WEIGHTED NORM INEQUALITIES FOR PARAPRODUCTS AND
BILINEAR PSEUDODIFFERENTIAL OPERATORS WITH MILD
REGULARITY

DIEGO MALDONADO AND VIRGINIA NAIBO

ABSTRACT. We establish boundedness properties on products of weighted Lebesgue, Hardy,
and amalgam spaces of certain paraproducts and bilinear pseudodifferential operators with
mild regularity. We do so by showing that these operators can be realized as generalized
bilinear Calderén-Zygmund operators.

1. BILINEAR PSEUDODIFFERENTIAL OPERATORS WITH MILD REGULARITY

Let us motivate our main result on bilinear pseudodifferential operators (¥DOs) by
revisiting some facts from the linear theory. A sufficiently regular function o(x, &) defined
on R™ x R™ has an associated YDO T, defined by

L)@ = [ owoOfeds ek f e SE)
Here S(R") is the Schwartz class and f denotes the Fourier transform of f,

fO = [ e cern
For m € R, 0 < 4§, p < 1, the symbol o(z,£) belongs to Hérmander’s class ;?5 if
(1.1) 0500 (2,€)| < Cap(L+ [P 2 ¢ e R,

where «, 3 € Z™ and |«/|, |3| depend on the context.

The exploration of classes of smooth symbols, in particular the classes S/T , appears
to be predominant in the WDO literature. However, as diverse problems in Analysis and
PDEs demand, the case in which the symbol has mild or no regularity in = has received
considerable attention, see for instance [33], [34], [35], [42], [44], [45], and references therein.
For w,Q : [0,00) — [0,00), m € R and p € (0, 1), we write o € ST, (this notation is not

standard, we introduce it for the sake of presentation) if et

(1.2) 00 (@,€)| < Cp(1+ )™, z,6 R,

and

(13)  |0¢o(@+h,€) = O¢o(x,6)| < Cpw(RDQAEND + D™ AP, € € R™

Again, the number of derivatives |3| depends on the context.
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For a > 0, we write w € Dini(a) if w : [0,00) — [0,00), w is non-decreasing, concave,
and

Lo dt
W[ Dini(a) = [ w (t)T < 00.
0

b were originally motivated by a question posed by L. Nirenberg about

The classes ST,
whether symbols verifying (1.2) with m = 0, p = 1, and all multi-indices # (no a priori
regularity in z involved) produce L?-bounded ¥DOs. In [10], C.-H. Ching resolved this
question in the negative. Afterwards, a number of authors showed that this lack of L?-
boundedness could be circumvented if a mild regularity assumption on the z-variable were
assumed. Indeed, R. Coifman and Y. Meyer proved (see [14, Theorem 9, p.38]) that if
o€ Sgwﬂ with © = 1 then T, is bounded in LP(R™) for all 1 < p < oo if and only if
w € Dini(2). M. Nagase proved (Theorem B in [38]) that T, is bounded in LP(R™) for
1 < p < oo when w(t) =1t¢" and Q(t) = t7 for some 0 <y <7 <1, and |f| <n+2. In [7],
G. Bourdaud proved that if o € S?,w,Q’ then T, is bounded in LP(R") for 1 < p < oo if and
only if
> W27 () < cc.
jeN

On the other hand, it is known that the Hormander class S?’l is maximal with respect
to the property of producing ¥YDOs with Calderén-Zygmund kernels, however these WDOs
need not be bounded in L?(R") and “they must remain forbidden fruit” ([43, Chapter VII]).
Notice that the class of forbidden symbols 59,1 satisfies 5’10’1 - 5?7‘00790, where wo(t) =t
and Qo(t) =14 ¢. In [47] and [48], K. Yabuta developed the notion of Calderén-Zygmund
operator of type w(t) (which includes the classical Calderén-Zygmund operators), and de-
termined conditions on a symbol o € S?,w,Q’ and on the functions w, (), so that T, can
be realized as a Calderén-Zygmund operator of type w(t). As a consequence he also ob-
tained L*°-BM O and weighted LP-estimates for T;,. Similar estimates were obtained, using
different methods, by S. Nishigaki in [39] and S. Sato in [41].

Let us now describe the relevant objects of the bilinear theory of ¥DOs. A sufficiently
regular function o(x, &, n) defined on R™ x R™ x R™ has an associated bilinear pseudodiffer-
ential operator T, defined by

L)@ = [ [ o emf©otn dedn,  w R L e SEY),

We say that the bilinear symbol o(x, £, n) belongs to the bilinear Hérmander class BSZ:‘(; if

(1.4) !3?35330(937&?7” < Cop(1+ [€] + [n)mrolet=rBIERD g e € R™.
We also write o € BS;’L’Q if
(1.5)

0o (x,6,m)| < Cag(L+[E] + [y relHAD,

(1.6)

020, (o(a + h,&,n) — o(2,&,m))| < Cap w(IRNQUEN + 1)) (L + [€] + )" —PUHD,

for all z, £&,n € R™. As usual, the sizes of the multiindices «, § € Z" will depend on the
context.
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The study of bilinear ¥DOs grew from the seminal work of R. Coifman and Y. Meyer
[13], [14] who used them as models to represent Calderén-Zygmund commutators. Further
applications now include the study of compensated compactness, see [11], [12], and [50],
and, as bilinear ¥DOs also model expressions of the type > a8 Ca,30% faﬁ g, they are useful
in generalizing Leibnitz’s rule in the spirit of the Kato-Ponce inequality, see [4] and [37].

The bilinear setting is translucent to various well-known linear YDO estimates that
project their natural bilinear analogues (see, for instance, [1], [2], [4], [5], and [14]), but, at
the same time, it is opaque to some other. For example, a celebrated theorem of A. Calderén
and R. Vaillancourt establishes the L?-boundedness of ¥DOs with smooth symbols in the
class 5870. In contrast, as A. Bényi and R. Torres showed in [5], the class BS&O does not
mimic that mapping behavior in the corresponding function space scene of L? x L? — L',
even for x-independent, tensor-like symbols. Another example is the linear Marcinkiewicz
multiplier theorem, whose natural bilinear version also fails, as shown by L. Grafakos and
N. Kalton in [24]. This semitransparency phenomenon adds to the interest in bilinear ¥DO
estimates.

Clearly, we have BS?’l C BS(l),wo@o' The class BSR1 produces bilinear YDOs with
bilinear Calderén-Zygmund kernels in the sense of L. Grafakos and R. Torres [26], and,
as proved by A. Bényi and R. Torres [4], it also remains forbidden. Here we implement a
bilinear interpretation of Yabuta’s scheme [47], [48]. In Section 3, we introduce the notion of
bilinear Calderén-Zygmund operator of type w(t). In Section 4 we show that under suitable
assumptions on w and €2 the YDOs with symbols in the class BS?M’Q can be realized as
bilinear Calderén-Zygmund operators of type w(t). As a consequence we obtain our first
main theorem. Namely,

Theorem 1.1. Leta € (0,1), w € Dini(a/2), and 2 : [0,00) — [0, 00) non-decreasing such
that

sup w74 )Q(1/t) < oco.
o<t<1

Consider 1 < p, g < 0o and % < r < oo such that % = % + %. Then, if o € BS%MQ, with
la| +18| < 4n+4, the bilinear pseudo-differential operator T, has the following boundedness
properties:

(i) if 1 < p, q, then
175 (f, g)HLT(R”) <C HfHLP(R”) ||9||Lq(]Rn) ’
where LP(R™) or LY(R™) should be replaced by L°(R™) (bounded functions with com-
pact support) if p = oo or q = 0o, respectively;
(i) if p=1 orq=1, then
175(f, Q)HLnoo(Rn) <C ”fHLP(R") ”g”Lq(Rn) )

where LP(R™) or LY(R™) should be replaced by LS°(R™) if p = oo or g = oo, respec-
tively;
(iii)
1T6(fs Dl srro@ry < C 1 f Il oo @ny 1191l oo (ny -
(iv) If 1 < p,q < o0, and w € Aninepq), then

176 (f, 9l r mny < C Il e, mry N9l £g, ) »

where A, 1 < r < 00, denotes the Muckenhoupt weight class (see Section 6.2 for the
definition).
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(v) If w € Ay, the following endpoint estimates hold
175 (s 9 /200 gny < C Il Ly ey 911 2 )
and
1T £-0) 172y < € 1Ly ey gl ey

(vi) Finally, if 1 <p,q <00, 1< 81,82 <00, 1/s3=1/s1+1/s2, and w € Apin(s, s0)(Z"),
then T, wverifies the following inequality on weighted amalgam spaces

175(f, g)H(LT,lZ,?’) <C ||f||(Lp,zf,}) HQH(Lq,sz) :

Remark 1. To the best of our knowledge, the only result on bilinear ¥DOs with mild
regularity previous to Theorem 1.1 is Theorem 12 in Coifman-Meyer [14, p.55] where the
symbol o(z, &, n) belongs to BS?MQ with w € Dini(2) and Q = 1.> Theorem 12 in Coifman-
Meyer [14, p.55] deals with unweighted Lebesgue spaces and asserts that the associated
bilinear DO maps LP x L7 into L" for 1/r = 1/p+1/q, 1 < p,q,r < co. In the case of
unweighted Lebesgue spaces, Theorem 1.1 allows for more general choices of €2 and brings
the exponent r down to 1/2 (with weak type when r = 1/2), although it requires the
stronger condition w € Dini(a/2). For the particular choices w(t) = 7 and Q(t) = ¢7
(0 < v <71 <1), Theorem 1.1 lifts Theorem B in Nagase [38] to the bilinear context.
Finally, we point out that, in the mentioned literature, it has been customary to ask for
some kind of doubling condition on €2 and here we dispose of such a hypothesis.

2. PARAPRODUCTS WITH MILD REGULARITY

We now discuss the boundedness properties of paraproducts built from Dini-continuous
molecules. Some notation is in order. For v € Z and k € Z", let P,; be the dyadic cube

(2.1) P = {(xl,...,xn) ER™ : k; <2%x; < k;j+1,i= 1,...,n}.

The lower left-corner of P = P, is xp = x,, := 27Yk, the Lebesgue measure of P is
|P| = 27", and its characteristic function is denoted by xp,,. We set

D:={Py:velkelZ"}
as the collection of all dyadic cubes.

Definition 2.1. Let w : [0,00) — [0,00) be a non-decreasing function. An w-molecule
associated to a dyadic cube P = P, is a function ¢p = ¢, : R™ — C such that, for some
A >0and N > n, it satisfies the decay (or concentration) condition

A9vn/2
1+ 2]e —ap)N’

(2.2) [¢p(z)| < z € R,

and the mild reqularity condition

(2.3)  [op(2) — ¢p(y)| < A22w(2"]z — y)

for all x,y € R™.

