
From Proposal to Production: Lessons Learned Developing

the Computational Chemistry Grid Cyberinfrastructure

Rion Dooley
Center for Computation & Technology at LSU

Kent Milfeld
Texas Advanced Computing Center, UTA

Chona Guiang
Texas Advanced Computing Center, UTA

Sudhakar Pamidighantam
National Center for Supercomputing Applications, UIUC

Gabrielle Allen
Center for Computation & Technology, Department of Computer Science, LSU

September 1, 2005

Abstract. The Computational Chemistry Grid (CCG) is a 3-year, National Mid-
dleware Initiative (NMI) program to develop cyberinfrastructure for the chemistry
community. CCG is led by the University of Kentucky, and involves collaborating
sites at Louisiana State University, Ohio Supercomputing Center, Texas Advanced
Computing Center, and the National Center for Supercomputing Applications. This
paper discusses experiences developing the CCG cyberinfrastructure in the first year
of the project. Special attention is paid to technological issues faced as well as issues
raised running the CCG in production. The final section of the paper looks forward
to challenges foreseen in the remaining two years.

Keywords: Grid, Chemistry, GridChem, CCG, Cyberinfrastructure, Gaussian, Mol-
Pro, NWchem, GAMESS

1. Introduction

The term cyberinfrastructure, coined by an “NSF Blue Ribbon Panel”,
refers to software and hardware which enable scientists to exploit cut-
ting edge technology resources, including compute and data servers,
visualization devices, instruments and networks, for advancing research
in science and engineering. The need for cyberinfrastructure in the basic
sciences is evident in the growing number of similar active projects to-
day. The Asian Pacific BioGrid (APBioGrid, 2004), the EGEE Project
funded by the EU (European Commission, 2005), the Singapore Na-
tional Grid Life Science Virtual Community (LSVC, 2005), and Korea’s
national grid infrastructure initiative to support, in part, computa-
tional chemistry (KISTI, 2005) all exist today to provide scientists with
tools and resources at a level never before seen.

c© 2006 Kluwer Academic Publishers. Printed in the Netherlands.

JOGC_Experiences.tex; 10/06/2006; 10:15; p.1



2

The Computational Chemistry Grid (CCG) (GridChem, 2005) is
a three year NSF funded project to develop cyberinfrastructure to
serve scientists engaged in studying molecular structure and function.
Computational chemistry algorithms and software are now widely used
across the life sciences and other disciplines. Examples of their applica-
tion are found in nanotechnology, biotechnology, medicine, pharmacol-
ogy, biology, physics, materials science, structural mechanics, electrical
engineering, chemical engineering and environmental quality modeling.

Users of both commercial and academic chemistry software pack-
ages, such as Gaussian, GAMESS, MolPro, NWChem, and Amber, are
major users of supercomputer resources across the US and worldwide.
The CCG leverages existing, established Grid middleware to provide
an easy-to-use integrated computing environment for these and other
chemistry applications for use on supercomputer resources across CCG
member sites.

The CCG is led by the University of Kentucky (UKy), and involves
collaborating sites at Louisiana State University (LSU), Ohio Super-
computing Center (OSC), Texas Advanced Computing Center (TACC),
and the National Center for Supercomputing Applications (NCSA).
This paper discusses initial experiences developing and running the
CCG cyberinfrastructure through the first year of the project and looks
ahead to challenges in the remaining two years. The discussion touches
on important technological issues faced as well as the chosen solutions.

The format of this paper is as follows. Section 2 gives an overview
of the current and future CCG architecture and the GridChem client
application. Section 3 discusses the challenges of implementing the
technological infrastructure and the roadmaps developed at the start
of the project. Finally, Section 4 closes with concluding remarks.

2. Overview

The current design of the CCG, as shown in Figure 1, is a 3-tier
architecture comprised of a client side graphical user interface (GUI)
application, a middleware service, and a resource layer. The client ap-
plication, called GridChem, is an open source Java application that re-
motely launches and monitors computational chemistry calculations on
CCG supercomputers at remote sites. GridChem also provides several
useful, tightly-integrated features such as application-specific molecular
editors, output file parsing, and interfaces for pluggable visualization
tools. GridChem is distributed as a self-installing Java Web Start appli-
cation available from the project website (http://www.gridchem.org).

JOGC_Experiences.tex; 10/06/2006; 10:15; p.2



3

More information on the GridChem client can be found at (GridChem,
2005).

