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Abstract

An Efficient Algorithm For Total Variation

Regularization with Applications to the Single

Pixel Camera and Compressive Sensing

by

Chengbo Li

In this thesis, I propose and study an efficient algorithm for solving a class of compres-

sive sensing problems with total variation regularization. This research is motivated

by the need for efficient solvers capable of restoring images to a high quality captured

by the single pixel camera developed in the ECE department of Rice University. Based

on the ideas of the augmented Lagrangian method and alternating minimization to

solve subproblems, I develop an efficient and robust algorithm called TVAL3. TVAL3

is compared favorably with other widely used algorithms in terms of reconstruction

speed and quality. Convincing numerical results are presented to show that TVAL3

is suitable for the single pixel camera as well as many other applications.
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Chapter 1

Introduction

This thesis concentrates on developing an efficient algorithm which solves a well-

known compressive sensing (also known as compressed sensing or CS) problem with

total variation (TV) regularization. The main application of this algorithm is to

reconstruct the high-resolution image captured by a single pixel camera (SPC). The

basic questions are: what is the background and motivation of this research, what

methods are used, why is a new algorithm necessary, and how does this new algorithm

behave compared with other existing solvers or algorithms? All of these questions

will be answered step by step in this thesis.

The basic background including compressive sensing and single pixel camera, ex-

isting reconstruction algorithms, and the general methodology are introduced in this

chapter. The second chapter, one of the most essential chapters in this thesis, de-

scribes the main algorithm in detail and introduces the corresponding solver TVAL3

[98]. A structured measurement matrix correlating to the single pixel camera and

how this measurement matrix is able to improve the algorithm will be discussed in

the following chapter. The algorithm described in this thesis compares favorably with

several state-of-the-art algorithms in the fourth chapter of this thesis. Numerical re-

1
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sults and the following discussion will also be covered. Last but not least, some related

topics such as the TV minimization algorithm for dual problems and hyperspectral

imagery which will require further research during my Ph.D. studies, are proposed in

the last chapter.

1.1 Compressive Sensing Background

Compressive sensing [4] is a technique which reconstructs or obtains a sparse or

compressible signal. A large but sparse signal is encoded by a relatively small number

of linear measurements, and then the original signal is recovered from the encoded one.

It has been proven that computing the sparsest solution directly generally requires

prohibitive computations of exponential complexity [46], so several heuristic methods

have been developed, such as Matching Pursuit [51], Basis Pursuit [53, 54], log-

barrier method [55], iterative thresholding method [57, 58], and so forth. Most of

these methods or algorithms fall into three distinct categories: greedy algorithms, ℓ1

minimization, and TV minimization.

1.1.1 Greedy Algorithms

Generally speaking, a greedy algorithm refers to any algorithm following the meta-

heuristic of choosing the best immediate or local optimum at each stage and expecting

to find the global optimum at the end. It can find the global optimum for some opti-

mization problems, but not for all [50]. Mallat and Zhang [51] introduced Matching

Pursuit (MP) in 1993, which is the prototypical greedy algorithm applied to com-

pressive sensing. This algorithm decomposes any signal into a linear combination of

waveforms in a redundant dictionary of functions so that selected waveforms optimally

match the structure of the signal. MP is easy to implement and has an exponential
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rate of convergence [66] and good approximation properties [65]. However, there is

no theoretical guarantee that MP can achieve sparse representations. Pati et al. pro-

pose a variant of MP, Orthogonal Matching Pursuit (OMP) [52], which guarantees the

nearly sparse solution under some conditions [67]. A primary drawback of MP and

its variants is the incapability of attaining truly sparse representations. The failure

is usually caused by an inappropriate initial guess. This shortcoming also motivated

the development of algorithms based on ℓ1 minimization.

1.1.2 ℓ1 Minimization

In 1986, Santosa and Symes [7] suggested ℓ1 minimization to recover sparse spike

trains for the first time. In the next few years, Donoho and his colleague [8, 9] also

discovered some early results related to ℓ1 minimization for signal recovery. The ques-

tion why ℓ1 minimization could work in some special setups was further investigated

and answered in a series of paper [10, 11, 12, 13, 14, 15].

Grounded on those early efforts, a new CS theory was proposed by Candès,

Tomberg, Tao [2, 3], and Donoho [4] in 2006, which theoretically guarantees ℓ1 mini-

mization is equivalent to ℓ0 minimization under some conditions on signal reconstruc-

tion. Specifically, they claim that a signal which is K-sparse under some basis can

be exactly recovered from cK linear measurements by ℓ1 minimization under some

conditions, where c is a constant. The new CS theory has significantly improved

those earlier results. How big the constant c is here directly decides the size of linear

measurements, important information needed to encode or decode a signal. The in-

troduction of the concept restricted isometry property (RIP) for matrices [1, 4] gives

the theoretical response. E. Candès, Tao, and Donoho prove that if the measurements

satisfy the RIP of a certain degree, it is sufficient to recover the sparse signal exactly
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from its decoded signal. However, it is extremely difficult to verify the RIP property

in practice. Fortunately, Candès et al. show that RIP holds with high probability

when the measurements are random. However, is RIP truly an indispensable property

for CS analysis? For instance, measurement matrices A and GA in ℓ1 minimization

should result in exactly the same recoverability and stability as long as matrix G is

square and nonsingular, but their RIP could vary a lot. A non-RIP analysis, studied

by Y. Zhang [5], proves recoverability and stability theorems without the aid of RIP

and clarifies prior knowledge can never hurt but possibly enhance recovery via ℓ1

minimization. Usually ℓ1 minimization algorithms require fewer measurements than

greedy algorithms. Basis Pursuit (BP) [53, 54], which seeks the solution that min-

imizes the ℓ1 norm of the coefficients, is a prototype of ℓ1 minimization. BP can

simply be comprehended as linear programming solved by some standard methods.

Furthermore, BP can compute sparse solutions in situations where greedy algorithms

fail [54].

All this work enriches the significance of studying and applying ℓ1 minimization

and compressive sensing in practice. The related studies [21, 22, 23, 27, 28] have also

inspired the flourishing research in the compressive sensing area. Many applications

have been studied, such as reconstruction or denoising of Magnetic Resonance Images

(MRI) [29, 30], analog-to-information conversion [31], sensor networks [34, 35], and

even homeland security [68].

1.1.3 TV Minimization

In the broad area of compressive sensing, ℓ1 minimization has attracted intensive re-

search activities since the discovery of ℓ0/ℓ1 equivalence. However, for image restora-

tion, recent research has confirmed that the use of total variation (TV) regularization
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instead of the ℓ1 term in CS problems makes the recovered image quality sharper by

preserving the edges or boundaries more accurately, which is essential to characterize

images. The advantages of TV minimization stem from the property that it can re-

cover not only sparse signals or images, but also dense staircase signals or piecewise

constant images. In other words, TV regularization would succeed when the gradient

of the underlying signal or image is sparse. Even though this result has only been

theoretically proven under some special circumstances [3], it stands true on a much

larger scale empirically.

Rudin, Osher, and Fatemi [6] first introduced the concept total variation for image

denoising in 1992. From then on, total variation minimizing models have become one

of the most popular and successful methodologies for image restoration. A detailed

discussion on TV models has been reported by Chambolle et al. [25, 26]. However, the

properties of non-differentiability and non-linearity of TV functions make them far less

accessible computationally than solving ℓ1 minimization models. Geman and Yang

[33] proposed a joint minimization method to solve half-quadratic models [32, 33],

which are variants of TV models. Grounded on half-quadratic models, Wang, Yang,

Yin, and Zhang applied TV minimization to deconvolution and denoising problems

[18] and successfully extended their idea to image reconstruction [36] and multichan-

nel image deblurring or denoising problems [37, 38]. Their reconstruction algorithm

for TV minimization is very efficient and effective, but it restricts the measurement

matrix to the partial Fourier matrix. In 2004, Chambolle [24] proposed an iterative

algorithm for TV denoising and proved the linear convergence. Furthermore, Cham-

bolle’s algorithm can be extended to solve image reconstruction problems with TV

regularization while the measurement matrix is orthogonal.

Due to the powerful application of TV regularization in the edge-detection and

many other fields, researchers kept trying for several years to explore algorithms for
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solving TV minimization problems. However, these algorithms are still either much

slower or less robust compared with algorithms designed for ℓ1 minimization. The

algorithm proposed in this thesis has successfully overcome this difficulty and led to a

new solver (named TVAL3) for TV minimization which is as fast as or even faster than

most ℓ1 minimization algorithms and accepts a vast range of measurement matrices.

1.2 Single Pixel Camera

A significant application of compressive sensing in recent years is the successful design

of the single pixel camera. This concept was initially proposed by Baraniuk, Kelly, et

al. [39]. As shown in Figure 1.1, this new-concept camera is mainly composed of two

Figure 1.1: Single pixel camera block diagram [39].

devices: the digital micro-mirror device (DMD) [43] and the photodiode (PD). The

desired image (camera man) is projected on a DMD array which is fabricated by m×n

little mirrors and oriented in the pseudorandom pattern decided by random number

generators (RNG). Then the lightfield goes through a lens and converges to a single

PD by which one pixel value is obtained. Each different mirror pattern produces

one measurement. Repeating this process M times, M pixel values corresponding
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to M measurements are captured. A sparse approximation to the original image

can be recovered from known pixel values and random measurements by means of

compressive sensing techniques. Some extended research related to a single pixel

camera has been done including infrared imaging [44], laser-based failure-analysis

[45], and others [40, 41, 42] at Rice University.

Why should people care about the single pixel camera considering the fact that

the traditional digital camera with ten mega pixels is ubiquitous and low-priced? As a

matter of fact, imaging at wavelengths where silicon is blind is much more complicated

and costly than imaging at visual wavelengths. This results in the unaffordable price

of a digital camera for infrared with comparable resolution. On the other hand, the

infrared camera has wide applications in industrial, military, and medical domains,

such as heat energy detection, night vision, internal organ examination, and so on.

The manufacture of single pixel infrared cameras could greatly decrease in price so as

to be affordable for everyone and applicable everywhere. All of these reasons motivate

researchers to focus on the development of the single pixel camera with respect to

both hardware and software. Here, the software refers to the core recovery solver. An

efficient and robust solver, which is able to reconstruct a clean and sharp image in a

relatively short time, is intensely expected.

Because the number of measurements M is much less than the original resolution

while dealing with the desired image using the single pixel camera, it is natural to

model the recovery process as a compressive sensing problem. Thus, compressive

sensing algorithms can be applied to the single pixel camera. Before the emergence of

TVAL3, which is the new solver based on the algorithm described in this thesis, the

single pixel camera adopted ℓ1-Magic [3, 2, 1] and FPC [17] as the core recovery solver.

Solvers for ℓ1 minimization and TV minimization are named ℓ1 solvers and TV solvers

respectively. ℓ1-Magic, implemented by Candès and Romberg, is one of pioneer TV
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solvers for compressive sensing. It was the initial solver to recover images for the

single pixel camera due to its good reputation for stability and edge-preservation.

However, the disadvantage is the much longer reconstructing time compared with

ℓ1 solvers. For instance, it is impractical to deal with an image whose resolution

is 512 × 512 using ℓ1-Magic. In contrast, as one of the fastest ℓ1 solvers, FPC [17]

implemented by Hale, Yin, and Zhang is capable of recovering the high-resolution

image in a relatively short time. However, as mentioned before, the edges of images

recovered ℓ1 solvers cannot be preserved as well as those recovered by TV solvers,

especially when high noise level exists. Besides, wavelet transformation is necessary

for ℓ1 solvers, but not for TV solvers. Thus, the single pixel camera highly desires a

high-quality TV solver whose running time is comparable with ℓ1 solvers.

