Improved Access to Optical Bandwidth in Trees *

Vijay Kumar |
Eric J. Schwabe ?

Department of ECE
Northwestern University
2145 Sheridan Road
Evanston, IL 60208

Abstract

We present improved bounds for efficient bandwidth al-
location in a WDM optical network whose topology is
that of a directed tree of fiber-optic links. The problem
of bandwidth allocation is modeled as a coloring prob-
lem, where each path in a set of communication requests
must be assigned a color (representing a wavelength) in
such a way that no two paths using the same link in the
same direction are assigned the same color. Letting L
be the largest number of paths using any directed link,
we show that for an arbitrary set of paths, 7L/4 colors
are sufficient to route all paths. This improves an upper
bound of 15L/8 due to Mihail, Kaklamanis and Rao [8].
In addition, we show that a family of problem instances
given by Mihail, Kaklamanis and Rao [8] to establish
a worst-case lower bound of 3L/2 for the problem can
in most cases be colored with only 5L/4 colors (techni-
cally, [5L/4]). Finally, we show that in all cases 5L/4
colors are in fact necessary for this family of instances,
yielding a general lower bound of 5L /4.

1 Introduction.

1.1 Background.

In this paper, we consider the problem of resource
allocation in optical networks. In such networks, com-
munication occurs through the transmission of a laser
beam through an optical fiber link, using a chosen wave-
length that remains the same over the entire path tra-
versed by the beam. Multiple messages can be transmit-
ted across the same channel simultaneously as long as

*This research was supported in part by the National Science
Foundation under grant CCR-9309111.

f Author’s email address: vijay@ece.nwu.edu.

fAuthor’s email address: schwabe@ece.nwu.edu.

they use distinct wavelengths — this technique is known
as wavelength division multiplezing (WDM).

In practice, some minimum separation between the
wavelengths used will have to be enforced to avoid in-
terference, but we will assume that the wavelengths
used simply come from some discrete set of permissi-
ble wavelengths that are known to be mutually non-
interfering. Bandwidth being a costly resource, it is
important to devise allocation schemes that can sup-
port a large amount of communication using a limited
bandwidth. The problem of supporting a large set of
communication requests at the same time while using
the smallest possible amount of bandwidth is equiva-
lent to the following coloring problem:

We are given a set S of communication requests
(i.e., source-destination pairs), and a network N made
up of fiber-optic links. We must choose a path in
the network from each source to its corresponding
destination, and assign a color to each path in such
a way that no paths that traverse a common link are
assigned the same color. We call this a wvalid coloring.
This should be accomplished using as few colors (i.e.,
wavelengths) as possible.

For some simple networks, such as trees, the WDM
routing problem is simpler, as there is always a unique
path for each request from its source to its destination.
In this case, the problem reduces to simply choosing a
color for each path.

1.2 Previous Work.

Raghavan and Upfal [10] considered the problem
of finding provably good routing algorithms for optical
networks. They considered both general unstructured
networks and specific networks such as trees, rings, and
meshes. Earlier results by Aggarwal, Bar-Noy, Copper-
smith, Ramaswami, Schieber and Sudan [1] focussed on

the structure and permutation routing ability of optical
networks.

Raghavan and Upfal [10] gave algorithms to route
arbitrary sets of requests on undirected trees, rings, and
trees of rings. They also gave randomized algorithms
for routing on meshes and arbitrary bounded-degree
networks, but with much looser probabilistic bounds.
Erlebach and Jansen [2, 3] showed the problem of
routing sets of requests with the minimum number of
wavelengths to be NP-complete on trees, rings, and
meshes and gave a better approximation algorithm for
the problem on trees.

Mihail, Kaklamanis and Rao [8] were the first
to consider directed networks, which more accurately
reflect the actual asymmetric properties of optical fiber
networks. The NP-completeness results of Erlebach and
Jansen [2, 3] also apply to the directed case.

