Performance of TCP Congestion Predictors as Loss Predictors*

Saad Biaz Nitin H. Vaidya

Department of Computer Science
Texas A&M University
College Station, TX 77843-3112, USA
E-mail: {saadb,vaidya}@cs.tamu.edu
Web: http://www.cs.tamu.edu/faculty /vaidya/mobile.html

Technical Report 98-007

February 9, 1998 1

Abstract

In the context of TCP, several researchers have proposed heuristics to detect or predict con-
gestion in the network. In this paper, the term congestion predictors refers to such heuristics.
Past proposals require TCP sender to reduce its window size when congestion is detected or pre-
dicted (otherwise, the heuristic may dictate that the sender window be held constant or increased).
The proposed heuristics to detect/predict congestion typically use simple statistics on observed
round-trip times and/or observed throughput.

The primary objective of this paper is to investigate the ability of the congestion predictors
to predict a packet loss. Our measurements indicate that the three congestion predictors studied
in this paper are often poor in their ability to predict a packet loss due to congestion. To arrive
at this conclusion we measure the frequency with which the predictors predict congestion, and
how often they predict congestion just before a packet loss. A study of the variations in measured
parameters, as a function of several network parameters (for instance, router queue size) yields
several interesting observations as reported in the paper.

Although the results presented here are not related to wireless communication, this research was
motivated by a desire for an end-to-end mechanism for differentiating between packet losses due
to congestion and packet losses due to wireless transmission errors. One technique we considered
would use congestion predictors for this purpose. The results presented here suggest that simple
congestion predictors will not be effective in differentiating between the two forms of losses.

Key Words: TCP — Congestion Avoidance — Corruption Losses — Congestion Losses — Con-

gestion Predictors — Loss Predictors

1 Introduction

TCP is a popular protocol for reliable data delivery in the Internet. TCP protocol is robust in that

it can adapt to disparate network conditions [9]. TCP uses congestion control mechanisms to recover

*Research reported is supported in part by the Fulbright Program and the National Science Foundation.
i This report has been submitted on February 9th 1998 to a conference.

from congestion that may occur in the network. In the context of transmission control protocols,
several researchers have proposed heuristics to detect or predict congestion in the network. In this
paper, the term congestion predictors refers to such heuristics. The congestion predictors [11, 5, 15]
indicate when a TCP sender should reduce its window size (if congestion is detected or predicted).
The heuristics in [11, 5, 15] use simple statistics on observed round-trip times (RTT) and/or observed

throughput of a TCP connection.

The primary objective of this paper is to investigate ability of the congestion predictors to
predict a packet loss due to congestion. The paper also determines how the predictors react to changes
in several network parameters. This research was motivated by a desire to improve performance of
TCP over wireless networks. Although the measurements and results presented in this paper are NOT
for wireless networks, it is worth discussing the motivation, in order to understand our experimental

methodology, as well as the choice of measured parameters.

Motivation: In recent years, with the advent of mobile computing, there has been significant
interest in using TCP over wireless links [12, 2, 6, 3, 2, 1, 7]. Previous work has shown that, unless
the protocol is modified, TCP performs poorly on paths that include a wireless link subject to
transmission errors. The reason for this is the implicit assumption in TCP that all packet losses
are due to congestion. Whenever a TCP sender detects a packet loss, it activates congestion control
mechanisms [9] (these mechanisms reduce sender’s window in response to the packet loss, reducing
throughput temporarily). Taking congestion control actions may be appropriate when a packet loss
is due to congestion, however, it can unnecessarily reduce throughput if packet losses happen to be

due to wireless transmission errors.

Past proposals for improving performance of TCP over wireless require some cooperation from
an intermediate node on the path from the sender to the receiver [1, 2, 3, 16]. Our interest is in
mechanisms that impose minimal demands (if any) on any host other than the sender or the receiver.
Ideally, it would help if the sender could differentiate between packet losses due to congestion from
the packet losses due to wireless transmission errors, using some end-to-end technique (that does
not get any help from any intermediate host)!. Once a sender knows that the packet loss is due to
congestion or corruption, it can respond appropriately. One possible approach to distinguish between

the two types of packet losses is as follows:

e Use a “loss predictor” that can guess (with high “accuracy”) whether a packet transmitted in

the near future will be lost due to congestion.

e When a packet is lost: If the loss predictor predicted that the packet will be lost due to
congestion, conclude that the packet loss is indeed due to congestion. Otherwise, conclude that

the packet was lost due to transmission errors.

!The TCP layer at receiver may not know the cause of a packet loss even if it is a transmission error on the last hop,

as a lower layer may discard the packet before it reaches the TCP layer.

The obvious question now is how to design loss predictors that can predict congestion losses with
high accuracy. As noted above, several congestion predictors have been previously proposed to pre-
dict/detect congestion using only simple statistics on round-trip times and/or observed throughput of
a TCP connection [11, 5, 15]. Using congestion predictors as loss predictors, a potential instantiation

of the above generic procedure is as follows:

e Use a congestion predictor that suggests reducing congestion window size when congestion is

detected. (A good predictor will detect congestion only when congestion is truly likely.)

o If a packet loss occurs, the sender checks what the congestion predictor recommended before

the packet was sent.

e If the predictor had recommended reducing sender’s window (because congestion was detected),
then conclude that the packet loss is due to congestion, otherwise conclude that packet loss is

due to transmission error.