1.3 Methodologies of TV Solvers

Contrary to abundant ℓ1 solvers, only a limited number of TV solvers are available.

To the best of my knowledge, only SOCP [19], ℓ1-Magic [3, 2, 1], TwIST [57, 58],

NESTA [56], and RecPF [36] are publicly available for image reconstruction with TV

regularization.

The approach behind SOCP solver is to reformulate TV minimization as a second-

order cone program, which is solvable by interior-point algorithms. This solver is easy

to adapt various convex TV models with distinct terms and constraints and able to

achieve high accuracy. However, it is very slow since SOCP embeds the interior-point

algorithm and directly solves a linear system at each iteration.

Similar to SOCP, ℓ1-Magic also focuses on second-order cone reformulation of TV

models, but it is implemented by the log-barrier method. At each log-barrier iteration,

Newton’s method proceeds with the approximate solution at the last iteration as the
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initial guess. Compared with SOCP, ℓ1-Magic solves the linear system in an iterative

way, which is more efficient than directly solving the linear system. However, applying

Newton’s method at each iteration is still time-consuming when facing a large-scale

problem.

In the last few years, iterative shrinkage/thresholding (IST) algorithms were inde-

pendently proposed by several authors [60, 61, 62, 63, 64]. IST is able to minimize CS

models with some non-quadratic and non-smooth regularization terms. The conver-

gence rate of IST algorithms highly relies on the linear observation operator. TwIST

implements a nonlinear second-order iterative version of IST algorithms, which ex-

hibits much faster convergence rate than IST when the linear observation operator

is ill-conditioned. This solver can also be regarded as alternating algorithm of two

steps, one of which is a denoising step. For TV minimization, Chambolle’s denoising

algorithm [24] is coupled to TwIST. Chambolle’s algorithm is an iterative fixed point

algorithm based on a dual formulation. This scheme converges quite fast at the first

iteration, sometimes bringing on a visually satisfactory result, but the remaining it-

erations tend to be quite a slow convergence. The denoising step is the dominating

time-consuming part while running TwIST. Therefore, the efficiency of Chambolle’s

algorithm mostly determines the efficiency of TwIST.

In April 2009, Bobin, Becker, and Candès developed a new solver NESTA, a first-

order method of solving BP problems. They were notably inspired by Nesterov’s

smoothing technique [16], whose essential idea is a subtle averaging of sequences of

iterates. Their algorithm is easily extended to TV minimization by slightly modifying

the smooth approximation of the objective function. However, the current version

of NESTA still requires that AT A is an orthogonal projector where A represents

the measurement matrix. Further investigation may extend this method to the non-

orthogonal cases as indicated in their paper [56].
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As mentioned before, Wang, Yang, Yin, and Zhang [18] have proposed a new

alternating minimization method for deconvolution and denoising problems with TV

regularization. The key feature of this algorithm is the splitting idea, which is brought

to approximate the TV regularization. Yang, Zhang, and Yin [36] extended the same

scheme to the compressive sensing area and implemented the solver RecPF. A distinct

merit of this solver is low cost at each iteration, which requires only two matrix-vector

multiplications per iteration as the dominant computation. As a TV solver, RecPF

is competitive in speed to most ℓ1 solvers, which is a surprising discovery motivating

my work on the new TV algorithm, but it can only accept the partial Fourier matrix

as its measurements.

The splitting idea originated from [18] is also the springboard to exploit a new

efficient and robust TV solver which is able to lead the single pixel camera one step

closer to practical application. A detailed description of the algorithm will be given

in next chapter.



Chapter 2

TVAL3 Scheme and Algorithms

A chief contribution of this thesis is regarded as proposing a new efficient TV min-

imization scheme based on augmented Lagrangian and alternating direction algo-

rithms, short for “TVAL3 scheme”. It is presented in detail in this chapter for solving

the compressive sensing problem with total variation regularization:

min
u

∑

i

‖Diu‖, s.t. Au = b, (2.1)

where u ∈ R
n or u ∈ R

s×t with s · t = n, Diu ∈ R
2 is the discrete gradient of u at

pixel i, A ∈ R
m×n (m < n) is the measurement matrix, and f ∈ R

m is the observation

of u via some linear measurements. ‖.‖ can be either 1-norm (corresponding to the

anisotropic TV) or 2-norm (corresponding to the isotropic TV). TVAL3 scheme is

able to handle different boundary conditions for u, such as periodic, Neumann, and

other boundary conditions. The periodic boundary condition is used here to calculate
∑

i ‖Diu‖ for simplicity.

This model (2.1) is very difficult to solve directly due to the non-differentiability

and non-linearity of the TV term. The algorithm proposed in this chapter is derived

11
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from the classic approach of alternating direction method [69], or ADM, that mini-

mizes augmented Lagrangian functions [70, 71] through an alternating minimization

scheme and updates multipliers after each sweep. The convergence of such algorithms

has been well analyzed in the literature (see [81], for example, and the references

therein).

The background of the augmented Lagrangian method is reviewed in Section 2.1

and the TVAL3 scheme is developed step by step in Section 2.2, 2.3, and 2.4.

2.1 Augmented Lagrangian Method Review

For constrained optimization, an influential class of methods seeks the minimizer or

maximizer by approaching the original constrained problem by a sequence of uncon-

strained subproblems. The quadratic penalty method which could be regarded as the

precursor to the augmented Lagrangian method, should be traced back to Courant

[20] in 1943. This method puts a quadratic penalty term instead of the constraint in

the objective function where each penalty term is a square of the constraint violation

with the multiplier. Due to its simplicity and intuitive appeal, this approach is widely

used. However, it requires multipliers to go to infinity to guarantee the convergence,

which may cause the ill-conditioning problem numerically. In 1969, Hestenes [70] and

Powell [71] independently proposed the augmented Lagrangian method which suc-

cessfully avoided this inherent problem by introducing explicit Lagrangian multiplier

estimates at each iteration into the objective function.

Let us begin with considering the equality-constrained problem

min
x

f(x), s.t. h(x) = 0, (2.2)
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where h is a vector-valued function and both f and hi for all i are differentiable. The

first-order optimality conditions are

∇L(x, λ) = 0, (2.3)

h(x) = 0, (2.4)

where L(x, λ) = f(x) − λT h(x). We say the linear independence constraint qual-

ification (LICQ) holds at the point x∗ if and only if the set {∇hi(x
∗)} is linearly

independent. The optimality conditions are necessary for the optimal points of (2.2)

if LICQ holds there. When the primal problem (2.2) is convex, the optimality condi-

tions become also sufficient.

In light of the optimality conditions, a solution x∗ to the primal problem (2.2)

is both a stationary point of the Lagrangian function and a feasible point of the

constraint, which means x∗ solves

min
x

L(x, λ), s.t. h(x) = 0. (2.5)

According to the idea of the quadratic penalty method, it is likely to make x∗ an

unconstrained minimizer by penalizing the constraint violations. For example, it

may approximately solve

min
x

LA(x, λ; µ) = f(x) − λT h(x) +
µ

2
h(x)T h(x).

Minimizing this alternate problem is well-known as an augmented Lagrangian method,

and LA(x, λ; µ) is called the augmented Lagrangian function.

The augmented Lagrangian function differs from the standard Lagrangian function

by adding a square penalty term, and differs from the quadratic penalty function
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by the presence of the linear term involving the multiplier λ. In this respect, the

augmented Lagrangian function is a combination of the Lagrangian and quadratic

penalty functions.

An iterative algorithm implementing the augmented Lagrangian method will be

described next. Fixing the multiplier λ at the current estimate λk and the barrier

parameter µ to µk > 0 at the kth iteration, we minimize the augmented Lagrangian

function LA(x, λk; µk) with respect to x and denote the minimizer as xk+1. Hestenes

[70] and Powell [71] have suggested formula

λk+1 = λk − µkh(xk+1), (2.6)

in order to update the multiplier estimates from iteration to iteration and they have

proven the convergence of the generated sequence to the true multiplier λ∗.

This discussion motivates the following algorithmic framework [78]:

Algorithm 1 (Augmented Lagrangian Method).

Initialize µ0, λ0, tolerance tol, and starting point x0;

While ‖∇L(xk, λk)‖ > tol Do

Set xk+1
0 = xk;

Find minimizer xk+1 of LA(x, λk; µk), starting from xk+1
0

and terminating when ‖∇xLA(x, λk; µk)‖ ≤ tol;

Update the multiplier using (2.6) to obtain λk+1;

Choose the new penalty parameter µk+1 ≥ µk;

End Do

At each iteration, we theoretically achieve

∇xLA(xk+1, λk; µk) = 0.
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This can be expanded as

∇f(xk+1) −∇h(xk+1)λk + µk∇h(xk+1)h(xk+1) = 0,

which is equivalent to

∇f(xk+1) −∇h(xk+1)[λk − µkh(xk+1)] = 0.

Following the update formula of multiplier estimates (2.6), this can be rearranged as

∇f(xk+1) −∇h(xk+1)λk+1 = 0,

which is the variant of

∇L(xk+1, λk+1) = 0.

This equation means the optimality conditions for (2.5) are partially satisfied. There-

fore, Algorithm 1 terminates while

∇λL(xk+1, λk+1) = −h(xk+1) = 0,

or in practice,

‖h(xk+1)‖ ≤ tol.

Some basic properties of the augmented Lagrangian method will be reviewed next.

The following result given by Bertsekas [79, 80] provides a precise mathematical de-

scription on some error bounds which help quantify the rate of convergence.

Theorem 1 (Local Convergence Theorem). Let x∗ be a local solution of (2.2) at

which the gradients ∇hi(x
∗) are linearly independent, and the second-order sufficient
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conditions are satisfied for λ = λ∗; i.e., ∇2
xxL(x∗, λ∗) is positive definite. Choose

µ̄ > 0 so that ∇2
xxLA(x∗, λ∗; µ̄) is also positive definite. Then there exist positive

constants δ, ǫ, and M such that the following claims hold:

1. For all (λk, µk) ∈ D where D , {(λ, µ) : ‖λ − λ∗‖ < δµ, µ ≥ µ̄}, the problem

min
x

LA(x, λk; µk) s.t. ‖x − x∗‖ = ǫ

has a unique solution xk. It satisfies

‖xk − x∗‖ ≤ M

µk
‖λk − λ∗‖.

Moreover, the function x(λ, µ) is continuously differentiable in the interior of

D.

2. For all (λk, µk) ∈ D,

‖λk+1 − λ∗‖ ≤ M

µk
‖λk − λ∗‖,

where λk+1 is attained by (2.6).

3. For all (λk, µk) ∈ D, ∇2
xxLA(xk, λk; µk) is positive definite and ∇hi(x

k) are

linearly independent.

A detailed proof for local convergence theorem can be found in [79], pp. 108.

The local convergence theorem implies three features of Algorithm 1. First, the

algorithm converges in one iteration if λ = λ∗. Second, if µk is large enough to satisfy

M
µk < 1, the error bounds in the theorem are able to guarantee that

‖λk+1 − λ∗‖ < ‖λk − λ∗‖;
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i.e., the multiplier estimates converge linearly. Hence, {xk} also converges linearly.

