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Abstract

Heating, ventilation, and air conditioning (HVAC) is a 
major energy consumer in buildings, and. implementing 
demand driven HVAC operations is a way to reduce 
HVAC related energy consumption. This relies on the 
availability of occupancy information, which determines 
peak/off-hour modes that impact cooling/heating loads of 
HVAC systems. This research proposes an occupancy 
estimation model that is built on a combination of non-
intrusive sensors that can detect indoor temperature, 
humidity, CO2 concentration, light, sound and motion. 
Sensor data is processed in real time using a radial basis 
function (RBF) neural network to estimate the number of 
occupants. Field tests carried out in two shared lab spaces 
for 20 consecutive days report an overall detection rate of 
87.62% for self-estimation and 64.83% for cross-
estimation. The results indicate the ability of the proposed 
system to monitor the occupancy information of multi-
occupancy spaces in real time, supporting demand driven 
HVAC operations.

1. INTRODUCTION

Due to the rising energy demand and diminishing 
energy resources, sustainability and energy conservation 
is becoming an increasingly important topic. In the U.S., 
buildings account for 40% of total energy consumption, 
48% of which is consumed by heating, ventilation, and air 
conditioning (HVAC) systems (DOE 2011). Given the 
fact that in the U.S., new construction represents only less 
than three percent of the existing building stock in any 

given year (Shelley and Roessner 2004) and that buildings 
are generally in operation for 30 to 50 years, there is great
potential of energy savings through improving the 
operations of HVAC systems in existing buildings. This 
has attracted considerable attention in the academia and 
given rise to active research on this topic. The Building 
Level Energy Management System (BLEMS) project is 
such a research effort. The objective of this DOE 
sponsored project is to study the behavior of buildings 
and that of building occupants, and to proactively and 
reactively optimize the building energy consumption 
while responding to comfort preferences of the occupants.
The study reported in this paper was completed within the 
scope of the BLEMS project as a reactive energy-saving 
measure, which has a focus on estimating the occupancy 
to support the implementation of demand driven HVAC 
operations.

In traditional HVAC operations, the ventilation and 
conditioning demand is assumed to be at the peak based 
on maximum occupancy during operational hours, and the 
temperature and humidity are used as the sole inputs in 
adjusting the operations, which often results in waste of 
HVAC related energy consumption (Agarwal et al. 2010).
Even with improved HVAC systems that run at different 
capacities at different times of the day, e.g. minimum 
capacity at off hours, energy can still be wasted e.g. by 
over cooling unoccupied spaces. The idea of demand 
driven HVAC operations is therefore proposed and 
researched in the academia as a way to address such waste 
of energy. Demand driven HVAC operations replace the 
assumption that the ventilation and conditioning demand 
is at the peak with the actual demand based on real-time 
sensing of the environment. Previous research has proven 
that the application of demand driven HVAC operations 
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could save up to 56% of HVAC related energy 
consumption (Sun et al. 2011). The actual ventilation and 
conditioning demands depend on various factors that 
should be input into HVAC systems for energy-efficient 
operations, among which fine-grained occupancy 
information is a key input (Agarwal et al. 2010).
Occupancy information enables timely reaction to 
changing ventilation and conditioning demands, and 
minimizes energy consumption without compromising the 
occupant comfort.

Due to the importance of the occupancy information, a 
number of occupancy detection systems have been 
proposed in previous research, which reported consequent 
HVAC energy savings between 10% and 56% based on 
simulations (Erickson et al. 2009; Erickson and Cerpa 
2010; Sun et al. 2011; Tachwali et al. 2007; Warren and 
Harper 1991). However, these occupancy detection 
systems have certain limitations with respect to their 
accuracy, cost, intrusiveness, and privacy, and therefore 
bear potentials for improvement. This paper proposes an 
occupancy estimation model that has the following 
features: (1) affordable. This study uses a number of off-
the-shelf low-cost sensors; (2) high-resolution. The 
proposed model can count the number of occupants at the 
room level with a sample rate of one reading per minute; 
(3) accurate,. The proposed model can achieve an 
accuracy of around 85%; and (4) non-intrusive. The 
system causes little intrusion to either the buildings or the 
occupants. 