The algorithm of Mihail, Kaklamanis and Rao
[8] for tree networks employs an inductive approach,
moving through the tree vertex by vertex and modeling
the inductive step as the coloring of a regular bipartite
graph. Using that framework, it is relatively easy to
route any set of requests using 2L wavelengths, where
L is used to denote the largest load among all links; i.e.,
the largest number of routing paths that share a link
in the same direction. Mihail, Kaklamanis and Rao [8]
used a detailed coloring scheme to obtain an algorithm
that improves this upper bound to 15L/8. Their paper
also considered routing on rings. (Kleinberg and Tardos
[7] and Rabani [9] have considered this problem for
directed meshes.)

Mihail, Kaklamanis and Rao [8] also proposed a
family of problem instances with at most L paths
using each directed link for which 3L/2 wavelengths
were claimed to be both necessary and sufficient. In
particular, they demonstrated a request set with L = 2
that requires three wavelengths to route.

1.3 Owur Results.

We improve the results of Mihail, Kaklamanis and
Rao [8] on two fronts:

1. We give an algorithm for routing an arbitrary set of
requests with at most L paths using each directed
link that uses at most 7L /4 wavelengths (this result
was also proved independently by Kaklamanis and
Persiano [6]);

2. The instance for L = 2 that they demonstrated
to require three wavelengths to route shows that
no algorithm can route every request set using

fewer than 3L/2 wavelengths. However, we show
that the problem instance they gave does not
establish this bound for values of L larger than
two. In fact, for all problem instances in the family
that they proposed, 5L/4 (technically, [5L/4])
wavelengths are both necessary and sufficient to
route all requests. This agrees with their bound
when L = 2, but yields a valid lower bound for all
values of L.

The algorithm that establishes the upper bound
uses an inductive approach similar to that used by Mi-
hail, Kaklamanis and Rao [8], but uses a modified induc-
tive step with a tighter analysis to achieve the improved
bound. The lower bound proof uses a relatively sim-
ple pigeonhole argument, along with techniques origi-
nally developed for channel assignment in cellular phone
systems due to Jordan and Schwabe [5]. Our results
bracket the actual number of wavelengths that are nec-
essary and sufficient in general to be between 5L /4 and
7L/4, as opposed to the bracketing between 3L/2 and
15L/8 given by Mihail, Kaklamanis and Rao [8]. (For
convenience, we omit the floors and/or ceilings that are
technically present in these expressions.)

Recently, Jansen [4] gave an algorithm to route
arbitrary request sets with maximum load L using 5L/3
wavelengths, for the special case of binary trees. He
has also demonstrated a message set with L = 3 that
requires five wavelengths to route, suggesting that an
improvement of the general lower bound to 5L/3 may
be possible.

2 An Algorithm for Path Coloring.

In this section, we present an algorithm that allocates
wavelengths to a given set of communication requests.
Let the network topology be that of a tree 7' in which
each edge corresponds to a pair of oppositely directed
fiber links. Suppose we are given a set of communication
requests. Each request can be looked upon as a path in
the tree. Suppose no more than L paths pass over any
directed link. Our objective is to assign colors to the
paths so that no two paths share the same color, while
using as few colors as possible.

We establish the following result:

THEOREM 2.1. Given a tree T and a set of paths in T
such that no more than L paths pass over any directed
link of T, it is possible to find in polynomial time a valid

coloring of the given set of paths that uses no more than
7L/4 colors.

To establish this, we present such an algorithm. The
algorithm that traverses the tree and colors paths as it
encounters them. The algorithm visits the the vertices
of the tree in DFS order. A step of this algorithm
consists of visiting a vertex v and coloring all paths that
touch (i.e., contain) v. Some of them will have already
been colored — in fact, any path that touches a vertex
with a smaller DFS number than v will already have
been colored. Note that any path encountered for the
first time while visiting v must be contained entirely in
the subtree rooted at v.

2.1 General Framework.

Throughout the execution of the algorithm, the
following three invariants will be maintained:

Invariant 1: No two paths sharing a link will be colored
with the same color.

Invariant 2: No more than 7L/4 colors will be used.

Invariant 3: The paths passing through a pair of
corresponding oppositely directed links will be colored
using no more than 3L/2 colors.

We use induction on the number of vertices visited
to show that all paths encountered can be colored while
maintaining our two invariants. That is, given a valid
partial coloring in which all the paths that touch vertices
with DFS numbers smaller than v are colored in such
a way that the three invariants above are satisfied, we
will show how to extend the partial coloring to include
the vertex v and the paths touching it.