Last but not least, if lim µk = +∞, then

lim
k→+∞

‖λk+1 − λ∗‖
‖λk − λ∗‖ = 0;

i.e., the multiplier estimates converge superlinearly.

The convergence rate mentioned above is not comparable to the other methods in

general, because the augmented Lagrangian method requires solving an unconstrained

minimization subproblem at each iteration, which is probably more expensive than

the iterations of other methods. Thus, designing an elaborate scheme to solve the sub-

problem efficiently is one of the key issues while applying the augmented Lagrangian

method.

In practice, it is unlikely to exactly solve the unconstrained minimization sub-

problem at each iteration. Rockafellar [72] has proven the global convergence in the

convex case for an arbitrary penalty factor and without the requirement of an exact

minimum at each iteration of the augmented Lagrangian method.

Theorem 2 (Global Convergence Theorem). Suppose that

1. (2.2) is a convex optimization problem; i.e., f is convex and hi are linear con-

straints;

2. the feasible set {x : h(x) = 0} is non-empty;

3. µk = µ is constant for all k;

4. a sequence {ǫk}∞1 satisfies 0 ≤ ǫk → 0 and

∞
∑

i

√
ǫk < ∞.
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Set tolerance to ǫk and update multiplier following (2.6) at iteration k in Algorithm

1. Then attained sequence {xk} converges to the global minimizer of (2.2).

A detailed proof for global convergence theorem can be found in [72], pp. 560–561.

This theorem confirms the global convergence in the convex case even though

only approximate solutions for unconstraint subproblems are available in numerical

computation and completes the theory of the augmented Lagrangian method.

Other than (2.6) proposed by Hestenes and Powell, Buys [73] and Tapia [74, 75]

have suggested another two multiplier update formulas (called Buys update and Tapia

update respectively) which both involve second-order information of LA(x, λ; µ). Tapia

[76] and Byrd [77] have shown that both update formulas give quadratic convergence

if one-step (for Tapia update) or two-step (for Buys update) Newton’s method is ap-

plied to minimizing the augmented Lagrangian function instead of the usual infinite

number of steps for exact minimization. However, each step of Newton’s method

can be computationally too expensive for applications in this thesis since it requires

computing the Hessian of the augmented Lagrangian function.

2.2 Augmented Lagrangian Algorithm for TV Min-

imization

In stead of employing the augmented Lagrangian method to minimize the TV model

(2.1) directly, we consider an equivalent variant of (2.1)

min
wi,u

∑

i

‖wi‖, s.t. Au = b and Diu = wi for all i. (2.7)



19

Its corresponding augmented Lagrangian function is

LA(wi, u) =
∑

i

(‖wi‖ − νT
i (Diu − wi) +

βi

2
‖Diu − wi‖2

2)

−λT (Au − b) +
µ

2
‖Au − b‖2

2. (2.8)

Since (2.7) is still a convex problem, the global convergence theorem is able to guar-

antee the convergence while applying the augmented Lagrangian method to it. Ac-

cording to Algorithm 1 described above, νi and λ should be updated as long as (2.8)

is minimized at each iteration. Let u∗ and w∗
i represent the true minimizers of (2.8).

in the light of (2.6), the update formulas of multipliers follow

ν̃i = νi − βi(Diu
∗ − w∗

i ) for all i, (2.9)

λ̃ = λ − µ(Au∗ − b). (2.10)

An alternating minimization algorithm for the image deconvolution and denois-

ing has been proposed by Wang, Yang, Yin, and Zhang [18]. They introduced the

variable-splitting technique to the compressive sensing area for the first time. In that

paper, the TV regularization term is split into two terms with the aid of a new slack

variable so that an alternating minimization scheme can be coupled to minimize the

approximate objective function. The algorithm described in this thesis can also be

derived under the variable-splitting technique.

If the augmented Lagrangian method is applied directly to (2.1), the corresponding

augmented Lagrangian function is

L̃A(u) =
∑

i

‖Diu‖ − λT (Au − b) +
µ

2
‖Au − b‖2

2. (2.11)
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If we introduce a slack variable wi ∈ R2 at each pixel to transfer Diu out of the

non-differentiable term ‖.‖ and penalize the difference between them, then it results

in splitting every term in the first sum of (2.11) into three terms:

‖wi‖ − νT
i (Diu − wi) +

βi

2
‖Diu − wi‖2

2.

Bringing these three terms back to (2.11) leads to the same objective function for the

subproblem as (2.8).

The algorithmic framework of the augmented Lagrangian method indicates that it

is essential to minimize LA(wi, u) efficiently at each iteration to solve (2.1). The sub-

problem is still hard to solve efficiently in a direct way due to the non-differentiability

and non-linearity. Therefore, an iterative way is proposed in the next section—the

alternation minimization scheme.

2.3 Alternating Direction Algorithm for the Sub-

problem

The subproblem is to minimize the augmented Lagrangian function; i.e.,

min
wi,u

LA(wi, u) =
∑

i

(‖wi‖ − νT
i (Diu − wi) +

βi

2
‖Diu − wi‖2

2)

−λT (Au − b) +
µ

2
‖Au − b‖2

2. (2.12)

The alternating direction method [69], which was originally proposed to deal with

parabolic and elliptic differential equations, is embedded here to solve (2.12) effi-

ciently.
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2.3.1 Shrinkage-like Formulas

Suppose that uk and wi,k respectively denote the approximate minimizers of (2.8) at

the kth iteration which refers to the inner iteration while solving the subproblem.

Assuming that uj and wi,j are available for all j = 0, 1, . . . , k, wi,k+1 can be attained

by

min
wi

LA(wi, uk) =
∑

i

(‖wi‖ − νT
i (Diuk − wi) +

βi

2
‖Diuk − wi‖2

2)

−λT (Auk − b) +
µ

2
‖Auk − b‖2

2,

which is equivalent to solve the so-called “w-subproblem”

min
wi

∑

i

(‖wi‖ − νT
i (Diuk − wi) +

βi

2
||Diuk − wi||22). (2.13)

The w-subproblem is separable with respect to wi. In what follows, we argue that

every separated problem admits a closed form solution.

Lemma 1. For x ∈ R
p, the subdifferential of f(x) , ‖x‖1 is given component by

component

(∂f(x))i =











sgn(xi), if xi 6= 0;

{h : |h| ≤ 1, h ∈ R} , otherwise.

The proof of Lemma 1 is easily extended from the subdifferential of absolute value

in R. Detailed proof is omitted here.

Lemma 2. For given β > 0 and ν, y ∈ R
q, the minimizer of

min
x

‖x‖1 − νT (y − x) +
β

2
||y − x||22 (2.14)
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is given by the 1D shrinkage-like formula

x∗ = max

{

|y − ν

β
| − 1

β
, 0

}

sgn(y − ν

β
). (2.15)

Proof. Since the objective function is convex, bounded below and coercive, there

exists at least one minimizer x∗ for (2.14). According to the optimality condition

for convex optimization, the origin should be included in the subdifferential of the

objective function at the minimizer. In light of Lemma 1, each component x∗
i must

satisfy











sgn(xi) + β(x∗
i − yi) + νi = 0 if x∗

i 6= 0;

|νi − βyi| ≤ 1 otherwise.
(2.16)

If x∗
i 6= 0, (2.16) gives us

x∗
i +

sgn(xi)

β
= yi −

νi

β
,

which leads to

|x∗
i | +

1

β
= |yi −

νi

β
|.

Combining above two equations together, we have meanwhile that

sgn(x∗
i ) =

sgn(x∗
i )|x∗

i | + sgn(xi)/β

|x∗| + 1/β
=

x∗
i + sgn(xi)/β

|x∗| + 1/β
=

yi − νi/β

|yi − νi/β|
= sgn(yi −

νi

β
).

Hence,

x∗
i = |x∗

i |
x∗

i

|x∗
i |

= |x∗
i |

(yi − νi/β)

|yi − νi/β|
=

(

|yi −
νi

β
| − 1

β

)

sgn(yi −
νi

β
). (2.17)
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Furthermore, according to (2.16), x∗
i = 0 if and only if

|yi −
νi

β
| ≤ 1

β
.

Coupling this to (2.17), we instantly conclude that

x∗
i = max

{

|yi −
νi

β
| − 1

β
, 0

}

sgn(yi −
νi

β
),

It can be written in a vector form; i.e.,

x∗ = max

{

|y − ν

β
| − 1

β
, 0

}

sgn(y − ν

β
).

In light of Lemma 2, w-subproblem (2.13) can be explicitly solved when ‖.‖ is

1-norm; i.e.,

wi,k+1 = max

{

|Diuk −
νi

βi

| − 1

βi

, 0

}

sgn(Diuk −
νi

βi

). (2.18)

Lemma 3. For x ∈ R
p, the subdifferential of f(x) , ‖x‖2 is

∂f(x) =











x/‖x‖2, if x 6= 0;

{h : ‖h‖2 ≤ 1, h ∈ R
p} , otherwise.

The proof of Lemma 3 is elementary and can be found in [18].

Lemma 4. For given β > 0 and ν, y ∈ R
q, the minimizer of

min
x

‖x‖2 − νT (y − x) +
β

2
||y − x||22 (2.19)
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is given by the 2D shrinkage-like formula

x∗ = max

{

‖y − ν

β
‖2 −

1

β
, 0

}

(y − ν/β)

‖y − ν/β‖2
, (2.20)

where it follows the convention 0 · (0/0) = 0.

Proof. We use ‖.‖ for ‖.‖2 for simplicity in this proof. Similar statements to Lemma

2 lead to the fact that there exists at least one minimizer x∗ for (2.19) and the

subdifferential of the objective function at this minimizer should contain the origin.

In light of Lemma 3, x∗ must satisfy











x∗/‖x∗‖ + β(x∗ − y) + ν = 0 if x∗ 6= 0;

‖ν − βy‖ ≤ 1 otherwise.
(2.21)

If x∗ 6= 0, it holds

x∗ + x∗/(β‖x∗‖) = y − ν

β
, (2.22)

which leads to

‖x∗‖ +
1

β
= ‖y − ν

β
‖. (2.23)

Dividing (2.22) by (2.23), we obtain that

x∗

‖x∗‖ =
x∗ + x∗/(β‖x∗‖)

‖x∗‖ + 1/β
=

y − ν/β

‖y − ν/β‖ .
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This relation and (2.23) imply that

x∗ = ‖x∗‖ x∗

‖x∗‖ = ‖x∗‖ y − ν/β

‖y − ν/β‖ =

(

‖y − ν

β
‖ − 1

β

)

y − ν/β

‖y − ν/β‖ . (2.24)

Moreover, x∗ = 0 if and only if

‖y − ν

β
‖ ≤ 1

β

according to (2.21). Combining this with (2.24), we instantly achieve

x∗ = max

{

‖y − ν

β
‖ − 1

β
, 0

}

(y − ν/β)

‖y − ν/β‖ .

In light of Lemma 4, the closed form solution of w-subproblem (2.13) can also be

given out explicitly when ‖.‖ is 2-norm; i.e.,

wi,k+1 = max

{

‖Diuk −
νi

βi
‖ − 1

βi
, 0

}

(Diuk − νi/βi)

‖Diuk − νi/βi‖
, (2.25)

where 0 · (0/0) = 0 is followed here as well.