1 1
+
(I+2vz —zp)V (1 42"y —zp))V

INotice that there is an omission of the factor (14 €]+ |7])~ (/1D on the right hand side of conditions
(51) on page 55 of [14] (compare with Theorem 9 on page 38 and Theorem 1 in [13]). With that factor,
Theorem 12 follows from the techniques developed in the linear case that prove Theorem 9. Without that
factor the result is not true, since there exist z-independent symbols with bounded derivatives that do not
produce ¥YDOs mapping any L? x L? into L” for 1/r =1/p+1/q, 1 < p,q,r < o0, see Proposition 1 in [5].
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Definition 2.2. Given three families of w-molecules {qﬁé}er, j = 1,2,3, the paraproduct
II(f, g) associated to these families is defined by

(24) I(f,9) = > 1QI*(f,66)(9,68)6%:  f.9 € SR,

QeD

The term paraproduct was coined by J.M. Bony in [6] and ever since it has been used to
denote superpositions of various time-frequency components of two functions. Paraprod-
ucts have found plenty of inspired applications: from Bony’s paradifferential calculus (see
[6]) and David-Journé’s remarkable 7'(1)-theorem (see [16]), to their alliance with wavelet
analysis in the study of PDEs (see, for instance, [8], [9], [24], [44], and [45]), and their role
as toy models or building blocks of classical operators in Fourier Analysis (see, for instance,
[21], [22], [31], [32] [37], [36], [40], and [46]), just to mention a few. The paraproducts we
treat (in Section 5) are built from mildly regular molecules which come to cover the gap
between the smooth molecules and paraproducts in [3], [18], [19], and the (discontinuous)
Haar molecules and paraproducts studied, for instance, in [46].

In [3], sufficient conditions on smooth molecules are given so that smooth paraproducts
of the form (2.4) can be realized as bilinear Calderén-Zygmund operators. In Section 5 we
analyze w-molecules and prove that the paraproducts they build can be realized as bilinear
Calderén-Zygmund operators of type w(t), provided that they have enough decay, suitable
cancelation, and w € Dini(1/2). This allows us to prove our second main result. Namely,

Theorem 2.3. Consider w € Dini(1/2) and let {QZ)JQ}QGD, Jj =1,2,3 be three families of
w-molecules with decay N > 10n and such that at least two of them, say j = 1,2, enjoy the
cancelation property

/ ¢h(x)de =0, QE€D,j=1,2
R'n

Then, the paraproduct I1(f, g) defined in (2.4) verifies the inequalities (i)-(vi) in Theorem
1.1.

3. BILINEAR CALDERON-ZYGMUND OPERATORS OF TYPE w(t)

Definition 3.1. Let w : [0,00) — [0, 00) be a non-decreasing function. We say that K (x,y, 2)
defined on R3*\ {(z,y, 2) € R3" : 2 = y = 2} is a bilinear Calderén-Zygmund kernel of type
w(t) if for some constants 0 < 7 < 1 (the specific value of 7 € (0,1) is immaterial in the
development of the theory), Cx > 0, and every (x,7,2) € R¥\{(z,y,2) € R : 2 =y = 2}
it holds

Ck
3.1 K(z,y,2)| < ,
(3.1) K@y 2l < e =
and
(3.2)

\K(ac—i—h,y,z)—K(x,y,z)\ + ’K(ZL’,y—l—h,Z) —K(x,y,z)| + |K($7yvz+h) —K(:E,y,z)\

Ck ||
< 2n w ’
(lz =yl + |z — 2) [z =yl + |z — 2|
whenever |h| < 7max(|z —y|, |z — z|). A bilinear operator T : § x § — &’ is said to be
associated to a bilinear Calderén-Zygmund kernel of type w(t), K(z,y, 2z), if

1)) = [ [ K f)az) dyd:
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whenever z ¢ supp(f) Nsupp(g) and f, g € C§°. If, besides, T" maps
LP(R™) x LYR"™) — L"*°(R"),
for some 1 < p,q < ocand r > 1 with 1/p+1/g=1/r; or
LP(R"™) x LY(R™) — L*(R™),
for some 1 < p,q < co with 1/p+1/g =1, T is called a bilinear Calderdn-Zygmund operator
of type w(t).

The multilinear Calderén-Zygmund theory was introduced by R. Coifman and Y.Meyer
in [13], [14], and [15]. This theory was then further investigated by L. Grafakos and R.
Torres [26], [27], who considered the case in which w(t) = t¢ for some ¢ € (0, 1], and C.
Kenig and E. Stein [29].

The plan of the proofs of Theorems 1.1 and 2.3 is as follows: Sections 4 and 5, respec-
tively, are devoted to showing that the bilinear ¥DO operator T, in Theorem 1.1 and the
paraproduct IT in Theorem 2.3 are bilinear Calderén-Zygmund operators of type w(t) for
suitable w. In Section 6 we prove that bilinear Calderén-Zygmund operators of type w(t)
satisfy the boundedness properties (i)-(vi) in Theorem 1.1, which completes the plan.

4. PROOF OF THEOREM 1.1

In this section we consider the bilinear pseudo-differential operator

7,19 = [ [ otw&me )0 de

xz, &, neR? f, ge SR, whose symbol o(x,,n) satisfies the following conditions:

o Caﬁ
(4.1) 7% aﬁo(fc,&n)) S U e+ [

) el +[ml)
(4.2) ¢ 85(0(30 +h,&n) —o(z,&,1n))| < Cap w(|h|) (1 + |€] + [n])led+18I"

for all x, £,n € R", and for a certain number of multi-indices o, 8 € Z™. The following
theorem establishes sufficient conditions on w and €2 so that the class BS?MQ produces
UDOs with bilinear Calderén-Zygmund kernels of type w®(t), for some a € (0,1).

Theorem 4.1. Let w,Q : [0,00) — [0,00) be non-decreasing functions with w concave.
Suppose that there exists a € (0,1) such that w and Q verify
(4.3) B:= sup W' (t)Q(1/t) < oo.

0<t<1
If o(x,&,m) verifies (4.1) and (4.2) with ||+ |B| < 2n+2, then T, has a bilinear Calderdn-
Zygmund kernel of type w®(t).

Proof of Theorem 4.1. It is enough to assume that ¢ has compact support in the variables
¢ and 7, uniformly in z, and to show that the constants involved do not depend on the
support of o(z, -, -) (see [43, Chapter VII]). We have the following kernel representation for
15,

Tt = [ [ K@) f)e s, fgeSE)
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where

We will show that K(z,y, z) satisfies conditions (3.1) and (3.2) with w® and 7 = 1/3. In
terms of the symbol o, conditions (3.1) and (3.2) follow from

(4.4) )] < ¢ ¢

0 T oon? z, Y,z E]Rnu
[yl + 1))

. . C | 1
4. h — < @ h| <
(45) loGo +hy.2) = olon ) £ o et (i ) A< Gl D,

C | 1
. Y —0 < @ h| < =
(40) oGy h2) = olo ) < et (i ) A Gl D,

. C | 1
4. —0 < a h| <= .
4T) oG +1) = olen ) < o et (i) 1Bl G max(ll D)

We will now show condition (4.5). For j € Ny consider ¢; : R” x R — R infinitely
differentiable with

supp(e;) C {(&n) : 2971 < |(&,m)| < 27T} if 5 > 1,
supp(tbo) C {(&,n) : [(&,n)| < 2},
quj(fan):lv gaUGRn-

Jj=0
Fix h, y, and z in R" such that |h| < § max{|y|,|z|} and define
oj(z,&m) = ¥i(§m)o(x,&n)
@) Lhewn) = [ [ et hen) - oyl n)e e d dn

Note that properties (4.1) and (4.2) are satisfied by o; uniformly on j, and that ijo L;-’(x, Y, z) =
6(x+ h,y,z) —d(x,y,z). Also, the concavity of w and (4.3) imply

(4.9) w(t)/t is monotone non-increasing, ¢t > 0,
(4.10) w(2t) <2w(t), t>0, (ie., wis doubling with constant 2),
(4.11) Q(s) < Bw(1)* st s >1.

From now on, given two quantities F' and G we will write F' < G if FF < CG where C is a
structural constant that, according to the context, will depend on n, Cx, B, w(1), etc.
Integrating by parts 2n + 1 times in (4.8) and applying (4.2), we have

i Q(l¢] + 1)
h (2n+1)
[L4.2)] £ (ol +12) ") ) / /gn)@uppw] e e de

Since 2 is non-decreasing, we obtain

(2]+2)‘

(4.12) L@y, 2)| S Uyl + 1)@ w(lh])

We now consider two cases according to |y| + |z| being greater or smaller than 1.
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First Case: |y| + |z| > 1. By (4.9),

w(h]) = (R (|R]) < W2 (R) (ly| + |2])%w® (|y,|i||zy) '

Also, since w is non-decreasing, |h| < 2 max{|y|,|z|}, (4.9), and |y| + |2| > %, we obtain
1

SA(n) < el + e < 0 (5

) 200 |y + |2])'".

Putting all together,

() < ol + e () wioe (55) 200

lyl + |2l 2
Plugging this into (4.12), and using (4.10) and (4.3),

o) € ol + a2 (L) BE e (1)

Yl +121) 20 2
h Q(27+2 1
g 41—a(‘y’ + ’Z’)—ana ( ’ ‘ > ( A )wl—a ( A )

lyl + 2] 28 2742

) . o\ 1
< matel+ e () g

Then,

~ A —zNn a h
60+ oy, 2) — 6w, 2)| = | S Ly, 2)| < (] + 22" w ( i )
2 PEE

for |h| < § max(|y|, |z|) and |y| + || > 1.

Second Case: |y|+ |z| < 1. Assume without any loss of generality that |z| < |y|. We split
the sum in j as follows

6:(2 + hyy,2) — 6(x,y,2)| = Y Li(x,y,2)

Jj=0
h h h
SRR DI
1<27 2| 1>27y| 1<27y|
1>27|z|
=I+IT+1I1
Noting that w(|h|) < w® (ly\l-}ﬂlZ\) w!=(|y| + |2]), and recalling (4.12) and (4.9),
- | Q2w (Jy| + |2))
IS (ul+ e .
) 2 0 )

42
Sl + e (CBL) S0 SO e (2 ol 41

1<29|z|
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By (4.3) and (4.10),

j —a 2 —a j —a 1 a
Q(2772) ! <2j>§81 Q272! <W> <g'7B.

We then obtain,

< (] + J2l) e (w"ﬁ‘z‘).

