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Abstract. We establish boundedness properties on products of weighted Lebesgue, Hardy,
and amalgam spaces of certain paraproducts and bilinear pseudodifferential operators with
mild regularity. We do so by showing that these operators can be realized as generalized
bilinear Calderón-Zygmund operators.

1. Bilinear pseudodifferential operators with mild regularity

Let us motivate our main result on bilinear pseudodifferential operators (ΨDOs) by
revisiting some facts from the linear theory. A sufficiently regular function σ(x, ξ) defined
on Rn × Rn has an associated ΨDO Tσ defined by

Tσ(f)(x) =
∫

Rn
σ(x, ξ)f̂(ξ)eix·ξ dξ x ∈ Rn, f ∈ S(Rn).

Here S(Rn) is the Schwartz class and f̂ denotes the Fourier transform of f ,

f̂(ξ) =
∫

Rn
e−ix·ξf(x) dx, ξ ∈ Rn.

For m ∈ R, 0 ≤ δ, ρ ≤ 1, the symbol σ(x, ξ) belongs to Hörmander’s class Smρ,δ if

(1.1) |∂αx ∂
β
ξ σ(x, ξ)| ≤ Cα,β(1 + |ξ|)m+δ|α|−ρ|β|, x, ξ ∈ Rn,

where α, β ∈ Zn and |α|, |β| depend on the context.
The exploration of classes of smooth symbols, in particular the classes Smρ,δ, appears

to be predominant in the ΨDO literature. However, as diverse problems in Analysis and
PDEs demand, the case in which the symbol has mild or no regularity in x has received
considerable attention, see for instance [33], [34], [35], [42], [44], [45], and references therein.
For ω,Ω : [0,∞) → [0,∞), m ∈ R and ρ ∈ (0, 1), we write σ ∈ Smρ,ω,Ω (this notation is not
standard, we introduce it for the sake of presentation) if

(1.2) |∂βξ σ(x, ξ)| ≤ Cβ(1 + |ξ|)m−ρ|β|, x, ξ ∈ Rn,

and

(1.3) |∂βξ σ(x+ h, ξ)− ∂βξ σ(x, ξ)| ≤ Cβω(|h|)Ω(|ξ|)(1 + |ξ|)m−ρ|β|, x, ξ ∈ Rn.

Again, the number of derivatives |β| depends on the context.
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For a > 0, we write ω ∈ Dini(a) if ω : [0,∞) → [0,∞), ω is non-decreasing, concave,
and

|ω|Dini(a) :=
∫ 1

0
ωa(t)

dt

t
<∞.

The classes Smρ,ω,Ω were originally motivated by a question posed by L. Nirenberg about
whether symbols verifying (1.2) with m = 0, ρ = 1, and all multi-indices β (no a priori
regularity in x involved) produce L2-bounded ΨDOs. In [10], C.-H. Ching resolved this
question in the negative. Afterwards, a number of authors showed that this lack of L2-
boundedness could be circumvented if a mild regularity assumption on the x-variable were
assumed. Indeed, R. Coifman and Y. Meyer proved (see [14, Theorem 9, p.38]) that if
σ ∈ S0

1,ω,Ω with Ω ≡ 1 then Tσ is bounded in Lp(Rn) for all 1 < p < ∞ if and only if
ω ∈ Dini(2). M. Nagase proved (Theorem B in [38]) that Tσ is bounded in Lp(Rn) for
1 < p <∞ when ω(t) = tτ and Ω(t) = tγ for some 0 ≤ γ < τ ≤ 1, and |β| ≤ n+ 2. In [7],
G. Bourdaud proved that if σ ∈ S0

1,ω,Ω, then Tσ is bounded in Lp(Rn) for 1 < p <∞ if and
only if ∑

j∈N
ω2(2−j)Ω2(2j) <∞.

On the other hand, it is known that the Hörmander class S0
1,1 is maximal with respect

to the property of producing ΨDOs with Calderón-Zygmund kernels, however these ΨDOs
need not be bounded in L2(Rn) and “they must remain forbidden fruit” ([43, Chapter VII]).
Notice that the class of forbidden symbols S0

1,1 satisfies S0
1,1 ⊂ S0

1,ω0,Ω0
, where ω0(t) = t

and Ω0(t) = 1 + t. In [47] and [48], K. Yabuta developed the notion of Calderón-Zygmund
operator of type ω(t) (which includes the classical Calderón-Zygmund operators), and de-
termined conditions on a symbol σ ∈ S0

1,ω,Ω, and on the functions ω,Ω, so that Tσ can
be realized as a Calderón-Zygmund operator of type ω(t). As a consequence he also ob-
tained L∞-BMO and weighted Lp-estimates for Tσ. Similar estimates were obtained, using
different methods, by S. Nishigaki in [39] and S. Sato in [41].

Let us now describe the relevant objects of the bilinear theory of ΨDOs. A sufficiently
regular function σ(x, ξ, η) defined on Rn×Rn×Rn has an associated bilinear pseudodiffer-
ential operator Tσ defined by

Tσ(f, g)(x) =
∫

Rn

∫
Rn
eix·(ξ+η)σ(x, ξ, η)f̂(ξ)ĝ(η) dξdη, x ∈ Rn, f, g ∈ S(Rn).

We say that the bilinear symbol σ(x, ξ, η) belongs to the bilinear Hörmander class BSmρ,δ if

(1.4) |∂αx ∂
β
ξ ∂

γ
ησ(x, ξ, η)| ≤ Cα,β(1 + |ξ|+ |η|)m+δ|α|−ρ(|β|+|γ|), x, ξ, η ∈ Rn.

We also write σ ∈ BSmρ,ω,Ω if

∣∣∣∂αξ ∂βη σ(x, ξ, η)
∣∣∣ ≤ Cα,β(1 + |ξ|+ |η|)m−ρ(|α|+|β|),

(1.5)

∣∣∣∂αξ ∂βη (σ(x+ h, ξ, η)− σ(x, ξ, η))
∣∣∣ ≤ Cα,β ω(|h|)Ω(|ξ|+ |η|)(1 + |ξ|+ |η|)m−ρ(|α|+|β|),

(1.6)

for all x, ξ, η ∈ Rn. As usual, the sizes of the multiindices α, β ∈ Zn will depend on the
context.



PARAPRODUCTS AND BILINEAR ΨDOs WITH MILD REGULARITY 3

The study of bilinear ΨDOs grew from the seminal work of R. Coifman and Y. Meyer
[13], [14] who used them as models to represent Calderón-Zygmund commutators. Further
applications now include the study of compensated compactness, see [11], [12], and [50],
and, as bilinear ΨDOs also model expressions of the type

∑
α,β cα,β∂

α
x f∂

β
xg, they are useful

in generalizing Leibnitz’s rule in the spirit of the Kato-Ponce inequality, see [4] and [37].
The bilinear setting is translucent to various well-known linear ΨDO estimates that

project their natural bilinear analogues (see, for instance, [1], [2], [4], [5], and [14]), but, at
the same time, it is opaque to some other. For example, a celebrated theorem of A. Calderón
and R. Vaillancourt establishes the L2-boundedness of ΨDOs with smooth symbols in the
class S0

0,0. In contrast, as Á. Bényi and R. Torres showed in [5], the class BS0
0,0 does not

mimic that mapping behavior in the corresponding function space scene of L2 × L2 → L1,
even for x-independent, tensor-like symbols. Another example is the linear Marcinkiewicz
multiplier theorem, whose natural bilinear version also fails, as shown by L. Grafakos and
N. Kalton in [24]. This semitransparency phenomenon adds to the interest in bilinear ΨDO
estimates.

Clearly, we have BS0
1,1 ⊂ BS0

1,ω0,Ω0
. The class BS0

1,1 produces bilinear ΨDOs with
bilinear Calderón-Zygmund kernels in the sense of L. Grafakos and R. Torres [26], and,
as proved by Á. Bényi and R. Torres [4], it also remains forbidden. Here we implement a
bilinear interpretation of Yabuta’s scheme [47], [48]. In Section 3, we introduce the notion of
bilinear Calderón-Zygmund operator of type ω(t). In Section 4 we show that under suitable
assumptions on ω and Ω the ΨDOs with symbols in the class BS0

1,ω,Ω can be realized as
bilinear Calderón-Zygmund operators of type ω(t). As a consequence we obtain our first
main theorem. Namely,

Theorem 1.1. Let a ∈ (0, 1), ω ∈ Dini(a/2), and Ω : [0,∞)→ [0,∞) non-decreasing such
that

sup
0<t<1

ω1−a(t)Ω(1/t) <∞.

Consider 1 ≤ p, q ≤ ∞ and 1
2 ≤ r < ∞ such that 1

r = 1
p + 1

q . Then, if σ ∈ BS0
1,ω,Ω, with

|α|+ |β| ≤ 4n+4, the bilinear pseudo-differential operator Tσ has the following boundedness
properties:

(i) if 1 < p, q, then

‖Tσ(f, g)‖Lr(Rn) ≤ C ‖f‖Lp(Rn) ‖g‖Lq(Rn) ,

where Lp(Rn) or Lq(Rn) should be replaced by L∞c (Rn) (bounded functions with com-
pact support) if p =∞ or q =∞, respectively;

(ii) if p = 1 or q = 1, then

‖Tσ(f, g)‖Lr,∞(Rn) ≤ C ‖f‖Lp(Rn) ‖g‖Lq(Rn) ,

where Lp(Rn) or Lq(Rn) should be replaced by L∞c (Rn) if p = ∞ or q = ∞, respec-
tively;

(iii)
‖Tσ(f, g)‖BMO(Rn) ≤ C ‖f‖L∞(Rn) ‖g‖L∞(Rn) .

(iv) If 1 < p, q <∞, and w ∈ Amin(p,q), then

‖Tσ(f, g)‖Lrw(Rn) ≤ C ‖f‖Lpw(Rn) ‖g‖Lqw(Rn) ,

where Ar, 1 ≤ r ≤ ∞, denotes the Muckenhoupt weight class (see Section 6.2 for the
definition).
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(v) If w ∈ A1, the following endpoint estimates hold

‖Tσ(f, g)‖
L

1/2,∞
w (Rn)

≤ C ‖f‖L1
w(Rn) ‖g‖L1

w(Rn)

and
‖Tσ(f, g)‖

L
1/2
w (Rn)

≤ C ‖f‖H1
w(Rn) ‖g‖H1

w(Rn) .

(vi) Finally, if 1 < p, q <∞, 1 < s1, s2 <∞, 1/s3 = 1/s1 +1/s2, and w ∈ Amin(s1,s2)(Zn),
then Tσ verifies the following inequality on weighted amalgam spaces

‖Tσ(f, g)‖(Lr,ls3w ) ≤ C ‖f‖(Lp,ls1w ) ‖g‖(Lq ,ls2w ) .

Remark 1. To the best of our knowledge, the only result on bilinear ΨDOs with mild
regularity previous to Theorem 1.1 is Theorem 12 in Coifman-Meyer [14, p.55] where the
symbol σ(x, ξ, η) belongs to BS0

1,ω,Ω with ω ∈ Dini(2) and Ω ≡ 1.1 Theorem 12 in Coifman-
Meyer [14, p.55] deals with unweighted Lebesgue spaces and asserts that the associated
bilinear ΨDO maps Lp × Lq into Lr for 1/r = 1/p + 1/q, 1 < p, q, r < ∞. In the case of
unweighted Lebesgue spaces, Theorem 1.1 allows for more general choices of Ω and brings
the exponent r down to 1/2 (with weak type when r = 1/2), although it requires the
stronger condition ω ∈ Dini(a/2). For the particular choices ω(t) = tτ and Ω(t) = tγ

(0 < γ < τ ≤ 1), Theorem 1.1 lifts Theorem B in Nagase [38] to the bilinear context.
Finally, we point out that, in the mentioned literature, it has been customary to ask for
some kind of doubling condition on Ω and here we dispose of such a hypothesis.

2. Paraproducts with mild regularity

We now discuss the boundedness properties of paraproducts built from Dini-continuous
molecules. Some notation is in order. For ν ∈ Z and k ∈ Zn, let Pνk be the dyadic cube

(2.1) Pνk := {(x1, . . . , xn) ∈ Rn : ki ≤ 2νxi < ki + 1, i = 1, . . . , n}.
The lower left-corner of P = Pνk is xP = xνk := 2−νk, the Lebesgue measure of P is
|P | = 2−νn, and its characteristic function is denoted by χPνk . We set

D := {Pνk : ν ∈ Z, k ∈ Zn}
as the collection of all dyadic cubes.

Definition 2.1. Let ω : [0,∞) → [0,∞) be a non-decreasing function. An ω-molecule
associated to a dyadic cube P = Pνk is a function φP = φνk : Rn → C such that, for some
A > 0 and N > n, it satisfies the decay (or concentration) condition

(2.2) |φP (x)| ≤ A2νn/2

(1 + 2ν |x− xP |)N
, x ∈ Rn,

and the mild regularity condition

(2.3) |φP (x)− φP (y)| ≤ A2νn/2ω(2ν |x− y|)
[

1
(1 + 2ν |x− xP |)N

+
1

(1 + 2ν |y − xP |)N

]
for all x, y ∈ Rn.

1Notice that there is an omission of the factor (1 + |ξ|+ |η|)−(|α|+|β|) on the right hand side of conditions
(51) on page 55 of [14] (compare with Theorem 9 on page 38 and Theorem 1 in [13]). With that factor,
Theorem 12 follows from the techniques developed in the linear case that prove Theorem 9. Without that
factor the result is not true, since there exist x-independent symbols with bounded derivatives that do not
produce ΨDOs mapping any Lp × Lq into Lr for 1/r = 1/p+ 1/q, 1 ≤ p, q, r <∞, see Proposition 1 in [5].
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Definition 2.2. Given three families of ω-molecules {φjQ}Q∈D, j = 1, 2, 3, the paraproduct
Π(f, g) associated to these families is defined by

(2.4) Π(f, g) =
∑
Q∈D
|Q|−1/2〈f, φ1

Q〉〈g, φ2
Q〉φ3

Q, f, g ∈ S(Rn).