Therefore, the w-subproblem derived from the process of minimizing either anisotropic

or isotropic TV model can be solved exactly. For convenience, updating formulas

(2.18) and (2.25) are uniformly denoted as

wi,k+1 = shrike(Diuk; νi, βi), (2.26)

which is also the minimizer of w-subproblem (2.13). Here, the operator “shrike” is

named from the abbreviation of “shrinkage-like formulas”. The complexity of (2.26)

primarily focuses on computing the finite differences, which are almost negligible
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compared with the same-size matrix-vector multiplications.

2.3.2 One-step Steepest Descent Scheme

In addition, with the aid of wi,k+1, uk+1 can be achieved by solving

min
u

LA(wi,k+1, u) =
∑

i

(‖wi,k+1‖ − νT
i (Diu − wi,k+1) +

βi

2
‖Diu − wi,k+1‖2

2)

−λT (Au − b) +
µ

2
‖Au − b‖2

2,

which is equivalent to solve the so-called “u-subproblem”

min
u

Qk(u) ,
∑

i

(−νT
i (Diu − wi,k+1) +

βi

2
‖Diu − wi,k+1‖2

2)

−λT (Au − b) +
µ

2
‖Au − b‖2

2. (2.27)

Clearly, Qk(u) is a quadratic function and its gradient is

dk(u) =
∑

i

(βiD
T
i (−Diu − wi,k+1) − DT

i νi) + µAT (Au − b) − AT λ. (2.28)

Forcing dk(u) = 0 gives us the exact minimizer of Qk(u)

u∗
k+1 =

(

∑

i

βiD
T
i Di + µAT A

)+(
∑

i

(DT
i νi + βiD

T
i wi,k+1) + AT λ + µAT b

)

,(2.29)

where M+ stands for the Moore-Penrose pseudoinverse of matrix M . Theoretically,

it is ideal to accept the exact minimizer as the solution of the u-subproblem (2.27).

However, computing the inverse or pseudoinverse at each iteration is too costly to

implement numerically. Therefore, an iterative method is highly desirable.

The steepest descent method is able to solve (2.27) iteratively by applying recur-
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rence formula

ũ = u − αd,

where d is the gradient direction of the objective function. Each iteration of the

steepest descent method demands updating the gradient direction, whose complexity

is principally two matrix-vector multiplications on computing AT Au. Thus, n-step

steepest descent to obtain the minimizer of Qk(u) requires 2n matrix-vector multi-

plications at least. For large-sale problems, it is still too costly to be an efficient

algorithm. In fact, the augmented Lagrangian function (2.8) is expected to be min-

imized by solving w-subproblem (2.13) and u-subproblem (2.27) alternately. There-

fore, solving the u-subproblem accurately at each sweep may be unnecessary. Instead

of adopting multi-step steepest descent, we only take one aggressive step starting off

with uk, the approximate minimizer of Qk−1(u), and accept the iterate as the roughly

approximate minimizer of Qk(u) (named one-step steepest descent method); i.e.,

uk+1 = uk − αkdk, (2.30)

where dk , dk(uk) for simplicity.

The only remaining issue is how to choose αk aggressively. Barzilai and Borwein

[82] suggested an aggressive manner to choose step length for the steepest descent

method, which is called the BB step or BB method. As can be seen, the BB step

utilizes the previous two iterates and achieves the superlinear convergence [82, 83].

Surprisingly, Barzilai and Borwein’s analysis also indicates that the convergence rate

is even faster as the problem is more ill-conditioned. However, the one-step steepest

descent is not able to offer two iterates, so we provide uk and uk−1 by way of required
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iterates to derive the BB-like step, which leads to

αk =
sT

k sk

sT
k yk

, (2.31)

or

αk =
sT

k yk

yT
k yk

, (2.32)

where sk = uk − uk−1 and yk = dk(uk) − dk(uk−1).

To validate the BB-like step, a nonmonotone line search algorithm (NLSA) ad-

vanced by Zhang and Hager [84] is integrated. They modified the scheme of Grippo,

Lampariello, and Lucidi [85] on nonmonotone line search and demonstrated their new

algorithm was generally superior to the traditional one [85] according to a large num-

ber of numerical experiments. From iteration to iteration, NLSA requires checking

the nonmonotone Armijo condition, which is

Qk(uk − αkdk) ≤ Ck − δαkd
T
k dk. (2.33)

where Ck is recursively set by an average of function values; i.e.,

Pk+1 = ηPk + 1,

Ck+1 = (ηPkCk + Qk(uk+1))/Pk+1, (2.34)

and δ and η are chosen between 0 and 1.

So far all issues in the process of handling the subproblem have been settled.

In light of all derivations above, the new algorithm to minimize the augmented La-

grangian function (2.8) is stated as follows:



29

Algorithm 2 (Alternating Minimization Scheme).

Initialize 0 < δ, ρ, η < 1 and starting points wi,0, u0;

Set Q0 = 1 and C0 = LA(wi,0, u0);

While inner stopping criteria unsatisfied Do

Compute wi,k+1 based on shrinkage-like formula (2.26);

Set αk through BB-like formula (2.31);

While nonmonotone Armijo condition (2.33) unsatisfied Do

Backtrack αk = ραk;

End Do

Compute uk+1 by one-step steepest descent method (2.30);

Set Ck+1 according to (2.34);

End Do

About selecting the inner stopping criteria, there are at least two optional ways:

• ‖∇LA(wi,k, uk)‖2 is sufficiently small;

• relative change ‖uk+1 − uk‖2 is sufficiently small.

2.4 Overall Algorithm and Extensions

By means of a combination of Augmented Lagrangian Method and Alternating Min-

imization Scheme, the TV model (2.1) can be efficiently optimized. More precisely,

the new TV solver TVAL3 implements the following algorithmic framework:

Algorithm 3 (TVAL3 Scheme).

Initialize ν0
i , β

0
i , λ

0, µ0, and starting points w0
i , u

0 for all i;

While outer stopping criteria unsatisfied Do



30

Set wk+1
i,0 = wk and uk+1

0 = uk;

Find minimizers wk+1
i and uk+1 of the augmented Lagrangian function (2.8)

by means of Algorithm 2, starting from wk+1
i,0 and uk+1

0 ;

Update multipliers using (2.9) to attain νk+1
i , λk+1;

Choose new penalty parameters βk+1
i ≥ βk

i and µk+1 ≥ µk;

End Do

Similar to the inner stopping criteria, there are also at least two ways to choose

the outer stopping criteria:

• optimality conditions of (2.7) are approximately achieved;

• relative change ‖uk+1 − uk‖2 is sufficiently small.

This algorithmic framework is flexible; in fact, it could be extended to some other

TV models with various constraints in the field of compressive sensing. For instance,

For the TV model with nonnegativity constraints,

min
u

∑

i

‖Diu‖, s.t. Au = b and u ≥ 0, (2.35)

we take one step of the projected gradient method [86] instead of the steepest descent

method while updating u. Except for this modification, all the other details in Algo-

rithm 3 remain the same to deal with the TV model with nonnegativity constraints

(2.35).

With slight modifications on updating formulas, but following the same deriva-

tions, Algorithm 3 can also be used to recover complex signals or images, which means

solving (2.1) under u ∈ Cn or u ∈ Cs×t with s · t = n and A ∈ Cm×n with m < n.

A new solver TVAL3—a main contribution of this thesis—implementing algo-

rithms grounded on the TVAL3 scheme has been published at the following URL:
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http://www.caam.rice.edu/~optimization/L1/TVAL3/.

The theoretical conclusions on convergence or convergence rate have not yet been

thoroughly investigated, even though solid numerical evidence reveals that these al-

gorithms do converge. Theoretical investigations on convergence would be part of

my future research. In the fourth chapter, the results of a large number of numerical

experiments, which aim at 1D and 2D, noisy and noise-free, real and complex, and

regular and SPC signals or images (generated by the single pixel camera), will strongly

indicate the convergence of the TVAL3 scheme in practice. Before that, a type of

measurement matrices with special structure which could significantly accelerate the

TVAL3 scheme, will be well studied in the following chapter.

http://www.caam.rice.edu/~optimization/L1/TVAL3/


Chapter 3

Fast Walsh Hadamard Transform

In this chapter, a type of structured measurement matrices, which is adopted by the

single pixel camera, is taken into account to accelerate the TVAL3 scheme for CS

problems. As proposed in Chapter 2, Algorithm 3 is essentially based on the following

two recursive formulas

wi,k+1 = shrike(Diuk; νi, βi),

uk+1 = uk − αkdk,

where

dk =
∑

i

(βiD
T
i (−Diuk − wi,k+1) − DT

i νi) + µAT (Auk − b) − AT λ.

Because computing the finite difference is much less expensive than matrix-vector

multiplication in MATLAB, two matrix-vector multiplications Auk and AT (Auk − b)

dominate the running time at each iteration. Specifically, assuming that the size of

matrix A is m×n and that computing Ax takes c(m, n), then the running time of the

32



33

new algorithm is briefly c(m, n)×p where p is the number of total iterations. For the

fixed image size and recovery percentage (i.e. fixed m and n), obviously two ways are

available to accelerate the algorithm: making p smaller or making c(m, n) smaller.

Making p smaller requires modification of the algorithm, and even the core part,

to improve the convergence rate. This is a difficult task, especially for a completed

algorithm. Perhaps the adjustment of parameters would make some differences or

even some improvements, but the optimal parameters are hard to find and vary from

case to case. It can be considered as an independent and open research topic. Making

p smaller is correspondingly easier. It requires a fast way to handle the matrix-vector

multiplication. Some structured measurements, originated from special transforms

such as Fourier, Cosine, or Walsh Hadamard transforms, are able to handle the fast

computation of matrix-vector multiplication.

The measurement matrix A generated by the digital micro-mirror device (DMD)

of the single pixel camera is programmed as a permutated Walsh Hadamard matrix.

In fact, during the hardware implementation, the matrix entries −1 and 1 are shifted

to 0 and 1 so that DMD can correctly recognize. It is essential to explore the Walsh

Hadamard transform and find a fast fast way to implement it. This chapter therefore

starts with introducing the basic concept of the Hadamard Matrix.

3.1 Hadamard Matrix

The Hadamard matrix or transform is named for the French mathematician Jacques

Solomon Hadamard, the German-American mathematician Hans Adolph Rademacher,

and the American mathematician Joseph Leonard Walsh. It belongs to a generalized

class of Fourier transforms and performs an orthogonal, symmetric, involutional, lin-

ear operation on 2k real numbers.
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The Hadamard matrix of dimension 2k for k ∈ N are given by the recursive

formula

H0 = [1],

H1 =
1√
2







1 1

1 −1






,

and in general,

Hk =
1√
2







Hk−1 Hk−1

Hk−1 −Hk−1






.

According to this formula, for instance,

H3 =
1√
8













































1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1













































.

This is also known as the Hadamard-ordered Walsh Hadamard matrix. There are also

other orders, such as sequency order, dyadic order, and so forth. Different orders can

be achieved by re-ordering the rows of the Hadamard matrix defined above. Walsh

Hadamard matrices in various orders have recently received increasing attention due
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to their broad applications in the field of engineering. The hadamard and dyadic

orders are more appropriate for applications involving a double transform (time-

space-time) such as logical autocorrelation and convolution [47]. The sequency order

can be applied to sequency filters, sequency power spectra, and so forth. In the single

pixel camera, each pattern of DMD corresponds to a row of the permutated sequency

orderded Walsh Hadamard matrix after shifting entries from −1 and 1 to 0 and 1.

Hence the sequency order is the main focus in this chapter.

