
A Simple Approximation for Modeling Nonstationary Queues�Wei-Ping Wang, David Tipper and Sujata BanerjeeTelecommunications ProgramDepartment of Information ScienceUniversity of Pittsburgh, Pittsburgh, PA 15260Email: fwwang, tipper, sujatag@tele.pitt.eduAbstractEvaluation of the behavior of queues with nonsta-tionary arrival processes is of importance in severalapplications including communication networks. How-ever, the analysis of nonstationary queues is in generalcomputationally complex, and seldom produces closedform expressions. Thus approximation methods may bemore appropriate. In this paper, the pointwise station-ary uid ow approximation (PSFFA) for determiningthe mean queue length of nonstationary queues is pre-sented. The PSFFA combines steady state queueingresults with a simple uid ow model to develop a sin-gle nonlinear di�erential equation model of the queue.Numerical integration techniques are used to solve thePSFFA model and the method is illustrated by severalexamples. The power of this approach is that it canhandle very general queueing systems.1 IntroductionIn many real world queueing systems, includingcommunication networks, the customer arrival processis nonstationary with the arrival process parametersdepending on the time of day [6]. Communicationnetworks in particular are subject to a variety of phe-nomena that give rise to transient/nonstationary con-ditions such as load sharing, changes in routing andow control parameters, failure of links, nodes or othernetwork resources and most commonly, nonstationaryinput loads. There is empirical evidence that the userdemand for communication is nonstationary in manynetworks, varying with the time of day [3]. Further-more, as communication networks evolve to encom-pass a wide range of data rates which are utilized totransport complex tra�c types with various quality ofservice requirements, the tra�c in the network is ex-pected to be very bursty and nonstationary in nature.The relatively scarce literature that exists ontransient/non-stationary analysis can largely begrouped into four areas: i) simulation techniques ii)transient analysis techniques, iii) nonstationary anal-ysis techniques and iv) applications of the analysismethods. Note that a distinction is made betweentransient behavior and nonstationary behavior sincetransient behavior describes the system going from one�The work reported here was supported in part by a grantfrom IBM, Research Triangle Park, NC

stationary load to another, whereas, nonstationary be-havior occurs when the arrival and/or service rate varycontinuously with time.Simulationmethods observe the behavior of the sys-tem over an ensemble of statistically identical but dis-tinct independent replications. This is accomplishedby running the simulation a large number of times andaveraging the quantities of interest across an ensembleof independent runs at a particular time instant. Manysuch points may be obtained at di�erent time instantsand the behavior of the system studied as a function oftime. The principle di�culty in conducting simulationstudies of this type is the large number of independentruns that must be generated in order to get a repre-sentative ensemble from which a statistically accurateportrayal of the system behavior can be determined.Hence, very large amounts of computer run time foreven moderate sized networks are required [13].Analytical transient analyses usually involve the useof transform techniques to solve di�erential/di�erenceequation models from an embedded Markov pro-cess/chain. The result of the analysis is normally atransform expression for pi(t), the time varying prob-ability of i customers in a single queueing system. Onlyin some special simple cases are the transform expres-sions invertible to yield a closed form expression andeven then the result is usually computationally com-plex to evaluate. Hence, there has been an e�ort tonumerically determine the transient behavior ratherthan deriving a closed form expression.Numerical approaches have largely focused on twomethods: uniformization and numerical analysis tech-niques. The basic idea in uniformization is to converta �nite state space Markov process into an equivalentdiscrete time Markov chain and Poisson process [5].One then works with the state transition matrix of theMarkov Chain and a truncated version of the Poissonrandom variable to �nd the transient behavior as dis-cussed in [5]. In contrast, for the numerical methodsapproach the underlying di�erential/di�erence equa-tion model is numerically solved using standard numer-ical analysis techniques (e.g., Runge-Kutta method).The two approaches are compared in terms of compu-tational complexity and accuracy in [18]. The princi-pal disadvantage of both methods is that the compu-tational complexity grows with the queue state spaceand one is limited to considering Markovian type sys-



