
The Journal of Systems and Software 82 (2009) 1642–1656
Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/locate / jss
Tactics based approach for integrating non-functional requirements
in object-oriented analysis and design q

Tegegne Marew a,*, Joon-Sang Lee b, Doo-Hwan Bae a

a CS Division KAIST College of Information Science and Technology Daejon 305-701 Republic of Korea
b Information Technology Laboratory, LG Electronics Advanced Research Institute, Seoul 137-130, Korea

a r t i c l e i n f o
Article history:
Available online 28 March 2009

Keywords:
NFRs analysis and design
Software design
NFR framework
Aspect oriented software design
0164-1212/$ - see front matter � 2009 Elsevier Inc. A
doi:10.1016/j.jss.2009.03.032

q This research was supported by the Ministry of Info
(MIC), Korea, under the Information Technology Res
program supervised by the Institute of Information Te
(IITA-2008-(C1090-0801-0032)).

* Corresponding author.
E-mail addresses: tegegnem@se.kaist.ac.kr, tegegn

lovelee@lge.com (J.-S. Lee), bae@se.kaist.ac.kr (D.-H. B
a b s t r a c t

Non-Functional Requirements (NFRs) are rarely treated as ‘‘first-class” elements in software development
as Functional Requirements (FRs) are. Often NFRs are stated informally and incorporated in the final soft-
ware as an after-thought. We leverage existing research work for the treatment of NFRs to propose an
approach that enables to systematically analyze and design NFRs in parallel with FRs. Our approach pre-
mises on the importance of focusing on tactics (the specific mechanisms used to fulfill NFRs) as opposed
to focusing on NFRs themselves. The advantages of our approach include filling the gap between NFRs
elicitation and NFRs implementation, systematically treating NFRs through grouping of tactics so that
tactics in the same group can be addressed uniformly, remedying some shortcomings in existing work
(by prioritizing NFRs and analyzing tradeoff among NFRs), and integration of FRs and NFRs by treating
them as first-class entities.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The analysis and design of Functional Requirements (FRs) has
received much attention since the early days of software engineer-
ing. Not to mention various analysis/design methods, a number of
approaches including waterfall (Ghezi et al., 1991), iterative (Spen-
cer and Bittner, 2006), and Rational Unified Process (Jacobson et al.,
1999) have been proposed for capturing those functional require-
ments. In addition, modeling languages such as Unified Modeling
Language (UML) (Booch et al., 1999) make it easier, by providing
a common vocabulary for every stakeholder, to capture, analyze,
and document FRs (among other advantages). Therefore, software
developers often dwell on eliciting, analyzing, designing, imple-
menting, testing, and maintaining FRs when they are working on
software projects.

On the other hand, Non-Functional Requirements (NFRs) such
as performance, security, and usability often are incorporated, if
they are ever included, into the final phase of software develop-
ment as an after-thought. Still, complex and expensive software
have failed miserably because of improper management of NFRs.
ll rights reserved.

rmation and Communication
earch Center (ITRC) support

chnology Advancement (IITA)

em@gmail.com (T. Marew),
ae).
However small, a number of approaches have been proposed for
capturing and analyzing NFRs.

We believe there is room for improvement for handling NFRs.
Of the shortcomings of the various approaches, the common one
is the failure to fully incorporate NFRs into every phase of the soft-
ware life cycle and addressing them systematically. Our belief is
that there is enough research regarding systematic methods for
NFRs elicitation and NFRs implementation. What we need is an ap-
proach that eases the burden in NFRs analysis and design. In addi-
tion, such approach must address all NFRs. Admittedly, some of the
approaches actually help in the analysis and design of specific sub-
set of NFRs. Unfortunately, it is difficult if not impossible to employ
such approaches (as attested sometimes by the developers of those
approaches themselves) for some very important NFRs. For in-
stance, approaches that use AOSD (http://www.aosd.net/) hardly
are appropriate for NFRs that affect some part or the whole of
the software architecture. On the other hand, architecture-centric
approaches rarely are suitable for NFRs that deal with single clas-
ses/components. Therefore, we need an approach that attempts to
cover all the different types/kinds of NFRs.

On top of integrating NFRs into every phase of the software life
cycle, any approach that deals with NFRs has to be concerned with
tradeoff analysis among NFRs to handle competing requirements.
Management of NFRs is complicated because the approaches used
to realized some NFR may have a positive or negative impact on
another NFR. Often tradeoff analysis involves the systematic treat-
ment of interdependency among NFRs.

http://www.aosd.net/
mailto:tegegnem@se.kaist.ac.kr
mailto:tegegnem@gmail.com
mailto:lovelee@lge.com
mailto:bae@se.kaist.ac.kr
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss

Fig. 1. Example of classpect code.

T. Marew et al. / The Journal of Systems and Software 82 (2009) 1642–1656 1643
One factor that can be used to facilitate the analysis of NFRs’
interdependency is prioritization. Prioritization refers to the rela-
tive importance the user puts on the different NFRs. For instance,
in an Automated Teller Machine (ATM) application users often
put much more emphasis on confidentiality than usability. Such
prioritization is useful for negotiating during conflicts. Existing ap-
proaches either do not address prioritization at all or do not use the
prioritization result effectively. Therefore, we need an approach
that elicits users’ preference among NFRs and use such information
extensively during conflict resolutions among NFRs.

The existing approaches readily recognize the effect of interde-
pendencies among NFRs by providing a number of qualitative
methods to calibrate these interdependencies. Such methods are
can be made more effective by incorporating prioritization infor-
mation (even though they identify critical NFRs (more discussion
is given in Section 8)) and quantitatively capturing interdependen-
cies so that more freedom is given to the developer in capturing
range of interdependencies. We believe a better approach, qualita-
tive as well as quantitative, can be developed to understand these
interdependencies and used to resolve conflicts among them.

To sum up, our research objective is to develop an approach for
systematic incorporation of NFRs into the analysis and design
phases of the software life cycle (that readily concentrates only
on FRs) while settling any conflict among NFRs through tradeoff
analysis.

The rest of this paper is organized as follows. In Section 2, we
briefly discuss the research works that lay the ground work for
our research. The following section, Section 3, presents our tactics’
types classification scheme that is used throughout this paper. Sec-
tion 4 explains in detail our proposed approach for integrating
NFRs in object-oriented analysis and design. Subsequently, in Sec-
tion 5, we discuss our approach for managing interdependencies
among NFRs and resolving any conflict that may result from such
interdependencies. In Sections 8 and 6, we discuss related research
works and present case study, respectively. Finally, Section 9 sum-
marizes our research and briefly sketches the future direction.

2. Background

The concepts in this paper closely depend on ideas contained in
two works which we discuss in this section. One is the NFR Frame-
work (Mylopoulos et al., 1992; Chung and Nixon, 1995; Chung
et al., 2000) that helps us capture the NFRs of a given system.
The other is classpects (Rajan and Sulllivan, 2005) which tries to
combine the concept of class with the concept of aspect.

The NFR Framework is a qualitative approach for eliciting and
analyzing NFRs. It treats NFRs as softgoals that need to be satisficed
instead of satisfied. A goal is satisficeable if an expert after refining
the goal into the subgoals deem the subgoals satisfactorily achieve
the goal (Mylopoulos et al., 1992; Chung and Nixon, 1995; Chung
et al., 2000). Originally used in Artificial Intelligence by Nilsson
(1971), a satisficeable goal refers to solvable problem as opposed
to a deniable goal that refers to unsolvable problem.

SIG, Softgoal Interdependency Graph, plays a central role in
viewing and analyzing NFRs. In this paper, we utilize the fact that
the NFR Framework decomposes NFR along both the topic, what
kind of NFR it is, and the parameter, the entity in the system the
NFR is applied to. The AND/OR decomposition of NFRs suggested
by the NFR Framework also is used to capture NFRs as classpects.

One of the important features of the NFR Framework is the
management of the interdependencies between different NFRs.
The dependencies can be one of make, hurt, break, help, and unde-
termined. The Framework also has guidelines on how to combine
these different contributions.

The other research work we use in our work is the notion of
classpects (Rajan and Sulllivan, 2005) for leveraging the advanta-
ges of both class and aspects. Classpects can behave like traditional
classes to be used as a blueprint for objects in OOSD. Moreover,
classpects can exhibit behavior of aspects by capturing cross-cut-
ting concerns and by possessing the required syntax and semantics
for advising and/or be advised by other classpects. We employ
classpects because it significantly improves the compositionality
of aspect modules, expanding the program design space from the
two-layered model of AspectJ-like languages (AspectJ) to include
hierarchical structures. By allowing the joinpoints of aspects to
be named in the method-join point binds, aspects not only can
advise base classes but other aspects. From the example in Fig. 1,
we can see the joinpoint, ExceptionHandler, is named. Therefore,
if another classpect wants to advice this joinpoint, there is no
problem of identifying ExceptionHandler.

3. NFRs tactics types classification

Often, a research about NFRs focuses on either a single NFR
(e.g. performance) or a subset of NFRs (for instance, ATAM (Cle-
ments et al., 2002) on NFRs that require architectural transfor-
mations and AOP on NFRs that introduce new cross-cutting
functionality). Our belief is we can solve this problem by focusing
on the tactics that are used to realize an NFR instead of the NFR it-
self. Tactics (borrowed from ADD (Bachmann et al., 2005)), also
known as operationalization in NFR Framework (Mylopoulos
et al., 1992) and architectural tactics in ATAM (Clements et al.,
2002), can be defined as any approach (programmatic, architec-
tural design, process, etc.) used by a software developer to fulfill
an NFR.

Fig. 2 depicts the primary focuses of users and software devel-
opers with respect to NFRs. Users often deal with the vague notions
of widely known qualities such as security, maintainability, etc. On
the other hand, developers, regarding NFRs, spend significant por-
tion of their time answering how to fulfill those NFRs and the rela-
tionship among them.

