
Improved Access to Optical Bandwidth in Trees �Vijay Kumar yEric J. Schwabe zDepartment of ECENorthwestern University2145 Sheridan RoadEvanston, IL 60208AbstractWe present improved bounds for e�cient bandwidth al-location in a WDM optical network whose topology isthat of a directed tree of �ber-optic links. The problemof bandwidth allocation is modeled as a coloring prob-lem, where each path in a set of communication requestsmust be assigned a color (representing a wavelength) insuch a way that no two paths using the same link in thesame direction are assigned the same color. Letting Lbe the largest number of paths using any directed link,we show that for an arbitrary set of paths, 7L=4 colorsare su�cient to route all paths. This improves an upperbound of 15L=8 due to Mihail, Kaklamanis and Rao [8].In addition, we show that a family of problem instancesgiven by Mihail, Kaklamanis and Rao [8] to establisha worst-case lower bound of 3L=2 for the problem canin most cases be colored with only 5L=4 colors (techni-cally, d5L=4e). Finally, we show that in all cases 5L=4colors are in fact necessary for this family of instances,yielding a general lower bound of 5L=4.1 Introduction.1.1 Background.In this paper, we consider the problem of resourceallocation in optical networks. In such networks, com-munication occurs through the transmission of a laserbeam through an optical �ber link, using a chosen wave-length that remains the same over the entire path tra-versed by the beam. Multiple messages can be transmit-ted across the same channel simultaneously as long as�This research was supported in part by the National ScienceFoundation under grant CCR{9309111.yAuthor's email address: vijay@ece.nwu.edu.zAuthor's email address: schwabe@ece.nwu.edu.

they use distinct wavelengths | this technique is knownas wavelength division multiplexing (WDM).In practice, some minimum separation between thewavelengths used will have to be enforced to avoid in-terference, but we will assume that the wavelengthsused simply come from some discrete set of permissi-ble wavelengths that are known to be mutually non-interfering. Bandwidth being a costly resource, it isimportant to devise allocation schemes that can sup-port a large amount of communication using a limitedbandwidth. The problem of supporting a large set ofcommunication requests at the same time while usingthe smallest possible amount of bandwidth is equiva-lent to the following coloring problem:We are given a set S of communication requests(i.e., source-destination pairs), and a network N madeup of �ber-optic links. We must choose a path inthe network from each source to its correspondingdestination, and assign a color to each path in sucha way that no paths that traverse a common link areassigned the same color. We call this a valid coloring.This should be accomplished using as few colors (i.e.,wavelengths) as possible.For some simple networks, such as trees, the WDMrouting problem is simpler, as there is always a uniquepath for each request from its source to its destination.In this case, the problem reduces to simply choosing acolor for each path.1.2 Previous Work.Raghavan and Upfal [10] considered the problemof �nding provably good routing algorithms for opticalnetworks. They considered both general unstructurednetworks and speci�c networks such as trees, rings, andmeshes. Earlier results by Aggarwal, Bar-Noy, Copper-smith, Ramaswami, Schieber and Sudan [1] focussed on1



the structure and permutation routing ability of opticalnetworks.Raghavan and Upfal [10] gave algorithms to routearbitrary sets of requests on undirected trees, rings, andtrees of rings. They also gave randomized algorithmsfor routing on meshes and arbitrary bounded-degreenetworks, but with much looser probabilistic bounds.Erlebach and Jansen [2, 3] showed the problem ofrouting sets of requests with the minimum number ofwavelengths to be NP-complete on trees, rings, andmeshes and gave a better approximation algorithm forthe problem on trees.Mihail, Kaklamanis and Rao [8] were the �rstto consider directed networks, which more accuratelyreect the actual asymmetric properties of optical �bernetworks. The NP-completeness results of Erlebach andJansen [2, 3] also apply to the directed case.The algorithm of Mihail, Kaklamanis and Rao[8] for tree networks employs an inductive approach,moving through the tree vertex by vertex and modelingthe inductive step as the coloring of a regular bipartitegraph. Using that framework, it is relatively easy toroute any set of requests using 2L wavelengths, whereL is used to denote the largest load among all links, i.e.,the largest number of routing paths that share a linkin the same direction. Mihail, Kaklamanis and Rao [8]used a detailed coloring scheme to obtain an algorithmthat improves this upper bound to 15L=8. Their paperalso considered routing on rings. (Kleinberg and Tard�os[7] and Rabani [9] have considered this problem fordirected meshes.)Mihail, Kaklamanis and Rao [8] also proposed afamily of problem instances with at most L pathsusing each directed link for which 3L=2 wavelengthswere claimed to be both necessary and su�cient. Inparticular, they demonstrated a request set with L = 2that requires three wavelengths to route.1.3 Our Results.We improve the results of Mihail, Kaklamanis andRao [8] on two fronts:1. We give an algorithm for routing an arbitrary set ofrequests with at most L paths using each directedlink that uses at most 7L=4 wavelengths (this resultwas also proved independently by Kaklamanis andPersiano [6]);2. The instance for L = 2 that they demonstratedto require three wavelengths to route shows thatno algorithm can route every request set using