We now estimate II. Integrating by parts p times in (4.8), with n + 1 < p < 2n, using
(4.2), and recalling that w is non-decreasing, we have

g +1il)
1< (|h]) dnd
(1D >tal) [ /, - T I e 1
(Y (g +1nl)
B ) (1A ~dd
) a1
= o+ 7 ()

l—ah - d d£+ l_ah ddg)
X (w (I D/|£|§2Iy|1 /Inlélfl g w (] |)/§|§2|y1 /n|>|£| !

(gl + )P (|y,'_’ﬁ|z) (11, + 1)

We will show that II; and Iy are bounded by C (|y| + |2|)P72". Using that w and Q are
non-decreasing, |z| < |y|, (4.10), (4.3), and that p < 2n, we get

5 - g B
Ih S ——— e — d¢< B p—2n
15 (,yHM)w 1yl +21) /Myl T ey 6 S Blul+ 12D

To bound I1s we change to polar coordinates and integrate by parts, to get

02
Il <w'™ |y|+|z/ / q 02@21n))_  dndg
g1<2lyl = Jigl<pn (1 )P

(lyl+1=1)~ . Q(Qp)pn—l
Yy + |z / t”l/ P qpdt
w1+ 1D | B

- o [ Q2p)p"t
< W (ly| + 1) (] + )" / 2p)p
a(lyl+zp—r (L+p)P

Alyl+1=) " p2n—10) (94
ooyl +1al) [ 0 = o 11
0
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Notice that (4.11) implies foo (2(21,;7p) dp < oo, for p > n+ 1, which eliminated one of the

boundary terms in the integration by parts. For I15; we use (4.10) and (4.3),

27+ (|y|+2])~ wl—a +12DN0(2p) 0"
y|+|z

S (yl+ 1207 Q"Zw (lyl + 1222 (|y| + [2]) )2/ ")

—2n —a yl+1z i(1—a j — j(n—

< ol+ = 3w (W) -z + o)y
j=1
< Byl + =)y

since p > n + 1. Next, since €2 is non-decreasing, p < 2n, and by (4.10) and (4.3),
Iy < w' [yl + )28yl + 12D~ |yl + [2)P 72" < B(ly| + |2))P "

We now estimate the term I7I. Integrating by parts p > 2n + 1 times in (4.8) we have,

—p, .a |h| 1-a M
TS (e e <|yM+L4> ’ UhDL/Z;m>1susmns24-1(1+W5|+|”Dpdnd€
o |7 > a Q€] + [n)
< p h AR g g
NOM+VD(U<MMH4 N (’D/LWWDKM(L%H+WW’n§

In|<2|z|~*
[n]<|€]

Next we prove

Tyl + D€L + Inl) _
4.13 / / w dnde < L 2n7
) e2(2v2ly)~t Jinl<2]z| ! (1 + €] + [n])? nde S (lyl +121)
In|<I¢]

from which the bound for I11 follows. The left hand side of (4.13) is bounded by

w2 (Jy| + |2])Q(21¢))
dn dg
'4z@ﬂm+anlﬁma (1+¢l)P !

e WOy + DR A e
(@V2(yl+20) ! (1+p)P ~

where the last inequality is proved as in the case dealing with Il5 1, but here p > 2n + 1.
We now turn to the proof of (4.4) and (4.6), the proof of (4.7) being identical to the
proof of (4.6). To prove (4.6) it is enough to show that

Id
(lyl + [=)2

since by the concavity of w, we have t < w?(t) (assuming w(1) > 0, of course). This last
inequality will be a consequence of

. . 1
6(z,y +h,2) —6(2,y,2)| < C Al = 5 max{ly|, |2},

1
4.14 V,o(z,y,2)| <
. Vol n 2 S Gy e
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We notice now that conditions (4.4) and (4.14) follow, respectively, from

(4.15) ‘83770(96,3;, 2)‘ S1o laf=2n,
(4.16) ’ Sl

0, &0y, 2)| S 1, |Bl=2n+1,

where the hat is always Fourier transform with respect to (£, 7). Actually, it is enough to
prove (4.15) for o = 2n €7, and (4.16) for 3 = (2n+ 1)é;, j = 1,...,2n, where €; € R*" is
the unit vector with 1 in the component j and zero otherwise. In order to prove (4.15) and
(4.16) we use the following lemma (see Journe [28], p. 65)

Lemma 4.2. If h € C°(RY) satisfies |h(z)| < (";(lf;) and |Vh(z)| < Cgi)l for all z € RY,

||
and

sup < C(h)v

0<r<R

/ h(zx) dx
r<|z|<R

then HBHOO < C(h).

By using (4.1), it follows that the hypotheses of the lemma are satisfied, with d = 2n, for
the functions hi(&,n) = 850"710(30,5,17) and ho(&,n) = 8gn£ja(:n,§,n), la| = 2n, |B] =2n+1,
uniformly on z.

Finally, the estimates (3.1) and (3.2) with w® and 7 = 1/3 now follow from (4.4), (4.5),
(4.6), (4.7). We mention that the choice 7 = 1/3 is made because |z — 2’| < } max(|z —
yl, |z — 2]) yields |z — 2'| < $ max(|2’ — yl, |2’ — z|) and |z — 2’| < § max(|z — y|, |2/ — z]).
Then we can use (4.5), (4.6), (4.7) to obtain

]K(:L",y,z) - K(:L‘,y, Z)| < |5’($',y - SL”,Z - ZE/) - 5‘(l‘,y - xlaz - CB,)|

(x,y—wafz_x/)_5($ay—$72—1’)’

<Cw“< |z — 2| > 1 .
- |z —yl+ |z —2]) (Jz —y|+ |z — 2[)*

For the regularity of K (z,vy,z) in the y and z variables, 7 = 1/2 is sufficient. O

Theorem 4.3. Let Q : [0,00) — [0,00) be a non-decreasing function, a € (0,1), and w €
Dini(a/2) such that (4.3) holds. If o(x,&,n) verifies (4.1) and (4.2) with |o|+|5] < 4n+4,
then T, is a bilinear Calderdn-Zygmund operator of type w®(t).

Proof of Theorem 4.3. By Theorem 4.1 the operator T, has a bilinear Calderén-Zygmund
kernel of type w®(t). It is enough to show that 7, is bounded from LP(R™) x L%(R™)
into L"(R™) for some 1 < p,q < oo, 1 < r < oo, satisfying % = % + %. Following the
same proofs as in Coifman-Meyer [14] one obtains boundedness for any 1 < p < oo and
% = % + % € (0,1). For the reader’s convenience we summarize the argument pointing out

the appropriate changes.
First one shows that boundedness holds for reduced symbols o.
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Lemma 4.4. Let w and Q) be as in Theorem 4.3. Consider a symbol o of the form

(4.17) o(x,&m) = m(x)$(279¢,277n), x,&neR",
j=0
(4.18) m; € C(R"), sup ”ijLoo(]Rn) <C,
J€No
(4.19) lm; (- + h) —m;(-) | Leemny < Cw(|h]) Q(27), heR", jeN,
(4.20) ¢ € CO(R*™), supp(¢) C {3 <|(&n)| <3},
(4.21) ROp0(E M| <C, 0<lal Sn+1,0< B <n 1,

where C' is a positive finite constant. Then Ty, is bounded from LP(R™) x L1(R™) into L™ (R™)
for any 1 < p < oo and % = % + % € (0,1). The boundedness constants depend only on w,
Q and the constants appearing on the right hand sides of (4.18)-(4.21).

The proof of Lemma 4.4 is analogous to the one in Coifman-Meyer [14, Theorem 12,
p.b5] as long as one has the following version of the almost orthogonality lemma.

Lemma 4.5. Consider functions w and Q satisfying the hypothesis of Theorem 4.3. Let
Cy be a positive constant and m; : R" — C, j € N, be a sequence of continuous functions
such that

(4.22) sup [ o gy < C1,
JEN
(4.23) [ (- + h) = m(-) || Loemry < Crw(|h]) Q(2%), heR" jeN.

Then, for 1 < p < oo, there exists a constant Cy depending only on w, 2, C1, p, andn such
that for any sequence {f;}jen C S(R™) with

supp(f;) € {Z < €] <3273,

we have
1/2

<G |[[ D] 1)
LP(R™) j=1 Lo (Rn)

> mj(z) f()
j=1

To prove this lemma one can proceed as in Coifman-Meyer [14, Proposition 4, p.42] provided
that 3 72, w?(277)Q%(27) < co. This inequality follows from the hypotheses on w and €.

We have 3250, w(27)Q(27) < T2 w(27) ~ [ 0 dt < o0
Finally, one shows that every symbol ¢ satisfying the conditions in Theorem 4.3 can be

expressed in terms of reduced symbols. More precisely,

Lemma 4.6. Let w, Q) and o satisfy the hypothesis of Theorem 4.3. Then

. Uk:,l(%fﬂ?)
o(z,&,n) =7(x,&n) + k’l%n (1+ ’k‘)n—‘rl(l + |l‘)n+1’

where T(x,&,m) = 0 for |(§,n)| > 1, and oy, are reduced symbols with the constants on the
right hand sides of (4.18)-(4.21) uniform on k and [ .
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For the proof of this lemma see Coifman-Meyer [14, p.46] and Bényi-Torres [4]. Note
that T-(f,9)(z) = [ [ L(z,z — y,z — 2) f(y)g(z) dydz, where
1
(4o =y (A + |z — 2
Therefore T} is bounded from LP(R") x L4(R™) into L"(R"), 1 < p,q < 00, + = % + 1. The
boundedness for T, from LP(R™) x LI(R") into L"(R"), 1 < p < o0, 2 =1 +1 € (0,1),

T p q
follows from the uniform boundedness for Ty, and the boundedness for T, in the same

spaces. ]

’L(ZIJ,I—y,JJ—Z” rg

5. PROOF OF THEOREM 2.3

The first step towards the proof of Theorem 2.3 is the following quadratic estimate for
w-molecules with cancelation. Notice that (2.2) and (2.3) imply

(5.1) lpp(x) — or(y)|

< A2 min(1, w(2¥ |z — y))) [ ! 1

+
(1+2V|CC—$P|)N (1+2V|y—$p‘)N

Lemma 5.1. Assume that w € Dini(1) and that {¢g}gep is a family of w-molecules with
the cancelation property

(5.2) ¢q(x)dxr =0, for every cube Q € D.
Rn

Then, there exists a constant C' = C(A, |w|pini(1), N,n) such that for every f € L?(R™), we
have

(5.3) > [ NP < ClIfIZagn -
QeD

Proof of Lemma 5.1. It is enough to show that there is a constant C such that for every
QeD

(5.4) > léq dr)| < C.