Our investigation of the different tactics used for various NFRs
(over 100 for security, accuracy, performance, maintainability,
etc.) has resulted in the following two smilingly obvious observa-
tions are

� The tactics require quite varied approaches to implement them.
For instance, authentication (for security) may need new opera-
tions while cohesion improvement (for maintenance) requires
redesign (architectural transformation).

� The tactics can be grouped into categories that facilitate uniform
treatment of members of each category. For instance, both
authentication (for security) and exception handling (for reli-
ability) can be implemented by introducing additional opera-
tions on the classes/components that need security or reliability.

These observations led us to NFR tactics’ grouping that can be
shown in Fig. 3 and is discussed below.

Since our objective is to integrate NFR analysis and design into
existing Object-Oriented Software Development (OOSD) phases,
we started by categorizing tactics into Tactics that Affect Analysis

Security

Perfromance

Avaialblity

Encryption

Indexed
Database

Improve
Cohesion

Back up
Server

..

USER's
PRIMARY VIEW

DEVELOPER's
PRIMARY VIEW

Fig. 2. The different primary focuses of users and developers.

Addition of
New

Operations/
Attributes

Addition of
New

Classes

Resturcturing

Using
specific

Algorithm
or ADT

Introducing New
Behaivoral Elements

gnitsix
E

gniyfido
M

stne
mel

Elaroivahe
B

Shade (outer circle):
Tactics that Affect

Design Model

White (inner circle):
Tactics that Affect

Analysis Model

gnitsix
E

gniyfido
M

stne
mel

Elaroivahe
B

Introducing New
Behavioral Elements

Fig. 3. Classification of fundamental tactics’ types of NFRs.

1644 T. Marew et al. / The Journal of Systems and Software 82 (2009) 1642–1656
Model (AT) and Tactics that Affect Design Model (DT). Such classi-
fication is the result of two important observations. First, some tac-
tics need only the information available in the analysis model
while some need more information that is added/refined in the de-
sign phase and is available in the design model. Second, augment-
ing the analysis model by including the effect of tactics in the
category AT results in analysis model that is rich with information
not only from FRs but NFRs and thus provides the addition/refine-
ment that takes place during design phase with a more realistic
model of the software the user required.

Among ATs, we have the tactics that are grouped under tactics’
types for Addition of Operations/Attributes, Addition of New Clas-
ses, Restructuring, and Using Specific Algorithm or ADT. To see why
this classification is needed, we have to remember that the classi-
fication is based on the difference in implementation techniques.

For the tactics that introduce new functionality we can use as-
pects or just add the operations in existing classes. A good example
of such tactic is ‘‘log in” for authenticating users. We normally use
aspects or just add a new operation. On the other hand, usability
NFR often requires stand alone classes that are used during the ini-
tialization and the closing of the system. For such NFR, the tactic
used introduces new classes for the system.

The tactics in Restructuring refers to those tactics that require a
specific order of operations, deletions of operations, etc. For in-
stance, the tactic ‘‘first-order” improves performance by requiring
components to execute their operations in the order where the
critical (time consuming) tasks are started the earliest. This tactic
does not introduce its own operations rather requires rearrange-
ment of existing operations of a component. On the other hand,
the tactics that Using Specific Algorithm or ADT require a certain
component or groups of components to be developed for imple-
menting a specific algorithm or ADT. The performance and reliabil-
ity communities have a variety of algorithms for improving those
NFRs. These tactics require the developer to use such algorithms
in the development of the classes.

Among the DT, we have tactics that Introducing New Behavioral
Elements and Modifing Existing Behavioral Elements. This classifi-
cation is based on the observation that some tactics extend behav-
ior of the system to satisfy an NFR while the rest modify the
behavior of the functional model of the system. These tactics often
work hand in hand with the structural model in achieving their
goals.

One important needed to be made about this classification is
that it is basic/fundamental tactics’ types classification. Therefore,
a typical tactic can have aspects/behaviors that encompass one or
more of that tactics’ types described. As a result, we can have tac-
tics that have characteristics of one or more of the groups in the
tactics’ types classification outlined above.

What we mean by fundamental is that we believe higher level
(thus, more non-trivial tactics) can be decomposed into tactics that
fall into the Classification. For instance, one tactic for improving
maintainability is ‘‘anticipate changes”. A closer look at this tactic
reveals that, we have to decompose it further based on the context
of a particular system we are going to develop. For instance, we
may try to use Generic Data Types or Templates (from program-
ming view) in our implementation of the system so that the system
can accommodate further changes. This would fall into ‘‘Modifying
Existing Design Elements” data structure. We may also want to in-
clude specific algorithms that may not be necessary right now but
may be useful in the future (which means we have a tactic in the
group) ‘‘specific algorithm or ADT”. Furthermore, we may need to
add additional features for the software that may not be useful
right now but we expect that will be important as the software
evolves. That can be grouped under ‘‘Add new behavioral ele-
ments”. Therefore, a higher level tactic such as ‘‘anticipate
changes” can be decomposed further to other tactics that fall into
the Classification.
4. Tactic-based NFRs modeling

4.1. Overview

Our research can schematically be depicted as shown in Fig. 4.
The diagram begins with the requirements elicitation and finishes
with the implementation by going through the phases prescribed
by an object-oriented approach. We augmented this process by
introducing phases that are relevant for NFRs modeling in the anal-
ysis and design phases. As can be seen from Fig. 4, the left branch
after the requirements classification consists of phases widely
known for capturing FRs. In the right branch we have the NFRs
modelling phases which are later combined with the FRs modelling
phases.

We can have a bird’s-eye view of the process by quickly going
through the steps. Requirements Elicitation, Requirement Classifi-
cation, and Use Case Modelling and Analysis are standard OOAD
phases that result in the analysis model. It is here we start to intro-
duce new phases for NFRs modeling, Tactic Classification. We first
need to design the Softgoals Interdependencies Graph (SIG) based
on the NFR Framework (Mylopoulos et al., 1992; Chung and Nixon,
1995; Chung et al., 2000) and classify the tactics that realize the
NFRs according to the classification scheme in Section 3.

Redesign

Design Model

Analysis
Model

Use Cases

Non-Functional
Requirements

Functional
Requirements

Requirement
Elicitation

Requirements

Requirement
Classification

Use Case
Modeling

Analysis

Analysis Tactics
Modelling

Design Tactics
Analysis Tactics

Tactics Classification

Design Tactics
Modelling

Analysis
Model with

Analysis
Tactics

Trade-off
Analysis

Design Model
with All NFRs

Trade-off
Analysis

Design

Implementaition

Legend
normal: existing approach or artifact

new:new approach or artifact
 : move to next step

: feedback loop

Fig. 4. Overall flow of tactic-based NFRs modeling.

Step 2: Synthesising Classpects from SIG

Step 3: Descovering Classes for the Classpects

Step 4: Integrating the Classes and the
Classapects

Step 1: Creating SIG

Fig. 5. Processes for analysis tactics modeling.

T. Marew et al. / The Journal of Systems and Software 82 (2009) 1642–1656 1645
Tactic Classification is followed by Analysis Tactics Modeling.
This phase accepts the analysis model of the analysis phase and
the analysis tactics of the tactics classification phase. In this
phase, the analysis tactics are modeled using classpects (Rajan
and Sulllivan, 2005), classes, new algorithms, etc after thorough
understanding of the analysis model. After AT Modelling, we have
Tradeoff Analysis. There are two tradeoff analysis phases in the
diagram: the first after the analysis tactics modeling phase and
the second after the design tactics modeling phase. During these
phases, the relationship among NFRs is analyzed. Sometimes the
tactic chosen to realize one NFR has adverse effect on another.
The analysis of theses phases may force us to go back to other
phases, Analysis Tactics Modelling or Design Tactics Modeling,
and redo the modeling. This is followed by the normal OOAD
phase of Design.

The Design phase is followed by Design Tactics Modeling which
uses the design model with the design tactics of the tactics classi-
fication to model those NFRs. As an output of this phase, we have
an integrated design model that satisfies both the NFRs and FRs. Fi-
nally, the Implementation phase realizes the system that incorpo-
rates both the FRs and NFRs of the user.

This overview presents how we approach NFR modelling in
OOAD. It is important to note that the overview is a process of pro-
cesses. Each process will be discussed in the coming sections
where we lay out the roles and responsibilities of the developer
and the activities he has to accomplish.
4.2. Analysis tactics modeling

4.2.1. Process for analysis tactics modeling
This is the first point of contact between FRs and NFRs. We have

the analysis model of FRs and the analysis tactics of NFRs. All the
different groups in this category (Addition of New Operations/
Attributes, Addition of New Classes, Restructuring, and Using of
Specic Algorithm or ADT) employ one or more of the processes de-
picted in Fig. 5 and discussed below.

Step 1: Creating SIG
The first step, creating SIG, is already discussed elsewhere NFR

Framework (Mylopoulos et al., 1992; Chung and Nixon, 1995;
Chung et al., 2000).

Step 2: Synthesizing classpects from SIG
At this stage, we use rules that are designed to transform a part

of the SIG to a set of classpects based on information in the SIG as
well as the class diagram of the analysis model. In the beginning,
the classpects are very much skeletal in that the actual classes they
advise and the advises they give are not completely discovered. To
fully specify the advises, we need to discover the classes that the
classpects are supposed to advise. We do that at Step 3 of the ap-
proach. Once we discover such classes we need to fill out the actual
advises the classpects give to those classes since the advises the
classpects give so far is skeletal as explained below.