fewer than 3L=2 wavelengths. However, we showthat the problem instance they gave does notestablish this bound for values of L larger thantwo. In fact, for all problem instances in the familythat they proposed, 5L=4 (technically, d5L=4e)wavelengths are both necessary and su�cient toroute all requests. This agrees with their boundwhen L = 2, but yields a valid lower bound for allvalues of L.The algorithm that establishes the upper bounduses an inductive approach similar to that used by Mi-hail, Kaklamanis and Rao [8], but uses a modi�ed induc-tive step with a tighter analysis to achieve the improvedbound. The lower bound proof uses a relatively sim-ple pigeonhole argument, along with techniques origi-nally developed for channel assignment in cellular phonesystems due to Jordan and Schwabe [5]. Our resultsbracket the actual number of wavelengths that are nec-essary and su�cient in general to be between 5L=4 and7L=4, as opposed to the bracketing between 3L=2 and15L=8 given by Mihail, Kaklamanis and Rao [8]. (Forconvenience, we omit the oors and/or ceilings that aretechnically present in these expressions.)Recently, Jansen [4] gave an algorithm to routearbitrary request sets with maximum load L using 5L=3wavelengths, for the special case of binary trees. Hehas also demonstrated a message set with L = 3 thatrequires �ve wavelengths to route, suggesting that animprovement of the general lower bound to 5L=3 maybe possible.2 An Algorithm for Path Coloring.In this section, we present an algorithm that allocateswavelengths to a given set of communication requests.Let the network topology be that of a tree T in whicheach edge corresponds to a pair of oppositely directed�ber links. Suppose we are given a set of communicationrequests. Each request can be looked upon as a path inthe tree. Suppose no more than L paths pass over anydirected link. Our objective is to assign colors to thepaths so that no two paths share the same color, whileusing as few colors as possible.We establish the following result:Theorem 2.1. Given a tree T and a set of paths in Tsuch that no more than L paths pass over any directedlink of T , it is possible to �nd in polynomial time a validcoloring of the given set of paths that uses no more than7L=4 colors.2



To establish this, we present such an algorithm. Thealgorithm that traverses the tree and colors paths as itencounters them. The algorithm visits the the verticesof the tree in DFS order. A step of this algorithmconsists of visiting a vertex v and coloring all paths thattouch (i.e., contain) v. Some of them will have alreadybeen colored | in fact, any path that touches a vertexwith a smaller DFS number than v will already havebeen colored. Note that any path encountered for the�rst time while visiting v must be contained entirely inthe subtree rooted at v.2.1 General Framework.Throughout the execution of the algorithm, thefollowing three invariants will be maintained:Invariant 1: No two paths sharing a link will be coloredwith the same color.Invariant 2: No more than 7L=4 colors will be used.Invariant 3: The paths passing through a pair ofcorresponding oppositely directed links will be coloredusing no more than 3L=2 colors.We use induction on the number of vertices visitedto show that all paths encountered can be colored whilemaintaining our two invariants. That is, given a validpartial coloring in which all the paths that touch verticeswith DFS numbers smaller than v are colored in sucha way that the three invariants above are satis�ed, wewill show how to extend the partial coloring to includethe vertex v and the paths touching it.The invariants are vacuously satis�ed at the begin-ning of the algorithm. Therefore a correct polynomial-time coloring procedure that maintains the invariantswill constitute a proof of theorem 2.1. We reduce thecoloring step to the problem of edge-coloring a bipartitegraph (as in Mihail et al. [8]), and present a solutionto the latter problem. In the following, we describe thereduction in detail.2.2 Modeling With Bipartite Graphs.Assume that all paths that touch vertices withsmaller DFS numbers than v have already been coloredwithout violating the invariants. The inductive stepinvolves extending this partial coloring to include allpaths that touch the vertex v. Following [8], we reducethis to the problem of edge-coloring a bipartite graph.Let v be the vertex being visited. Let x0 be the parentof v. In case v is the root, add a `dummy' parent nodelinked only to v. Let x1; x2; � � � ; xk be the children of v.For each xi, there are four nodes in the bipartite graph:

