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An Algorithm for Obtaining 
Proper Models of Distributed 
and Discrete Systems 
The development of automated modeling software requires strategies for synthesizing 
mathematical models of systems with distributed and discrete characteristics. A model 
order deduction algorithm (MODA) is developed to deduce a Proper System Model 
by selecting the proper complexity of submodels of components in a system subject 
to a frequency based metric. A Proper Model in this context means that (1) the 
system model has the minimum spectral radius out of all possible system models of 
equivalent or greater complexity, and (2) any increase in the model complexity will 
result in spectral radius beyond a specific frequency range of interest. Proper Models 
are also defined to have physically meaningful parameters. Proper Models are in
tended to be useful for design, where mapping the relationship between design param
eters and dominant system dynamics is critical. While MODA is illustrated using the 
application of machine-tool drive systems, it is readily applicable to other modeling 
applications. 

1 Introduction 

The development of automated modeling software (de Kleer 
and Williams, 1991; Rinderle and Subramaniam, 1991; Stein 
and Tseng, 1991) will require algorithms to develop mathemati
cal models of distributed and discrete or network engineering 
systems. Systems of this type are ubiquitous; for example, drive 
trains of rotating machinery contain (distributed) compliant and 
inertial shafts that connect (discrete) pulleys, gears, and tor
sional loads. The input to the automated-modeling software is 
envisioned to be a high-level system description, i.e., a descrip
tion based solely on component geometric information and ma
terial constants. The modeling algorithms should transform this 
description into a set of ordinary-differential equations (state 
equations) whose parameters and coefficients are defined di
rectly by the component geometry and material constants found 
in the system description and whose complexity is commensu
rate with the goals of the modeling exercise. The algorithms 
should be efficient, i.e. the algorithm should not require an 
inordinate amount of time to create a model, regardless of the 
number of components in the system description. The models 
created by the algorithms can be used in conjunction with analy
sis and simulation software such as Matlab to study system 
behavior. In this manner, the availability of automated-modeling 
software will facilitate engineers to analyze and simulate the 
behavior of a variety of different configurations at an early stage 
in the design process, since the burden of creating a simulation 
model will be reduced. 

State equations have been used as a basis for performing 
system analysis and controller design. However, only more re
cently has there been an awareness of the benefits of modeling 
early in the design phase (Rosenberg, 1991), with particular 
advantages resulting when low-order models are used (Hogan, 
1991). This potential can be more fully realized if software 
tools for generating models are available to assist the designer. 
The idea of automating the creation of models has only recently 
been proposed in the engineering community. Stein and Tseng 
(1991) argue that the modeling process is more structured than 
commonly believed, and, hence, more amenable to automation. 
Rinderle and Subramaniam (1991) have developed an algo-
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rithm that simplifies a (potentially) complex model into a mini
mal set of state equations. Commercial software programs such 
as Adams can be used to obtain a set of algebraic and ordinary-
differential equations from a system description. However, 
when using this program, the onus remains on the user to decide 
which parts of the system to model as rigid and which parts to 
model as compliant. In effect, the user chooses the required 
complexity of the model. The authors believe that the develop
ment of truly automated modeling software should not require 
the user to specify how the system is to be modeled; rather, the 
software itself should make this decision. Such software will 
require algorithms that are able to transform a system descrip
tion based purely on component geometry, interconnections, 
and material constants into a model whose complexity is suited 
to the goal(s) of the modeling exercise. Furthermore, creating 
models of a complexity level suited to the goals of the modeling 
exercise requires that a quantitative measure must be defined 
to dictate the required complexity of the model. It will be shown 
that iht frequency range of interest (FROI) provides one such 
measure. 

This paper describes a model-order deduction algorithm 
(tVIODA) that coordinates the transformation of a geometric 
description of a one-dimensional, network-type system into a 
Proper Model for a given FROI. Systems of this type are charac
terized by a collection of components connected serially, and 
are ubiquitous in manufacturing, e.g. spindle and feed drives; 
defense, e.g. stabilized pointing and tracking platforms; and 
automobiles, e.g. engine and transmission drive trains. A key 
feature of this algorithm is the ability to relate the modeling of 
any individual component to (1) the goals of the modeling 
exercise and (2) the effect of the component's behavior on the 
overall system behavior. The algorithm also synthesizes models 
of minimum spectral radius and whose parameter coefficients 
are derived from design data, e.g., component geometry and 
material properties. 