ReD

Indeed, given f € L*(R") and assuming || f H r2rn) = 1 we have

2 2
S e N2 = Z<¢>@,f><f7¢@ - | [ S trs0)s0@i@) e
QeD QeD QeD
2
<D (f da)dq = > (f:9Q)(0q. or) (S, f)
QeD L2(R7) Q,ReD
1/2 1/2
< > 1 0e)P(de. r)l > lér, HP[(dq: ¢r)|
Q,ReD Q,ReD
<C Y oo, NI

QeD
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which yields (5.3). In order to prove (5.4) fix Q@ = Q(v, k) and split the sum in R = R(u, m)
as follows

> g or)l = Y Ueq.or)l = Y [(dq.¢r)+ > [(dq,dr) = Si+ Sa.

ReD HEZ u<lv u>v
meZ™ mezZ"™ mez"

We first estimate S;. The cancelation property (5.2) and inequality (5.1) allow to write

Si= 3 oo.0n)l = Y | [ 60(e)@n@) — ontea)ldo

n<v n<v
mezZ™ mezZm™

A29vn/29un/2
< in(1 Q|
_2/(1+2y|$_$Q|)len< w(2]z — z]))

1 1

X
2 Ll T 2rfe— 2 mm)N (1 2ag — 2 rm])N

dx

) ovn/29un/2 ) p
=A’Cy Y T35 —2g)" min(1,w(2"|z — zql)) dz
n<v

2Vn/22un/2
= A’Cy / dz
l;/ 1<w(2¥|z—zq]) 1+2V‘x7$QDN
21/n/22,un/2
+ A%C / w2z — zgl) dx
N;, 1>w(2H|z—zq]) 1+2V‘$_xQDN ( | Q|)
=: Sl,l + SLQ.

By multiplying by a constant (if needed) we can assume that w(1) = 1. Hence,

2Vn/22un/2 dx

ST —— APCN Y 2N — 420
T —TQ

u<v

S11 < A*Cn Z

M§V|xfo|22—“
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On the other hand,

21290 (9 — )
Sta=ACw ) (=

|:13 TQ|<27H
|z—zg|>1

V2912 (2M |z — z0))
A2 @V g
+ NZ / (1+ 2|z — zg|)N v

|ac TQ|<27H
Wz—zg|<1
V2912, (QM |1 — )
< A%C / @4
v A+ 2z —agh)¥

HSVou—v <om|z—zq|<1

+ A*Cy Z / V2980205 (2P| — 1)) da
“§V2V|I—J:Q|<1
v—p—1

2Vn/22un/2 Wy —
:QA2C%f§E: zg: (/Q w( h: xQ|)d$

p<v A=0 (1+2V‘$_xQDN

2- A1 |p—zg|<2—>

+ A%Cy Z / QUn/29Kn 2, (9HTV RV | — zql) dx

“Sy2”|x7:rQ|<1

v—p—1
dz
2 [20un/2,  (o—A
I I s
psv A=0 2-A-1 <M |p—g | <22
+ACN D v/ 29hn 2,24V da
'U“SV2V|x—mQ|<1
v—p—1
<ACy Y Y 2NN (97 4 42O Y T w(207)
p<v A=0 pn<lv

< w|pini1y A*C.
The estimate for Sy follows analogously by interchanging the roles of ¢z and ¢¢. O

The following lemma is a particular case of a discrete bilinear almost orthogonality result
whose proof can be found in [3].

Lemma 5.2. For every N > n+ 1 there is a constant Cy, depending only on N and n,
such that for any v € Z and any x,y,z € R" the following inequality holds
1
kgz:n [(1+2v]x — 27Vk|)(1 + 2¢|y — 277k|)(1 4 2¥|z — 27 VEK|)]PN
< Oy
A+ 2 =y +2¢]y — 2)(1 + 2¢]z — )Y

The following is the main theorem of this section.
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Theorem 5.3. Assume w € Dini(1/2) and let {(]%}er, j = 1,2,3 be three families of
w-molecules with decay N > 10n and such that at least two of them have cancelation. Then,
the paraproduct I1 defined in (2.4) has a bilinear Calderdn-Zygmund kernel of type 0(t) with

9(75) = A3ANw(CNt), t >0,

for some constants An and Cn (hence, 8 € Dini(1/2)). Moreover, I has the mapping
property

II: L?(R") x L*(R") — LY(R™).

In particular, 11 is a bilinear Calderén-Zygmund operator of type 0(t).

Proof of Theorem 5.3. The kernel of II is given by

K(z,y,2) = Y |QI7205 ()¢5 (2)dp (x).

QeD

In order to prove the size estimate for K(z,y, z) we index the dyadic cubes by Q = Q(v, k)
and use (2.2) and Lemma 5.2, to obtain

A3|Q|—1/22u3n/2
K <
K@y 2)| < 3 L+ 27y — 2 k)N (L + 2¢|z — 2 Vk[)N (1 + 2/|z — 2 Vk)N

QEeD
1
:A3 221/n
V% gzz (1 + 2]y — 2 Vk)N(1 + 2¢[z — 2 k)N (1 + 2/[z — 2-Vk[)N
- A3Z 221/n
= L W2l — e VAT 2] — )V + 2V — 2V
22un A3CN

< A3 <
y% [L+2"(ly —z| + [z =yl + [z = 2D]V5 7~ (Jo =yl + |y — 2 + |z — 2])*"
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The w-regularity of the kernel involves the concavity of w. Take x,y, z,h € R™ such that
|h| < 1/2max(|z — yl, |z — z|) and do

K(2,y.2) = K@+ hy.2)| £ 3 QI 20b w3 ()lIdh(x) - ddy(a+h)
QeD
; 22 (2|
L Tl = e R+ Pl - R+ e = TR
kezm™

A3
A Tl 2 2 - 2 RN 2 - 2
keZn

22ynw(2y|h’)
< A3
N V%(1+2”|y—ar|>N/5<1+2"!z—y!)N/5(1+2”\:c—z!)N/5
22Vn oV
+A3Z v N/5 Z/w( |hDN/5 v N/5
Vez(1+2|yfx+h|) (I4+2Yz —y)NPA + 2%z 4+ h — 2|)

22unw(2u‘h|)

3

<4 Z v _ _ _ N/5
S +27(y— 2|+ |z =yl + |z — 2])]

22unw(2y|h|)
+ A3 :
%[1+2"(’y—x+h\+]z—y|+|x+h—z|)]N/5

Since the condition |h| < £ max(|z — y|, |z — 2|) implies

1 3
Jlz—yltle—z2) <ly—z+hl+|z—z+h < S(lz -yl +]z - 2)),
we only need to bound one of the above sums. Let o € Z such that
2 < |z —yl+ |y — 2 + ]z — x| < 207

Then

2vn v 2vn V-«
3 27w (2"|hl) <2_2anz2 w(2""*|h])

14+ 27(ly — x| + |z — y| + | — 2[)]V/> — (L42v)N/5 7

VEZL VEZL

where we used the change of variables v+« +— v. Set Ay :=3 ., 22V (1 4 2”)*N/5. By
concavity of w we have

22unw(2v—a ’h‘) ( 1 22yn2u—a|h’ >
v\N/5 - v\N/5
Z (1+2v)N/ VZGZ(1+2)/

20N |h| >
lz—yl+ly—zl+|z—2]/)

VEZL

< Ayw (CNQ_a|h|) < Anw (

Finally, set 0(t) := 2A3Anw(2Cyt). The regularity in the y and z coordinates follows
similarly. The L?(R") x L?(R") — L!(R") boundedness is a consequence of Lemma 5.1.
We can assume (by taking transposes of I1, if necessary) that {gbb} and {q%} are the families

of molecules with cancelation. Given f,g € L?(R") and h € L>®°(R") we use duality and
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(2.2) to obtain
(TL(f, 9). ) < D 1QITVAI( 6 II(g: )1 {6y b

QeD
1/2 1/2
2" h(x) dz
<[ Swwek] ([ Sieenr) s [ MO
QeD QeD P R

< ACN (| fll p2@ey 191 L2y 1]l oo (mry -
]

Remark 2. If instead of the regularity condition (2.3) we require from a molecule to verify
the weaker inequality

(5.5) |op(2) = dp(y)] < A2"Pw(2]x —yl), .y €R",
then, (2.2) and (5.5) imply
(5.6)  |op(z) = op(Y)]

< A2vn/? min(l,w1/2(2y|x_y|)) ! -

(42 —op)2 ' (L4 2]y — op)VP

The proof of Theorem 2.3 also applies with condition (5.5) instead of (2.3), since we can
replace the use of (5.1) by utilizing (5.6). In this case, we require the weaker assumption that
w!/2 be concave instead of w be concave. However, we also need the stronger assumptions
fol wl/‘;(t)dt/t < oo (instead of fol w?(t)dt/t < c0) and N > 10n + 10 (instead of N >
on + 9).

Remark 3. One could be tempted to think that paraproducts associated to w-molecules
with enough decay can be realized as pseudo-differential operators in the class BS 1w for
some choice of Q. If that were the case, the results in this section would just follow from
the ones in Section 4. However, such a realization is not true in general, as the following
example shows. Consider three functions ¢/ € S(R"), j = 1,2,3, and, given a dyadic cube

Q = Ql/k‘v set

Yh(z) =22 (2"s — k), z€R",j=1,2,3.
Also assume that 1;; is supported in {{ € R : 1/2 < |¢| < 2} and equals one in {{ € R™ :
1 <[] <3/2}, for j = 1,2; and supp(¢®) C [0,1]". The paraproduct II built from these
1?’s can be written as a YDO with symbol
o(@,&m) =D Y e RG22 (27 (2 — k).
veZ keZn

The support hypotheses on the smooth molecules 17 allow to easily estimate
08050 (@, & m)] = (|¢] + [n)) 1D g p e R\ {0}

Hence, condition (4.1) does not hold. A closer look at the example also shows that condition
(4.2) cannot hold either for any choice of w, © due to the blow-up of the £ and 7 derivatives
of 810(1'75777)7 |7’ =1, at (5777) = (070)'

Remark 4. We point out that the realization of paraproducts as bilinear Calderén-Zygmund
operators of type w(t) described in Theorem 2.3 complements the approaches in [21], [22],
[31], [32] [37], [36], [40], and [46], where, in turn, classical Fourier Analysis operators are
reduced or decomposed into paraproducts.
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6. BOUNDEDNESS OF BILINEAR CALDERON-ZYGMUND OPERATORS OF TYPE w(t)

In this section we elaborate on a bilinear theory for Calderén-Zygmund operators of type
w(t) with Dini continuous w. In subsections 6.1 and 6.2 we have deemed it appropriate
to provide the reader with either complete proofs or detailed outlines of proofs of the
boundedness properties of bilinear Calderén-Zygmund operators of type w(t) on Lebesgue
spaces, although they sometimes follow the known proofs in the case of w(t) = t¢ by L.
Grafakos and R. Torres in [26] and [27]. On the other hand, we point out that the results
in subsections 6.3 and 6.4 concerning weighted Hardy spaces and weighted amalgam spaces
respectively, are new even in the case w(t) = t°. For simplicity, we have also fixed the value
of 7 in Definition 3.1 to be the usual 1/2.