To convert a given sequency integer number s into the corresponding index number

k in Hadamard order, one needs the following steps [94]:

• Represent s in binary form:

s = (sn−1sn−2 . . . s0)2 =

n−1
∑

i=0

si2
i.

• Transfer the binary form to Gray code[48]:

gi = si ⊕ si+1 i = 0, 1, . . . , n − 1,

where ⊕ stands for exclusive or and sn = 0.

Specifically,

1 ⊕ 1 = 0 ⊕ 0 = 0; 1 ⊕ 0 = 0 ⊕ 1 = 1.

• Reverse gi’s bit to achieve ki’s:

ki = gn−1−i.

For example, n = 3 we have
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s 0 1 2 3 4 5 6 7

binary 000 001 010 011 100 101 110 111

Gray code 000 001 011 010 110 111 101 100

bit-reverse 000 100 110 010 011 111 101 001

k 0 4 6 2 3 7 5 1

Let A(i) denote the (i + 1)th row of matrix A. Based on the above form, define

W3(i) = H3(s(i));

i.e.,

W3 = [H3(0)T H3(4)T H3(6)T H3(2)T H3(3)T H3(7)T H3(5)T H3(1)T ]T

=
1√
8













































1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 −1 −1 1 1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 −1 −1 1 −1 1 1 −1

1 −1 1 −1 −1 1 −1 1

1 −1 1 −1 1 −1 1 −1













































.

W3 is sequency-ordered Walsh Hadamard matrix.

Based on this process, 2k × 2k sequency-ordered Walsh Hadamard matrix can be

simply generated for any integer k.

To achieve the fast Walsh Hadamard transform, it is necessary to understand the

so-called ”Kronecker product”, which will be discussed in the next section.
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3.2 Kronecker Product and Fast Walsh Hadamard

Transform

For any two matrices A = [aij ]p×q and B = [bij ]r×l, the Kronecker product of these

two matrices is defined as

A ⊗ B =



















a11B a12B . . . a1qB

a21B a22B . . . a2qB

...
...

...
...

ap1B ap2B . . . apqB



















pr×ql

To study an essential property of the Kronecker product, I need to define two

new operators vec and mtx. Specifically, vec is the operator that stacks the columns

of a matrix to form a vector, and mtx separates the vector into several equal-length

vectors and forms a matrix. The size of the reshaped vector or matrix depends on the

size of matrices before and after it when computing matrix-matrix or matrix-vector

multiplication to guarantee the success of computation. The following example and

therom would make this point more clear. Literally, mtx is the inverse operator of

vec.

For example,

X =













1 2

−1 4

6 7













,
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then

x = vec(X) =

































1

−1

6

2

4

7

































and mtx(x) = X.

With the aid of two new operators, the following well-known theorem can be

concluded:

Theorem 3 (the Basic KP theorem). Matrix A ∈ R
n×m is constructed by the Kro-

necker product formula

A = A1 ⊗ A2,

where A1 ∈ R
(m/p)×(n/q) and A2 ∈ R

p×q. m and n are chosen to satisfy that m

and n are divisible by p and q, respectively. Then matrix-vector multiplication can be

computed by

Ax = vec(A2mtx(x)AT
1 ),

AT y = vec(AT
2 mtx(y)A1).

Proof. Define s = m/p, t = n/q, and A1 = (aij)s×t.

Furthermore, denote x = [x1, . . . , xt]
T , then mtx(x) = [x1, . . . , xt].
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Ax = (A1 ⊗ A2)x

By the definition of Kronecker product,

=



















a11A2 a12A2 . . . a1tA2

a21A2 a22A2 . . . a2tA2

...
...

...
...

as1A2 as2A2 . . . astA2































x1

...

xt













According to the matrix-vector multiplication,

=



















a11A2x1 + a12A2x2 + . . . + a1tA2xt

a21A2x1 + a22A2x2 + . . . + a2tA2xt

...

as1A2x1 + as2A2x2 + . . . + astA2xt



















By the definition of two new operators,

= vec([a11A2x1 + a12A2x2 + . . . + a1tA2xt, . . . , as1A2x1 + as2A2x2 + . . . + astA2xt])

By the simple reorganization,

= vec([A2[x1, . . . , xt][a11, . . . , a1t]
T , . . . , A2[x1, . . . , xt][as1, . . . , ast]

T ])
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Rewriting in the matrix form,

= vec





















A2[x1, . . . , xt]



















a11 a12 . . . a1t

a21 a22 . . . a2t

...
...

...
...

as1 as2 . . . ast



















T




















= vec(A2XAT
1 ).

The same argument can prove

AT y = vec(AT
2 mtx(y)A1).

Using the Kronecker product, the formula (3.1) can be rewritten as

Hk = H1 ⊗ Hk−1.

For any given vector x with the length of 2k, denote x = [xT
1 xT

2 ]T , where x1 and x2

are of equal size. The Hadamard-ordered Walsh Hadamard transform (WHTh) can

be written as

Hkx = (H1 ⊗ Hk−1)x.
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Due to the Basic KP theorem, it follows

Hkx = vec(Hk−1mtx(x)HT
1 )

= vec(Hk−1[x1 x2]H
T
1 )

= vec([Hk−1x1 Hk−1x2]H
T
1 )

=
1√
2
vec






[Hk−1x1 Hk−1x2]







1 1

1 −1













=
1√
2
vec([Hk−1x1 + Hk−1x2 Hk−1x1 − Hk−1x2])

=
1√
2







Hk−1x1 + Hk−1x2

Hk−1x1 − Hk−1x2






. (3.1)

A naive implementation of the WHTh would have a computational complexity

of O(N2), but the fast WHTh implementation according to recursive formula (3.1)

requires only O(N log N). Notice that only additions and subtractions are involved

while implementing the fast WHTh. Sequency-ordered Walsh Hadamard transform

(WHTs) is directly obtained by carrying out the fast WHTh as above, and then

rearranging the outputs by bit-reverse and Gray code conversion.

I will show some comparison results in the next section to illustrates how fast the

newly implemented Walsh Hadamard transform is based on the running time.

3.3 Comparisons

I implemented the fast Walsh Hadamard transform in C++ and then compiled and

linked it into a shared library called a binary MEX -file from MATLAB software. The

fast Walsh Hadamard transform was also carried out since the version of MATLAB

R2008b, which is known as function fwht and its inverse function ifwht. The following
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Figure 3.1: Running time comparison between newly implemented FWHT and MATLAB function
fwht. Clearly, newly implemented FWHT is around 100 times faster than FWHT provided by
MATLAB.

experiments compare the newly implemented FWHT and its inverse with MATLAB

functions. All experiments were performed on a Lenovo X301 laptop running Win-

dows XP and MATLAB R2009a (32-bit) and equipped with a 1.4GHz Intel Core 2

Duo SU9400 and 2GB of DDR3 memory.

Figure 3.1 illustrates that my newly implemented code to compute the fast WHT

is much faster than MATLAB function fwht and fwht (around 1/100 running time on

average), and Figure 3.2 illustrates that the fast WHT can be even faster than the

fast Fourier transform (around 1/2 running time on average), which clearly shows the

efficiency of the newly implemented fast WHT.

Obviously, computing the matrix-vector multiplication in such a fast way can

accelerate the TVAL3 scheme. More numerical results to demonstrate the efficiency

and robustness of the corresponding algorithms will be shown in next chapter.
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Figure 3.2: Running time comparison between newly implemented FWHT and MATLAB function
fft. Clearly, newly implemented FWHT is even faster than fft provided by MATLAB, which is nearly
the most efficient transform implemented by MATLAB.



Chapter 4

Numerical Results and Discussions

In this chapter, the effectiveness and efficiency of TVAL3 on image reconstruction is

demonstrated by reporting the procedure and results of a large number of numerical

experiments. TVAL3 is compared with other state-of-the-art TV solvers, as well

as ℓ1 solvers to validate its advantages. All experiments fall under two categories:

reconstructing test images obtained from public domain and recovering images from

real data generated by the single pixel camera (SPC) or by related techniques. The

true solutions can be predefined for the first category whereas that is unlikely for

the second category. That means true images are rarely available for reference while

recovering real data. However, the single pixel camera is the main application of

TVAL3 and its data is much closer to practical applications. Thus, simulating results

based on SPC data or other real data are more indicative and convincing.

4.1 State-of-the-art Solvers and Test Platform

TV solvers have been introduced in Section 1.3. Since SOCP [19] is much slower than

others and RecPF [36] is restricted to partial Fourier measurements only, these two

44
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solvers will be omitted from the comparison. In other words, comparisons are pri-

marily made among TVAL3 (version beta2.1), TwIST (version 1.0) [57, 58], NESTA

(version 1.0) [56], and ℓ1-Magic (version 1.1) [3, 2, 1]. It is noteworthy that there are

two available reconstruction codes in the current version of NESTA—NESTA.m and

NESTA UP.m. The only difference is NESTA.m requires AT A to be an orthogonal

projector but NESTA UP.m has no particular requirements on measurement matrix

A. Therefore, NESTA UP.m is adopted whenever NESTA is involved in any numer-

ical experiment. Additionally, the two state-of-the-art ℓ1 solvers, FPC (version 2.0)

[17] and YALL1 (version beta5.0) [59], are involved in some experiments to indicate

the merits of TV solvers compared to ℓ1 solvers. FPC and YALL1 are among the

best solvers for ℓ1 minimization in terms of both speed and accuracy.

While running TVAL3, we uniformly set parameters δ = 1.e − 5, ρ = .6, and

η = .9995 presented in Algorithm 2, and ν0
i = 0, λ0 = 0, u0 = AT b, w0

i =

shike(Diu0; ν
0
i , β

0
i ) presented in Algorithm 3. Additionally, penalty parameters βk

i

and µk are chosen without continuation but kept constant equal to the initial values

β0
i and µ0, respectively. The values of β0

i , µ0, and tolerance might vary according to

distinct noise level and required accuracy.

In an effort to make the comparisons fair, for other tested solvers mentioned above,

different choices of parameters have always been tried and at the end we pick out the

ones that provide the best performance measured by recovery quality and running

time.

All experiments were performed on a Lenovo X301 laptop running Windows XP

and MATLAB R2009a (32-bit) and equipped with a 1.4GHz Intel Core 2 Duo SU9400

and 2GB of DDR3 memory.
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Figure 4.1: Reconstructed 1D staircase signal from 20% measurements. The noise level is 4%.
Relative errors recovered by TVAL3, FPC bb, and YALL1 are 3.31%, 6.37%, and 7.41%, and running
times are 2.61s, 4.17s, and 2.62s, respectively.

4.2 Comparisons Based on Synthetic Data

In this section, the test sets cover 1D staircase signals, 2D Shepp-Logan phantom

images, and the 2D MR brain image, with various sampling ratios. In each test, the

observation f is generated by firstly stacking the columns of the tested image to form

a vector and then applying the fast transform or general random matrix to it. The

additive Gaussian noise on f has mean 0 and standard deviation 1 in all tests. In

MATLAB, the noisy observation is explicitly given by

f = f + σ · mean (abs (f)) · randn (m, 1), (4.1)

where σ represents the noise level and m represents the length of f .

Let us begin with recovering 1D staircase signals. In test 1 (corresponding to
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Figure 4.2: Recoverability for 1D staircase signals. The measurement rate is 40% and the noise
level is 8%. Left: average relative error. Right: average running time. Relative error and running
time are measured simultaneously with the growth of the number of jumps.