tems. In order to determine the transient behaviorof nonMarkovian queues, several approximate analysismethods have been proposed such as di�usion models[2], uid ow models [20, 15], and service time con-volution [11]. In [20] we have extended the numeri-cal analysis method for transient Markovian queueinganalysis to the more general nonstationary case. Theapproach is to approximate the time varying queue ar-rival and/or service rates by constants over a smalltime interval and then numerically solve the underly-ing di�erential/di�erence equation model. The pro-cedure is then repeated for all the time intervals ofinterest. Similar approaches to extending transient nu-merical analysis techniques to approximate the generalnonstationary behavior for Markovian systems usinguniformization [21] and Floquet's method [22] haverecently appeared. These methods have the draw-back that they are computationally intensive, the com-putation required depends on the state space of thequeue and they are limited to Markovian systems. Formore general nonMarkovian queues a few approxima-tions have been proposed namely; di�usion models,uid ow models, the pointwise stationary approxima-tion [7] and the modi�ed o�ered load approximation[10, 14].Here we are interested in identifying techniques thatcan be used for the design of network controls and theperformance evaluation of communication networks.Since many network controls and performance studiesare done on the basis of average quantities, we focus ondetermining the mean transient/nonstationary behav-ior of queueing systems. In this paper we present anapproximate uid ow modeling method for determin-ing the mean behavior of queues with general arrivaland service distributions. This work was motivatedin part by the results presented by Greene et al. [7]using the Pointwise Stationary Approximation (PSA).The PSA is obtained by computing performance mea-sures at each time point during the period of interestusing the steady state (i.e., stationary) queueing for-mulas with the arrival rate that corresponds to eachpoint in time. The instantaneous arrival rate is de-termined from the time varying arrival process. Thisinstantaneous rate is then substituted into steady statequeueing formulae for the particular queueing systemunder study. This process can be carried out over adesired time interval, and for periodic arrival processesthe time average number in the system over a periodcan be computed. We describe below how the PSAmethod can be coupled with a uid ow model to formthe Pointwise Stationary Fluid Flow Approximation(PSFFA) modeling technique.The PSFFA models the average number in the sys-tem at a queue by a single nonlinear di�erential equa-tion which is solved numerically. The PSFFA approachderives the form of the uid ow di�erential equationfrom the steady state queueing relationships for themodel. The use of the approach to determine the non-stationary behavior of general �nite and in�nite capac-ity queueing systems is discussed below. The model isshown to be reasonably accurate for the cases consid-ered and a considerable improvement over the PSAmethod. Note that we have modeled non-Markovian

queues and it would appear that the approach is quitegeneral in nature and represents a generalization of ourearlier results on uid ow modeling [20, 19]. In fact, itmay be possible to develop the uid ow model frommeasurement data. The principal advantages of thisapproach are its generality, its simplicity in modelingqueueing systems and computational e�ciency. Ad-ditionally, these methods could be used as the basicmathematical model for developing dynamic networkcontrol mechanisms along the lines of [16] and [9].2 The Pointwise Stationary Fluid FlowApproximationConsider a single server queueing system with anonstationary arrival process. Let � denote the av-erage queue service rate and �(t) denote the ensembleaverage arrival rate at time t. We de�ne x(t) as thestate variable representing the ensemble average num-ber in the system at time t. Let _x(t) = dx(t)dt be therate of change of the state variable with respect totime. From the ow conservation principle, the rate ofchange of the average number in the system is equal tothe di�erence between the average arrival and depar-ture rates. Let fin(t) and fout(t) denote the ensembleaverage ow in and ow out of the system at time t,respectively. The rate of change of the state variablecan be related to the ow in and ow out by_x(t) = �fout(t) + fin(t) . (1)This type of equation is commonly referred to as auid ow or dynamic ow equation [1, 9, 13, 20, 4].The ow out of the system fout(t) can be related tothe ensemble average utilization of the server �(t) byfout(t) = ��(t). If the queue waiting space is in�nite,then the ow into the system is just the arrival rate (i.e., fin(t) = �(t) ) and the uid ow model of Eqn.