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ABSTRACT
In this paper, we address the rate control problem in a multi-
hop random access wireless network, with the objective of
achieving proportional fairness amongst the end-to-end ses-
sions. The problem is considered in the framework of non-
linear optimization. Compared to its counterpart in a wired
network where link capacities are assumed to be fixed, rate
control in a multi-hop random access network is much more
complex and requires joint optimization at both the trans-
port layer and the link layer. This is due to the fact that the
attainable throughput on each link in the network is ‘elastic’
and is typically a non-convex and non-separable function of
the transmission attempt rates. Two cross-layer algorithms,
a dual based algorithm and a primal based algorithm, are
proposed in this paper to solve the rate control problem in a
multi-hop random access network. Both algorithms can be
implemented in a distributed manner, and work at the link
layer to adjust link attempt probabilities and at the trans-
port layer to adjust session rates. We prove rigorously that
the two proposed algorithms converge to the globally opti-
mal solutions. Simulation results are provided to support
our conclusions.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems

General Terms
Algorithms
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1. INTRODUCTION
The objective of rate control is generally to use all avail-

able bandwidth to the full while maintaining a certain “fair-
ness” amongst the competing sessions in the network. In
wired networks, the problem of rate control has been exten-
sively researched, e.g., [5], [6]. It has been proved that in
wired networks, since the feasible rate region can be rep-
resented by a set of simple, separable, convex constraints,
globally fair rates are attainable via distributed approaches
based on convex programming.

In wireless networks, the capacity of a link is not a fixed
quantity, and depends on the specific MAC (Medium Ac-
cess Control) protocol used. MAC protocols are designed
to reduce collisions, to ensure high system throughput, and
to distribute the available bandwidth fairly among the com-
peting nodes. A prominent feature of the wireless network
is that its feasible rate region is typically a complex, non-
convex and non-separable function of the MAC control pa-
rameters like the transmission probabilities or back-off win-
dow sizes. Therefore, the results on rate control in wired
networks are not readily applicable to a wireless scenario.

Since the feasible rate region in a wireless network depends
on the MAC protocol and parameters, the end-to-end rate
optimization question must be considered in a cross-layer
framework, i.e., the rate control strategy must be imple-
mented at both the link layer and the transport layer. In
this paper, we study the end-to-end proportionally fair [4]
rate allocation problem in a multi-hop random access net-
work with general topology. Specifically, we address the
problem of how to introduce a cooperation between the link
layer and the transport layer so that aggregate utilities of
all end-to-end sessions are maximized. The problem is for-
mulated as an optimization problem and two algorithms are
proposed to solve the problem in the distributed manner.

The first algorithm is a dual-based algorithm. At the
higher (transport) layer, end-to-end sessions adjust their
rates in a distributed manner so as to attain proportion-
ally fair session rates given specific link rates. At the lower
(link) layer, the link attempt probabilities are adjusted with
local information, so that the bandwidth bottlenecks are al-
leviated and the aggregate utilities can be further increased.
In this manner, the link layer and the transport layer coop-
erate with each other and achieve end-to-end proportionally
fair rates in the distributed manner.

It is worth noting that, every time the attempt probabili-
ties (and hence the link rates) are adjusted at the link layer,



the algorithm at the transport layer will compute the opti-
mal end-to-end session rates, along with the optimal “link
prices”, under the given link rates. After that, the algorithm
at the link layer adjusts the link attempt probabilities ac-
cordingly, using information on the link prices and the link
attempt probabilities in the local neighborhood. Therefore
the proposed rate control algorithm works at a larger time
scale at the link layer and at a smaller time scale at the
transport layer. We show that the dual-based algorithm es-
sentially adjusts the link attempt probabilities in an ascent
direction, and the algorithm converges to the globally opti-
mal solutions.

Although the formulated rate control problem appears to
be non-convex, we show that it is equivalent to a convex pro-
gramming problem through simple transformations. More
importantly, the transformed convex problem can be solved
in a distributed manner. The primal-based algorithm using
subgradient method is proposed for this transformed convex
program. In each iteration of this algorithm, a link updates
its attempt probability using the attempt probabilities of
the links in its neighborhood. At the same time, the end
user updates its session rate using aggregate traffic load and
capacity information for the links on its path. In this ap-
proach, the transport and link layer algorithms work at the
same time scale, and the algorithm achieves a faster conver-
gence rate compared to the dual approach.

The paper is organized as follows. Related work is dis-
cussed in Section 2. In Section 3, we describe the mod-
els for the network and the link layer, and formulate the
rate control problem as an optimization question. The so-
lution approach and the implementation of the dual-based
algorithm are presented in Section 4. We then consider the
transformed convex program and discuss the primal-based
algorithm in detail in Section 5. The two algorithms are
compared in Section 6. Simulation results are presented in
Section 7, and the paper is concluded in Section 8. All nec-
essary proofs are provided in the appendix.

2. RELATED WORK
There are several existing works that address the prob-

lem of fair bandwidth sharing at link layer. In [9] Tassiulas
et al. have proposed a centralized algorithm to attain max-
min fair rate in certain ad-hoc networks. On the other hand,
Nadagopal et al. [7] and Ozugur et al. [8] have proposed
decentralized algorithms that try to achieve some fair rate
allocations. Kar et al. [13] have considered proportional
fairness problem in Aloha networks, both slotted and un-
slotted, and derived distributed strategies to achieve propor-
tional fairness for single-hop flows in an Aloha network. In
[14] Wang et al. provided distributed algorithms to achieve
max-min fair rates in Aloha networks. All these schemes
can be viewed as rate control for single-hop flows. How-
ever, their results cannot be readily extended to the general
rate control problem for end-to-end sessions in a multi-hop
wireless network.