Figure 4.1), the length of the tested signal is 4096 with 27 jumps, the measurement

matrix is Gaussian random matrix whose measurement rate is 20%, and the noise

level is 4%. The current versions of all the other TV solvers except TVAL3 can only

reconstruct 2D square images, although the methods behind some of these solvers can

be extended to reconstruct non-square images. Therefore, TVAL3 is compared with

the two ℓ1 solvers—FPC bb (FPC with Barzilai-Borwein steps) and YALL1. Since

the signal is dense, it is sparsified by the Haar wavelet before FPC bb or YALL1 is

applied.

The parameters are set as default except assigning opts.mu = 8, opts.beta = 8,

and opts.tol = 1e − 3 for TVAL3; assigning opts.tol = 1e − 2 for FPC bb; assigning

opts.nu = 35 and opts.tol = 5e− 3 for YALL1. Since the stopping criteria vary from

solver to solver, we used different tolerance values for different solvers to achieve a fair
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comparison. The guiding principle here is either to make running time approximately

equal while comparing quality or the other way around. If the shorter running time

and higher accuracy can be reached at the same time for one solver, it is also favorable

for a fair comparison. As mentioned before, these parameters were chosen after multi-

trials to provide the best observed results.

Figure 4.1 indicates that the new TV solver TVAL3 achieves higher accuracy

within shorter running than the two ℓ1 solvers, and the signal recovered by TVAL3

is less oscillatory.

The above statements are again validated by test 2 (corresponding to Figure 4.2).

Fixing the length of 1D staircase signals to 4096, measurement rate of Gaussian

random matrix to 40%, and noise level to 8%, we run the test when the number of

jumps is 10, 20, 30, . . . , 400 respectively. We take 5 trials at each testing point and

plot the average relative error and running time with respect to the number of jumps.

The parameters of three solvers are set exactly the same as mentioned in test 1.

Figure 4.2 clearly demonstrates that relative error generated by TVAL3 increases

much slower than relative error generated by either of the two ℓ1 solvers with the

increase in the number of jumps. Meanwhile, the running time of TVAL3 is much

less than either of the two ℓ1 solvers when the number of jumps is more than 30.

When the number of jumps is relatively small (roughly less than 30 in this case),

which correlates with the very sparse Haar wavelet coefficients, YALL1 becomes very

efficient. Generally speaking, the TV solver TVAL3 gives better recoverability and

higher efficiency compared to ℓ1 solvers, at least for 1D staircase signals.

A series of experiments on 2D images which compare among TV solvers are de-

scribed as follows. Test 3 and 4 are on noise-free cases, while test 5 and 6 on noisy

cases.

In test 3 (corresponding to Figure 4.3), a 64×64 phantom image is encoded by an
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SNR: 77.64dB,  CPU time: 4.27s SNR: 46.59dB,  CPU time: 13.81s

SNR: 34.18dB,  CPU time: 24.35s SNR: 51.08dB,  CPU time: 1558.29s

Figure 4.3: Recovered 64×64 phantom image from 30% orthonormal measurements without noise.
Top-left: original image. Top-middle: reconstructed by TVAL3. Top-right: reconstructed by
TwIST. Bottom-middle: reconstructed by NESTA. Bottom-right: reconstructed by ℓ1-Magic.
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SNR: 73.22dB,  CPU time: 6.86s SNR: 0.35dB,  CPU time: 2.75s

SNR: 0.35dB,  CPU time: 23.49s SNR: −69.03dB,  CPU time: 908.75s

Figure 4.4: Recovered 64 × 64 phantom image from 30% non-orthonormal measurements without
noise. Top-left: original image. Top-middle: reconstructed by TVAL3. Top-right: reconstructed
by TwIST. Bottom-middle: reconstructed by NESTA. Bottom-right: reconstructed by ℓ1-Magic.
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orthonormal random matrix generated by QR factorization from a Gaussian random

matrix. The images are recovered by TVAL3, TwIST, NESTA, and ℓ1-Magic from

30% measurements but without the additive noise. The quality of recovered images

is measured by the signal-to-noise ratio (SNR), which is defined as the power ratio

between a signal and the background noise. Mathematically,

SNR = 20 log10

(‖uref − mean(uref)1‖F

‖ucal − uref‖F

)

,

where ucal and uref represent the recovered and original images respectively, 1 rep-

resents the matrix of all ones whose size is the same as uref , ‖.‖F calculates the

Frobenius norm, and the operator mean calculates the mean value of all entries in a

matrix.

The chosen parameter settings for this test after multi-trials are opts.mu = 28 and

opts.tol = 1e−4 for TVAL3; tau = 1/2000 and tolA = 1e−4 for TwIST; mu = 2e−3,

Lambda = 1/2000, La = ‖A‖2
2, and opts.TOlV ar = 1e − 4 for NESTA; mu = 2 and

lbtol = 1e − 2 for ℓ1-Magic. All other parameters are set up as default.

From Figure 4.3, we observe that TVAL3 achieves the highest-quality image

(77.64dB) but requires the shortest running time (4.27 seconds). The second highest-

quality image (51.08dB) is recovered by ℓ1-Magic at the expense of the unacceptable

running time (1558.29 seconds). TwIST and NESTA attain relatively midium-quality

images (around 46.59dB and 34.18dB respectively) within reasonable running times

(13.81 and 24.35 seconds respectively). This test validates that TVAL3 is capable of

high accuracy within an affordable running time for noise-free images.

Test 4 (corresponding to Figure 4.4) carries out the same experiment as test 3

except for replacing the orthonormal random matrix by the Gaussian random matrix

as the measurement matrix. All the parameters are set exactly as described in test 3.
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Figure 4.5: Recovered 256 × 256 MR brain image. Both the measurement rate and the noise
level are 10%. Top-left: original image. Top-right: reconstructed by TVAL3. Bottom-left:

reconstructed by TwIST. Bottom-right: reconstructed by NESTA.

It turns out that the non-orthonormal measurement matrix caused failures in TwIST,

NESTA, and ℓ1-Magic, as evidenced in Figure 4.4. However, TVAL3 can still recover

the phantom with high quality (73.22dB) within a reasonable time (6.86 seconds).

This experiment attests to the versatility and robustness of TVAL3 with different

measurement matrices.

In the next two tests, we focus on reconstructing a MR brain image to reveal

the potential of TVAL3 in the field of medical imaging. Since ℓ1-Magic is hardly

applicable to large-scale problems as shown in test 3 and 4, TVAL3 is only compared

with TwIST and NESTA.
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Figure 4.6: Recoverability for 256 × 256 MR brain image. The noise level is 10%. Left: average
SNR. Right: average running time. SNR and running time are measured simultaneously with the
growth of the measurement rate.
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In test 5 (corresponding to Figure 4.5), a 256 × 256 MR brain image, which

is more complex and harder to reconstruct than phantom images, is encoded by

a permutated Walsh Hadamard matrix. The sequency-ordered Walsh Hadamard

transform as described in Chapter 3 is performed here to shorten the running time

for all solvers. In order to investigate the robustness, we try to push solvers to the

limit by adding a lot of noise and using a small number of measurements. More

precisely, noise level and measurement rate are both set to 10%.

The parameter settings are as follows: opts.mu = 29, opts.beta = 28, and opts.tol =

4e − 3 for TVAL3; tau = 1/50, tolA = 1e − 3, and MaxiterA = 200 for TwIST;

mu = 5e − 3, Lambda = 1/50, La = 1, and opts.TOlV ar = 1e − 3 for NESTA.

Others are automatically set as default.

From Figure 4.5, we can only recognize the outline of the image recovered by

TwIST even though the running time is longest. Nevertheless, the image recovered

by either TVAL3 or NESTA keeps the rough sketch and some details of the original

brain image. In comparison with NESTA, TVAL3 achieves better accuracy (higher

SNR) in shorter running time statistically, and provides higher contrast visually. For

example, some gyri in the image recovered by TVAL3 are still distinguishable but

this is not the case in images recovered by either TwIST or NESTA. Furthermore,

the image recovered by NESTA is still noisy while the image recovered by TVAL3 is

much cleaner. This validates that TVAL3 is capable of better denoising effects while

reconstructing than NESTA. This fact will be reconfirmed by those tests related to

the single pixel camera in next section. Actually, this is an advantage when handling

data with lots of noise, which will always be the case in practice.

Fixing noise level to 10%, test 6 (corresponding to Figure 4.6) repeats test 5 at

90 different measurement rates from 9% to 98%. Testing points are uniformly chosen

and all parameters are set the same as in test 5.
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Figure 4.6 indicates that TVAL3 always achieves the best quality (highest SNR)

with the least running time among three TV solvers for that brain image. TwIST

and NESTA attain close accuracy, but TwIST is much slower especially when the

measurement rate is relatively low. These facts are consistent with what we discovered

from Figure 4.5.

The above tests validate that TVAL3 is more efficient and robust in comparison to

other TV solvers and even the two state-of-the-art ℓ1 solvers when reconstructing some

testing signals and images with Gaussian noise. More complicated data measured in

practice are taken into account in next the section.

4.3 Comparisons Based on Measured Data

The following tests are focusing on the measured data, which were measured and

provided by the Single-Pixel Camera Group from the ECE department of Rice Uni-

versity.

For measured data, the quality of recovered images is difficult to quantify due to

the lack of true solutions. Thus, the following comparisons are more or less relying

on visual effects. In each test of this section, the same tolerance is adopted for all

the tested solvers, which means neither similar quality nor close running time among

the recovered images. The reason for this is simply convenience. Test 7 focuses on

reconstructing infrared data captured by the single pixel camera [44], and test 8 aims

at recovering the signal using optical beam-induced current (OBIC) technique for

laser-based failure-analysis [45].

The measurements which are adopted by the single pixel camera to decide the

patterns of the digital micro-mirror device (DMD) are extracted from the permutated

Walsh Hadamard matrix. This matrix can be efficiently performed by the sequency-
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Figure 4.7: Real target in visible light.

ordered Walsh Hadamard transform. The data generated by the single pixel camera

are more complicated and harder to reconstruct since various sources of noise are

introduced which might be caused by environment, equipment, and so forth. Besides,

noise level is also usually unpredictable. Therefore, most of theoretical tricks to

estimate parameters based on the type and level of noise become helpless in practice.

As we mentioned before, one of the most significant advantages of the single pixel

camera is to reduce the cost of infrared cameras. Test 7 (corresponding to Figure 4.8),

demonstrates an infrared image recovery. A canvas board with the characters “IR”

written on it by charcoal pencil was entirely covered by the blue oil paint which results

in invisibility of “IR” to human eyes or to ordinary cameras as indicated in Figure 4.7.

This board was illuminated by a 150 watt halogen lamp and picture was taken by the

single pixel camera [44]. We respectively applied TVAL3, FPC bb, YALL1, TwIST,

NESTA, and ℓ1-Magic in sequence to 15%, 35%, and 50% data captured by the single
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Figure 4.8: Recovered 256 × 256 infrared RI image. The six rows are reconstructed by TVAL3,
FPC bb, YALL1, TwIST, NESTA, and ℓ1-Magic respectively, for sampling ratios 15%, 35%, and
50%.

pixel camera to achieve approximate images.

The tolerance is uniformly fixed to 1e− 2. All other parameters are set as default

except the following ones: opts.mu = 8 and opts.beta = 80 for TVAL3; opts.nu = .6

for YALL1; tau = 1/4000 for TwIST; mu = .02, Lambda = .01, La = 1 for NESTA;

mu = 2 for ℓ1-Magic.

