
Internet Voting Protocol Based on Improved

Implicit Security

Abhishek Parakh and Subhash Kak

Computer Science Department, Oklahoma State University

Stillwater, OK 74078

September 11, 2009

Abstract

This paper presents an improved protocol for Internet voting that al-

lows recasting of ballots to eliminate voting errors, encourages early voting

and provides an opportunity for changing votes as the election campaign

progresses. The protocol is able to meet the competing requirements

of verifiability and privacy by using a distributed security architecture,

involving multiple servers, and multiple audit channels. It also detects

servers that might be cheating.

Keywords: Internet voting protocol; distributed data security; ballot

recasting.

1 Introduction

The contrasting requirements of confidentiality and verifiability are fundamental
to many problems of theoretical computer science. The requirements are such
that they preclude a general solution but satisfactory solutions are possible for
specific applications. Internet voting represents an application area where these
requirements may be met using tools of cryptography and a distributed security
architecture. In spite of certain limitations of current methods [17], Internet
voting is expected to be used widely in the next few years [8] since it offers
ease of access to senior citizens, disabled people, people traveling on election-
day, citizens living abroad who are eligible to vote, and eliminates the hassle of
obtaining an absentee ballot in advance. It also encourages larger participation
on the part of the younger generation that has become accustomed to online
banking, online shopping, secure email transactions and secure online storage.
The acceptance of Internet voting will become wider if limitations of the current
methods are lessened.

Several voting schemes are to be found in the literature [1, 3, 10–14, 17].
Conventionally, blind signatures [7] are popular for achieving ballot secrecy,

1



while anonymization is performed using Mix-Nets that use multiple encryptions,
decryptions and random permutations [10–12]. Other schemes treat votes as
e-cash [1–3], exposing the voter and his ballot if a recast is attempted. Some
schemes propose to protect intermediate election results [14] by asking the voter
to encrypt the vote. However, it is not clear how the decryption key is to be
provided at the time of vote counting. Often postal services are used as a part
of the scheme to provide untappable channels [13], but their use would clearly
defeat the purpose of Internet voting that aims at eliminating postal delays and
paperwork. Further, such schemes are not suitable for large scale elections due
to the overhead.

In order to minimize the effects of viruses, Trojan horses and denial of service
attacks [9], Internet elections are held over a period of several days, as in the
case of Switzerland for two weeks [5], and in Estonia [6] for a few days. Despite
the long voting periods, undecided voters and conservative people tend to wait
until the last day to cast their ballots which causes the network attacks to be
aimed at this last minute voting period. Further, proper design of ballots is
a critical element in their effectiveness. Poorly designed interfaces and ballots
can lead to voting errors (similar to errors in choosing wrong options in online
bookings and purchases), with the unacceptable effect of a wrong candidate
receiving the vote. Instances of such mistakes were seen in the California Recall
elections [24]. Most existing protocols do not make any provisions to correct
such mistakes.

One could propose that voting be allowed only after the campaigning for the
elections is over. But to ensure that campaigning cease on a certain date might
be impossible to enforce, and the public information available on the media can
lead people to change their mind. Further, such an idea would not eliminate
mistakes in voting.

Therefore, we believe that election systems should be designed to allow ballot
recasts, i.e. a voter should be able to change his vote either during the period
that the voting is open or during a specified time frame when ballot recasts are
allowed. This will encourage a larger participation by voters in the early voting
process because they will now have an option of changing their votes if they
wished to do so. We further believe that ballot recasts will act to deter vote
selling, because the vote buyer cannot be sure if the seller has sold his vote to
multiple parties.

The scheme described in this paper allows voters to recast ballots, while
protecting the intermediate election results using an implicit data security ar-
chitecture. Rabin [16] spoke of distributed storage of data over different servers
in order to protect the data. He, however, discounted the use of secret sharing
schemes for data distribution because of their space inefficiency and resorted to
an insecure method of distribution. However, since then several space efficient
secret sharing schemes [18–21] have been developed based on the idea of recur-
sion. In recursive secret sharing, the original secret is broken into several pieces
and the pieces are divided into shares one by one, by repeatedly using already
generated shares. Since we only have a small secret, namely the cast ballot, to
share between different servers, in this paper we use recursion to hide additional

2



information within the shares to provide a mechanism for validation of shares.
We call this model of security as implicit data security, where the word implicit
signifies that no explicit encryption keys have been used, but the data is stored
in a manner that every piece is implicitly secure.