Using the information from the SIG, we will discuss the rules for
synthesizing classpects from a SIG. We use the textual form of SIG
as suggested by Chung et al. (2000) to discuss the rules but the cor-
responding graphs can be seen in Fig. 6. In the textual form of a SIG,
X(Y) refers to a topic (which often is an NFR) is applied to a Y (a
parameter).

To save space we discuss only one of the rules in detail, Rule 1
(for a more detailed discussion, please refer to (Marew and Bae,
2006)).

If A1(B) AND A2(B) SATISFICE A(B)
We have a node A(B) refined along the topic into A1(B) and

A2(B). Normally, A1, A2, and A are NFRs and B is a class in the sys-
tem where A1 and A2 are decompositions/refinement of A. For in-
stance A can be security while A1 and A2 could be confidentiality
and integrity, respectively. Since A, A1 and A2 are NFRs, we model
them as classpects. Therefore, we create three classpects: A1, A2
and A to encapsulate the advises where A advises B while A1 and
A2 advise A. At first glance, it may seem A1 and A2 should advise
B. However, that would lose the information that A is refined into

A(B)

A(B1) A(B2)

A(B)

A1(B) A2(B)

A(B)

A(B1) A(B2)

A(B)

A1(B) A2(B)

Rule 1

Rule 2

Rule 3

Rule 4

Single arcs indicate "AND"
decompositon

Double arcs indicate "OR"
decompositon

Fig. 6. The different cases of SIG for whom the rules are created.

1646 T. Marew et al. / The Journal of Systems and Software 82 (2009) 1642–1656
A1 and A2. We can preserve the information if we ensure A1 and
A2 advise A instead of B. We can advise A even if itself is advising
B because the classpect has the dual properties of a class and an as-
pect. Similarly, if necessary, A1 and A2 themselves could be further
advised by other classpects.

The code we generate by following such rules have the follow-
ing characteristics:

� It is skeletal. The actual arguments of the methods and their
bodies are not yet filled. We just insert text messages based
on the tactics in the methods of the classpects. Actually how that
is implemented, obviously, depends on the class that is advised.

� It preserves the hierarchical structure of the SIG. Because each
rule respects the hierarchy, the resultant classpect structure
mirrors the SIG. This is useful for maintainability since it facili-
tates traceability between the SIG and the classpects.

We can see the application of such rules using Fig. 7 borrowed
from (Cysneiros and Leite, 2004). Here the white clouds represent
softgoals and the shaded clouds represent operationalization/tac-
tics. The decomposition of the root is via attributes. The skeletal
code of the corresponding classpects generated using the rules dis-
cussed above can be seen in Fig. 7. In the classpect SafetyRoomMal,
lines 2–4 describe the constructor which designates a Room class
(here we are not sure if there is a room class in the functional
requirement but we use it as the first approximation since Room
is used in all softgoals in the SIG as a parameter) as one of its
own attributes. This helps the classpects to access the attributes
of Room if there is a need to do so. In lines 5–7, we have the meth-
od that advises the class Room and in lines 8–10 we have the cross-
cut specifications describing which methods and when (before,
after, around) the advice occurs.

Even if we only show in Fig. 7, the classpects synthesized from
the root and the node safety [Room.Malfunction.OI], the same can be
Fig. 7. An example for ap
done for the other softgoal, safety [Room.Malfunction.Motion Detec-
tor]. The node ‘‘set room as occupied” will be recorded in the advice
method and later (as shown in the ‘‘Discovering Classes for Clas-
spects” step), the information in the corresponding functional
model element (class) is used to convert ‘‘set room as occupied”
into source code.

Step 3: Discovering classes for classpects
Once we synthesize the classpects for the NFRs identified in the

SIG, we need to find which classes in the functional requirements
the identified classpects apply to (advise). There are a number of
approaches achieving this objective. These include.

� For both NFRs and FRs elicitation, use the same vocabulary. Used
by Cysneiros and Leite (2004), this method ensures the parame-
ters of the NFRs in the SIG are also used in the FRs elicitation.
Unfortunately, this approach requires both FRs and NFRs analysts
to precisely know the objects they have identified early on. The
NFRs’ analyst should understand what the FRs analyst meant to
say by that term, syntactically and semantically, and see if that
is exactly what he (the NFRs analyst) also wants to model.

� Start with use cases and consider the classes that collaborate to
implement the use cases. Often a specific NFR can be seen as if it
applies to a particular use case(s) since use cases are used for
functional decomposition and the quality of each functionality
is captured by a specific NFR. For instance, if we have a use case
withdrawal, an FR, in an ATM system, we can easily see security,
an NFR, is a required quality. Once we identify the use case, we
can investigate the classes in the sequence diagram that imple-
ments the use case to see which class(es) the NFR should be
applied to.

� Use the requirements document. Usually, a specific NFR is men-
tioned along side with the entities it applies to. If those entities
are later decided to be realized as classes, then the classpect that
realizes the NFR can be applied to those classes.

Step 4: Integrating the classes and the classpects
At the final step, we have to integrate the classpects we synthe-

sized from the SIG in the step 2 and the classes we determined to
be advised by these classpects in the Step 3. In the SIG, the leaves of
the tree structure are operationalizations/tactics. These are cap-
tured in the body of the methods of the classpects as we saw Step
2. However, the information required to realize these methods is
not completely available in the classpects. Such information (being
functional requirement related) is available in the class diagrams.

Now using the information from the class diagram we fill out
the skeletal code. When we fill out the code we have to realize
one important difference between the information contained in
the SIG and UML diagrams. In UML diagrams, we don’t have imple-
plication of the rules.

Select the Part of the System Affected by the
Tactic

Choose and Analyze Critical Design Element

Negotiate

Creating SIG

Calculate Redesign
Costs

Fig. 8. Process for design tactics modeling.

T. Marew et al. / The Journal of Systems and Software 82 (2009) 1642–1656 1647
mentation details. Yet, in the SIG, operationalization nodes capture
implementation details. Since NFRs are quite general and their
realization is quite independent of the particular application we
are developing, it is possible to incorporate the information at
the SIG (now in the classpects) to the functional design documents.
If that is not desirable, the implementor can fill out the skeletal
classpects himself/herself.

4.2.2. Application of analysis tactics modeling on the various analysis
tactics

Tactics in the group ‘‘Addition of operations/attributes”
These tactics are very common among some NFRs such as in

security that the IEEE ISO 9126 (ISO/IEC, 2001) groups as function-
ality. All the different steps of Section 4.2.1 are needed to model
these tactics.

Tactics in the group ‘‘Addition of new classes” Such tactics
could be handled just as if they were FRs. They need new classes
to satisfy the corresponding NFRs. We create the class with the re-
quired behavior. Even if we use classpects for both as aspects and
classes, there is an important difference between these kinds of
classpects and the ones created by tactics in the previous section:
these classpects do not advise any other classpect. Thus, they act as
classes in traditional object-oriented analysis and design.

Tactics in the group ‘‘Restructuring”
These tactics require steps 1, 3 and 4 of Section 4.2.1 so that

once the developer understands which class the tactic needs to
be applied to, he remodels the class according to the tactic. Struc-
tural rearrangement of operations is often enough without adding
additional code.

Tactics in the group ‘‘Using a specific algorithm or ADT”
Again we need steps 1, 3 and 4 of Section 4.2.1. The difference

being now the class we discover in step 3 is remodelled according
to a specific algorithm or use a new ADT. For instance, if we decide
to use indexing for our database so that performance is improved,
the class/es that deal with the database may need to employ a spe-
cific data structure, say binary tree, for facilitating such operations.
In such event, the class/es need to include all the operations and
attributes for managing binary trees.

Among the four groups of tactics we discussed, the first one is
the most common whereas the others are not even addressed by
other approaches because they are less common. For example, in
most of AOP based approaches such as (Xu et al., 2006), the other
three categories are hard or even impossible to implement.

4.3. Design tactics modeling

We use the artifacts of the design phase to model the design
tactics. This phase produces a model that not only satisfies all
FRs but all NFRs.

We handle the tactics in this category with what Bachmann
et al. (2005) calls an intuitive approach. The tactics impose design
changes on a large section of the system in heterogenous fashion.
Therefore, the manner developers manage those tactics is very tac-
tic specific. Still, they have the following general properties:

� They do not often affect the entire system; at least, there are
subsystems or specific services where those NFRs are signifi-
cantly important. For example, performance is more important
for services that produce what the user wants. Another example
is security which is only important in services that need to be
confidential.

� Even in the part of the system affected by the tactic, only a small
portion of that part is critical. Critical refers to the part of the
system that either achieves most of the objectives of the tactic
or the part that has a significant positive or negative impact
on other NFRs. For instance, if we decide to improve reliability
by introducing back-up system, often we need to introduce a
lot of redundancies all over the system. However, the critical
part would be the servers that handle the processing.

� Often we can negotiate without resorting tradeoff between two
NFRs. For example, if we choose to use 128 bit encryption for
improving security, this may have a strong penalty on perfor-
mance. However, if we change it to 64 bit encryption, the pen-
alty on performance might be acceptable.

Based on these properties, we follow the following steps to real-
ize design tactics. (The approach is depicted in Fig. 8.) There are
two paths: the first one (the left) is for the tactics that introduce
new behavioral elements and the other is for tactics that modify
existing behavioral elements. The steps are designed to address
the following problems.

� For analysis tactics, the specific part of the system the tactic is
applied to is easily available from the parameter part in the
SIG. For instance, when a ‘‘encryption” is the operationaliza-
tion/tactic of the node encryption [Account], we can deduce that
encryption is applied to an Account parameter which most prob-
ably is modelled as a class. On the other hand, if we have
‘‘reduce coupling” as a tactic for maintainability [system], we
have to find out which part/s of the system has high coupling
and reduce its/theirs coupling.