Scrutinizing Figure 4.8, the following facts are observed: TV solvers can recover

the edges better, make recovered images look sharper, and provide better contrast

than ℓ1 solvers in general. Among TV solvers, TwIST and ℓ1-Magic is inferior in this

example since images recovered by TwIST are hard to recognize when measurement

rate is low and ℓ1-Magic always requires at least 10 times longer running time than

others. NESTA and TVAL3 are capable of successful reconstruction whatever the

measurement rate is and reqiure fairly close running time, but the image recovered

by TVAL3 is much sharper and cleaner than the one recovered by NESTA at each

measurement rate which indicates TVAL3 is superior to NESTA in denoising in the

process of reconstruction. These facts manifest the power of TVAL3 on SPC data in

some sense.

As a laser-based failure-analysis technique, the traditional OBIC scans a focused
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Figure 4.9: Recovered 512 × 512 discrete transistor image. The three rows are reconstructed by
TVAL3, TwIST, and NESTA respectively, for sampling ratios 5%, 15%, and 24%.
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laser beam across a sample by means of a laser scanning microscope (LSM). Inspired

by the single pixel camera, we suggested a new compressive sensing method to ac-

quire the same data with no need of a laser or an LSM in [45]. Test 8 (corresponding

to Figure 4.9) demonstrates OBIC signal recovery, which is a key step for this com-

pressive sensing method. The experiment was set up as follows: an arc lamp was

collimated onto a DMD, and the the DMD was imaged onto a discrete transistor un-

der test to create structured illumination matching the digital pattern of the DMD.

The OBIC signal from the discrete transistor was recorded by an analog-to-digital

converter and reconstructed by compressive sensing solvers. The measurements here

which decide the pattern of the DMD are the same as being used in the single pixel

camera. Since ℓ1-Magic is much slower, the other three TV solvers—TVAL3, TwIST,

and NESTA—are applied to this OBIC signal in test 8.

We set opts.mu = 16 and opts.beta = 8 for TVAL3; tau = 1/6000 for TwIST;

mu = .002, Lambda = .001, La = 1 for NESTA. Besides, we uniformly fix the

tolerance to 5e − 3 for all three solvers. Other parameters are chosen as default.

Figure 4.9 validates the fact that TVAL3 is preferable to TwIST and NESTA

in virtue of better edge-preserving and denosing effects. TVAL3 and NESTA spent

slightly shorter running time than TwIST in this test.

Test 7 and 8 illustrate the advantages of TVAL3 in efficiency and denoising effect

in contrast to other TV and ℓ1 solvers in a practical setting, and substantiate that

TVAL3 should be adopted as the core reconstruction solver of the single pixel camera.
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4.4 Initial Tests on Complex Signals and Nonneg-

ativity Constraints

TVAL3 also implemented subroutines to recover complex signals and settle nonneg-

ativity constraints according to the same TVAL3 scheme described in Chapter 2.

Though theoretical guarantee is as yet unobtainable, the numerical experiments well

indicate that it is capable of the image reconstruction containing nonnegativity con-

straints and complex signal recovery even when the measurements are complex.

The following two tests take the permutated Fourier matrix as the measurement

matrix which is complex and able to be carried out by means of fast Fourier transform.

The additive Gaussian noise is enforced according to (4.1). Since none of the other TV

solvers can be directly applied to complex signals encoded by complex measurements,

we only demonstrate the results achieved by TVAL3.

Test 9 (corresponding to Figure 4.10) concentrates on a 1D complex staircase

signal whose length is 65536 and number of jumps is 163. It is encoded by permutated

Fourier matrix with 5% Gaussian noise in both real and complex parts, and then

recovered from 25% measurements.

In TVAL3, we set parameters as default except for opts.mu = 24, opts.beta = 25,

and opts.tol = 1e − 3.

Figure 4.10 shows that both the real part and the complex part of the signal under

test are fully recovered in only a few seconds, which substantiates the efficiency and

the robustness of TVAL3 even for the complex case.

Test 10 (corresponding to Figure 4.11) demonstrates an experiment to recover a

512 × 512 thorax image scanned by CT. It is also encoded by permutated Fourier

matrix imposing 15% Gaussian noise to generate a complex observation f . The CT

thorax image is restored by TVAL3 from 10% measurements. Since each pixel of
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Figure 4.10: Recovered 1D complex staircase signal from 25% measurements. The noise level is
5%. Relative error recovered by TVAL3 is 2.92%, and running time is 8.70s.
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Figure 4.11: Recovered 512 × 512 CT thorax image from 10% measurements using TVAL3. The
noise level is 15%.
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this image is nonnegative, we can apply nonnegativity constraints on it and use the

corresponding subroutine.

The parameter settings for TVAL3 are as follows: opts.mu = 29, opts.beta = 27,

opts.tol = 1e−4, and opts.nonneg = true to trigger the subroutine for nonnegativity

cases. Others are assigned as default.

Examining Figure 4.11 carefully, we discover that most details of the CT thorax

image has been restored only from 10% measurements. More precisely, every bright

spot on the right side of the original image is still distinguishable on the recovered

one. Furthermore, there are three very tiny bright spots on the left side of the

original image, and one of them can still be visually recognized. These small details

are extremely hard to recover when measurement rate is low or noise level is high,

but might play a pivotal role for disease diagnosis.

These two tests numerically validate the convergence of extended algorithms to

handle complex signals and nonnegativity constraints, respectively, although further

investigation is required theoretically.

4.5 Discussions

TVAL3 scheme and its corresponding solver have been presented in detail and favor-

ably compared with other state-of-the-art solvers. Its efficiency and robustness have

been sufficiently substantiated by above experiments. Furthermore, TVAL3 scheme

has exhibited its better denoising effects while reconstructing the measured data.

Since the implementation of TVAL3 is considerably flexible, it can be used employing

fast transforms, can solve many variants of the TV model, and even can reconstruct

complex signals encoded by complex measurements. Due to its merits in efficiency,

robustness, and denoising effects, TVAL3 is competent for the single pixel camera and
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other related devices as the core reconstruction solver. Besides, TVAL3 is capable of

medical image processing and other related compressive sensing applications.

How to choose optimal parameters without knowing the true solution and noise

level has always been a big issue for almost every TV or ℓ1 solvers. Fortunately,

TVAL3 is not very sensitive to the fluctuation of parameters, which somehow reduces

the difficulty to manipulate this solver for engineers and researchers. Research on

this issue as well as the theoretical analysis of the algorithms is still in process.



Chapter 5

Future Work

The TVAL3 scheme has been stated in detail in Chapter 2. A large number of numer-

ical experiments reported in Chapter 4 have shown their corresponding algorithms

succeed in reconstructing images and surpassing other comparable algorithms in both

running time and quality of recovered images. However, the theoretical analysis on

convergence and convergence rate of the TVAL3 scheme has not yet been fully in-

vestigated. Thus, one of primary tasks in the next stage is to prove the convergence

and discover the convergence rate of this scheme. More precisely, Local Convergence

Theorem 1 indicates the convergence of Algorithm 3, as long as the convergence of the

alternating minimization scheme mentioned in Algorithm 2 can be proven. This pro-

posed work would complete the TVAL3 scheme and provide the theoretical guarantee

for further extensions.

In the course of studying the TVAL3 scheme, there are two other related topics

which have drawn my attention and might enrich my Ph.D. research. In particular,

one is if it is possible to extend the TVAL3 scheme to 3D or hyperspectral image

reconstruction; the other is how to develop a new algorithm solving the dual problem

of a TV model with the aid of the TVAL3 scheme. These two issues will be proposed

65



66

in detail in the next two sections.

5.1 Hyperspectral Imaging

Over the past decade, more and more researchers dedicate themselves to the investi-

gation of hyperspectral imaging. It has matured into one of the most powerful and

fastest growing technologies. For example, the development of hyperspectral sensors

and their corresponding software to analyze hyperspectral data has been regarded

as a critical breakthrough in the field of remote sensing. However, it is usually in-

tractable to collect and store hyperspectral data. I intend to explore if compressive

sensing algorithms such as the TVAL3 scheme could be extended to help increase the

efficiency of hyperspectral data collection and storage.

The basic concepts of hyperspectral imaging will be introduced in Section 5.1.1

and mathematical formulation will be derived in Section 5.1.2.

5.1.1 Basic Concepts

By exploiting the wavelength composition of electromagnetic radiation (EMR), hy-

perspectral imaging collects and processes data from across the electromagnetic spec-

trum. Hyperspectral sensors capture information as a series of “images”. Each image

represents a spectral band which is a range of the electromagnetic spectrum. These

images generated from different bands pile up and form a 3D hyperspectral cube for

processing and further analysis. If each image can be viewed as a long vector, the

hyperspectral cube will become a big matrix which is more easily accessible mathe-

matically. Each column of the matrix records the information from the same spectral

band and each row records the information at the same pixel. For much of the past

decade, hyperspectral imaging has been an active research topic and widely devel-
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oped. It has a lot of applications on industry, agriculture, and military, such as

mineral exploration, food inspection, camouflage detection, environmental monitor-

ing, pharmaceutical manufacturing, resource management, and so forth.

The fundamental property of hyperspectral imaging which researchers want to

obtain is spectral reflectance: the ratio of reflected energy to incident energy as a

function of wavelength [92]. Reflectance varies with wavelength for most materials.

These variations are evident and sometimes characteristic while comparing spectral

reflectance plots versus wavelength for different materials. Several libraries of re-

flectance spectra of natural and man-made materials are accessible for public use,

such as ASTER Spectral Library [96] and USGS Spectral Library [97]. These li-

braries provide a source of reference spectra helping the interpretation and analysis

of hyperspectral images.

However, it is highly possible that more than one material contributes to an indi-

vidual spectrum captured by the sensor, which leads to a composite or mixed spec-

trum. The mixed spectrum can be decomposed into several endmembers which are

defined as spectrally “pure” features, such as soil, vegetation, and so forth. In min-

eralogy, an endmember refers to a mineral at the extreme end of a mineral series in

terms of purity. For example, albite (NaAlSi3O8) and anorthite (CaAl2Si2O8) are two

endmembers in the plagioclase series of minerals.

If the endmember spectra are available beforehand, we can mathematically de-

compose each pixel’s spectrum of a hyperspectral image to identify the relative abun-

dance of each endmember component. This process is call “unmixing”. However, the

challenge is how to identify a set of spectral endmembers that correspond to actual

physical components. It becomes even harder to identify without the aid of prior in-

formation. Unmixing the hyperspectral image without aware of endmember spectral

and even the number of endmembers is called ”blind unmixing”. Linear unmixing is
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a simple spectral matching approach, whose underlying premise is that a relatively

small number of common endmembers are involved in a scene, and most spectral

variability in this scene can be attributed to spatial mixing of these endmember com-

ponents in distinct proportions.

Since the enormous volume of hyperspectral data, it is always hard to process

and analyze in real time. Each image corresponding to some spectral band of hy-

perspectral data is compressible and is able to be reconstructed from a relatively

small amount of measurements. In fact, the concept of the single pixel camera can

be extended to the acquisition of compressed hyperspectral data. A straightforward

way can be described as follows: collect the compressed hyperspectral data; recover

the hyperspectral cube from the compressed data by compressive sensing techniques;

detect endmembers by unmixing algorithms. However, due to the massive amount

of data included in hyperspectral cube, it is usually too costly to recover the entire

cube. Besides, the cube becomes unnecessary once we have successfully detected

endmembers. Can we decide endmembers directly form the compressed data without

recovering the hyperspectral cube? Can we do it in an efficient manner? Can we uti-

lize the spectral information to further compress the data? All these open questions

are challenging and require long-term research. First, the problem is formulated in

optimization in the next section.

