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Abstract—Network virtualization has emerged as a promising approach to overcome the ossification of the Internet. A major
challenge in network virtualization is the so-called virtual network embedding problem, which deals with the efficient embedding
of virtual networks with resource constraints into a shared substrate network. A number of heuristics have been proposed to cope
with the NP-hardness of this problem; however, all of the existing proposals reserve fixed resources throughout the entire lifetime
of a virtual network. In this paper, we re-examine this problem with the position that time-varying resource requirements of virtual
networks should be taken into consideration, and we present an opportunistic resource sharing-based mapping framework, ORS,
where substrate resources are opportunistically shared among multiple virtual networks. We formulate the time slot assignment
as an optimization problem, then we prove the decision version of the problem to be NP-hard in the strong sense. Observing
the resemblance between our problem and the bin packing problem, we adopt the core idea of first-fit, and propose two practical
solutions: first-fit by collision probability (CFF) and first-fit by expectation of indicators’ sum (EFF). Simulation results show that
that ORS provides a more efficient utilization of substrate resources than two state-of-the-art fixed-resource embedding schemes.

Index Terms—Virtual network embedding, opportunistic resource sharing, NP-hard, 3-partition, bin packing.
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1 INTRODUCTION

THE Internet has been extremely successful in supporting
global commerce, communication, and defense [1], [2].

However, the multi-provider nature of the Internet and end-
to-end design of Internet Protocol (IP) are now creating
hurdles for the further evolution of the Internet. Network
virtualization has been proposed recently as a promising
approach to overcome the current ossification of the In-
ternet [2], [3], [4], and it has been investigated in several
projects, including CABO [3], PlanetLab [5], and VINI [6].

In a network virtualization environment, an infrastructure
provider (InP) maintains a physical/substrate network (SN),
which is composed of substrate nodes and links; a service
provider (SP) leases physical resources (e.g., CPU, band-
width, memory space) from InPs and creates customized
virtual networks (VNs) to provide value-added services (e.g.,
video conferencing, VoIP, content distribution) for end users.
Network virtualization has some desirable properties. First,
the separation of the control and data tiers makes the net-
work core programmable and flexible [7]. Second, physical
resources can be used more efficiently, and thus high energy
efficiency can be achieved.

The fundamental challenge that network virtualization
faces is how to embed multiple virtual networks with
resource constraints into a substrate network, so as to
efficiently utilize substrate resources. Known as the Virtual
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Network Embedding (VNE) problem, it is proven to be NP-
complete by reducing the multiway separator problem to this
problem [8]; therefore, a number of heuristics [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19] have been proposed.

Unfortunately, all of the prior proposals reserve fixed
resources throughout the entire lifetime of a virtual network,
which wastes the precious substrate resources. First, SPs
potentially target users all over the world, so it is extremely
difficult to predict the workload before they are ready to
serve end users. As the resource requirement of a VN at a
particular time is generally proportional to the workload at
that time, to cope with a peak workload on demand, service
providers often over-purchase substrate resources, which
may lead to a considerable waste of resources for a normal
workload. Second, the resource requirements of many appli-
cations experience significant changes over time [20]. Given
these two factors, provisioning fixed resources for virtual
networks throughout their lifetimes is clearly wasteful.

In this paper, we exploit this key observation, and propose
a novel model that reflects the time-varying resource re-
quirement of a VN. More specifically, we model the resource
requirement of a VN as the combination of a basic sub-
requirement, which exists throughout the lifetime of the
VN, and a variable sub-requirement, which occurs with
a probability. Based on this model, this paper designs an
Opportunistic Resource Sharing-based embedding framework,
ORS [21], which in general consists of two components,
i.e., the macro-level node-to-node/link-to-path embedding,
and the micro-level time slot assignment. In the macro-
level embedding, we adopt a traditional greedy strategy
(e.g., [13]) to derive the mapping results of virtual nodes
to substrate nodes, and virtual links to substrate paths.

In the micro-level time slot assignment, we focus on the
scenario in a single substrate link. The results can adapt
naturally to the other substrate links and nodes (details are
in Section 5). Suppose that the substrate link is based on time
division multiplexing, where time is partitioned into multiple
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frames of equal length, and each frame is further divided
into time slots of equal length. The number of time slots in a
frame depends on the physical bandwidth of this substrate
link. Several virtual links are embedded in this substrate
link; then, the problem becomes how to map the bandwidth
requirement of virtual links to the physical time slots.
For the basic bandwidth sub-requirement from a virtual
link, which exists throughout the lifetime of the respective
VN, we have no choice but to allocate the correspond-
ing required slots to it. For the variable bandwidth sub-
requirement, we propose to opportunistically share time
slots among multiple virtual links to improve resource u-
tilization. However, collisions accompany sharing. To break
the tradeoff between utilization and collision, we use a
collision probability threshold to represent the “volume” of
a time slot and formulate the time slot assignment as an
optimization problem. We prove the decision-version prob-
lem to be NP-hard by reducing the 3-partition problem [22]
to it. An integer linear programming-based (ILP) optimal
solution is also provided. Due to the similarities between
this problem and the bin packing problem [23], we then
propose two practical first-fit-based solutions from different
perspectives: first-fit by collision probability (CFF) and first-fit
by expectation of indicators’ sum (EFF).

Through extensive simulations, we demonstrate that, in
the long run, ORS accepts more virtual network requests
and provides a more efficient utilization of substrate re-
sources than two state-of-the-art fixed-resource embedding
schemes. The contributions are summarized as follows:

1) To the best of our knowledge, this is the first at-
tempt that considers virtual network embedding in the
context of opportunistic resource sharing at the level
of the entire network. To provide efficient resource
utilization, which is of great benefit to both InPs and
SPs, an embedding framework, ORS, is designed; its
effectiveness is confirmed by extensive simulations.

2) We propose a novel model that reflects the time-varying
properties of the resource requirement of a VN, based
on which we formulate the micro-level time slot as-
signment problem as an optimization problem. We first
prove the decision version of this problem to be NP-
hard in the strong sense, then propose an ILP-based
optimal solution and two practical algorithms.