The invariants are vacuously satisfied at the begin-
ning of the algorithm. Therefore a correct polynomial-
time coloring procedure that maintains the invariants
will constitute a proof of theorem 2.1. We reduce the
coloring step to the problem of edge-coloring a bipartite
graph (as in Mihail et al. [8]), and present a solution
to the latter problem. In the following, we describe the
reduction in detail.

2.2 Modeling With Bipartite Graphs.

Assume that all paths that touch vertices with
smaller DFS numbers than v have already been colored
without violating the invariants. The inductive step
involves extending this partial coloring to include all
paths that touch the vertex v. Following [8], we reduce
this to the problem of edge-coloring a bipartite graph.
Let v be the vertex being visited. Let zq be the parent
of v. In case v is the root, add a ‘dummy’ parent node
linked only to v. Let x1, 2, - -,z be the children of v.
For each x;, there are four nodes in the bipartite graph:

y; and vy, on the left side, and Y; and V), on the right
side. A path p with one end at v that touches x; is
represented in the bipartite graph by an edge between
vy, and Y; if p is directed away from v, and by an edge
between y; and V,, otherwise. A path that touches x;
and z; in that order is represented by an edge between
y; and Y; in the bipartite graph.

More formally, the bipartite graph G, is con-
structed as follows: The left and right vertex sets are
Ui{yi, vy, } and U, {Yi, Vy; }. Add edges to the bipartite
graph as follows:

e For each path from some z; to some z; place an
edge from y; to Yj in the bipartite graph.

e For each path from some z; that terminates at v
place an edge from y; to V.

e For each path starting at v and directed into some
x; place an edge from vy, to Y;.

For each path that has already been colored, color
the corresponding edge in G, with the same color.
Figure 1 illustrates the construction of the bipartite
graph.

Note that y; represents the link from z; to v in
the sense that every path passing over this link is
represented by an edge incident on y;. Similarly, Y;
represents the link in the opposite direction.

For simplicity, we will make the following assump-
tions:

Assumption 1: There is a load of exactly L on each
link.

Assumption 2: The two (oppositely directed) links
between v and its parent together use exactly 3L/2
colors.

It is easy to see that these assumptions can be
made without loss of generality, and that if they do not
hold extra paths and/or colors can be added to a given
instance to make them true.

The following lemma formalizes the correspondence
between the inductive coloring step and the bipartite
graph coloring problem.

LeEMMA 2.1. Any two paths that include v and can
not be assigned the same color will be represented in
the bipartite graph above by two edges that share a
vertex; thus, a valid edge-coloring of the bipartite graph
represents a valid coloring of the paths in the original
graph.

(a) Coloring step at vertex v: uncolored edges
are shown by dotted lines.

YW, O

(b) The corresponding bipartite graph.

Figure 1: Modeling the inductive step as a bipartite
graph coloring problem.

Proof. The valid coloring of the paths is obtained from a
coloring of this bipartite graph by giving each path the
same color as the corresponding edge in the bipartite
graph.]

As we noted above, a pair of oppositely directed
links are represented by a pair of opposite vertices in
the bipartite graph. Invariant 3 requires that any such
pair of links should be colored with no more than 3L/2
colors. That implies that the corresponding pair of
vertices in the bipartite graph should together see no
more than a total of 3L/2 colors. We must color G,
without violating this requirement.

Next, we show how to color the bipartite graph G, .

3 Coloring a Bipartite Graph.

Note that among the paths that touch v, the paths that
contain g, the parent of v, are already colored, and
no other paths are colored. Consequently, all the edges
in GG, that touch yg or Yy are colored, and no other
edges are colored. Also note that no edges run between
opposite vertices, i.e., y; and Y, or v,; and V.

Also, while no vertex has more than L incident
edges, and yo and Yy have exactly L incident edges each,
other vertices may have fewer than L incident edges. We
will add extra edges to the graph to make it L-regular.

As yo and Yy have L colored edges each, and
together they use 3L/2 colors, they must share exactly
L/2 colors. We will refer to the shared colors as
double colors, and to the rest as single colors. The
corresponding edges will be called double-color edges
and single-color edges respectively.