6.1. Boundedness on unweighted Lebesgue spaces, H', and BMO.

Theorem 6.1. Consider w € Dini(1/2) and let T be a bilinear operator associated to a
bilinear Calderdn-Zygmund kernel of type w(t), K(x,y, z). Assume that for some 1 < p,q <

oo and 0 < r < oo satisfying

1 1 1

4=

p q T
T maps LP(R™) x LY(R"™) into L™°(R™). Then, T can be extended to a bounded operator
from LY(R™) x LY(R") into L2 (R").

Proof. We write [(Q) to denote its side length and @Q* to indicate the cube with the same
center as (@ and [(Q*) = (2n + 1) (Q). The arguments in this proof are similar to those in
Grafakos-Torres [26], but they are also slightly different as we make no use of the bounded-
ness properties of the Marcinkiewicz operator. Fix A > 0 and f1, fo € L'(R"). Assuming,
without loss of generality, that || f;[|; = 1, j = 1,2, we have to prove that

{z € R": |T(f1, fo)(x)] > A} < C A3,

for some constant C' independent of fi, fo and A. Consider the Calderén-Zygmund decom-
position of each function f; at height A/2. Then, for j = 1,2, we have

(6.1) fi=g9; +j,

(62 lgsll, < (2"A%)' 75, 1 <p < oo,
(6.3) b = Z b;k, where each b; . is supported in a dyadic cube @ x,
k
(6.4) For k # k', the interiors of Q1 and Qs are disjoint,
(6.5) / by s () d = 0,
Qjk
1
: kil = 2 &kl 5
(6.6) Ibll, < 27TIAZ | Qkl
1
(6.7) 1@kl <Az,
k

The set {x € R™ : |T(f1, f2)(x)| > A} is contained in the union of the sets
{z € R": |T(hy,hy)| > 471A}
where h; € {g;,b;},j = 1,2. Therefore, we have to show that
[{z € R™ : |T(hy, ho)(z)] > 472} < C A3,
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where h; € {g;,b;} and C is independent of A and f;, j = 1,2. Let us first consider the
easy case where h; = g;, j = 1,2. Using the boundedness of T" from LP(R") x L(R™) into
L™*°(R™) (with norm A) and (6.2), we do

1

4" A" 2n(27‘—1))\r—§

. . 44 r
o e B Mo )@ > 40 < (5 lal I, ) < %5
< CppATA 2,

We address now the rest of the cases, when there is at least one function h; = b;. Let
B C {1,2}, #(B) =1 > 1. Assume that h; = b; if j € B, and h; = g; if j ¢ B. We have

[{z € R" ¢ |T(h1, ho)(x)] > 47'A}| < [{z € Ujen Uk Q1)
+ |{z ¢ Ujep Uk Q. : IT(ha, ho) ()| > 47N}
In view of (6.7), we only need to work on the measure of the set Ep := {z ¢ Uje Ur Qj, :
|T'(h1, ha)| > 471A}. Denoting by c; the center of @, x, we will show that
(6.8) Tk, ha)(@)] < DA T M (@)
jEB
where x ¢ Ujep Uy Q;fjk, D is a constant independent of A and f;, j = 1,2, and

oy u@w>?MQM"
],l(aj) = Zw <]ac — ¢kl |z — el

k

Assuming that (6.8) holds, Chebychev’s and Holder inequality yield

|EB| < |q 2 ¢ Unes Uk Qi - HM;ul(m) > (4D)!

jeB

<60t | e ecal ([, e

TEUmeBUrQy, & jeB jeB

We now estimate each of the above integrals by using polar coordinates.

i n
/ 2) dw < Z/ < UQjk) )l UQjk) _dz
$¢Um€BUkQ:nk 33 cj, k‘>l(ij |f[f - C] k“ |flf - Gy

_CZ/ '

%wyu@wnwwzc (oo et
<ng)< =" dp n%:(Q],k)/o —dt

o
< Cn,w,l )\75 .

We thus obtain |Eg| < (4D)% nw,l )\_%, and the theorem is then proved. We will now
proceed to prove (6.8). In what follows = ¢ Ujcp Uy, Q-

First case: 1 = 2. Since z is away from the support of b; and be, by (6.3) we can write

| bl,b2 |<ZZ

k1 ko

/ K(x,y,2)b1 g, (y)ba,k, (2) dydz| .
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Fix for a moment ki, ko and assume, without loss of generality, that [(Q1 k) < I(Q2k,)-
Using the cancelation (6.5) of by i, and the regularity (3.2) of the kernel K,

K(x Y,z )blkl( )dy’ -

/n(K<xv Y, Z) - K(xa Cl,sz))bl,lﬁ (y> dy

|y — c1 k| )
w ’ bk, (y)| dy
/]R" ‘x_y‘+’$—2|) <|x—y|+|x_z‘ |11( )’
HQ1ky) )
g ’ b1k, ()| dy

N

Note that the condition |y — c1 5, | < 3 max(|z — y|, |z — 2|) is satisfied since y € Q1 %, and
z ¢ Q7 , - Actually |y — c1p, | < 4“@1&1) < % |z — ¢1,|. We then have,

T by, bo) ()] < ZZ/
Ck Q1 k) Nduds
SEX [, L mmare e (i) bl

KCL’ Y, 2)b1 g (y ‘|b2k2 z)| dydz

Note that fory € Q1 x, and = ¢ @7 , we have |z —y| > % |z — ¢k, | . Similarly for z € Q1 g,.
Then, using that w is nondecreasing and doubling,

1
) 2
" (M) w< UQ1,k1) > ) w< (Qz,'ki)>
|m—y|+|z—z| < ’I—Cl k1 ’J’_lx_CQ kQ |Z‘ Cl7ki’
< 1

(lz =yl + o= 2[)*" ~ (lz = crp | + [ — 20, [)*" ~ 27 o= cig]”

This and (6.6) give

[T (b1, b2) ()]
ZZ/ /R" H ‘iL‘ — Ci,k; ’ <‘x(?lc]: ) ‘) : |b17k1 (y)|’bz7k2(2)|dydz

; HOin) \ 2 2
<CK>\ZZH‘OCQ’“ <|x(?cf:\> ~ Cr A [ Ma()

— Gk, ‘ j=1

which is (6.8).
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Second case: | = 1. Suppose hy = by and he = go. Then, since x is away from the
support of by, we use (6.3), (6.5), (6.2), (6.6), and the properties of K and w, to write

T'(b1, g2) (= ’<Z/

/7L k

Ck ly — c1 k|

< o ?

<ol [ 3 [, oo o= (L) o v
1 (Qik,)

<C )\1/2/ / ( 1 ) b dyd

< COx an n<|x—y|+\x—zr>2n°" oy ) P @ dydz
1Q

se? S [ e () ol o

< CK)\Z ‘x Ql k1 < (Ql,kl) > ~ CK)\M;JJ(-%),

—C kl ’JE - Cl7k1’

KCUZ% 2)bi 1, (y dy’|gg )|d=

[ 0 G0.2) = Kcas Db ) do (2t

which is (6.8). The case hy = g1 and hy = by follows similarly. O

Theorem 6.2. Consider w € Dini(1/2) and T be a bilinear Calderén-Zygmund operator
of type w(t) in R™ with kernel K. Let 1 < p, ¢ < o0, % <r < oo such that % = %—i— %. Then
we have

(i) If p, ¢ > 1, then T' can be extended to a bounded operator from LP(R™) x L4(R™) into
L"(R™), where LP(R™) or LY(R™) should be replaced by LX(R™) if p =00 or ¢ = o0
respectively;

(ii) If p=1 orq =1, then T can be extended to a bounded operator from LP(R™) x L1(R™)
into L™*°(R™), where LP(R™) or L1(R™) should be replaced by L°(R™) if p = oo or
q = 00, respectively;

(11i) T can be extended to a bounded operator from L°(R™) x L2 (R™) into BMO.

The proof of Theorem 6.2 can be carried out using duality and multilinear interpolation
techniques as in Grafakos-Torres [26, Theorem 3| (case w(t) = t), if the following holds:

(i) T is bounded from L'(R") x L'(R"™) into L%’OO(R") (this is our Theorem 6.1),

(ii) for each h € L®(R™), T}t(f) = T(f,h) and T?(f) = T(h,g) are bounded operators
from L*(R™) into L*(R") for 1 < s < oo and from L*> to BMO with both norms
bounded by a constant multiple of ||| o gny - This follows from the fact that 7, L and
T7 are linear Calderén-Zygmund operators of type w(t) as described in Yabuta [47],
where these boundedness properties are proved.

Corollary 6.3. Under the hypothesis of Theorem 6.2, T can be extended to a bounded
operator from L% (R™) x L>®(R") into BMO, from L®(R") x H! into L*(R"), and from
H' x L>®(R") into L'(R™).

The extension of T' to L (R"™) x L>*(R™) can be done in the usual way once T is defined
on L°(R™) x L°(R™) (see Grafakos-Torres [26]).
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6.2. Boundedness on weighted Lebesgue spaces. Let Q denote the collection of all
cubes @ C R™ with sides parallel to the coordinate axes. The Hardy-Littlewood maximal
function M is defined for f € L (R™) by

loc
1
Mi@) = swp o [ (r@)d
QeQ:zeQ ‘Q’ Q
A nonnegative weight w € L{. (R") belongs to the A, Muckenhoupt class, for 1 < p < oo if

_ 1 1 )
i, = s (i o) (g ) <o

We write w € A if there exists a constant C' such that Mw(z) < Cw(z) for a.e. x € R"
and set Ay = Up>14,. Recall also that a weight w is in the class Ay if and only if there
exist positive constants ¢ and 6 such that for every cube ) € Q and every measurable set

EcQ,

w(E) _ (181’
(6.9) w(@) = (rcm) ’

where w(S) = [y w(x) dx for any measurable set S C R™.

