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Abstract

Spatial Gabor energy filters (GE) are one of the most
successful approaches to represent facial expressions in
computer vision applications, including face recognition
and expression analysis. It is well known that these fil-
ters approximate the response of complex cells in primary
visual cortex. However these neurons are modulated by
the temporal, not just spatial, properties of the visual sig-
nal. This suggests that spatio-temporal Gabor filters may
provide useful representations for applications that involve
video sequences. In this paper we explore Gabor motion
energy filters (GME) as a biologically inspired represen-
tation for dynamic facial expressions. Experiments on the
Cohn-Kanade expression dataset show that GME outper-
forms GE, particularly on difficult low intensity expression
discrimination.

1. Introduction
Recent years, there have been good progress in computer

vision applications to facial expression recognition. In fact
some of applications, like digital cameras with automatic
smile detection, have found their way to daily life consumer
electronics [20]. Many of the current facial expression rec-
ognizers (see [24]) focus on the problem of analyzing the
expression in static images. Some approaches are based on
parameterized shape models, i.e. models of the shape of
key facial features like the eyebrows, eye, and mouth ( See
Chang et al.[7]).

Other approaches rely on appearance based representa-
tions that describe the visual texture of face regions, with-
out explicitly recognizing the location and shape of facial
features. Appearance based discriminative approaches have
proven highly robust for face detection [19], identity recog-
nition [16] and expression recognition [3]. Popular appear-
ance based features include Gabor energy filters [3], Haar
wavelets [21], and local binary patterns (LBP)[17]. Hy-
brid shape/appearance methods, particularly within the Ac-
tive appearance models (AAM) literature are also popular

[8, 12].

The importance of facial dynamics in recognizing facial
expressions has been established in many vision [22, 5, 25]
and psychological experiments [4, 2]. Facial expression ex-
perts commonly report that motion, not just static patterns,
is particularly critical for analyzing subtle, low intensity,
facial expressions. Psychological experiments have also
shown the importance of dynamics for recognizing subtle
facial expressions [2]. Static approaches incorporate tem-
poral information by integrating the output of the frame
by frame recognizers using dynamical models such as hid-
den Markov models [13], LBP codebooks [23] or dynamic
Bayesian network (DBN) [18]. We call this approach Late
Temporal Integration for it uses temporal information only
after high level categories (e.g., facial expressions) have
been already extracted.

An alternative approach, which we call Early Temporal
Integration utilizes features that represent low level spatio-
temporal patterns, prior to the abstraction of high level cat-
egories [25].

The performance of the human vision system is far supe-
rior to that of any current computer vision system. There-
fore using biologically inspired methods to represent video
signals may help us gain a better understanding of the com-
putational principles that guide visual processing in the
brain. Most importantly it may also help us build bet-
ter computer vision systems. In this paper, we explore
the use of biologically inspired spatiotemporal Gabor Mo-
tion Energy filters (GME) [1] for low level integration of
spatiotemporal information in facial expression recognition
tasks.

We show that GMEs (a early integration method) outper-
form spatial Gabor energy filters ( a popular representation
for late integration methods) on the Cohn-Kanade dataset
of basic expressions of emotion. We show that GME filters
are particularly effective for representing low intensity fa-
cial expressions, an aspect that may be important for recog-
nition of spontaneous expressions in daily life conditions.
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2. Gabor Filters
We first present a general framework for n-dimensional

Gabor energy filters. We then use this framework to instan-
tiate spatial Gabor Energy filters (GE) and spatiotemporal
Gabor Motion Energy filters (GME).

The impulse response of an n-dimensional Gabor filter
is the product of an n-dimensional complex sinusoid and an
n-dimensional Gaussian envelope:

g(x; k,A, u0, x0, p) = kej2πu
T
0 x+p · e−π[A(x−x0)]T [A(x−x0)]

where x, u0, x0 ∈ Rn. The complex Gabor function con-
sists of a pair of even (real part) and odd (imaginary part)
Gabor filters. The two filters have a relative phase differ-
ence of π/2 and an absolute phase offset p. The Fourier
transform of the filter’s impulse response, i.e., the filter’s
transfer function, is as follows

ĝ(u; k,A, u0, x0, p) =
k

|A|e
j(u−u0)T x0+p−π(u−u0)T (ATA)−1(u−u0).