� Since design tactics often have a wide reaching effect compared
to analysis tactics, the introduction of a given tactic often has a
serious positive/negative impact on other NFRs. To facilitate the
analysis of such effect, we need to find out which part of the sys-
tem that is affected by the tactic has an impact on other parts of
the system.

For each tactic

� Step 1: Based on the SIG and the design model, find the part of
the system that is affected by this tactic. We can either use
NFR-specific theory to predict the effect of the tactic and thus
find the parts of the system affected by the tactic or use an
expert’s opinion to find out which part of the system is affected
by the tactic. For instance, if it is an ‘‘authentication” tactic, the
part of the system affected is the ‘‘log-in” sequence diagram.
This is determined by mainly the expert’s opinion or by applying
an NFR-specific theory. To see an example of using an NFR-spe-
cific theory let us find out what part of the system is affected
when a sensor is modified using abstraction (borrowed from

recieve data
from sensor

correct for
environmental

factors

alert the rest of
the system

identify
differences from

past readings

Fig. 9. Finding out the part of the system affected by the tactic.

1648 T. Marew et al. / The Journal of Systems and Software 82 (2009) 1642–1656
(Bachmann et al., 2005)). The different parts of the system
needed for this discussion are depicted in Fig. 9. The NFR we
are trying to improve is maintainability (reduce the amount of
time that takes to make further modification on the system)
and the tactic is ‘‘abstraction”. Here the problem is the ‘‘receive
data from sensor” subsystem will be affected when the sensor is
modified and that modification will ripple to the other parts of
the system. By applying Impact Analysis Theory (Bachmann
et al., 2004) (an example of NFR-specific theory), we find the
part of the system that are affected when ‘‘abstraction” is
applied (Fig. 9).

� Step 2: Choose a critical design element affected by the tactic.
This may be a portion of the system whose modification accord-
ing to the tactic brings a significant improvement on the NFR or
have a positive/negative impacts on other NFRs. For instance, for
a cryptography tactic the critical design element is the database.
Note that if this tactic has an impact on more than one NFR,
there may be more than one critical element for this tactic. To
identify the critical design element, one can
– Use an NFR-specific theory to assess the effect of applying the

tactic,
– Choose the element that can be considered to be heavily

affected by the tactic or
– Apply another NFR-specific theory (for another NFR) to find a

design element whose modification by this tactic affects the
other NFR.

In the previous sensor example, ‘‘receive data from sensor” sub-
system is critical because it has the highest cost of modification
(calculated according to Impact Analysis Theory) as depicted in
Fig. 10.
� Step 3. Calculate redesign costs: For any tactic, there is at least a

cost of introducing that tactic to the system. This might be add-
ing new classes, modifying an existing class according to a new
algorithm, etc. However, for those tactics that are grouped under
‘‘Modify existing elements”, there is the danger of the ripple
effect of such modification. For instance, in the on-going exam-
ple of ‘‘receive data from sensor”, the cost of introducing the tac-
tic costs 1 day and adjusting the rest of the system costs an
additional 0.8*1 + 0.8*0.2*1 + 0.8.0.2.0.2*1 or 1 day using Impact
Analysis Theory in (Bachmann et al., 2004). Thus, if we want to
employ this tactic, we should see if such redesign cost is
affordable.
0.8/1 days
1/1 days

0.2/1 days

recieve data
from sensor

correct for
environmental

factors

identi
differences

past read

Fig. 10. Finding the critical part
� Step 4. Negotiate: Try to negotiate the tactic and the NFRs on
which the tactic has a negative impact. For instance, instead of
using three levelled back-up system (to improve reliability as
expense of slow performance), we may settle for two levels. If
this fails use Q-SIG (Section 5), to decide if the tactic is good
from the entire system’s point of view.

5. Tradeoff analysis

After Analysis Tactics Modeling and Design Tactics Modeling,
often we have to analyze the tradeoff of the different tactics. This
may lead us to go back and remodel the NFRs. To facilitate the
tradeoff analysis we need to prioritize the NFRs according to the
user’s view of the system. Coupled with prioritization, we use Q-
SIG (Quantified SIG) to arbiter between different competing
requirements.

5.1. Prioritization

Most of the existing research regarding NFRs rarely consider the
relative importance users put on the various NFRs. Even if there are
various methods to rank entities of concern based on multiple cri-
teria, we choose to use Analytical Hierarchical Process (AHP) (Saaty
and Vargas, 1991; http://mat.gsia.cmu.edu/mstc/multiple/no-
de4.html) for prioritizing NFRs. AHP is simple (shallow learning
curve), can be automated, highly mature (have been used for
around 30 years), uses quantitative measure and has clear-cut
steps (Mead). The NFRs are often similar across projects eliminat-
ing the need to substantially modify the table or analysis done in
earlier projects. Besides, a number of researches in software engi-
neering have used it in a variety of contexts including prioritizing
NFRs (Karlson and Ryan, 1997; Zhu et al., 2005). Unfortunately,
those researches that used AHP for prioritizing NFRs have not gone
far enough to suggest a methodology/approach for analyzing and
designing NFRs.

We use a more simplified version of AHP where we only use
AHP to rank NFRs among themselves (called ‘‘criteria” in AHP ter-
minology). If we use the full AHP, we need ‘‘alternatives” that
would fulfill the various ‘‘criteria” to various degrees. In case of
NFRs, those alternatives could be different system designs that sat-
isfy the NFRs. That would require us to build different system de-
signs (use cases, class diagrams, sequence diagrams, etc.) for each
alternative design which is very impractical.

5.2. Q-SIG

In this section, we present our enhanced version of SIG, Q-SIG.
Q-SIG is a quantified version of SIG. Instead of assigning qualitative
descriptions like ‘‘denied”, ‘‘satisficed”, and ‘‘break”, we quantify
those subjective measurements. This enables us to denote contin-
uous shades of satisfaction and to further algebraically analyze
such descriptions to see the big picture. A typical Q-SIG is shown
in Fig. 11. The enhancements on a normal SIG are:
0.2/1 day

Cost of modification
=propagation propablity * time

req. to modify

In a/b, a is the probablity
of propagation and b is

the number of days req. to
modify

alert the rest of
the system

fy
 from
ings

with respect to the tactic.

http://mat.gsia.cmu.edu/mstc/multiple/node4.html
http://mat.gsia.cmu.edu/mstc/multiple/node4.html

System

Perfromance
Accuracy

Space Time CheckSum
RangeCheck

0.3 0.7

0.5 0.5
0.9 0.7

-0.9

-0.6

Single arcs denote "AND" decompostion
Double arcs denote "OR" decomposition

Dashed arrows indicate "negative" contribution

Fig. 11. Example of Q-SIG.

System

Perfromance
Security

Space Time Autenticiation Encryption

0.3 0.7

0.5 0.5
0.2 0.8

-0.6

With Encryption: 1*0.7+(1-0.6)*0.3=0.82
Without Encryption: 0.2*0.7+1*0.3=0.44

Fig. 13. Choosing between CheckSum and RangeCheck for realizing accuracy.

T. Marew et al. / The Journal of Systems and Software 82 (2009) 1642–1656 1649
� Neither the nodes or the links are labelled qualitatively.
� Downward arrows are for decomposition and upward arrows

are for signifying contributions of a child for a parent.
� ‘‘AND” children decomposition must add up to 1. For example, in

Fig. 11 ‘‘Time” and ‘‘Space”’s decomposition of ‘‘Performance”
add up to 1.

� The value of a node is the normalized sum of the contribution
from each child. By normalized sum we mean, the sum of each
child’s contribution divided by the number of ‘‘AND” groups,
i.e. the group of children combined by ‘‘AND” as well as the
number of softgoals that are not originally refined from this goal
but has a positive/negative contribution to this node.

� All leaf nodes have the value 1.
� The contribution of a child to its parent is the value of the child

multiplied by the link value that connects them (we have to
start from the leaves and propagate upward). For example, in
Fig. 11, CheckSum’s contribution to Accuracy is (1)*(0.9) which
is 0.9.

� All link nodes have values in the range [�1,1]. A positive value
indicates the child node helps the parent node while a negative
value indicates the chid node hurts the parent node.

The objective is to get the maximum value for the root node. In
the example, we can see CheckSum (a method of validation by
comparing the sum of each bit with an already known value) or
RangeCheck (an other method of validation by investigating if
the value is within the allowed range) can be used to realize Accu-
racy. To decide which one to choose we can compare the value of
System if we choose CheckSum or RangeCheck. The resulting
graphs and the calculations can be seen in Fig. 12. We can see
CheckSum should be chosen since System has a higher value
(0.66) than when RangeCheck is chosen (0.61). Since we have
many alternatives, we want to decrease the amount of calculation.
One way to do that is by not considering those parts of the graph
whose values do not change among alternatives.

As we have seen, the values in the graph come from different
sources. Firstly, the decomposition numbers are the results of our
prioritization (Section 5.1). Performance seems less important
System

Perfromance
Accuracy

Space Time CheckSum

0.3 0.7

0.5 0.5
0.9

-0.9

0.3*(1-0.9)+0.9*0.7=0.66

Fig. 12. Choosing between CheckSum an
(0.3) compared to Accuracy (0.7). This information cannot be rep-
resented by existing SIG. AHP can be used to figure out the child’s
contribution to the parent too. In our example, Time and Space or
CheckSum and RangeCheck’s value can be decided by following
AHP. Time and Space are equally important for the satisfaction of
Performance, thus both have 0.5 contributions; while CheckSum
gives more confidence about accuracy than RangeCheck because
RangeCheck cannot be sure if the value is exactly what the user
wants except that it is within the allowed range where as Check-
sum through adding each bit guarantees higher degree of accuracy
and thus CheckSum is assigned 0.9 compared with RangeCheck’s
0.7.