(1) becomes _x(t) = ���(t) + �(t) . (2)The expression for �(t) in Eqn. (2) will depend on thequeueing system under study. In general, determiningan exact expression for �(t) is quite di�cult even forthe simplest queues. Hence, an approximate methodbased on the PSA method is adopted. The general ideais to determine the values for �(t) at particular instantsof time by a pointwise mapping from the current valueof x(t) into � using the steady state queueing relation-ships. Then the value of � thus obtained is used tonumerically solve (2) over a small time interval to geta new x(t) and the procedure is repeated for the nexttime step.Considering the in�nite queue case of Eqn. (2), weassume that at steady state (i.e., _x(t) = 0) the follow-ing functional relationship can be determined:x = G1(�) . (3)Additionally, we assume that the functional relation-ship G1(�) is numerically invertible, that is � =G�11 (x). This results in the PSFFA model_x(t) = ��(G�11 (x(t))) + �(t) . (4)



Note that Eqn. (4) is quite general in nature | theonly requirement being that the functional relationshipG1 be determined and invertible. For many queueingsystems the function G1 is well known in closed form.Furthermore, for some queueing systems G1(�) is in-vertible and one can derive a closed form expression forthe PSFFA model as per Eqn. (4). This is however nota requirement, as the function G1 can be determinednumerically or by curve �tting from measurements foran existing system. One advantage of determining theapproximate expression for �(t) in (2) using the ap-proach above is that the resulting uid ow model (4)is exact under steady state conditions. Hence, in so-lution of the PSFFA model for the transient response,the model will always converge to the correct steadystate value.The PSFFA model for the in�nite queue (4) caneasily be numerically solved to determine the timevarying mean behavior of the queueing system [20].The basic solution procedure is described here. Weidentify the initial condition for the state variable attime zero as x(0) and assume the arrival rate to bea constant over a very small time step [0;�t] (i.e.,�(t) = �(�t=2) for t 2 [0;�t]. Then Eqn. (4) canbe numerically integrated for the value of the statevariable at the end of the time interval, x(�t). Notethat in solving the uid ow model over a small timeinterval one may need to apply a numerical procedureto �nd G�11 (x). The state variable value at the endof the time interval, x(�t), then becomes the initialcondition for the next time step [�t; 2�t]. We thenadjust the arrival rate for the new time step. Thisprocedure is repeated for each time interval in the timehorizon. For all numerical solutions to the di�erentialequations used in this paper, the �fth order Runge-Kutta routine provided in MATLAB was utilized. Ournumerical results have been validated by simulationscarried out in SLAM [17] using the ensemble averagingtechnique of [13]. Speci�cally, we conducted 10,000 in-dependent simulation runs of the system under studyand determined average values across the 10,000 sim-ulations at each time point to construct the ensem-ble average curves shown. For all simulation resultsthree curves are shown, the middle curve representsthe estimate from simulation and the upper and lowercurves correspond to the 95% con�dence intervals. Asan illustration of the PSFFA method several queueingsystems have been modeled in the following sections.2.1 The M/G/1 QueueConsider an M/G/1 queue where the arrival processis Poisson and the service time is arbitrarily distributedwith successive service times being independent andidentically distributed. The well-known Pollaczek-Khintchine (P-K) formula [8], gives the average num-ber in the system at steady state, x (i.e., the statevariable) as: x = �+ �2(1 + C2s )2(1� �) . (5)where C2s is the squared coe�cient of variation of theservice time distribution. Note that Eqn. (5) cor-