The term paraproduct was coined by J.M. Bony in [6] and ever since it has been used to
denote superpositions of various time-frequency components of two functions. Paraprod-
ucts have found plenty of inspired applications: from Bony’s paradifferential calculus (see
[6]) and David-Journé’s remarkable T (1)-theorem (see [16]), to their alliance with wavelet
analysis in the study of PDEs (see, for instance, [8], [9], [24], [44], and [45]), and their role
as toy models or building blocks of classical operators in Fourier Analysis (see, for instance,
[21], [22], [31], [32] [37], [36], [40], and [46]), just to mention a few. The paraproducts we
treat (in Section 5) are built from mildly regular molecules which come to cover the gap
between the smooth molecules and paraproducts in [3], [18], [19], and the (discontinuous)
Haar molecules and paraproducts studied, for instance, in [46].

In [3], sufficient conditions on smooth molecules are given so that smooth paraproducts
of the form (2.4) can be realized as bilinear Calderón-Zygmund operators. In Section 5 we
analyze ω-molecules and prove that the paraproducts they build can be realized as bilinear
Calderón-Zygmund operators of type ω(t), provided that they have enough decay, suitable
cancelation, and ω ∈ Dini(1/2). This allows us to prove our second main result. Namely,

Theorem 2.3. Consider ω ∈ Dini(1/2) and let {φjQ}Q∈D, j = 1, 2, 3 be three families of
ω-molecules with decay N > 10n and such that at least two of them, say j = 1, 2, enjoy the
cancelation property ∫

Rn
φjQ(x) dx = 0, Q ∈ D, j = 1, 2.

Then, the paraproduct Π(f, g) defined in (2.4) verifies the inequalities (i)-(vi) in Theorem
1.1.

3. Bilinear Calderón-Zygmund operators of type ω(t)

Definition 3.1. Let ω : [0,∞)→ [0,∞) be a non-decreasing function. We say that K(x, y, z)
defined on R3n \{(x, y, z) ∈ R3n : x = y = z} is a bilinear Calderón-Zygmund kernel of type
ω(t) if for some constants 0 < τ < 1 (the specific value of τ ∈ (0, 1) is immaterial in the
development of the theory), CK > 0, and every (x, y, z) ∈ R3n\{(x, y, z) ∈ R3n : x = y = z}
it holds

(3.1) |K(x, y, z)| ≤ CK
(|x− y|+ |x− z|)2n

,

and

|K(x+ h, y, z)−K(x, y, z)|+ |K(x, y + h, z)−K(x, y, z)|+ |K(x, y, z + h)−K(x, y, z)|

(3.2)

≤ CK
(|x− y|+ |x− z|)2n

ω

(
|h|

|x− y|+ |x− z|

)
,

whenever |h| ≤ τ max(|x− y| , |x − z|). A bilinear operator T : S × S → S ′ is said to be
associated to a bilinear Calderón-Zygmund kernel of type ω(t), K(x, y, z), if

T (f, g)(x) =
∫

Rn

∫
Rn
K(x, y, z)f(y)g(z) dydz
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whenever x /∈ supp(f) ∩ supp(g) and f, g ∈ C∞0 . If, besides, T maps

Lp(Rn)× Lq(Rn)→ Lr,∞(Rn),

for some 1 < p, q <∞ and r > 1 with 1/p+ 1/q = 1/r; or

Lp(Rn)× Lq(Rn)→ L1(Rn),

for some 1 < p, q <∞ with 1/p+1/q = 1, T is called a bilinear Calderón-Zygmund operator
of type ω(t).

The multilinear Calderón-Zygmund theory was introduced by R. Coifman and Y.Meyer
in [13], [14], and [15]. This theory was then further investigated by L. Grafakos and R.
Torres [26], [27], who considered the case in which ω(t) = tε for some ε ∈ (0, 1], and C.
Kenig and E. Stein [29].

The plan of the proofs of Theorems 1.1 and 2.3 is as follows: Sections 4 and 5, respec-
tively, are devoted to showing that the bilinear ΨDO operator Tσ in Theorem 1.1 and the
paraproduct Π in Theorem 2.3 are bilinear Calderón-Zygmund operators of type ω(t) for
suitable ω. In Section 6 we prove that bilinear Calderón-Zygmund operators of type ω(t)
satisfy the boundedness properties (i)-(vi) in Theorem 1.1, which completes the plan.

4. Proof of Theorem 1.1

In this section we consider the bilinear pseudo-differential operator

Tσ(f, g)(x) =
∫

Rn

∫
Rn
σ(x, ξ, η)eix(ξ+η)f̂(ξ)ĝ(η) dξ dη,

x, ξ, η ∈ Rn, f, g ∈ S(Rn), whose symbol σ(x, ξ, η) satisfies the following conditions:∣∣∣∂αξ ∂βη σ(x, ξ, η)
∣∣∣ ≤ Cα,β

(1 + |ξ|+ |η|)|α|+|β|
,(4.1)

∣∣∣∂αξ ∂βη (σ(x+ h, ξ, η)− σ(x, ξ, η))
∣∣∣ ≤ Cα,β ω(|h|) Ω(|ξ|+ |η|)

(1 + |ξ|+ |η|)|α|+|β|
,(4.2)

for all x, ξ, η ∈ Rn, and for a certain number of multi-indices α, β ∈ Zn. The following
theorem establishes sufficient conditions on ω and Ω so that the class BS0

1,ω,Ω produces
ΨDOs with bilinear Calderón-Zygmund kernels of type ωa(t), for some a ∈ (0, 1).

Theorem 4.1. Let ω,Ω : [0,∞) → [0,∞) be non-decreasing functions with ω concave.
Suppose that there exists a ∈ (0, 1) such that ω and Ω verify

(4.3) B := sup
0<t<1

ω1−a(t)Ω(1/t) <∞.

If σ(x, ξ, η) verifies (4.1) and (4.2) with |α|+ |β| ≤ 2n+2, then Tσ has a bilinear Calderón-
Zygmund kernel of type ωa(t).

Proof of Theorem 4.1. It is enough to assume that σ has compact support in the variables
ξ and η, uniformly in x, and to show that the constants involved do not depend on the
support of σ(x, ·, ·) (see [43, Chapter VII]). We have the following kernel representation for
Tσ,

Tσ(f, g)(x) =
∫

Rn

∫
Rn
K(x, y, z) f(y) g(z) dy dz, f, g ∈ S(Rn),
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where

K(x, y, z) = σ̂(x, y − x, z − x) =
∫

Rn

∫
Rn
σ(x, ξ, η)e−iξ(y−x)e−iη(z−x) dξ dη.

We will show that K(x, y, z) satisfies conditions (3.1) and (3.2) with ωa and τ = 1/3. In
terms of the symbol σ, conditions (3.1) and (3.2) follow from

|σ̂(x, y, z)| ≤ C

(|y|+ |z|)2n
, x, y, z ∈ Rn,(4.4)

|σ̂(x+ h, y, z)− σ̂(x, y, z)| ≤ C

(|y|+ |z|)2n
ωa
(
|h|

|y|+ |z|

)
, |h| ≤ 1

2
max{|y| , |z|},(4.5)

|σ̂(x, y + h, z)− σ̂(x, y, z)| ≤ C

(|y|+ |z|)2n
ωa
(
|h|

|y|+ |z|

)
, |h| ≤ 1

2
max{|y| , |z|},(4.6)

|σ̂(x, y, z + h)− σ̂(x, y, z)| ≤ C

(|y|+ |z|)2n
ωa
(
|h|

|y|+ |z|

)
, |h| ≤ 1

2
max{|y| , |z|}.(4.7)

We will now show condition (4.5). For j ∈ N0 consider ψj : Rn × Rn → R infinitely
differentiable with

supp(ψj) ⊂ {(ξ, η) : 2j−1 ≤ |(ξ, η)| ≤ 2j+1} if j ≥ 1,

supp(ψ0) ⊂ {(ξ, η) : |(ξ, η)| ≤ 2},∑
j≥0

ψj(ξ, η) = 1, ξ, η ∈ Rn.

Fix h, y, and z in Rn such that |h| ≤ 1
2 max{|y| , |z|} and define

σj(x, ξ, η) := ψj(ξ, η)σ(x, ξ, η)

Lhj (x, y, z) :=
∫

Rn

∫
Rn

(σj(x+ h, ξ, η)− σj(x, ξ, η))e−iξye−iηz dξ dη.(4.8)

Note that properties (4.1) and (4.2) are satisfied by σj uniformly on j, and that
∑

j≥0 L
h
j (x, y, z) =

σ̂(x+ h, y, z)− σ̂(x, y, z). Also, the concavity of ω and (4.3) imply

ω(t)/t is monotone non-increasing, t > 0,(4.9)
ω(2t) ≤ 2ω(t), t > 0, (i.e., ω is doubling with constant 2),(4.10)
Ω(s) ≤ Bω(1)a−1s1−a, s ≥ 1.(4.11)

From now on, given two quantities F and G we will write F . G if F ≤ CG where C is a
structural constant that, according to the context, will depend on n, CK , B, ω(1), etc.

Integrating by parts 2n+ 1 times in (4.8) and applying (4.2), we have∣∣∣Lhj (x, y, z)
∣∣∣ . (|y|+ |z|)−(2n+1) ω(|h|)

∫ ∫
(ξ,η)∈supp(ψj)

Ω(|ξ|+ |η|)
(1 + |ξ|+ |η|)2n+1

dξ dη.

Since Ω is non-decreasing, we obtain

(4.12)
∣∣∣Lhj (x, y, z)

∣∣∣ . (|y|+ |z|)−(2n+1) ω(|h|) Ω(2j+2)
2j

.

We now consider two cases according to |y|+ |z| being greater or smaller than 1.
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First Case: |y|+ |z| ≥ 1. By (4.9),

ω(|h|) = ω1−a(|h|)ωa(|h|) ≤ ω1−a(|h|)(|y|+ |z|)aωa
(
|h|

|y|+ |z|

)
.

Also, since ω is non-decreasing, |h| ≤ 1
2 max{|y| , |z|}, (4.9), and |y|+ |z| ≥ 1

2j
, we obtain

ω1−a(|h|) ≤ ω1−a(|y|+ |z|) ≤ ω1−a
(

1
2j

)
2j(1−a)(|y|+ |z|)1−a.

Putting all together,

ω(|h|) ≤ (|y|+ |z|)ωa
(
|h|

|y|+ |z|

)
ω1−a

(
1
2j

)
2j(1−a).

Plugging this into (4.12), and using (4.10) and (4.3),∣∣∣Lhj (x, y, z)
∣∣∣ . (|y|+ |z|)−2n ωa

(
|h|

|y|+ |z|

)
Ω(2j+2)

2ja
ω1−a

(
1
2j

)
. 41−a(|y|+ |z|)−2n ωa

(
|h|

|y|+ |z|

)
Ω(2j+2)

2ja
ω1−a

(
1

2j+2

)
. B41−a(|y|+ |z|)−2n ωa

(
|h|

|y|+ |z|

)
1

2ja
.

Then,

|σ̂(x+ h, y, z)− σ̂(x, y, z)| =

∣∣∣∣∣∣
∑
j≥0

Lhj (x, y, z)

∣∣∣∣∣∣ . (|y|+ |z|)−2n ωa
(
|h|

|y|+ |z|

)
,

for |h| ≤ 1
2 max(|y| , |z|) and |y|+ |z| ≥ 1.

Second Case: |y|+ |z| < 1. Assume without any loss of generality that |z| ≤ |y| . We split
the sum in j as follows

|σ̂(x+ h, y, z)− σ̂(x, y, z)| =

∣∣∣∣∣∣
∑
j≥0

Lhj (x, y, z)

∣∣∣∣∣∣
≤

∑
1≤2j |z|

∣∣∣Lhj ∣∣∣+
∑

1>2j |y|

∣∣∣Lhj ∣∣∣+
∑

1≤2j |y|
1>2j |z|

∣∣∣Lhj ∣∣∣
=: I + II + III

Noting that ω(|h|) ≤ ωa
(
|h|
|y|+|z|

)
ω1−a(|y|+ |z|), and recalling (4.12) and (4.9),

I . (|y|+ |z|)−2nωa
(
|h|

|y|+ |z|

) ∑
1≤2j |z|

Ω(2j+2)ω1−a(|y|+ |z|)
2j(|y|+ |z|)

. (|y|+ |z|)−2nωa
(
|h|

|y|+ |z|

) ∑
1≤2j |z|

Ω(2j+2)
2ja

ω1−a
(

2
2j

)
(|y|+ |z|)−a.
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By (4.3) and (4.10),

Ω(2j+2)ω1−a
(

2
2j

)
≤ 81−aΩ(2j+2)ω1−a

(
1

2j+2

)
≤ 81−aB.

We then obtain,

I . (|y|+ |z|)−2nωa
(
|h|

|y|+ |z|

)
.

We now estimate II. Integrating by parts p times in (4.8), with n + 1 ≤ p < 2n, using
(4.2), and recalling that ω is non-decreasing, we have

II . (|y|+ |z|)−p ω(|h|)
∫
|ξ|≤2|y|−1

∫
|η|≤2|z|−1

Ω(|ξ|+ |η|)
(1 + |ξ|+ |η|)p

dη dξ

. (|y|+ |z|)−p ωa
(
|h|

|y|+ |z|

)
ω1−a(|h|)

∫
|ξ|≤2|y|−1

∫
|η|≤2|z|−1

Ω(|ξ|+ |η|)
(1 + |ξ|+ |η|)p

dη dξ

= (|y|+ |z|)−p ωa
(
|h|

|y|+ |z|

)
×

(
ω1−a(|h|)

∫
|ξ|≤2|y|−1

∫
|η|≤|ξ|

· · · dη dξ + ω1−a(|h|)
∫
|ξ|≤2|y|−1

∫
|η|>|ξ|

· · · dη dξ

)

=: (|y|+ |z|)−p ωa
(
|h|

|y|+ |z|

)
(II1 + II2).

We will show that II1 and II2 are bounded by C (|y| + |z|)p−2n. Using that ω and Ω are
non-decreasing, |z| ≤ |y|, (4.10), (4.3), and that p < 2n, we get

II1 . Ω
(

8
|y|+ |z|

)
ω1−a(|y|+ |z|)

∫
|ξ|≤2|y|−1

|ξ|n

(1 + |ξ|)p
dξ . B(|y|+ |z|)p−2n.