Thus n-dimensional Gabor filters are essentially bandpass
filters centered at spatial-(temporal) location x0, with peak
frequency u0 and a Gaussian envelope linearly transformed
by A, (A ∈ Rn×n). k is the normalization scalar ensuring
that ||g||1 = 1. It is well known that the magnitude |g|
of 2-d Gabor filters approximate the response of neurons in
primary visual cortex (V1). In practice, we set x0 = 0, p =
0 thus simplifying the equations as follows

g(x;A, u0) = kej2πu
T
0 xe−πxA

TAx (1)

|ĝ(u;A, u0)| = k

|A|e
−π(u−u0)T (ATA)−1(u−u0). (2)

In the following two sections, we instantiate spatial GE and
spatiotemporal GME filters from the above generic frame-
work by specifying the corresponding parameters u0 andA.
To make the notation clear, we will denote spatial parame-
ters with the subscript s and spatiotemporal parameters with
subscript st.

2.1. Spatial Gabor Energy Filter Bank (GE)

The GE filter bank proposed here is based on [11, 3]. It
consists of a set of self-similar 2-D Gabor filters: The entire
filter bank can be generated from a “mother” filter by chang-
ing its orientation and scale. The mother filter is shown in
Fig.1(a)(θ = 0). It consists of a sinusoidal carrier with filter
peak frequency us = [ F0 0 ]T and an axis aligned Gaus-
sian envelope. We use a canonical Gaussian envelope with
covariance matrix S−2 = [ a

2 0
0 b2

], where a, b defines the
bandwidths parallel and orthogonal to the carrier direction.

Converting from polar coordinates into Cartesian coor-
dinates, we obtain

a =
√

π

ln 2

(
2∆F − 1
2∆F + 1

)
F0, (3)

b =
√

π

ln 2
tan

(
∆θ
2

)
F0. (4)

where ∆F is the frequency bandwidth and ∆θ is the ori-
entation bandwidth, We set these parameters according to
standard parameters found in V1 cortex [14].

Finally, a rotation matrix Rs is used to generate Gabor
filters for different orientations. Combining the bandwidth
scale and rotation matrix, we set

As = SsRs =
[
a 0
0 b

] [
cos θ sin θ
− sin θ cos θ

]
,

us =
[
F0

0

]
Rs.

Finally, the representations of the filter in space and fre-
quency domains are

g(x;F0, a, b, θ) = Ke
j2π
h
F0
0

i
Rsxe

−πxTRT
s

h
a2 0
0 b2

i
Rsx

,

ĝ(u;F0, a, b, θ) =
K

|ab|e
−π(u−

h
F0
0

i
)TRT

s

h
a2 0
0 b2

i−1
Rs(u−

h
F0
0

i
)
.

Figure 1(b) and 1(c) show the GE filter bank in the fre-
quency and spatial domains respectively.

2.2. Spatiotemporal Gabor Motion Energy Filter
(GME)

In the literature, there are two different types of
spatiotemporal Gabor filters [15](see Fig.2): frequency-
tuned and velocity-tuned. Frequency-tuned filters have a
stationary Gaussian envelope while velocity-tuned filters
have moving Gaussian envelopes. Velocity-tuned filters
(Fig.2(b)) are non-separable, while frequency-tuned filter
are spatial-temporal separable. Most neurons in primary vi-
sual cortex are frequency tuned, rather than velocity tuned.
Thus here we focus on frequency-tuned filters (Fig.2(a)).

Due to the separability of frequency tuned GME filters,
we can construct them by adding 1D temporal filters on top
of the GE filters described in the previous section gs(·): the
GE filters do the frame-by-frame spatial analysis. The out-
put of the spatial filters is then combined through time using
1D Gabor temporal filters gt(·):

gt(w, c) = ej2πwte−πt
2
, (5)

where w is the preferred temporal frequency of the filter.



≈ a

≈ b∆θ/2
θ

F0

Mother

Rotated

(a) parameters in frequency spectrum

−10 −5 0 5 10

−10

−5

0

5

10

cycle/degree
c
y
c
le

/d
e
g
re

e

(b) half-magnitude contour in frequency spec-
trum

Even

Odd

(c) ensemble of filters in special domain

Figure 1. The spatial GE filter bank,
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Figure 2. Examples of GME filters, each example is a 6-frame long GME. (only the real part is shown.)
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Figure 3. Half-magnitude contour of GME filter spectrum.

We design the peak frequencies of the temporal filters us-
ing similar heuristics to those used for the spatial filters. We
start at the highest possible peak frequencies that keep the
half-magnitude response withing the Nyquist limit. Then
the next lower peak frequency is obtained by halving the
previous peak frequency. The lowest possible frequency is

set at 2.5Hz to prevent serious aliasing effects. The band-
width of each filter, was designed using (3) and (4) as com-
monly used for spatial filters.

The combined spatiotemporal filters gst = gt ◦ gs can be
written in compact matrix form

Ast = SstRst =
[
Ss 0
0T c

] [
Rs 0
0T 1

]

ust =
[
us
w

]T
Rst =

F0

0
w

T [Rs 0
0T 1

]
.

As shown above, the rotational matrix Rst only rotate
the filter along the temporal axis. There are never
spatiotemporal-temporal rotations.