This scheme will potentially work well, if the congestion predictor is “accurate” — with high proba-
bility, an accurate congestion predictor will predict congestion before a packet loss due to congestion
occurs. The main objective of this research is to study the “accuracy” of various congestion predic-
tors, and to determine how the accuracy is affected by network parameters (such as router queue size,

round trip delay, etc.).

This paper is organized as follows. Section 2 describes the three congestion predictors evaluated
in this paper. Performance parameters of interest are defined in Section 3. Section 4 presents and
discusses the experimental results. Simulation model and simulation results are discussed in Section 5.

Conclusions are presented in Section 6.

2 Congestion Predictors

2.1 Using Congestion Predictors as Loss Predictors

As noted above, a congestion predictor, based on some criterion, may either suggest that the sender’s
window size be reduced, increased, or held constant. When the congestion predictor is used for
congestion avoidance and control, the TCP protocol at the sender would change the window size as

per the recommendation from the congestion predictor.

In this paper, we are considering the use of certain congestion predictors for predicting packet
losses due to congestion. This means that the congestion avoidance and control may be done using
some other heuristic. In our experiments and simulations, we use TCP-Reno. More specifically, for
congestion avoidance and control, we use the slow start and congestion avoidance techniques proposed
by Van Jacobson [9, 10].

We do not use the three congestion predictors in [11, 15, 5] for congestion avoidance and
control. Instead, we see how often these predictors predict congestion (i.e., suggest that sender’s
window size be reduced) when used in conjunction with slow start and congestion avoidance. Thus,

as in TCP-Reno [10], TCP congestion window size is reduced only when a packet loss occurs.

Rest of this section describes the three congestion predictors evaluated in this paper. To

describe the predictors, we first need to introduce some terminology and notations.

2.2 Terminology

e Sender’s Congestion Window W: The congestion window determines the maximum amount of

unacknowledged data sent by the TCP sender.

e i-th monitored packet P;: At any time, one packet sent by the sender is monitored. For the
i-th monitored packet F;, we define the three parameters below, to be used in implementing

the congestion predictors.

If a time-out occurs while waiting for the acknowledgement for a monitored packet, then the

data for that monitored packet is not included in our calculations.

The monitored packets are numbered sequentially starting from 1, excluding the packets which

time-out.

e Window size W, for the i-th monitored packet: W; is the amount of data transmitted (in-
cluding the monitored packet) during the interval from the time when the monitored packet is

transmitted, until when an acknowledgement for the monitored packet is received.

From the definition of congestion window, it follows that W, cannot exceed the congestion
window size W. Often, W; is equal to the congestion window size at the time when the monitored
packet is transmitted. However, there are certain situation wherein W, may sometimes be

smaller than the congestion window.

e Round-trip time RTT; for i-th monitored packet : Round-trip time RTT,; for the i-th moni-
tored packet P, is the duration from the time when P; is transmitted, until the time when an

acknowledgement for P; is received by the sender.

e Throughput T; from the i-th monitored packet : For the i-th monitored packet P;, the window
size is W;, and round-trip time is RT'T;. In this case, throughput 7 is defined as T; = W;/RTT;.
This ratio represents the throughput observed during the RTT; round-trip interval for the i-th

monitored packet.

The three congestion predictors considered in this paper are summarized below. The three
predictors are implicitly based on the notion that there will be some response from the network to

a congestion window size change for a TCP connection. The predictors measure this response as a

function of round-trip times and/or throughput, and recommend reducing or increasing congestion

window based on the observed response.

2.3 Congestion Predictor NDG

Jain proposed a congestion predictor based on Normalized Delay Gradient (N DG) [11]. We will refer
to this predictor as NDG. Our implementation of this congestion predictor evaluates NDG as follows,

when acknowledgement for the i-th monitored packet is received:

(RTTZ' — RTTi_l) (I/Vz + Wi—l)

NDG =
(RTTZ' + RTTi_l) (I/Vz — Wi—l)

If NDG > 0, this congestion predictor suggests that congestion window size should be decreased,

otherwise it suggests that the window size be increased.

2.4 Congestion Predictor NTG

Wang and Crowcroft [15] proposed a congestion predictor based on the Normalized Throughput Gra-
dient (NTG). We will refer to this congestion predictor as NTG. To calculate NTG, we need to define
throughput gradient T'G; for the i-th monitored packet P; as follows:

T - T

TG = L
W, —W;_1

NTG predictor evaluates normalized throughput gradient NT'G as T'G;/TG1, when acknowledgement
for packet P; is received. Now, TGy = (T1 — To)/ (W1 — Wy) = 1/RTT,, as W, = 1 packet, Wy = 0,

To=0and Ty = W1 /RTT, = 1/RTT;. Therefore, NTG = %. Substituting above expression

for TG; and simplifying, we get

NTG — RTTy < W; W1 >

W; —W._, \RTT; RTT; ,

If NTG < 1/2, then the predictor suggests that the window size be decreased, else it suggests that

the window size be increased.