To bound II2 we change to polar coordinates and integrate by parts, to get

II2 . ω
1−a(|y|+ |z|)

∫
|ξ|≤2|y|−1

∫
|ξ|<|η|

Ω(2 |η|)
(1 + |η|)p

dη dξ

. ω1−a(|y|+ |z|)
∫ 4(|y|+|z|)−1

0
tn−1

∫ ∞
t

Ω(2ρ)ρn−1

(1 + ρ)p
dρ dt

. ω1−a(|y|+ |z|)(|y|+ |z|)−n
∫ ∞

4(|y|+|z|)−1

Ω(2ρ)ρn−1

(1 + ρ)p
dρ

+ ω1−a(|y|+ |z|)
∫ 4(|y|+|z|)−1

0

t2n−1Ω(2t)
(1 + t)p

dt =: II2,1 + II2,2.
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Notice that (4.11) implies
∫∞

0
Ω(2ρ)ρn−1

(1+ρ)p dρ <∞, for p ≥ n+ 1, which eliminated one of the
boundary terms in the integration by parts. For II2,1 we use (4.10) and (4.3),

II2,1 ≤ (|y|+ |z|)−n
∞∑
j=1

∫ 2j+1(|y|+|z|)−1

2j(|y|+|z|)−1

ω1−a(|y|+ |z|)Ω(2ρ)ρn−1

ρp
dρ

. (|y|+ |z|)p−2n
∞∑
j=1

ω1−a(|y|+ |z|)Ω(2j+2(|y|+ |z|)−1)2j(n−p)

. (|y|+ |z|)p−2n
∞∑
j=1

ω1−a
(
|y|+ |z|

2j+2

)
2j(1−a)Ω(2j+2(|y|+ |z|)−1)2j(n−p)

. B(|y|+ |z|)p−2n.

since p ≥ n+ 1. Next, since Ω is non-decreasing, p < 2n, and by (4.10) and (4.3),

II2,2 ≤ ω1−a(|y|+ |z|)Ω(8(|y|+ |z|)−1)(|y|+ |z|)p−2n . B(|y|+ |z|)p−2n.

We now estimate the term III. Integrating by parts p > 2n+ 1 times in (4.8) we have,

III . (|y|+ |z|)−pωa
(
|h|

|y|+ |z|

)
ω1−a(|h|)

∫∫
(2|y|)−1≤|(ξ,η)|≤2|z|−1

Ω(|ξ|+ |η|)
(1 + |ξ|+ |η|)p

dη dξ

. (|y|+ |z|)−pωa
(
|h|

|y|+ |z|

)
ω1−a(|h|)

∫∫
(2
√

2|y|)−1≤|ξ|
|η|≤2|z|−1

|η|≤|ξ|

Ω(|ξ|+ |η|)
(1 + |ξ|+ |η|)p

dη dξ.

Next we prove

(4.13)
∫
|ξ|≥(2

√
2|y|)−1

∫
|η|≤2|z|−1

|η|≤|ξ|

ω1−a(|y|+ |z|)Ω(|ξ|+ |η|)
(1 + |ξ|+ |η|)p

dη dξ . (|y|+ |z|)p−2n,

from which the bound for III follows. The left hand side of (4.13) is bounded by∫
|ξ|≥(2

√
2(|y|+|z|))−1

∫
|η|≤|ξ|

ω1−a(|y|+ |z|)Ω(2 |ξ|)
(1 + |ξ|)p

dη dξ

∼
∫ ∞

(2
√

2(|y|+|z|))−1

ω1−a(|y|+ |z|)Ω(2ρ) ρ2n−1

(1 + ρ)p
dρ . (|y|+ |z|)p−2n,

where the last inequality is proved as in the case dealing with II2,1, but here p > 2n+ 1.
We now turn to the proof of (4.4) and (4.6), the proof of (4.7) being identical to the

proof of (4.6). To prove (4.6) it is enough to show that

|σ̂(x, y + h, z)− σ̂(x, y, z)| ≤ C |h|
(|y|+ |z|)2n+1

, |h| ≤ 1
2

max{|y| , |z|},

since by the concavity of ω, we have t . ωa(t) (assuming ω(1) > 0, of course). This last
inequality will be a consequence of

(4.14) |∇yσ̂(x, y, z)| . 1
(|y|+ |z|)2n+1

.
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We notice now that conditions (4.4) and (4.14) follow, respectively, from∣∣∣∂̂αξ,ησ(x, y, z)
∣∣∣ . 1, |α| = 2n,(4.15) ∣∣∣∣∂̂βξ,ηξjσ(x, y, z)
∣∣∣∣ . 1, |β| = 2n+ 1,(4.16)

where the hat is always Fourier transform with respect to (ξ, η). Actually, it is enough to
prove (4.15) for α = 2n ~ej , and (4.16) for β = (2n+ 1)~ej , j = 1, . . . , 2n, where ~ej ∈ R2n is
the unit vector with 1 in the component j and zero otherwise. In order to prove (4.15) and
(4.16) we use the following lemma (see Journè [28], p. 65)

Lemma 4.2. If h ∈ C∞0 (Rd) satisfies |h(x)| ≤ C(h)

|x|d
and |∇h(x)| ≤ C(h)

|x|d+1 for all x ∈ Rd,

and

sup
0<r<R

∣∣∣∣∣
∫
r<|x|<R

h(x) dx

∣∣∣∣∣ ≤ C(h),

then
∥∥∥ĥ∥∥∥

∞
≤ C(h).

By using (4.1), it follows that the hypotheses of the lemma are satisfied, with d = 2n, for
the functions h1(ξ, η) = ∂αξ,ησ(x, ξ, η) and h2(ξ, η) = ∂βξ,ηξjσ(x, ξ, η), |α| = 2n, |β| = 2n+ 1,
uniformly on x.

Finally, the estimates (3.1) and (3.2) with ωa and τ = 1/3 now follow from (4.4), (4.5),
(4.6), (4.7). We mention that the choice τ = 1/3 is made because |x − x′| ≤ 1

3 max(|x −
y|, |x− z|) yields |x− x′| ≤ 1

2 max(|x′ − y|, |x′ − z|) and |x− x′| ≤ 1
2 max(|x− y|, |x′ − z|).

Then we can use (4.5), (4.6), (4.7) to obtain

|K(x′, y, z)−K(x, y, z)| ≤ |σ̂(x′, y − x′, z − x′)− σ̂(x, y − x′, z − x′)|
+ |σ̂(x, y − x′, z − x′)− σ̂(x, y − x, z − x′)|
+ |σ̂(x, y − x, z − x′)− σ̂(x, y − x, z − x)|

≤ Cωa
(

|x− x′|
|x− y|+ |x− z|

)
1

(|x− y|+ |x− z|)2n
.

For the regularity of K(x, y, z) in the y and z variables, τ = 1/2 is sufficient. �

Theorem 4.3. Let Ω : [0,∞) → [0,∞) be a non-decreasing function, a ∈ (0, 1), and ω ∈
Dini(a/2) such that (4.3) holds. If σ(x, ξ, η) verifies (4.1) and (4.2) with |α|+ |β| ≤ 4n+4,
then Tσ is a bilinear Calderón-Zygmund operator of type ωa(t).

Proof of Theorem 4.3. By Theorem 4.1 the operator Tσ has a bilinear Calderón-Zygmund
kernel of type ωa(t). It is enough to show that Tσ is bounded from Lp(Rn) × Lq(Rn)
into Lr(Rn) for some 1 < p, q < ∞, 1 ≤ r < ∞, satisfying 1

r = 1
p + 1

q . Following the
same proofs as in Coifman-Meyer [14] one obtains boundedness for any 1 < p < ∞ and
1
r = 1

p + 1
q ∈ (0, 1). For the reader’s convenience we summarize the argument pointing out

the appropriate changes.
First one shows that boundedness holds for reduced symbols σ.



12 DIEGO MALDONADO AND VIRGINIA NAIBO

Lemma 4.4. Let ω and Ω be as in Theorem 4.3. Consider a symbol σ of the form

σ(x, ξ, η) =
∞∑
j=0

mj(x)φ(2−jξ, 2−jη), x, ξ, η ∈ Rn,(4.17)

mj ∈ C(Rn), sup
j∈N0

‖mj‖L∞(Rn) ≤ C,(4.18)

‖mj(·+ h)−mj(·)‖L∞(Rn) ≤ C ω(|h|) Ω(2j), h ∈ Rn, j ∈ N0,(4.19)

φ ∈ C∞0 (R2n), supp(φ) ⊂ {1
3 ≤ |(ξ, η)| ≤ 3},(4.20) ∣∣∣∂αξ ∂βη φ(ξ, η)

∣∣∣ ≤ C, 0 ≤ |α| ≤ n+ 1, 0 ≤ |β| ≤ n+ 1,(4.21)

where C is a positive finite constant. Then Tσ is bounded from Lp(Rn)×Lq(Rn) into Lr(Rn)
for any 1 < p < ∞ and 1

r = 1
p + 1

q ∈ (0, 1). The boundedness constants depend only on ω,

Ω and the constants appearing on the right hand sides of (4.18)-(4.21).

The proof of Lemma 4.4 is analogous to the one in Coifman-Meyer [14, Theorem 12,
p.55] as long as one has the following version of the almost orthogonality lemma.

Lemma 4.5. Consider functions ω and Ω satisfying the hypothesis of Theorem 4.3. Let
C1 be a positive constant and mj : Rn → C, j ∈ N, be a sequence of continuous functions
such that

sup
j∈N
‖mj‖L∞(Rn) ≤ C1,(4.22)

‖mj(·+ h)−mj(·)‖L∞(Rn) ≤ C1 ω(|h|) Ω(2j), h ∈ Rn, j ∈ N.(4.23)

Then, for 1 < p <∞, there exists a constant C2 depending only on ω, Ω, C1, p, and n such
that for any sequence {fj}j∈N ⊂ S(Rn) with

supp(f̂j) ⊂ {2j

3 ≤ |ξ| ≤ 3 2j},

we have ∥∥∥∥∥∥
∞∑
j=1

mj(x) fj(x)

∥∥∥∥∥∥
Lp(Rn)

≤ C2

∥∥∥∥∥∥∥
 ∞∑
j=1

|fj(x)|2
1/2

∥∥∥∥∥∥∥
Lp(Rn)

.

To prove this lemma one can proceed as in Coifman-Meyer [14, Proposition 4, p.42] provided
that

∑∞
j=1 ω

2(2−j)Ω2(2j) < ∞. This inequality follows from the hypotheses on ω and Ω.

We have
∑∞

j=1 ω(2−j)Ω(2j) .
∑∞

j=1 ω
a(2−j) ∼

∫ 1
0
ωa(t)
t dt <∞.

Finally, one shows that every symbol σ satisfying the conditions in Theorem 4.3 can be
expressed in terms of reduced symbols. More precisely,

Lemma 4.6. Let ω, Ω and σ satisfy the hypothesis of Theorem 4.3. Then

σ(x, ξ, η) = τ(x, ξ, η) +
∑
k,l∈Zn

σk,l(x, ξ, η)
(1 + |k|)n+1(1 + |l|)n+1

,

where τ(x, ξ, η) = 0 for |(ξ, η)| > 1, and σk,l are reduced symbols with the constants on the
right hand sides of (4.18)-(4.21) uniform on k and l .
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For the proof of this lemma see Coifman-Meyer [14, p.46] and Bényi-Torres [4]. Note
that Tτ (f, g)(x) =

∫ ∫
L(x, x− y, x− z) f(y)g(z) dydz, where

|L(x, x− y, x− z)| . 1
(1 + |x− y|)n+1(1 + |x− z|)n+1

.

Therefore Tτ is bounded from Lp(Rn)×Lq(Rn) into Lr(Rn), 1 ≤ p, q ≤ ∞, 1
r = 1

p + 1
q . The

boundedness for Tσ from Lp(Rn) × Lq(Rn) into Lr(Rn), 1 < p < ∞, 1
r = 1

p + 1
q ∈ (0, 1),

follows from the uniform boundedness for Tσk,l and the boundedness for Tτ in the same
spaces. �

5. Proof of Theorem 2.3

The first step towards the proof of Theorem 2.3 is the following quadratic estimate for
ω-molecules with cancelation. Notice that (2.2) and (2.3) imply

|φP (x)− φP (y)|(5.1)

≤ A2νn/2 min(1, ω(2ν |x− y|))
[

1
(1 + 2ν |x− xP |)N

+
1

(1 + 2ν |y − xP |)N

]
.

Lemma 5.1. Assume that ω ∈ Dini(1) and that {φQ}Q∈D is a family of ω-molecules with
the cancelation property

(5.2)
∫

Rn
φQ(x) dx = 0, for every cube Q ∈ D.

Then, there exists a constant C = C(A, |ω|Dini(1), N, n) such that for every f ∈ L2(Rn), we
have

(5.3)
∑
Q∈D
|〈φQ, f〉|2 ≤ C ‖f‖2L2(Rn) .

Proof of Lemma 5.1. It is enough to show that there is a constant C such that for every
Q ∈ D

(5.4)
∑
R∈D
|〈φQ, φR〉| ≤ C.

Indeed, given f ∈ L2(Rn) and assuming ‖f‖L2(Rn) = 1 we have∑
Q∈D
|〈φQ, f〉|2

2

=

∑
Q∈D
〈φQ, f〉〈f, φQ〉

2

=

∫
Rn

∑
Q∈D
〈f, φQ〉φQ(x)f̄(x) dx

2

≤

∥∥∥∥∥∥
∑
Q∈D
〈f, φQ〉φQ

∥∥∥∥∥∥
2

L2(Rn)

=
∑

Q,R∈D
〈f, φQ〉〈φQ, φR〉〈φR, f〉

≤

 ∑
Q,R∈D

|〈f, φQ〉|2|〈φQ, φR〉|

1/2 ∑
Q,R∈D

|〈φR, f〉|2|〈φQ, φR〉|

1/2

≤ C
∑
Q∈D
|〈φQ, f〉|2,



14 DIEGO MALDONADO AND VIRGINIA NAIBO

which yields (5.3). In order to prove (5.4) fix Q = Q(ν, k) and split the sum in R = R(µ,m)
as follows

∑
R∈D
|〈φQ, φR〉| =

∑
µ∈Z
m∈Zn

|〈φQ, φR〉| =
∑
µ≤ν
m∈Zn

|〈φQ, φR〉|+
∑
µ>ν
m∈Zn

|〈φQ, φR〉| =: S1 + S2.