3) We conduct extensive theoretical analysis and simula-
tion studies to verify the performance of ORS.

We now continue by proposing the resource requirement
model in Section 2 before we introduce the VNE problem in
Section 3. We then provide the overview of ORS in Section 4,
describe the details of ORS in Section 5, and conduct
performance evaluations in Section 6. Before concluding the
paper in Section 8, we survey related work in Section 7.

2 VIRTUAL NETWORK REQUEST WITH TIME-VARYING
RESOURCE REQUIREMENT

In this section, we first present the traditional virtual net-
work request model, and then we introduce a model that
captures the time-varying properties of virtual network
resource requirements.

2.1 Traditional Virtual Network Request Model
The main substrate resources that we consider in this paper
are CPU and bandwidth, which is the typical case in almost
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Fig. 1. Each node or link is associated with a fixed resource
requirement in the traditional VN request, while, in our model,
the resource requirement of each node or link is expressed
in a tuple < b, v, p >.

all of the related literature so far. However, our framework
can naturally adapt to the scenario where a node has
multiple types of resources. We will give remarks on the
adaptation in Section 5 when needed.

For the purpose of unifying resource notations, we as-
sume that the substrate network is based on time division
multiplexing, where time is partitioned into multiple frames
of equal length, and each frame is further divided into
equal time slots. In doing so, both CPU and bandwidth
requirements can be expressed in time slots.

A traditional virtual network request is denoted by a
weighted undirected graph, Gv = (Nv, Ev), where Nv and
Ev are the sets of virtual nodes and links, respectively. Each
virtual node nv ∈ Nv is associated with a CPU requirement
C(nv) in time slots, and each virtual link ev = (nv

i , n
v
j ) ∈ Ev

is associated with a bandwidth requirement B(ev) in time
slots. Fig. 1(a) shows an example, where the corresponding
resource requirement of each node or link is written next to
the respective node or link that represents it.

2.2 The Time-Varying Resource Requirement Model
SPs can hardly predict the number of end users of the ap-
plications deployed in their virtual networks; to guarantee
the quality-of-service of a peak workload, SPs always over-
purchase substrate resources. Besides, the resource require-
ments of many applications experience significant changes
over time. Therefore, provisioning fixed resources for VNs
throughout their lifetimes is clearly wasteful. To avoid such
wasteful situations, we need to model the time-varying
resource requirement of a VN in the first place.

By using profiling experimentations, one can potentially
derive some complicated functions, e.g., high-order poly-
nomials, to capture the time-varying resource requirement
in a very precise way [20]. However, such smooth functions
may increase the representation and communication burden
of SPs, as well as complicate the resource provisioning in
SNs. To strike a balance between modeling precision and
implementation difficulties, and to initiate a tractable study
as a first step, this paper resorts to a probability-based
model, and leaves exploring other tradeoffs as future work.

In our model, the time-varying resource requirement
of a virtual node or link is composed of a basic sub-
requirement, which exists throughout the lifetime of the
respective VN, and a variable sub-requirement, which oc-
curs with a probability. Based on this resource requirement
mode, we replace the C(nv) and B(ev) in the traditional
representation with tuples < b(nv), v(nv), p(nv) > and
< b(ev), v(ev), p(ev) >, respectively, where b(nv) (resp.
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Fig. 2. An example of virtual network embedding

b(ev)) denotes the number of time slots in the basic sub-
requirement, and v(nv) (resp. v(ev)) denotes the number
of time slots in the variable sub-requirement, which occurs
with probability p(nv). Take virtual node a in Fig. 1(b) for
example, since < b(a), v(a), p(a) >=< 8, 4, 0.3 >, we then
know that virtual node a needs 8 slots with a probability of
0.7, and needs 12 slots with a probability of 0.3.

Overall, we admit that many challenges remain, e.g.,
how does an SP choose suitable < b, v, p > tuples to best
reflect the time-varying resource requirement of his/her
VN. However, the thesis of this paper is the notion of
opportunistic resource sharing, and what it brings to InPs
and SPs. We hope that this simplified model can provide
some insights on the design of future VNE algorithms.

3 THE VIRTUAL NETWORK EMBEDDING PROBLEM

A substrate network is modeled as a weighted undirected
graph, Gs = (Ns, Es), where Ns and Es are the sets of sub-
strate nodes and links, respectively. Similarly, each substrate
node ns ∈ Ns is associated with a CPU capacity C(ns) in
time slots, and each substrate link es = (ns

i , n
s
j) ∈ Es is

associated with a bandwidth capacity B(es) in time slots.
The set of loop-free paths from ns

i to ns
j is denoted as

P s(ns
i , n

s
j). The residual resources of ns and es are denoted

as RCs(ns) and RBs(es), respectively. The computation
of RCs(ns) and RBs(es) in the context of opportunistic
resource sharing is not trivial, as we shall discuss shortly
in Section 5.6. The right side of Fig. 2 shows a substrate
network, where the corresponding resource capacity of each
substrate node or link is written next to the respective node
or link that represents it.

The embedding of a VN Gv
i is defined as mapping M

from Gv
i to a subset of Gs, such that the resource require-

ment of Gv
i is satisfied and the resource capacities in Gs

are not violated. It can be further decomposed into two
components: 1) node mapping Mn : Nv

i → Ns, which maps
different virtual nodes to different substrate nodes; and 2)
link mapping Ml : E

v
i → P s, which maps a virtual link to a

substrate loop-free path.
In Fig. 2, the node mapping for Gv

1 is {a→ A, b→ G, c→
D, d→ C}, and the link mapping is {(ab)→ {AG}, (bc)→
{GH,HD}, (cd) → {DC}, (da) → {CB,BA}}; the node
mapping for Gv

2 is {e → H, f → D, g → E}, and the link
mapping is {(ef)→ {HD}, (fg)→ {DE}}.