Below, we describe how to color all the edges of G,
using 7L/4 colors. The algorithm involves two distinct
phases. In the first phase, we extract from G, subgraphs
of a particular kind, called gadgets, and color them in a
way that maximizes the reuse of colors already present
in G,. When no more such subgraphs can be extracted,
phase 2 is invoked to color the remaining graph, by
splitting it into two parts: a subgraph which can be
colored without using any new colors, and the rest.

As we saw in the previous section, a pair of oppo-
sitely directed links in the network is represented by a
pair of opposite vertices in G, and the edges incident
on that pair of vertices must be colored with no more
than 3L /2 colors in order to satisfy invariant 3. We will
satisfy this requirement by ensuring that every pair of
opposite vertices share at least L/2 colors. This will be
referred to as the color-sharing requirement.

Our algorithm will involve breaking G, into regular
bipartite subgraphs which have the same vertex set but
a smaller degree. We will ensure that each individual
subgraph satisfies the color-sharing requirement. That
is, each pair of opposite vertices will share one color in
the case of a 2-regular subgraph, and two colors in the
case of a 3-regular or 4-regular subgraph. Clearly, this is
sufficient to meet the overall color-sharing requirement.

3.1 Gadgets.

A gadget is a subgraph of G, which contains all the
vertices of G, and in which yg and Y, each have degree
3 while all other vertices have degree 2.

A gadget can be looked upon as a union of three
paths in G,,. There are three edges going out of yq, and
through these, we can trace paths that lead to either
yo or Yy. Similarly for Y. There are three such paths
in all, and either all three extend between yg and Y
or one extends between gy and Yy while the other two
loop back to their starting points. Let us refer to these
paths as strands. Each vertex is contained in exactly
one strand.

Gadgets allow us to economize on the number of
colors that we use, because some of the edges of the
gadgets can be colored using colors already present in
the gadget. Phase 1 involves repeated extraction and
coloring of gadgets.

3.2 Phase 1.

In phase 1, our objective is to reduce the proportion
of double-color edges in the graph by extracting suitable
gadgets while economizing on the new colors used to
color the gadgets.

In phase 1, we will repeatedly extract 3-regular
subgraphs H, each consisting of a gadget H; and a
matching Hs that involves every vertex other than yg
and Yy. We ensure that each subgraph H extracted in
this phase is such that of the six edges of H that are
incident on yo or Yy, two are colored with the same
color a, while another two are colored with single colors
b and ¢. The remaining two are colored with (possibly
distinct) double colors.

Note that there are three reusable colors involved
in Hy: a,b and ¢. That is to say, these colors can be
used to color some edges of the gadget because we know
that no edge of G, — H is colored with either of these
colors. Using these three colors, we can color Hy in such
a way that at least one color is shared by every pair of
opposite vertices of G,. The details of the extraction
and the coloring will appear in the full paper.

H5 can now be colored using a new color — that is, a
color that is not among the 3L /2 colors initially present
on the edges of G,. Clearly, every pair of opposite
vertices shares this new color.

We have colored H using no more than one new
color such that every pair of opposite vertices shares
at least two colors. Phase 1 of the algorithm consists
of extracting and coloring such subgraphs till no more
subgraphs that have the desired color property can be
extracted.

Let us analyze the effect of phase 1.

LeEMMA 3.1. At least L/6 subgraphs are extracted in
phase 1.

Proof. Phase 1 will when end no more double-color
edge-pairs are left. We had L/2 such pairs to begin with,
and each 3-regular subgraph extracted contains one pair
while it may separate another two pairs by including one
edge from each.]

Our scheme of coloring these subgraphs implies that

OBSERVATION 3.1. The number of new colors used in
phase 1 is equal to the number of subgraphs extracted.

So if the degree of each vertex is reduced by [as
result of phase 1, then /3 new colors have been used in
phase 1.