The problem of recast of ballots was considered in an earlier scheme by the
authors [22], in which the intermediate election results are protected using secret
sharing. However, the scheme has three shortcomings: the lack of redundancy
in the system, where the loss of a single piece of the ballot results in a loss of
that vote; lack of verifiability for the pieces brought together during the tallying
process; and there is no mechanism for cheater identification.

2 Our Contribution

The article aims at presenting a scheme that overcomes the limitation of our
earlier scheme [22]. In the previous scheme we use the technique of generating
anonymous IDs for ballot secrecy that eliminates the need for MixNets. These
anonymous IDs then become the anchor point for the votes and are recorded
along with the cast ballot. Consequently, to change a vote, the voter only needs
to send the anonymous ID and the new ballot, which replaces the old one in the
system. Our contribution here is threefold:

First, we propose a new recursive method for dividing the votes into n pieces
such that loss of some of the pieces (less than a threshold k) does not result in
the loss of the vote.

Second, we present a method for validation/verification of the ballot pieces
that are brought together at the time of tally.

Third, a variant of the protocol is presented that can detect invalid ballot
pieces as well as expose the cheating server.

The improvements are implemented using recursion such that it does not
lead to an increase in share size and stores only a small constant amount O(1)
of information for verification.

3 The Proposed Protocol

The protocol proceeds as follows: The voter contacts the registration authority
(RA) using his real identity. He then randomly generates a number, blinds it
and gets it signed by the RA. Upon receiving this signed number, he unblinds it
and uses it as his anonymous ID. Consequently, to cast his ballot, the voter does
not blind the ballot but simply uses the anonymous ID to vote. However, in
order to protect the intermediate election results, the voter divides his ballot into
several pieces and sends them to distinct servers. This provides a distributed
security architecture. Before dividing the ballot, the voter encodes certain secret
information within the pieces of the ballot and distributes a one-way hash of
the secret information among the servers with the ballot pieces.

3



We present a new procedure for dividing the votes into pieces such that ad-
ditional information may be hidden within the pieces. This hidden information
can be used to validate the pieces at the time of ballot counting. Further, the
additional information does not increase the share sizes and does not increase
algorithmic complexity of the scheme being used.

The procedure for registration and creating anonymous ID is similar to that
described in [22]. Here, gx is the public key of the registration authority (RA)
and x is its corresponding private key. All computations are performed modulo a
prime p where g is a primitive root that is taken to be public knowledge. Further,
mx denotes the signature on a message m, where 1 < m < (p − 1). A one-way
hashing function h(·), used for verification, satisfies following properties [23].

1. h(·) when applied to an argument produces a fixed-size output.

2. Given x, it is easy to compute h(x); but given h(x) it is computationally
infeasible to determine x.

3. h(·) is collision free, i.e. it is computationally infeasible to find distinct x

and y with h(x) = h(y).

At the time of registration the voters send a one-way hash of the anonymous
ID that they have generated. The registration authority maintains a list L of
all the one-ways hashes that have been used in order to avoid collisions between
the anonymous IDs.

It is assumed that the voter has n servers at disposal to cast his ballot; and
any k of them are required to reconstruct the ballot, k ≤ n. Every vote V is
assumed to be a number in Zp that is assigned to a candidate and is public
knowledge.

3.1 Registration Phase

1. The voter randomly and uniformly chooses a number rid ∈ Zp.

2. The voter randomly and uniformly picks a blinding factor b and computes
u = rid · g

b mod p. He sends a 3-tuple to the registration authority (RA):
u, Vid, h(rid); where Vid is his true identity in clear-text.

3. If the registration authority finds the voter eligible to vote (by checking
his Vid, it checks if h(rid) is already present in L. If the hash is found,
then the RA requests the voter to repeat steps 1 & 2. If the hash is not
found, the RA adds the new h(rid) to L and sends to the voter ux.

4. The voter retrieves the signed rid as follows:

(a) Using the RA’s public key compute v = (gx)b mod p and v−1.

(b) Compute r = u · v−1 = (rid)x mod p.

5. The voter randomly and uniformly chooses an exponent c and generates:
d = ((rid)xgx)c and sends it to the RA.

4



6. The RA sends back: e = d
1
x .

7. The voter compares if (rid · g)c is equal to e, he accepts (rid)x as valid
signature.

The voter at the end of registration phase has a valid signed rid that may be
used to vote and proceeds to cast his ballot as follows.