There are several recent works that address the question
of cross-layer design in communication networks, especially
in wireless networks. Related work that falls into this cat-
egory includes cross-layer optimization in wireless networks
[10], [11], and joint power and rate control in CDMA net-
works [12]. In [10], Johansson et al. consider the problem
of finding jointly optimal end-to-end communication rates,
routing, power allocation and transmission scheduling for

wireless networks. However the approach is based on non-
linear column generation which is difficult to implement in a
distributed manner. In [11], Xiao et al. formulate the prob-
lem of simultaneous routing and resource allocation in wire-
less networks and propose distributed algorithms via dual
decomposition. But a basic assumption of their work is
that the capacity of a wireless link is a concave function
of link variables, which may not be true in many cases. In
[12], Chiang proposes a distributed power control algorithm,
that along with a TCP rate update mechanism, optimizes
the end-to-end throughput in a wireless CDMA network.
Although our work is closely related to [12] (we also use
a result from [12] in our analysis), the problem considered
and the approaches proposed in our work differ significantly
from those in [12]. Unlike [12], we are interested in opti-
mizing the transmission attempt probabilities at the lower
layer, and not the transmission powers. Moreover, we pro-
pose both primal- and dual-based approaches, which work
at the one and two timescales respectively; in contrast, the
approach in [12] is a dual based approach which works at a
single timescale.

3. FORMULATION

3.1 System Model
We consider a general wireless network, where all nodes

need not be in the transmission range of each other. For
simplicity, we assume a symmetric hearing matrix, i.e., node
i can receive signal from node j if and only if node j can
receive signal from node i. However, our analysis can be
generalized to the case when this assumption does not hold.

A wireless network can be modeled as an undirected graph
G = (N, E), where N and E respectively denote the set
of nodes and the set of undirected edges. An edge exists
between two nodes if and only if they can receive each other’s
signals. A directed link (i, j) represents an active direct-
communication pair, and L is the set of directed links. Note
that there are 2|E| possible direct-communication pairs, but
only a few pairs may be actively communicating.

Suppose the set of sessions (end-to-end flows) sharing the
network be denoted by S. Let L(s) ⊆ L denote the set of
links that a session s ∈ S uses, i.e., L(s) is the set of links
in session s’s end-to-end path. For each link (i, j) ∈ L, let
S(i, j) = {s ∈ S|(i, j) ∈ L(s)} be the set of sessions that use
link (i, j). Note that (i, j) ∈ L(s) if and only if s ∈ S(i, j).
In the sequel we assume that both the set of sessions and the
routing matrix are fixed. We also assume that all sessions
are backlogged.

Further details on the link layer model are provided next.
For any node i, the set of i’s neighbors, Ki = {j : (i, j) ∈ E},
represents the set of nodes that can hear i. For any node
i, the set of out-neighbors of i, Oi = {j : (i, j) ∈ L} ⊆
Ki, represents the set of neighbors to which i is sending
traffic. Also, for any node i, the set of in-neighbors of i,
Ii = {j : (j, i) ∈ L} ⊆ Ki, represents the set of neigh-
bors from which i is receiving traffic. A transmission from
node i reaches all of i’s neighbors. Each node has a single
transceiver. Thus, a node can not transmit and receive si-
multaneously. We do not assume any capture, i.e., node j
can not receive any packet successfully if more than one of
its neighbors are transmitting simultaneously. A transmis-
sion on edge (i, j) ∈ L is successful if and only if no node
in Kj ∪{j} \ {i} transmits during the transmission on (i, j).



We also assume, without loss of generality, that all the nodes
share a single wireless channel of unit capacity.

3.2 Link Rate Expressions
In the following, the (slotted) Aloha protocol [1] is used to

model the access control strategy in a random access wire-
less network. In the Aloha network, each node i transmits
a packet with probability Pi in a slot. If i does not have an
outgoing edge, i.e., Oi = φ, then Pi = 0. Once i decides
to transmit in a slot, it selects a destination j ∈ Oi with
probability

p(i,j)
Pi

, where
�

j∈Oi
p(i,j) = Pi. Therefore, in

each slot, a packet is transmitted in edge (i, j) with prob-
ability p(i,j). Let p = (p(i,j), (i, j) ∈ L) be the vector of
transmission probabilities on all edges. Then, the rate or
the attainable throughput on link l = (i, j), xl, is

x(i,j) = cij(p) = p(i,j)(1 − Pj)
�

k∈Kj\{i}
(1 − Pk). (1)

The term (1− Pj)
�

k∈Kj\{i}(1− Pk) in (1) is the proba-

bility that a packet transmitted on link (i, j) is successfully
received at j.

Note that the rate on link (i, j) depends not only on the
attempt probability on link (i, j), p(i,j), but also on the at-
tempt probabilities of node j and its neighbors.

3.3 Problem Statement
We now consider the end-to-end proportionally fair rate

control problem in a multi-hop Aloha network considered
above.

Let each session s ∈ S be associated with a utility function
Us : �+ → �. Thus session s attains a utility Us(ys) when
it transmits at rate ys that satisfies ys ≥ 0. Specifically, we
are interested in the proportionally fair rate control problem;
therefore, the utility function Us is chosen as the logarithmic
function [5]. Note that the logarithmic function is increasing
and strictly concave in its argument.

Note that the feasible rate allocations must satisfy the
capacity constraints, i.e., for any link (i, j) we have�

s∈S(i,j)

ys ≤ x(i,j). (2)

The rate optimization problem can therefore be formu-
lated as

P : max
�

s log(ys),
s.t.

�
s∈S(i,j) ys ≤ x(i,j) ∀(i, j) ∈ L,

x(i,j) = cij(p) ∀(i, j) ∈ L,
0 ≤ p(i,j) ≤ 1 ∀(i, j) ∈ L,
Pi ≤ 1 ∀i ∈ N,
ys ≥ 0 ∀s ∈ S.

(3)

The first and second sets of constraints ensure that the total
session rates of traffic in a link cannot exceed the attainable
throughput of the link. Note that the terms cij(p) in the
second set of constraints are defined by (1). The third and
fourth sets of constraints come from the fact that the at-
tempt probabilities are non-negative and cannot be greater
than unity. The fifth set of constraints ensure that the ses-
sion rates are non-negative.

The rate control question therefore represents a joint op-
timization problem which couples the link attempt proba-
bilities at the link layer with the end-to-end session rates at
the transport layer.