M/D/1 _x = �� �(x + 1)�px2 + 1� + �M/Ek/1 _x = �� hk(x+1)k�1 � pk2x2+2kx+k2k�1 i+ �M/M/1 _x = ��� xx+1�+ �Table 1: M/G/1 PSFFA Modelsresponds to the functional relationship x = G1(�) ofEqn. (3) and in this case it can be inverted in a closedform to yield� = x+ 1�px2 + 2C2sx+ 11�C2s . (6)Hence the PSFFA equation for the M/G/1 queue isgiven, using Eqns. (4) and (6), as_x = ��"x+ 1�px2 + 2C2sx+ 11� C2s # + �(t) . (7)For a speci�ed coe�cient of variation of the servicetime distribution C2s Eqn. (7) can be solved numeri-cally for the time varying behavior of the average num-ber in the system. Table 1 lists some special cases ofthe M/G/1 PSFFA for various common service timedistributions namely: D - deterministic service timeswith C2s = 0; Ek - Erlang-k distributed service timeswith C2s = 1=k; k � 1; and M - exponentially dis-tributed service times with C2s = 1. Note that for thespecial case of the M/M/1 queue, the service distribu-tion is exponential with C2s = 1 which results in theexpression for �(t) in Eqn. (6) becoming an indetermi-nate form of 0=0 and L'Hospital's rule must be appliedto obtain the expression given in Table 1.The accuracy of the M/G/1 PSFFA model has beenstudied by extensive comparison with simulation, andfor the sake of brevity we summarize typical resultshere (see [23] for additional M/G/1 results and foradditional M/M/1 and M/D/1 results see our earlierwork in [20] and [19]). In order to illustrate the ac-curacy of the PSFFA, di�erent numerical cases wereconsidered, for various tra�c patterns. From our nu-merical studies (including results not given here, see[23]) we conclude that the PSFFA model transient re-sponse in general exceeds the simulation results forheavy loads, on the other hand it under estimates thesimulation results for light loads.Following the previous literature on nonstationaryanalysis of communication networks [3, 6, 20], we con-sider the nonstationary load to follow a sinusoidalmean behavior representing the cyclic load patternover a �xed time interval period (e.g., day), speci�-cally �(t) = A + Bsin(wt + D). The e�ects of othernonstationary arrival patterns are given in [23] and[19]. Typical results for the nonstationary behavior



of the M=G=1 PSFFA models of Table 1 are givenin Figures 1, 2, and 3 for the M=D=1;M=E2=1 andM=M=1 models respectively. In Figures 1, 2, and 3,the average number in the queueing system x is plot-ted versus time for the nonstationary tra�c �(t) =0:5+0:4 sin(0:2(t+20))1 with mean service rate � = 1:0and initial condition x(0) = 0:1. Additional numericalresults for the nonstationary behavior of other M/G/1type models are given in [23]. It is readily seen for Fig-ures 1, 2, and 3 that the PSFFA model produces thesame form of response as the corresponding simulation(i.e., the curves have the same shape) and overshootsthe magnitude of peaks and valleys in the response.Comparing the �gures it can be seen that the errorbetween the PSFFA model and the simulation resultsincreases with increasing C2s . This was found to holdfor the transient results as well. However, the modelis reasonably accurate and has considerable computa-tional advantage over the corresponding simulation.2.2 The GI/M/1 QueueIn this section, we concentrate on the G/M/1 queue-ing model where the service time is exponentially dis-tributed and the interarrival process is generally dis-tributed with successive interarrival times independentand identically distributed. Let A(t) denote the inter-arrival time distribution. Following [8] the GI/M/1queue steady state analysis is performed by embed-ding a Markov chain at the customer arrival instant.The steady state distribution for the number of cus-tomers found in the system by a new arrival for theGI/M/1 queue is a geometric distribution:�n = (1� �)�n .The parameter � is the unique real root in the range0 < � < 1 of the transcendental equation� = f�a (s) js=�(1��) (8)where f�a (s) is the Laplace{Stieltjes transform of theinterarrival time distribution A(t), that isf�a (s) = L�(A(t)) = Z 10 e�stdA(t) . (9)Note, that in solving Eqn. (8), � = 1 is always a rootof the equation. From the standard GI/M/1 queueingformula [8], at steady state the average number in thesystem, x, is x = ��(1� �) = �(1 � �) . (10)In determining the PSFFA model, Eqn. (10) corre-sponds to the needed steady state relationship (3) andinverting (10) for � result in� = x(t)(1� �(t)) . (11)1The sine wave tra�c pattern is shifted in time by 20 units,to allow the corresponding simulation program to warm up.