2.5 Congestion Predictor Vegas

TCP-Vegas [5] maintains a variable named BaseRTT, which is the minimum of all RTT's measured
during the TCP connection. BaseRTT allows Vegas to compute the Fzpected Throughput. When

acknowledgement for the i-th monitored packet is received, the ezpected throughput is calculated as,

E ted Th hput = ———
Xpecte roughpu BaseRTT

The actual throughput T; (as defined earlier), is calculated as RVII%}' Then difference D is calculated

as, D = expected throughput — actual throughput = Baslg/ﬁTT — RVII%}. Reference [5] expresses this

difference D in terms of extra packets in the network, by multiplying D by BaseRTT. We define

Vegas as,

Vegas = BaseRTT.D = BaseRTT. < Wi Wi > =W; < — M)

BaseRTT RTT; RTT;

Vegas is compared to two thresholds a and 3, where a < #. If Vegas < a, then congestion
predictor Vegas suggests that the window size be increased. If Vegas > 3, the congestion predictor
Vegas suggests that sender’s congestion window size be decreased. Otherwise, if a < Vegas < 3,
then it suggests holding window size constant. In our experiments and simulations, values for « and

B are, respectively, 2 and 4 as suggested in [5].

3 Performance Metrics

To characterize the ability to predict congestion losses, we measured two parameters for each conges-

tion predictor.

e Frequency of Congestion Prediction FC'P: F(CP is obtained by dividing the number of times
the predictor said “decrease the congestion window” by the total number of times the predictor

was used during the TCP connection.

For instance, assume that a congestion predictor was used 100 times during the TCP connection
—each time the predictor may suggest that window size be decreased, increased, or held constant.
If the number of “decrease window size” recommendations is 20, then FCP = 20/100 = 0.20
(or 20%).

e Accuracy of Prediction AP: AP is the fraction of packet losses due to congestion that were

preceded by a “decrease window size” recommendation from the congestion predictor.

For instance, assume that 80 packets were lost due to congestion during a TCP transfer. The
last recommendation made by the predictor before 60 of these packet losses was “decrease
window size”. Then, AP = 60/80 = 0.75 (or 75%).

Now, consider a “random coin tossing” congestion predictor, that uses probabilistic coin tossing
to determine whether to recommend “reduce congestion window” or not. Suppose it recommends
“reduce congestion window” with probability p. Clearly, in this case, FCP = p. Also, as the
recommendation made by the predictor is independent of network conditions, the probability that
the predictor would recommend “reduce the window” before a packet loss is also p. Thus, in this

case, AP = p.

From the above discussion, it is clear that a simple coin tossing scheme can yield AP = FCP =
p for any desired value of p. Thus, by choosing p = 1, one can obtain a 100% “accuracy”. However,
this is not a desirable predictor, because with p = 1, the sender will conclude that each packet loss is

due to congestion, although some losses may be due to transmission errors.

For a good predictor, one would expect a significantly larger AP, as compared to FCP. As our
experiments and simulations show, for the three congestion predictors considered here, AP is typically
not large enough compared to FCP. We first present the experimental measurements, followed by

simulation results and discussion of the simulation results.

4 Experimental Evaluation

4.1 Experimental Set-up

Four hosts were used in our experiments, two senders and two receivers. Let us refer the two sender
hosts as hostl and host2. The receiver hosts are daedalus.crosslink.net (206.246.124.8) and
all-purpose-gunk.near.net (199.94.220.184). Discard server at the receiver nodes was used as the
TCP receiver. The discard servers on the receiver machines have a receive window limited to 32
Kbytes.

Host1 runs TCP-Reno [10, 13] as implemented in Free BSD version 2.1.5. Host2 runs TCP-

Reno with a small modification in the congestion avoidance algorithm. When TCP-Reno leaves the

m332
cw

slow-start phase, it increases the congestion window size by after each acknowledgement where

mss is the maximum segment size and cw is the current congestion window size. On host2, we

m332
cw

taking the values 0.5, 1, 2, 3, 5 and 10 in different experiments. With the variation of M, we want

modify the rate of increase: we increase the window size by M x , with multiplication factor M

to investigate how a more (or less) aggressive increase policy may affect the congestion predictors.

For each measurement, we establish two simultaneous connections from host1 and host2 to the
same destination, and send the same amount of data (1.5 MBytes to all-purpose-gunk.near.net
and 5 MBytes to daedalus.crosslink.net). The two connections are established simultaneously
so that both experience similar network conditions. We performed six sets of measurements. In
each set, different value of M is used on host2 (whereas host1 always uses M = 1). Each set of

measurements consists of 25 connections from host1 and host2 to the same destination.

4.2 Methodology

The sender nodes run Free BSD operating system. We modified tcp_debug [13] to collect the data
needed to evaluate FCP and AP. First, using the modified tcp_debug, a trace for each connection
was produced. Then, using a modified ¢rpt [13], for each congestion predictor, we determined what

the predictor would have recommended on receiving the acknowledgement for a monitored packet

(the recommendation may be to reduce congestion window, or increase, or hold constant). This data
was then used to calculate FC'P and AP. As the same traces are used for all congestion predictors,

results for different predictors may be compared with each other.

4.3 Experimental Results

As results for both the destination hosts are similar in nature, for brevity, here we present results only
for destination all-purpose-gunk.near.net. Results for daedalus.crosslink.net can be found
in [4].

Figure 1 plots the measured values of FC'P and AP, for the NDG, NTG and Vegas predictors.
Part (a) plots results for host1 and part (b) for host2. In each graph, six curves are drawn, one
for frequency of congestion prediction FC'P and another for accuracy AP for each predictor (N DG,
NTG@G and Vegas). As noted above, we performed 6 sets of experiments, these sets are numbered 1
through 6 in the graphs for sender host1. For host2, the 6 sets use different value of the multiplicative
factor M. The sets 1 through 6 on host2 were obtained using M = 0.5, 1, 2, 3, 5 and 10, respectively.