4. DUAL-BASED ALGORITHM

4.1 Solution Approach
Instead of solving the problem P directly, we now con-

sider the version of the end-to-end proportionally fair rate
optimization question where each link capacity is parame-
terized:

P̂ : max
�

s log(ys),
s.t.

�
s∈S(i,j) ys ≤ x(i,j) ∀(i, j) ∈ L,

ys ≥ 0 ∀s ∈ S.

(4)

In the above formulation, x(i,j), the rate on link (i, j), is
assumed to be a given constant; however, the terms ys, rep-
resenting the end-to-end session rates, are variables whose
values need to be determined optimally.

Note that the optimum value in the parameterized prob-
lem P̂ is a function on x, where x is the vector of all link
rates in the network, i.e. x = {x(i,j) : (i, j) ∈ L}. We define

Û(x) as the optimum value in P̂, i.e.,

Û(x) = max

��
�
�

s

log(ys)

������
�

s∈S(i,j)

ys ≤ x(i,j), (i, j) ∈ L

	

�
(5)

Since the vector of all link rates considered in P in turn is
a function on the link attempt probabilities, we can define
function Ũ(p) = Û(c(p)), where c(p) = (cij(p) : (i, j) ∈ L).
Therefore problem P can be rewritten as

P̃ : max Ũ(p),
s.t. 0 ≤ p(i,j) ≤ 1 ∀(i, j) ∈ L,

Pi ≤ 1 ∀i ∈ N.
(6)

We solve the problem in (6) by updating the link attempt
probabilities using the following equation

p
(n+1)
(i,j) = p

(n)
(i,j) + α

�
(s,t)∈L

λ
∗(n)
(s,t)

∂cst

∂p(i,j)

(p(n)), (7)

where α is the step size, ∂cst
∂p(i,j)

is computed using the fol-

lowing formula

∂cst

∂p(i,j)
=

�������������������
������������������

(1 − Pt)
�

k∈Kt\{s}
(1 − Pk)

if t = j and s = i,

−p(s,t)

�
k∈Kt\{s}

(1 − Pk)

if t = i and s ∈ It,

−p(s,t)(1 − Pt)
�

k∈Kt\{s}
(1 − Pk)

if t ∈ Ki and s ∈ It \ {i},

0 otherwise,
(8)

and λ
∗(n)

(i,j)
is the optimum solution to the dual problem of P̂

when x = c(p(n)), i.e.,

�
(n) = arg min

�≥0
max

y
L(n)(y,�). (9)

In (9), � =

λ(i,j) : (i, j) ∈ L

�
is the vector of Lagrange

multipliers for the capacity constraints on the wireless links,
y = (ys : s ∈ S) is the vector of the end-to-end session



rates, and L(n)(y,�) is the Lagrange function of P̂ when

x = c(p(n)). Note that L(n)(y,�) is given by

L(n)(y,�) =
�

s

log(ys) −
�
(i,j)

λ(i,j)

�
� �

s∈S(i,j)

ys − x
(n)

(i,j)

�
�
(10)

We then solve y(n) from P̂ when x = c(p(n)), i.e.,

y(n) = arg max

��
�
�

s

log(ys)

������
�

s∈S(i,j)

ys ≤ cij(p
(n)), (i, j) ∈ L

	

�

(11)

4.2 Convergence Analysis
We have the following theorem regarding to the conver-

gence property of the dual-based approach.

Theorem 1. Let {p(n)(α),y(n)(α)} denote the sequence
of vectors of link attempt probabilities and end-to-end ses-
sion rates computed with the iterative procedures stated in
(7)-(11) when the step size is α. Then there exists an ᾱ ∈
�

+ such that for α < ᾱ, the limit point of {p(n)(α),y(n)(α)}
is the globally optimal solution to the problem P.

Intuitively, the procedures from (7) to (10) adjust the
link attempt probabilities in the gradient direction. There-
fore the sequence of {p(n)(α)} converge to a local optimal

point in P̃ where the Karush-Kuhn-Tucker (KKT) condi-

tions hold. Since P and P̃ are equivalent, it can be shown
that the KKT point of P̃ actually gives to the KKT point in
P if y is solved by (11). Therefore the procedures from (7)
to (11) converge to the KKT point of P. We further show
that, although P appears to be non-convex, its KKT points
are globally optimum.

4.3 Distributed Algorithm
In this section, we describe in detail a distributed imple-

mentation of the dual-based algorithm to solve the propor-
tionally fair rate control problem P.

The algorithm works at both the transport layer and the
link layer. Periodically, the attempt probabilities are up-
dated at the link layer, using information on link prices and
link attempt probabilities in a node’s local neighborhood.
Each time the attempt probabilities are updated, the al-
gorithm works at the transport layer, where the optimal
end-to-end session rates and optimal link prices (under the
updated link rates) are computed by an iterative search.
Therefore, the proposed algorithm works at the transport
layer and the link layer at different time scales: it works
at the link layer at a larger (longer) time scale and at the
transport layer at a smaller (shorter) time scale.

4.3.1 Flow Rate Control at the Transport Layer
The algorithm at the transport layer solves the rate con-

trol problem P̂. When the link attempt probabilities have
been updated, all link rates are computed accordingly. The
algorithm at the transport layer is then executed, which
solves essentially the same problem as the one in a wired
network. In fact, the algorithm at the transport layer in
our work is exactly the algorithm stated in [6], i.e., each
source adjusts its session rate and each link adjusts its link
price, in an iterative manner, until the optimal solutions are
achieved. Note that the algorithm in [6] not only gives the

optimal rates, but also the corresponding Lagrange multi-
pliers (or optimal link prices).