We first estimate S1. The cancelation property (5.2) and inequality (5.1) allow to write

S1 =
∑
µ≤ν
m∈Zn

|〈φQ, φR〉| =
∑
µ≤ν
m∈Zn

|
∫
φQ(x)(φR(x)− φR(xQ))| dx

≤
∑
µ≤ν

∫
A22νn/22µn/2

(1 + 2ν |x− xQ|)N
min(1, ω(2µ|x− xQ|))

×
∑
m∈Zn

[
1

(1 + 2µ|x− 2−µm|)N
+

1
(1 + 2µ|xQ − 2−µm|)N

]
dx

= A2CN
∑
µ≤ν

∫
2νn/22µn/2

(1 + 2ν |x− xQ|)N
min(1, ω(2µ|x− xQ|)) dx

= A2CN
∑
µ≤ν

∫
1≤ω(2µ|x−xQ|)

2νn/22µn/2

(1 + 2ν |x− xQ|)N
dx

+A2CN
∑
µ≤ν

∫
1>ω(2µ|x−xQ|)

2νn/22µn/2

(1 + 2ν |x− xQ|)N
ω(2µ|x− xQ|) dx

=: S1,1 + S1,2.

By multiplying by a constant (if needed) we can assume that ω(1) = 1. Hence,

S1,1 ≤ A2CN
∑
µ≤ν

∫
|x−xQ|≥2−µ

2νn/22µn/2 dx
2νN |x− xQ|N

= A2CN
∑
µ≤ν

2(µ−ν)(N−n/2) = A2C̃N .
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On the other hand,

S1,2 = A2CN
∑
µ≤ν

∫
|x−xQ|<2−µ

2ν |x−xQ|≥1

2νn/22µn/2ω(2µ|x− xQ|)
(1 + 2ν |x− xQ|)N

dx

+A2CN
∑
µ≤ν

∫
|x−xQ|<2−µ

2ν |x−xQ|<1

2νn/22µn/2ω(2µ|x− xQ|)
(1 + 2ν |x− xQ|)N

dx

≤ A2CN
∑
µ≤ν

∫
2µ−ν≤2µ|x−xQ|<1

2νn/22µn/2ω(2µ|x− xQ|)
(1 + 2ν |x− xQ|)N

dx

+A2CN
∑
µ≤ν

∫
2ν |x−xQ|<1

2νn/22µn/2ω(2µ|x− xQ|) dx

= A2CN
∑
µ≤ν

ν−µ−1∑
λ=0

∫
2−λ−1≤2µ|x−xQ|<2−λ

2νn/22µn/2ω(2µ|x− xQ|)
(1 + 2ν |x− xQ|)N

dx

+A2CN
∑
µ≤ν

∫
2ν |x−xQ|<1

2νn/22µn/2ω(2µ−ν2ν |x− xQ|) dx

≤ A2CN
∑
µ≤ν

ν−µ−1∑
λ=0

2νn/22µn/2ω(2−λ)
∫

2−λ−1≤2µ|x−xQ|<2−λ

dx

2νN |x− xQ|N

+A2CN
∑
µ≤ν

∫
2ν |x−xQ|<1

2νn/22µn/2ω(2µ−ν) dx

≤ A2CN
∑
µ≤ν

ν−µ−1∑
λ=0

2νn2−νN2(−µ−λ)(n−N)ω(2−λ) +A2CN
∑
µ≤ν

ω(2µ−ν)

≤ |ω|Dini(1)A
2 ˜̃CN .

The estimate for S2 follows analogously by interchanging the roles of φR and φQ. �

The following lemma is a particular case of a discrete bilinear almost orthogonality result
whose proof can be found in [3].

Lemma 5.2. For every N > n + 1 there is a constant CN , depending only on N and n,
such that for any ν ∈ Z and any x, y, z ∈ Rn the following inequality holds∑

k∈Zn

1
[(1 + 2ν |x− 2−νk|)(1 + 2ν |y − 2−νk|)(1 + 2ν |z − 2−νk|)]5N

≤ CN
[(1 + 2ν |x− y|)(1 + 2ν |y − z|)(1 + 2ν |x− z|)]N

.

The following is the main theorem of this section.
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Theorem 5.3. Assume ω ∈ Dini(1/2) and let {φjQ}Q∈D, j = 1, 2, 3 be three families of
ω-molecules with decay N > 10n and such that at least two of them have cancelation. Then,
the paraproduct Π defined in ( 2.4) has a bilinear Calderón-Zygmund kernel of type θ(t) with

θ(t) = A3ANω(CN t), t > 0,

for some constants AN and CN (hence, θ ∈ Dini(1/2)). Moreover, Π has the mapping
property

Π : L2(Rn)× L2(Rn)→ L1(Rn).

In particular, Π is a bilinear Calderón-Zygmund operator of type θ(t).

Proof of Theorem 5.3. The kernel of Π is given by

K(x, y, z) =
∑
Q∈D
|Q|−1/2φ1

Q(y)φ2
Q(z)φ3

Q(x).

In order to prove the size estimate for K(x, y, z) we index the dyadic cubes by Q = Q(ν, k)
and use (2.2) and Lemma 5.2, to obtain

|K(x, y, z)| ≤
∑
Q∈D

A3|Q|−1/22ν3n/2

(1 + 2ν |y − 2−νk|)N (1 + 2ν |z − 2−νk|)N (1 + 2ν |x− 2−νk|)N

= A3
∑
ν∈Z

22νn
∑
k∈Zn

1
(1 + 2ν |y − 2−νk|)N (1 + 2ν |z − 2−νk|)N (1 + 2ν |x− 2−νk|)N

≤ A3
∑
ν∈Z

22νn

(1 + 2ν |y − x|)N/5(1 + 2ν |z − y|)N/5(1 + 2ν |x− z|)N/5

≤ A3
∑
ν∈Z

22νn

[1 + 2ν(|y − x|+ |z − y|+ |x− z|)]N/5
≤ A3CN

(|x− y|+ |y − z|+ |x− z|)2n
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The ω-regularity of the kernel involves the concavity of ω. Take x, y, z, h ∈ Rn such that
|h| ≤ 1/2 max(|x− y|, |x− z|) and do

|K(x, y, z)−K(x+ h, y, z)| ≤
∑
Q∈D
|Q|−1/2|φ1

Q(y)||φ2
Q(z)||φ3

Q(x)− φ3
Q(x+ h)|

≤ A3
∑
ν∈Z
k∈Zn

22νnω(2ν |h|)
(1 + 2ν |y − 2−νk|)N (1 + 2ν |z − 2−νk|)N (1 + 2ν |x− 2−νk|)N

+A3
∑
ν∈Z
k∈Zn

22νnω(2ν |h|)
(1 + 2ν |y − 2−νk|)N (1 + 2ν |z − 2−νk|)N (1 + 2ν |x+ h− 2−νk|)N

≤ A3
∑
ν∈Z

22νnω(2ν |h|)
(1 + 2ν |y − x|)N/5(1 + 2ν |z − y|)N/5(1 + 2ν |x− z|)N/5

+A3
∑
ν∈Z

22νnω(2ν |h|)
(1 + 2ν |y − x+ h|)N/5(1 + 2ν |z − y|)N/5(1 + 2ν |x+ h− z|)N/5

≤ A3
∑
ν∈Z

22νnω(2ν |h|)
[1 + 2ν(|y − x|+ |z − y|+ |x− z|)]N/5

+A3
∑
ν∈Z

22νnω(2ν |h|)
[1 + 2ν(|y − x+ h|+ |z − y|+ |x+ h− z|)]N/5

.

Since the condition |h| ≤ 1
2 max(|x− y|, |x− z|) implies

1
4

(|x− y|+ |x− z|) ≤ |y − x+ h|+ |x− z + h| ≤ 3
2

(|x− y|+ |x− z|),

we only need to bound one of the above sums. Let α ∈ Z such that

2α ≤ |x− y|+ |y − z|+ |z − x| ≤ 2α+1.

Then ∑
ν∈Z

22νnω(2ν |h|)
[1 + 2ν(|y − x|+ |z − y|+ |x− z|)]N/5

≤ 2−2αn
∑
ν∈Z

22νnω(2ν−α|h|)
(1 + 2ν)N/5

,

where we used the change of variables ν + α 7→ ν. Set AN :=
∑

ν∈Z 22νn(1 + 2ν)−N/5. By
concavity of ω we have

∑
ν∈Z

22νnω(2ν−α|h|)
(1 + 2ν)N/5

≤ ANω

(
1
AN

∑
ν∈Z

22νn2ν−α|h|
(1 + 2ν)N/5

)

≤ ANω
(
CN2−α|h|

)
≤ ANω

(
2CN |h|

|x− y|+ |y − z|+ |x− z|

)
.

Finally, set θ(t) := 2A3ANω(2CN t). The regularity in the y and z coordinates follows
similarly. The L2(Rn) × L2(Rn) → L1(Rn) boundedness is a consequence of Lemma 5.1.
We can assume (by taking transposes of Π, if necessary) that {φ1

Q} and {φ2
Q} are the families

of molecules with cancelation. Given f, g ∈ L2(Rn) and h ∈ L∞(Rn) we use duality and
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(2.2) to obtain

|〈Π(f, g), h〉| ≤
∑
Q∈D
|Q|−1/2|〈f, φ1

Q〉||〈g, φ2
Q〉||〈φ3

Q, h〉|

≤

∑
Q∈D
|〈f, φ1

Q〉|2
1/2∑

Q∈D
|〈g, φ2

Q〉|2
1/2

sup
ν∈Z
k∈Zn

∫
Rn

2nνh(x) dx
(1 + 2ν |x− 2−νk|)N

≤ ACN ‖f‖L2(Rn) ‖g‖L2(Rn) ‖h‖L∞(Rn) .

�

Remark 2. If instead of the regularity condition (2.3) we require from a molecule to verify
the weaker inequality

(5.5) |φP (x)− φP (y)| ≤ A2νn/2ω(2ν |x− y|), x, y ∈ Rn,

then, (2.2) and (5.5) imply

|φP (x)− φP (y)|(5.6)

≤ A2νn/2 min(1, ω1/2(2ν |x− y|))
[

1
(1 + 2ν |x− xP |)N/2

+
1

(1 + 2ν |y − xP |)N/2

]
.

The proof of Theorem 2.3 also applies with condition (5.5) instead of (2.3), since we can
replace the use of (5.1) by utilizing (5.6). In this case, we require the weaker assumption that
ω1/2 be concave instead of ω be concave. However, we also need the stronger assumptions∫ 1

0 ω
1/4(t)dt/t < ∞ (instead of

∫ 1
0 ω

1/2(t)dt/t < ∞) and N > 10n + 10 (instead of N >
5n+ 5).

Remark 3. One could be tempted to think that paraproducts associated to ω-molecules
with enough decay can be realized as pseudo-differential operators in the class BS0

1,ω,Ω for
some choice of Ω. If that were the case, the results in this section would just follow from
the ones in Section 4. However, such a realization is not true in general, as the following
example shows. Consider three functions ψj ∈ S(Rn), j = 1, 2, 3, and, given a dyadic cube
Q = Qνk, set

ψjQ(x) = 2νn/2ψj(2νx− k), x ∈ Rn, j = 1, 2, 3.

Also assume that ψ̂j is supported in {ξ ∈ Rn : 1/2 ≤ |ξ| ≤ 2} and equals one in {ξ ∈ Rn :
1 ≤ |ξ| ≤ 3/2}, for j = 1, 2; and supp(ψ3) ⊂ [0, 1]n. The paraproduct Π built from these
ψj ’s can be written as a ΨDO with symbol

σ(x, ξ, η) =
∑
ν∈Z

∑
k∈Zn

e−i(x−2−νk)·(ξ+η)ψ̂1(2−νξ)ψ̂2(2−νη)ψ3(2νx− k).

The support hypotheses on the smooth molecules ψj allow to easily estimate

|∂αξ ∂βη σ(x, ξ, η)| ' (|ξ|+ |η|)−(|α|+|β|), ξ, η ∈ Rn \ {0}.
Hence, condition (4.1) does not hold. A closer look at the example also shows that condition
(4.2) cannot hold either for any choice of ω, Ω due to the blow-up of the ξ and η derivatives
of ∂γxσ(x, ξ, η), |γ| = 1, at (ξ, η) = (0, 0).

Remark 4. We point out that the realization of paraproducts as bilinear Calderón-Zygmund
operators of type ω(t) described in Theorem 2.3 complements the approaches in [21], [22],
[31], [32] [37], [36], [40], and [46], where, in turn, classical Fourier Analysis operators are
reduced or decomposed into paraproducts.
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6. Boundedness of bilinear Calderón-Zygmund operators of type ω(t)

In this section we elaborate on a bilinear theory for Calderón-Zygmund operators of type
ω(t) with Dini continuous ω. In subsections 6.1 and 6.2 we have deemed it appropriate
to provide the reader with either complete proofs or detailed outlines of proofs of the
boundedness properties of bilinear Calderón-Zygmund operators of type ω(t) on Lebesgue
spaces, although they sometimes follow the known proofs in the case of ω(t) = tε by L.
Grafakos and R. Torres in [26] and [27]. On the other hand, we point out that the results
in subsections 6.3 and 6.4 concerning weighted Hardy spaces and weighted amalgam spaces
respectively, are new even in the case ω(t) = tε. For simplicity, we have also fixed the value
of τ in Definition 3.1 to be the usual 1/2.

6.1. Boundedness on unweighted Lebesgue spaces, H1, and BMO.

Theorem 6.1. Consider ω ∈ Dini(1/2) and let T be a bilinear operator associated to a
bilinear Calderón-Zygmund kernel of type ω(t), K(x, y, z). Assume that for some 1 ≤ p, q ≤
∞ and 0 < r <∞ satisfying

1
p

+
1
q

=
1
r
,

T maps Lp(Rn) × Lq(Rn) into Lr,∞(Rn). Then, T can be extended to a bounded operator
from L1(Rn)× L1(Rn) into L

1
2
,∞(Rn).