1.1 Parameter-Lumping Tecliniques. To provide fur
ther motivation for the utility of the algorithm discussed in 
this paper, an example of a modeling exercise is given. Two 
parameter lumping techniques are considered: one that novice 
modelers might employ and one that expert modelers might 
employ. For illustration, consider a system consisting of three 
torsional flywheels and two torsional shafts. 
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Novice modelers may approach the modeling of this system 
in several ways: one might model one shaft as (infinitely) rigid 
and the other as a single compliance; another modeler may 
represent each shaft with a single compliance; yet another mod
eler may try to combine the compliance of each shaft into a 
single compliance; etc. Even if each modeler correctly relates 
material dimensions and physical constants to the shaft compli
ance (i.e., spring rate), there is still no guarantee that the models 
created by these individuals are well suited to the task at hand. 

Expert modelers may approach the modeling of the system 
quite differently. They might first assess the goal(s) of the 
modeling exercise and translate these goals into the required 
model bandwidth, w^q. They could then test the affect on the 
model of including the compliance of each shaft in the model. 
If including the compliance of one shaft resulted in a natural 
frequency greater than Wreq, they would tend to dismiss the 
compliance of this shaft as irrelevant to the task at hand, and 
thus not include this shaft's compliance in the model. Con
versely, if including the compliance of a shaft in the model 
resulted in a natural frequency less than ui,eq, the expert would 
certainly include this compliance in the model. Thus, through 
patiently trying different parameter lumping combinations, the 
expert determines which structural effects to include in a model 
and which to omit. 

The modeling scenarios of the flywheel-shaft system illustrate 
the various techniques that engineers employ to synthesize a 
system model. The scenarios indicate the number of decisions 
involved for modeling even such a simple system. The decisions 
required to synthesize a model for a general iV-component sys
tem, e.g., deciding how many compliances (if any) to use to 
model each element, are potentially extensive and time consum
ing. A formal methodology, or algorithm, to make these deci
sions is presently lacking. 

1.2 Content of Paper. The requirements of MOD A, the 
submodel-synthesis algorithms that MODA calls, and the search 
strategy that MODA uses to find the proper combination of 
component submodels follow (Section 2). An example of 
MODA operation is presented (Section 3). The article then 
addresses some of the potential problems with MODA's search 
strategy, extensions to MODA that enable it to synthesize mod
els meeting different criteria, and pole migration as model rank 
increases (Section 4). 

2 Description of MODA 

2.1 Algorithm Requirements. The purpose of the algo
rithm is to coordinate the synthesis of a minimum complexity, 
lumped, physical model^—a Proper Model—that is intended to 
represent the response of a configuration of distributed and 
discrete components. The input to the algorithm is a purely 
geometric and physical description of the configuration. During 
the model synthesis process, models synthesized by MODA are 
to meet three criteria: 

1. The model parameters and coefficients relate directly to 
the component dimensions and material constants. 

2. The sum of the individual inertias in the model will equal 
the total inertia of the actual system. 

3. The sum of component ranks is distributed in such a 
manner as to minimize model spectral radius (Pmodei) for 
a given sum of ranks; any increase in model rank will 
result in a pmodei greater than specific FROI. 

The first requirement ensures that the connection between the 
actual system and the model is clear, so that an engineer using 
the model can relate changes in the dimensions and material 
constants of the actual system to changes in the model parame
ters and coefficients. The second requirement places restrictions 
on the model assembly process; it's intended to ensure that the 
assembly process includes all component inertias in the system 
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Fig. 1 Torsional shaft and physical model 

model. Component inertias are retained in the system model 
because they affect motor-sizing and power specifications. The 
last requirement is motivated by a need to synthesize models 
that are both low order and predict the lowest resonant frequen
cies of a system. Before elaborating on this further, some back
ground on submodel synthesis algorithms and the FROI is nec
essary. 

2.2 Submodel-Syntliesis Algorithms. A program imple
menting MODA will need a set of routines to synthesize compo
nent submodels from geometric descriptions of the components. 
These routines, submodel-synthesis algorithms (SSAs), are 
specific to each component. A variable called rank is associated 
with each component and is used in conjunction with the com
ponent's SSA to specify the complexity of the submodel of a 
given component. This variable has been defined because it is 
necessary to order the component submodels. A practical order
ing scheme is one in which larger ranks correspond to more 
complex submodels. The simplest model of a given component 
is its rank-0 model. The rank-0 model is in effect a rigid-body 
model of a component, which in the case of mechanical compo
nents implies that no compliant elements are present in the 
model. Components and their associated SSAs can be separated 
into two categories: unbounded rank and bounded rank. These 
categories are discussed next. 