We now state the procedures to solve the dual problem
P̂ [2],[6]. Let x(n) = c(p(n)) denote the link rate vector at
iteration n. Then the Lagrangian in (10) at the nth iterative
step can be rewritten as

L(n)(y,�) =
�
s∈S

(log(ys) − ysλ
s) +

�
(i,j)∈L

λ(i,j)x
(n)
(i,j), (12)

where

λs =
�

(i,j)∈L(s)

λ(i,j). (13)

Note that the first term in (12) is separable in the session
rates ys. Therefore, the objective function for the dual prob-
lem of P̂ at x(n) is

D(n)(�) = max
y

L(n)(y,�)

=
�
s

Bs(λ
s) +

�
(i,j)

λ(i,j)x
(n)

(i,j)
,

(14)

where Bs(λ
s) = maxys(log(ys) − ysλ

s). The dual problem
is thus defined as

min
�≥0

D(n)(�). (15)

Since the logarithmic function is strictly concave and the
constraints for rate allocations are linear, P̂ is a convex pro-
gram and hence has no duality gap. So at x(n) = c(p(n)),

when the dual problem of P̂ achieves its optimum, denoted

by �∗(n), the corresponding ys, denoted by y
∗(n)
s , is the op-

timum solution to the primal problem.
Maximizing the dual function in (14) gives

ys(�) =
1

λs
, (16)

where λs is given by (13).
The dual problem can then be solved using gradient pro-

jection method, where the Lagrange multipliers are adjusted
in the direction opposite to the gradient ∇D(n)(λ):

λ
(n+1)
(i,j) =

�
λ

(n)
(i,j) − γ

∂D(n)

∂λ(i,j)

(�(n))

�+
=
�
λ

(n)
(i,j) + γ(y(i,j)(�(n)) − x

(n)
(i,j))

�+
,

(17)

where γ > 0 is the step size, [z]+ = max{z, 0}, �(n) =

(λ
(n)

(i,j) : (i, j) ∈ L), and y(i,j)(�) =
�

s∈S(i,j) ys(�) is the

aggregate session rates at link (i, j).
The rate control algorithm at the transport layer is sum-

marized as follows when the link rates x(n) are given:

1. For each link (i, j) ∈ L,

(a) Compute the new price λ
(n+1)
(i,j) using (17).

(b) Communicate new price λ
(n+1)

(i,j)
to the sources of

all sessions that use link (i, j).

2. For each session s ∈ S,

(a) Receive from the network the sum of the prices
of links on s’s path, and calculate λs using (13).

(b) Compute the new rate y
(n+1)
s using (16).



(c) Communicate new rate y
(n+1)
s to all links (i, j) on

s’s path.

3. Repeat Steps 1 and 2 until the session rates and link
prices converge.

4.3.2 Attempt Probability Adjustment at the Link Layer
When the optimal session rates have been achieved at the

given link rates, the proposed algorithm will work at the
link layer to update the attempt probabilities using (7). The
main purpose of the link attempt probabilities adjustment
is to change the wireless link rates and ensures that the bot-
tleneck link capacities are increased so that the total system
utility can be improved further.

From (8), note that the partial derivative ∂cst
∂p(i,j)

is nonzero

only for a link whose sink t is either node i or a node in the
neighborhood of i. Therefore, the attempt probability of
link (i, j) can be updated using only the link prices and
attempt probabilities of the links within a two-hop neigh-
borhood of (i, j), i.e., the link attempt probabilities can be
updated using only local information.

4.3.3 Implementation of the Dual-Based Algorithm
The dual-based algorithm for end-to-end proportionally

fair rate allocations in random access networks can be sum-
marized as follows:

1. Set n = 0. For any link (i, j) ∈ L, choose initial at-

tempt probabilities satisfying 0 < p
(0)

(i,j)
< 1.

2. Compute the link price and flow rates in a distributed
manner using the rate control algorithm at the trans-
port layer, assuming fixed link rates.

3. Once the iterative procedure in step 2 has converged,
update the link attempt probabilities using (7) and
(8).

4. Increment n by 1. Repeat steps 2 and 3 until the link
attempt probabilities have converged.

5. PRIMAL-BASED ALGORITHM

5.1 Equivalent Convex Formulation
The end-to-end proportionally fair rate optimization prob-

lem in (3) appears to be a non-convex problem. However,
the following theorem (proof in the appendix) states that
the proportionally fair rate can be obtained by solving a
convex optimization problem.

Theorem 2. The end-to-end proportionally fair rate con-
trol problem in a multi-hop random access network, as given
by (3), is equivalent to the following convex programming
problem

max
�

s∈S zs,

s.t. log
��

s∈S(i,j) ezs

�
− log p(i,j) − log(1 − Pj)

−�k∈Kj\{i} log(1 − Pk) ≤ 0 ∀(i, j) ∈ L,

0 ≤ p(i,j) ≤ 1 ∀(i, j) ∈ L,
Pi ≤ 1 ∀i ∈ N.

(18)

In the above, zs should be interpreted as the logarithm of
the session rate ys, i.e., zs = log(ys).

5.2 Solution Approach
Let z = (zs, s ∈ S), and w = (p, z). We then define

Ũs(w) = zs for end user s ∈ S, and gl(w) = log
��

s∈S(i,j) ezs

�
−

log p(i,j) − log(1 − Pj) −�k∈Kj\{i} log(1 − Pk) for link l =

(i, j) ∈ L. Let W represent the region in which 0 ≤ p(i,j) ≤
1 for any link (i, j) ∈ L and Pi ≤ 1 for any node i ∈ N . The
problem in (18) can be rewritten as

max
�

s∈S Ũs(w),
s.t. gl(w) ≤ 0 l ∈ L,

w ∈ W.
(19)

Instead of solving the constrained convex programming
problem in (19) directly, we consider the following optimiza-
tion problem

max
�

s∈S Ũs(w) − κ
�

l∈L max{0, gl(w)},
s.t. w ∈ W,

(20)

where κ, the “penalty scaling factor”, is a positive constant.
Comparing (19) with (20), we see that the only difference
is that the constraint for each link l ∈ L, gl(w), has been
transferred to the objective function in (20). It is worth
noting that the term κ max{0, gl(w)} can be interpreted as
the penalty associated with the violation of the capacity
constraint of link l.

Let W̃∗ be the set of optimal solutions to (20). It follows

from Theorem 4.2 of [3] that, there exists Ã such that the

set of optimal solutions to (19) coincides with W̃∗ for any

κ ≥ Ã. Therefore we can solve (20) to obtain the optimal
solutions of (19).