Proof. We write l(Q) to denote its side length and Q∗ to indicate the cube with the same
center as Q and l(Q∗) = (2n+ 1) l(Q). The arguments in this proof are similar to those in
Grafakos-Torres [26], but they are also slightly different as we make no use of the bounded-
ness properties of the Marcinkiewicz operator. Fix λ > 0 and f1, f2 ∈ L1(Rn). Assuming,
without loss of generality, that ‖fj‖1 = 1, j = 1, 2, we have to prove that

|{x ∈ Rn : |T (f1, f2)(x)| > λ}| ≤ C λ−
1
2 ,

for some constant C independent of f1, f2 and λ. Consider the Calderón-Zygmund decom-
position of each function fj at height λ1/2. Then, for j = 1, 2, we have

fj = gj + bj ,(6.1)

‖gj‖p ≤ (2nλ
1
2 )1− 1

p , 1 ≤ p ≤ ∞,(6.2)

bj =
∑
k

bj,k, where each bj,k is supported in a dyadic cube Qj,k,(6.3)

For k 6= k′, the interiors of Qj,k and Qj,k′ are disjoint,(6.4) ∫
Qj,k

bj,k(x) dx = 0,(6.5)

‖bj,k‖1 ≤ 2n+1λ
1
2 |Qj,k| ,(6.6) ∑

k

|Qj,k| ≤ λ−
1
2 .(6.7)

The set {x ∈ Rn : |T (f1, f2)(x)| > λ} is contained in the union of the sets

{x ∈ Rn : |T (h1, h2)| > 4−1λ}
where hj ∈ {gj , bj}, j = 1, 2. Therefore, we have to show that∣∣{x ∈ Rn : |T (h1, h2)(x)| > 4−1λ}

∣∣ ≤ C λ− 1
2 ,
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where hj ∈ {gj , bj} and C is independent of λ and fj , j = 1, 2. Let us first consider the
easy case where hj = gj , j = 1, 2. Using the boundedness of T from Lp(Rn)× Lq(Rn) into
Lr,∞(Rn) (with norm A) and (6.2), we do∣∣{x ∈ Rn : |T (g1, g2)(x)| > 4−1λ}

∣∣ ≤ (4A
λ
‖g1‖p ‖g2‖q

)r
≤ 4r Ar

λr
2n(2r−1)λr−

1
2

≤ Cn,rArλ−
1
2 .

We address now the rest of the cases, when there is at least one function hj = bj . Let
B ⊂ {1, 2}, #(B) = l ≥ 1. Assume that hj = bj if j ∈ B, and hj = gj if j /∈ B. We have∣∣{x ∈ Rn : |T (h1, h2)(x)| > 4−1λ}

∣∣ ≤ ∣∣{x ∈ ∪j∈B ∪k Q∗j,k}∣∣
+
∣∣{x /∈ ∪j∈B ∪k Q∗j,k : |T (h1, h2)(x)| > 4−1λ}

∣∣ .
In view of (6.7), we only need to work on the measure of the set EB := {x /∈ ∪j∈B ∪k Q∗j,k :
|T (h1, h2)| > 4−1λ}. Denoting by cj,k the center of Qj,k, we will show that

(6.8) |T (h1, h2)(x)| ≤ Dλ
∏
j∈B
Mω

j,l(x),

where x /∈ ∪j∈B ∪k Q∗j,k, D is a constant independent of λ and fj , j = 1, 2, and

Mω
j,l(x) :=

∑
k

ω

(
l(Qj,k)
|x− cj,k|

) 1
l l(Qj,k)n

|x− cj,k|n
.

Assuming that (6.8) holds, Chebychev’s and Hölder inequality yield

|EB| ≤

∣∣∣∣∣∣
x /∈ ∪m∈B ∪k Q∗m,k :

∏
j∈B
Mω

j,l(x) > (4D)−1


∣∣∣∣∣∣

≤ (4D)
1
l

∫
x/∈∪m∈B∪kQ∗m,k

∏
j∈B

(
Mω

j,l(x)
) 1
l dx ≤ (4D)

1
l

∏
j∈B

(∫
x/∈∪m∈B∪kQ∗m,k

Mω
j,l(x) dx

) 1
l

.

We now estimate each of the above integrals by using polar coordinates.∫
x/∈∪m∈B∪kQ∗m,k

Mω
j,l(x) dx ≤

∑
k

∫
|x−cj,k|>l(Qj,k)

ω

(
l(Qj,k)
|x− cj,k|

) 1
l l(Qj,k)n

|x− cj,k|n
dx

= Cn
∑
k

∫ ∞
l(Qj,k)

ω

(
l(Qj,k)
ρ

) 1
l l(Qj,k)n

ρn
ρn−1dρ = Cn

∑
k

l(Qj,k)n
∫ 1

0

ω(t)
1
l

t
dt

≤ Cn,ω,l λ−
1
2 .

We thus obtain |EB| ≤ (4D)
1
lCn,ω,l λ

− 1
2 , and the theorem is then proved. We will now

proceed to prove (6.8). In what follows x /∈ ∪j∈B ∪k Q∗j,k.

First case: l = 2. Since x is away from the support of b1 and b2, by (6.3) we can write

|T (b1, b2)(x)| ≤
∑
k1

∑
k2

∣∣∣∣∫
Rn

∫
Rn
K(x, y, z)b1,k1(y)b2,k2(z) dydz

∣∣∣∣ .
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Fix for a moment k1, k2 and assume, without loss of generality, that l(Q1,k1) ≤ l(Q2,k2).
Using the cancelation (6.5) of b1,k1 and the regularity (3.2) of the kernel K,

∣∣∣∣∫
Rn
K(x, y, z)b1,k1(y) dy

∣∣∣∣ =
∣∣∣∣∫

Rn
(K(x, y, z)−K(x, c1,k1 , z))b1,k1(y) dy

∣∣∣∣
≤
∫

Rn

CK
(|x− y|+ |x− z|)2n

ω

(
|y − c1,k1 |

|x− y|+ |x− z|

)
|b1,k1(y)| dy

.
∫

Rn

CK
(|x− y|+ |x− z|)2n

ω

(
l(Q1,k1)

|x− y|+ |x− z|

)
|b1,k1(y)| dy

Note that the condition |y − c1,k1 | ≤ 1
2 max(|x− y|, |x− z|) is satisfied since y ∈ Q1,k1 and

x /∈ Q∗1,k1 . Actually |y − c1,k1 | ≤
√
n

2 l(Q1,k1) ≤
√
n

2n |x− c1,k1 | . We then have,

|T (b1, b2)(x)| ≤
∑
k1

∑
k2

∫
Rn

∣∣∣∣∫
Rn
K(x, y, z)b1,k1(y)

∣∣∣∣ |b2,k2(z)| dydz

.
∑
k1

∑
k2

∫
Rn

∫
Rn

CK
(|x− y|+ |x− z|)2n

ω

(
l(Q1,k1)

|x− y|+ |x− z|

)
|b1,k1(y)||b2,k2(z)|dydz.

Note that for y ∈ Q1,k1 and x /∈ Q∗1,k1 we have |x− y| ≥ 1
2 |x− c1,k1 | . Similarly for z ∈ Q1,k2 .

Then, using that ω is nondecreasing and doubling,

ω
(

l(Q1,k1
)

|x−y|+|x−z|

)
(|x− y|+ |x− z|)2n

.
ω

(
l(Q1,k1

)

|x−c1,k1 |+|x−c2,k2 |

)
(|x− c1,k1 |+ |x− c2,k2 |)2n

.
2∏
i=1

ω

(
l(Qi,ki )

|x−ci,ki |

) 1
2

|x− ci,ki |
n

This and (6.6) give

|T (b1, b2)(x)|

. CK
∑
k1

∑
k2

∫
Rn

∫
Rn

2∏
i=1

1
|x− ci,ki |

n ω

(
l(Qi,ki)
|x− ci,ki |

) 1
2

|b1,k1(y)||b2,k2(z)|dydz

. CK λ
∑
k1

∑
k2

2∏
i=1

l(Qi,ki)
n

|x− ci,ki |
n ω

(
l(Qi,ki)
|x− ci,ki |

) 1
2

∼ CK λ
2∏
j=1

Mω
j,2(x),

which is (6.8).
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Second case: l = 1. Suppose h1 = b1 and h2 = g2. Then, since x is away from the
support of b1, we use (6.3), (6.5), (6.2), (6.6), and the properties of K and ω, to write

|T (b1, g2)(x)| ≤
∑
k1

∫
Rn

∣∣∣∣∫
Rn
K(x, y, z)b1,k1(y) dy

∣∣∣∣ |g2(z)|dz

=
∫

Rn

∑
k1

∣∣∣∣∫
Rn

(K(x, y, z)−K(x, c1,k1 , z))b1,k1(y) dy
∣∣∣∣ |g2(z)|dz

≤ ‖g2‖L∞
∫

Rn

∑
k1

∫
Rn

CK
(|x− y|+ |x− z|)2n

ω

(
|y − c1,k1 |

|x− y|+ |x− z|

)
|b1,k1(y)| dydz

. CKλ
1/2

∫
Rn

∑
k1

∫
Rn

1
(|x− y|+ |x− z|)2n

ω

(
l(Q1,k1)
|x− y|

)
|b1,k1(y)| dydz

. CKλ
1/2
∑
k1

∫
Rn

1
|x− y|n

ω

(
l(Q1,k1)
|x− y|

)
|b1,k1(y)| dy

. CKλ
∑
k1

l(Q1,k1)n

|x− c1,k1 |
n ω

(
l(Q1,k1)
|x− c1,k1 |

)
∼ CKλMω

j,1(x),

which is (6.8). The case h1 = g1 and h2 = b2 follows similarly. �

Theorem 6.2. Consider ω ∈ Dini(1/2) and T be a bilinear Calderón-Zygmund operator
of type ω(t) in Rn with kernel K. Let 1 ≤ p, q ≤ ∞, 1

2 ≤ r <∞ such that 1
r = 1

p + 1
q . Then

we have

(i) If p, q > 1, then T can be extended to a bounded operator from Lp(Rn)×Lq(Rn) into
Lr(Rn), where Lp(Rn) or Lq(Rn) should be replaced by L∞c (Rn) if p = ∞ or q = ∞,
respectively;

(ii) If p = 1 or q = 1, then T can be extended to a bounded operator from Lp(Rn)×Lq(Rn)
into Lr,∞(Rn), where Lp(Rn) or Lq(Rn) should be replaced by L∞c (Rn) if p = ∞ or
q =∞, respectively;

(iii) T can be extended to a bounded operator from L∞c (Rn)× L∞c (Rn) into BMO.

The proof of Theorem 6.2 can be carried out using duality and multilinear interpolation
techniques as in Grafakos-Torres [26, Theorem 3] (case ω(t) = tε), if the following holds:

(i) T is bounded from L1(Rn)× L1(Rn) into L
1
2
,∞(Rn) (this is our Theorem 6.1),

(ii) for each h ∈ L∞c (Rn), T 1
h (f) = T (f, h) and T 2

h (f) = T (h, g) are bounded operators
from Ls(Rn) into Ls(Rn) for 1 < s < ∞ and from L∞ to BMO with both norms
bounded by a constant multiple of ‖h‖L∞(Rn) . This follows from the fact that T 1

h and
T 2
h are linear Calderón-Zygmund operators of type ω(t) as described in Yabuta [47],

where these boundedness properties are proved.

Corollary 6.3. Under the hypothesis of Theorem 6.2, T can be extended to a bounded
operator from L∞(Rn) × L∞(Rn) into BMO, from L∞(Rn) × H1 into L1(Rn), and from
H1 × L∞(Rn) into L1(Rn).

The extension of T to L∞(Rn)×L∞(Rn) can be done in the usual way once T is defined
on L∞c (Rn)× L∞c (Rn) (see Grafakos-Torres [26]).
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6.2. Boundedness on weighted Lebesgue spaces. Let Q denote the collection of all
cubes Q ⊂ Rn with sides parallel to the coordinate axes. The Hardy-Littlewood maximal
function M is defined for f ∈ L1

loc(Rn) by

Mf(x) = sup
Q∈Q:x∈Q

1
|Q|

∫
Q
|f(x)| dx.

A nonnegative weight w ∈ L1
loc(Rn) belongs to the Ap Muckenhoupt class, for 1 < p <∞ if

|w|Ap := sup
Q∈Q

(
1
|Q|

∫
Q
w

)(
1
|Q|

∫
Q
w1−p′

)p−1

<∞.

We write w ∈ A1 if there exists a constant C such that Mw(x) ≤ Cw(x) for a.e. x ∈ Rn

and set A∞ = ∪p≥1Ap. Recall also that a weight w is in the class A∞ if and only if there
exist positive constants c and θ such that for every cube Q ∈ Q and every measurable set
E ⊂ Q,

(6.9)
w(E)
w(Q)

≤ c
(
|E|
|Q|

)θ
,

where w(S) =
∫
S w(x) dx for any measurable set S ⊂ Rn.

We denote by Lpw(Rn) the weighted Lebesgue space of all functions f on Rn such that
‖f‖Lpw(Rn) := (

∫
Rn |f(x)|p w(x) dx)1/p < ∞. In this subsection we study weighted norm

inequalities for a bilinear Calderón-Zygmund operator of type ω(t) and its corresponding
maximal truncated operator.

Let T be a bilinear Calderón-Zygmund operator of type ω(t) associated to a kernel
K(x, y, z). The maximal truncated operator is defined as

T∗(f, g)(x) = sup
δ>0
|Tδ(f, g)(x)| .

where
Tδ(f, g)(x) =

∫
|x−y|2+|x−z|2>δ2

K(x, y, z) f(y)g(z) dydz.

Note that condition (3.1) guarantees that Tδ is well defined for (f, g) ∈ Lp(Rn) × Lq(Rn),
1 ≤ p, q ≤ ∞, since the integral is absolutely convergent in this case. In what follows, W
denotes de norm of T as a bounded operators from L1(Rn)× L1(Rn) into L1/2,∞(Rn) (see
Theorem 6.1).

6.2.1. Cotlar’s inequality.

Theorem 6.4. Let ω ∈ Dini(1/2) and T be a bilinear Calderón-Zygmund operator of type
ω(t) in Rn with kernel K. Then for all η > 0, there exists a constant Cη,ω,n such that
(6.10)

T∗(f, g)(x) ≤ Cη,ω,n
(

(M(|T (f, g)|η)(x))1/η + (CK +W )Mf(x)Mg(x)
)
, x ∈ Rn,

for all (f, g) in any product space Lp(Rn)× Lq(Rn) with 1 ≤ p, q <∞.

Proof. Define
T̃∗(f, g)(x) = sup

δ>0

∣∣∣T̃δ(f, g)(x)
∣∣∣

where

T̃δ(f, g)(x) =
∫
Aδ(x)

K(x, y, z) f(y)g(z) dydz, Aδ(x) = {(y, z) : max{|x− y| , |x− z|} > δ}
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It is enough to prove (6.10) with T∗ replaced by T̃∗, since by (3.1),

sup
δ>0

∣∣∣∣∣∣∣∣
∫

max(|x−y|,|x−z|)≤δ
|x−y|2+|x−z|2>δ2

K(x, y, z)f(y)g(z)

∣∣∣∣∣∣∣∣ . Mf(x)Mg(x).