3.2 Voting Phase

1. The voter contacts the online polling station using a secure shell (SSL)
connection over the Internet and sends: (rid)x mod p, rid.

2. The polling station verifies the validity of rid by conducting a zero-knowledge
challenge/response protocol with the RA to validate the signature.

3. If the signature is found valid the online polling station stores the voter’s
rid and provides the voter with a secure session key that he can use to
cast his ballot by contacting the n voting servers.

4. The voter generates a random secret message M .

5. The voter chooses the ballot V corresponding to the candidate that he
wants to vote for and divides the ballot into n pieces using Algorithm A(V,M,k,n)

(detailed below) which returns a set of n points, (j + k − 1, Dj), ∀ j from
1 to n.

6. The voter sends to every server Sj : ((j + k − 1, Dj), h(M)), for all j = 1
to n.

Algorithm A(V,M,k,n) takes as input: ballot V; message M; and integers k
and n.

Algorithm A(V,M,k,n) - Dealing Phase

1. Divide M into k − 2 pieces: m1, m2, ..., mk−2 ∈ Zp, such that concatena-
tions of mis, taken in order, is equal to M .

2. Choose randomly and uniformly a number r1 and compute r2 = m1 ·(r1)
−1

mod p.

3. For i = 2 to k − 2.

Compute ri+1 = mi · (Π
i
j=1rj)

−1 mod p.

4. Map ri as points (i, ri), 1 ≤ i ≤ k − 1.

5. Map the ballot V as point (0, V ).

6. Interpolate points (0, V ) and (i, ri), 1 ≤ i ≤ k− 1 as the polynomial f(x).

5



7. Evaluate n samples: Di = f(x), where x = k, k + 1, k + 2, . . . , (k + n− 1).

8. Output (i + k − 1, Di), 1 ≤ i ≤ n.

To understand the working of Algorithm A, consider the following example.

Example 1. Let the voter have n = 8 servers at his disposal to cast his
ballot. Each of these servers may be at separate locations and controlled by an
independent authority. Let k = 5 be the threshold number of servers that must
remain honest and come together to reconstruct a vote correctly. Further, let
the prime field chosen to work in be p = 257. Each candidate on the ballot
is assigned a candidate ID which may be a random number from the field Zp.
Consequently, to cast a ballot the voter must send this number (the candidate
ID) to the servers. Assume, in order to implement authentication the voter
chooses to hide a secret message M =“USA”, in his ballot. The message to be
hidden is entirely a choice of the voter and is it may as well be “RUSSIA”.

Let us assume that the voter wishes to cast a ballot to a candidate with
candidate ID 157. Therefore, the cast ballot is V = 157. If we consider the
voter’s secret message M=“USA” to be formed of ASCII characters, then M

can be divided into three pieces such that m1 = 85, m2 = 83 and m3 = 65,
such that each belongs to Zp. Under such conditions, the algorithm proceeds
as follows,

1. Divide M into 3 pieces: m1 = 85, m2 = 83 and m3 = 65.

2. Choose randomly and uniformly a number r1 = 101 ∈ Zp and compute
r2 ≡ m1 · r

−1
1 ≡ 85 · (101)−1 ≡ 85 · 28 ≡ 67 mod 257.

3. Compute r3 ≡ m2 · (r1 · r2)
−1 ≡ 83 · (101 · 67)−1 ≡ 83 · 127 ≡ 4 mod 257.

4. Compute r4 ≡ m3 · (r1 · r2 · r3)
−1 ≡ 65 · (101 · 67 · 4)−1 ≡ 65 · 96 ≡ 72 mod

257.

5. Map the ris as points (1, r1) = (1, 101), (2, r2) = (2, 67), (3, r3) = (3, 4),
and (4, r4) = (4, 72).

6. Map the ballot V as point (0, V ) = (0, 157).

7. Interpolate the five points, (0, V ) and (i, ri), to generate a 4th degree
polynomial, f(x) = 148x4 + 3x3 + 251x2 + 56x + 157 mod 257.

8. Evaluate f(x) at eight points (starting from x = k): D1 = f(5) = 128,
D2 = f(6) = 240, D3 = f(7) = 173, D4 = f(8) = 160, D5 = f(9) = 131,
D6 = f(10) = 227, D7 = f(11) = 29, and D8 = f(12) = 100.