2.2.1 Unbounded-Rank Components. The SSAs of un
bounded rank components permit models of rank 0-<» to be 
synthesized from them. The torsional shaft is one such compo
nent, this shaft is illustrated along with its corresponding physi
cal model in Fig. 1. 

In Fig. 1, the magnitude of the individual inertias and compli
ances are obtained by the following equations (Rao, 1990): 
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Where 

^ s h a f l = 
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Ji = 
Ki = 

Note that for the shaft, the rank Â  equals the number of torsional 
springs in the physical model. Equations ( l ) - ( 5 ) are equally 
applicable for a ballscrew with one change. In the case of a 
ballscrew Lshaft is the length of the ballscrew up to the point 

the torsional spring rate of the shaft 
the rank associated with the shaft 
the length of the shaft 
the diameter of the shaft 
the shear modulus of the shaft 
the torsional inertia of the shaft 
inertia coefficients in the model 
spring rate coefficients in the model 
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Fig. 2 Bond graph of rank-1 belt-drive 

where the ballnut is located; the remaining portion of the ball-
screw is treated as a torsional inertia. 

2.2.2 Bounded-Rank Components. The fundamental dif
ference between the SSAs for unbounded rank components and 
bounded rank components is that the most complex models 
of the latter are assumed to contain only a finite number of 
independent energy storage elements, i.e., states. Drive-train 
components in this category include a DC motor, a gear-pair, 
a belt-drive, and a ballnut. Two components whose ranks are 
assumed to be bounded are considered here: the belt-drive and 
the DC motor. 

Belt-Drive. A belt-drive consists of two sheaves and a 
massless, compliant belt. Note, a massless belt is an application-
dependent modeling assumption. In the case when the compli
ance of the belt is included in the model (rank-l) there are 
three independent energy storage elements. The bond graph for 
a rank-1 belt-drive is shown in Fig. 2. 

In the rank-0 case the compliance of the belt is not included 
in the model, i.e. the belt is assumed to be infinitely stiff. The 
two sheaves are now kinematically coupled, and the rank-0 belt-
drive has only one independent energy storage element. 

DC Motor. In common practice a DC motor is modeled 
with either one or two independent energy storage elements 
(Franklin and Powell, 1991). When the motor is modeled with 
two independent energy storage elements (rank-1), the flux 
linkage is included in the model. The bond graph for the rank-
1 motor is shown in Fig. 3. 

In the rank-0 case, the inductance of the winding is assumed 
negligible and the rotor angular momentum is the only indepen
dent energy storage element. Note that in modeling the motor in 
this manner, effects such as heating of the winding, saturation, 
cogging, etc. are not included in the model. These effects are 
implicitly assumed to be negligible in the drive train application. 

2.3 Frequency Range of Interest. Karnopp et al. (1990) 
use the FROI to determine the required complexity of a model 
synthesized from a configuration description. They discuss the 
FROI primarily in the context of the frequency content of an 
input to the system. They recommend that the model of a distrib
uted component, such as a beam, should only be accurate to 
two to five times the maximum excitation frequency in the 
input. Accurate means that the model contains sufficient modal 
information to predict how the actual system would respond to 
frequencies in a range between 0 to 5 X Wmaxexcitation• Thus, 5 X 
Wmax exgiiutioii bccomes thc required model bandwidth. The spectral 
radius, Pmodci, is the Euclidean norm of the largest eigenvalue 
of a state matrix, and is effectively the highest complex-scalar 
input frequency to which a model can reliably respond. Using 
the criterion from Karnopp et al., if p,„odei > 5 X a;„„x-excitatioii> 
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Fig. 4 Flywlieel-shaft system to be controlled 

the model can accurately respond to frequencies up to 
^max-excitation • 

The use of a model for controller design also places fre
quency-related requirements on the model. Consider the fly
wheel-shaft-flywheel system shown in Fig. 4. A torque is ap
plied to the Flywheel 1 and the goal is to control the velocity 
of Flywheel 2. A proportional controller will be used to regulate 
the velocity. The desired open-loop frequency response of the 
flywheel-shaft system is shown in Fig. 5, which illustrates two 
frequency-response plots. 