yi and vyi on the left side, and Yi and Vyi on the rightside. A path p with one end at v that touches xi isrepresented in the bipartite graph by an edge betweenvyi and Yi if p is directed away from v, and by an edgebetween yi and Vyi otherwise. A path that touches xiand xj in that order is represented by an edge betweenyi and Yj in the bipartite graph.More formally, the bipartite graph Gv is con-structed as follows: The left and right vertex sets areSifyi; vyig and SifYi; Vyig. Add edges to the bipartitegraph as follows:� For each path from some xi to some xj place anedge from yi to Yj in the bipartite graph.� For each path from some xi that terminates at vplace an edge from yi to Vyi .� For each path starting at v and directed into somexi place an edge from vyi to Yi.For each path that has already been colored, colorthe corresponding edge in Gv with the same color.Figure 1 illustrates the construction of the bipartitegraph.Note that yi represents the link from xi to v inthe sense that every path passing over this link isrepresented by an edge incident on yi. Similarly, Yirepresents the link in the opposite direction.For simplicity, we will make the following assump-tions:Assumption 1: There is a load of exactly L on eachlink.Assumption 2: The two (oppositely directed) linksbetween v and its parent together use exactly 3L=2colors.It is easy to see that these assumptions can bemade without loss of generality, and that if they do nothold extra paths and/or colors can be added to a giveninstance to make them true.The following lemma formalizes the correspondencebetween the inductive coloring step and the bipartitegraph coloring problem.Lemma 2.1. Any two paths that include v and cannot be assigned the same color will be represented inthe bipartite graph above by two edges that share avertex; thus, a valid edge-coloring of the bipartite graphrepresents a valid coloring of the paths in the originalgraph.3
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2(b) The corresponding bipartite graph.Figure 1: Modeling the inductive step as a bipartitegraph coloring problem.

Proof. The valid coloring of the paths is obtained from acoloring of this bipartite graph by giving each path thesame color as the corresponding edge in the bipartitegraph.As we noted above, a pair of oppositely directedlinks are represented by a pair of opposite vertices inthe bipartite graph. Invariant 3 requires that any suchpair of links should be colored with no more than 3L=2colors. That implies that the corresponding pair ofvertices in the bipartite graph should together see nomore than a total of 3L=2 colors. We must color Gvwithout violating this requirement.Next, we show how to color the bipartite graph Gv .3 Coloring a Bipartite Graph.Note that among the paths that touch v, the paths thatcontain x0, the parent of v, are already colored, andno other paths are colored. Consequently, all the edgesin Gv that touch y0 or Y0 are colored, and no otheredges are colored. Also note that no edges run betweenopposite vertices, i.e., yi and Yi, or vyi and Vyi .Also, while no vertex has more than L incidentedges, and y0 and Y0 have exactly L incident edges each,other vertices may have fewer than L incident edges. Wewill add extra edges to the graph to make it L-regular.As y0 and Y0 have L colored edges each, andtogether they use 3L=2 colors, they must share exactlyL=2 colors. We will refer to the shared colors asdouble colors, and to the rest as single colors. Thecorresponding edges will be called double-color edgesand single-color edges respectively.Below, we describe how to color all the edges of Gvusing 7L=4 colors. The algorithm involves two distinctphases. In the �rst phase, we extract fromGv subgraphsof a particular kind, called gadgets, and color them in away that maximizes the reuse of colors already presentin Gv . When no more such subgraphs can be extracted,phase 2 is invoked to color the remaining graph, bysplitting it into two parts: a subgraph which can becolored without using any new colors, and the rest.As we saw in the previous section, a pair of oppo-sitely directed links in the network is represented by apair of opposite vertices in Gv, and the edges incidenton that pair of vertices must be colored with no morethan 3L=2 colors in order to satisfy invariant 3. We willsatisfy this requirement by ensuring that every pair ofopposite vertices share at least L=2 colors. This will bereferred to as the color-sharing requirement.4