2. PREVIOUS STUDIES 

Potential benefits of energy savings by implementing 
demand driven HVAC operations have motivated 
research efforts in providing effective occupancy 
detection solutions. CO2 sensors have been widely used 
for this purpose (Leephakpreeda et al. 2001; Nielsen and 
Drivsholm 2010; Sun et al. 2011), as a larger occupancy 
in a space usually results in higher CO2 concentrations. 
However, it usually takes some time for the CO2

concentration to build up, and the CO2 concentration is 
affected by not only occupancy but also other factors such 
as passive ventilation (e.g. through open windows). Such 
limitations indicate that the CO2 sensor based systems are 
unable to provide accurate and real-time occupancy 
information by themselves. Researchers have also 
proposed various video based systems (Benezeth et al. 

2011; Erickson et al. 2009; Wang et al. 2010), which 
detect the occupancy in a monitored space by using 
image-processing techniques. These video based systems 
generally suffer from the requirement for line of sight in 
the monitored spaces, which compromises the 
applicability of these systems especially in heavily-
partitioned spaces. Moreover, the use of video cameras 
usually requires large image storage space, and can cause 
privacy concerns among users. 

To overcome these limitations, researchers have 
proposed to use a combination of various ambient sensors. 
Agarwal et al. (2010) used a magnetic reed switch door 
sensor and a passive infrared (PIR) sensor for occupancy 
detection, which could report the actual occupancy most 
of the time. Their occupancy detection algorithm was 
only applicable for single-occupancy offices, and was 
built on an assumption that occupants always keep their 
doors open when they are in the offices or being 
somewhere nearby. Meyn et al. (2009) used 
measurements from cameras, PIRs, and CO2 sensors, as 
well as historical data of building utilization, to estimate 
the building occupancy level. The estimation was done by 
solving a receding-horizon convex optimization problem. 
The reported accuracy was 89%. The system was not able 
to estimate the number of occupants at the room level, 
and the error tended to accrue over time. Henze et al. 
(2006) proposed an occupancy detection system that 
comprised of three PIRs and one telephone sensor for 
each room and relied on the belief networks algorithm. 
The system could detect if any occupant was present with 
an accuracy of 76%, but was not able to count the number 
of occupants. Dong et al. (2010) proposed a system that 
estimated the occupancy of a space by sensing the CO2

concentration, acoustics, and motion in the space. Field 
tests were carried out in two rooms, with three algorithms 
including supporting vector machine, artificial neural 
network, and hidden Markov model. All algorithms 
yielded an accuracy of around 75%. The authors indicated 
that the reported accuracy can be further improved. 
Hailemariam et al. (2011) built an occupancy detection 
system that used light sensors, motion sensors, CO2

sensors, and sound sensors. Decision trees algorithm was 
used to estimate the occupancy of cubicles in an office. 
An accuracy of 98.4% was achieved using the motion 
sensor alone, and a decline in the accuracy was reported 
when other sensors were integrated. The system was not 
configured to count the number of occupants. Melfi et al. 
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(2011) proposed a novel occupancy detection system that 
used existing IT infrastructure. Occupants’ MAC and IP 
addresses, and mouse and keyboard activities are 
monitored for occupancy detection. Accuracies reported 
in field tests done in two buildings were around 80% at 
the building level and 40% at the floor level. The system 
was not able to detect the occupants that do not use a
computer. Hutchins et al. (2007) proposed an approach 
that could recover missing or corrupted sensor data in 
occupancy estimation. The proposed approach consisted 
of an inhomogeneous Poison process and a hidden 
Markov process. The system was not validated with field 
tests, and was only applicable at the building level.

3. METHODOLOGY

Radial basis function (RBF) neural network is a 
multidimensional spatial interpolation approach in a
neural network, which is based on the local response 
feature of biological neurons. RBF neural network has a 
simple and direct training process, as well as rapid 
learning convergence rates. It has an efficient uniform 
approximation property for arbitrary, non-linear functions 
that make the RBF neural network desirable for the 
application in this study.