Our main interest is to propose an embedding framework
for InPs to cope with a sequence of VN requests that arrive
and depart over time. Upon the arrival of request Gv

i , an InP
must decide to either accept or reject it. Here, we assume
that VN requests arrive one by one, and batch processing
is not the focus of this paper. From the standpoint of

an InP, the objective is to maximize its revenue through
efficiently utilizing its substrate resources. Following prior
research [12], [13], the revenue, R(Gv

i ), of embedding Gv
i

can be defined as:

R(Gv
i ) = [ωc

∑
nv∈Nv

(b(nv)+v(nv))+ωb

∑
ev∈Ev

(b(ev)+v(ev))]T v
i

where ωc and ωb are the weights, providing the flexibility
to trade off between the costs of two kinds of resources;
T v
i is the lifetime of Gv

i . Note that the length of substrate
paths that virtual links are mapped to does not affect the
revenue, since an SP is only willing to pay a rent to the InP
that is proportional to the amount of requested resources. To
maximize the revenue, VN requests should be intelligently
deployed on top of an SN. This paper re-visits this problem
from the perspective of opportunistic resource sharing.

4 THE OVERVIEW OF OUR FRAMEWORK

In this section, we present an overview of our framework,
ORS. The details are introduced in Sections 5.

ORS generally consists of two components, as shown in
Alg. 1. The macro-level node-to-node/link-to-path embed-
ding component adopts a traditional greedy strategy in [13]
to derive the mapping of virtual nodes to substrate nodes,
and virtual links to substrate paths. In this component,
we first place virtual nodes in queue Q with decreasing
(b(Q[i]) + p(Q[i])v(Q[i])), which is the expected number of
time slots required by a virtual node Q[i]; then, we map each
virtual node from the head to the end of Q to the unused
substrate node with the most residual resource. If the resid-
ual resource of a substrate node is less than the expected
number of time slots required by the corresponding virtual
node, the VN request is rejected. This kind of “maximum-
first” embedding fashion is beneficial to future requests that
may require some scarce or bottleneck resources. We then
map each virtual link to the shortest path [24] with sufficient
bandwidth between its end hosts, to minimize the span. We
note that, when the VN request contains multiple edges
between a pair of nodes, we turn to find the k shortest
paths [25] to reduce the sum of the lengths of multiple
substrate paths that these edges are mapped to.

In the micro-level component, we run CFF or EFF in each
of the substrate nodes and links that are involved in the
mapping of Gv to deal with time slot allocations, then we
update residual resources of them. The details of this com-
ponent are introduced in Section 5. It is worth elaborating
on that lines 7 and 11 of Alg. 1 only provide early-reject
conditions; even when the node mapping Mn passes the
checking condition in line 7, and the link mapping Ml

passes checking condition of line 11, it is still possible that
the resource requirement of Gv could not be guaranteed in
the micro-level time slot assignment.

While the “maximum-first” strategy of the macro-level
component largely comes from [13], the main contributions
of this paper lie in the micro-level component. We conclude
this section by presenting the time complexity of ORS. In
macro-level embedding, the sorting and mapping of virtual
nodes takes O(|Nv|log(|Nv|) + |Nv|) time, and finding the
k shortest paths takes O(|Es| + |Ns|log(|Ns|) + k) [25];
since we need to execute the k shortest paths algorithm at
most |Ns|2 times, this component takes O((|Nv|log(|Nv|)+
|Nv|) + |Ns|2(|Es| + |Ns|log(|Ns|) + k)) = O(|Ns|4) time
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Algorithm 1 The ORS embedding framework
1: Wait until a VN request Gv arrives
2: Macro-level node-to-node/link-to-path mapping:
3: for all ns ∈ Ns do unused(ns)← 1 end for
4: Q← sorted Nv with decreasing (b(Q[i])+p(Q[i])v(Q[i]))
5: for i = 1 to Q.length do
6: Mn(Q[i])← argmax(RCs(ns) · unused(ns))
7: if RCs(Mn(Q[i])) < (b(Q[i]) + p(Q[i])v(Q[i]))
8: then reject Gv and return
9: end for

10: for all ev = (nv,mv) ∈ Ev do
11: P s′ ← {path|RBs(path) ≥ (p(ev)v(ev) +

b(ev)), path ∈ P s(Mn(n
v),Mn(m

v))}
12: if P s′ == ∅ then reject Gv and return
13: Ml(e

v)← argmin(hop(path))
(the shortest path [24] or the k shortest paths [25])

14: end for
15: Micro-level time slot assignment:
16: for all nv ∈ Nv do
17: if false == CFF (v(nv), p(nv)) (or EFF)
18: then reject Gv and return
19: update RCs(Mn(n

v))
20: end for
21: for all ev ∈ Ev do
22: for all es ∈Ml(e

v) do
23: if false == CFF (v(ev), p(ev)) (or EFF)
24: then reject Gv and return
25: update RBs(es)
26: end for
27: end for

in all. Here we have simplified the summations by using
|Es| = O(|Ns|2). Based on the results in Section 5.7,
the micro-level component takes O(F |Ns|2), therefore, the
overall time complexity of ORS is O(|Ns|4 + F |Ns|2).

5 MICRO-LEVEL TIME SLOT ASSIGNMENT—AN OP-
PORTUNISTIC RESOURCE SHARING VIEW

In this section, we will first provide a formal description of
the time slot assignment problem and its hardness result.
Then, we present an ILP-based optimal solution and two
practical first-fit-based solutions. We also show how to
estimate residual resources of substrate nodes and links.
Finally, we will give a brief summary of this section.

5.1 Problem Formulation
Since both CPU and bandwidth requirements can be ex-
pressed as time slots, this section only takes the time slot
assignment in a substrate link for illustration. The solutions
can be applied to substrate nodes without any changes.