We now present the subgradient method to solve (20) in

an iterative manner. Let p
(n)

(i,j) and z
(n)
s respective denote

the values of p(i,j) and zs at the n iterative step, and let

p(n) = (p
(n)

(i,j)
, (i, j) ∈ L). Let x(n) = c(p(n)) denote the link

rate vector at iteration n. For each link (i, j) ∈ L, define the
“link congestion indicator” for link (i, j) at the nth iteration,

ε
(n)
(i,j), as

ε
(n)

(i,j) =

�
0 if

�
s∈S(i,j) ez

(n)
s ≤ x

(n)

(i,j)
,

1 otherwise.
(21)

Let γn be the step size at the nth iteration. Then zs is
updated as

z(n+1)
s = z(n)

s + γn

�
�1 − κ

�
(i,j)∈L(s)

ε
(n)

(i,j)
ez

(n)
s�

r∈S(i,j) ez
(n)
r

�
� (22)

and the attempt probability on link (i, j), p(i,j), is updated
as

p
(n+1)
(i,j) = p

(n)
(i,j) − γnκ

�
(s,t)∈L

ε
(n)

(s,t)

x
(n)
(s,t)

· ∂cst

∂p(i,j)

(p(n)), (23)

where ∂cst
∂p(i,j)

is defined by (8).

Note that since ezs (= ys) is interpreted as the rate of

session s, therefore ezs
�

r∈S(i,j) ezr in (22) can be interpreted

as the fraction of the overall traffic on link (i, j) contributed
by session s.

In (23), ∂cst
∂p(i,j)

(p(n)) depicts how the attempt probability

on link (i, j) impacts the rate on link (s, t); from (23), note



that this impact is weighted by the inverse of the rate on
that link.

5.3 Convergence Analysis
We now provide the convergence analysis for the iterative

procedures stated in (22) and (23). Note that the link at-
tempt probabilities in (23) and the logarithmic value of the
session rate zs are updated using the subgradient method
[3].

Denote W∗ as the set of optimal solutions of the problem
given in (18). Let ρ(w,S) = minw′∈S ||w − w′|| denote the
Euclidean distance of a point w from any set S. Let Φr(S)
be the set of all points whose distance from S is at most r for
any compact set S, i.e. Φr(S) = {w : ρ(w,S) ≤ r}. From
the convergence results for the subgradient method [3], we
have the following theorems.

Theorem 3. Let {w(n)} denote the sequence of vectors
defined by the iterative procedure stated in (22)-(23). If the
step sizes satisfy the following criteria

lim
n→∞

γn = 0,

∞�
n=0

γn = ∞, (24)

then there exists a Ã < ∞, such that for all κ > Ã,

lim
n→∞

ρ
�
w(n),W∗

�
= 0.

.

Theorem 3 states that the distance of the vector of link
attempt probabilities and session rates from the set of op-
timal solutions decrease to zero if the step sizes satisfy the
constraints in (24). If the step sizes are constant, we have
slightly weaker convergent results.

Theorem 4. Let {w(n)(γ)} denote the sequence of vec-
tors defined by the iterative procedure stated in (22)-(23)

with γn = γ,∀n. Then, there exists a Ã < ∞ and a function
r(γ) such that limγ→0+ r(γ) = 0, and for all κ > Ã,

lim
n→∞

ρ
�
w(n)(γ), Φr(γ)(W

∗)
�

= 0.

Theorem 4 states that for a constant step size, the vec-
tor of link attempt probabilities and session rates converges
to a neighborhood around the optimum, and the size of
this neighborhood becomes arbitrarily small with decreas-
ing step-size.

5.4 Distributed Algorithm
We now state formally the update procedures for the primal-

based algorithm. Let κ > Ã be a positive constant, and γn

be the step size at the nth iteration. The primal-based al-
gorithm is summarized as follows:

1. Set n = 0. For any link (i, j) ∈ L, choose initial

attempt probabilities satisfying 0 < p
(0)
(i,j) < 1. For

any session s, choose an initial session rate satisfying

y
(0)
s > 0, and set z

(0)
s = log y

(0)
s .

2. For each link (i, j) ∈ L, compute the link congestion

indicator ε
(n)
(i,j).

3. Update all link attempt probabilities using (23).

4. For each session s ∈ S, update zs, the (logarithmic)
utility of the session using (22). The new session rate

is then obtained as y
(n+1)
s = ez

(n+1)
s .

5. Increment n by 1. Repeat steps 2-4 until the link at-
tempt probabilities and session rates have converged.

6. COMPARISON OF THE ALGORITHMS
The dual-based algorithm and the primal-based algorithm

solve the proportionally fair rate control problem using dif-
ferent procedures, and from a practical viewpoint, each al-
gorithm has certain advantages over the other.

In the dual-based algorithm, the separation between the
transport layer and the link layer is better maintained. The
link rates are updated at the link layer and the session rates
are adjusted at the transport layer. The cross-layer coop-
eration between the transport layer and the link layer lies
in the fact that, the link layer adjusts link probabilities us-
ing the link prices computed by the transport layer, and the
transport layer adjusts its session rates using the link rates
computed by the link layer. Note that the dual-based algo-
rithm has embedded loops. In the inner loop (in a smaller
time scale), the transport layer searches for the session rates
and link prices, and in the outer loop (in a larger time scale),
the link layer adjusts the link attempt probabilities and up-
dates the link rates. The dual-based algorithm converges to
the optimal solutions when the link layer chooses the ‘right’
link attempt probabilities (and hence the ’right’ link rates)
such that the bottlenecks are optimally ‘shuffled’ around in
the network, and the transport layer finds the optimal ses-
sion rates for these ‘right’ link rates. It is worth noting that
the convergence process at the transport layer (inner loop)
can be time consuming in some cases, and this may slow
down the overall convergence.

In contrast, the primal-based algorithm shows lesser mod-
ularity than the dual-based algorithm. At the transport
layer, a session updates its rate based on its contribution
to the traffic at the congested links on its path. At the
same time, the link layer updates its attempt probabilities
by considering how the neighboring congested links will be
affected. Thus, in this case, updates occur at the transport
layer and at the link layer at the same time scale, and in-
formation is exchanged between different layers at a faster
time-scale than that in the dual-based algorithm. However,
the main advantage of the primal-based algorithm is that it
avoids embedded loops.