The first plot in Fig. 5 shows a resonance whose peak rises 
above the 0-dB line; this condition would result in unstable, 
closed-loop operation. If the flywheel-shaft system has a reso
nance of sufficient magnitude and proximity to the open-loop 
crossover frequency, the model should include this resonance. 
The second plot in Fig. 5 shows a resonance at a frequency 
much greater than the crossover frequency. A resonance of 
this magnitude at this frequency would not result in unstable 
operation, nor would it adversely affect system performance. 
Therefore, there is little reason to include this resonance in the 
model. The magnitude of a given resonance (the amount of 
peaking in the frequency-response plot) is a function of the 
damping in the system. An accurate, theoretical estimate of the 
amount of peaking caused by a resonance remains a research 
topic. However, a rule of thumb suggests that upper-bound of 
the FROI, i.e. the required /O„,odei, should be 5 to 10 times the 
desired crossover frequency. 

Returning now to the third MOD A requirement, MOD A is 
to distribute component ranks such that pmodei is minimized and 
any increase in the sum of the ranks results in Pmodei > t̂ r̂eq • An 
algorithm with this capability can be used to synthesize the 
minimum-rank model accurate to a frequency w^q. A brief ex
ample illustrates how such a model can be synthesized. Consider 
the three-mass, two-shaft configuration in Fig. 6, and three pos
sible models of the configuration, shown in the same figure. 

For a FROI of 1.25 (radians/second), Model A and Model 
B of Fig. 6 both predict poles within this range, and they both 
have the same rank. However, Model A has a smaller pmodei 
than Model B, and is preferred, because it provides a more 
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Fig. 3 Bond graph of DC motor with) flux linkage modeled Fig. 5 Desired open-loop frequency response 
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Fig. 6 Three-mass, two-shaft configuration and models 

realistic prediction of system performance than Model B. Con
tinuing with this example. Model C has a p„,odei greater than the 
FROI and an rank greater than Model A. Model C provides 
unnecessary information, and does not justify the increase in 
model rank. Thus, of the three models in Fig. 6, Model A is 
the preferred model, and the model that MODA is to synthesize. 

2.4 Search Strategy. MODA's task is to find the combi
nation of component ranks that, in conjunction with the compo
nent SSAs, synthesizes a Proper Model. An exhaustive (blind) 
search strategy for this combination of component ranks is 
likely to be inefficient, because it results in a potentially very 
large search-space; whereas a more informed search strategy 
pares this space considerably, and will thus be more efficient. 

Consider the problem of finding a Proper Model for an N-
component configuration. The exhaustive search strategy, de
picted in Fig. 7, starts at the root, a rank-0 configuration, and 
creates a set of models that correspond to individually increasing 
the rank of each component in the configuration (level-1), 
where level-1 corresponds to a configuration whose component 
ranks sum to 1. Each level-1 model spawns another set of mod
els, and the total number of models tested, at each level, equals 

''models-pcr-level 
D! 

M , e v e l ! ( ^ o t 1)! 
(6) 

The search concludes when the bandwidth of all models at a 
given level M is greater than the FROI, and the solution is the 
model (at level M - 1) with the minimum bandwidth. Clearly, 
for an arbitrary TV-component configuration and M-level search, 
the number of models tested can become prohibitively large. 

A heuristic to guide the search can greatly reduce the search-
space depicted in Fig. 7. The heuristic is derived from the Pmodei 
of the model associated with each node. The idea is to select 
the model with the minimum p^^M (at each level), and to use 
this model as a starting point for finding the n ext model. The 
model with the minimum pmoia is found by testing the effect 
on Pmodei of increasing the rank of each component. The compo
nent that causes the smallest increase in pmodei when the rank 
of this component is increased is referred to as the weak-dy
namic link component. The search-space for a three-component 
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Component 2 

Increase 
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Level 1 Component I 

Increase 
Rank of 

Component K 
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Fig. 7 Exhaustive search space for proper model 

Final Model 

001" Model 

"012" Model 

V Best Models 

O Tested Models 

Fig. 8 Reduced search space 

configuration that results from using the heuristic is shown in 
Fig. 8. 