Therefore, the pointwise stationary uid ow equationfor the GI/M/1 queueing model is_x(t) = ��x(t)(1 � �(t)) + �(t) . (12)For a GI/M/1 queue, given the interarrival time distri-bution A(t), we can use Eqns (8) and (9) to solve forthe parameter �, and then the PSFFA Eqn. (12) canbe solved numerically to get the time varying behav-ior of the queueing system. Note that in some specialcases it is possible to solve (8) to get a closed form ex-pression for � and the PSFFA model of (12) (e.g., theE2=M=1;M=M=1; C2=M=1, etc. see [23] for details).In general one can not get a closed form for � and onemust numerically determine � for each new value of�(t). This can either be incorporated as an additionalstep within the PSFFA solution procedure or � canbe precomputed over a range of � and a table look upused to �nd � given � in solving Eqn. (12). The exactprocedure for determining � will depend upon the in-terarrival distribution A(t), but will normally involvea root �nding algorithm such as Laguerre's method.Table 2 lists the PSFFA along with the expressionfor � found from (8) for several interesting cases ofthe GI/M/1 queue. The D=M=1 case in Table 2 cor-responds to a deterministic arrival process where theinterarrival time distribution A(t) is a delta function(i.e., dA(t) = fa(t)dt and fa(t) = �(t � 1=�),). TheEk=M=1 entry in Table 2 corresponds to an Erlang-kinterarrival distribution. The last entry in the table,the IPP=M?=1 queue corresponds to a InterruptedPoisson Process arrival process. The IPP is a Poissonprocess whose rate is a function of a two state Markovprocess, with the arrival rate in one state being zero.The IPP is a special case of the more general Markov-modulated Poisson Process (MMPP) [25]. The IPP isalso called a a 2-state MMPP On{O� model. The IPPis characterized by the 2-state continuous-timeMarkovchain with in�nitesimal generator Q and the Poissonarrival rate � as shown below using the notation of[25].Q = � ��1 �1�2 ��2 �and � = diag(�; 0) .Here state 1 corresponds to the ON state and state2 denotes the OFF state. The details of the derivationof the expression for � given in Table 2 for the D=M=1and Ek=M=1 cases can be found in [8] and for the IPPin [23].Several di�erent cases of the general GI/M/1PSFFA model have been compared with simulation re-sults in [23] for various tra�c loads. Here we summa-rize representative results. Typical results for the tran-sient behavior of the G/M/1 PSFFA model is shownin Figure 4 where the average number in the systemis plotted versus time. Figure 4 shows the transientbehavior of the D/M/1 queue with mean service rate� = 1, initial condition x(0) = 0 and arrival rate� = 0:4. Notice that for the deterministic arrivalprocess an arrival rate of � = 0:4 results in a cus-tomer arrival every 2.5 = 1=� time units and a jumpin the number in the system by 1 at the arrival in-stance. Hence the system in e�ect goes through a se-ries of transients rather than converging to a simple



Queueing System PSFFA Equation �D/M/1 _x(t) = ��x(t)(1 � �) + �(t) � = e�� (��1)Ek/M/1 _x(t) = ��x(t)(1 � �) + �(t) � = � k�k�+�����kIPP/M/1 _x(t) = ��x(t)(1 � �) + �(t) � = �(����+�2)(����)2+(�+�1+�2)(����)+�2�Table 2: GI/M/1 PSFFA Modelssteady state value. One can see that the PSFFA closelytracks the actual system behavior. The nonstationarybehavior of the G/M/1 PSFFA model is illustrated forthe Ek=M=1 and IPP=M=1 queues in Figures 5 and6 respectively. Figure 5 plots the nonstationary be-havior of the number in the system versus time forthe Ek=M=1 queue with k = 2; � = 1; x(0) = 0 and� = 0:3+0:2 sin(0:2(t+20)). Figure 6 shows the behav-ior of the state variable x(t) for the for the IPP/M/1queue with � = 1:0, �1 = 0:1, �2 = 0:15; x(0) = 0 and� = 0:3 + 0:2 sin(0:2(t+ 20)). We can see the PSFFAmodel results closely match the simulation results inboth Figures. The accuracy of the PSFFA model forthe GI/M/1 queue for both transient and