Consider the following scenario, where a set of n virtual
links from different VNs are embedded across a substrate
link. For simplicity, the resource requirements from different
VN requests are assumed to be independent of each other.
This seems to be reasonable, since VNs are operated by
different SPs and offer different services to different users.
For the basic sub-requirements that exist throughout the
lifetime of the respective VN request, we must allocate the
required number of dedicated time slots for them; however,
for the variable sub-requirements, since they occur with a
probability that is less than 1, sharing may be a viable choice

ts1
frame

1

p2=0.3
pth=0.1

p1=0.4 p3=0.2 p4=0.4
2 1 2 1 2 1 2

ts2 ts3 ts4 ts5 ts6 ts7 ts8 tsN
3

Fig. 3. The time slot assignment problem. The probability
threshold serves as the “volume” of a substrate time slot.

to conserve substrate resources for future VN requests.
Therefore, we will only consider how to assign substrate
slots to variable sub-requirements in the rest of this section.

We propose to assign one substrate slot to multiple u-
nits of variable sub-requirements. However, collisions may
happen, i.e., multiple units of sub-requirements occur si-
multaneously. To strike a tradeoff between utilization and
collision, we use a collision threshold pth to represent the
“volume” of a substrate time slot.

Denote by Dj the set of variable sub-requirements that
substrate slot tsj is assigned to; let Xi indicate whether the
i-th variable sub-requirement occurs, i.e., Pr[Xi = 1] = pi.
Then, the probability of a collision happening at slot tsj ,
denoted by Pr(Dj), is:

Pr(Dj) = Pr[
∑

i∈Dj

Xi ≥ 1] = 1−
∏

i∈Dj

(1− pi)

−
∑

i∈Dj

(pi
∏

k∈Dj ,k ̸=i
(1− pk))

(1)

We have the following optimization problem.
Problem 1: (The time slot assignment problem, TSA)

Given a set of n virtual links from different VNs, the
variable sub-requirement of the i-th virtual link is vi time
slots, each of which is needed with probability pi. Find an
assignment of substrate time slots to the sub-requirements
to minimize the number of slots used, such that: 1) for the
variable sub-requirement of the i-th virtual link, the number
of time slots assigned to it is at least vi; and 2) the collision
probability at each substrate time slot is no more than a
given collision threshold pth.

For example, Fig. 3 shows a feasible assignment. ts1 can
be assigned to two variable sub-requirements because they
collide with a probability 0.08, which is less than pth =
0.1; however, ts4 can not be assigned to the 2-th and 4-
th sub-requirements simultaneously, because the collision
probability 0.12 is larger than pth.

For the hardness of the TSA problem, we have the fol-
lowing theorem. Please refer to the supplemental material
for the detailed proofs of all the theorems in this paper.

Theorem 1: TSA is NP-hard in the strong sense

5.2 An ILP-based Optimal Solution

Inspired by the cutting stock problem1, we can formulate the
TSA problem by means of ILP. Denote a set of variable sub-
requirements whose collision probability is no more than
pth as a pattern. Denote the number of all possible patterns
as m. For each possible pattern j, let xj represent the times

1. Cutting stock problem [26]: Given a number of rolls of paper of
fixed width waiting to be cut, yet different customers want different
numbers of rolls of various-sized widths, find a cutting method to
minimize the waste.
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that pattern j appears in a feasible assignment. Thus, the
TSA problem can be formulated as:

min
∑m

j=1
xj

s.t.
∑m

j=1
(ajixj) ≥ vi,∀i ∈ {1, 2, ..., n}

xj , nonnegative integer, ∀j ∈ {1, 2, ...,m}

(2)

where aji indicates whether pattern j contains the i-th
sub-requirement. Ideally, Equ. (2) can be optimally solved
using intelligent exhaustive search approaches, such as
backtracking and branch-and-bound [24]. However, it is
not practical. First, the number of possible patterns can
be exponentially large, the construction of which costs
exponential time; Second, the intelligent exhaustive search
approach usually consists of a systematic enumeration of
all candidate solutions, which is also difficult to apply in
practice. This motivates us to design practical solutions,
which are introduced in the next two subsections.

5.3 First-Fit by Collision Probability

In the bin packing problem [23], we are given n items with
sizes s1, s2, ..., sn ∈ (0, 1], and the objective is to find
a packing method in unit-sized bins that minimizes the
number of bins used. We observe that, when each variable
sub-requirement requires only one time slot, i.e., vi = 1 for
all 1 ≤ i ≤ n, TSA is similar to bin packing, except that the
size of multiple items is the sum of them in bin packing; the
collision probability of multiple sub-requirements is neither
linear nor multiplicative, as shown in Equ. (1).

The first-fit algorithm [23] is a greedy approximation
algorithm of factor 2 for bin packing. In first-fit, items
are considered in an arbitrary order, and for each item,
first-fit attempts to place the item in the first bin that can
accommodate the item. If this is not possible, the item is
placed into a new bin. First-fit can be executed online, and
has a low time complexity.

Algorithm 2 First-Fit by Collision Probability (CFF)
1: Input: vi and pi
2: cnt← 0, index← 0
3: while cnt < vi do
4: while getCollistionPro(Dindex, pi) > pth do
5: index← index+ 1
6: if index > N return false
7: end while
8: Dindex ← Dindex ∪ {i}
9: cnt← cnt+ 1, index← index+ 1

10: if index > N return false
11: end while
12: return true

The resemblance between the two problems inspires us
to adopt the core idea of first-fit and design the “First-
Fit by Collision Probability” (CFF ) algorithm, shown in
Alg. 2. In the algorithm, N is the total number of sub-
strate time slots, and Dj is the set of sub-requirements
that the j-th substrate time slot is assigned to; the fuction
getCollisionPro(Dindex, pi) returns the collision probability
of sub-requirements Dindex ∪ {i} and can be implemented

in a incremental manner. Let:

A(Dj) =
∏

h∈Dj

(1− ph)

B(Dj) =
∑

h∈Dj

(ph
∏

k∈Dj , k ̸=h
(1− pk))

then the collision probability in Equ. (1) can be rewritten as
Pr(Dj) = 1−A(Dj)−B(Dj). We have:

A(Dj ∪ {i}) = A(Dj)(1− pi)

B(Dj ∪ {i}) = B(Dj)(1− pi) +A(Dj)pi
(3)