3.3 Phase 2.

As phase 1 progresses, the ratio of double-color
edges (separated or not) to single-color edges in the
remaining graph diminishes. This is helpful, because
single colors are reusable. Let R(G) denote the ratio of
double-color edges to single-color edges in a subgraph
G of G,. R(G,) is 1:1, and the ratio goes down with
every extraction of a gadget: R(H) is 2:1 for each gadget
H extracted. This, together with lemma 3.1, has the
following implication for G7, the graph remaining at
the end of phase 1:

LEMMA 3.2. R(GY) is 1:2 or lower. [|

Phase 2 colors the remaining (L — [)-regular graph
G?. The coloring scheme depends on the value of R(G?).

LemMA 3.3. If R(GY) is 1:3 or lower, we can color G,
without using any new colors.

Proof. Consider the case where the ratio is exactly 1:3.
As single colors are reusable and as we have a good ratio
of single colors double colors, we would like to extract
subgraphs which contain more single than double colors
and try to color them with the single colors they contain.
To do this, we transform G, into G, as follows: break yq
into 3 vertices, yo1, Yo2 and yps. Let (L—1)/2 single-color
edges be incident on yo3, (L —1)/4 single-color edges on
yo2 and (L—1)/4 double-color edges on yg;. Split Yy into
Yo1, Yoo and Y3 in exactly the same way. Split each
of the other vertices into two, each part getting half
the edges. Now add (L —[)/4 dummy edges between
yo1 and Yo, and an equal number between yg2 and
Yo1. This is an (L — 1)/2-regular bipartite graph. Split
it into (L — 1)/2 matchings, and from each matching
M, throw away the dummy edges and merge the split
vertices back.

M can contain up to two dummy edges. If M
contained one dummy edge, the resulting graph is a
cycle cover containing three single-color edges. Two of
these three colors can be used to color this cycle cover.

If M contained two dummy edges, then the result-
ing subgraph is one edge short of a cycle cover: it visits
each vertex twice except for yo and Yy which are visited
once each. It can be ‘unzipped’ into a perfect matching
and another matching. The former contains two colored
edges which are colored with single colors. One of them
can be used to color it. The second matching will be
colored along with a gadget below. There are as many
gadgets as there are such matchings, and a one-to-one
assignment can be made.

If M contained no dummy edges, then the resulting
subgraph is a gadget. Its three strands together contain
four single and two double colors. Picking two of the
single colors, we can color the gadget. The other two
colors can be used to color the a matching from the
previous case that may be assigned to this gadget.

In each case, the coloring can be done without
violating the color-sharing requirement. The details will
appear in the full paper.

By following this procedure for each matching, we
can color G} without using any new colors.

If the ratio is lower than 1:3, we can split G, into
two bipartite graphs: one in which the ratio is exactly
1:3, and the other in which there are no edges with
double colors. Each can then be colored without using
new colors.

Next, let us consider the case when R(G?) is exactly
1:2.

LEmMA 3.4. If G} is a k-regular bipartite graph such
that R(GY) is 1:2, it can be colored using k/6 new colors.

Proof. As before, we wish to break G, into small-degree
subgraphs which have a high ratio of single colors to
double colors. To do this, transform G into G| as
follows: break gy into 3 vertices, yo1, Yoo and yp3. Let
k/3 double-color edges be incident on yo1, and k/3
single-color edges on each of ygo and yg3. Split Yy into
Yo1, Yoo and Yy3 in exactly the same way. Split each
of the other vertices into two, each part getting half
the edges. Now add k/6 dummy edges between yo; and
Yo2, and an equal number between yg2 and Yy as well
as between yo3 and Yp3. What we get is a k/2-regular
bipartite graph. Split it into k/2 matchings, and from
each matching M, throw away the dummy edges and
merge the split vertices back.

What is the structure of the resulting subgraph M'?
It depends on the number of dummies in M. Let us
group the matchings into four sets depending on the
number of dummies they contain: set S; contains all
the matchings with ¢ dummies each. Let m; be the
cardinality of set S;.

As there are k/2 dummies and k/2 matchings, there
is one dummy per matching on the average. The
matchings with no dummies have to be counterbalanced
by matchings with more than one dummy. It is easily
seen that:

mo = My +2m3

In other words, we can assign two matchings from set
Sp to each matching from Ss and one to each matching
from Ss. Let us make these assignments.