9. Return (j + k − 1, Dj)s; where k = 5 and j = 1 to n.

6



Note that in the above example, the voter has recursively encoded the pieces
of his secret message into the shares of the ballot. Steps 2-4 generate 4 points
that are required to simulate the 4 randomly chosen points in the Shamir’s secret
sharing scheme. Step 7 executes Shamir’s scheme assuming ris are randomly
chosen points and the ballot as the y-coordinate at x = 0. Finally, the algorithm
returns 8 shares of the cast ballot, these shares have the secret message hidden
within them. Each of these eight pieces is sent to a different voting server, along
with the hash of the secret message.

3.3 Counting Phase

Assume a threshold k, number of servers pool their pieces, (j + k − 1, Dj)s, to-
gether to reconstruct the votes. (If more than the threshold number of servers
are available, then it may provide a mechanism for cross-checking and verifica-
tion.)

1. Use Algorithm A - Reconstruction Phase (detailed below) to recon-
struct the hidden message and the polynomial f ′(x).

2. Concatenate m′

js in order to reconstruct M ′.

3. Compute h(M ′).

4. If h(M ′) is equal to h(M), then the shares are valid and f(x) = f ′(x).

5. Retrieve, the cast ballot as V = f ′(0).

Algorithm A - Reconstruction Phase takes as input a set of points (shares)
and returns the pieces m′

j of the hidden message and a polynomial f ′(x) con-
structed by interpolation of the shares.

Algorithm A - Reconstruction Phase

1. Interpolate the shares (points) to reconstruct f ′(x).

2. Sample f ′(x) at points x = 1, 2, . . . , k − 1 to retrieve r′i, 1 ≤ i ≤ k − 1.

3. Reconstruct the hidden message as follows:

(a) Do for j = 1 to k − 2: m′

j = Πi=j+1
i=1 r′i mod p.

4. Return m′

j , 1 ≤ j ≤ (k − 2), and f ′(x).

Example 2. Recall from example 1, we had created eight shares (or pieces)
of the cast ballot and each of these pieces were sent to a different voting
server. After the polling is closed, the servers combine their pieces to recre-
ate the cast ballot. Since only k = 5 pieces are required for recreation, assume
that the 5 pieces that are brought together for reconstruction of the vote are
(6, D2) = (6, 240), (7, D3) = (7, 173), (9, D5) = (9, 131), (11, D7) = (11, 29),
and (12, D8) = (12, 100). The reconstruction proceeds as follows,

7



1. Interpolate the shares to reconstruct the 4th degree polynomial f ′(x) =
148x4 + 3x3 + 251x2 + 56x + 157.

2. Sample f ′(x) at x = 0 to retrieve the ballot V ′ = f ′(0). (We denote the
retrieved ballot as V ′ because its validity is yet to checked, which is done
in the following steps.)

3. Sample f ′(x) at 4 points x = 1, 2, 3, 4: r′1 = f ′(1) = 101, r′2 = f ′(2) = 67,
r′3 = f ′(3) = 4, and r′4 = f ′(4) = 72.

4. Reconstruct the pieces of the hidden message,

(a) m′

1 = r′1 · r
′

2 = 85.

(b) m′

2 = r′1 · r
′

2 · r
′

3 = 83.

(c) m′

3 = r′1 · r
′

2 · r
′

3 · r
′

4 = 65.

5. Concatenate m′

1, m′

2, and m′

3 to reconstruct M ′.

6. Evaluate the hash: h(M ′).

7. If h(M ′)=h(M), then the shares are valid and the vote, V ′ = V , is counted
in the tally.

If more than 5 servers come together to recreate the ballot, then any 5 shares
can be chosen at random and their validity checked. If the shares turn out to
be invalid, then another set of 5 shares can be checked or the extra share can be
used to cross check the reconstructed ballot. However, for detection of invalid
pieces, only 5 shares are required.

3.4 Recasting of ballot

If a voter wishes to change his vote, he may do so by contacting the online
polling booth using his rid to authenticate himself and follow the procedure
described above. The servers will overwrite his previously cast ballot partitions
if any.

The protocol has been able to detect attempts of cheating by validating the
pieces of the cast ballot.