Our algorithm will involve breaking Gv into regularbipartite subgraphs which have the same vertex set buta smaller degree. We will ensure that each individualsubgraph satis�es the color-sharing requirement. Thatis, each pair of opposite vertices will share one color inthe case of a 2-regular subgraph, and two colors in thecase of a 3-regular or 4-regular subgraph. Clearly, this issu�cient to meet the overall color-sharing requirement.3.1 Gadgets.A gadget is a subgraph of Gv which contains all thevertices of Gv and in which y0 and Y0 each have degree3 while all other vertices have degree 2.A gadget can be looked upon as a union of threepaths in Gv . There are three edges going out of y0, andthrough these, we can trace paths that lead to eithery0 or Y0. Similarly for Y0. There are three such pathsin all, and either all three extend between y0 and Y0or one extends between y0 and Y0 while the other twoloop back to their starting points. Let us refer to thesepaths as strands. Each vertex is contained in exactlyone strand.Gadgets allow us to economize on the number ofcolors that we use, because some of the edges of thegadgets can be colored using colors already present inthe gadget. Phase 1 involves repeated extraction andcoloring of gadgets.3.2 Phase 1.In phase 1, our objective is to reduce the proportionof double-color edges in the graph by extracting suitablegadgets while economizing on the new colors used tocolor the gadgets.In phase 1, we will repeatedly extract 3-regularsubgraphs H , each consisting of a gadget H1 and amatching H2 that involves every vertex other than y0and Y0. We ensure that each subgraph H extracted inthis phase is such that of the six edges of H that areincident on y0 or Y0, two are colored with the samecolor a, while another two are colored with single colorsb and c. The remaining two are colored with (possiblydistinct) double colors.Note that there are three reusable colors involvedin H1: a; b and c. That is to say, these colors can beused to color some edges of the gadget because we knowthat no edge of Gv �H is colored with either of thesecolors. Using these three colors, we can color H1 in sucha way that at least one color is shared by every pair ofopposite vertices of Gv. The details of the extractionand the coloring will appear in the full paper.

H2 can now be colored using a new color| that is, acolor that is not among the 3L=2 colors initially presenton the edges of Gv. Clearly, every pair of oppositevertices shares this new color.We have colored H using no more than one newcolor such that every pair of opposite vertices sharesat least two colors. Phase 1 of the algorithm consistsof extracting and coloring such subgraphs till no moresubgraphs that have the desired color property can beextracted.Let us analyze the e�ect of phase 1.Lemma 3.1. At least L=6 subgraphs are extracted inphase 1.Proof. Phase 1 will when end no more double-coloredge-pairs are left. We had L=2 such pairs to begin with,and each 3-regular subgraph extracted contains one pairwhile it may separate another two pairs by including oneedge from each.Our scheme of coloring these subgraphs implies thatObservation 3.1. The number of new colors used inphase 1 is equal to the number of subgraphs extracted.So if the degree of each vertex is reduced by l asresult of phase 1, then l=3 new colors have been used inphase 1.3.3 Phase 2.As phase 1 progresses, the ratio of double-coloredges (separated or not) to single-color edges in theremaining graph diminishes. This is helpful, becausesingle colors are reusable. Let R(G) denote the ratio ofdouble-color edges to single-color edges in a subgraphG of Gv . R(Gv) is 1:1, and the ratio goes down withevery extraction of a gadget: R(H) is 2:1 for each gadgetH extracted. This, together with lemma 3.1, has thefollowing implication for Grv , the graph remaining atthe end of phase 1:Lemma 3.2. R(Grv) is 1:2 or lower.Phase 2 colors the remaining (L� l)-regular graphGrv. The coloring scheme depends on the value ofR(Grv).Lemma 3.3. If R(Grv) is 1:3 or lower, we can color Grvwithout using any new colors.5