For each set, the results are presented averaged over all 25 trials in the set.

We observe that, for both host1 and host2, independent of the value of multiplication factor
M, Accuracy of Prediction (AP) is typically only a little higher than the Frequency of Congestion
Prediction (FCP). This means that higher the frequency of congestion prediction, higher is the

accuracy of prediction.

As noted earlier, a random “coin tossing” predictor with frequency of congestion prediction of
p will give an accuracy of prediction of p. For the three predictors we evaluated, AP is only marginally
better than FC'P. Thus, these congestion predictors do not seem to perform much better (as a loss

predictor) than a random predictor.

4.4 Interpretation of Experimental Results

Having observed that, when used as loss predictors, the three congestion predictors do not perform
much better than random coin tossing, it is useful to provide an intuitive explanation of this result. A
predictor will be accurate only if the following qualitative conditions are fulfilled, as explained below:

a) Losses are preceded by a “long” queue build-up at some router

b) A queue build-up typically results in losses

¢) The congestion predictor correctly senses “serious” queue build-up.

Condition a) means that the interval of time, say T3,, between the instant when a router queue

starts to build up and the instant when the queue overflows must be long enough. Otherwise, losses

0.7 r ' ' T T]
0.6
0.5
0.4+ |
AP(NDG)
0.3 ¢ FCP(NDG) —+-- |
AP(NTG ----
FCP(NTG -+
0.2 ¢ AP(Vegas) —— -
FCP(Vegas) —=--
0.1¢F i
0 A i“aﬁ/f;, ,?,,,,,::?;;;; —
Measur enment set
(a) sender host1
0.7 " I ' T T .
0.6 | i
0.5
0.4 F -
AP(NDG —
0.3t FCP(NDG) <~)
AP(NTG ----
FCP(NTG -+
0.2 r AP(Vegas) —— 4
FCP(VegaS) R »/7/‘/;/’7//'_//::::-_/_,_
0.1+ ‘ /jjiﬁk”” i
O B’i/?>~ ﬂrl 7 1 L
.51 2 3 5 10

Mul tiplication Factor M

(b) sender host2

Figure 1: Predictors NDG, NTG and Vegas with receiver all-purpose-gunk.near.net

will occur before the predictor has a chance to detect congestion. To fulfill condition a), favorable
values of network parameters are as follows: round-trip time small, router queue size large, and input
bandwidth to the bottleneck small.

Condition b) above will tend to be satisfied if queue size is small. We can see that conditions

a) and b) have contradictory requirements on the queue size.
Condition c) above is necessary for congestion to be detected.

As noted earlier, the three predictors considered here are based on the expectation that a
variation in the congestion window size must result in a “response” from the network which reflects
the true state of the network. Unfortunately, the traffic on one connection is in general a small
fraction of the overall traffic. Therefore, the network response is almost independent of one TCP
connection’s action. This suggests that the three predictors cannot correctly detect queue build-up.
While our experiments (under specific network conditions) seem to support this conclusion, further
measurements, with different network conditions, are needed to better understand behavior of the

congestion predictors.

5 Simulations
5.1 Simulation Model and Methodology

We use the network simulator ns-2 (version 2.1bl) [14] from Berkeley. The system model used for
simulations is illustrated in Figure 2. This model is simple, yet serves our purpose. We have a TCP
connection from a source C'S to a sink CK. We use the FullTcp [8] agent for this connection. This
connection shares the link R; +— R, with a cross traffic issued from a random source RS to sink
RK. All the links in Figure 2 are labeled with a (bandwidth, propagation delay) pair. The links
R, +— CK and R, +— RK have bandwidth of 8 MBits/s and propagation delay of 1 ms in all
our simulations. For the other links, we simulate the network with different values for parameters bw
and 6 (please refer Figure 2). In different simulations, bw takes the values 100 Kbits/s, 500 Kbits/s,
1000 Kbits/s, 1.5 Mbits/s, and 2 Mbits/s and § takes values 2 ms, 4 ms, 7 ms, 9 ms, 12 ms, 17 ms,
22 ms, 37 ms, 49 ms, and 74 ms. The link C'S — R; has propagation delay of (6 4+ 1) ms so that
the potential bottleneck, router Ry, is half way from node C'S to CK. Routers R; and R, use simple
FIFO drop-tail queue policy.

The router R; will have an output queue (towards R,) whose size is limited to gs packets. g¢s
takes the values 5, 10, 15, or 20 in our simulations. All other queues at the two routers are unbounded

(infinite). Obviously, the potential bottleneck here is the router R;.

Let T, denote the round-trip propagation delay for the TCP connection (i.e., from CS to CK
and back to CS). Then, with the values of § used in our simulations, T}, varies in the range 10 ms to
300 ms.

10

CS: Controlled Source CK : sink for CS

bw,5+1
bw, 3 Router
Rl bw, &
as bw, &
8 Mbits/s, 1 ms
bw, 2ms
RS : Random Source RK : Sink for RS

Figure 2: ns network topology

The traffic from the random source is produced by the agent T'raf fic/Ezpoo [14]: it is a
constant-bit rate (CBR) source with idle time and busy time exponentially distributed with mean 0.5
s. UDP is the transport protocol used for the random source. For each set of parameters (T}, bw, g¢s),
the peak rate of the random source is adjusted to produce a desired value of “aggregate loss rate” on
the TCP connection, measured as the percentage (or fraction) of packets lost due to congestion. The

loss rate is denoted as loss in the rest of the paper.