Secondly, when it comes to decide contributions of a tactic on
an NFR as a side effect (positive/negative), the developer needs
to use his knowledge about the tactic and the NFR (i.e. the decision
is entirely subjective). In our example, CheckSum is decided to
have a very strong negative impact on Performance (�0.9) com-
pared RangeCheck’s negative impact (�0.6) because CheckSum re-
quires adding every bit of the data, thus computationally
expensive, while RanageCheck requires only to see if the value is
within the allowed range.

5.3. Sensitivity analysis

One weakness for trusting the Q-SIG is the subjective numerical
values given by the expert. To alleviate such critical concerns, AHP
and other multi-criteria decision approaches are augmented with
robust and sensitivity analysis.

Sensitivity analysis (Zhu et al., 2005; Dobrica and Niemela,
2002; Triantaphyllou and Mann, 1994) is introduced to increase
the confidence in our decision by looking at how much change in
the initial weights can cause a change in our final decision.

In Fig. 13, encryption has a positive impact on security but a
negative one on performance that can be analyzed by using Q-
SIG. We choose to keep encryption even if it has a negative impact
on performance since with encryption the overall value for the sys-
tem is 0.82 which is clearly greater than the value for the system
System

Performance
Accuracy

Space Time RangeCheck

0.3 0.7

0.5 0.5
0.7

-0.6

0.3*(1-0.6)+0.7*0.7=0.61

d RangeCheck for realizing accuracy.

System

class 1
class 2

Tactic 1 Tactic 2 Tactic 3
Tactic 4

3 4
3 4 5

2

Stright (unbroken) arrows from tacitics
to classes indicate "direct" modification caused by the tactic

Dashed arrows indicate "indirect" modification
 (i.e. modification caused by ripple effect)

2

Fig. 14. FR-QSIG, graphical representation of tactics’ modification impact on the
system.

1650 T. Marew et al. / The Journal of Systems and Software 82 (2009) 1642–1656
without encryption (0.44). To answer how confident we are about
this decision, we first observe that it is the weight of security (0.7),
that contributed the most for our decision to keep encryption.
Next, we ask how much the weight of security (percentage-wise)
can change for our decision to keep encryption change?

Let the wp and wq be the weights of performance and security
respectively. In addition, let a and b be the positive and negative
contributions of encryption to security and performance, respec-
tively. Therefore, the equations for keeping and not keeping
encryption become

1 �wp þ ð1� bÞ �wq ð1Þ
ð1� aÞ �wp þ 1 �wq ð2Þ
Here, we have Eq. (1) > Eq. (2) when the numerical values are
plugged in. We are looking for a new weight of security, wr , that
would bring Eq. (1) to be equal to Eq. (2). That means,

1 �wr þ ð1� bÞ �wq ¼ ð1� aÞ �wr þ 1 �wq ð3Þ
or

wr ¼
b
a
�wq ð4Þ

Since the percentage-change required for wp to be wr is
wp �wr

wp
ð5Þ

putting Eq. (4) in Eq. (5) gives

1� b �wq

a �wp
ð6Þ

Therefore if wp changes by Eq. (6) (percentage-wise), the decision to
keep encryption no longer holds. Numerically Eq. (6) evaluates to
1� 0:6�0:3

0:8�0:7 which is approximately 68%. Since 68% is a huge change,
we feel confident in that, unless the user has made a significant er-
ror in judgment, our decision to keep encryption is in line with his/
her needs. Similar analysis can be carried out about the other sub-
jective numerical values to increase confidence in our decision.

5.4. Ripple effect as a factor in applying a tactic

During our discussion on Design Tactics, one of the steps we
identified to take for those design tactics that modify an existing
design element is to ‘‘calculate redesign costs”. Such step is neces-
sary because applying a tactic sometimes requires us to change/
modify the existing functional model and sometimes such modifi-
cation might end up being too costly. Therefore, before actually
deciding to accept a particular tactic, we should see how it affects
the existing system.

In this section, we suggest a method for using information of a
tactic’s effect on the existing system as one factor whether to
determine to accept to apply that tactic or look for another one.
We base our approach on the work of Yau and Collofello’s ripple ef-
fect algorithm (Yau et al., 1978; Yau and Collofello, 1985). Later the
same algorithm was reformulated by HSue (2001) with matrix
notation. In our work, we don’t use the algorithm to find how a
modification of a module is felt throughout the system, Rather,
we assume that has already been done and use the result of such
application of the algorithm to calculate the total effort required
to apply the tactic. In (Yau et al., 1978), Yau and Collofello have gi-
ven the formula for calculating the effort to applying a particular
modification as,

Ua þMa þ
Xn

i¼1

ðUbi
þMbi

Þ ð7Þ

where U and M stand for understanding and modification, a is the
module to be modified and the bi’s are all the modules that are af-
fected by the modification of module a.
We present FR-QSIG (Fig. 14) as a graphical representation of a
tactic’s effect on the system. It is very closely related to Q-SIG and
it has three basic layers. The first layer consists of a node repre-
senting the whole system. The second layer consists of nodes rep-
resenting modules/classes that are potentially modified either
directly or indirectly by all the tactics that are applied to the sys-
tem. Finally at the third layer, we have nodes representing tactics.
The edges between the tactics (third layer) and the modules/clas-
ses (second layer) can be either direct (represented by solid arrow
from the tactic to the module it modifies) or indirect (represented
by a broken arrow from the tactic to the module it affects because
of the ripple effect of the modification the tactic started). We do
not show the relationship between the modules because that
would make the graph unreadable and such information does not
add anything we need for our discussion.

Here, we can easily utilize Eq. (8) to calculate the modification
effort required to apply a given tactic. The numbers beside each ar-
row (full or broken) indicate the modification effort estimated the
tactic would require for a specific class. Therefore, with FR-QSIG,
we can easily find by summing over each tactic, how much effort
the tactic requires to be applied. Moreover, by summing over each
class, we can know how much modification is going to be under-
taken on each class.

As Q-SIG, FR-QSIG can be used to decide between tactics that
might be used to realize identical NFR. Just comparing the amount
of modification required to realize the tacite may not be the best
way to compare tactics. The reason is because some tactics even if
they need a high cost of application, they may be important in sat-
isfying the software’s NFRs. Therefore, we have to consider not only
the modification required to realize a given tactic, but also the con-
tribution of that tactic to software’s NFRs. The contribution of a tac-
tic to the system’s NFR can be found from the QSIG of the system.

For example, in Fig. 12, CheckSum’s contribution is
(0.9*0.7) + (�0.9) (0.3) which is 0.36. This means, among the sys-
tems NFR, 36% is satisfied by realizing CheckSum. We will call such
value, the ‘‘NFR Contribution Factor (NCF)”. We can use this NCF
along side the modification effort required to implement a given
tactic to decide whether that tactic is worth realizing. To do that
we also need to know how much of all the modification effort to
implement all the tactics is going to be spent on this specific tactic.
Here what we need is just the percentage of the total effort of mod-
ification that is needed to implement this particular tactic. We call
this piece of information ‘‘Modification Effort Proportion (MEP)”.
Therefore, for tactic al, its MEP is given by

Ual
þMal

þ
Pn

i¼1ðUbi
þMbi

ÞPm
j¼1ðUaj

þMaj
þ
Pn

i¼1ðUbi
þMbi

ÞÞ
ð8Þ

where the denominator is the same as before (i.e. Eq. (8)), the
denominator is just the total modification effort for realizing all tac-

T. Marew et al. / The Journal of Systems and Software 82 (2009) 1642–1656 1651
tics. For example, in Fig. 12, tactic 4 has an MEP of 4þ2
4þ2þ3þ5þ2þ4þ3

which is 0.26 or 26%.
These two values, NCF and MEP, can be used to decide among

competing tactics as follows:

� In software where modification effort is either negligible or not
as important as satisfying NFRs, we can just use NCF to decide
which tactic to apply. Software where modification effort is neg-
ligible is often software that is being built and therefore we have
not yet written a lot of lines of code. Therefore, modification
involves just redrawing of model documents which often
requires negligible effort. In the other extreme, we have soft-
ware where NFRs play a significant role (e.g. safety critical sys-
tems, embedded software, etc.) and therefore it does not
matter how much we need to modify the system to satisfy a
given NFR. In both instances, we may not care about modifica-
tion and as a result only the tactic’s NCF will decide whether that
tactic is worth realizing.

� In software where NFRs do not play a significant role but mod-
ification is costly, we may decide to apply a given tactic based on
its MEP. A good example of such software is an existing library
system. Here almost every NFR is not very important (except
for user interface). In such cases, deciding between tactics
should not be based on which tactic is important for the soft-
ware’s fulfillment of NFR (i.e. high MCF) rather whether such
tactic requires low modification (i.e. low MEP).

� In all other cases, we need to consider both NCF and MEP. We
can find the ratio, which we call ‘‘N–M ratio (NMR)”, between
NCF and MEP to see if the tactic requires more modification than
its contribution to the software NFR. For instance, if a tactic has
an NCF value of 0.25 and MEP value of 0.2, it means the tactic
can satisfy 25% of the user’s needs but only consumes 20% of
all the modifications needed to realize all the tactics proposed.
Therefore, such tactic will have an NMR of 0:25

0:20 or 1.25. Such value
combines information from QSIG and FR-QSIG. Therefore, NMR
is a more realistic measure of how useful the tactic is for both
the user (because it captures how much the tactic is useful for
the software NFR) and the developer (because it captures how
easy/difficult is to implement the tactic). We can compare
NMR values of competing tactics to decide which one to
implement.