Proof. Consider the case where the ratio is exactly 1:3.As single colors are reusable and as we have a good ratioof single colors double colors, we would like to extractsubgraphs which contain more single than double colorsand try to color them with the single colors they contain.To do this, we transform Grv into G0v as follows: break y0into 3 vertices, y01, y02 and y03. Let (L�l)=2 single-coloredges be incident on y03, (L� l)=4 single-color edges ony02 and (L�l)=4 double-color edges on y01. Split Y0 intoY01, Y02 and Y03 in exactly the same way. Split eachof the other vertices into two, each part getting halfthe edges. Now add (L � l)=4 dummy edges betweeny01 and Y02, and an equal number between y02 andY01. This is an (L� l)=2-regular bipartite graph. Splitit into (L � l)=2 matchings, and from each matchingM , throw away the dummy edges and merge the splitvertices back.M can contain up to two dummy edges. If Mcontained one dummy edge, the resulting graph is acycle cover containing three single-color edges. Two ofthese three colors can be used to color this cycle cover.If M contained two dummy edges, then the result-ing subgraph is one edge short of a cycle cover: it visitseach vertex twice except for y0 and Y0 which are visitedonce each. It can be `unzipped' into a perfect matchingand another matching. The former contains two colorededges which are colored with single colors. One of themcan be used to color it. The second matching will becolored along with a gadget below. There are as manygadgets as there are such matchings, and a one-to-oneassignment can be made.If M contained no dummy edges, then the resultingsubgraph is a gadget. Its three strands together containfour single and two double colors. Picking two of thesingle colors, we can color the gadget. The other twocolors can be used to color the a matching from theprevious case that may be assigned to this gadget.In each case, the coloring can be done withoutviolating the color-sharing requirement. The details willappear in the full paper.By following this procedure for each matching, wecan color Grv without using any new colors.If the ratio is lower than 1:3, we can split Grv intotwo bipartite graphs: one in which the ratio is exactly1:3, and the other in which there are no edges withdouble colors. Each can then be colored without usingnew colors.Next, let us consider the case when R(Grv) is exactly1:2.

Lemma 3.4. If Grv is a k-regular bipartite graph suchthat R(Grv) is 1:2, it can be colored using k=6 new colors.Proof. As before, we wish to break Grv into small-degreesubgraphs which have a high ratio of single colors todouble colors. To do this, transform Grv into G0v asfollows: break y0 into 3 vertices, y01, y02 and y03. Letk=3 double-color edges be incident on y01, and k=3single-color edges on each of y02 and y03. Split Y0 intoY01, Y02 and Y03 in exactly the same way. Split eachof the other vertices into two, each part getting halfthe edges. Now add k=6 dummy edges between y01 andY02, and an equal number between y02 and Y01 as wellas between y03 and Y03. What we get is a k=2-regularbipartite graph. Split it into k=2 matchings, and fromeach matching M , throw away the dummy edges andmerge the split vertices back.What is the structure of the resulting subgraphM 0?It depends on the number of dummies in M . Let usgroup the matchings into four sets depending on thenumber of dummies they contain: set Si contains allthe matchings with i dummies each. Let mi be thecardinality of set Si.As there are k=2 dummies and k=2 matchings, thereis one dummy per matching on the average. Thematchings with no dummies have to be counterbalancedby matchings with more than one dummy. It is easilyseen that:m0 = m2 + 2m3In other words, we can assign two matchings from setS0 to each matching from S3 and one to each matchingfrom S2. Let us make these assignments.First, let us consider the matchings with 3 dummies.For such a matching M , M 0 consists of two perfectmatchings on Grv � fy0; Y0g. These matchings containno colored edges. Along with each of the two S0matching assigned to M , we will color one of thesematchings. This task postponed, we proceed to dealwith the members of S2.If M contains two dummies, M 0 is the union ofa perfect matching of Grv with a perfect matching ofGrv � fy0; Y0g. The former contains at least one singlecolor, and we can use that color to color all its uncolorededges. The task of coloring the latter is again left to themember of S0 assigned to M .Next, let us consider members of S0 themselves.For each such M , M 0 has the structure of a gadget,containing two single and one separated color on each ofy0 and Y0. Two of the single colors can be used to color6