4 Security of the proposed protocol

The security of the proposed protocol depends on the security of the pieces
created for the votes. First, in the dealing process we recursively encode the
secret message M . We also provide each server with h(M). Hashing functions
are known to be computationally secure and do not provide any information
about the hidden message M , in practice. Since the message M is a randomly
chosen secret message and r1 was randomly and uniformly chosen from the

8



field, we may consider (i, ri)s as random points. We use these random points to
interpolate a polynomial with the vote as the coefficient free term (as a point
mapped at x = 0). This polynomial is then sampled at n new points. If k − 1
servers collude to cheat, they would have no knowledge of the kth point and by
the properties of interpolation, all the polynomials will remain equally probable
and therefore, all the ballots will remain equally probable, i.e. if there are m

valid ballots, then each of them have a probability of 1
m

.
Now assume that an extremely powerful server is able to break the hashing

function determining mis. The next task, in order to determine the vote, is to
determine rjs. But it turns out that knowledge of M does yield all the values
of rjs as shown below: m1 is chosen to be a product of two numbers r1 and r2,
here r1 is randomly and uniformly chosen from the field and therefore given any
number y from the field Pr(y = r1) = Pr(y = r2) = 1

p
. Hence, the pieces of m1

are secure. However, ri, 3 ≤ i ≤ k − 1 may be determined, using the mis.
Further, the voting protocol uses ris as points at x = 1 to k − 1 along with

the ballot V at x = 0, i.e. V is the coefficient free term in the polynomial. It
turns out that since we cannot determine r1 and r2 with a probability greater
than a random guess, all polynomials remain equally probable, even if M is
known. The last step of division of ballots into pieces, although not the same,
is close to Shamir’s implementation of secret sharing [15].

Figure 1. shows two graphs. Graph (a) illustrates the process of polynomial
interpolation using (0, V ) and (i, ri), i = 1 to 8. Graph (b) depicts the fact
that if M is known (by breaking of the hashing function), then r1 and r2 re-
main undetermined and do not reveal any information about the ballot because
all the polynomials remain equally probable; a few polynomials are shown for
illustration.

The protocol further satisfies the various requirements of electronic voting:

9



Figure 1: (a) Polynomial interpolation using vote (0, V ) and (i, ri), i = 1 to 8.
(b) Lack of knowledge of (1, r1) and (2, r2) leaves the polynomial undetermined;
hence the vote remains secure.

1. Receipt freeness: The proposed protocol is receipt free.

2. Distributed security: It is assumed that at least one of the servers will be
honest (an assumption similar to that of MixNet schemes) providing assur-
ance to the voter that his vote will be counted as cast and any discrepancy
will be detected with a very high probability.

3. Fairness: The ballot cast is divided into partitions during the voting phase
and unless the partitions are known, all the ballots remain equally likely.

4. Un-forge-ability: An ineligible voter cannot cast a vote because the vote
consists of two parts: the signed ballot and the certified rid. The ineligi-
ble voter needs to generate a random ID and forge the signature of the
registration authority, i.e. solve for x, given g, p and gx mod p. This is
equivalent to solving the discrete log problem, which is computationally
infeasible. Leakage of information about the signature exponent is avoided
by using a zero-knowledge challenge and response protocol for signature
verification.

5. Un-reusability: Since every eligible voter is issued only one rid, it cannot
be used to cast multiple votes because if that is done the servers will
simply overwrite the previous cast ballot for that rid.

10



5 A Variation for Identification of Cheating Server/s

To identify the cheating server/s, we make use of the following properties of
arithmetic coding (see [23]),

1. Let T = Σn
i=1aip

i−1, where 0 ≤ ai < p, then

⌊
T

pj−1
⌋mod p ≡ aj

2. Let T = Σn
i=1aip

2(i−1) + Σn−1
i=1 cp2i−1, where −p < ai < p and 1 ≤ c < p,

then

⌊
T

p2(j−1)
⌋mod p ≡ aj

Following minimal changes are required in the proposed protocol to imple-
ment cheater identification.

5.1 Voting Phase

We apply the voting phase as described before until step 5. Step 6 is replaced
by the following 2 steps,

1. The voter computes
T = Σn

i=1h(Di)p
2(i−1) + Σn−1

i=1 cp2i−1, where c ∈ Zp is a random constant.