7. SIMULATION INVESTIGATION
In this section, we investigate the performance of the

two distributed algorithms, i.e., the dual-based algorithm
and the primal-based algorithm, in providing end-to-end
rate control in multi-hop random access networks. Simu-
lation results for two network topologies are shown below;
simulations carried out on various other network topolo-
gies/scenarios confirm that both algorithms achieve the glob-
ally optimal solutions.

7.1 Simple Network Scenario
In this section, a simple network scenario is considered.

The network topology is shown in Fig. 1. It is seen that
there are three nodes, A, B, and C, and two links, 0 and 1,
in this scenario. Three end-to-end sessions, namely, f0, f1,
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Figure 1: A simple network.

and f2 are setup in this scenario. The source, the sink, and
the path for each session are shown in Table 1.

Table 1: The Source, Sink, and Path of the Sessions.
Session Source Node Sink Node Links on the Path

f0 A B 0
f1 B C 1
f2 A C 0, 1

To investigate the performance of the proposed algorithm,
we compare the globally optimum solutions solved by Mat-
lab, the solutions given by the dual-based algorithm, and
the solutions given by the primal-based algorithm. The re-
sults are presented in Table 2. The comparisons show that
both algorithms converge to the optimum accurately.

Table 2: The Optimum Results and the Solutions
Given by the Distributed Algorithms.

Variables p0 p1 x0 x1
optimum solutions 1 0.5 0.5 0.5

dual-based algorithm 1 0.5004 0.4996 0.4996
primal-based algorithm 1 0.4999 0.4999 0.5001

Variables y0 y1 y2 U∗

optimum solutions 0.3333 0.3333 0.1667 -3.9890
dual-based algorithm 0.3337 0.3329 0.1667 -3.9889

primal-based algorithm 0.3139 0.3139 0.1860 -3.9889

7.1.1 Dual-Based Algorithm
In Fig. 4, we demonstrate the convergence of the link

attempt probabilities, link capacities, session rates and ag-
gregate utility, as a function of the number of link layer
updates (outer loop iterations). The step size for attempt
probability adjustment at the link layer is set to 5×10−4. It
can be seen from the plots that after 60 iterations at the link
layer, all the variables are well within 5% of their optimal
values.

7.1.2 Primal-Based Algorithm
In this simulation, the step size is set to 1.5 × 10−6. Fig.

5, which shows the attempt probabilities, link rates, session
rates, and the aggregate utility in 500 iterations, demon-
strates the convergence of the primal algorithm in the simple
scenario considered.

7.2 Ad-hoc Network Scenario
A median-sized ad-hoc network scenario is considered in

this section. The network is composed of 6 nodes and 8
links. Its topologies is shown in Fig. 2.

Three end-to-end sessions, namely, f0, f1, and f2 are setup
in this network. The source, the sink, and the path of the
three sessions are shown in Table 3.

The globally optimum solutions given by Matlab, the so-
lutions given by the dual-based algorithm and the solutions
given by the primal-based algorithm are presented in Table
4. Through comparison, it can be seen that, in this ad-
hoc network, both algorithms achieve the globally optimum
solutions.
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Figure 2: An ad-hoc network.

Table 3: The Source, Sink, and Path of the Flows.
Flow Source Node Sink Node Links on the Path
f0 E A 3, 2, 1, 0
f1 E D 4, 5
f2 A D 7, 6, 5

Table 4: The Optimum Results and the Solutions
Given by the Distributed Algorithms.

Variables p0 p1 p2 p3
optimum solutions 0.06475 0.1003 0.2102 0.09548

dual-based algorithm 0.0688 0.1019 0.2099 0.1040
primal-based algorithm 0.0649 0.0943 0.2054 0.0898

Variables p4 p5 p6 p7
optimum solutions 0.3488 0.2103 0.2898 0.1971

dual-based algorithm 0.3314 0.2063 0.2677 0.1913
primal-based algorithm 0.3584 0.2133 0.2925 0.2101

Variables x0 x1 x2 x3
optimum solutions 0.05198 0.05198 0.05198 0.05198

dual-based algorithm 0.0556 0.0552 0.0552 0.0543
primal-based algorithm 0.0537 0.0478 0.0496 0.0524

Variables x4 x5 x6 x7
optimum solutions 0.1226 0.2103 0.0877 0.0877

dual-based algorithm 0.1206 0.2031 0.0832 0.0881
primal-based algorithm 0.1266 0.2133 0.0888 0.0934

Variables y0 y1 y2 U∗

optimum solutions 0.05198 0.1226 0.0877 -7.4897
dual-based algorithm 0.0543 0.1198 0.0832 -7.5187

primal-based algorithm 0.0478 0.1266 0.0878 -7.5329

7.2.1 Dual-Based Algorithm
In this simulation, the step size for the attempt probability

adjustment at the link layer is still set to 5 × 10−4. Fig.
6 shows how link attempt probabilities, link rates, session
rates, and the aggregate utility converge with each iteration
in the link layer when the dual-based algorithm is adopted.
From the plots it can be seen that all the variables are within
10% of their globally optimum values after 300 iterations at
the link layer.

Recall that the dual-based algorithm is implemented at
the link layer and the transport layer at different time scales.
At each link layer iteration, when the link attempt proba-
bilities have been adjusted, the algorithm then works at the
transport layer to compute the optimal session rates and
link prices by an iterative search. Therefore the complexity
of the algorithm should be estimated by the number of iter-
ations at both the link layer and the transport layer. Fig. 3
plots the total number of iterations (link layer and the trans-
port layer combined) versus the number of iterations at the
link layer. In the simulation, the algorithm at the transport
layer terminates when the change in the link price is less
than 1 and the change in the session rates is less than 10−3.