A spatiotemporal GME filter is then defined as

gst(x, t;F0, w, θ, a, b, c)

= Ke
j2π

»
F0
0
w

–T

Rst[ xt ]
e
−π[ xt ]T

RT
st

"
a2

b2

c2

#
Rst[ xt ]

. (6)



A frequency-tuned GME filter appears like a planar moving
sinusoid encapsulated in a stationary spatiotemporal Gaus-
sian envelope which fades in and out in time (see Figure
2(a)) The corresponding Fourier transform is

ĝst(u;F0, w, θ, a, b, c)

=
K

|abc|e
−π(u−

»
F0
0
w

–
)TRT

st

"
a2

b2

c2

#−1

Rst(u−
»
F0
0
w

–
)

(7)

The frequency spectrum of the filter bank is shown in Figure
3.

3. Experiment

3.1. Methods

We evaluated the performance of GE and GME filters on
the Cohn-Kanade facial expression database [10], a popu-
lar and widely used database to evaluate facial expression
recognition algorithms. This database consists of 100 stu-
dents aged from 18 to 30 years old, of which 65% were
female, 15% were African-American, and 3% were Asian
or Latino. Subjects were instructed to perform a series of
23 facial displays, six of which were prototypical emotions
including angry, disgust, fear, joy, sad and surprise. For
our experiments, we selected 317 image sequences from 93
subjects. The selection criterion was that a sequence can be
labeled as one of the six basic emotions and the video clip
is longer than 13 frames. The faces were detected automati-
cally by a variation of Viola and Jones detector [9] and then
normalized to 96 × 96 patches based on the location of the
eyes.

The facial expression dynamics of video clips in the
database always start from neutral expression and end on
apex, the maximum intensity of a expression. Most pre-
vious research evaluated spatial features using only the
last frames which contain the most expressive expressions.
However, spontaneous expressions observed in real-life are
never this extreme. To make the problem harder and closer
to reality, we pre-processed the training and testing data into
following 2 conditions,

• onset– the first 6 frame – low intensity expressions

• apex –the last 6 frame – extreme intensity expressions

Each video clip was first convolved with all the filters in
a filter bank. Then the responses from all filters were con-
catenated into a long feature vector. Only the magnitude
(energy) of the responses was used. We aggregated the re-
sult from different time frames via statistical operators such
as min, max, and mean. In this case, we were able to pro-
cess video clips of arbitrary length.

Table 1. Average ROC on onset and apex sequences classification
over 6 expressions

onset apex
GE GME GE GME

Anger 0.6673 0.8294 0.9398 0.9575
Disgust 0.6696 0.6770 0.9784 0.9784
Fear 0.6104 0.6670 0.9648 0.9698
Joy 0.7896 0.8773 0.9913 0.9895
Sad 0.7095 0.7838 0.9877 0.9809
Surprise 0.7783 0.8793 0.9942 0.9927
mean 0.7041 0.7856 0.9760 0.9781

We used linear support vector machine (SVM) [6] as our
classifier. Using the bootstrap method, each time we ran-
domly selected 60 subjects as the training set, while the rest
of subjects served as the testing set. To avoid over-fitting,
we applied a double cross-validation method. The first layer
of cross-validation was used to find the best parameters and
then trained with the whole training data using the selected
parameter. ROC scores were used to evaluate the perfor-
mance of the system on the testing set. Each experiment
was repeated 10 times and the average was reported.

3.2. Results

Table 1 compares the cross-validation performance on
GE and GME on two different conditions. The GME fea-
tures outperforms GE in both conditions. In particular,
GME is superior to GE by 7% on the onset low intensity
condition. In contrast, the performance gaps between GE
and GME at apex is small.

. Figure 4 shows the learned SVM weights in the eye-
brow region. Since the dynamic range of features were nor-
malized, these weights represent the relative importance of
each feature. For GE features, the weights are represented
by the line segments in each location on the face. The “ori-
entation” of the line is perpendicular to the wavefront of the
filters’ sinusoidal carriers. The colors of the line segments
also represent the “orientations”, which makes it easier to
identify clusters of lines pointing to the same direction. The
length of the lines represent the magnitude of the weight
which shows the importance of the feature. As for GME
features, in addition to line segments, arrows are added to
show the corresponding motion directions of the features.