For each set of parameters T}, bw, and ¢s, we perform many trials (the TCP connection
transfers 2 Mbyte in each trial) to determine the peak rate of the random source, so as to get a
desired loss rate (loss) for the TCP connection. When this peak rate is determined, we make 10
additional TCP transfers of 2 MBytes each, using this peak rate for the random source, and collect
statistics for these 10 transfers. Each transfer starts after a random warm-up period larger that 100

seconds. During the warm-up period, only the random source is active.

We perform our measurements exactly as we did with the live experiments. We monitor
one packet per window : we log its round trip time and the number of packets sent between its
transmission and its acknowledgement. For each connection, we transfer 2 MBytes from CS to CK.
The congestion window size is limited to 32 packets. From the logged information, we can compute the
congestion predictors N DG, NTG and Vegas as defined in section 2. Note that the three predictors
are computed from the same set of logged data. For the ten transfers, the standard deviation on all

congestion predictors is less than 0.02, which represents on the average 4%.

For each congestion predictor we perform 4 sets of experiments. In each set, one of the four
parameters, namely, T}, (or 6), bw, ¢gs and loss, is varied, while the other three parameters are held
constant. Thus, each set of experiments helps us to determine the variations in FC'P and AP as a

function of each of the four parameters. The following values for the four parameters are used:

o the loss rate (loss) from 1% to 10% (loss rate specifies fraction of packets lost by the TCP

connection at router R;)

11

When [oss is held constant for a particular set of simulations, we hold it constant at 3%, because

in our experiments (reported in the previous section) we observed a loss rate of approximately

3%.

e round-trip propagation time 7T}, for the TCP connection is in the range 10 ms to 300 ms.

When T, is held constant for a particular set of simulations, we hold it constant at 40 ms. (For
our experiments, we estimate that the average round-trip delay was in the range 20 ms to 80

ms. 40 ms lies in the lower half of this range.)

e the bottleneck bandwidth bw from 100 KBits/s to 2 Mbits/s.

When bw is held constant for a particular set of simulations, we hold it at 1.5 Mbits/s (T1
bandwidth).

e the queue size limit ¢s at router R; from 5 to 20 packets (packet size is 1460 bytes).

When g¢s is held constant for a particular set of simulations, we hold it at ¢s = 5.

5.2 Simulation Results

The simulation results provide several interesting insights, and confirm the measurements done using
experiments: the difference AP — FCP is usually positive and small for the three predictors. This
difference exceeds 0.20 the Vegas and N'TG predictors only under certain conditions. In the following,
we provide graphs showing only some of our simulation results. However, the conclusions reported

here are drawn from a larger set of simulations.

5.2.1 Vegas Predictor

Recall that if Vegas > 3, then the Vegas predictor predicts congestion. It is clear that the probability
that (Vegas >) decreases as Vegas decreases. Now we summarize our observations based on the

simulation results, and attempt to provide intuitive (or mathematical) explanations. First we discuss
variation trends for FC P, followed by AP.

e FCP decreases when T}, is increased, while holding bw, ¢s and loss constant. Refer Figure 3(a)
for an illustration. In Figure 3(a), the horizontal axis corresponds to T, — the values listed in
the parenthesis along the horizontal axis are held constant for all simulations reported in this

figure.

This observation is supported by a simple mathematical analysis. Note that RTT; can be
expressed as RTT; = T, +t;, where t; is a random variable depending on the transmission time,
the queueing delay and the processing time for the monitored packet. Similarly, Base RTT can

be expressed as BaseRTT = T, + tBase Where tp,se is a random variable similar to ¢; with

12

tBase < t; (BaseRTT is the smallest round trip time experienced by the connection). Then,

T t ase 5 V ase— 1 . .
Vegas = W; (1 — %) Thus, J% = W; <w> While, in general, t; > tpgse,

typically we have t; > tpyse. Therefore, % is usually negative. This means that the value

of Vegas decreases when T}, is increased. Therefore, as T}, increases, FC'P for Vegas predictor

should decrease.

1r FCP(Vegas) —] 1r FCP(Vegas) —]
AP(Vegas) ---- AP(Vegas) ----

0.8 0.8
0.6 \ 0.6
0.4 0.4
0.2 S 0.2

0 | | ! e 0 | | | |

50 100 150 200 250 300 100Kb/ s 500Kb/ s 1Mo/ s 1.5M/ s 2Mo/ s
Tp(ms) (1 oss=3% bw=1500 Kbits/s gs=10 pkts) bw (1 0ss=3% Tp=40 ns qs=5 pkts)
(a) FCP and AP versus T, (b) FCP and AP versus bw

Figure 3: Effect of the propagation time 7}, and the bandwidth bw

e FCP decreases when bw is increased, keeping T}, ¢s and loss constant, as illustrated in Fig-
ure 3(b).