2. The voter sends to every server Sj : ((j + k − 1, Dj), h(M), T ), for all
j = 1 to n.

Example 3. As an example to illustrate the operations described above,
consider that k = n = 3 is the number of shares the voter has created for
his ballot, given by (1, D1) = (1, 4), (2, D2) = (1, 2) and (3, D3) = (1, 5). Let
p = 11 and let the voter choose a random number c = 7 from field Zp. Then
before sending the shares of his ballot to the server the voter needs to compute
T = Σn

i=1h(Di)p
2(i−1) + Σn−1

i=1 cp2i−1.
For simplicity, consider a dummy hashing function with mapping h(x) =

x+1. Therefore, h(D1) = 4+ 1 = 5, h(D2) = 2 +1 = 3 and h(D3) = 5 +1 = 6.
Consequently, T = 5 · 112·0 +3 · 112·1 +6 · 112·2 +7 · (112·1−1 +112·2−1) = 97608.

The voter now deposits this value of T on every server along with his ballot.

5.2 Cheating Server Identification

To identify a cheating server during reconstruction phase, following steps are
performed,

1. Every server Sj presents their pieces (j + k − 1, D′

j)s, to evaluate T ′ =

ΣSj
h(D′

j)p
2(j−1).

2. For each Sj , compute c = ⌊ T−T ′

p2(j−1) ⌋ mod p.

11



3. Each server makes the above calculations and based on a majority of re-
sults, if c = 0, then Sj is honest, else Sj is cheating and its share is invalid.

We see that c = 0 if ⌊ T
p2(j−1) − T ′

p2(j−1) ⌋ = h(Dj) − h(D′

j) = 0 mod p, which

happens only when Dj=D′

j, i.e. the pieces presented by the server are valid
pieces. An analysis of the identification protocol can be found in [23], where the
solution has been applied to secret sharing.

Example 4. Continuing with example 3; assume that 3 servers have come
together to reconstruct the ballot. Also assume that the reconstructed vote turns
out to be invalid after checking the hash of the retrieved hidden message against
the hash deposited by the voter (see example 2), then in order to determine
which server is cheating, the servers perform the following.

Each server presents its share. Let us assume that sever 2 has cheated
and provided an incorrect share such that D′

2 = 3. Servers 1 and 3 have
provided correct shares D′

1 = 4 and D′

3 = 5. The servers then compute,
T ′ = ΣSj

h(D′

j)p
2(j−1) = 5 · 112·0 + 4 · 112·1 + 6 · 112·2 = 88335.

Now for each server Sj , compute c = ⌊ T−T ′

p2(j−1) ⌋. Therefore, for server 1,

j = 1, and c = ⌊ 97608−88335
p2(1−1) ⌋ = 9273 ≡ 0 mod 11. For server 2, j = 2, and c =

⌊ 97608−88335
p2(2−1) ⌋ = 76 ≡ 10 mod 11. For server 3, j = 3, and c = ⌊ 97608−88335

p2(3−1) ⌋ ≡ 0

mod 11.
From the above we observe c 6= 0 for server 2, which had provided an incor-

rect share, and we have successfully identified the cheating server.

6 Conclusion

In the proposed improved protocol for Internet voting, the security of the cast
ballot depends on numerous servers and the fairness property is satisfied by
the use of a ballot partitioning scheme. No encryption/decryption key is used
and there is no explicit encryption of the votes. The partitions of the ballot
provide implicit security. It overcomes the limitation of lack of redundancy and
verifiability in our earlier scheme.

Our proposed method divides the votes into pieces such that loss of some of
the pieces (less than threshold) does not result in the loss of the vote. A method
for validation/verification of the ballot pieces that are brought together at the
time of tally, and, a variant of the protocol is presented that can detect invalid
ballot pieces as well as expose the cheating server.

Acknowledgment

This work was partly funded by Center for Telecommunications and Network
Security (CTANS), Oklahoma State University, Stillwater, OK.

12



About the Authors

Abhishek Parakh is with the Computer Science Department at Oklahoma State
University in Stillwater. His research interests include cryptography, network
security, and signal processing.

Subhash Kak is Professor and Head of Computer Science Department at Okla-
homa State University in Stillwater. He has worked in the fields of cryptography,
quantum information science, and neural networks.

References

[1] G. Schryen, “Security aspects of internet voting,”, Proceedings of the 37th
Annual Hawaii International Conference on System Sciences (HICSS’04), pp.
50116b, 2004.