Figure 1. The current architecture for the Computational Chemistry Grid. All Grid-
Chem functionality is tied to one or more corresponding CGI scripts on the CCG
middleware server. The CGI scripts in turn communicate with a database to persist
information on users, jobs, files, and resources.

The remainder of this section examines the two remaining layers of
our architecture: middleware and resource. It first looks at each layer
as they it exists in the current CCG architecture shown in Figure 1,
then concludes by discussing their composition within the framework
of our planned architecture shown in Figure 2.

2.1. Current Architecture

Although the long-term goal of this project is to create a dynamic grid
service architecture, one of the primary deliverables in the first year was
to provide a production environment for users to submit, monitor, and
retrieve output from jobs. Such an immediate user base provides feed-

JOGC_Experiences.tex; 10/06/2006; 10:15; p.3



4

back and experience necessary to produce a more useful and responsive
grid for the community in the latter stages of the project.

To meet the short term goal of usability and to facilitate a long-
term goal of implementing a robust grid architecture, it was decided
to first implement server-side functionality (ie. the middle layer of the
architecture in Figure 1) in CGI scripts. Thus, the current middleware
layer consists of basic grid middleware (such as the Globus Toolkit, NMI
Distribution, etc.) and the CGI scripts providing core functionality to
the client application. The CGI scripts are responsible for enforcing
such tasks as security, job submission, file tracking, job monitoring,
and information provisioning. It is the CGI scripts which convert job
requests made through GridChem into valid job descriptions for the
system scripts in the resource layer. The CGI scripts are also responsi-
ble for all accounting in the CCG. Usage information, resource status,
historical job information, etc. must all be recorded and updated in a
database. Section 3.2 discusses this topic in greater detail.

The lowest level of the CCG Architecture is the resource layer which
appears at the bottom of Figure 1. The resource layer consists of the
physical resources, local schedulers, resource-specific low level infor-
mation providers, and the software and middleware needed to run
the computational chemistry applications on each machine. The CCG
currently provides support for Gaussian, GAMESS, and NWchem. Not
every application is provided on every CCG machine, however, commu-
nity users have access to every application through GridChem. In the
future, the list of supported applications will expand to include MolPro,
Aces, and many other applications currently used by the computational
chemistry community.

Included in the resource layer is a set of system scripts that take
the CGI job descriptions and generate input files for the local queueing
systems. These scripts are system-specific, meaning that they are each
optimized to run on their respective system. The benefit of this ap-
proach is that, from the middleware perspective, little work is needed
to submit a job on a particular machine. A single, common interface is
exposed for each application, and no separate decision making is needed
to successfully run an application at LSU rather than NCSA.

2.2. Future Architecture

In the longer term, CCG decided to pursue a different CCG archi-
tecture. Problems of scalability, distributed resource management, and
the fluctuating nature of the Quality of Service (QoS) provided by each
resource are inherent in any grid implementation. Thus, mechanisms
to handle such characteristics are necessary to provide a functional,

JOGC_Experiences.tex; 10/06/2006; 10:15; p.4



5

long–lasting grid environment. In the CCG, a Service-oriented Archi-
tecture (SoA) was embraced to provide the mechanisms necessary for
such a task. The SoA paradigm is increasingly being adopted as the
basis for middleware design. This is evidenced by industry’s adoption
of web services and the movement of grid researchers and standards
organizations such as the Global Grid Forum to grid services (IBM,
2005) (Web Services Interoperability Organization, 2004) (WS-RF,
2005). In a SoA, services may be composed hierarchically, allowing
adopters to focus on developing the necessary meta-services needed for
application specific grid implementations, such as those in Section 3,
rather than primary grid services already being developed by others in
the community. Using this approach, focus remains on the integration
aspects of the project and the CCG benefits knowing that, as the
quality of the underlying services improves, so too will the quality of
the middleware meta-services.

A SoA architecture was chosen to implement the future CCG mid-
dleware layer rather than servlets or the existing CGI for several rea-
sons. Using web services allows a high degree of portability and ac-
cessibility through well defined mechanisms such as RPC and SOAP.
Web service interfaces are published through a common registry, thus
making the service easily accessible using multiple technologies such as
portals, client applications, and web pages. Web services also allow in-
tegration with existing grid technologies, such as the GSOAP plugin for
secure communication, rather than relying on command line utilities.