3.3. The Use of Linear Classifiers

In our experiment, we used a linear-SVM as our classi-
fier. Though non-linear SVM is known to be superior than
linear SVM for its ability on handling non-linear problems,
empirically, we found little performance difference between
non-linear Gaussian kernel (K(x, y) = eγx

T y) and linear
kernel. In addition, the best Gaussian kernel parameter γ is
very small, which corresponds to a very smooth Gaussian
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Figure 4. The right-eye closeup for learned SVM weights of angry
expression using GME (b)(d) and GE (a)(c) features. The direc-
tion of the arrows and line-segments are color coded for better
visualization.

an indication of low-linearity problem.
The linearity might result from the high dimensional fea-

ture space spanned by non-linear GE and GME features.
Unlike regular linear filters, GME filters incur non-linearity
by taking the magnitude of complex filter responses. The
current filter bank has a collection of 15 spatiotemporal fre-
quency combinations, 16 orientations. They are then ap-
plied to every location on the face image, which amounts
to 2,211,840 features per video sequence. Such large set
of features are capable of encoding facial movements of
various scales and directions. In such high dimensional
space, our problem may become linearly separable and thus
the performance gap between non-linear and linear classi-
fiers is minimal. In comparison to non-linear SVM, lin-
ear SVM has fewer hyper-parameters and much faster train-
ing/classification speed.

3.4. Motion Is Important for Recognizing Subtle
Expressions

The importance of facial dynamics in recognizing facial
expressions has been established in many vision [22, 5, 25]
and psychological experiments [4, 2]. Spatiotemporal facial
behavior tends to include a large number of subtle expres-
sions. It is therefore crucial to detect subtle expressions for
real applications. Psychological experiments have shown
the importance of dynamics for recognizing subtle facial ex-

Figure 5. GME patterns

pressions [2]. In this paper, the experiments further identi-
fied that the major advantage of dynamic features over static
features is on low intensity expressions. The result is con-
sistent with psychophysical findings in the literature [2].

In this paper, we explore this issue by comparing the
cross validation performance and the learned SVM weights
in onset and apex conditions. The fact that GME outper-
forms GE at the onset condition (see Table 1) by a large
margin suggested that dynamic motion information is more
informative than the static features at low intensity (onset).
At the early onset, the spatial cues may be too subtle to be
detected in a noisy context. On the contrary, GME char-
acterize expressions by facial motion patterns, such as the
direction and speed of facial features movement. The mo-
tion information remains strong for low intensity expres-
sions. On the other hand, when the expression comes to the
apex, the intensity of expression is so high that spatial fea-
ture are sufficient for good discrimination. In fact, motion
information close to the apex is minimal. We were actu-
ally surprised at how well GMEs performed at the apex,
considering how little motion information is available at
that point. After careful inspection of the GME weights in
Fig.4(b)(d), we found there are actually two different types
of local GME patterns in one pixel (see Fig.5). One is a
“directional pattern” formed by an arrow and its adjacent
directions. This pattern shows very clear directional move-
ment. The other type is an “orientation pattern” formed by
two arrows of opposite directions and their adjacent direc-
tions.

We conjecture that in practice the SVM learned to use
GMEs to create “orientation patterns” that are functionally
equivalent to a GE filter of corresponding orientation. This
is further supported by the fact that the spatial distribution
of “orientation patterns” is very similar to the distribution
of the GE weights (Fig.4). A possible explanation is that
the even (symmetric) part of a GME filter has non-zero
DC-response which functions similar to a GE filter with
the same frequency and orientation. This enables GME to
pickup information that GE can. In summary, GME is ca-
pable of describing both dynamic and static textures, which
make it as as good as GE when there is no motion informa-
tion and better when there is little spatial texture and large
motion information.

The change of SVM weights at different onset stages



also supports our hypothesis that motion information is crit-
ical for early onset and low intensity facial expressions. Fig-
ure 4 compares the weight spatial distribution and “direc-
tional” and “orientation” patterns between GME and GE.
At early onset where GME significantly outperforms GE,
GME captures much more information around the eyebrow
and upper eyelid region. The “directional” patterns in these
regions suggest the use of motion information. In contrast,
GME and GE gives similar performance at the apex where
the spatial distribution of GME and GE are also similar to
each other. Most GME pattern at apex are “orientation”, a
strong indication of static texture signal.

4. Conclusion
In this work, we explored the use of Gabor Motion En-

ergy filters (GME) as a basic representation for Early Tem-
poral Integration in facial expression classification. We
compared GMEs with Gabor Energy filters (GE) a popular
representation for Late Temporal Integration methods.

We found that GMEs (Early Integration) outperformed
GEs (Late Integration) spatial Gabor filters. Careful visu-
alization of the learned SVM weights and analysis of clas-
sification performance revealed why GME were superior in
their ability to capture both static and dynamic texture in-
formation.

In addition we found that low level motion information,
as captured by GMEs, may be particularly critical for clas-
sifying low intensity expressions. This may be particu-
larly important for recognition of spontaneous expressions
in real-life situations. Such expressions tend to be of much
lower intensity than voluntary expressions of the type avail-
able in the Cohn-Kanade database.
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