the gadget, while the other two can be used to color theextra matching assigned to M in previous steps, as wasdone in the proof of lemma 3.3.Lastly, let us consider members of S1. For eachsuch M , M 0 is a cycle cover of Grv . If the dummy edgein M is not of type 3, the cycle cover contains 3 singlecolors, and it is possible to use two of them to color M 0without violating the 3-color requirement. However, ifthe dummy is of type 3, M 0 contains two single colorsand two separated colors. If both the single colors comefrom one of the two matching that constitute the cyclecover, then there is no way of coloringM 0 without usinga new color. In this case, we use one of the two singlecolors and a new color to color M 0.In each case, the coloring can be performed withoutviolating the color-sharing requirement. Details will bepresented in the full paper.How many matchings in S1 could contain a type 3dummy? Clearly, their number is bound by the numberof type 3 dummies, which is k=6.We therefore have a way of coloring Grv using nomore than k=6 new colors without violating the 3-colorrequirement.We have already noted that R(Grv) can not behigher than 1:2. What about the case when the ratio isbetween 1:2 and 1:3?Lemma 3.5. If R(Grv) lies between 1:2 and 1:3, we canpartition Grv into two regular bipartite graphs G1 andG2 with the same vertex set as Grv, such that R(G1) is1:2 and R(G2) is 1:3.Proof. Such a partitioning may be accomplished bysplitting the graph into matchings and partitioningthe set of matchings appropriately. (The details arestraightforward, and will appear in the full paper.)We have already seen how to color G1 and G2, inlemmas 3.3 and 3.4. Together with lemma 3.5, they takecare of coloring Grv in all cases.3.4 Overall Performance of the Algorithm.Let us see what the overall color requirement forcoloring Gv is. Gv contained 3L=2 colors to begin with,and some new colors have been used by our algorithm.Theorem 3.1. Gv can be colored using no more than7L=4 colors while preserving the invariants.
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follows that for L = 2, no algorithm can route arbitraryrequest sets with fewer than 3L=2 | that is, three |wavelengths.However, this proposed lower bound of 3L=2 doesnot hold for most problem instances in this family |in fact, it is only valid for L = 2. Consider the casewhere each of a, b, c, d and e represents not a singlepath but a set of L=2 paths; this yields a maximumload of L. Mihail, Kaklamanis and Rao [8] generalizedfrom the preceding example and suggested that 3L=2colors would be required. However, as the followingvalid coloring shows, 5L=4 colors will actually su�cefor this example. As long as L � 3, this is fewer than3L=2 colors.Assign L=2 colors to each of the �ve sets of paths,one color for each path in the set, according thefollowing assignment of colors to sets:a: f1; 2; : : : ; L2 gb: fL2+1; : : : ; Lgc: fL+1; : : : ; 5L4 g [ f1; : : : ; L4 gd: fL4+1; : : : ; 3L4 ge: f 3L4 +1; : : : ; 5L4 gIt is straightforward to verify that no two colors thatuse the same directed link are assigned the same color,so 5L=4 colors are su�cient.It turns out that 5L=4 colors are also necessary inthis instance. To see that, note that no color may beuse to color more than two paths. This is so becausea color may be used only once in each set, and it cannot be used in more than two sets (since no three outof the �ve sets a, b, c, d and e may share a color).As there are a total of 5L=2 paths to be colored andno color may be used more than twice, it follows that5L=4 colors are necessary. An alternate proof of therequirement of 5L=4 colors comes from a more generaltechnique developed by Jordan and Schwabe for lowerbounds on channel assignment in cellular systems [5].If we consider all possible values of L, the above ex-ample represents a class of instances for which 5L=4 (tobe precise, d5L=4e) colors are necessary and, inciden-tally, su�cient. This yields the following lower bound:Theorem 4.1. For every value of L, there is a tree Tand a set S of paths over T such that no directed linkof T is used by more than L paths, and 5L=4 colors arenecessary to color S.
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