A SoA architecture was also chosen due to the complex nature of
the desired CCG. As can be seen in Section 3, the middleware must
provide several features that would be difficult to achieve without heavy
integration at the highest level. A web services implementation allows
integration of the accounting, job submission, GSI security, and moni-
toring components in a way that is not possible in any of the individual
underlying services. Web services allow cleaner implementation through
a common programming environment (rather than a mix of perl, CGI,
and system scripts), a well-defined API, and the added benefit of inher-
iting useful functionality from a stable container environment (Globus,
Apache Tomcat, etc.). Further, this approach allows us to take ad-
vantage of several desirable features of the implementation language
of choice such as client and server notification and dynamic service
discovery. Finally, a SoA architecture was chosen to allow the CCG to
grow in the coming years. The current approach of tailoring site-specific
scripts and software stacks to meet the middleware needs is difficult to
maintain and does not scale well. With a SoA, decisions can be made
based on information from a common repository, and that repository
can add and remove resources at will. This gives greater flexibility and

JOGC_Experiences.tex; 10/06/2006; 10:15; p.5



6

stability to the CCG and allows other sites to join and leave the CCG
much easier than with the current approach.

Figure 2. The planned architecture for the Computational Chemistry Grid. CCG
is in the process of implementing a Service-oriented Architecture where the client
utilizes the GridChem Middleware Service (GMS) for core functionality and the
GMS in turn relies upon a series of grid and web services to provide functionality to
the client. The current CCG architecture of Figure 1 is very similar to the planned
architecture. The move from Figure 1 to Figure 2 is underway and consists of a
one-for-one replacement of existing CGI scripts with GMS web services.

The CCG SoA architecture is shown in Figure 2. Notice that this
figure is very similar to the current CCG architecture in Figure 1. The
major difference being that in the future architecture, CGI scripts are
replaced one-for-one with corresponding GridChem Middleware Service
(GMS) implementations. Figure 3 shows how a typical job submission
use case will occur under the new architecture.

JOGC_Experiences.tex; 10/06/2006; 10:15; p.6



7

Figure 3. Proposed sequence diagram of GridChem interaction with the future
GMS.

Notice that each action in the client is reflected by a call to the
corresponding GridChem Middleware Service. The GMS in turn, will
leverage one or more underlying third-party services to perform the
requested action. In some cases, these third-party services will be in full
production. In other cases, these services will be under development.
In order to hide the details of interacting with these services, nearly
all interaction with the underlying services is done through the Grid
Application Toolkit (GAT) (Allen et al., 2002).

The GAT is a generic API for grid computing. There are currently
four implementations of the GAT: C, C++, Python, and Java. Each
implementation utilizes the adaptor design pattern to allow multiple
implementations of common actions at run time. This means that, if
one of the underlying services in the CCG, such as the information
service, changes in the future, the GMS code does not have to change,
the GAT will internally recognize this change and select the appropriate
adaptor.

In relation to figure 2, information queries on available software,
hardware, and job history will be forwarded by the GAT to the in-
formation service, GPIR (discussed in greater detail in section 3.3).
Job submissions and queries on job status will be forwarded to the

JOGC_Experiences.tex; 10/06/2006; 10:15; p.7



8

grid scheduler service (discussed in greater detail in section 3.4). Data
queries and file movement requests will be forwarded to the replica
service, Globus RLS (discussed in section 3.5). Usage history requests
will be forwarded to the resource usage service (RUS) (discussed in
greater detail in section 3.2.1).

3. Technological Issues

Creating a production grid environment poses several significant tech-
nological problems related to security, accounting, information provi-
sioning, resource brokering, and data management. In this section each
issue is addressed in turn.

3.1. Security

One requirement of the CCG is to provide users with single sign-on
access to all CCG resources. An ideal use case for the CCG is as fol-
lows. The user starts GridChem and opens the “Authenticate” panel.
There, they enter their CCG username and password and click the
“Login” button. GridChem then encrypts the username and password
and sends them as arguments to the GMS Authentication Service. The
service checks that the user’s information is correct, then pulls a valid
community credential from a MyProxy (MyProxy, 2005) server. Upon
completion of this step, the user is authenticated and has full GridChem
functionality via a community allocation at each site independently of
the underlying security mechanisms and without need to authenticate
again for the life of their session. The community allocation, however,
is the ideal case. The average case is not this simple.

Full users of the CCG will have existing allocations on many, if
not all participating systems. Other users will have allocations on at
least one of the machines in the CCG. Users will all be accustomed to
authenticating manually using Secure Shell (SSH), Kerberos, and Grid
Security Infrastructure (GSI) mechanisms and performing their work
via the command line using their own well-defined, and often home-
grown methods. The philosophy taken is that potential users should
not be forced to leave familiar methodologies behind if they wish to
use the CCG. As well, users should not be required to install a large,
complicated suite of grid middleware simply to use GridChem. The job
of the CCG is to provide them with tools to enhance their experience
while removing as many existing obstacles as possible.