Similar to the above derivation, we provide a mathematical explanation for this observation.
Let us express RTT; as RTT;, = BaseRTT + dgq; where dg; is the extra queueing delay for

the ¢-th monitored packet, as compared to BaseRTT. (assuming that the round trip time

BaseRTT)

BaseRTT+dg;) Since

variation is due only to the queueing delays). Thus, Vegas = W;.(1 —

§(Vegas) — (W, BaseRTT

3da; (BaseRTT—I—dq')2> > 0, the Vegas predictor increases with increasing queueing delay

dg;. From queueing theory, it follows that, queueing delay variations decrease when the service

rate increases, i.e., in this case, when bw increases. Therefore, when bandwidth bw is increased,

queueing delay dg will decrease, and consequently Vegas will decrease (as J(EZ‘Z‘,”) > 0). Finally,

when Vegas decreases, the FC'P for the Vegas predictor also decreases.

e FCP increases when ¢s is increased, keeping bw, T, and loss constant, as illustrated in Fig-
ure 4(a).

As gs increases, with the loss rate held constant, the queueing delay variations increase. We
showed above that the Vegas predictor increases with queueing delays variations. Therefore,

the Vegas predictor increases with increasing gs. Thus, FCP will increase with increasing gs.

13

1r FCP(Vegas) —] 1r FCP(Vegas) —]
AP(Vegas) ---- AP(Vegas) ----

6 7 8 9 1

5 10 15 20 1 2 3 4 5 0
gs(pkts) (bw=1500 Kbits/s Tp=40 nms | 0ss=3% loss(% (bw=1500 Kbits/s Tp=40 nms qs=5 pkts)
(a) FCP and AP versus g¢s (b) FCP and AP versus loss

Figure 4: Effect of the queue size ¢s and the loss rate loss

e FCP decreases when loss is increased, keeping bw, T, and g¢s constant, as illustrated in Fig-
ure 4(b).

It is somewhat counter-intuitive that F'C' P decreases with increasing loss rate. Now, ‘W(se% =

1- %@?T. While, in general, BaseRTT < RTT;, typically we have BaseRTT < RTT;,

therefore, Mg%‘}f” is typically positive. Thus, if W; decreases, then Vegas will also decrease.

Now, note that, as loss increases, the average congestion window size, and thus W;, decreases.
Therefore, with increasing loss, Vegas will decrease, consequently, the FCP for the Vegas

predictor will also decrease.

A ccuracy of prediction AP: Accuracy of prediction usually follows F'C P’s trends. Typically, AP
is only marginally higher than FC'P. For our purpose of distinguishing corruption losses on wireless
links from congestion losses, we need an accuracy AP close to 1.00. Otherwise, mistaking congestion
losses for corruption losses makes congestion control inefficient and jeopardizes performance. On
the other hand, we need the Frequency of Congestion Prediction FCP to be small. Otherwise, a
high proportion of wireless transmission losses can be mistaken for congestion losses, and congestion
control mechanism would be unnecessarily triggered leading to poor performance. For round trip
propagation time less than 32 ms, low packet loss rate (less than 3%) and queue size larger than
10 packets, we have AP larger than 0.75 and FCP less than 0.40. These values (AP = 0.75 and
FCP = 0.40) can be considered better than what a random coin tossing predictor would provide.
Under real network conditions, the parameter values (such as RTT and loss rate) may not always

correspond to the above ranges, therefore, in general, performance of the predictor is not very good.

As noted in the previous section, Vegas (and, also the other predictors) determine their pre-

dictions based on the network’s response to congestion window size change for the TCP connection.

14

Typically, a single TCP connection constitutes a small fraction of the total network traffic. Thus, the
observed network response also depends on other traffic, and not just on window size changes for the
TCP connection. Therefore, accuracy of prediction tends to be poorer than one may expect. (This

same reason causes other predictors to perform poorly as well.)

5.2.2 NTG Predictor

Recall that, if NTG < %, then the NTG predictor predicts congestion. Therefore, as NT'G increases,

FCP decreases. Now we present the observations for simulations using the NTG predictor.

O L L L L O L L L L
50 100 150 200 250 300 100Kb/ s 500Kb/ s 1M/ s 1.5Md/s 2Mo/ s
Tp(ms) (1 oss=3% bw=1500 Kbits/s gs=10 pkts) bw (1 0ss=3% Tp=40 ns qs=5 pkts)
(a) FCP and AP versus T, (b) FCP and AP versus bw

Figure 5: Effect of the propagation time 7}, and the bandwidth bw

e FCP decreases when T), is increased, while holding bw, ¢s and loss constant. Refer Figure 5(a)

for an illustration.

To support this observation, we show that NTG is increasing with increasing T,,. We can write
RTT; 1 = Tp+ d;—1 and RTT; = Tp + d; where d;_; and d; are positive random variables
depending on the transmission time, the queueing delays and the processing time for -th and

i+ 1-th monitored packets. We can then rewrite NTG as :

NTG =

Tp+dy (w; Wi_1) (1)

Wi—Wiir \L+di Tp+dig

Now note that, since we are using TCP-Reno, most of the time the TCP connection is in

congestion avoidance phase. Therefore, very often, W; — W;_; = 1 packet. Assuming this,

) . 1) Totdi Tot+d 1
it can be shown that, if d;_; > d; then NTG > 3, provided maaz(Tz_I_dt) Tpﬁ-diil) > 5. The

Tp-l—dl Tp-l—dl 1 . . .
Toid; Tp+di—1) > 5 means that the round-trip time for any monitored packet

condition maz(

15

is less than twice the round trip time for the first packet. This is in general true unless the
propagation time is very small and the queueing delay variations very large. In conclusion, if

d;_1 > d; then NTG predictor will typically not predict congestion.