This search technique fits in the category known as steepest-
ascent hill-climbing or gradient search. Using this technique the 
number of total trial solutions (models) needed to evaluate 
an AT-component configuration (assume for simplicity that all 
components are of type unbounded-rank.) to a level of M equals: 

Mo = 1 + M, X (Mievel + 1) (7) 

A comparison of (6) and (7) clearly indicates that the exhaus
tive search results in a much larger search space than the 
steepest-ascent hill-climbing search strategy. 

MODA is the algorithm that coordinates the gradient search 
for a Proper Model. This algorithm, depicted in Fig. 9, synthe
sizes a Proper Model at every level in the search, and should 
be used to increase the rank of the model until pniodei exceeds 
the FROI. At this point, MODA would decrease the rank of the 
last component to have its rank increased. In this manner the 
resulting model has minimal pmodei and minimal rank for a given 
FROI. Once the model has this rank, any additional increase of 
the rank of any component will result in p̂ odei beyond the FROI. 

There are several well-known problems associated with this 
type of search, and the ability of MODA to avoid these problems 
in synthesizing a Proper Model will be addressed in the Discussion. 

3 Example of Algorithm Operation 
An example of the use of MODA to synthesize multiple 

models of same configuration will illustrate how the model rank 
changes with the FROI, and how the sequence in which the 
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Fig. 9 Model-order-deduction algorithm 
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Fig. 10 Drive-train to be modeled 

component ranks change depends on the values of the compo
nent parameters. The configuration, shown in Fig. 10, consists 
of a DC motor, a belt-drive, a torsional shaft, and a flywheel. 
The dimensions and material constants of these components are 
given in the Appendix. 

MODA was applied to the drive train in Fig. 10. Different 
models were synthesized as the FROI increased, and the order 
(which is related to rank) of these models was tabulated for 
different FROI. Figure 11 plots the model order versus the FROI 
for the drive train using two sets of component parameters. 

As Fig. 11 indicates, more component dynamics need to be 
included in the model as the FROI increases. The plots shown 
in Fig. 11 also illustrate that the sequence in which the compo
nent ranks change (while the FROI is increasing) depends on 
both the component types and their parameter values. For Pa
rameter Set A, the relatively compliant belt-drive A requires 
the rank of this component to be increased first, which results 
in a model order of three at a frequency of 56 rad/s. Later, 
model order increases to six at 496 rad/s (a frequency beyond 
the pole caused by the inductance of the motor windings), 
when the compliance of the shaft is needed in the model. For 
Parameter Set B, in contrast, the compliance of the shaft must 
be included in the model first, at 112 rad/s. The relatively stiff 
belt compliance requires the belt rank to increase at the 209 
rad/s, which is much higher than 56 rad/s, the frequency at 
which the belt rank was increased for Parameter Set A. 

4 Discussion 

4.1 Satisfaction of Model Requirements. Three criteria 
for models synthesized by MODA have been stated. Models 
synthesized by MODA will definitely meet the first two criteria, 
and almost certainly meet the third, provided that MODA is 
supported by the appropriate SSAs and submodel assembly rou
tines. The first criterion, that the transformation of individual 
components into models should be physically meaningful, is 
satisfied provided that the SSAs provide physically meaningful 
relationships between component descriptions and the associ
ated models (such as those given by Eqs. ( l ) - ( 5 ) ) . The second 
criterion, that the sum of the individual inertias in the system 
model equals the total inertia of the actual system, is also met. 
MODA itself does not assemble the component models into a 
system model; a routine that MODA will use performs this 
assembly. Such as assembly task is conceptually straightfor
ward, (see, for example, [Doebelin, 80]) and should be easily 
implemented in an algorithm. 

The third criterion, "The sum of component ranks is distrib
uted in such a manner as to minimize (pmodei) for a given sum 
of ranks; any increase in model rank will result in a Pmodei greater 
than specific FROI", may not be possible to prove analytically. 
In lieu of a proof, we note that MODA synthesizes more com
plex models from less complex models, and that a definite order 
of these models exists. MODA identifies the component—at 
each stage of model-rank augmentation—that results in the 
smallest increase in pmodei, when the rank of this component is 
increased; this is the weak dynamic link component. As the 
model rank increases, different components will have this dis

tinction. The physics of the problem suggest that the weak 
dynamic link component is the obvious choice to use in increas
ing the model rank. The first model following the rigid-body 
model (the rigid-body model is synthesized from a set of rank-
0 components) should certainly come from the component caus
ing the first pole (pair) in a configuration. Furthermore, as 
more "dynamics" are added to a model, i.e., as more complex 
behavior is included, we should not expect that a previously 
included compliance can be arbitrarily removed. Hence, we 
assume that a given Proper Model is the basis for a more com
plex model. Furthermore, as model rank is increased, the model 
will be able to predict modes at higher and higher frequencies. 
Eventually the rank will reach a point such that any further 
increase will result in a mode whose frequency exceeds Wrcq 
being included in the model. 