The study is conducted for fitting the estimated 
occupancy and the ground truth. The data is dispersed, 
and groups of such data 
( , )( 1, 2,... ; 1, 2,... )ij ix y i m j n  are obtained from the 

BLEMS sensors. Then a suitable and appropriate analytic 
expression ( , )( 1, 2,.. )jy f x c j n  is used to reflect the 

relationship between ( 1,2,.. )jx j n  and y , which is 

used to “optimally” approximate the sensor data or fit the 
ground truth data. The most common way to solve the
analytic expression is utilizing parameter selection. For
this study, the relationship between the sensor data and 
occupancy is considered as non-linear, which makes it 
applicable and necessary to apply the RBF neural network 
to solve the relationship expression 

( , )( 1, 2,.. )jy f x c j n  .between sensor data and 

occupancy ground truth,

RBF neural network is a type of feedforward neural 
network. The network structure is similar to the 
multilayer feedforward network, consisting of three layers: 
the input layer composed of source sensor nodes, the 

hidden layer with local responding function, and the 
output layer for response to input. The RBF neural 
network uses the radial basis function as the basis for
hidden units to establish the hidden layers, which are used 
to convert low-dimensional inputs to high-dimensional 
inputs. In this way, a linear inseparable problem in low-
dimensional space can be made separable in high-
dimensional space.

The neuron model of RBF neural network is shown in 
Figure 1. In this model, the node activation function 
applies radial basis function, which is always defined as 
function of Euclidean distance from one arbitrary point to 
another. Here x is the input vector, with the w as the 
weight vector; while y is the output vector.

Figure 1. Neuron model of the RBF neural network.

It can be seen in figure 1 that the activation function 
of the RBF neural network considers the distances 

dist between the input vector and the weight vector as 

independent variables. The general expression of the RBF 
neural network is:

� � 2|| |||| || distR dist e� 

In figure 1, b is a threshold used for adjusting the 
sensitivity of neurons. As the distances between the 
weight vector and the input vector reduce, the output of 
the network will increase. When the weight vector and the 
input vector converge, the output will equal to 1. 
Therefore, applying the radial basis neuron and the linear 
neuron can establish a generalized regression neural 
network for function approximation.

As aforementioned, the general structure of the RBF 
neural network contains an input layer, a hidden layer, 
and an output layer, as shown in Figure 2. The input layer 
is responsible for transmitting signals. The hidden layer 
and the output layer have different roles in network, so 
their learning strategies differ from each other. The 
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hidden layer adjusts the parameters of the activation 
function at a relatively low speed for non-linear 
optimization, while the output layer adjusts the linear 
weights at a high learning speed for linear optimization.

…
… …

Input Layer Hidden Layer Output layer

Figure 2. General structure of a RBF neural network.

The RBF neural network has three types of parameters 
to solve: the basis function centers, the variances, and the 
weights between the hidden layer and the output layer. 
The basis function centers are always calculated based by 
the K-means clustering approach: first of all, h training 
samples are randomly selected as the clustering 

centers � �1,2,3...,ic i h . Then group these samples 

according to the nearest neighbor rule, applying the 
Euclidean distance between px and ic to assign px to 

different groups � �1,2,...,p p P-  . The last step is to 

readjust the clustering centers, by calculating the mean of 
training samples in each clustering group p- . If the new 

clustering center ic stays constant, it can be considered as 

the final basis function center. The second type of 
parameter is the Variances. As the Gaussian function is 
utilized as the basis function of the RBF neural network, 
variances can be generated by the following equation: 

max , 1, 2,...,
2i

c i h
h

V   , in which maxc is the 

maximum distance between the clustering centers. The 
third type of parameter is the Weights between the hidden 
layer and the output layer, reachable by the least square 

method: 2
2

max

exp( || || )p i
hw x c

c
 �

where 1, 2,... ; 1, 2,3,...i h p P  

In this study, Matlab was utilized to realize the RBF 
neural network. Three steps were followed The first step 
was to design an approximate radial basis function 
network, this is a trial process of adding the number of 
neurons in a hidden layer until the output error satisfies 
the preset value; The next step is to develop an exact 
radial basis function network based on the input vectors 
and expansion velocity, compared to the first step, this 
step requires a quick and error free generation of radial 
basis function; and the last step is to calculate the returned 
matrix from the input matrix handled by the radial basis 
function, compare it with ground truth and finally acquire 
the error rate.