From the figure, it can be seen that for 300 iterations at
the link layer when all the variables are within 10% of their
globally optimal values, the total number of iterations at the
link layer and the transport layer combined is about 3000.
Therefore there are roughly 10 iterations at the transport
layer for each rate update in the link layer. Note that each
iteration at the transport layer needs end-to-end communi-
cation, and therefore requires at least one RTT (which is
typically in the order of msecs to tens of msecs). Therefore,
assuming that the iterations at the transport layer occur
once every few RTTs, the overall convergence time of the
algorithm for a median sized network should range from a
few seconds to a few minutes.
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Figure 3: The total number of iterations vs. the
number of iterations at the link layer.

7.2.2 Primal-Based Algorithm
In this simulation, we still set the step size to 1.5 × 10−6

as we do in simulating the simple network scenario. Fig. 7
show how the link attempt probabilities, link rates, session
rates, and the aggregate utility converge when the primal-
based algorithm is used. It can be seen from the plots that
after about 2000 iterations, all the variables are within 10%
of their globally optimum values. Note that the total num-
ber of iterations for this algorithm is in the same order as
that of the dual-based algorithm. In this case too, each itera-
tion requires end-to-end communication and therefore would
require at least one RTT. The overall convergence time is
expected to range from a few seconds to a few minutes.

Note in Fig. 7 that there is an obvious thickening of
the computed link attempt probabilities and link capacities,
meaning that the computed values do not exactly converge
to the optimal values, but fluctuates around them. Recall
that in Section 5.3 we have argued that we need step sizes
close to zero in order to guarantee exact convergence. If the
step size is a constant, but small, as in this case, then we can
only guarantee that our algorithm achieves solutions that
are close-to-optimal. When the total traffic is close to the
link rate, the link congestion indicator fluctuates between 0
and 1, as can be expected from intuition. This causes the
fluctuations link the one observed in the plots of link at-
tempt probabilities and link capacities in Fig. 7. Smaller
step sizes cause smaller fluctuations, but also result in lower
convergence speeds. Thus the choice of the step size is a

trade-off between the convergence speed and the magnitude
of fluctuations. In this case, the step size has been chosen
appropriately, based on this trade-off. In practice, a flow
could choose large step sizes initially, to ensure fast conver-
gence; subsequently, the step sizes can be reduced once the
rate starts fluctuating around the same mean value.

8. CONCLUSIONS
In this paper, we address the end-to-end proportionally

fair rate control problem in a multi-hop random access net-
work with a general network topology. In wireless networks,
the feasible rate region is a complex, non-separable func-
tion of the link attempt probabilities. Therefore the opti-
mal rate control problem in wireless networks much more
difficult than its wired network counterpart.

In this paper, we formulate the end-to-end rate control
problem in random access networks as an optimization prob-
lem, and propose two cross-layer algorithms to solve the
problem, both of which can be implemented in a distributed
manner. Using nonlinear optimization techniques, we prove
that both algorithms converge to the global optimum. Sim-
ulation results under various network scenarios also support
our analytical observations.
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APPENDIX
Since proof of Theorem 1 uses Theorem 2, we will prove
Theorem 2 first.

A. PROOF OF THEOREM 2

Proof. If we denote zs = log ys, then the objective in (3)
can be rewritten as U =

�
s∈S zs, which is still a concave

function. Since the logarithmic function is strictly increas-

ing, each link constraint in (3) can then be rewritten as

log
��

s∈S(i,j) ezs

�
− log(p(i,j))

− log(1 − Pj) −�k∈Kj\{i}(1 − Pk) ≤ 0
(25)

It is worth noting that log
��

s∈S(i,j) ezs

�
is a convex

function for zs (see the proof in [12]), and log p(i,j) is concave
in p(i,j). Also note that log(1 − Pk) are concave functions
of p. It then follows that the set of constraints in (25) is
convex.

Therefore the problem in (18), which is equivalent to (3),
is a convex programming problem.

B. PROOF OUTLINE OF THEOREM 1
For simplicity of exposition, we assume that the capacity

constraints in P̂ are not degenerate for any x, i.e., if we
define the |L| × |S| routing matrix R as

R(l, k) =

�
1 if k ∈ S(l),
0 otherwise,

(26)

and |L| > |S|, then any |S| columns of R are linearly inde-
pendent.

Denote the optimal Lagrange multipliers as �∗ when P̂
is parameterized at x̄. According to the Sensitivity Theo-
rem[2], we obtain that

∇xÛ(x̄) = �
∗ (27)



0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1
Link Attempt Probabilities

p
0

p
1

0 100 200 300 400 500
0.1

0.2

0.3

0.4

0.5

0.6
Link Capacities

x
0

x
1

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Session Rates

y
0

y
1

y
3

0 100 200 300 400 500
−14

−12

−10

−8

−6

−4

−2
Aggregate Utility

Figure 5: The link attempt probabilities, link rates, session rates, and the aggregate utility when the primal-
based algorithm is used. (The x axis denotes the number of iterations at the link/transport layer.)

and there exists an open sphere � centered at x̄ such that
for every x ∈ � there is an �(x) which are the associated
Lagrange multipliers. Furthermore, �(·) is continuous dif-
ferential in � and �(x̄) = �

∗.
Therefore Û is total differentiable in x, and the differential

is

dÛ =
�
l∈L

∂Û

∂xl
dxl =

�
l∈L

λl(x)dxl

Since Ũ(p) = Û(c(p)), and since c(p) is total differen-

tiable in p, it follows that Ũ(p) is total differentiable in p.
Therefore we have the following property.

Lemma 1. If we define

d̄ij =
�

(s,t)∈L

λ∗
(s,t)

∂cst

∂p(i,j)

(p̄) (28)

where �∗ is the vector of Lagrange multipliers for P̂ at x =
c(p̄), and denote d̄ = (d̄ij : (i, j) ∈ L), then d̄ is the gradient

direction of Ũ(p) at p̄, i.e., ∇pŨ(p̄) = d̄.

It can be verified that the Lipschitz continuity condition
holds true here, and therefore there exists an ᾱ ∈ �+ such
that for α < ᾱ, the sequence {p(n)(α)}, which is generated
using the procedures stated in (7) - (10), converges to a local

optimum point of P̃.

Since P̃ and P are equivalent, a local optimum point in P̃
corresponds to a local optimum point in P. Therefore the
following property holds true.