6. Case study

In this section we illustrate the different issues raised by our re-
search by applying our approach in the construction of the NFRs for
a typical Automatic Teller Machine (ATM) application. We assume
the functional model of the application is already developed whose
class diagram is depicted in Fig. 15 from (http://www.math-cs.gor-
don.edu/local/courses/cs320/ATM_Example/indexOld.html; http://
www.math-cs.gordon.edu/local/courses/cs211/ATMExample/).
Table 1 lists the various NFRs of the ATM and the specific tactics
used to satisfy them gathered at the end of NFRs elicitation. The
last column requires a special attention as it displays the specific
group the tactic is classified. The group dictates what approach
needs to be used to fulfill the tactic in the analysis and design
phases.

Among those tactics that are classified in the group of ‘‘addi-
tional operations/attributes”, we will discuss Exception for checking
cash availability in detail. We use the steps discussed in Section 4.2
as follows:

� Step 1: Creating SIG: Fig. 16 shows the SIG of fault tolerance that
is decomposed along fault tolerance for the ATM machine and
fault tolerance for the account. In the case of the machine, we
must make sure we have enough cash before the machine dis-
burses the cash. On the other hand, for the account, we need
to make sure the amount requested by the user is within both
the balance of his/her account and the allowed one-time with-
drawal limit (set by the bank).

� Step 2: Synthesizing Classpects from SIG: We first synthesize the
classpect code from the SIG alone for the FaultTolerance (ATM)
as follows.
1 ATM atm;
2 public FTATM(ATM atm){
3 this.atm = atm;
4 }
5 public void FaultTol(){
6 check cashfund

7 }
8 pointcut

10 call FaultTol();}

� Step 3: Discovering classes for the classpects: We try to discover
the class that this classpect (FTATM) tries to advise. Since there
is an ATM class in the class diagram, we may be tempted to
think that ATM in the SIG and ATM in the class diagram repre-
sent the same entities. However, a closer inspection reveals that
the ATM the SIG refers to is actually the CashDispenser in the
class diagram since it is the class that deals with disbursing
the cash. This is a typical example the difference in the NFRs
and FRs analysts understanding of the system. Often such differ-
ences can be solved easily. For instance, discovering CashDis-
penser as the entity referenced as ATM in the SIG is not very
difficult since it is associated with our first guess ATM. This par-
ticular scenario demonstrates that syntactic matching from the
SIG to class diagrams may fail requiring a more careful
approach.

� Step 4: Integrating the classes and the classpects: Finally, we inte-
grate the information from the class CashDispenser with the
advise in the classpect FTATM as shown in Fig. 17. Note that
the name is also changed to FTCashDispenser. The informal
‘‘check cashfund” advise in the body of FaultTol is now changed
to an if statement that uses the information about amount from
the class CashDispenser. In the future, if any modification is
made to the SIG or the class diagram we can easily trace from
one diagram to the other using this integration.

The SIG displayed in Fig. 18 requires to fulfill security through
the confidentiality of the userinterface and database. Authentica-
tion for userinterface and database was achieved through adding
operations as in the previous cases. In case of the database, in
addition to authentication, we want the database to be encrypted
using AES algorithm (Advanced Encryption Standard, 2001)
which is a tactic grouped under ‘‘new algorithm/ADT” (Table 1).
For tactics in this group, we need to identify the class that the
algorithm is applied to and then apply the algorithm (since these
steps are identical as the steps for the previous example, we do
not need to discuss them in detail). After identifying that data-
base in the SIG is actually Bank in the class diagram (since bank
is the class that manages the database), we needed to introduce
the necessary operations, attributes, and logic to fulfill the AES
algorithm. This required a complete rework of the existing class
Bank.

For the case of usability, the existing class diagram already con-
tains classes like display and operation panal which serve as part of
userinterface. Since the tactic GUI is classified under ‘‘New classes”,
we created GUI versions of existing userinterface classes.

In case of maintainability, we are required to reduce coupling
which is a tactic grouped in ‘‘modify behavioral elements” since
reducing coupling requires to analyze inter-class behavior and find
classes to modify. Consequently, existing behavioral elements

http://www.math-cs.gordon.edu/local/courses/cs320/ATM_Example/indexOld.html
http://www.math-cs.gordon.edu/local/courses/cs320/ATM_Example/indexOld.html
http://www.math-cs.gordon.edu/local/courses/cs211/ATMExample/
http://www.math-cs.gordon.edu/local/courses/cs211/ATMExample/

Table 1
The various NFRs and their tactics for this particular ATM.

NFR Tactics for fulfilling the NFR Classification

Exception for checking cash availability Addition of operations/attributes
Fault tolerance Exception for checking cash limit Addition of operations/attributes

Exception for checking account balance Addition of operations/attributes
Security/Confidentiality Encryption using AES Using new algorithm/ADT

Authentication Addition of operations/attributes
Usability GUI Addition of new classes
Maintainability Reducing coupling Modifying existing behavioral elements
Performance Fast path Introduction of new behavioral elements

Fault Tolerance(System)

Fault Tolerance(Account)

Fautlt Tolerance(ATM)

Check Cash Card has
sufficient funds

Check Account has
sufficient fundsCheck the amount to be

withdrawn doesn't exceed
the fixed one time limit

Fig. 16. SIG for fault tolerance.

 public class FTCashDispenser{
 1 CashDispenser CD;
 2 public FTCashDispenser (CashDispenser CD){
 3 this.CashDispenser = CD;
 4 }
 5 public boolean FaultTol(){
 6 check cashfund
 7 }
 8 pointcut before execution{(dispenseCash(amont)}
 9 && returns (ret) && args():
10 call FaultTol();
 }

 public void FaultToll (){
 if currentCash() < amount return false;
}

CashDispenser
currentCash:int
CashDispenser(amount:int)
SetCash(amount:int)
DisburseCash(amount:int)
CurrentCash():int

Fig. 17. Integration of CashDispenser and FTCashDispenser.

ATM

CashReader

Keyboard

Display

CashDispensor

EnvelopeAcceptor

OperationalPanel Session

Withdrawal

Inquiry

Transfer

Deposit

Bank

Fig. 15. Class diagram of the ATM application.

1652 T. Marew et al. / The Journal of Systems and Software 82 (2009) 1642–1656
those classes are involved in highly likely will be modified. The
steps involved in fulfilling this tactic include

� Step 1: Select the part of the system that is mainly affected by the
tactic: Applying the metrics ‘‘Coupling Between Objects (CBO)”
metrics (Chidamber and Kemerer, 1994), we find that the clas-
ses ATM, Session, and Bank seems to have very high coupling.
Since all of them participate in the use cases withdrawal,
inquiry, balance, and deposit, these behavioral elements are
affected.
� Step 2: Choose and analyze critical design element: The three clas-
ses identified to have high CBO – ATM, Session, and Bank. The
solution to reduce these classes’ high coupling rests on the
observation that the four classes withdrawal, inquiry, balance,
and deposit have a similar behavior towards these three classes.
Based on the above observation, we created a new class ‘‘Trans-
action” as a superclass of the four classes reducing the coupling
of the system.

� Step 3: Calculate redesign costs. The introduction of ‘‘Transaction”
does not require any modification on the rest of the system. The
inheritance relationship between the four classes and Transac-
tion allows us to maintain the existing behavioral elements
(sequence diagrams).

Table 2
The relative weights of the various NFRs in the ATM application.

FT Security Usability Maintainability Performance

0.27 0.42 0.04 0.08 0.19

dispanseCash
(amount);

FastWithdrawal()

FastWithdrawal()
FastWithdrawal()

Display Withdrawal Bank CashDispensor

Fig. 19. Newly added sequence diagram for fast path.

Security(System)

Confidentiality(System)

Authenticiation Encryption using AES

Confidentiality
(userinterface)

Confidentiality
(database)

Fig. 18. SIG for security.

T. Marew et al. / The Journal of Systems and Software 82 (2009) 1642–1656 1653
� Step 4: Negotiate. Even if the introduction of a new class would
add a little overhead in performance, such increment is
negligible.

The Fast Path tactic (Smith and Williams, 2002) for realizing
performance is classified in ‘‘Introducing new behavioral elements”
category. This tactic suggests to improve performance by introduc-
ing a new use case/subsystem for the most frequently used scenar-
ios. In our ATM example, fast path is going to be applied in the
withdrawal scenario (such decision was made during the develop-
ment of the SIG for performance). What we are required to do is to
introduce a new button in the display of the ATM interface which
will allow the user to request a predefined (based on bank’s policy,
user’s behavior, etc.) cash without actually entering a new value.
The steps in fulfilling such a tactic grouped in ‘‘Introducing new
behavioral elements” are

� Step 1: Select the part of the system that is mainly affected by the
tactic: As decided by the SIG, the withdrawal sequence diagram
is the part of the system affected by this tactic.

� Step 2: Choose and analyze critical design element: The entire
sequence diagram of withdrawal is critical since the whole part
is responsible for the fulfillment of the tactic. A new conditional
path is added to the existing withdrawal sequence diagram as
depicted in Fig. 19.

� Step 3: Negotiate. No other NFR is negatively affected by this
tactic.

During the analysis of the effect of a tactic on another NFR,
we found out that encryption has a negative impact on perfor-
mance. This prompted us to carry out tradeoff analysis for
which prioritization of the various NFRs is the first step. Apply-
ing AHP, we have the various weights of the NFRs as shown in
Table 2.