We denote by L%, (R™) the weighted Lebesgue space of all functions f on R™ such that
11 e gy == (Jan 1f(@)|P w(z) dz)/P < oco. In this subsection we study weighted norm
inequalities for a bilinear Calderén-Zygmund operator of type w(t) and its corresponding
maximal truncated operator.

Let T be a bilinear Calderén-Zygmund operator of type w(t) associated to a kernel
K(z,y,z). The maximal truncated operator is defined as

T.(f,9)(x) = Sup T5(f,9)(x)] -

where

T5(f, 9)(z) = / K(z,y,2) f(y)g(z) dydz.

|z —y|2+|z—2|?>62
Note that condition (3.1) guarantees that T is well defined for (f,g) € LP(R™) x LI(R"™),
1 < p, ¢ < o0, since the integral is absolutely convergent in this case. In what follows, W
denotes de norm of T as a bounded operators from L'(R") x L'(R") into LY/%%°(R") (see
Theorem 6.1).

6.2.1. Cotlar’s inequality.

Theorem 6.4. Let w € Dini(1/2) and T be a bilinear Calderdn-Zygmund operator of type
w(t) in R™ with kernel K. Then for all n > 0, there exists a constant Cy ., n such that
(6.10)

T(F.9)@) < o ((MUT(E.0)) (@) + (Cox + W) Mf(2) Mg(@) . @ € R
for all (f,g) in any product space LP(R™) x L1(R™) with 1 < p, ¢ < 00.
Proof. Define
T.(f,9)(z) = sup To(f,9)(@)|

where

T5(f.9)(x) = /A K2 Sl dyde, Aste) = {(0,2) e —ul e =21} > 9}
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It is enough to prove (6.10) with 7% replaced by T., since by (3.1),

sup/ K(z,y,2)f(y)g(2)| S Mf(x) Mg(z).
max(|z—ylJo—z]) <

6>0
|z —y|?+|z—2|?>62

We will show that

~ 0
611) |To(f,9)(w)] £ Cx MF(@) Mo() + [T(f,9)) T g0)@)], o~ '] < 5,
where fo = f XB(z,5) and go = g XB(z,5)- Once (6.11) is proved, we have for each fixed > 0,

T5(f.9)@)| S(Cx Mf(w) Mg(@))" + M(IT(£.9)|") (2)

f0790 x/) K d.’L',.
5] s |

The last term in the above inequality can be shown to be bounded by C,, W" (M f(z) Mg(x))",
0 <7 < 3, using only the boundedness of T' from L'(R") x L*(R") into LY2%(R™) (The-
orem 6.1) and it follows as in Grafakos-Torres [27].

To prove (6.11), note that T(f, g)(z") — T(fo,90)(x ng(x (' y,2) f(y)g(2) dydz

for |z — 2'| < g It is then enough to show that

Ts(f.9)(z) — K(2',y,2) f(y)g(2) dydz

S Cr Mf(x) Mg(z), |z —a| <
As(z)

0
3

Noting that |z — 2’| < 2 max{|z — y|, |z — 2|}, for (y, z) € As(x), we can use the regularity
of the kernel (3.2) to obtain,

IT5(f,9)(x) — K(',y,2) f(y)g(2) dydz|

As(z)
Ck < |z — | )
< w fy)g(z)dydz
/AM =g+ =7 gy v —a ) FW9

|lz—y|>8,|z—2|>5 |lz—y|>6,|lz—2|<d |lz—y|<8,|z—2|>8

For the first term we have, using that w is non-decreasing and that |z — 2/| < %,

1 1
we (Tzﬁy\) w2 (sz\)
[ o] ) ),
|lx—y|>6,|lz—2z]>6 |lx—y|>6 "T - y’ |lx—z|>6 “T - Z’

1L 2
<Ok <w%(1)+/0 wt(t)dt> Mf(z) Mg(z).

For the second term (and similarly for the third term) we have,

Im yl)
T fy)dy 9(2)dz
lz—y|>6,|lz—2|<d |x—y|>d ’1' - y! |z—z|<d

< Oy ( S0 dt) M) Mola).
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O

Corollary 6.5. Let w € Dini(1/2) and T be a bilinear Calderdn-Zygmund operator of type
w(t) in R™. Then T is bounded from LP(R™) x LY(R™) into L"(R™) for 1 < p, q < oo,

1/2 <r < oo, with 1 = %4—%, and from LP(R™) x LY(R™) into L"™*>°(R™) forp=1 orq =1,
1 % + %. Moreover, in any case, | Ty|| < (Cx + W).

T

6.2.2. Weighted norm inequalities for T.

Theorem 6.6. Let 1 < p, g < 0o, 1 = % + %, and w € Aoo. Consider w € Dini(1/2) and

rr

let T be a bilinear Calderdn-Zygmund operator of type w(t) in R™. Then,
(i) if ITe(F. )|y oy < 00,

(6.12) 1T (f, D 1 (mry < Cpin(Cr + W) [[MF| g eny Ml g gemy -
(it) if min(p,q) > 1 and w € Apin(pq), then we have |Tu(f, 9)|| 1 gy < 00 and
(6.13) 7% (f, Q)HL;(Rn < Cpn(Cx + W) Hf“Lﬂ)(R”) HgHLZ,(R")‘

Theorem 6.6 will be a consequence of the following good-lambda inequality and the
boundedness properties of T} in the unweighted case (Corollary 6.5).

Theorem 6.7. Considerw € Dini(1/2) and let T be a bilinear Calderdn-Zygmund operator
of type w(t) in R"™ with kernel K. Let w € As and 0 be as in (6.9). Then there exists a
positive constant C, such that for all « > 0, all v > 0 sufficiently small, and all (f,g) €
LP(R™) x LY(R™), 1 < p, ¢ < 00, the following inequality holds,

(614) w ({T2(f,9) > Pa} N {Mf Mg < 7a}) < C(Cr + W) ({Tu(f, ) > a})

Proof. We set
Pi={z: T.(f, 9)(x) > a} = U;Q;
where @Q; are Whitney cubes. Since w € A it is enough to prove that

(615) [N {T.(/,9) > 2%a} N {MFMg < 7a}| < C(Cr + W)/2121Q5).
Let @} be an appropriate large multiple of @; and z; € Q7 N P¢ such that

1 3: *\C
(6.16) gé%)}j |zj — ul < 7 dist(z, (QF)°).

Also, consider &; € Q; such that Mf(&)Mg(&;) < va. For h € {f, g}, define h° = hxqQ:
and h>™ = h — h°. Then

Q) N {T.(£,9) > P} N {MF Mg < 7o}
< Y| TN > 203 N{MIMg < o).

1,k€{0,00}
The term corresponding to i = k = 0 is shown to be bounded by C(Cx + W)¥241/2|Q;|
(see Grafakos-Torres [27, Theorem 3.1]). This only uses the fact that T} is bounded from
LY(R™) x LY(R™) into LY/%°°(R™) with norm bounded by C(Cx + W) (see Corollary 6.5).
The terms corresponding to ¢ = 0, j = oo and ¢ = oo, j = 0, can be made zero for v small
enough (see Grafakos-Torres [27, Theorem 3.1]). This only uses the hypothesis (3.1) on the
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size of the kernel. When ¢ = k = co we can make the corresponding term equal to zero by
using the regularity (3.2) of the kernel in the following way. We show first that

(6.17) T5(5. 9™ (@) = Ts(£,9%) ()| £ O MIEM9(E), w € Q.

We have

To(5,0)(@) = To(F% 00 @)| < [ 1K (p2) = Kl 2)| [12(0)9(2)| dydz
As(x)

+ / K (25,9, 2) f2(9)g™ ()] dydz + / K (2,9, 2) £ (9)g™ (2)| dyd-.
As(x)\As(x5) As(z)\As ()

Note that (6.16) implies that |z — z;| < 1 max(|z —y|, |z — 2|) for y,2 € (@), = € Qj.
Then we can apply (3.2) to obtain

/A ) = Ko, 2)] 705 dyd

;]
= CK /n/n |$— ‘x y|+‘x Z>2n ‘foo(y)goo(z)’ dde

yl + |z — z)
1/2 (l(Q]) wl/2 G(Q;‘)I

w
|z—y| -
< Ok / ,i’) F(w)] dy / n) l9(2)] dz.
(@)e |z =yl @)e |z — 2|

Noting that |z —y| ~ |§; — y| for y € (Q )¢, x € Q;, we have

W2 (1) W2 ()
/ = NE ) dy < / 2 G py) dy
@) =yl &—yi>u@n & =yl

) 1,172
< <m(1)+/0 t(t) dt) M(E)).

We have a similar estimate for the factor corresponding to g.
Since [z —u| ~ [2; —ul ~ [§; — u| for u € (Q})° and x € Q;, using the size (3.1) of the
kernel K, we get,

/ Kl (<@l dtss [ 0L, [ e,
As(@)\As(;) & —yl~s 1€ = VI &=l €5 — 2

1f(y)]
+ ———d d
/lfj—y~5 & — 3/|2n y /Sj—ZSS a(e)] dz

l9(2)]
+ ——__d d
/|sj—z~a &5 — 2" ’ /Iﬁj—yl,éé Sl dy
SMEF(E) My(§;),

with a similar estimate for ng(a:j)\Aé(x) |K(zj,y,2) f*(y)g>°(z)| dydz. Therefore (6.17) fol-

lows.
One also has that

6.18)  |T(%.0%) ()| < Telf.9)(x;) + C O MFE)IMg(&), 8> 0.
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The proof of this uses the condition (3.1) on the size of the kernel, and follows the steps
in Grafakos-Torres [27, Theorem 3.1]. Using (6.17), (6.18), M f(&;)Mg(§;) < v, and

i(f, 9)(zj) < a, we get i(foo,gw)(x) < 2o for € @ by choosing v small enough. [

6.2.3. Weighted norm inequalities for T. The weighted norm inequalities above can be
extended for a bilinear Calderén-Zygmund operator T of type w(t) by controlling T' by T*
and a bounded bilinear pointwise multiplier operator. More precisely, for f and g bounded
and compactly supported,

(6.19) T(f9)(@)| S Tulf 9)(2) + [[bll oo (ny 1 f ()9 ()]

where b is a function satisfying [|b[| oo (gn) S (Ck +W). This is proved using the arguments
from the linear case (see [27]).

Theorem 6.8. Let 1 < p, ¢ < 0o, & = % + %, and w € Aso. Consider w € Dini(1/2) and

Tor
let T be a bilinear Calderdn-Zygmund operator of type w(t) in R™ with kernel K. Then for
f and g bounded and compactly supported,

(6.20) ITCf, ) 1 vy < Con(Cr + W) IM Sl 12 mmy 1M L3, geny -

In particular, if w € Apin(p,q) we have

X

(6.21) ITCF9)l s gy < Com(Crc + W) 111l ey N9l s

and therefore, T' extends as a bounded operator from L4, (R™) x Li,(R™) into L’ (R™).