We will show that

(6.11)
∣∣∣T̃δ(f, g)(x)

∣∣∣ . CKMf(x)Mg(x) +
∣∣T (f, g)(x′)− T (f0, g0)(x′)

∣∣ , ∣∣x− x′∣∣ < δ

2
,

where f0 = f χB(x,δ) and g0 = g χB(x,δ). Once (6.11) is proved, we have for each fixed η > 0,∣∣∣T̃δ(f, g)(x)
∣∣∣η . (CKMf(x)Mg(x))η +M (|T (f, g)|η) (x)

+
1∣∣B(x, δ2)

∣∣
∫
B(x, δ

2
)

∣∣T (f0, g0)(x′)
∣∣η dx′.

The last term in the above inequality can be shown to be bounded by CηW η (Mf(x)Mg(x))η ,
0 < η < 1

2 , using only the boundedness of T from L1(Rn)× L1(Rn) into L1/2,∞(Rn) (The-
orem 6.1) and it follows as in Grafakos-Torres [27].

To prove (6.11), note that T (f, g)(x′) − T (f0, g0)(x′) =
∫
Aδ(x)K(x′, y, z) f(y)g(z) dydz

for |x− x′| < δ
2 . It is then enough to show that∣∣∣∣∣T̃δ(f, g)(x)−

∫
Aδ(x)

K(x′, y, z) f(y)g(z) dydz

∣∣∣∣∣ . CKMf(x)Mg(x),
∣∣x− x′∣∣ ≤ δ

2
.

Noting that |x− x′| ≤ 1
2 max{|x− y| , |x− z|}, for (y, z) ∈ Aδ(x), we can use the regularity

of the kernel (3.2) to obtain,

|T̃δ(f, g)(x)−
∫
Aδ(x)

K(x′, y, z) f(y)g(z) dydz|

≤
∫
Aδ(x)

CK
(|x− y|+ |x− z|)2n

ω

(
|x− x′|

|x− y|+ |x− z|

)
f(y)g(z) dydz

=
∫
|x−y|>δ,|x−z|>δ

· · ·+
∫
|x−y|>δ,|x−z|≤δ

· · ·+
∫
|x−y|≤δ,|x−z|>δ

· · · .

For the first term we have, using that ω is non-decreasing and that |x− x′| < δ
2 ,∫

|x−y|>δ,|x−z|>δ
· · · ≤ CK

∫
|x−y|>δ

ω
1
2

(
δ
|x−y|

)
|x− y|n

f(y) dy
∫
|x−z|>δ

ω
1
2

(
δ
|x−z|

)
|x− z|n

g(z) dz

. CK

(
ω

1
2 (1) +

∫ 1

0

ω
1
2 (t)
t

dt

)2

Mf(x)Mg(x).

For the second term (and similarly for the third term) we have,∫
|x−y|>δ,|x−z|≤δ

· · · ≤ CK
∫
|x−y|>δ

ω
(

δ
|x−y|

)
|x− y|2n

f(y) dy
∫
|x−z|≤δ

g(z) dz

. CK

(
ω(1) +

∫ 1

0
ω(t) tn−1 dt

)
Mf(x)Mg(x).
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�

Corollary 6.5. Let ω ∈ Dini(1/2) and T be a bilinear Calderón-Zygmund operator of type
ω(t) in Rn. Then T∗ is bounded from Lp(Rn) × Lq(Rn) into Lr(Rn) for 1 < p, q ≤ ∞,
1/2 < r <∞, with 1

r = 1
p + 1

q , and from Lp(Rn)×Lq(Rn) into Lr,∞(Rn) for p = 1 or q = 1,
1
r = 1

p + 1
q . Moreover, in any case, ‖T∗‖ . (CK +W ).

6.2.2. Weighted norm inequalities for T∗.

Theorem 6.6. Let 1 ≤ p, q < ∞, 1
r = 1

p + 1
q , and w ∈ A∞. Consider ω ∈ Dini(1/2) and

let T be a bilinear Calderón-Zygmund operator of type ω(t) in Rn. Then,
(i) if ‖T∗(f, g)‖Lrw(Rn) <∞,

(6.12) ‖T∗(f, g)‖Lrw(Rn) ≤ Cp,n(CK +W ) ‖Mf‖Lpw(Rn) ‖Mg‖Lqw(Rn) .

(ii) if min(p, q) > 1 and w ∈ Amin(p,q), then we have ‖T∗(f, g)‖Lrw(Rn) <∞ and

(6.13) ‖T∗(f, g)‖Lrw(Rn) ≤ Cp,n(CK +W ) ‖f‖Lpw(Rn) ‖g‖Lqw(Rn) .

Theorem 6.6 will be a consequence of the following good-lambda inequality and the
boundedness properties of T∗ in the unweighted case (Corollary 6.5).

Theorem 6.7. Consider ω ∈ Dini(1/2) and let T be a bilinear Calderón-Zygmund operator
of type ω(t) in Rn with kernel K. Let w ∈ A∞ and θ be as in (6.9). Then there exists a
positive constant C, such that for all α > 0, all γ > 0 sufficiently small, and all (f, g) ∈
Lp(Rn)× Lq(Rn), 1 ≤ p, q <∞, the following inequality holds,

(6.14) w
(
{T̃∗(f, g) > 23α} ∩ {MfMg ≤ γα}

)
≤ C(CK +W )θ/2γθ/2w

(
{T̃∗(f, g) > α}

)
.

Proof. We set
P := {x : T̃∗(f, g)(x) > α} = ∪jQj

where Qj are Whitney cubes. Since w ∈ A∞ it is enough to prove that

(6.15)
∣∣∣Qj ∩ {T̃∗(f, g) > 23α} ∩ {MfMg ≤ γα}

∣∣∣ ≤ C(CK +W )1/2γ1/2 |Qj | .

Let Q∗j be an appropriate large multiple of Qj and xj ∈ Q∗j ∩ P c such that

(6.16) max
u∈Qj

|xj − u| ≤ 1
4 dist(xj , (Q∗j )

c).

Also, consider ξj ∈ Qj such that Mf(ξj)Mg(ξj) ≤ γα. For h ∈ {f, g}, define h0 = hχQ∗j
and h∞ = h− h0. Then∣∣∣Qj ∩ {T̃∗(f, g) > 23α} ∩ {MfMg ≤ γα}

∣∣∣
≤

∑
i,k∈{0,∞}

∣∣∣Qj ∩ {T̃∗(f i, gk) > 2α} ∩ {MfMg ≤ γα}
∣∣∣ .

The term corresponding to i = k = 0 is shown to be bounded by C(CK + W )1/2γ1/2 |Qj |
(see Grafakos-Torres [27, Theorem 3.1]). This only uses the fact that T̃∗ is bounded from
L1(Rn)× L1(Rn) into L1/2,∞(Rn) with norm bounded by C(CK +W ) (see Corollary 6.5).
The terms corresponding to i = 0, j =∞ and i =∞, j = 0, can be made zero for γ small
enough (see Grafakos-Torres [27, Theorem 3.1]). This only uses the hypothesis (3.1) on the
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size of the kernel. When i = k =∞ we can make the corresponding term equal to zero by
using the regularity (3.2) of the kernel in the following way. We show first that

(6.17)
∣∣∣T̃δ(f∞, g∞)(x)− T̃δ(f∞, g∞)(xj)

∣∣∣ . CKMf(ξj)Mg(ξj), x ∈ Qj .

We have∣∣∣T̃δ(f∞, g∞)(x)− T̃δ(f∞, g∞)(xj)
∣∣∣ ≤ ∫

Aδ(x)
|K(x, y, z)−K(xj , y, z)| |f∞(y)g∞(z)| dydz

+
∫
Aδ(x)\Aδ(xj)

|K(xj , y, z) f∞(y)g∞(z)| dydz +
∫
Aδ(xj)\Aδ(x)

|K(xj , y, z) f∞(y)g∞(z)| dydz.

Note that (6.16) implies that |x− xj | ≤ 1
2 max(|x− y| , |x− z|) for y, z ∈ (Q∗j )

c, x ∈ Qj .
Then we can apply (3.2) to obtain∫

Aδ(x)
|K(x, y, z)−K(xj , y, z)| |f∞(y)g∞(z)| dydz

≤ CK

∫
Rn

∫
Rn

ω
(

|x−xj |
|x−y|+|x−z|

)
(|x− y|+ |x− z|)2n

|f∞(y) g∞(z)| dydz

. CK

∫
(Q∗j )c

ω1/2
(
l(Q∗j )

|x−y|

)
|x− y|n

|f(y)| dy
∫

(Q∗j )c

ω1/2
(
l(Q∗j )

|x−z|

)
|x− z|n

|g(z)| dz.

Noting that |x− y| ∼ |ξj − y| for y ∈ (Q∗j )
c, x ∈ Qj , we have

∫
(Q∗j )c

ω1/2
(
l(Q∗j )

|x−y|

)
|x− y|n

|f(y)| dy .
∫
|ξj−y|>l(Q∗j )

ω1/2
(
l(Q∗j )

|ξj−y|

)
|ξj − y|n

|f(y)| dy

.

(
ω

1
2 (1) +

∫ 1

0

ω1/2(t)
t

dt

)
Mf(ξj).

We have a similar estimate for the factor corresponding to g.
Since |x− u| ∼ |xj − u| ∼ |ξj − u| for u ∈ (Q∗j )

c and x ∈ Qj , using the size (3.1) of the
kernel K, we get,∫

Aδ(x)\Aδ(xj)
|K(xj , y, z) f∞(y)g∞(z)| dydz .

∫
|ξj−y|∼δ

|f(y)|
|ξj − y|n

dy

∫
|ξj−z|∼δ

|g(z)|
|ξj − z|n

dz

+
∫
|ξj−y|∼δ

|f(y)|
|ξj − y|2n

dy

∫
|ξj−z|.δ

|g(z)| dz

+
∫
|ξj−z|∼δ

|g(z)|
|ξj − z|2n

dz

∫
|ξj−y|.δ

|f(y)| dy

.Mf(ξj)Mg(ξj),

with a similar estimate for
∫
Aδ(xj)\Aδ(x) |K(xj , y, z) f∞(y)g∞(z)| dydz. Therefore (6.17) fol-

lows.
One also has that

(6.18)
∣∣∣T̃δ(f∞, g∞)(xj)

∣∣∣ ≤ T̃∗(f, g)(xj) + C CKMf(ξj)Mg(ξj), δ > 0.
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The proof of this uses the condition (3.1) on the size of the kernel, and follows the steps
in Grafakos-Torres [27, Theorem 3.1]. Using (6.17), (6.18), Mf(ξj)Mg(ξj) ≤ γα, and
T̃∗(f, g)(xj) < α, we get T̃∗(f∞, g∞)(x) ≤ 2α for x ∈ Qj by choosing γ small enough. �

6.2.3. Weighted norm inequalities for T . The weighted norm inequalities above can be
extended for a bilinear Calderón-Zygmund operator T of type ω(t) by controlling T by T ∗

and a bounded bilinear pointwise multiplier operator. More precisely, for f and g bounded
and compactly supported,

(6.19) |T (f, g)(x)| . T∗(f, g)(x) + ‖b‖L∞(Rn) |f(x)g(x)| ,

where b is a function satisfying ‖b‖L∞(Rn) . (CK +W ). This is proved using the arguments
from the linear case (see [27]).

Theorem 6.8. Let 1 < p, q < ∞, 1
r = 1

p + 1
q , and w ∈ A∞. Consider ω ∈ Dini(1/2) and

let T be a bilinear Calderón-Zygmund operator of type ω(t) in Rn with kernel K. Then for
f and g bounded and compactly supported,

(6.20) ‖T (f, g)‖Lrw(Rn) ≤ Cp,n(CK +W ) ‖Mf‖Lpw(Rn) ‖Mg‖Lqw(Rn) .

In particular, if w ∈ Amin(p,q) we have

(6.21) ‖T (f, g)‖Lrw(Rn) ≤ Cp,n(CK +W ) ‖f‖Lpw(Rn) ‖g‖Lqw(Rn) ,

and therefore, T extends as a bounded operator from Lpw(Rn)× Lqw(Rn) into Lrw(Rn).

Remark 5. Adapting Remark 3.6 of Grafakos-Torres [27], for w ∈ A1 and f and g bounded
and compactly supported, one can prove that

∥∥∥T̃∗(f, g)
∥∥∥
L

1/2,∞
w (Rn)

< ∞. Using the good-

lambda inequality (6.14) and that
∣∣∣T∗(f, g)(x)− T̃∗(f, g)(x)

∣∣∣ . Mf(x)Mg(x), we then
obtain that

‖T∗(f, g)‖
L

1/2,∞
w (Rn)

. ‖Mf‖
L1,∞
w (Rn)

‖Mg‖
L1,∞
w (Rn)

.

As a consequence of this and (6.19), T extends as a bounded operator from L1
w(Rn)×L1

w(Rn)
into L1/2,∞

w (Rn) if w ∈ A1.

6.3. Boundedness on weighted Hardy spaces. In this subsection we present a weighted
version of the Hardy space estimates for bilinear Calderón-Zygmund operators established
by L. Grafakos and N. Kalton in [23].

Theorem 6.9. Let n
n+1 < p1, p2 ≤ 1, 0 < p ≤ 1, with 1/p = 1/p1 + 1/p2, and ω : [0,∞)→

[0,∞) non-decreasing, concave such that

(6.22)
∫ 1

0
tnpj−nωpj/2(t)

dt

t
<∞, j = 1, 2.

If w ∈ A1 and T is a bilinear Calderón-Zygmund operator of type ω(t), then

T : Hp1
w (Rn)×Hp2

w (Rn)→ Lpw(Rn).

Remark 6. The critical index qw of a weight w ∈ A∞ is defined as the inf{q > 1 : w ∈ Aq}.
A well-known result in the linear theory of Calderón-Zygmund singular integrals asserts
that if the kernel of a Calderón-Zygmund operator T has smoothness ω(t) = tγ , for some
0 < γ ≤ 1, and 0 < r ≤ 1, then T maps Hr

w(Rn)→ Lrw(Rn) provided that qw/r < 1 + γ/n
(see Theorem 2.8 in [20]). In our situation, the bilinear kernels possess moduli of continuity
of Dini type instead of Hölder type. This essentially compels (by letting γ go to 0) the
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choice of the class A1 (i.e., qw = 1) and r = 1. Also, notice that if p1 = p2 = 1, then (6.22)
reduces to ω ∈ Dini(1/2).