First, let us consider the matchings with 3 dummies.
For such a matching M, M' consists of two perfect
matchings on G — {yo, Yo}. These matchings contain
no colored edges. Along with each of the two Sy
matching assigned to M, we will color one of these
matchings. This task postponed, we proceed to deal
with the members of Ss.

If M contains two dummies, M' is the union of
a perfect matching of G} with a perfect matching of
G! — {yo,Yo}. The former contains at least one single
color, and we can use that color to color all its uncolored
edges. The task of coloring the latter is again left to the
member of Sy assigned to M.

Next, let us consider members of Sy themselves.
For each such M, M’ has the structure of a gadget,
containing two single and one separated color on each of
yo and Yy. Two of the single colors can be used to color

the gadget, while the other two can be used to color the
extra matching assigned to M in previous steps, as was
done in the proof of lemma 3.3.

Lastly, let us consider members of S;. For each
such M, M' is a cycle cover of G%. If the dummy edge
in M is not of type 3, the cycle cover contains 3 single
colors, and it is possible to use two of them to color M’
without violating the 3-color requirement. However, if
the dummy is of type 3, M’ contains two single colors
and two separated colors. If both the single colors come
from one of the two matching that constitute the cycle
cover, then there is no way of coloring M’ without using
a new color. In this case, we use one of the two single
colors and a new color to color M’.

In each case, the coloring can be performed without
violating the color-sharing requirement. Details will be
presented in the full paper.

How many matchings in Sy could contain a type 3
dummy? Clearly, their number is bound by the number
of type 3 dummies, which is k/6.

We therefore have a way of coloring G7 using no
more than k/6 new colors without violating the 3-color
requirement. [|

We have already noted that R(G)) can not be
higher than 1:2. What about the case when the ratio is
between 1:2 and 1:37

LeEmMA 3.5. If R(GY) lies between 1:2 and 1:3, we can
partition G7, into two regular bipartite graphs G and
Go with the same vertexr set as G7,, such that R(Gy) is
1:2 and R(Gs) is 1:3.

Proof. Such a partitioning may be accomplished by
splitting the graph into matchings and partitioning
the set of matchings appropriately. (The details are
straightforward, and will appear in the full paper.) =

We have already seen how to color G; and G, in
lemmas 3.3 and 3.4. Together with lemma 3.5, they take
care of coloring G}, in all cases.

3.4 Overall Performance of the Algorithm.

Let us see what the overall color requirement for
coloring G, is. G, contained 3L/2 colors to begin with,
and some new colors have been used by our algorithm.

THEOREM 3.1. G, can be colored using no more than
7L/4 colors while preserving the invariants.

Figure 2: A set of paths where L = 2.

Proof. As we have obtained a valid coloring of G,,
it follows that invariant 1 is preserved (lemma 2.1).
Invariant 3 is also preserved, since the coloring of G,
satisfies the color-sharing requirement. Invariant 2
requires that no more than 7L/4 colors be used.

In the first phase, we use a new color every time
we extract a gadget (observation 3.1). That translates
to one new color for every four double-colored edges
removed.

In phase two, we use at most k/6 new colors, where
k/3 is the number of double-colored edges incident on
each of yy and Yp. So again we use no more than one
new color for every four double-colored edges (lemmas
3.3, 3.4, 3.5). Let D be the number of double colors.
Initially, G, contained 2L — D colors. So at the end,
it has been colored with 2L — D/2 colors. Invariant 3
implies that D is at least L/2, and the result follows. B

The coloring of G, thus obtained can be used to
extend the partial coloring of paths of 7' to include all
paths that touch vertex v, in such a way that the three
invariants are maintained.

Theorem 3.1 is a statement of the validity of our
inductive step, and theorem 2.1 follows.

4 A Lower Bound.

Mihail, Kaklamanis and Rao [8] used a family of prob-
lem instances including the one in figure 2 to justify a
lower bound of 3L/2 colors for the problem or coloring
a set of paths with maximum load L. In the instance
pictured in figure 2, the value of L, the maximum load
over a link, is 2. a, b, ¢, d and e are the five paths to be
colored. It can be easily verified that no three paths out
of the five can be colored with the same color. Three
colors are, therefore, necessary. Three colors are suffi-
cient too: a and ¢ can share a color, as can d and b. Tt

follows that for L = 2, no algorithm can route arbitrary
request sets with fewer than 3L/2 — that is, three —
wavelengths.