Providing such tools is difficult, if not impossible, without detailed
information about the systems on which CCG users perform their sci-
ence. The CCG middleware relies on tailored information providers

JOGC_Experiences.tex; 10/06/2006; 10:15; p.8



9

as well as static information collected manually from CCG resources
to make informed decisions and take appropriate action on the user’s
behalf. Thus, there is a tradeoff between community acceptance and a
full grid architecture. The solution adopted in the CCG is to support
multiple authentication methods through the GridChem client. Grid-
Chem supports SSH, Kerberos, and GSI security mechanisms as well
as the notion of a “community user”. The SSH and Kerberos interfaces
provide more general interfaces to submit and manage jobs at the
expense of sacrificed job monitoring ability. The MyProxy interface
provides the complete set of GridChem features, but requires the user
to keep track of their grid credentials. The CCG community user is the
realization of the use case above. After a single authentication, a user’s
jobs are submitted and tracked, their data managed, and the resulting
output can be parsed for meaningful data. Just as security and ease
of use progressively increased with the introduction of SSH, Kerberos,
and GSI, so too is this pattern reflected in GridChem. As users move
from SSH and Kerberos to GSI authentication, functionality increases
and users reap the benefit of better job management.

This is not by design, but is rather a result of the additional in-
frastructure needed to perform identical functionality with the other
mechanisms. Because of the time and effort needed to put such infras-
tructure in place, and the desire to move users to the grid, the CCG does
not fully supporting every authentication method. This, then, becomes
a leveraging point to shift users from their existing mechanisms to use
of MyProxy and community authentications.

3.2. Accounting

Historical job history and individual user tracking are both areas that
must be addressed to provide adequate accounting for the CCG. The
remainder of this section, looks at each of these areas in turn by
first explaining why support of a specific feature is needed, then high-
lighting the challenges faced implementing that functionality needed
for such a feature within the confines of the CCG architecture, and
finally discussing the short and long term solutions to provide such
functionality.

3.2.1. Historical Job Information
The first step in accurate accounting is collecting and aggregating his-
torical job information. This requirement is driven from three sources:
the NSF, local site administrators, and the CCG middleware architec-
ture. The NSF mandates usage statistics be included as a part of the
project reporting requirements. Individual site administrators require

JOGC_Experiences.tex; 10/06/2006; 10:15; p.9



10

us to show a degree of supervision over CCG users in exchange for the
privilege of receiving a community allocation. To satisfy the NSF, the
identity of CCG users and the resources they use must diligently be
recorded . This information must also be validated against the local
scheduler records on each resource. To satisfy local site administrators,
every job run under the community allocation must be associated with
a physical CCG user. This is primarily so that, in the event of an emer-
gency, the appropriate people can be notified and the problem resolved.
Without such mechanisms, user support is virtually impossible.

The accounting needs of the GMS must be met as well. The GMS
needs historical information to implement key features such as quotas,
meta-scheduling, and job status notification. Quotas in the CCG extend
beyond simple sanity checks to verify that an allocation on a particular
site has not expired. They ensure that a few users do not monopolize the
entire community allocation. While the CCG advertises free time for
community users on the CCG, users are not allowed free reign. Meta-
scheduling, as discussed in Section 3.4 needs historical information to
increase the accuracy of it’s job predictions and quality of service esti-
mates based on lessons learned from the past. Job status notification
requires information about the start and stop time of jobs.

It is important to note that a long running job monitoring service
can provide the information needed for job status notification. From
a production standpoint, however, this approach is unfavorable. If the
monitoring service fails at any point, all information on jobs started
or stopped during the service’s down time is lost. It is reasonable to
foresee a use case where a user submits multiple long-running jobs and
checks back days, or even weeks later to find their status. Without
dependable, consistent, historical information, users cannot be given
answers to simple questions such as, “Did my job complete?” “Was
my job successful?” “How long did my job take to run?” “When did
it complete?” and, “How long did my job wait in the queue before
starting?”