Proof of Theorem 6.9. Let w ∈ A1 and n/n+1 < p1, p2 ≤ 1. By the atomic decomposition
of the weighted Hardy spaces Hpj

w , j = 1, 2, (see Proposition 1.5 in [20]) we can consider
the dense class of finite sums of the form fj =

∑
k λj,kaj,k, where the functions aj,k (called

pj-atoms) and the coefficients λj,kj satisfy

supp(aj,k) ⊂ Qj,k,(6.23)

‖aj,k‖L∞ ≤ w(Qj,k)−1/pj ,(6.24) ∫
Qj,k

aj,k(x)dx = 0,(6.25) (∑
k

|λj,k|pj
)1/pj

≤ 2 ‖fj‖Hpj
w
.(6.26)

As in [23], in order to estimate the Lpw-norm of

T (f1, f2)(x) =
∑
k1

∑
k2

λ1,k1λ2,k2T (a1,k1 , a2,k2)(x),

we fix k1, k2, x ∈ Rn. For j = 1, 2, let Pj,kj be the cube concentric with Qj,kj such that
l(Pj,kj ) = 1

2 l(Qj,kj ), and pick cj,kj ∈ Pj,kj . Suppose first that x /∈ Q∗1,k1 ∪Q
∗
2,k2

and assume
(by switching the roles of Q1,k1 and Q2,k2 , if necessary) that l(Q1,k1) ≤ l(Q2,k2). By (6.24)
and (6.25),

|T (a1,k1 , a2,k2)(x)|

=
∣∣∣∣∫ ∫ a2,k2(z)a1,k1(y)(K(x, y, z)−K(x, c1,k1 , z) dy dz

∣∣∣∣
≤
∫
|a2,k2(z)|

∫ |a1,k1(y)|
(|x− y|+ |x− z|)2n

ω

(
|y − c1,k1 |

|x− y|+ |x− z|

)
dy dz

.
∫ ∫ |a2,k2(z)||a1,k1(y)|

(|x− c1,k1 |+ |x− c2,k2 |)2n
ω

(
l(Q1,k1)

|x− c1,k1 |+ |x− c2,k2 |

)
dy dz

.
w(Q1,k1)−1/p1w(Q2,k2)−1/p2 |Q1,k1 ||Q2,k2 |

|x− c1,k1 |n|x− c2,k2 |n
ω

(
l(Q1,k1)

|x− c1,k1 |+ |x− c2,k2 |

)
dy dz

.
2∏
j=1

|Qj,kj |w(Qj,kj )
−1/pj

(|x− cj,kj |+ l(Qj,kj ))n
ω1/2

(
l(Qj,kj )

|x− cj,kj |+ l(Qj,kj )

)
.
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Now suppose x ∈ Q∗2,k2 \Q
∗
1,k1

. Again, by (6.24) and (6.25),

|T (a1,k1 , a2,k2)(x)| ≤
∫
|a2,k2(z)|

∫ |a1,k1(y)|
(|x− y|+ |x− z|)2n

ω

(
|y − c1,k1 |

|x− y|+ |x− z|

)
dy dz

. w(Q2,k2)−1/p2

∫ ∫ |a1,k1(y)|
(|x− c1,k1 |+ |x− z|)2n

ω

(
l(Q1,k1)
|x− c1,k1 |

)
dy dz

.
w(Q2,k2)−1/p2w(Q1,k1)−1/p1 |Q1,k1 |

|x− c1,k1 |n
ω

(
l(Q1,k1)
|x− c1,k1 |

)
'
w(Q2,k2)−1/p2w(Q1,k1)−1/p1 |Q1,k1 |

(|x− c1,k1 |+ l(Q1,k1))n
ω

(
l(Q1,k1)

|x− c1,k1 |+ l(Q1,k1)

)
.

Since x ∈ Q∗2,k2 and concavity of ω we have

1 .
l(Q2,k2)

|x− c2,k2 |+ l(Q2,k2)
. ω

(
l(Q2,k2)

|x− c2,k2 |+ l(Q2,k2)

)
.

Therefore, if x ∈ Q∗2,k2 \Q
∗
1,k1

, and by symmetry, whenever x ∈ Q∗2,k2∆Q∗1,k1 ,

(6.27) |T (a1,k1 , a2,k2)(x)| .
2∏
j=1

|Qj,kj |w(Qj,kj )
−1/pj

(|x− cj,kj |+ l(Qj,kj ))n
ω

(
l(Qj,kj )

|x− cj,kj |+ l(Qj,kj )

)
.

Combining the bounds above, and since ω(t) ≤ Cω1/2(t), for 0 < t < 1, we get that if
x /∈ Q∗1,k1 ∩Q

∗
2,k2

,

(6.28) |T (a1,k1 , a2,k2)(x)| .
2∏
j=1

|Qj,kj |w(Qj,kj )
−1/pj

(|x− cj,kj |+ l(Qj,kj ))n
ω1/2

(
l(Qj,kj )

|x− cj,kj |+ l(Qj,kj )

)
.

Consequently,

|T (f1, f2)(x)| .
∑
k1

∑
k2

|λ1,k1 ||λ2,k2 ||T (a1,k1 , a2,k2)(x)|χQ∗1,k1∩Q∗2,k2 (x)

+
2∏
j=1

∑
kj

|λj,kj ||Qj,kj |w(Qj,kj )
−1/pj

(|x− cj,kj |+ l(Qj,kj ))n
ω1/2

(
l(Qj,kj )

|x− cj,kj |+ l(Qj,kj )

)
=: G1(x) +G2(x).

In order to bound the Lpw-norm of the first summand we use the following real analysis
lemma (see Lemma 2.1 in [23])

Lemma 6.10. Fix p ∈ (0, 1] and let w be a doubling weight in Rn. Then, there is a constant
C, depending only on p and the doubling constant of w, such that for all finite collections
{Qk}Kk=1 ⊂ Q and all nonnegative integrable functions gk supported on Qk we have∥∥∥∥∥

K∑
k=1

gk

∥∥∥∥∥
Lpw

≤ C

∥∥∥∥∥
K∑
k=1

(
1

w(Qk)

∫
Qk

gk(x)w(x) dx
)
χQ∗k

∥∥∥∥∥
Lpw

.

Fix atoms a1,k1 and a2,k2 and suppose Q∗1,k1 ∩Q
∗
2,k2
6= ∅ (the case of empty intersection

being trivial). Assume, without loss of generality, that l(Q1,k1) ≤ l(Q2,k2) and pick Rk1,k2 ∈
Q such that

Q∗1,k1 ∩Q
∗
2,k2 ⊂ Rk1,k2 ⊂ R

∗
k1,k2 ⊂ Q

∗∗
1,k1 ∩Q

∗∗
2,k2 ,



30 DIEGO MALDONADO AND VIRGINIA NAIBO

and w(Rk1,k2) ≥ cw(Q1,k1). By Theorem 6.2 and the linear case treated in Yabuta [47], T
maps L∞c × L2

w → L2
w and L2

w × L∞c → L2
w, hence∫

Rk1,k2

|T (a1,k1 , a2,k2)(x)|w(x) dx ≤
(∫
|T (a1,k1 , a2,k2)(x)|2w(x) dx

)1/2

w(Rk1,k2)1/2

. ‖a1,k1‖L2
w
‖a2,k2‖L∞ w(Rk1,k2)1/2

≤ w(Q1,k1)1/2−1/p1w(Q2,k2)−1/p2w(Rk1,k2)1/2

≤ w(Q1,k1)−1/p1w(Q2,k2)−1/p2w(Rk1,k2).

By Lemma 6.10, and recalling that 0 < pj ≤ 1 for j = 1, 2, we obtain

‖G1‖Lpw ≤

∥∥∥∥∥∥
∑
k1

∑
k2

|λ1,k1 ||λ2,k2 ||T (a1,k1 , a2,k2)|χRk1,k2

∥∥∥∥∥∥
Lpw

.

∥∥∥∥∥∥
∑
k1

∑
k2

|λ1,k1 ||λ2,k2 |
(

1
w(Rk1,k2)

∫
|T (a1,k1 , a2,k2)|(x)w(x) dx

)
χR∗k1,k2

∥∥∥∥∥∥
Lpw

.

∥∥∥∥∥∥
∑
k1

∑
k2

|λ1,k1 ||λ2,k2 |w(Q1,k1)−1/p1w(Q2,k2)−1/p2χQ∗∗1,k1
χQ∗∗2,k2

∥∥∥∥∥∥
Lpw

.
2∏
j=1

∥∥∥∥∥∥
∑
kj

|λj,kj |w(Qj,kj )
−1/pjχQ∗∗j,kj

∥∥∥∥∥∥
L
pj
w

.
2∏
j=1

∑
kj

|λj,kj |
pj

1/pj

.
2∏
j=1

‖fj‖Hpj
w
.

To estimate G2 we begin with the simple

Lemma 6.11. Let l > 0 and 0 < q ≤ 1. Suppose that ω : [0,∞)→ [0,∞) is non-decreasing
and it verifies

(6.29) C(q, ω) :=
∫ 1

0
uqn−nωq/2(u)

du

u
<∞.

Then, the function

hl(x) :=
lqn−n

(|x|+ l)qn
ωq/2

(
l

|x|+ l

)
, x ∈ Rn,

belongs to L1(Rn) and ‖hl‖L1 . C(q, ω), (uniform in l.)

Proof of Lemma 6.11. Changing to polar coordinates we obtain

‖hl‖L1 =
∫ ∞

0

lqn−nρn−1

(ρ+ l)qn
ωq/2

(
l

ρ+ l

)
dρ

'
∫ l

0

lqn−nρn−1ωq/2(1)
lqn

dρ+
∫ ∞
l

lqn−nρn−1

ρqn
ωq/2(l/ρ) dρ

.
∫ l

0
l−nρn−1 dρ+

∫ ∞
l

lqn−nρn−1

ρqn
ωq/2

(
l

ρ

)
dρ

≤ 1 +
∫ 1

0
uqn−nωq/2(u)

du

u
. C(q, ω). �
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Using Hölder’s inequality first, and recalling that 0 < pj ≤ 1 for j = 1, 2, we obtain

‖G2‖Lpw ≤
2∏
j=1

∥∥∥∥∥∥
∑
kj

|λj,kj ||Qj,kj |w(Qj,kj )
−1/pj

(|x− cj,kj |+ l(Qj,kj ))n
ω1/2

(
l(Qj,kj )

|x− cj,kj |+ l(Qj,kj )

)∥∥∥∥∥∥
L
pj
w

≤
2∏
j=1

∫ ∑
kj

|λj,kj |pj |Qj,kj |pjw(Qj,kj )
−1

(|x− cj,kj |+ l(Qj,kj ))npj
ωpj/2

(
l(Qj,kj )

|x− cj,kj |+ l(Qj,kj )

)
w(x) dx

1/pj

=
2∏
j=1

∑
kj

|λj,kj |
pj
|Qj,kj |
w(Qj,kj )

(hj,kj ∗ w)(cj,kj )

1/pj

,

where

hj,kj (x) :=
|Qj,kj |pj−1

(|x|+ l(Qj,kj ))npj
ωpj/2

(
l(Qj,kj )

|x|+ l(Qj,kj )

)
.

By Lemma 6.11, hj,kj ∈ L1(Rn) with norm uniform in (j, kj), j = 1, 2. Then,

‖G2‖pLpw .
2∏
j=1

∑
kj

|λj,kj |
pj
|Qj,kj |
w(Qj,kj )

Mw(cj,kj )

p/pj

.
2∏
j=1

∑
kj

|λj,kj |
pj
|Qj,kj |
w(Qj,kj )

w(cj,kj )

p/pj

.(6.30)

Considering
|Qj,kj |
w(Qj,kj )w(cj,kj ) as a function of cj,kj and taking its average (with respect to

Lebesgue measure) over the cube Pj,kj we get

|Qj,kj |w(Pj,kj )
|Pj,kj |w(Qj,kj )

,

which is bounded by a constant depending only on n. Averaging (6.30) (in the Lebesgue
measure) over Pj,kj with respect to each cj,kj (there are finitely many of them) and using
Hölder’s inequality with exponents p1/p and p2/p, we finally obtain

‖G2‖Lpw .
2∏
j=1

∑
kj

|λj,kj |
pj

1/pj

.
2∏
j=1

‖fj‖Hpj
w
. �

Remark 7. One can prove Lemma 6.10 proceeding as in the proof of Lemma 2.1 in [23].
The doubling contion of w is used to insure that w(Qk) ' w(Qkj) in the notation of [23].

6.4. Boundedness on weighted amalgam spaces. Amalgam spaces have been inten-
sively considered in several areas of Analysis (see [17] for an excellent survey), as they allow
for a better understanding of the global and local features of functions. In this subsection
we prove boundedness properties on products of weighted amalgam spaces for bilinear
Calderón-Zygmund operators of type ω(t). The results are obtained as a consequence of
the properties (3.1) and (3.2) of the kernel, the boundedness of T on unweighted Lebesgue
spaces (Theorem 6.2), and the boundedness of the corresponding truncated operators on
weighted Lebesgue spaces (Theorem 6.6). The behavior of linear Calderón-Zygmund oper-
ators of type ω(t) on amalgam spaces was studied by Kikuchi et al [30].
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For 1 < p < ∞, the discrete variant of Muckenhoupt’s Ap class is denoted by Ap(Zn)
and consists of the positive sequences {wz}z∈Zn such that

|w|Ap(Zn) := sup
Q∈Q

 1
#(Q ∩ Zn)

∑
z∈Q∩Zn

wz

 1
#(Q ∩ Zn)

∑
z∈Q∩Zn

w1−p′
z

p−1

<∞.

For z ∈ Zn set Qz := {x ∈ Rn : |xi − zi| ≤ 1/2, i = 1, . . . , n}. Consider 1 ≤ p, q ≤ ∞ and
a positive sequence {wz}z∈Zn . We denote by lqw the space of all sequences {az}z∈Zn such
that ‖a‖lqw := (

∑
z∈Zn |az|

q wz)1/q <∞. In particular we write lq instead of lqw when w ≡ 1.
The weighted amalgam space (Lp, lqw) consists of the locally integrable functions f on Rn

such that
{
‖f‖Lp(Qz)

}
z∈Zn

∈ lqw, with norm

‖f‖(Lp,lqw) :=

(∑
z∈Zn

‖f‖qLp(Qz)wz

)1/q

.