Now,

SNTG . Tp + dy W;_1 _ Ww; v W; _ Wi_1
5Tp B Wz - Wi—l (Tp + di—1)2 (Tp + dz)2 Tp + dz Tp + di—l ‘

As noted before, typically W; — W;_; > 0. Also, typically, RTT; > RTT; (as W, typically much

larger than W; = 1). Assuming this, it can be shown that, if d;_; < d;, % > 0 provided

that (T, + d1)® > (di—1 — d1).(d; — d1). This last condition means that the variations in the
delays should not exceed the absolute value of the first round trip time, which is in general
true. Therefore, the NTG value computed by Equation 1 typically increases with increasing

propagation time 7T,. Therefore, FC' P decreases when T}, increases.

FCP decreases when bw is increased, keeping T}, ¢s and loss constant, as illustrated in Fig-
ure 5(b).

Similar to the above derivation, we provide a mathematical explanation for this observation.
We can express RTT; as RTT; = RTT;_1 + d, where d, is the difference in the queueing delay

between the two monitored packets P; and P;,_;. Note that d; can be positive or negative.
NT(G becomes then :

TT; i i
vrg = _th W ~ Wi
W; — W,_1 RTT; 1+ dq RTT; 4
Then, J?ZG = _(Wi—Wiffl(I:VIjTi+dq)2' As, for TCP-Reno, typically W; > W;_;, we have
J?ZG < 0. Thus, NTG decreases with increasing d,. Therefore, FCP increases when d,

increases, and vice-versa. Now, d, decreases when the bandwidth bw increases (because queueing
delay magnitudes and variations decrease when service rate increases). Hence, FC P decreases

when bw increases.

FCP increases when g¢s is increased, keeping bw, T}, and loss constant, as illustrated in Fig-
ure 6(a).

For a constant loss rate, as ¢s increases, the amount of random source’s traffic in the queue
ahead of a TCP packet increases. Therefore, queueing delay variation for TCP packets is larger.
We showed above that NT'G decreases with increasing queueing delay variations. Thus, FCP

decreases with increasing ¢s.

FCP decreases when loss is increased, keeping bw, T}, and gs constant, as illustrated in Fig-

ure 6(b).

16

6 7 8 9 1

5 10 15 20 1 2 3 4 5 0
gs(pkts) (bw=1500 Kbits/s Tp=40 nms | 0ss=3% loss(% (bw=1500 Kbits/s Tp=40 nms qs=5 pkts)
(a) FCP and AP versus g¢s (b) FCP and AP versus loss

Figure 6: Effect of the queue size ¢s and the loss rate loss

As for Vegas predictor, the trend of FC'P for NTG predictor with the loss rate is related to

the average congestion window size. However, while ‘Wf# > 0 is typically true, J?VII;G <0

is true only when RTT; > RTT;_,. However, note that the probability that RTT; > RTT;_,
is greater than 0.5 (as, typically, W; > W,_, and larger W typically — though not always —

results in greater RTT). The above two observations together imply that NT'G value should
show an increasing trend as a function of loss, however, the trend may not be as pronounced

as the decreasing trend for Vegas.

Accuracy of prediction AP: Accuracy of prediction is always marginally larger than to FC P for
the NTG predictor than for the Vegas predictor. If AP is close to one, then FCP is also close to 1.
Therefore, NT'G is not much better than a random coin tossing predictor. Thus, NT'G is not a good

loss predictor.

5.3 NDG Predictor

Recall that if N DG is positive then the NDG predictor predicts congestion. Also, in our simulations,
the agent FullTcp uses the Jacobson congestion avoidance algorithms. Thus, often W,;_; < W; and
the sign of NDG depends only on the sign of (RTT;_1 — RTT;).

From the simulation results, we observed that for NDG predictor, the value of FCP is typically
in the range 0.5 to 0.6. Now note that packet round trip time can vary due to the queueing delay at
the router R;. The queueing delay for a packet P depends on the number of packets in front of P
in the queue. These packets can be originated at the random source RS or at the controlled source
CS. Since the two sources are independent, the sign of (RTT; — RTT;_4) is about equally likely to

be positive or negative. This can explain why the frequency of congestion prediction FC'P is around

17

0.5. Actually, FCP is typically slightly larger than 0.5 because, on the average, a larger congestion

window will likely contribute to larger queueing delays.

1r | | | ‘FCP(ND(‘B) — 1 | | FCPkNDG) —
AP(NDG) ---- AP(NDG) ----
0.8 f N 0.8
0.6 \/\ 0

0.2 0.2
O L L L L O L L L L
50 100 150 200 250 300 100Kb/ s 500Kb/ s 1Mo/ s 1.5M/s 2Mo/ s
Tp(nms) (1 oss=3% bw=1500 Kbits/s gs=10 pkts) bw (1 0ss=3% Tp=40 ns qs=5 pkts)
(a) FCP and AP versus T, (b) FCP and AP versus bw

Figure 7: Effect of the propagation time 7}, and the bandwidth bw

The simulation results indicate that FCP and AP for the NDG predictor do not show any
trends (increasing or decreasing) as a function of the four parameters T),, bw, ¢s and loss. Now we

attempt to provide intuitive explanation for this.

e Variation of FC'P when T, is increased, while holding bw, ¢s and loss constant. Refer Figure 7(a)

for an illustration.

We can write RTT; as RTT; = T, 4 t; where t; is a random variable. Therefore, the sign of
(RTT; — RTT;_,) is the sign of (¢; — t;_1), independent of T),. Thus, FCP does not depend on
Tp.

e Variation of FC'P when bw is increased, while holding T, ¢s and loss constant. Refer Figure 7(b)

for an illustration.