From a search-space perspective, the only commitment in 
going down one path of the search-space is an increase in the 
rank(s) of a given set of components. Selecting one path in the 
search-space does not rule out the need to increase the rank of 
another component at a later point. Indeed, when the compliance 
of a different component becomes relevant in describing the 
system behavior, it will be included in the model. 

Further evidence of the meeting the third requirement is given 
by Wilson (1992), where he describes an attempt to break the 
algorithm. The attempt involved the creation of a number of 
test cases (configurations) and the use of MODA to synthesize 
different models of each configuration. The goal was to see if 
some combination of components and parameters would cause 
MODA to synthesize a model with non-minimum pmodei for a 
given rank. No such model was found, adding further credibility 
to MODA's ability to meet the third requirement. 

4.2 Potential Problems With Hill-Climbing. MODA 
uses a search strategy known as hill climbing or steepest-ascent. 
There are several well known potential problems associated 
with this strategy, all of which are avoided in the current con
text. The plateau problem occurs when there is a "flat area of 
the search space in which a whole set of neighboring states 
have the same value" (Rich and Knight, 1991). This problem 
could occur with MODA if two or more models resulting from 
an increase in rank of different components have the same 
minimum pmodei- While it's unlikely that this situation will oc
cur, it's easily circumvented. As each component is equally 
important to the system model, MODA could simply increase 
the rank of each component. 

The local maximum problem occurs when the steepest-ascent 
search encounters a locally optimal solution, e.g., the search tra
verses a suboptimal path, leading to a suboptimal solution. MODA 
avoids this problem by always staying on the optimal path. 

The ridge problem occurs when the orientation of the desired 
shift in the search direction is incompatible with the available 
choices in the search space. This problem will not occur with 
MODA, because increasing the rank of any unbounded-rank 
component is always an option and doing this always results in 
an increase in the model bandwidth. If a configuration consisted 
solely of bounded-rank components, a situation could arise in 
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Fig. 11 l\Aodel order versus FROI for two sets of parameter values 
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which the model bandwidth was less than the FROI, but all 
components were at maximum rank. In this case, the assumption 
would be that the model does predict all the poles within the 
FROI, and no further increase in model rank is required. 

Rich and Knight (1991) note that hill-climbing is "particu
larly unsuited to problems where the value of the heuristic 
function drops off suddenly as you move away from a solu
tion." The problem of synthesizing a model of a distributed 
and discrete system does not have this tendency. That is, as 
more component dynamics (e.g., compliances) are included in 
the model, pmoaa invariably increases. In this case the pmodoi is 
the heuristic function, and this function does not drop off once 
a solution is reached. Indeed, a solution is only found by check
ing that any further increase in model rank results in a pmodei 
beyond the FROI. 

4.3 Synthesis of Alternative Models. MODA is intended 
to synthesize Proper Models, i.e., models that minimize the 
Pmodei for a given complexity level. MODA can be made to 
synthesize models meeting other criteria, by replacing the FROI 
condition in the algorithm (see Figure 9) with the more general 
condition: "Model Meet Objectives?" A description of some 
alternative models that MODA can synthesize follows. 

Rigid-Body Model. The first step in selecting a motor for 
drive trains frequently requires estimating the inertia of the 
entire system reflected back to the motor. This can be done 
simply by setting the rank of each component to 0. In this 
manner no compliant effects are included in the model, thus 
the resulting model can be referred to as the rigid-body model. 

First-Torsional-Resonance Model. The first torsional reso
nance of a system limits the closed-loop performance that can 
be achieved. At an early stage in the design an engineer may 
wish to obtain a model which predicts only this resonance and 
subsequently use this model to determine which component is 
primarily responsible for the first mode. MODA can synthesize 
such a model by modifying the algorithm so that it identifies 
the first weak-dynamic-link component, and increases the rank 
of only this component. The example in Section 3 illustrates 
this concept. In this example, the belt-drive is the weak-dy
namic-link component for Parameter Set A, as shown in Fig. 
11. The shaft is the weak-dynamic-link component for Parame
ter Set B in the same figure. 