The usual interpretation applies when q = ∞. The main result in this subsection is the
following

Theorem 6.12. Consider ω ∈ Dini(1/2) and let T be a bilinear Calderón-Zygmund op-
erator of type ω(t) with kernel K. If 1 < p, q < ∞, 1 < s1, s2 < ∞, 1/r = 1/p + 1/q,
1/s3 = 1/s1 + 1/s2, and w ∈ As(Zn), s = min{s1, s2}, then

(6.31) ‖T (f, g)‖(Lr,ls3w ) ≤ C ‖f‖(Lp,ls1w ) ‖g‖(Lq ,ls2w ) .

Remark 8. Note that w = {wz}z∈Zn ∈ As(Zn) if and only if W =
∑

z wzχQz ∈ As, and
that (Lt, ltw) = LtW (Rn) with ‖f‖(Lt,ltw) = ‖f‖LtW (Rn) . Therefore the result of Theorem 6.12
for the case p = s1, q = s2 and r = s3 is a particular case of Theorem 6.8.

We state here some definitions and known results that will be used in the proof of
Theorem 6.12.

Lemma 6.13. (see Kikuchi et al [30]) Let w ∈ At(Zn), 1 < t <∞. Then, for µ ∈ Zn and
all cubes Q containing µ, ∑

ζ∈Zn∩Q
wζ ≤ wµ |w|At(Zn) (#(Zn ∩Q))t .

For a sequence a = {aµ}µ∈Zn we consider the discrete maximal function

(Mda)µ = sup
µ∈Q

1
#(Zn ∩Q)

∑
ν∈Zn∩Q∈Q

|aν | , µ ∈ Zn.

The following properties for Md are well-known:

Lemma 6.14. If w ∈ As(Zn) and 1 < s <∞, then Md is bounded in lsw.

For sequences h = {hµ}µ∈Zn and a = {aν}ν∈Zn define the convolution

(h ∗ a)µ :=
∑
ν∈Zn

hµ−νaν , µ ∈ Zn.

Lemma 6.15. Let h = {hµ}µ∈Zn be a sequence in l1(Zn) which is nonnegative, radial and
non-increasing (i.e., hµ = hµ′ if |µ| = |µ′| , and hµ ≤ hµ′ if |µ| ≥ |µ′|). Then for any
sequence a = {aµ}µ∈Zn

|(h ∗ a)µ| . ‖h‖l1 (Mda)µ, µ ∈ Zn.
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Proof of Theorem 6.12. Let f, g ∈ C∞0 (Rn). For Qζ , ζ ∈ Zn, and b ∈ {f, g}, we consider

b = b1 + b2, bi ∈ C∞0 (Rn), |bi(x)| ≤ |b(x)| , i = 1, 2,

supp(b1) ⊂ 2Q∗ζ , supp(b2) ∩Q∗ζ = ∅,

where Q∗ζ is the closed cube centered at ζ and such that l(Q∗ζ) = (2n + 1) l(Qζ). We then
have T (f, g) = T (f1, g1) + T (f2, g1) + T (f1, g2) + T (f2, g2).

By the boundedness of T from Lp(Rn)× Lq(Rn) into Lr(Rn) (Theorem 6.2), we have
(6.32)
‖T (f1, g1)‖Lr(Qζ) . ‖f1‖Lp(Rn) ‖g1‖Lq(Rn) .

∑
µ∈Zn∩2Q∗ζ

‖f‖Lp(Qµ)

∑
ν∈Zn∩2Q∗ζ

‖g‖Lq(Qν) .

For the term T (f2, g1) (and similarly for T (f1, g2)), we have for x ∈ Qζ ,

T (f2, g1)(x) =
∫
z∈2Q∗ζ

∫
y∈(Q∗ζ)c

K(x, y, z)f2(y)g1(z) dy dz

=
∑

µ∈Zn−Q∗ζ

∫
z∈2Q∗ζ

∫
y∈Qµ

K(x, y, z)f2(y)g1(z) dy dz

=
∑

µ∈Zn−Q∗ζ

∫
z∈2Q∗ζ

∫
y∈Qµ

(K(x, y, z)−K(ζ, µ, z)) f2(y)g1(z) dy dz

+
∑

µ∈Zn−Q∗ζ

∫
Qµ

f2(y) dy
∫

2Q∗ζ

K(ζ, µ, z) g1(z) dz.

Using (3.2) and (3.1), we get

‖T (f2, g1)‖Lr(Qζ) .
∑

µ∈Zn−Q∗ζ

1
|ζ − µ|2n

ω

(
cn
|ζ − µ|

)
‖f‖Lp(Qµ) ‖g‖Lq(2Q∗ζ)

+
∑

µ∈Zn−Q∗ζ

1
|ζ − µ|2n

‖f‖Lp(Qµ) ‖g‖Lq(2Q∗ζ) .(6.33)

For x ∈ Qζ , we have

T (f2, g2)(x) =
∫

(Q∗ζ)c

∫
(Q∗ζ)c

K(x, y, z)f2(y)g2(z) dy dz

=
∑

ν∈Zn−Q∗ζ

∑
µ∈Zn−Q∗ζ

∫
z∈Qν

∫
y∈Qµ

K(x, y, z)f2(y)g2(z) dy dz

=
∑

ν∈Zn−Q∗ζ

∑
µ∈Zn−Q∗ζ

∫
z∈Qν

∫
y∈Qµ

(K(x, y, z)−K(ζ, µ, ν)) f2(y)g2(z) dy dz

+
∑

ν∈Zn−Q∗ζ

∑
µ∈Zn−Q∗ζ

K(ζ, µ, ν)
∫
Qµ

f2(y) dy
∫
Qν

g2(z) dz.
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Using (3.2), we obtain

‖T (f2, g2)‖Lr(Qζ)

(6.34)

.
∑

ν∈Zn−Q∗ζ

∑
µ∈Zn−Q∗ζ

1
(|ζ − µ|+ |ζ − ν|)2n

ω

(
cn

|ζ − µ|+ |ζ − ν|

)
‖f‖Lp(Qµ) ‖g‖Lq(Qν)

+

∣∣∣∣∣∣
∑

ν∈Zn−Q∗ζ

∑
µ∈Zn−Q∗ζ

K(ζ, µ, ν)
∫
Qµ

f2(y) dy
∫
Qν

g2(z) dz

∣∣∣∣∣∣ .
We now proceed to estimate the ls3w -norm of the terms on the right hand side of (6.32),

(6.34), and (6.33). For the right hand side of (6.32), we apply Hölder’s inequality and then
observe that, using Jensen’s inequality and Lemma 6.13, we have∑

ζ∈Zn

 ∑
µ∈Zn∩2Q∗ζ

‖f‖Lp(Qµ)

s1

wζ


1
s1

≤ (4n+ 3)2(1− 1
s1

)

∑
µ∈Zn

‖f‖s1Lp(Qµ)

∑
ζ∈Zn

wζ χZn∩2Q∗ζ
(µ)

 1
s1

≤ (4n+ 3)2(1− 1
s1

)

∑
µ∈Zn

‖f‖s1Lp(Qµ)wµ |w|As(Zn) #(Zn ∩Q)s

 1
s1

,

where for each fixed µ, Q is a cube containing µ and all those ζ ∈ Zn such that µ ∈ Zn∩2Q∗ζ .
It is clear that #(Zn ∩Q) is independent of µ, therefore we get∑

ζ∈Zn

 ∑
µ∈Zn∩2Q∗ζ

‖f‖Lp(Qµ)

s1

wζ


1
s1

. |w|
1
s1

As(Zn) ‖f‖(Lp,ls1w ) .

We have a similar bound for the factor corresponding to g in (6.32).
For the first term on the right hand side of (6.33) consider a nonnegative, radial, de-

creasing sequence h = {hµ}µ∈Zn defined by

hµ =
1
|µ|2n

ω

(
cn
|µ|

)
, µ ∈ Zn − {0}.

Note that ‖h‖l1 <∞. Then, by Lemma 6.15 with a = {‖f‖Lp(Qµ)}µ∈Zn ,∑
µ∈Zn−Q∗ζ

1
|ζ − µ|2n

ω

(
cn
|ζ − µ|

)
‖f‖Lp(Qµ) ‖g‖Lq(2Q∗ζ) . (h ∗ a)ζ ‖g‖Lq(2Q∗ζ)

. ‖h‖l1 (Mda)ζ ‖g‖Lq(2Q∗ζ) .

Using Hölder’s inequality, recalling that w ∈ As1(Zn) and Lemma 6.14, we have∥∥∥(Mda)ζ ‖g‖Lq(2Q∗ζ)

∥∥∥
l
s3
w

. ‖(Mda)ζ‖ls1w
∥∥∥‖g‖Lq(2Q∗ζ)

∥∥∥
l
s2
w

. ‖f‖(Lp,ls1w ) ‖g‖(Lq ,ls2w ) ,
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where the inequality
∥∥∥‖g‖Lq(2Q∗ζ)

∥∥∥
l
s2
w

. ‖g‖(Lq ,ls2w ) follows as in the treatment of (6.32). The

second term in (6.33) is treated in the same way using hµ = 1
|µ|2n , µ ∈ Zn − {0}.

The first term in (6.34) is bounded by

C
∑

µ∈Zn−Q∗ζ

1
|ζ − µ|n

ω
1
2

(
cn
|ζ − µ|

)
‖f‖Lp(Qµ)

∑
µ∈Zn−Q∗ζ

1
|ζ − ν|n

ω
1
2

(
cn
|ζ − ν|

)
‖g‖Lq(Qν) ,

We can proceed in a similar way as in (6.33) with hµ = 1
|µ|n ω

1
2

(
cn
|µ|

)
, µ ∈ Zn−{0}. Observe

that h ∈ l1 since
∫ 1

0
ω1/2(t)

t dt < ∞, then Lemma 6.15 can be applied. Also the fact that
w ∈ As(Zn) allows us to use Lemma 6.14.

Finally, we will show that the second term on the right hand side of (6.34) satisfies the
desired estimates. Consider the truncated operator

T√n(u, v)(x) =
∫
|x−y|2+|x−z|2>n

K(x, y, z)u(y) v(z) dy dz

Note that B(x,
√
n) ⊂ Q∗ζ for every x ∈ Qζ . We will see that there is a non-increasing

function h : [0,∞)→ [0,∞), such that h(|x|) is integrable in Rn, and∣∣∣∣∣∣T√n(u, v)(x)−
∑

ν∈Zn−Q∗ζ

∑
µ∈Zn−Q∗ζ

K(ζ, µ, ν)
∫
Qµ

u(y) dy
∫
Qν

v(z) dz

∣∣∣∣∣∣(6.35)

. (h ∗ |u|)(x) (h ∗ |v|)(x), x ∈ Qζ .

Assume (6.35) for the moment. Applying (6.35) to u =
∑

µ∈Zn
∫
Qµ
f2(x)dxχQµ , and

v =
∑

µ∈Zn
∫
Qµ
g2(x)dxχQµ , we get,∣∣∣∣∣∣
∑

ν∈Zn−Q∗ζ

∑
µ∈Zn−Q∗ζ

K(ζ, µ, ν)
∫
Qµ

f2(y) dy
∫
Qν

g2(z) dz

∣∣∣∣∣∣
s3

.
∫
Qζ

∣∣∣T√n(u, v)(x)
∣∣∣s3 dx+ ‖h‖2s3L1(Rn)

∫
Qζ

(Mu(x)Mv(x))s3 dx.

Recalling that W =
∑

µ∈Zn wµχQµ ∈ As(Rn), and using the boundedness properties of T√n
and M in the weighted Lebesgue spaces, we get∥∥∥∥∥∥

∑
ν∈Zn−Q∗ζ

∑
µ∈Zn−Q∗ζ

K(ζ, µ, ν)
∫
Qµ

f2(y) dy
∫
Qν

g2(z) dz

∥∥∥∥∥∥
l
s3
w

.
∥∥∥T√n(u, v)

∥∥∥
L
s3
W (Rn)

+ ‖h‖2L1(Rn) ‖Mu‖Ls1W (Rn) ‖Mv‖Ls2W (Rn)

. ‖u‖Ls1W (Rn) ‖v‖Ls2W (Rn) . ‖f‖(Lp,ls1w ) ‖g‖(Lq ,ls2w ) .

We now prove (6.35). Define Sx = {(y, z) : |x− y|2 + |x− z|2 > n}. Fix x ∈ Qζ , the left
hand side of (6.35) is equal to∣∣∣∣∫

y∈Rn

∫
z∈Rn

Fζ,x(y, z)u(y)v(z) dydz
∣∣∣∣ ,
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where

Fζ,x(y, z) =

K(x, y, z)χSx(y, z)−
∑

ν∈Zn−Q∗ζ

∑
µ∈Zn−Q∗ζ

K(ζ, µ, ν)χQµ(y)χQν (z)

 .

If y, z ∈ Rn \Q∗ζ , then (y, z) ∈ Sx, and using the regularity (3.2) of the kernel K, and that
y ∈ Qµ and z ∈ Qν for unique Qµ ⊂ Rn \Q∗ζ and Qν ⊂ Rn \Q∗ζ ,

|Fζ,x(y, z)| = |K(x, y, z)−K(ζ, µ, ν)|

.
1

(|x− y|+ |x− z|)2n
ω

(
cn

|x− y|+ |x− z|

)
.

1
|x− y|n

ω
1
2

(
cn
|x− y|

)
1

|x− z|n
ω

1
2

(
cn
|x− z|

)
If y ∈ Q∗ζ and z ∈ Rn \Q∗ζ , then using the size assumption (3.1) on the kernel K, and that
t . ω(t) (since ω is concave),

|Fζ,x(y, z)| = |K(x, y, z)| . 1
(|x− y|+ |x− z|)2n

.
1

|x− z|n
ω

1
2

(
cn
|x− z|

)
,

Similarly for z ∈ Q∗ζ and y ∈ Rn \Q∗ζ . Finally, if y ∈ Q∗ζ and z ∈ Q∗ζ we have, using again
(3.1),

|Fζ,x(y, z)| ≤ |K(x, y, z)χSx(y, z)| . Cn.
Then we can define for T ∈ Rn,

h(T ) =

{
C̃n |T | ≤

√
n,

1
|T |n ω

1
2

(
cn
|T |

)
, |T | >

√
n.

�
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