Let us look at the performance guarantee of CFF. Denote
by Scff the assignment results from CFF, and by Sopt the
results from the optimal solution. Abusing the notation a bit,
we also use Scff and Sopt to denote the number of substrate
slots used in these results, respectively, if no confusion can
be caused. Let:

pmin = min1≤i≤npi, vmin = min1≤i≤nvi

pmax = max1≤i≤npi, vmax = max1≤i≤nvi

We then have the following theorem.
Theorem 2: Scff ≤ Sopt(vmax · vol1)/(vmin · vol2), where

volI and volII are the roots of equations:

1− (1− pmin)
vol1 − vol1 · pmin · (1− pmin)

vol1−1 = pth

1− (1− pmax)
vol2 − vol2 · pmax · (1− pmax)

vol2−1 = pth

5.4 First-Fit by Expectation of Indicators’ Sum
In Alg. 2, the getCollisionPro function is invoked whenever
we want to see whether a substrate slot can accommodate
a unit of variable sub-requirement, and it still costs five
additions and three multiplications, even when using in-
cremental calculation. Recall that the number of substrate
nodes and links may be very large; if we could reduce the
time complexity of getCollisionPro a little, then the total
benefit would be great.

Denote Xi as the indicator of the i-th variable sub-
requirement. Our motivational question is, for a given pth,
does a corresponding value exist such that, if the sum of the
indicators of a set of variable sub-requirements is less than
that value, then we can definitely know that the collision
probability of them is less than pth? Fortunately, based on
Chernoff bound [27], we prove the following theorem.

Theorem 3: If E[
∑

i∈Dj
Xi] ≤ µth, then Pr[Dj ] ≤ pth,

where µthe
1−µth = pth, and e is the exponential constant.

Given the value of pth, we have to solve a transcendental
equation pth = µthe

1−µth to get the corresponding µth.
In our implementation, we resort to numerical methods.
We notice that the curve of pth = µthe

1−µth is similar to
a parabola; therefore, polynomial interpolation is used to
approximately calculate µth. Given three points, (0.1,0.245),
(0.5,0.824), and (0.9,0.994), we get:

pth ≈ −1.27812µth
2 + 2.21437µth + 0.0363438

With the help of this theorem, the original determination
of whether a substrate slot can accommodate a unit of
variable sub-requirement turns into evaluating whether the
expectation of the sum of the sub-requirements’ indicators
is less than µth. We then modify the TSA problem a little
and get the following problem.

Problem 2: (The Expectation-based time slot assignment
problem, ETSA) Given a set of n virtual links from different
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n E[Y ] Pr[coll] pth E[Y ] Pr[coll] pth

1 0.1 0 0.245 0.2 0 0.445

2 0.2 0.01 0.445 0.4 0.04 0.729

3 0.3 0.028 0.604 0.6 0.104 0.895

4 0.4 0.052 0.729 0.8 0.181 0.977

5 0.5 0.081 0.824

9 0.9 0.225 0.994

Fig. 5. Due to the linearity of expectation, the mutual inde-
pendence is ignored in EFF, leading to a relaxation gap.

VNs, the variable sub-requirement of the i-th virtual link
is vi time slots, each of which is needed with probability
pi. Find an assignment of substrate time slots to the sub-
requirements to minimize the number of slots used, such
that: 1) for the variable sub-requirement of the i-th virtual
link, the number of time slots assigned to it is at least vi;
and 2) the expectation of the sum of the indicators of a set of
variable sub-requirements that a substrate slot is assigned
to is no more than a given expectation threshold µth.

Theorem 4: The ETSA problem is NP-complete.

We replace the condition in line 4 of Alg. 2 with pi +∑
k∈Dindex

pk > µth, and name the new algorithm “First-
Fit by Expectation of Indicators’ Sum” (EFF ). In doing so,
the checking condition in line 4 is reduced to one addition
operation, suggesting that EFF may run faster than CFF.

It turns out that using an expectation threshold decreases
the number of variable sub-requirements that a substrate
slot can be assigned to, however, this relaxation gap is a bit
more subtle than it might initially appear. To motivate it,
we start with the following illuminating example.

Consider a substrate slot that is assigned to n variable
sub-requirements from different virtual links, each occur-
ring with the same probability p; then, the collision probabil-
ity Pr[coll] is 1−(1−p)n−np(1−p)n−1 and the expectation
of the sum of indicators E[Y ] is np. For each E[Y ], we obtain
a value of pth by Theorem 3. Fig. 5 shows the relaxation gap.
For instance, when n = 2 and p = 0.1, we have E[Y ] = 2×
0.1 = 0.2, Pr[coll] = 1−(1−0.1)2−2×0.1×(1−0.1) = 0.01,
pth = E[Y ]e1−E[Y ] = 0.445, indicating, if we use µth = 0.2
as the expectation threshold, then the collision probability is
guaranteed to be no more than 0.445. However, the collision
probability of these two sub-requirements is 0.01, which is
much smaller than 0.445.

The main reason behind this phenomenon is that, mutual
independence is ignored in the EFF algorithm due to the
linearity of expectation. To make up the relaxation gap, we
replace µth by λµth in EFF, i.e., pi +

∑
k∈Dindex

pk > λµth.
Here, the parameter λ is used to control the relaxation, and
its empirical value will be investigated in our simulations.

5.5 Rearrangement
Due to the dynamics of virtual network requests, the sub-
strate resources may become fragmented, i.e., some shared
time slots are not in full use. In this subsection, we propose
to use rearrangement to avoid resource fragmentation and
improve resource utilization.

We start with an illustrating example, shown in Fig. 4.
Fig. 4(a) shows a snapshot of the time slot assignment in
a substrate link. Note that only the shared time slots are
shown in the figure, since the dedicated time slots are in
full use all the time. After some time, the first virtual link
along with its variable sub-requirement leaves, and the fifth
virtual link along with its variable sub-requirement arrives.
According to the first-fit-based algorithms, we first check
whether ts1 can accommodate a unit of sub-requirement
from the fifth virtual link, and it cannot, since p3p5 = 0.12 >
pth. We then check the following slots, and finally reach the
assignment shown in Fig. 4(b), where 8 slots are used.