Next, we analyzed the Q-SIG of Fig. 20. The Q-SIG only shows
the part of the system we are interested in (security and perfor-
mance). The 0.42 and 0.19 weights for security and performance
are the result of applying AHP and the other values are assigned
by expert like the negative impact of encryption on performance
in the scale of 0 to 1 is assigned 0.3. Since the NFRs value of the
system with encryption (its NCF), (0.55), is greater than the NFRs
value of the system without encryption (0.47), we decided to
keep the encryption. To increase our confidence in our decision,
we carried out a sensitivity analysis using Eq. (6) of Section 5.3
and found out it to be around 81%.
7. Discussion

Our case study has highlighted the strengths as well as the areas
for further improvement of our proposed approach. Our ability to
treat each tactic using a process that is suitable for specific groups
but not all tactics can be seen as a good point of our research. Un-
like other research, we have used ideas from the aspect oriented
community to implement some tactics but we also haven’t insisted
to use aspects to implement all tactics. In the implementing of tac-
tics through classpects, identification of classes that are advised by
classpects is still not fully resolved. Our approach uses steps that
are as intuitive as processes in other approaches and thus is not
more difficult to implement or less useful. However, there are still
difficulties in implementing tactics in groups like ‘‘Modifying Exist-
ing Behavioral Elements” which is common among all existing ap-
proaches. We believe, a further refinement of the tactic
classification will help us improve the effectiveness of our
approach.

Our case study also has demonstrated how useful our tradeoff
analysis is in choosing between design alternatives. Our usage of
both the expert opinion and the user’s preference has increased
our confidence in our decision. Still, even though we have
managed to control the human error that can occur during pri-
oritization by using AHP and sensitivity analysis, the values
experts assign as a tactic’s contribution to an NFR are still not
subject to scrutiny. Fortunately, the effect of such values is
diminished because of the whole tradeoff analysis that takes into
account more than the expert opinion to make the final
decision.
8. Related work

In this section, we compare various research works that focus
on whole or part of the issues our work touches on.

8.1. NFR-themed approaches

Here, we discuss six research works that deal significantly with
NFRs. Briefly these works are

� Non-Functional Requirement (NFR) framework (Mylopoulos et al.,
1992; Chung and Nixon, 1995; Chung et al., 2000): Even though
very useful in capturing NFRs at early requirement gathering
phase, since the NFR-Framework is qualitative, it is not easy to
describe the various shades of ‘‘satisfaction” except the few that
are prescribed in the Framework.

Security(System)

Confidentiality(System)

Authenticiation Encryption

Confidentiality
(database)

-0.3

Performance(System)

Response Time(System)
Storage(System)

Response Time
(inquiry)

Response Time
(...)

Sufficiently
satisfied

0.7
0.3

0.5

0.5

With Encryption: (0.5+(0.3+0.7)*0.5)*0.42+(1-0.3)*0.19=0.55
Without Encryption: (0.5+0.3*0.5)*0.42+0.19=0.47

NFR(System)

0.42
0.19

Fig. 20. Tradeoff analysis between security (encryption) and performance.

1654 T. Marew et al. / The Journal of Systems and Software 82 (2009) 1642–1656
� Arch. Pattern for Dependability Systems: Xu et al. Xu et al. (2006)
address the research question of transforming dependability
requirements into corresponding software architecture con-
structs, by proposing three types of components. Among the
three architectural components, the checkable components ver-
ifies whether a NFR is fulfilled instead of actually realizing the
NFR. This group includes the majority of NFRs and thus it is dif-
ficult to use this work to actually implement those kinds of
NFRs. Moreover, the work does not treat conflict resolution
among NFRs.

� Architecture Tradeoff Analysis Method (ATAM): ATAM (Clements
et al., 2002) is a structured technique for understanding the
tradeoffs inherent in the architectures of software intensive sys-
Table 3
Comparison table of different NFRs realization approaches.

Criteria NFR
Framework

Arch. pattern
for
dependability
systems

ADD

NFRs Decomposition n-Layer n-Layer None
Management Classification None 2-category None
Targeted NFRs All Some NFRs

(that
introduce new
functions)

Some NFRs
(that require
arch.
transformation

Development phase Early analysis Early analysis Arch. design

FRs artifacts as
input

Not explicitly Class
diagrams

Only high leve
arch.

Ease of integration
with FRs
models

Same
language?

No, because
no explicit FRs
representation

Yes, UML No, because n
FRs
representation

Traceability Not easy (just
intuitively)

Not easy (no
explicit
approach)

Difficult
because the FR
are not
considered

Prioritization Not
considered

Not
considered

Not considere

Relationship between NFRs Qualitative Not
considered

Only through
their effect on
arch.
tems. The ATAM is good for high-level evaluation of an architec-
ture but looses its usefulness when developers want a more
fine-grained analysis especially when trying to integrate with
an approach for functional modelling.

� Non-functional Requirements: From Elicitation to Conceptual Mod-
els: Cysneiros and Leite (2004) present a process to elicit NFRs,
analyze their interdependencies, and trace them to functional
conceptual models. They focus their attention on conceptual
models expressed using Unified Modeling Language (UML). They
show how to integrate NFRs into the Class, Sequence, and Col-
laboration Diagrams. Since it is based on the NFR-Framework,
it suffers from some of the shortcomings from the Framework,
e.g. lack of quantitativeness.
NFR from
elicitation to impl.

AOSD ATAM Our Approach

n-Layer None 2-Layer n-Layer
None None None currently six

)

Most NFRs (that
lead to new
functions or
constraints)

Some NFRs (that
could be modeled
as ‘‘cross-cutting”)

Some NFRs (that
require
organizational
change)

All

Elicitation,
analysis, and
design

Impl. Arch. design Analysis and
design

l Class, sequence,
and collaboration
diagrams

Class diagrams High level arch. Class, sequence,
and deployment

o Yes, UML No, because no
NFRs
representation

No, because no
FRs
representation

Yes, UML

s
Easy because they
use the same
vocabulary

Difficult because
no NFRs
representation

Difficult
because no FRs
representation

Easy, because
there is an
approach for
traceability

d Not considered Not considered Considered,
local

Considered,
global

Qualitative Not considered Quantitative,
local

Quantitative and
qualitative

T. Marew et al. / The Journal of Systems and Software 82 (2009) 1642–1656 1655
� Aspect Oriented Software Development (AOSD): AOSD (http://
www.aosd.net/) is an approach to software development that
addresses limitations inherent in other approaches, including
object-oriented programming. AOSD is often considered as a
good candidate in realizing NFRs because NFRs are often cross-
cutting concerns which are the focus of AOSD. Still, there are a
number of NFRs that are not easily handled by aspects and thus
AOSD fails to capture such NFRs.

� Designing software architectures to achieve quality attribute
requirements (ADD): In Bachmann et al. (2005) the authors
describe a structure called a ‘‘reasoning framework” as a modu-
larization of quality attribute knowledge for automatically
transforming an arch. spec by while meeting a certain quality
requirement. The major shortcomings of ADD are the unneces-
sary strict restriction during specifying an NFR which greatly
limits the application of ADD and the unavailability of the inner
workings of the tool that ADD uses for demonstration purposes.

8.1.1. Criteria of comparison
So far we have discussed six research works that are concerned

with various aspects of NFRs. In this section we provide six criteria
for comparing these works with ours. Table 3 provides the analysis
of the approaches based on these criteria. The criteria are:

� NFRs Management: The technique the approaches use to man-
age NFRs: decomposition (for the NFRs themselves) and classifi-
cation (for the tactics used to fulfill those NFRs).

� Development Phase: The phase at which the approaches can be
applied.

� Targeted NFRs: The class of NFRs for whom the approach is
highly suitable for.

� Ease of integration with FRs models: The disparity between the FR
and NFR model when the approach is used. We have three sub
criteria for investigating how easy is to integrate the NFRs
approaches with FRs ones (assumed to be objected-oriented):
FRs artifacts as inputs (does the approach use some of the artifacts
from FRs approaches as an input), the same language(does both
approaches use the same representation?) and traceability (how
easy is to trace from the NFRs approach to an FRs approach).

� Consideration of prioritization: The strategy used by the
approaches to address prioritization among NFRs. Most
approaches based on the NFR-Framework consider ‘‘criticality”
which is different from prioritization. In our opinion, a ‘‘critical”
requirement implies a system must realize that requirement no
matter what where as a prioritization is used to give the devel-
oper the guideline on how much important for the user each
requirement is.

� Consideration of relationship among NFRs: How do the various
approaches depict and analyze NFR interdependencies.

8.1.2. Result of comparison
The following table summarizes the analysis of the NFR-themed

approaches according to the comparison criteria.

8.2. Research Works that focus on prioritization or tradeoff analysis of
requirements including NFRs

Tradeoff analysis in general or prioritization and interdepen-
dency analysis of requirements in particular have been the focus
of different researchers. In this section, we discuss those that are
closely related to our approach. These are:

� AGORA Attributed Goal-Oriented Requirements Analysis Method:
Kaiya et al. (2002), presented a graph based, quantitative
approach for augmenting the goal-oriented requirement analy-
sis (GORA) methods such as I* (http://www.cs.toronto.edu/km/
istar/). The work helps developers assigns numerical values for
the nodes to capture positive/negative contribution among each
other as well as the preference for each goal. The primary differ-
ence between their approach and ours is that in AGORA, prefer-
ence refers to the degree one stakeholder thinks another
stakeholder prefers a particular node which is different from pri-
oritization in our work that tries to quantify how much a given
stakeholder prefers a node compared to other nodes.

� Process-Oriented Metrics for Software Architecture Evolvability:
Subramanian and Chung (2003) added a quantitative dimension
to the SIG of the NFR-Framework. Even though such addition is a
welcome step in the right direction, it falls short of what is
achieved through our work. First, the quantification in (Subra-
manian and Chung, 2003) is assigning numerical values for the
various discreet values softgoals and links can have in SIG.
Moreover, ‘‘criticality” not ‘‘prioritization” is addressed and thus
developers cannot compare softgoals and show their preference
of each NFR relative to the others.

� Quantitative Model for the Evaluation of Software Architectures:
Zayaraz and Thambidurai (2007) presented an architecture eval-
uation model that focuses on the prioritization among NFRs.
Their model is detailed in its consideration of the subgroups of
NFRs and normalization of prioritization. Still, their approach
only concentrates on the entire architecture instead of specific
design alternatives. Moreover, they don’t consider interdepen-
dencies among NFRs.