nonstation-ary results was found to be dependent on the param-eter �. The smaller the parameter � is, the greaterthe accuracy of the PSFFA model. Note that in someG/M/1 models the parameter � is proportional to theload and the accuracy decreases as the load increases.2.3 The GI/G/1 QueueIn this section, we concentrate on the general queue-ing model, where both the interarrival process and theservice process are arbitrarily distributed with succes-sive interarrival times and service times independentand identically distributed. For the GI/G/1 queueingsystem determining the steady state behavior is dif-�cult and many approximations have been proposed.A well-known approximation for the expected numberin the system, x, in the GI/G/1 queueing system waspresented by Kramer and Lagenbach-Belz [12].x � � + �2 � (C2a +C2s ) � J(C2a; C2s ; �)2(1� �) (13)with J(C2a; C2s ; �) = 8<: e� 2(1��)(1�C2a )23�(C2a+C2s ) C2a � 1e� (1��)(C2a�1)C2a+4C2s C2a � 1 .In Eqn. (13), � is the server utilization, C2a and C2srepresent the squared coe�cients of variation of the in-terarrival and service processes, respectively. Here weuse (13) to approximate the steady state relationshipneeded in (3) to develop the PSFFA model. It is gener-ally not possible to invert (13) in closed form for � andnumerical techniques must be adopted to determine �given x. Given a value of � = G�1(x) for a particularx, the general PSFFA model given by Eqn. (4) can besolved over an appropriate time interval. A possiblymore accurate approach to the G/G/1 system wouldbe to determine the steady state functions x = G(�)

and � = G�1(x) by curve �tting either steady statemeasurement data from a system or steady state sim-ulation results. The following algorithm is used to de-termine the behavior of the queue over a time interval[t0,tf ]:1. Initialization: set the current time, t, to t = t0and establish the initial system occupancy (e.g.,x(t0) = 0 etc.).2. Numerically solve Eqn. (13), or use curve �ttingto get the value � = G�1(x).3. Solve the di�erential equation given by Eqn. (4)over a small time interval �t, approximating thearrival rate by � = �(t+�t=2), and get the newsystem occupancy at time t+�t, X(t +�t).4. Increment time, t = t+�t. If t < tf , goto 2, elsestop.This iteration is carried out until the desired �nal timetf is reached.As a simple example of using the general GI/G/1approximation model given by Eqn. (13) we considerthe Ek=Ek=1 queue. For the Erlang-k distribution,the squared coe�cient of variation is 1=k (i.e., C2a =C2s = 1=k). Using the G/G/1 PSFFA solution proce-dure above, the Ek=Ek=1 model was compared withsimulation results for various tra�c patterns. Somerepresentative results for the Ek=Ek=1 PSFFA modelare shown in Figure 7, where the average number inthe Ek/Ek/1 queueing system is plotted versus time.The results are plotted for the Ek/Ek/1 queueing sys-tem with k = 2, mean service rate � = 1:0, and initialcondition x(0) = 0. Figure 7 plots the nonstationarybehavior of the average number in the system versustime, with the arrival rate � = 0:4+0:3 sin(0:2(t+20)).While the PSFFA model closely tracks the actual sys-tem behavior, it is less accurate at high loads. Addi-tional numerical results for G=G=1 models are in [23].3 Modeling Finite QueuesIn this section, we extend the PSFFA to modelqueueing systems with �nite capacity. As in the deriva-tion of the PSFFA model for in�nite queues, we beginwith the basic ow conservation Eqn. (1), which re-lates the rate of change of the state variable (i.e., theaverage number in the system), _x(t), to the ensembleaverage ow into the queue fin(t), and the ensembleaverage ow out of the queue fout(t). Let � denotethe mean service rate, P0(t) the probability of zerocustomers in the system at time t, �(t) the ensembleaverage arrival rate at time t and PB(t) the customer