4. TEST SETUP

BLEMS sensor nodes are built and used in the tests 
(Figure 3). Each sensor node consists of an Arduino Black 
Widow stand-alone single-board microcontroller 
computer with integrated support for 802.11 WiFi. 
Mounted close to the door at a height of about 1.5 m, each
sensor node includes the following sensors: a light sensor, 
a sound sensor, a motion sensor, a CO2 sensor, a 
temperature sensor, a relative humidity sensor, and a PIR 
sensor that detects objects as they pass through the door. 
A script is written and uploaded to the sensor node using 
Arduino to configure the microcontroller to process the 
raw data. The processed data reported by the sensor node 
include 11 variables, which can be categorized into three 
types: instant variables that show the instant output of a 
sensor at the time the data is queried, including lighting, 
sound, motion, CO2 concentration, temperature, relative 
humidity, and reflector (infrared); count variables that 
sum the number of times a sensor's output changes in the 
last minute, including motion count and reflector count;
average variables that show the average value of a 
sensor's output over a certain period of time, including 
sound average (5 seconds) and long sound average (5 
minutes). The data is automatically queried every one 
minute, time stamped, and stored in an SQL database.
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Figure 3. BLEMS sensor node.    

 

Figure 4. Mobile device used to collect occupancy ground truth.                  

 

Figure 5. BLEMS test bed layout.

The BLEMS project uses a three-story educational 
building at the University of Southern California as the 
test bed. A total of 50 BLEMS sensors are planned to be 
deployed in the building. Figure 5 shows the deployment 
on the third floor. In order to train the occupancy 
estimation model to be used in the test bed building, this 
study installed two sensor nodes in two multi-occupancy 
labs and collected sensor data and occupancy data for a 
period of 20 days. Lab 1 has an area of about 40 m2, and 
is shared by 5 PhD students. The lab hosts meetings at 
times, which can involve up to 10 attendees. Lab 2 has a 
similar size and is shared by up to 8 PhD students. A 
touch-screen mobile device is mounted close to the door 

in both labs to collect the ground truth of the occupancy
(Figure 4). During the test period, all occupants are told to 
log in or out when they enter or leave the lab using the 
mobile device. The ground truth data is then sent to and 
stored in the same database where the sensor data resides. 
In lab 2, a camera is also installed to validate the collected 
ground truth by manual random spot-checking.

The sensor data was collected for 20 consecutive days, 
starting from 00:00 AM, Sep. 12th to 00:00 AM, Oct. 1st. 
At a one-minute sampling rate, after excluding all 
corrupted data points due to wireless connection breaks, a 
total of 25,898 data points were collected in both labs. 
The data is divided into four groups (G1, G2, G3, G4) as 
shown in Table 1.

Four tests are carried out using different groups of 
sensor data (Table 2). In order to implement self-
estimation, in tests 1 and 2, the model is trained, validated 
and tested using sensor data from the same lab. In order to 
implement cross-estimation, in tests 3 and 4, the model is 
trained and validated using sensor data from one lab, and 
tested using the sensor data from the other lab.

Period of time Lab 1 Lab 2
Sep 12th – Sep 21st 12916 (G1) 12934 (G3)
Sep 22nd – Oct 1st 12982 (G2) 12964 (G4)

Table 1: Group of sensor data.

Training + Validation Testing
Test 1 G1 G2
Test 2 G3 G4
Test 3 G1,G2 G3,G4
Test 4 G3,G4 G1,G2

Table 2: Test design.

5. TEST RESULTS

Two parameters are defined to evaluate the results. 
The first one is the root mean square error (RMSE) of the 
results, which measures the deviation of the estimated 
occupancy from the actual occupancy. The second 
parameter is the error rate, which shows the accuracy of 
all validated data. The concept of tolerance is also 
introduced. Tolerance measures the tolerated error 
between the estimated and the actual occupancy. 
Tolerance is necessary in that for the purpose of driving 
HVAC systems, a small error can be acceptable, and the 
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HVAC systems do not need to be adjusted every time the 
occupancy slightly changes. Due to the initialization 
random feature, for each step, five experiments were 
carried out and the best one was chosen for analysis. The 
following results are all based on tolerance =1.