5.1.2 Initial Formulation

Suppose that X ∈ R
np×nb is a unknown matrix representing np-pixel by nb-band,

hyperspectral image cube, F ∈ R
m×nb represents the observation data, A ∈ R

m×np is

a measurement matrix with m < np, and Ω ∈ R
m×nb is random noise. Then they are
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combined by the following data acquisition model:

F = AX + Ω.

To proceed blind unmixing, it is necessary to assume that the image cube X has

a low-dimensional representation

X = HW, H, W ≥ 0, H1 = 1,
where H ∈ R

np×ne

+ , W ∈ R
ne×nb

+ , and 1 is the vector of all ones. Here ne is an estimated

number of endmembers that should be far less than both np and nb. Each row of

W represents an endmember spectrum, and each row of H consists of abundance

coefficients for a pixel.

According to the theory of compressive sensing, H and W might be recovered

from the following optimization model:

min
H,W

Rhw(HW ) + Rh(H) + Rw(W ) + 1
2
‖AHW − F‖2

F (5.1)

s.t. H, W ≥ 0, H1 = 1,
where Rhw(·) is a joint regularization function for the product HW , Rh(·) and Rw(·)

are individual regularization functions for H and W , respectively.

How to appropriately choose three regularization functions might be as essential as

designing the algorithm. Opportune regularization functions can not only guarantee

the good recoverability, but also help discover an efficient algorithm. Proposing the

following regularization functions in a TV manner may be appropriate and worthy to
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further investigate:

Rhw(HW ) = αhw

∑

j∈J⊂{1,2,...,nb}

TV(HWej)

Rh(H) = αh

ne
∑

j=1

TV(Hej)

Rw(W ) = αw

ne
∑

j=1

‖ΨwW T ej‖1

where Ψw ∈ R
nb×nb is an appropriate sparsifying basis, and α’s are nonnegative

balancing parameters. More precisely, one way to sparsify W is to introduce the

second-order total variation in 1D

TV2(u) =
n
∑

i=1

|∆2
i u|,

where ∆2
i u = ui+2 − 2ui+1 + ui is the second-order derivative approximation of u at

ith position for u ∈ R
n. Then we can define

Rw(W ) = αw

ne
∑

j=1

TV2(W
T ej).

Since the minimization problem (5.1) is bi-convex, it is amenable to alternating

minimization, i.e., minimizing with respect to W while fixing H and vice versa. The

two subproblems are

min
H

Rhw(HW ) + Rh(H) +
µ

2
‖AHW − F‖2

F s.t. H ≥ 0, H1 = 1, (5.2)

min
W

Rhw(HW ) + Rw(W ) +
µ

2
‖AHW − F‖2

F s.t. W ≥ 0. (5.3)
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It appears that the two subproblems are both convex but not further separable

in terms of their rows or columns. In general, np ≫ nb and H ∈ R
np×ne

+ is the larger

variable, consisting of ne images of np pixels. An algorithm which can efficiently solve

this problem requires further study.

Successfully solving this problem could not only make a big process in hyperspec-

tral imaging, but also inspire the innovation in the other 3D data processing.

5.1.3 Parallel Algorithms and Implementations on High Per-

formance Computers

In recent years, because of the advances in sensor technology, hyperspectral imaging

has been further developed and is able to collect hundreds of images corresponding

to different wavelength channels. With the aid of such detailed spectral information,

the ability in detection and identification of materials will be significantly improved.

However, the massive amount of data prohibits efficient storage and even other oper-

ations. For example, compared to the regular image reconstruction, the complexity

of each operation on hyperspectral data increases by nb times, where nb represents

the number of channels as mentioned before. Suppose that data is collected under

180 different channels and the unmixing algorithm is as efficient as the reconstruction

algorithm such as TVAL3. Then it may take half an hour to unmix a hyperspectral

image while taking only 10 seconds to reconstruct a regular image with the same

resolution. The storage of these massive data would be another issue.

Parallel computing refers to the simultaneous use of multiple compute resources to

solve a computational problem. It requires a single computer with multiple processors

or multiple computers connected by a network. Specifically, a computational problem

is divided into discrete parts and each part is further broken down to a series of
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instructions which from each part can execute simultaneously on different processors

or computers. Implementation of parallel computing would shorten the running time

significantly.

Since the massive amount of data is involved in the minimization problem (5.1),

it provides the potential to develop a parallel unmixing algorithm. Before that, the

subproblems (5.2) and (5.3) need to be investigated and solved in an efficient way

in order to propose a serial unmixing algorithm. The way of implementing parallel

computing correlates to the structure of the serial algorithm. Some existing paral-

lelizing techniques (see [93], for example) also improve opportunities for exploiting

high-performance parallel algorithms.

The Research Computing Support Group (RCSG) at Rice University provides

shared computing services including Ada, SUG@R, and STIC. Taking advantages of

the RCSG resources would greatly help the design and test of parallel algorithms,

which will be an important subject in my future research.

5.2 Exploration on Dual Method

To study the dual problem of a TV model, let us first restate the TV model (2.1) for

compressive sensing in the complex domain:

min
u

∑

i

‖Diu‖p, s.t. Au = b, (5.4)

where p ∈ R, p ≥ 1, u ∈ Cn or u ∈ Cs×t with s · t = n, and A ∈ Cm×n.

The dual problem of this TV model will be derived in Section 5.2.1 and the initial

method to the dual problem will be suggested in Section 5.2.2.
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5.2.1 Derivation of Dual Problem

Suppose that q ∈ R+ satisfies

1

p
+

1

q
= 1.

According to the Hölder’s Inequality,

||x||p = max
||y||q≤1

| < y, x > |, (5.5)

where x, y ∈ CN .

As we all known, for any x, y ∈ CN ,

| < y, x > | ≥ Re(< y, x >).

where Re represents the real part operator. Thus,

||x||p = max
||y||q≤1

| < y, x > | ≥ max
||y||q≤1

Re(< y, x >). (5.6)

The maximizer of (5.5) ỹ will be achieved while ỹk = cxk|xk|p−2. Choose constant c

such that ||ỹ||q = 1. Under these circumstances,

||x||p =< ỹ, x >= Re(< ỹ, x >). (5.7)

In the light of (5.6) and (5.7),

||x||p = max
||y||q≤1

Re(< y, x >).
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Based on the above fact,

n
∑

i=1

||Diu||p =

n
∑

i=1

max
||vi||q≤1

Re(< vi, Diu >)

= max
||vi||q≤1

n
∑

i=1

Re(< vi, Diu >)

= max
||vi||q≤1

n
∑

i=1

Re(< D∗
i vi, u >).

As a matter of fact, Re(< D∗
i vi, u >) is bilinear for any i, which leads to,

max
||vi||q≤1

n
∑

i=1

Re(< D∗
i vi, u >) = max

||vi||q≤1
Re(

n
∑

i=1

< D∗
i vi, u >)

= max
||vi||q≤1

Re(<

n
∑

i=1

D∗
i vi, u >).

Therefore,

min
Au=f

n
∑

i=1

||Diu||p ⇐⇒ min
Au=f

max
||vi||q≤1

Re(<

n
∑

i=1

D∗
i vi, u >). (5.8)

In 1958, Sion generalized distinguished John Von Neumann’s minimax theorem

[87] in the theory of simultaneous games as following:

Theorem 4 (Sion’s Minimax Theorem [88]). Let X be a compact convex subset of a

linear topological space and Y a convex subset of a linear topological space. If f is a

real-valued function on X × Y with the property that f(x, ·) is upper semicontinuous

and quasiconcave on Y , ∀x ∈ X, and f(·, y) is lower semicontinuous and quasi-convex

on X, ∀y ∈ Y , then,

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y).
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Proof. See [88, 89, 90, 91] for different proofs.

A straightforward analysis indicates that

• {u : Au = f} is convex,

• {v = {v1, v2, . . . , vn} : ||vi||q ≤ 1 ∀1 ≤ i ≤ n} is compact convex,

• and f(v, u) = Re(<
∑n

i=1 D∗
i vi, u >) is bilinear.

These three facts suggest that the Sion’s minimax theorem can be used to exchange

min and max of (5.8); i.e.,

min
Au=f

n
∑

i=1

||Diu||p ⇐⇒ min
Au=f

max
||vi||q≤1

Re(<

n
∑

i=1

D∗
i vi, u >)

⇐⇒ max
||vi||q≤1

min
Au=f

Re(<
n
∑

i=1

D∗
i vi, u >).

For the inner minimization, if there exists z ∈ Cm, s.t.

A∗z =

n
∑

i=1

D∗
i vi,

then

min
Au=f

Re(<

n
∑

i=1

D∗
i vi, u >) = min

Au=f
Re(< A∗z, u >)

= min
Au=f

Re(< z, Au >)

= Re(< z, f >).

Otherwise,

min
Au=f

Re(<

n
∑

i=1

D∗
i vi, u >) = −∞.
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Therefore, the dual problem of the TV model is

max
vi,z

Re(< z, f >), s.t. ‖vi‖q ≤ 1 and A∗z =

n
∑

i=1

D∗
i vi. (5.9)

Furthermore, the whole derivation is still correct if Dis for all i are some general

linear operators in Cr×n. The conclusion on the dual problem can be easily extended

to the model with general linear operators, without modifying anything.

Since the primal problem (5.4) is convex and there always exists at least one

strictly feasible point for (5.4), the optimal duality gap between the primal problem

(5.4) and the dual problem (5.9) is zero, i.e., the strong duality holds.

5.2.2 Methodology on Dual Problem

Restricted to the real domain, the dual problem (5.9) can be rewritten as

min
vi,z

−fT z, s.t. ‖vi‖q ≤ 1 and AT z =
∑

i

DT
i vi. (5.10)

The augmented Lagrangian method has been well studied in Section 2.1. This

method requires minimizing the corresponding augmented Lagrangian function at

each iteration. Therefore, the associated subproblem of solving (5.10) by the aug-

mented Lagrangian method is

min
vi,z

LD(vi, z) , −fT z − ωT (AT z −
∑

i

DT
i vi)

+
γ

2
‖AT z −

∑

i

DT
i vi‖2

2, s.t. ‖vi‖q ≤ 1. (5.11)

If this subproblem can be solved efficiently, it is highly likely to render a new creditable

algorithm for the dual problem (5.10).
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Mirroring the TVAL3 scheme, we can try to apply the alternating direction

method to (5.11). That means two subproblems need to be settled alternately:

min
z

LD(vi, z),

and

min
vi

LD(vi, z), s.t. ‖vi‖q ≤ 1.

After simplification, they respectively correspond to

min
z

−(f + Aω)Tz +
γ

2
‖AT z −

∑

i

DT
i vi‖2

2, (5.12)

and

min
vi

∑

i

(Diω)Tvi +
γ

2
‖AT z −

∑

i

DT
i vi‖2

2, s.t. ‖vi‖q ≤ 1, (5.13)

For (5.12), the one-step steepest descent scheme proposed in Section 2.3.2 should

work to obtain a roughly approximate minimizer. However, further investigation is

needful in the future to solve (5.13) exactly or approximately.

In fact, it is likely to incorporate other methods or algorithms to settle (5.11) or

even (5.10) properly, which also demand further research in times to come.
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