPP/M/1
queue with g = 1.0, o1 = 0.1, 62 = 0.15,2(0) = 0 and
A =0.340.2sin(0.2(¢ + 20)). We can see the PSFFA
model results closely match the simulation results in
both Figures. The accuracy of the PSFFA model for
the GI/M/1 queue for both transient and nonstation-
ary results was found to be dependent on the param-
eter . The smaller the parameter o 1s, the greater
the accuracy of the PSFFA model. Note that in some
G/M/1 models the parameter ¢ is proportional to the
load and the accuracy decreases as the load increases.

2.3 The GI/G/1 Queue

In this section, we concentrate on the general queue-
ing model, where both the interarrival process and the
service process are arbitrarily distributed with succes-
sive interarrival times and service times independent
and identically distributed. For the GI/G/1 queueing
system determining the steady state behavior is dif-
ficult and many approximations have been proposed.
A well-known approximation for the expected number
in the system, «, in the GI/G/1 queueing system was
presented by Kramer and Lagenbach-Belz [12].

P2 (CatC)-I(Cq,Cp)

xR p+ 13
2(1—p) (%)
) e 30(CI+CT) C?2<1
with J(Cgacszap) = (1-p)(C2-1) ‘-
e CZ+ac? c?2>1
a Z

In Eqn. (13), p is the server utilization, C'? and C?
represent the squared coefficients of variation of the in-
terarrival and service processes, respectively. Here we
use (13) to approximate the steady state relationship
needed in (3) to develop the PSFFA model. Tt is gener-
ally not possible to invert (13) in closed form for p and
numerical techniques must be adopted to determine p
given z. Given a value of p = G~(z) for a particular
z, the general PSFFA model given by Eqn. (4) can be
solved over an appropriate time interval. A possibly
more accurate approach to the G/G/1 system would
be to determine the steady state functions z = G(p)

and p = G~Y(z) by curve fitting either steady state
measurement data from a system or steady state sim-
ulation results. The following algorithm is used to de-
termine the behavior of the queue over a time interval

[to,tf]Z
1. Initialization: set the current time, t, to ¢ = g
and establish the initial system occupancy (e.g.,
z(tg) = 0 ete.).
2. Numerically solve Eqn. (13), or use curve fitting
to get the value p = G71(z).

3. Solve the differential equation given by Eqn. (4)
over a small time interval A¢, approximating the
arrival rate by A = A(t + At/2), and get the new
system occupancy at time ¢t + At, X (1 + At).

4. Increment time, t =t + At. If t < ;, goto 2, else
stop.

This iteration is carried out until the desired final time
t; is reached.

As a simple example of using the general GI/G/1
approximation model given by Eqn. (13) we consider
the Ey/FEr/1 queue. For the Erlang-k distribution,
the squared coefficient of variation is 1/k (i.e., C? =
C? = 1/k). Using the G/G/1 PSFFA solution proce-
dure above, the Ej/FEy/1 model was compared with
simulation results for various traffic patterns. Some
representative results for the £y /FEy/1 PSFFA model
are shown in Figure 7, where the average number in
the Ey/Fr/1 queueing system is plotted versus time.
The results are plotted for the Fy/EL/1 queueing sys-
tem with & = 2, mean service rate g = 1.0, and initial
condition #(0) = 0. Figure 7 plots the nonstationary
behavior of the average number in the system versus
time, with the arrival rate A = 0.44-0.3sin(0.2(¢+20)).
While the PSFFA model closely tracks the actual sys-
tem behavior, it is less accurate at high loads. Addi-
tional numerical results for GG/G/1 models are in [23].