The actual value of bandwidth bw has an impact on the magnitude of RTT; — RTT;_;, but
not on its sign. The sign of (RTT; — RTT;_1) depends on the random behavior of the random

source. Therefore FCP is independent from bw.

e Variation of FC'P when g¢s is increased, while holding T},, bw and loss constant. Refer Figure 8(a)

for an illustration.

Queue size gs has an impact on the magnitude of queueing delays. Since N DG depends on the
difference between queueing delays for different packets, but not on the magnitude, N DG is
independent of gs. Figure 8(a) suggests a slight increase in FC P with increasing ¢gs — however,
in other simulations with different parameters, no such trend appears. We presented this plot

for consistency with results provided for Vegas and NTG.

18

1r | Fcp(NDG —]
AP(NDG) ----

5 10 15
gs(pkts) (bw=1500 Kbits/s Tp=40 ns

(a) FCP and AP versus g¢s

20
| 0s5=3%)

T ey
AP(NDG) -

1 2 3 4 5 6 7 8 9 10
loss(% (bw=1500 Kbits/s Tp=40 nms qs=5 pkts)

(b) FCP and AP versus loss

Figure 8: Effect of the queue size ¢s and the loss rate loss

e Variation of FCP when loss is increased, while holding T}, bw and g¢s constant. Refer Fig-

ure 8(b) for an illustration.

The loss rate affects size of the TCP congestion window. Although N DG depends on the
difference W; — W;_1, it does not depend on the absolute values of the congestion window size.
So, FCP is independent of the loss rate.

Accuracy of prediction AP: AP curves usually track FCP curves, and AP — FC P difference is

small. Moreover, AP rarely reaches the value 1.00. A random coin tossing predictor with probability

0.5 would perform similarly. Thus, N DG is not a good loss predictor. N DG is the worst loss predictor

in comparison with Vegas and N DG.

6 Conclusion

We studied three heuristics used for congestion avoidance with the objective of distinguishing cor-

ruption losses on wireless links from congestion losses. The three heuristics Vegas, NTG and N DG

were studied through experimentation and simulation. The experimentation, under specific network

conditions, showed that the three heuristics are poor as loss predictors. Our simulations, varying

the round trip propagation time, link bandwidth, congestion loss rate and queue size, also showed

that under most of the conditions, these three heuristics perform poorly as congestion loss predictors.

However, it appears that Vegas predictor performed somewhat better than the other two predictors,

while N DG predictor appears to be the worst, in terms of loss prediction.

19

References

[1] A. Bakre and B. Badrinath, “I-TCP: Indirect TCP for mobile hosts,” in Proc. 15th International
Conf. on Distributed Computing Systems (ICDCS), May 1995.

[2] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz, “A comparision of mechanisms for
improving TCP performance over wireless links,” in ACM SIGCOMM, Stanford, CA, Aug. 1996.

[3] H. Balakrishnan, S. Seshan, and R. Katz, “Improving reliable transport and handoff performance
in cellular wireless networks,” ACM Wireless Networks, vol. 1, Dec. 1995.

[4] S. Biaz and N. Vaidya, “Using end-to-end statistics to distinguish congestion and corruption
losses : A negative result,” Tech. Rep. (draft version), CS Dept., Texas A&M University, Aug.
1997.

[5] L. Brakmo and S. O’Malley, “TCP-vegas : New techniques for congestion detection and avoid-
ance,” in ACM SIGCOMM’94, London, U.K, pp. 24-35, Oct. 1994.

[6] R. Caceres and L. Iftode, “Improving the performance of reliable transport protocols in mobile
computing environments,” IFEFE journal on selected areas in communications Special issue on
Mobile Computing Networks, vol. 13, June 1995.

[7] A. DeSimone, M. Chuah, and O. Yue, “Throughput performance of tranport-layer protocols over
wireless lans,” in Proc. Globecom 93, Dec. 1993.

[8] K. Fall, S. Floyd, and T. Henderson, “Ns simulator tests for reno fulltcp,” July 1997. URL
ftp://ftp.ee.lbl.gov/papers/fulltep.ps.

[9] V. Jacobson, “Congestion avoidance and control,” in Proceedings of SIGCOMM 88, ACM,
pp- 314-329, Aug. 1988.

[10] V. Jacobson, “Modified TCP congestion avoidance algorithm,” Apr. 1990. mailing list, end2end-
interest.

[11] R. Jain, “A delay-based approach for congestion avoidance in interconnected heterogeneous
computer networks,” ACM Computer Review, vol. 19, pp. 56-71, 1989.

[12] J. Postel, “Transmission control protocol,” Sept. 1988. RFC 793.
[13] W. R. Stevens, TCP/IP Illustrated. Addison-Wesley, 1994.

[14] C. VINT Project, University of Berkeley/LBNL, “ns : network simulator.” http://www-
mash.cs.berkeley.edu/ns/.

. Wang and J. Crowcrott, new congestion control scheme : Slow start and search (tri-s),
15] Z. Wang and J. C ft, “A gesti 1 sch S1 d h (tri-s),”
ACM Computer Communication Review, vol. 21, pp. 32-43, Jan. 1991.

[16] R. Yavatkar and N. Bhagwat, “Improving end-toend performance of TCP over mobile internet-
works,” in Workshop on Mobile Computing Systems and Applications, Dec. 1994.

20