Lemma 2. Denote p∗ as the local optimum point for P̃,
and ỹ∗ is solved from (11), i.e.,

y∗ = arg max

��
�
�

s

log(ys)

������
�

s∈S(i,j)

ys ≤ cij(p
∗), (i, j) ∈ L

	

�

(29)
then (p∗, ỹ∗) is the local optimum point for P.

From Lemma 2 we conclude that, the stationary point
p∗ of the sequence {p(n)(α)}, which is generated using the
procedures stated in (7) to (10), and the corresponding y∗,
which is calculated using (11), constitute a local optimum
for P.

To show that the dual-based algorithm actually converge
to the globally optimum values, we need the following prop-
erty.

Lemma 3. If y∗
s , s = 1, ..., S and p∗

(i,j), (i, j) ∈ L sat-
isfy the first order necessary condition for optimality for the
nonlinear program in (3), then z∗

s = log(y∗
s ), s = 1, ..., S and

p∗
(i,j), (i, j) ∈ L will satisfy the first order necessary condi-

tion for optimality for the convex program in (18). Con-
versely, if z∗

s , s = 1, ..., S and p∗
(i,j), (i, j) ∈ L satisfy the
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first order necessary condition for optimality for the nonlin-
ear program in (18), then y∗

s = ez∗
s , s = 1, ..., S and p∗

(i,j),
(i, j) ∈ L will satisfy the first order necessary condition for
optimality for the convex program in (3).

Proof. Denote y∗ = (y∗
s , s ∈ S), z∗ = (z∗

s = log(y∗
s), s ∈

S), and p∗ = (p∗
(i,j), (i, j) ∈ L). Let U be the objective

function, then U =
�

s∈S log(ys) =
�

s∈S zs.
If y∗ and p∗ satisfy the first order necessary condition,

then there exists u∗
(i,j) ≥ 0 for (i, j) ∈ I such that�

�−∇U +
�

(i,j)∈I

u∗
(i,j)∇g(i,j)

�
�
�����
y∗,p∗

= 0 (30)

where

g(i,j) =
�

s∈S(i,j) ys − x(i,j)

=
�

s∈S(i,j) ys − p(i,j)(1 − Pj)
�

k∈Kj\{i}(1 − Pk)

and I = {(i, j) : g(i,j)|y∗,p∗ = 0, (i, j) ∈ L}.
Therefore, for ys, we have�

�− ∂U

∂ys
+
�

(i,j)∈I

u∗
(i,j)

∂g(i,j)

∂ys

�
�
�����
y∗,p∗

=

�
�− 1

ys
+

�
(i,j)∈I∩L(s)

u∗
(i,j)

�
�
�����
y∗,p∗

= 0

(31)

and for p(s,t), we have

�
− ∂U

∂p(i,j)
+
�

(i,j)∈I u∗
(i,j)

∂g(i,j)
∂p(s,t)

� �����
y∗,p∗

=
�

(i,j)∈I u∗
(i,j)

∂x(i,j)
∂p(s,t)

�����
y∗,p∗

= 0

(32)

For the nonlinear program in (18), denote

g̃(i,j) = log
��

s∈S(i,j) ezs

�
− log x(i,j)

= log
��

s∈S(i,j) ezs

�
− log p(i,j) − log(1 − Pj)

−�k∈Kj\{i}(1 − Pk)

and denote Ĩ = {(i, j) : g̃(i,j)|y∗,p∗ = 0, (i, j) ∈ L}. Obvi-

ously I = Ĩ. we take ũ∗
(i,j) = u∗

(i,j)cij(p
∗) for all (i, j) in Ĩ.

Note that Ĩ = I and hence g(i,j)|y∗,p∗ = 0 for any (i, j) in

Ĩ . It then follows

cij(p
∗) = p∗

(i,j)(1−P ∗
j )

�
k∈Kj\{i}

(1−P ∗
k ) =

�
l∈S(i,j)

ez∗
l (33)
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Figure 7: The link attempt probabilities, link rates, session rates, and the aggregate utility when the primal-
based algorithm is used. (The x axis denotes the number of iterations at the link/transport layer.)

For zs, we have

�
�− ∂U

∂zs
+
�

(i,j)∈Ĩ

ũ∗
(i,j)

∂g̃(i,j)

∂zs

�
�
�����
y∗,p∗

=

�
−1 +

�
(i,j)∈Ĩ∩L(s) ũ∗

(i,j)

ezs�
l∈S(i,j) ezl

������
y∗,p∗

=
�
−1 +

�
(i,j)∈I∩L(s) u∗

(i,j)e
zs

� ���
y∗,p∗

=
�
−1 +

�
(i,j)∈I∩L(s) u∗

(i,j)ys

� ���
y∗,p∗

= ys

�
�− 1

ys
+

�
(i,j)∈I∩L(s)

u∗
(i,j)

�
�
�����
y∗,p∗

= 0

(34)

For p(s,t), we have

�
�− ∂U

∂p(i,j)

+
�

(i,j)∈I

ũ∗
(i,j)

∂g(i,j)

∂p(s,t)

�
�
�����
y∗,p∗

=

��
(i,j)∈I ũ∗

(i,j)

1

cij(p)

∂cij

∂p(s,t)

� �����
y∗,p∗

=

��
(i,j)∈I u∗

(i,j)

∂cij

∂p(s,t)

������
y∗,p∗

= 0

(35)

Therefore we have�
�−∇U +

�
(i,j)∈Ĩ

ũ∗
(i,j)∇g̃(i,j)

�
�
�����
y∗,p∗

= 0 (36)

i.e. z∗ and p∗ satisfy the KKT condition for the optimiza-
tion problem in (18).

Using the same line of analysis, we can prove the converse
result. This completes the proof.

Note that the optimization problem in (18) is a convex
programming problem and hence its KKT point is globally
optimum. Since a point satisfies the KKT condition of (18)
if and only if the corresponding point satisfies the KKT con-
dition of P (Lemma 3), and since a point in (18) yields the
same objective value as its corresponding point does in P
(Theorem 2), it immediately follows that the KKT point in
P is actually globally optimum. Therefore the dual-based
algorithm converges to the globally optimum solutions.