3 Modeling Finite Queues

In this section, we extend the PSFFA to model
queueing systems with finite capacity. Asin the deriva-
tion of the PSFFA model for infinite queues, we begin
with the basic flow conservation Eqn. (1), which re-
lates the rate of change of the state variable (i.e., the
average number in the system), £(¢), to the ensemble
average flow into the queue f;,(¢), and the ensemble
average flow out of the queue f,u+(t). Let p denote
the mean service rate, Py(t) the probability of zero
customers in the system at time ¢, A(¢) the ensemble
average arrival rate at time ¢ and Pp(¢) the customer



blocking probability at time ¢. Note that for a case
of a finite queue of size N, the flow into the queue
depends on the blocking that the queue offers to the
input traffic2. Specifically, the actual flow into the
queue will be fi, (1) = (1 — Pp(¢))A(t). The flow out
of the queue can be related to the probability that the
server is busy by fou:(t) = (1 — Po(?)) and Eqn. (1)
can then be written as

H(1) = —p(1 = Po(t) + (1= P()A(D) . (14)

Determining the exact expressions for Py(t) and Pg(t)
is quite difficult for even simple systems and we again
adopt a PSA type approximation method. The ap-
proach is to do a pointwise mapping from the current
value of #(t) to p using steady state results, then using
p estimate Py and Pp using steady state relationships.
The values of Py and Pp are then used in (14) which
i1s numerically solved over a small time step to get a
new value for z(¢) and the procedure is repeated for
the next time interval. Specifically, we assume the fol-
lowing steady state functional relationships can be de-
termined for the average number in the system, «, the
probability of zero customers in the system, P, and
the blocking probability, Pp:

v =Gi(p) Po=Gap) P=0Gslp).  (15)

Furthermore, we assume that the function Gi(p) is

numerically invertible such that p = G7'(x). This
results in the PSFFA model for finite queues as

i(t) = —p(l = Go(GTH(2))) + A(D)(1 — Gs(Gfl(r)()l)Gj
This single differential equation can be solved for the
time varying behavior of the queue under nonstation-
ary arrival/service processes using the identical numer-
ical approach as was adopted for the infinite PSFFA
model of section 2.

The behavior of the finite queue case PSFFA model
has been studied for a number of queueing models in
[23]. Here we show typical results for the PSFFA
model.  Figure 8 shows the transient behavior of
the average number in the system versus time for a
M/M/1/20 PSFFA model with A = 0.2, ¢ = 1.0,
and #(0) = 1. Note that the M/M/1/20 queue tran-
sient /nonstationary behavior can be determined ex-
actly by integrating the Chapman Kolmogorov equa-
tions as discussed in [?].In Figure 8 the exact results
along with the PSA results are shown. Figure 9 il-
lustrates the PSFFA nonstationary behavior for the
M/M/1/20 queue with A(?) = .4 4+ .3sin(0.2(¢ + 20)),
# = 1, and 2(0) = 0. Again the PSA and exact re-
sults are included, along with the steady state results
of using the average arrival rate (AVG). As shown in
Figures 8 and 9 the PSFFA closely follows the exact so-
lution and is a considerable improvement on the PSA.
A detailed comparion of the PSA, MOL and PSFFA
approximations for M/M/1/K queues is given in [24].
It was found that the PSFFA model is more accurate
then the PSA and MOL approximations.

2We did not have this problem in the infinite queue case.

25

___:PSFFA
«..... - Simulation

Average Number in the System

% 5 10 15 20 2 20 3 40
time

Figure 1: Comparison of the M/D/1 model

with simulation for nonstationary traffic
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Figure 2: Comparison of the M/F5/1 model
with simulation for nonstationary traffic
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Figure 3: Comparison of the M/M/1 model
with simulation for nonstationary traffic
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Figure 4: Comparison of the D/M/1 model
with simulation for low load
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Figure 5: Comparison of the E3/M/1 model

with simulation for nonstationary traffic
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Figure 7: Comparison of the F2/FE2/1 model
with simulation for nonstationary traffic
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4 Conclusions

In this paper, a relatively simple and computation-
ally non-intensive approach to compute the mean be-
havior of various nonstationary queueing systems was
presented. This approach termed the PSFFA inte-
grates the previously proposed fluid flow model and
the PSA method. In this paper, both infinite and finite
queueing systems were considered, and examples for
several queueing systems (M/G/1, G/M/1, G/G/1)
were presented. The PSFFA models were found to be
close to the results obtained by simulation, or wherever
possible, exact calculation. Further, the accuracy was
much higher using the PSFFA than using the PSA.
One of the major advantages of the PSFFA approach
(apart from the low computational overhead) is that it
is a general approach requiring very few assumptions.
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