However, if we rearrange the time slot assignment when
the first virtual link leaves, we could assign ts1 and ts2 to
the variable sub-requirements from the fourth virtual link.
In doing so, slots ts5 and ts6 would be assigned to the
newly arrived virtual link. The final assignment is shown in
Fig. 4(c), where we can see that the rearrangement reduces
the number of slots used by 2.

This example motivates us to propose the rearrangement
protocol as follows. On a virtual network request’s leave,
or at intervals set by an InP, the following operations are
performed in every substrate node and link: for decreasing
j from N to 1, the sub-requirements in Dj are reassigned
by using CFF or EFF. The loop ends upon an encounter
with a substrate slot, which is just assigned to a new sub-
requirement by this rearrangement protocol.

In a sense, rearrangement “compresses” the assignment
so that it takes up less time slots, which is beneficial
to future VN requests, and improves substrate resources
utilization. It is worth noticing that, after the rearrangement
is performed, the residual resources of substrate nodes and
links change. To capture this change, the residual resource
estimation should be executed. We can see that the rear-
rangement incurs some computational overhead; therefore,
our protocol allows InPs to achieve a tradeoff between
resource utilization and computational overhead by tuning
the trigger intervals.

5.6 Estimating Residual Resource
This subsection presents how we estimate the residual
resources of each substrate node and link in the context of
opportunistic resource sharing.

Residual resources are traditionally defined as follows:
RCs(ns) = Cs(ns) −

∑
∀nv fc(n

v, ns) and RBs(es) =
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each of ts2, ts3, ts4, ts6, and ts7 is assigned to a set of
variable sub-requirements, denoted as Di, respectively; the
other slots are unused.

Bs(es) −
∑

∀ev fb(e
v, es), where fc(n

v, ns) denotes the
amount of the CPU resources in ns that are allocated to
nv , and fb(e

v, es) denotes the amount of the bandwidth
resources in es that are allocated to ev . Since both CPU
and bandwidth are expressed in time slots, this subsection
focuses on RBs(es); RCs(ns) can be analyzed similarly.

However, when we apply opportunistic resource sharing
to the resource allocation in substrate networks, some sub-
strate time slots are shared among multiple virtual network-
s, then it is non-trivial to calculate the amount of residual
resources in a substrate node or link. Fig. 6 shows a time
slot allocation snapshot in a substrate link. We see that ts1
and ts5 are assigned to some basic sub-requirements; each
of ts2, ts3, ts4, ts6, and ts7 is assigned to a set of variable
sub-requirements, denoted as Di; the other slots are unused.
The residual resource should include the unused slots and
the residual “room” in the shared slots. We then propose a
reasonable method to properly measure the latter.

For a substrate node or link that has N time slots, where
N = Cs(ns) if it is a substrate node ns, or N = Bs(es)
if it is a substrate link es, denote the set of slots that are
assigned to basic sub-requirements as Sb; denote the set of
slots that are assigned to variable sub-requirements as Sv ;
denote the rest as Su. For example, in Fig. 6, Sb = {1, 5},
Sv = {2, 3, 4, 6, 7}, and Su = {1, 2, 3, ..., N} \ (Sb ∪ Sv).

The residual room rrk in the k-th slot which belongs to Sv

is defined as a probability that satisfies the following con-
dition: if we assign tsk to a new variable sub-requirement,
which occurs with this probability, then the collision prob-
ability would be equal to pth. This definition is intuitively
reasonable, as it indicates the maximum probability of a
variable sub-requirement that we can assign tsk to.

When |Dk| = 1 and Dk = {h}, rrk = pth/ph; when |Dk| >
1, according to Equ. (3), we have:

1−A(Dk)(1− rrk)− (B(Dk)(1− rrk) +A(Dk)rrk) = pth

After solving it, we get:

rrk =
A(Dk) +B(Dk) + pth − 1

B(Dk)
=

pth − Pr(Dk)

B(Dk)
(4)

Thereby, the residual resource of this substrate link is:

RBs(es) = |Su|+
∑

k∈Sv

min{rrk, 1} (5)

Take ts1 in Fig. 2 for example, Pr({1, 3}) = 0.08,
B({1, 3}) = 0.44; thus, the residual room in ts1 is rr1 =
(pth − Pr({1, 3}))/B({1, 3}) ≈ 0.045.

5.7 Remarks and Summary

In summary, this section starts with the formulation and
the NP-hard result of the micro-level time slot assignmen-
t problem, then provides an ILP-based optimal solution,
which is not practical. The similarities between our problem

and bin packing further motivates us to propose two first-
fit-based heuristics, the performances of which are to be
investigated in our extensive simulations. We then design
a simple rearrangement protocol to cope with resource
fragmentation, and show how to estimate residual resources
of substrate nodes and links. We also provide in Section
1 of the supplemental material some intuitive insights on
how opportunistic resource sharing can lead to a win-
win situation—service providers’ costs are lowered, while
infrastructure providers’ revenues increase, as well.

We note that the adaptation of the micro-level time slot
assignment to the scenario where a node has multiple types
of resources is trivial, since the algorithms in this section are
micro-level, and are executed in every substrate and link.
When there are multiple types of resources, the InPs just
have to run the algorithms for them individually.

We conclude this section by presenting the time complex-
ity results. Denote the maximum variable sub-requirement
among all of the virtual nodes and links from a virtu-
al network as max(v); denote the maximum capacity a-
mong all of the substrate nodes and links in a substrate
network as max(max(B),max(C)). Let F = max(v) ·
max(max(B),max(C)), then, both CFF and EFF have at
most O(F ) comparisons. The estimation of residual re-
sources takes O(|Ns|+|Es|) time. The overall time complex-
ity of the micro-level component is O((|Ns|+|Es|)(1+F )) =
O(F |Ns|2), where |Ns| and |Es| are the cardinalities of Ns

and Es, respectively.

6 PERFORMANCE EVALUATION

In this section, we first concentrate on the scenario of a
single substrate link in an effort to quantify the benefits
of opportunistic resource sharing and compare the perfor-
mances of CFF and EFF. We then compare ORS with two
state-of-the-art fixed-resource embedding schemes.