� Analysis of Conflicts among Non-Functional Requirements Using
Integrated Analysis of Functional and Non-Functional Require-
ments: Sadana and Liu (2007) present an approach not only con-
siders conflicts among NFRs as well as NFRs on FRs. That is an
important contribution as we have pointed out in 5.4 the impact
of NFRs on the FRs should be considered for the full evaluation of
NFRs. However, V. Sadana et al.’s work targets very high level
requirements, is highly qualitative, and assumes NFRs have con-
flict with each other instead of their tactics having conflict with
NFRs.

9. Conclusion and future work

We have leveraged existing work to better tackle the problem of
incorporating NFRs in object-oriented analysis and design (OOAD).
We believe our work has three major contributions. First, it sug-
gests a tactics types classification framework for management of
NFRs. We developed the framework so that tactics that are realized
at the same type in OOAD are grouped under the same category.
We argued why it is better to focus on the tactics of NFRs than
the NFRs themselves for analyzing and designing NFRs. Second, it
proposes an approach we can use for incorporating NFRs into soft-
ware analysis and design. The approach provides various processes
suitable for realizing tactics in each tactic group. We Third, it sug-
gests a better approach to manage tradeoff among competing NFRs
by considering prioritization and the positive/negative impact of
tactics on NFRs. To address the relationship between NFRs qualita-
tively, quantitatively, and globally, we enhanced SIG by including
quantitative information. We also suggested FR-QSIG to address
the effect of tactics that require the system to be modified. We
showed how such analysis can help us to decide between tactics
that realize the same NFR.

In future, we are planning on conducting industry scale case
studies. We hope such case studies will provide us with informa-
tion on how practitioners use our approach and a better validation
on the various quantitative measurement we proposed. Besides,
we expect to get feedback on how to improve the approach. An-
other future work we are considering is to incorporate our ap-
proach into existing object-oriented development tools so as to

http://www.aosd.net/
http://www.aosd.net/
http://www.cs.toronto.edu/km/istar/
http://www.cs.toronto.edu/km/istar/

1656 T. Marew et al. / The Journal of Systems and Software 82 (2009) 1642–1656
ease the burden on the developer when he/she is trying to capture
and implement NFRs.

References

Advanced Encryption Standard, Federal Information Processing Standards
Publication, 197, 2001.

AspectJ: <http://eclipse.org/aspectj>.
Bachmann, F., Bass, L., Klein, M., Shelton, C., 2004. Experience in using an expert

system in designing for modifiability. In: Proceedings of the WICSA, IEEE Press.
Bachmann, F., Bass, L., Klein, M., Shelton, C., 2005. Designing software architectures

to achieve quality attribute requirements. IEE Proceedings – Software 152 (4),
153–165.

Booch, G., Rumbaugh, J., Jacobson, I., 1999. The Unified Modeling Language User
Guide. Addison-Wesley.

Chidamber, S.R., Kemerer, C.F., 1994. A metrics suite for object-oriented design. IEEE
Transactions on Software Engineering 20 (6), 476–493.

Chung, L., Nixon, B., 1995. Dealing with Nonfunctional Requirements: Three
Experimental Studies of a Process-Oriented Approach. In: Proceedings of the
17th International Conference on Software Engineering, pp. 24–28.

Chung, L., Nixon, B., Yu, E., Mylopoulos, J., 2000. Non-Functional Requirements in
Software Engineering. Kluwer Academic.

Clements, P., Kazman, R., Klein, M., 2002. Evaluating Software Architectures:
Methods and Case Studies. Addison-Wesley.

Cysneiros, L., Leite, J., 2004. Nonfunctional Requirements: From Elicitation to
Conceptual Models. IEEE Transactions on Software Engineering 30 (5), 328–350.

Dobrica, L., Niemela, E., 2002. A survey on software architecture analysis methods.
IEEE Transactions on Software Engineering 28 (7).

Ghezi, C., Jazayeri, M., Mandrioli, D., 1991. Fundamentals of Software Engineering.
Prentice-Hall International Edition.

HSue Black, 2001. Computing ripple effect for software maintenance. Journal of
Software Maintenance and Evolution, Research and Practice.

ISO/IEC 9126-1 (2001). Software engineering. Product quality. Part 1: Quality
model. International Organization for Standardization.

Jacobson, I., Booch, G., Rumbaugh, J., 1999. The Unified Software Development
Process. Addison-Wesley.

Kaiya, H., Horai, H., Saeki, M., 2002. AGORA: attributed goal-oriented requirements
analysis method. In: IEEE Joint International Conference on Requirement
Engineering, RE02.

Karlson, J., Ryan, K., 1997. A cost-value approach for prioritizing requirements. IEEE
Software 14 (15), 67–74.

Marew, T., Bae, D., 2006. Using classpects for integrating non-functional and
functional requirements. In: ASTED Conference on Software Engineering, pp.
141–147.

Mead, N. <https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/
requirements/545.html>.

Mylopoulos, J., Chung, L., Nixon, B., 1992. Representing and Using NonFunctional
Requirements: A Process-Oriented Approach. IEEE Transactions on Software
Engineering 14 (6).

Nilsson, N., 1971. Problem Solving Methods in Artificial Intelligence. McGraw-Hill,
New York.

Rajan, H., Sulllivan, K., 2005. Classpects: unifying aspect- and object-oriented
language design. In: Proceedings of the 27th International Conference Software
Engineering, pp. 59–68.

Saaty, T., Vargas, L., 1991. Prediction, Projection, and Forecasting. Kluwer Academic
Publisher.

Sadana, V., Liu, X., 2007. Analysis of conflicts among non-functional requirements
using integrated analysis of functional and non-functional requirements.
Computer Software and Applications Conference, COMPSAC.

Smith, C.U., Williams, L.G., 2002. Performance solutions: a practical guide to
creating responsive, scalable software. Addison-Wesley.
Spencer, I., Bittner, K., 2006. Managing Iterative Software Development Projects.
Addison-Wesley Object Technology.

Subramanian, N., Chung, L., 2003. Process-oriented metrics for software
architecture evoluability, IWPSE.

Triantaphyllou, E., Mann, S.H., 1994. Some critical issues in making decisions with
pair-wise comparisons. In: Proceedings of the Third International Symposium
on the AHP, pp. 225–236.

Xu, L., Ziv, H., Alspaugh, T., Richardson, D., 2006. An architectural pattern for non-
functional dependability requirements. Journal of Systems and Software, 1370–
1378.

Yau, S., Collofello, J., 1985. Design stability measures for software maintenance. IEEE
Transactions on Software Engineering 11 (9).

Yau, S., Collofello, J., McGregor, T., 1978. Ripple effect analysis of software
maintenance. In: Proceedings Computer Software and Applications
Conference (COMPSAC).

Zayaraz, G., Thambidurai, P., 2007. Quantitative model for the evaluation of
software architectures, Software Quality Professional.

Zhu, L., Aurum, A., Gortorn, I., Jeffery, R., 2005. Tradeoff and sensitivity analysis in
software architecture evaluation using analytic hierarchy process. Software
Quality Journal 13, 357–375.

Tegegne Marew received his B.Sc. in Computer Science from Addis Ababa Univer-
sity, Ethiopia in 1999, and his M.S. in Computer Science from Korea Advanced
Institute of Science and Technology in 2003. He is currently pursuing his Ph.D. in
Computer Science with a software engineering focus in KAIST. His research interests
include software engineering, software requirement engineering, software archi-
tecture design and analysis, object-oriented analysis and design, aspect-oriented

programming, and software metrics.

Joon-Sang Lee received a B.S. in Computer Engineering from Dongguk University,
Seoul in 1997, his M.S. in Computer Science from Korea Advanced Institute of Sci-
ence and Technology in 1999 and his Ph.D. in Computer Science from Korea
Advanced Institute of Science and Technology in 2003. He has served 4 years in LG
Electronics as a software architect, 1 year in Korea University as a research pro-
fessor, and has been leading the quality engineering part of Information Technology

Laboratory in LG Electronics Advanced Research Institute since 2008. His research
interests include software engineering, software architecture design and analysis,
object-oriented programming, aspect-oriented programming, software quality, and
software verification.

Doo-Hwan Bae graduated from the Seoul National University with a B.S. and a M.S.
degrees in engineering in 1980 and 1982, respectively. He received a M.S. degree in
Computer Science from the University of Wisconsin-Milwaukee in 1987, and a Ph.D.
degree in Computer and Information Sciences from the University of Florida in
1992. Since then, he joined the faculty of Computer and Information Sciences
department at the University of Florida as a visiting professor. In 1995, he moved to

KAIST and currently is an associate professor at the Computer Science division in
the department of Electrical Engineering and Computer Science. Since 2002, he is
directing the ITRC Software Process Improvement Center, sponsored by Korean
Ministry of Information and Communication. His research interests are in Software
Engineering, especially in the areas of Object-Oriented Technology, Component-
Based Software Engineering, and Software Development Process and its
Improvement.

http://eclipse.org/aspectj
http://https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/requirements/545.html
http://https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/requirements/545.html

	Tactics based approach for integrating non-functional requirements in object-oriented analysis and design
	Introduction
	Background
	NFRs tactics types classification
	Tactic-based NFRs modeling
	Overview
	Analysis tactics modeling
	Process for analysis tactics modeling
	Application of analysis tactics modeling on the various analysis tactics

	Design tactics modeling

	Tradeoff analysis
	Prioritization
	Q-SIG
	Sensitivity analysis
	Ripple effect as a factor in applying a tactic

	Case study
	Discussion
	Related work
	NFR-themed approaches
	Criteria of comparison
	Result of comparison

	Research Works that focus on prioritization or tradeoff analysis of requirements including NFRs

	Conclusion and future work
	References