Remark 5. Adapting Remark 3.6 of Grafakos-Torres [27], for w € A; and f and g bounded
(7:9) L/ > (R)

T.(f,9)(x) —f*(f,g)(x)’ < Mf(z)Mg(x), we then

< 0. Using the good-

and compactly supported, one can prove that ’

lambda inequality (6.14) and that
obtain that

T2, 0) 3200 gy S 1Ml e gy M oy

As a consequence of this and (6.19), T extends as a bounded operator from LL (R")x L} (R")
into Li,/z’oo(]R") ifwe Aj.

6.3. Boundedness on weighted Hardy spaces. In this subsection we present a weighted

version of the Hardy space estimates for bilinear Calderén-Zygmund operators established
by L. Grafakos and N. Kalton in [23].

Theorem 6.9. Let ;%5 <p1,p2 <1,0<p <1, with1l/p=1/p1+1/p2, and w: [0,00) —
[0, 00) non-decreasing, concave such that

1
dt
(6.22) / PP 2 (1) — <00, j=12
0

If w e Ay and T is a bilinear Calderén-Zygmund operator of type w(t), then
T : HPY(R™) x HP2(R™) — LP (R™).

Remark 6. The critical index ¢, of a weight w € A is defined as the inf{qg > 1:w € A,}.
A well-known result in the linear theory of Calderén-Zygmund singular integrals asserts
that if the kernel of a Calderén-Zygmund operator T" has smoothness w(t) = t7, for some
0<vy<1,and 0 <r <1, then T maps H],(R") — L; (R") provided that ¢, /r <1+ vy/n
(see Theorem 2.8 in [20]). In our situation, the bilinear kernels possess moduli of continuity
of Dini type instead of Holder type. This essentially compels (by letting v go to 0) the
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choice of the class A; (i.e., g = 1) and r = 1. Also, notice that if p; = ps = 1, then (6.22)
reduces to w € Dini(1/2).

Proof of Theorem 6.9. Let w € Aj and n/n+1 < p1,pa < 1. By the atomic decomposition
of the weighted Hardy spaces Hy/, j = 1,2, (see Proposition 1.5 in [20]) we can consider
the dense class of finite sums of the form fJ > i AjkGj i, where the functions a;, (called
pj-atoms) and the coefficients Ajk; satisty

(6.23) supp(aj k) C Qjk»
(6.24) laj kll oo < w(Qjk) 1P,

(6.25) / ajr(x)dx =0,
Qjk

1/p;
(6.26) (Z A, ) <20 fll -
k

As in [23], in order to estimate the L},-norm of

T(f1, f2) (@) =YY Mok Aok T@15y, 28,) (),

k1 ko

we fix ki, ko, € R". For j = 1,2, let Pjy, be the cube concentric with @Q;; such that
U(Pjk,) = %Z(Qj7kj), and pick ¢;x; € Pj;. Suppose first that x ¢ @1y, U Q5 , and assume

(by switching the roles of Q1 x, and Q2 ,, if necessary) that I(Q1x,) < [(Q2k,). By (6.24)
and (6.25),

| alklva’?kz)( )’

//a2k2 alkl )(K(m,y,z)—K(m,cl,kl,z)dydz
‘a’lkl ‘ ( |y—01k1| >

az k w ’ dy dz
< [l [ Gyt (e

// ’a2 k2 ’a’l k1 (y)’ w ( Z(Ql,lﬂ) > dy dz
|$—Clk1|+|l‘—02k2|> |$_Cl,k1|+|x_027k2|
w(Qupy) P w(Qory)” 1/p2!Q1,k1||Q2,k2|w < UQ1 k)

dydz
|5C -G k1|n|x - C2J€2|n |x - Cl,k1| + ‘33 - CQ,I@‘)

2 .
Qg lw( Q)P )y < HQjky) )
S eoviamr e o ti@m)

AN

]=1
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Now suppose = € Q3 ., \ Q7 ,- Again, by (6.24) and (6.25),

‘alkl ’ |y—01k1|
T < ’ dyd
Flovn ) = [loane) [ et e () e

< —1/p2 ‘al k1 y)‘ ( l(Ql,kl) >
S w(@2) // Tr |+ r— 22 o —erp] ) Y5
w(Qa2 ) VP2w(Q1 )~ ”pllQl,kl\w( H(Q1,k,) )

|'T — CLky |n |$ - Cl,k1|
w(Qak,) T Pw(Qrky) ™ P Qup | ( UQ1,k4) )
(o —erml +1Que)" o —ernl+1Qur) )
Since = € Q;M and concavity of w we have

1 S Z(Q27k2) 5 w < l(Q27k2) > .
T — co k.| + U(Q2k,) |z = cos| + UQ2k,)
Therefore, if z € Q3 , \ QF k,» and by symmetry, whenever z € Q3 ; AQT ;.

2 _ .
|Qjk; [w(Qjk,) /P HQjk;)
(627> ‘T(al kyy G2 kz) S 1;[ C],kj‘ n Z(Qj,kj))nw (‘:L' _ Cj,kj’ + Z(ijj)) ’

Combining the bounds above, and since w(t) < Cw'/2(t), for 0 < t < 1, we get that if
T ¢ QT,kl N Q;,kg’

Qi [w(Q,) 7 w1/2< HQj,) )
)" | |

(6.28) |T(a1 k ,a2 k ’
! 2 H — ¢k | + UQjk;) — Cjp; | + UQjk;)

Consequently,

I T(f1, f2)(x) > ks e 1T (a1, a2,) (@) IXQ; ., 1@, (2)
ko

B>

k1

2 .

g 1@k [10(Qy ;) /P2 1/2< [(Qjk,) )

= i@ (el 1@
=: Gl(a:) + GQ((IJ)

In order to bound the L,-norm of the first summand we use the following real analysis
lemma (see Lemma 2.1 in [23])

Lemma 6.10. Fizp € (0,1] and let w be a doubling weight in R™. Then, there is a constant
C, depending only on p and the doubling constant of w, such that for all finite collections
{Qk}le C Q and all nonnegative integrable functions g supported on Q. we have

K

K
> > (oo | o) ) xa;

Fix atoms ayk, and agk, and suppose Q7 ;, NG5, # () (the case of empty intersection
being trivial). Assume, without loss of generality, that {(Q1 x,) < [(Q2%,) and pick Ry, i, €
Q such that

<C

LY,

LY,

Qikl m Q;,kg C Rk17k2 C R;‘;l,kz C thkl m Q;j‘(]m?
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and w(Ry, k,) > cw(Q1 ). By Theorem 6.2 and the linear case treated in Yabuta [47], T
maps L x L2 — L2 and L2 x L — L2, hence

1/2
| e @) d < ( [ T a)@)Put) dw) W(Rio )2
RkLkQ

,S Hal,/ﬂHLgu Ha?,szLoo w(Rk1,k2)1/2
< w(Quiy )2 VP w(Qa ) P2w( Ry gy)

<w(Qupy) P w(Qop,) VP w(Riy )
By Lemma 6.10, and recalling that 0 < p; <1 for j = 1,2, we obtain

Gz, < D2 Mkl P2k 1T (@1 k5 G,k XRy g
k1 ko

LY,
< [E X Pualas (o [ Mol de) v,
kl 2 17 L,ﬁ)
SO0 Pk Ao w(Qur) P w(Qak,) ™ P2 Xy e XQ3%,
k1 ko L,
2 2 Uri
H > N [w( Q) Uijijk]. ST M 1P <11 15l s -
k; i =1\ ky j=1

To estimate G2 we begin with the simple

Lemma 6.11. Letl > 0 and 0 < g < 1. Suppose that w : [0,00) — [0,00) is non-decreasing
and it verifies

! du
(6.29) C(q,w) ::/ w2 (1) — < 0.
0

u
Then, the function

jan—n z
1 I — R"
@)= e <|xr+5>’ zE RS

belongs to L*(R™) and ||ly|| ;1 < Clq,w), (uniform inl.)

Proof of Lemma 6.11. Changing to polar coordinates we obtain

Jan— npn 1
T — wi/? d
Il /0 (p+Dm (P+l) g

jan—n yn— 1wq/2 o 1qn—n n 1
~ /0 g [T ) dp

lan—n n 1 l
/l””ldp—i-/ wq/2<>dp
0 ! Pq" p

! du
<1 +/ uT W% (u) " < Cg,w). O
0
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Using Holder’s inequality first, and recalling that 0 < p; <1 for j = 1,2, we obtain

g 1@t (@i ) 117 1/2( Qi) )
”GQ“LMH 2 e 1@\ o @)

L
9 1/p;
< H /Z Xk, [P Qg [Prw(Qj k)1 i/ ( UQjk;) )w(x) dx
i (|2 = cjr; | +UQjk,;))"Ps |z — k| + UQjk;)
1/pj
2
|Q]k ‘
= [ Ajog; [P ——== (Mg, * w)(Ciik;) :
LL| 2Pl ig o+ e
where .
iy (@) = ARy ( = )
™ (Jo| + 1(Qj k)5 |z + UQjk;)
By Lemma 6.11, hjx; € LY(R™) with norm uniform in (4,k;), j = 1,2. Then,
Qe p/p;
k;
||G2HLp ~ H Z| ]k |p - w(cjvkj)
> Q)
p/Pj

7=1
2

(6.30) H leklp | w(cjx,)
: Q]v])

Considering ul?c;f,ij)w(%kg) as a function of c;j, and taking its average (with respect to
Lebesgue measure) over the cube P;i; we get

|Qjk; [w(Pky)
| J.k; |w(Q], )

which is bounded by a constant depending only on n. Averaging (6.30) (in the Lebesgue
measure) over Pj . with respect to each c;; (there are finitely many of them) and using
Holder’s inequality with exponents p1/p and ps/p, we finally obtain

2 1/p]

2
’G2HL" H Z ’/\j}kj ’pj H ‘fJHH”J .
k; j=1

Remark 7. One can prove Lemma 6.10 proceeding as in the proof of Lemma 2.1 in [23].
The doubling contion of w is used to insure that w(Qy) ~ w(Qk;) in the notation of [23].