blocking probability at time t. Note that for a caseof a �nite queue of size N , the ow into the queuedepends on the blocking that the queue o�ers to theinput tra�c2. Speci�cally, the actual ow into thequeue will be fin(t) = (1 � PB(t))�(t). The ow outof the queue can be related to the probability that theserver is busy by fout(t) = �(1 � P0(t)) and Eqn. (1)can then be written as_x(t) = ��(1� P0(t)) + (1� PB(t))�(t) . (14)Determining the exact expressions for P0(t) and PB(t)is quite di�cult for even simple systems and we againadopt a PSA type approximation method. The ap-proach is to do a pointwise mapping from the currentvalue of x(t) to � using steady state results, then using� estimate P0 and PB using steady state relationships.The values of P0 and PB are then used in (14) whichis numerically solved over a small time step to get anew value for x(t) and the procedure is repeated forthe next time interval. Speci�cally, we assume the fol-lowing steady state functional relationships can be de-termined for the average number in the system, x, theprobability of zero customers in the system, P0, andthe blocking probability, PB:x = G1(�) P0 = G2(�) PB = G3(�) . (15)Furthermore, we assume that the function G1(�) isnumerically invertible such that � = G�11 (x). Thisresults in the PSFFA model for �nite queues as_x(t) = ��(1� G2(G�11 (x))) + �(t)(1 �G3(G�11 (x))) .(16)This single di�erential equation can be solved for thetime varying behavior of the queue under nonstation-ary arrival/service processes using the identical numer-ical approach as was adopted for the in�nite PSFFAmodel of section 2.The behavior of the �nite queue case PSFFA modelhas been studied for a number of queueing models in[23]. Here we show typical results for the PSFFAmodel. Figure 8 shows the transient behavior ofthe average number in the system versus time for aM/M/1/20 PSFFA model with � = 0:2, � = 1:0,and x(0) = 1. Note that the M/M/1/20 queue tran-sient/nonstationary behavior can be determined ex-actly by integrating the Chapman Kolmogorov equa-tions as discussed in [?].In Figure 8 the exact resultsalong with the PSA results are shown. Figure 9 il-lustrates the PSFFA nonstationary behavior for theM/M/1/20 queue with �(t) = :4 + :3sin(0:2(t+ 20)),� = 1, and x(0) = 0. Again the PSA and exact re-sults are included, along with the steady state resultsof using the average arrival rate (AVG). As shown inFigures 8 and 9 the PSFFA closely follows the exact so-lution and is a considerable improvement on the PSA.A detailed comparion of the PSA, MOL and PSFFAapproximations for M/M/1/K queues is given in [24].It was found that the PSFFA model is more accuratethen the PSA and MOL approximations.2We did not have this problem in the in�nite queue case.
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Figure 1: Comparison of the M/D/1 modelwith simulation for nonstationary tra�c
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Figure 2: Comparison of the M/E2/1 modelwith simulation for nonstationary tra�c
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Figure 3: Comparison of the M/M/1 modelwith simulation for nonstationary tra�c
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Figure 4: Comparison of the D/M/1 modelwith simulation for low load
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Figure 5: Comparison of the E2/M/1 modelwith simulation for nonstationary tra�c
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Figure 6: Comparison of the IPP/M/1 modelwith simulation for nonstationary tra�c
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Figure 7: Comparison of the E2/E2/1 modelwith simulation for nonstationary tra�c
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Figure 8: Comparison of the M/M/1/20model transient behavior with exact solution
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Figure 9: Comparison of the M/M/1/20model nonstationary behavior with exact so-lution
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