[2] D. Chaum, A. Fiat and M. Naor, “Untraceable electronic cash,” Advances
in Cryptology CRYPTO ’88, Lecture Notes In Computer Science, vol. 403.
Springer-Verlag, pp. 319-327.

[3] M. J. Radwin, “An untraceable, universally verifiable voting scheme”; avail-
able at http://www.radwin.org/michael/projects/voting.html

[4] R. Sinnott, Ted Selker, Bil Lewis, Brendan Whelan, James Williams and
James McBridem, “Evaluation of voting machine, peripherals and software”,
In First Report of the Commission on Electronic Voting on the Secrecy, Ac-
curacy and Testing of the Chosen Electronic Voting System Appendix 2C,
Dublin 2004, pp. 153-191.

[5] G. E. G. Beroggi, “Secure and easy Internet voting,” Computer, vol. 41, no.
2, pp. 52-56, 2008.

[6] International Herald Tribune. “Estonians will be first to allow Internet votes
in national election”, Feb 22, 2007. http://www.iht.com/articles/2007/
02/22/business/evote.php retrieved on March 17, 2009.

[7] S. H. Yun and T. Y. Kim, “Convertible undeniable signature scheme,” Pro-
ceedings of IEEE High Performance Computing ASIA ’97, pp. 700-703, 1997.

[8] P. S. DeGregorio, “New voting technology: problem or solution?”, eJour-
nal USA, October 2007; available at http://usinfo.state.gov/journals/
itdhr/1007/ijde/degregorio.htm

[9] United States Department of Defense (2007), “Expanding the use of elec-
tronic voting technology for UOCAVA citizens”, May 2007.

[10] M. Jakobsson, A. Juels and R. Rivest, “Making mixnets robust for elec-
tronic voting by randomized partial checking”, USENIX ’02, pp. 339-353,
2002.

13



[11] D. Chaum, “Secret-ballot receipts: true voter-verifiable elections”, IEEE
Security and Privacy, vol. 2, no. 1, pp. 38-47, 2004.

[12] C. Park, K. Itoh and K. Kurosawa, “Efficient anonymous channel and
all/nothing election scheme”, Workshop on the theory and application of cryp-
tographic techniques on Advances in cryptology, vol. 765, pp. 248-259, 1994.

[13] A. Juels, D. Catalano and M. Jakobsson, “Coercion-resistant electronic
elections (extended abstract)”, ACM Workshop on Privacy In The Electronic
Society 2005 (WPES ’05), pp. 61-70, 2005.

[14] S. H. Yun and S. J. Lee, “An electronic voting scheme based on undeniable
blind signature scheme”, Proceedings of 37th IEEE Carnahan Conference on
Security (ICCST), Taiwan, pp. 163-167, 2003.

[15] A. Shamir, “How to share a secret”. Communications of the ACM, vol. 22,
issue 11, pp. 612613, 1979.

[16] Michael Rabin, “Efficient dispersal of information for security, load balanc-
ing, and fault tolerance”, Journal of the ACM, vol. 36 pp. 335-348, 1989.

[17] A. Parakh and S. Kak, “How to enhance the security of electronic voting?”
ACM Ubiquity, vol. 8, issue 6, 2007.

[18] A. Parakh and S. Kak, “A tree based recursive scheme for space efficient
secret sharing”, Cryptology ePrint Archive, Report 2009/409.

[19] A. Parakh and S. Kak, “Space efficient secret sharing: a recursive ap-
proach”, Cryptology ePrint Archive, Report 2009/365.

[20] A. Parakh and S. Kak, “A recursive threshold visual cryptography scheme”,
Cryptology ePrint Archive, Report 2008/535.

[21] M. Gnanaguruparan and S. Kak, “Recursive hiding of secrets in visual
cryptography”, Cryptologia 26, pp. 68-76, 2002.

[22] A. Parakh and S. Kak, “Internet voting protocol based on implicit data
security,” Computer Communications and Networks, 2008. ICCCN ’08. Pro-
ceedings of 17th International Conference on, pp.1-4, 2008.

[23] T.-C. Wu and T.-S. Wu, “Cheating detection and cheater identification in
secret sharing schemes,” Computers and Digital Techniques, IEE Proceedings,
vol.142, no.5, pp.367-369, Sep 1995.

[24] S. M. Sled, “Vertical proximity effects in the California recall election” VTP
Working Pap. 8, Caltech and MIT, 2003.

14