6.4. Boundedness on weighted amalgam spaces. Amalgam spaces have been inten-
sively considered in several areas of Analysis (see [17] for an excellent survey), as they allow
for a better understanding of the global and local features of functions. In this subsection
we prove boundedness properties on products of weighted amalgam spaces for bilinear
Calderén-Zygmund operators of type w(t). The results are obtained as a consequence of
the properties (3.1) and (3.2) of the kernel, the boundedness of 7" on unweighted Lebesgue
spaces (Theorem 6.2), and the boundedness of the corresponding truncated operators on
weighted Lebesgue spaces (Theorem 6.6). The behavior of linear Calderén-Zygmund oper-
ators of type w(t) on amalgam spaces was studied by Kikuchi et al [30].
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For 1 < p < oo, the discrete variant of Muckenhoupt’s A, class is denoted by A,(Z")
and consists of the positive sequences {w, }.cz» such that

p—1
1
|w|a, (zny == sup | ——=—— w w! < 00.
=g\ Fenmn 2, |\ Fenm 2.,

For z € Z" set Q. :={x € R": |z; — z;| < 1/2,i=1,...,n}. Consider 1 < p,q < oo and
a positive sequence {w,}.czn. We denote by If, the space of all sequences {a,},ezn such
that [lalle = (3 .czn laz|? w,)/? < 0o. In particular we write [¢ instead of 1, when w = 1.
The weighted amalgam space (LP,11,) consists of the locally integrable functions f on R"

such that {”f”L"(Qz)}ZeZn € I},, with norm

1/q
1 ll(Le ey = (Z 1150w ) .

ZEL"

The usual interpretation applies when ¢ = oco. The main result in this subsection is the
following

Theorem 6.12. Consider w € Dini(1/2) and let T be a bilinear Calderdn-Zygmund op-
erator of type w(t) with kernel K. If 1 < p,q < 00, 1 < 51,82 < o0, 1/r = 1/p+ 1/q,
1/s3=1/s1+ 1/s2, and w € As(Z"™), s = min{sy, s2}, then

(6.31) 1T/ o azzy < C U oo azpy N9l iz sz -

Remark 8. Note that w = {w,}.czn € Ag(Z") if and only if W = 3" w.xq. € As, and
that (L, 1L) = LY, (R™) with 1l pegey = ”fHLtW(R") . Therefore the result of Theorem 6.12
for the case p = s1, ¢ = s9 and r = s3 is a particular case of Theorem 6.8.

We state here some definitions and known results that will be used in the proof of
Theorem 6.12.

Lemma 6.13. (see Kikuchi et al [30]) Let w € A(Z"), 1 <t < oo. Then, for u € Z™ and
all cubes Q) containing pu,
> we S wulwly, gy #EZNQ)
CEZ™"NQ
For a sequence a = {ay},ecz» we consider the discrete maximal function
1
(Mga), = sup HZ'NQ) Z lau|, pE L™
Heq vEZNQREQ
The following properties for My are well-known:
Lemma 6.14. Ifw € As(Z") and 1 < s < oo, then M is bounded in [,.
For sequences h = {h,},ez» and a = {a, },ezn define the convolution
(hxa), := Z hy—vay, peZ".
veEZL™

Lemma 6.15. Let h = {h,},czn be a sequence in I*(Z™) which is nonnegative, radial and
non-increasing (i.e., hy, = hy if |p| = |¢/|, and hy < hy if |u| > |W'|). Then for any
sequence a = {a,} ezn

[(hxa)ul S Pllp (Maa),, — peZ”
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Proof of Theorem 6.12. Let f,g € C3°(R™). For Q¢, ¢ € Z", and b € {f, g}, we consider
b= b1 + ba, b; € C°(R™), |bi(z)| < |b(z)|, i=1,2,
supp(b1) C2Q¢,  supp(be) NQE =10

where Q7 is the closed cube centered at ¢ and such that I(Q7) = (2n + 1) [(Q¢). We then

have T(f,9) = T(f1,91) + T(f2,91) + T(f1,92) + T(f2,92)-
By the boundedness of T' from LP(R™) x LI(R"™) into L"(R™) (Theorem 6.2), we have

(6.32)
||T(f1agl)||LT(QC) S ||f1||LP(]R") HngLQ(R”) S Z ||f||LP(Qu) Z HgHLq(Qy)-
HEZMN2 QF veZ N2 Q;

For the term T'(f2, g1) (and similarly for T'(f1, g2)), we have for x € Q¢,

dyd
T(f2 1) (2 /Zemg /ye@( (2,9, 2) fo0)g1 (2) dy d2

= / K(x,y,2)f2(y)g1(2) dy dz
ZEQQC yeQu

HEZL"—
/ / K(z,y,2) — K(C, 11, 2)) fo(y)91(z) dy dz
PETN— 2€2 Qg IS oM
+ Z K(C p,2) g1(2) dz.
penm o JQu 2Q;

Using (3.2) and (3.1), we get

1
1T 000 S 30 \c—\ <|< |>||f||LpQM loll ez
HELT—Q7

(6.33) + Z \C — 2n HfHLP(Q# ||9||Lq(2Q 5) -
HEZL"—

For x € Q¢, we have
(o)) = | K (2,5.2) fo(0)g(=) dy d=
QC)C QC)(/

-2 /ZEQu VEQ K@y, 2)12(y)g2(z) dy d

vEL" — Q* HELT —

R /eczy/yeQM(K(x’y’z)_K@’“”/))h(y)m(@dydz

VEL"—Qf pEL"— z

+ > Y K(Gwwy) /f2 dy/ 92(2) dz.

VELr—Qf pel"~Q;
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Using (3.2), we obtain
(6.34)

1T (f2: 92) I - ()

1 C
< mn
DY g (|g_u|+|g—y|)2nw(yg_tug_V,) 1£1 2o, 9l Laqn)

VLN —Qf nELr—Q}

+ > > K mv) /f2 dy/Qg2()d

VELN—Q} nELr—Q}

We now proceed to estimate the [J3-norm of the terms on the right hand side of (6.32),
(6.34), and (6.33). For the right hand side of (6.32), we apply Holder’s inequality and then
observe that, using Jensen’s inequality and Lemma 6.13, we have

S1

Sl > Ml | we

¢ezr \pezZrm2Q:

s1

S1

2(1— L s
< (An+3)"" T ST A0, Do wexznmag; (1)

REZL™ cezn

S1

2(1—L s n
< (@n+ 370 ST 0, Wi [0l #EZOQ |

HEL™

where for each fixed p, @) is a cube containing p and all those ( € Z" such that p € Z™"N2 QZ.
It is clear that #(Z" N Q) is independent of p, therefore we get

1
S1 q

1
Z Z HfHLP(Q#) w¢ S ‘w|1(zn) ||f||(Lp,lfﬂl) .

¢ezn \perrn2Q;

We have a similar bound for the factor corresponding to ¢ in (6.32).
For the first term on the right hand side of (6.33) consider a nonnegative, radial, de-
creasing sequence h = {h, },ez» defined by

1 n
1%

|l
Note that [|h]|; < oo. Then, by Lemma 6.15 with a = {|[f||.»(g,) }uezr

1
e () Wl Wollaay S (b Iollaa

REL™—Q7

Sl (Maa)¢ Hg”Lq(2Qz)'

Using Holder’s inequality, recalling that w € Ay, (Z™) and Lemma 6.14, we have
(Maa)c |z

[l9llzaaaz| oy < 1My Nolzn iz

o S

H(Mda)C 9l a2 z)
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RS S N9l (pas2) follows as in the treatment of (6.32). The

where the inequality H ”g”LQ(Q Q)

second term in (6.33) is treated in the same way using h, =
The first term in (6.34) is bounded by

o, e ) i e (25) i
Z 1C- ul (!C al ) W@, Z(yg_y\ wi ez ) Wlzean

HEZL"— HEZM—Q*%

We can proceed in a similar way as in (6.33) with h, = ﬁ w? (fﬂ—"‘) wu € Z"—{0}. Observe

that h € [' since fl w! 7 w2 () dt < oo, then Lemma 6.15 can be applied. Also the fact that
w € As(Z"™) allows us to use Lemma 6.14.

Finally, we will show that the second term on the right hand side of (6.34) satisfies the
desired estimates. Consider the truncated operator

T fm(u,v)(z) = /x slesfon K(z,y,2)u(y)v(z)dydz

Note that B(z,/n) C QZ for every x € QQ¢. We will see that there is a non-increasing
function A : [0, 00) — [0, 00), such that h(|z|) is integrable in R™, and

(6.35) T/ - > > K(wmv) /Q

vezZn— Q* HEL™ — Qc w
< (hs Jul)(@) (R o) (@), @€ Qc.
Assume (6.35) for the moment. Applying (6.35) to u = >_ 70 fQu fa(x)dr xq,, and
v = ueZ” fQ g2(x)dz xq,, we get,

oY Ky /f2 dy/ngz()d

VELT—QF pel™ —Q;

5/@( )T\/ﬁ(u,v)(l‘)‘s d + |35, /QC(MU(:E)MU(@)%@

u(y) dy / (e dz

S3

Recalling that W = > pezn WuXQ, € As(R™), and using the boundedness properties of T' 5
and M in the weighted Lebesgue spaces, we get

o) Ky /fz dy/@ygz()d

veEZ™ — QC BELN — QC 153

S Tt o) g + IR oy WMy M0
S H’U’HL%(R”) HUHL;?,(JRn) S ”f”(Lp,lful) ”9”(qu1502)-
We now prove (6.35). Define S, = {(y,2) : |z —y|* + |z — 2> > n}. Fix z € Q¢, the left
hand side of (6.35) is equal to

[ [ Fealnouwue) s,
yeRn J2eRn




36 DIEGO MALDONADO AND VIRGINIA NAIBO

where

Feoly,2) = | K(zy,2)xs,(,2) = > > K mv)xq,)xq. ()

veZ" — QC HEZL™ — QC

Ify,z e R™\ Q. then (y,2z) € Sz, and using the regularity (3.2) of the kernel K, and that
y € Q, and z € Q, for unique @, C R™\ Q¢ and @, CR" \ Q7

|FC,$(yaz)| = ‘K(l‘,y, Z) - K(Cv”? V)|

< 1 w( Cn )
Yz -yl +lz—z) \|r—yl+]r—2

1 1 Cn 1 1 Cn
S n w?2 n w2
|z —y| lz—yl/) |z -z |z — 2|

Ify € Q¢ and z € R" \ Q¢ then using the size assumption (3.1) on the kernel K, and that
t < w(t) (since w is concave),

1 1 Cn
F, y 2)| = K z, Y,z 5 S w I B
Similarly for z € Q¢ and y € R" \ Q¢. Finally, if y € Qf and z € Q¢ we have, using again
(3.1),

N|=

|FC7J»‘(y7 Z)| < |K($7yaz) XSz(y, Z)| 5 Ch.
Then we can define for T' € R",

W(T) n T| < /n,
= 1
i w (T) IT| > v/n.
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