6.1 Single Substrate Link

We first consider a scenario where a single substrate link is
shared among multiple virtual links from different virtual
network requests. Since we have no choice but to allocate
the corresponding required slots for basic sub-requirements,
we do not consider the basic sub-requirements in this
subsection. The number of variable sub-requirements is
n, and the i-th (1 ≤ i ≤ n) sub-requirement needs vi
slots with probability pi. In our simulation, vi is uniformly
generated between 2 and vmax; pi is uniformly generated
from two intervals, i.e., (0.05, 0.10) and (0.05, 0.20); the
collision threshold pth is chosen from {0.1, 0.2, 0.3}. We try
to compare the performances of CFF and EFF, and see the
effects of n, vmax and pth.

6.2 Results of Single Substrate Link

(1) The impact of n: Fig. 7 shows the corresponding results,
where we keep the other parameters fixed, e.g., pth = 0.1
and vmax = 10. We denote EFF with relaxation parameter
λ by EFF(λ), and the number of substrate slots that are
needed, if opportunistic resource sharing is not adopted,
by “total slots.” We note that, when n increases from 20 to
100 with an increment of 20, the data points are linear in
shape, indicating that the number of substrate slots used
grows linearly with n. We also see that, when λ increases,
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Fig. 7. Comparison of CFF and EFF under varying n while
keeping pth = 0.1 and vmax = 10. EFF(x) denotes λ = x.
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Fig. 8. Comparison of CFF and EFF under varying vmax

while keeping pth = 0.1 and n = 50.

the results of EFF(λ) occupy less substrate slots, since a
larger λ allows more sub-requirements to be accommodated
in a single substrate slot. We also find that EFF(14) achieves
almost the same results as CFF; however, when λ > 14, as
we shall explain shortly in Fig. 9, the collision probability
would be bigger than the threshold.

(2) The impact of vmax: Fig. 8 shows the corresponding
results, where we keep the other parameters fixed, e.g.,
pth = 0.1 and n = 50. When vmax goes up from 10 to 50
with an increment of 10, the substrate slots used also grows
linearly with vmax. By comparing Fig. 8(a) with Fig. 8(b),
we find that, when pi doubles on average, the number
of slots used nearly doubles. The main reason behind this
phenomenon is, when pi increases on average, the number
of sub-requirements that a substrate slot can accommodate
decreases; however, as the collision probability is neither
additive nor multiplicative, the double of pi does not nec-
essarily lead to a doubling of the number of slots used.

(3) Comparison of running times: Fig. 9(a) demonstrates the
comparison results between the running times of CFF and
EFF, where pth = 0.1, vmax = 30, and pi ∈ (0.05, 0.10). We
make two observations. First, EFF generally runs faster than
CFF. The main reason behind this phenomenon is, as we
mentioned in Section 5.4, EFF replaces the getCollisionPro
function, which requires five additions and three multipli-
cations, with just one addition. Second, EFF(λ) runs faster
when λ is increasing. The reason is implicit, if somewhat
subtle: one substrate slot can accommodate more variable
sub-requirements when λ becomes larger, thus, the value of
index in EFF(λ) becomes smaller on average.

(4) The impact of pth: Fig. 9(b) shows the ratio of EFF(14)
to total slots under different thresholds, while we keep
n = 100 and vmax = 10. We note that, for fixed vmax,
the ratio goes down when the threshold increases. This is
reasonable, since the threshold serves as the “volume” of
a substrate slot, and a larger threshold allows a substrate
slot to accommodate more sub-requirements. For fixed pth,
the ratio goes up when vmax increases. This is because a
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larger vmax makes the number of sub-requirements that a
substrate slot can accommodate decrease, and hence EFF(14)
needs more substrate slots.

In our simulations, we also find that, when λ > 14, the
collision probability in the embedding results of EFF would
be bigger than pth = 0.1. In addition, this critical value is
about 10 when pth = 0.2, and about 8 when pth = 0.3. We
explain this as follows: if we replace every pi with pmax =
max(1≤i≤n)pi, then the number of sub-requirements that a
single substrate slot can accommodate, denoted as y, can
be resolved by 1 − (1 − pmax)

y − pmax(1 − pmax)
y−1y =

pth. Then, by double counting the indicators’ sum, we get
λµth = pmaxy. When pth goes up, both y and µth go up,
but λ goes down, indicating that µth grows faster than y.

We also conducted simulations with pth = 0.2 and pth =
0.3. The results are similar to the above, and are therefore
omitted due to space limitations. Briefly speaking, both CFF
and EFF improve the resource utilization, and EFF is less
time-consuming and more flexible than CFF.

6.3 Entire Substrate Network

In this subsection, we consider VNE at the level of the
entire network, compare our framework with two state-of-
the-art fixed-resource embedding algorithms [12], [13], and
investigate the impacts of various parameters.

Our simulation settings follow prior work [12], [13], as
network virtualization is still in its infancy. We use ANSNET
and ARPANET as the substrate network topologies. Both
CPU and bandwidth capacities in substrate networks are
generated uniformly from the interval between 50 and
100. For virtual networks, the number of virtual nodes is
determined by a uniform distribution between 2 and 10, and
each pair of virtual nodes is connected with a probability of
0.5. We also check whether a virtual network is connected;
if it is not, we just regenerate it until we get a connected
topology. The lifetime of each virtual network is assumed to
be exponentially distributed with an average of 10 minutes.
The arrivals of VN requests are modeled as a Poisson
process with an average rate of five requests per minute.
The collision probability threshold is set to 0.1 throughout
this evaluating scenario. The results are averaged over 100
times of running. (Results over ARPANET are similar and
are omitted due to space limitations.) Our framework ORS
is compared with the following two algorithms:

• R − V iNE [12]: coordinated node and link mapping
through mixed integer programming formulation and
randomized rounding.

• Greedy [13]: greedy node mapping and path splitting.
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Fig. 10. Comparison results among ORS, R− V iNE and Greedy, where E[b+ v] = 10, E[b/(b+ v)] = 0.5, E[p] = 0.15.