1 - Â "' Order Models. Engineers need models of varying 
levels of complexity to address the needs encountered at various 
states during the analysis. MODA is easily adapted to provide 
models of order 1 to Â . The modifications required to synthesize 
a reflected inertia (first-order) model and a first-torsional-reso-
nance (third-order) have already been addressed. At a latter 
design stage an engineer may want a model which has the first 
two or three structural modes to see where to place notch filters 
in a controller. MODA can be modified to create such a model 
by replacing the FROI condition block with the condition 
"Model Order > NT'. 

4.4 Pole Migration. Increases in component ranks lead 
to changes in system behavior as predicted by the model. An 
increase in the rank of an individual component adds (in gen
eral) an additional compliant element to a model. This compli
ance in turn adds more degrees of freedom and additional energy 
storage to the model, and model order increases. The additional 
degrees of freedom enable the model to provide a more accurate 
representation of the mode shapes and a more accurate estimate 
of the resonant frequencies. As a consequence, an increase in 
a component's rank causes a migration of the resonant frequen
cies associated with the previous (lower-order) model. As com
ponent ranks increase during the model synthesis process, the 
migrations of the low-frequency poles tends to diminish. As 
this migration may be important, an engineer using MODA may 
wish to increase the order of the models (by specifying a higher 
FROI) and examine changes in the low-frequency resonances. 
When model order is such that an increase in rank of any 

component produces little or nor shift in the fundamental reso
nant frequencies, an engineer will have better assurance that the 
model provides an accurate estimate of the resonant frequencies 
within the FROI. Ferris et al. (1994) explore the issue of pole 
migration and eigenvalue accuracy in detail. They have devel
oped a new model deduction algorithm, EXTENDED-MODA, 
that explicitly accounts for accuracy by tracking pole migration. 

5 Summary 

The recent publication of several collections of research pa
pers and symposia (de Kleer and Williams, 1991; Stein, 1991; 
Falkenhainer and Stein, 1992; Stein, 1993) on various aspects 
of automated modeling highlights a growing awareness and 
interest in this area. One of the needs of this area is the develop
ment of algorithms that are able to coordinate the model synthe
sis process so that engineers are able to quickly obtain models 
of varying levels of complexity, so that they meet different 
user-specified criteria. One such algorithm, MODA, is described 
in this paper. This algorithm, in conjunction with submodel 
synthesis and submodel assembly algorithms, synthesizes a 
Proper Model. A Proper Model model has the minimal pmodc) 
for a given model complexity level, and whose Pmodei will exceed 
a given FROI for any increase in model rank. MODA synthe
sizes this model by efficiently searching for the proper combina
tion of component submodels. While the FROI model has many 
practical uses, minor modifications to MODA enable it to syn
thesize models with other apphcations. 

The authors believe that it is worthwhile to develop an auto
mated-modeling software program to test the implementation 
of the original MODA and its modified versions and to identify 
some of the issues developing this type of software (cf. Wilson 
and Stein, 1993). 
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A P P E N D I X 

Dimensions and Constants for Example 
Parameter Set A: 

1. DC Motor: motor constant, Kt = 0.06 N-m/amp = 0.06 
v/rad/s; winding resistance, Rm = 0.9 ohm; winding 

3. 

inductance, Lm = 0.002 henry; rotor inertia, Jm = 3.8 
X 10- ' kg-m^ 
Belt Drive: diameter of pulley 1, 0.1 m; width of 
pulley 1, 0.01 m; density of pulley 1, 7755 kg/m^; 
diameter of pulley 2, 0.2 m; width of pulley 2, 0.01 
m; density of pulley 2, 7755 kg/m' ; belt stiffness, 
10000 N/m. 
Shaft: diameter, 0.0125 m; length, 1 m; shear modulus, 
7.31 X 10'" N/m^ density, 7755 kg/m^ 
Flywheel: diameter, 0.3 m; length, 0.025 m; density, 
7755 kg /m\ 

Parameter Set B: 
as above, except: Belt stiffness 
0.025 m. 

1000 N/m, shaft diameter 
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