However, this proposed lower bound of 3L/2 does
not hold for most problem instances in this family —
in fact, it is only valid for L = 2. Consider the case
where each of a, b, ¢, d and e represents not a single
path but a set of L/2 paths; this yields a maximum
load of L. Mihail, Kaklamanis and Rao [8] generalized
from the preceding example and suggested that 3L/2
colors would be required. However, as the following
valid coloring shows, 5L/4 colors will actually suffice
for this example. As long as L > 3, this is fewer than
3L/2 colors.

Assign L/2 colors to each of the five sets of paths,
one color for each path in the set, according the
following assignment of colors to sets:

a {1,2,..., %}
b {&£+1,...,L
¢ {L+1,... 58 uft,... 5}
d {£41,..., 2
L L
e {BT-l-l, "75T}

It is straightforward to verify that no two colors that
use the same directed link are assigned the same color,
so 5L/4 colors are sufficient.

It turns out that 5L/4 colors are also necessary in
this instance. To see that, note that no color may be
use to color more than two paths. This is so because
a color may be used only once in each set, and it can
not be used in more than two sets (since no three out
of the five sets a, b, ¢, d and e may share a color).
As there are a total of 5L/2 paths to be colored and
no color may be used more than twice, it follows that
5L/4 colors are necessary. An alternate proof of the
requirement of 5L/4 colors comes from a more general
technique developed by Jordan and Schwabe for lower
bounds on channel assignment in cellular systems [5].

If we consider all possible values of L, the above ex-
ample represents a class of instances for which 5L/4 (to
be precise, [5L/4]) colors are necessary and, inciden-
tally, sufficient. This yields the following lower bound:

THEOREM 4.1. For every value of L, there is a tree T
and a set S of paths over T such that no directed link
of T is used by more than L paths, and 5L/4 colors are
necessary to color S.]

References

[1] A. Aggarwal, A. Bar-Noy, D. Coppersmith, R. Ra-
maswami, B. Schieber, and M. Sudan, Efficient Routing
and Scheduling Algorithms for Optical Networks, Proc.
of the 5th ACM-SIAM Symp. on Discrete Algorithms,
pp. 412-423, 1993.

[2] T. Erlebach and K. Jansen, Call-Scheduling in Trees,
Rings and Meshes, Proc. of the 30th Hawaii Interna-
tional Conference on System Sciences, 1996, to appear.

[3] T. Erlebach and K. Jansen, Scheduling of Virtual
Connections in Fast Networks, Proc. of the 4th Parallel
Systems and Algorithms Workshop (Jiilich, Germany),
1996, to appear.

[4] K. Jansen, Approzimation Results for Wavelength
Routing in Directed Trees, Preprint, 1996.

[5] S. Jordan and E. Schwabe, Worst-Case Performance of
Cellular Channel Assignment Policies, ACM Journal
on Wireless Networks, 1996, to appear.

[6] C. Kaklamanis and G. Persiano, Efficient Wavelength
Routing on Directed Fiber Trees, Proc. of the 4th An-
nual European Symp. on Algorithms,; 1996, to appear.

[7] J. Kleinberg and E. Tardds, Approzimations for the
Disjoint Paths Problem in High-Diameter Planar Net-
works, Proc. of the 27th ACM Symp. on Theory of
Computing, pp. 26-35, 1995.

[8] M. Mihail, C. Kaklamanis, and S. Rao, Efficient Access
to Optical Bandwidth, Proc. of the 36th IEEE Symp.
on Foundations of Comp. Sci., pp. 548-557, 1995.

[9] Y. Rabani, Path Coloring on the Mesh, Proc. of the

37th IEEE Symp. on Foundations of Comp. Sci., 1996,

to appear.

P. Raghavan and E. Upfal, Efficient Routing in All-

Optical Networks, Proc. of the 26th ACM Symp. on

Theory of Computing, pp. 134-143, 1994.

[10]