5.1. Self-estimation

Test 1 adopted all the data from lab 1 for training, 
validation, and testing. The test yielded an RMSE of 
1.202 and error rate of 11.26%, or an accuracy of 88.74%. 
Test 2 used the data from lab 2 and resulted in an
accuracy of 86.50%, with an RMSE of 1.499. To better 
compare the estimated output and the ground truth to 
visualize the differences between them, both the estimated 
occupancy (rounded) data and the ground truth occupancy
data are depicted in Figure 6 (test 1) and Figure 7 (test 2).
The test results also show that the events when the space 
switched from occupied to unoccupied or vice versa could 
be detected by the model 82.35% of the time and 70.13% 
of the time for test 1 and test 2, respectively.

Figure 6. Estimation result for test 1.

Figure 7. Estimation result for test 2.

5.2. Cross Estimation

Tests 3 and 4 are cross estimation results, where data 
from one lab is applied for training and validation, and 
data from the other lab is used for testing. Test 3 utilized 
the model, which was trained using the data from lab 1 to 
estimate the occupancy in lab 2. The RMSE was 2.310 
and the error rate was 33.57%, or an accuracy of 66.43%. 
Test 4 utilized the model which was trained using the data 
from lab 2 to estimate the occupancy in lab 1. The error 
rate was 36.77%, and the RMSE was 2.743. To better 
compare the estimated output and the ground truth data to 
visualize the differences between them, both estimated 
occupancy (rounded) data and ground truth occupancy 
data are shown on Figure 8 (test 3) and Figure 9 (test 4).
The test results also show that the events when the space 
switched from occupied to unoccupied or vice versa could 
be detected by the model 71.21% of the time and 77.04% 
of the time for test 3 and test 4, respectively.

Figure 8. Estimation result for test 3.

Figure 9. Estimation result for test 4.
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6. DISCUSSION AND CONCLUSIONS

The self-estimation test results show that the proposed 
model can yield accurate estimates of the number of 
occupants (tolerance=1) 88.74% and 86.50% of the time 
for lab 1 and lab 2, respectively. The tolerance is 
necessary because the estimated occupancy is given by 
the model in a decimal format, which needs to be rounded 
to compare with the ground truth. The rounding process 
causes additional errors and need to be offset by the 
tolerance. In addition, when used for demand driven 
HVAC operations, a certain level of error is fairly 
acceptable, as the HVAC systems do not need to be so 
sensitive that they respond to any slight changes in 
occupancy. Instead, adding or subtracting one occupant in 
a room shouldn't cause significant changes in HVAC 
operations, unless the room switches form unoccupied to 
occupied or vice versa. 

The cross-estimation tests yield an accuracy of 
66.43% when the model is trained and validated in lab 1 
and tested in lab 2, or 63.23% the other way round. 
Compared with the self-estimation results, a decline in the 
accuracies indicates that possibility of having a universal 
occupancy estimation model, which is trained in one 
space and used in other spaces, is limited by certain 
constraints. One such constraint is the differences in 
environmental settings. For example, there is no window 
hence no natural lighting in lab 1, and the artificial 
lighting is always off whenever the lab is unoccupied. 
Therefore, that lighting sensor reading is zero always 
indicates the lab is unoccupied. However, the door in lab 
2 is always open, and the lighting sensor reading is 
always positive even late at night, due to the lighting in 
the corridor. Another constraint lies in the fact that the 
temperature sensors, humidity sensors and CO2 sensors 
used in this study are not calibrated. Therefore, a 
consistent CO2 sensor reading of 0.20 may be associated 
with 3 occupants in lab 1 but 6 occupants in lab 2. For the 
building level estimation, the authors plan to classify test 
bed spaces based on their characteristics and implement a 
cross-estimation model for each category of space. Lastly, 
the chosen test bed differs from regular office spaces in 
terms of the behaviors of occupants (PhD students vs. 
office workers). Therefore the model obtained from this 
study needs to be calibrated or re-measured before it is 
applied to office spaces, though the approach used in this 
study will remain valid.

The proposed system is low-cost and high-resolution. 
The sensor node prototype cost about $230 USD, and will 
be even lower if mass-produced. As respect to resolution, 
the proposed system can provide the occupancy 
information at the room level, and indicate the exact 
number of occupants, which can all be done instantly 
upon users' request. 
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