The performance metrics we use for comparison include
acceptance ratio, which is the ratio of the number of accepted
virtual network requests to all requests, node utilization ratio,
which is the ratio of the amount of the allocated CPU
resources to overall CPU resources in the substrate network,
and link utilization ratio, which is the ratio of the amount
of the allocated bandwidth resources to overall bandwidth
resources in the substrate network. We are also interested
in the impacts of the following parameters:

• E[b+ v]: the average total number of slots required by
a virtual node or link;

• E[b/(b + v)]: the average percentage of the number of
slots in a basic sub-requirement to the total number of
slots required by a virtual node or link;

• E[p]: the average happening probability of variable
sub-requirements of virtual nodes and links.

6.4 Results of Entire Substrate Network
(1) Comparison of acceptance ratios: Figs. 10(a), 10(b), and

10(c) show the comparison of the acceptance ratio over time,
cumulative distribution function (CDF) of node utilization
ratio, and CDF of link utilization ratio, respectively. In
these experiments, E[b + v] is 10, E[b/(b + v)] = 0.5, and
E[p] = 0.15. In Fig. 10(a), as a whole, the acceptance ratio
of ORS is the highest, and Greedy is the lowest, indicating
that opportunistic resource sharing indeed improves the
deployment of virtual networks, which further enables the
substrate network to accept more VN requests. We notice
that the acceptance ratio of three algorithms is about 0.4 on
average, which is a little low. The main reason is that links in
the substrate network (ANSNET has 32 nodes and 58 links,
ARPANET has 20 nodes and 32 links) are sparse, while
each pair of nodes in a virtual network is connected with a
probability of 0.5. Thus, topology becomes the dominating
factor in our simulation scenarios.

(2) Comparison of node and link utilization ratios: In
Figs. 10(b) and 10(c), the node/link utilization ratios of ORS
and R − V iNE are the highest and the second highest,
respectively. We notice that the link utilization ratio is a
little higher than node utilization ratio in every algorithm,
i.e., each CDF curve in Fig. 10(b) is in the left of the
corresponding curve in Fig. 10(c), if we can put these two
figures together and look at them. This is reasonable, since
a virtual link spans over several substrate links, while a
virtual node only exists in a substrate node.

(3) The impact of E[b+v]: Fig. 11(b) shows the results of the
impact of E[b+v]. We note that, in the case of a small E[b+
v], the acceptance ratio is high. However, with increasing
E[b + v], the substrate network resources become scarce,
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which causes more and more VN requests to be rejected.
In this figure, (E[b + v] = 15) achieves almost the same
acceptance ratio as (E[b+v] = 20). The main reason behind
this phenomenon is that (E[b+ v] = 15) is sufficiently large
compared to the average capacity of substrate nodes and
links, i.e., 75 in our simulation.

(4) The impact of E[b/(b + v)] and E[p]: Fig. 11(c) shows
the impact of them, where (E[b/(b+v)] = 0.30, E[p] = 0.15)
has the best performance, and (E[b/(b + v)] = 0.50, E[p] =
0.05) has the second best, indicating that the basic sub-
requirement percentage b/(b + v) plays a more important
role than the occurring probability p, which is reasonable,
since the basic sub-requirements cannot be shared.

In summary, simulations of the single substrate link s-
cenario demonstrate that both CFF and EFF improve the
resource utilization of substrate networks, and EFF is more
flexible and less time-consuming than CFF. In addition,
simulations of the entire substrate network show that our
framework outperforms two state-of-the-art fixed-resource
embedding algorithms, in terms of both acceptance ratio
and utilization ratio. Our results also show some insights
into the impacts of various parameters.

7 RELATED WORK

For the general network virtualization, cognitive radio-
based virtual networks are envisioned in [28]; optical back-
bone network virtualization is investigated in [29]. Virtuliza-
tion is used to lower the barrier for deploying wide-area
services in [30]. Adaptive resource allocation is introduced
to maximize the aggregate performance across multiple
virtual networks in [31].

For the virtual network embedding problem, a large
number of algorithms have been proposed in the past. These
algorithms give good inspiration to the design of ORS.
Simulated annealing was introduced to cope with VNE’s
NP-completeness in [9] and [19]. Embedding with unlimited
substrate resources is studied in [11] and [10]. Zhu et al. [11]
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focused on load balancing and on-demand assignments, and
Lu et al. [10] attempted to minimize the embedding cost of a
single virtual network with a backbone-star topology. Yu et
al. [13] envisioned path splitting support from substrate
networks, and proposed to first map virtual nodes greedily,
then handle link mapping based on the multi-commodity
flow algorithm. Lischka et al. [14] proposed a backtracking
algorithm based on subgraph isomorphism detection, but
restricted the length of the substrate paths. Chowdhury et
al. [12] proposed a linear programming and determinis-
tic/randomized rounding-based algorithm with better co-
ordination between node and link mappings, but added
location constraints to simplify the problem. Chowdhury et
al. [16] presented a policy-based decentralized inter-domain
virtual network embedding framework, and also designed a
location-aware VN request forwarding mechanism. Recent-
ly, Bienkowski et al. [32] presented a competitive analysis
framework for service migration in a mobile network virtu-
alization architecture, where thin clients on mobile devices
access services that can be migrated closer to the access
points, as to reduce user latency. Even et al. [7] proposed
a competitive online algorithm for admission control, while
assuming the existence of an oracle that helps to compute
the embedding.

Comparatively, while prior embedding algorithms re-
serve fixed resources throughout the lifetime of a virtual
network, this work rethinks this paradigm and proposes
to opportunistically share resources among multiple virtual
networks, so as to make efficient use of the precious sub-
strate resources.

8 CONCLUSIONS

In this paper, we rethink the virtual network embedding
problem from the perspective of opportunistic resource
sharing, and we propose an embedding framework that
consists of the macro-level node-to-node/link-to-path em-
bedding and the micro-level time slot assignment. Extensive
simulations confirm the effectiveness of our framework.
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