Collecting historical information is difficult in a heterogeneous set-
ting due to the diversity of schedulers across the CCG. As of the writing
of this article, LSF, LoadLeveler, PBSPro, and OpenPBS can all be
found on the CCG. To further complicate the task, each site has its
own policies over what information should be available to the user.
At NCSA, users are provided full access to their job history using a
command line tool, called qhist. At OSC, users are not given historical
job information other than an email informing the user of job com-
mencement and termination. The challenge, then, is to find a unified
way to access the historical information present on each site in a way

JOGC_Experiences.tex; 10/06/2006; 10:15; p.10



11

that does not violate each site’s local policy, and persist it in a common
format.

There has been significant work done in the GGF addressing this
topic (Ainsworth et al., 2005). The Resource Usage Service Working
Group (RUS-WG) looks to be one promising solution. The RUS is a
grid service that aggregates usage records pushed to it from accounting
information providers on each resource. The providers exist as a layer
between the Globus job manager and batch scheduler on each resource.
Their main function is to monitor all incoming job requests and update
the local accounting records. The information gained from these two
actions produces a usage record that is spooled and periodically pushed
to the RUS. Access to these usage records is available through calls to
a WS-Secure (Ainsworth et al., 2005) grid service.

The current architecture does not provide complete historical infor-
mation as described above. Rather, the middleware server logs each job
successfully submitted to a resource, then relies on email notification
from individual resources to record the completion time of each job.
While effective, this method lacks several of the features described
above, and, as described in Section 3.2.2, is inadequate for user tracking.
The main reason for pursing the current implementation was due to the
lack of any standards-based grid resource usage tools. Now that such
tools are available, it is foreseeable that the CCG will move towards a
grid service, like RUS, in the near future.

3.2.2. User Tracking
In addition to information about what jobs a user submits, the account-
ing infrastructure must perform the equally important task of tracking
user activity across multiple domains. This requirement is tied to the
above discussion on usage history. If a user’s identity cannot be tracked,
their history cannot be found. GridChem is tagged with the responsi-
bility of providing the user with specific information on their jobs, their
accounts, and their data without divulging this information to others.
This approach was chosen for practical as well as political reasons.
For users submitting a handful of jobs every month, it is prohibitively
tedious to ask them to sift through thousands of history records just to
find the few jobs they ran. In addition, some users may be performing
sensitive experiments which necessitate security mechanisms. For these
reasons, as well as to avoid the potential namespace collisions encoun-
tered when running across multiple administrative domains, the CCG
must accurately track its users.

Section 3.1 discussed how users can access the CCG using multiple
authentication techniques. Thus, a user may have multiple usernames,
passwords, and grid certificates. In order to manage user identities

JOGC_Experiences.tex; 10/06/2006; 10:15; p.11



12

across numerous resources, it is essential to know all possible user
aliases and associate them with a common user identity within the
CCG infrastructure. This is done using several mechanisms, the first of
which takes place when a user requests an allocation to the CCG.

When a potential user wishes to join the CCG, they must first fill out
an allocation request form stating their desire to be either a community
or external user. External users are users wishing to utilize authen-
tication methods other than the community account (i.e. MyProxy,
Kerberos, or Secure Shell). The external user form requires the user to
specify information necessary to track their activity such as machines
on which they have existing accounts, usernames on those machines,
and project memberships. The form also solicits a unique CCG handle
for the user used in the next step for internal bookkeeping.

Section 2 described how GridChem interacts with the middleware
server for the bulk of its functionality. As a result, when a user starts the
client, they must authenticate with the middleware using their unique
CCG username. In doing so, the context and permissions the user is
employing to perform their work is always known. The process is as
follows. The user starts the GridChem client and authenticates with
the middleware server. The middleware server checks that the user has
a valid username and password and returns the allocation classification
of the user - community, external, or both. If the user has both an
external and community allocation, they are prompted to specify which
method to use. Community users are successfully authenticated at this
point. GridChem then takes care of all the credential management and
setup needed for a community user. External users will be taken to
a second login screen which allows them to provide the username and
password or grid credential needed to authenticate using their preferred
method. Once successfully authenticated, GridChem and GMS know
the user’s CCG username, the authentication method they are using,
and the remote username under which they are operating. Using this
information, GMS can fully act on behalf of the user, tracking their
usage on each system.

3.3. Information Provisioning

Accurate and dependable information provisioning is the largest single
challenge of this project. Without reliable information from all aspects
of the system, necessary and intelligent decisions on the user’s behalf
cannot be made. This information comes from several sources: historical
job records, monitoring output, static and dynamic resource descrip-
tions, and file metadata. A complete discussion on how information
is aggregated to provide functionality to GridChem and fulfill user

JOGC_Experiences.tex; 10/06/2006; 10:15; p.12



13

requirements is a lengthy topic, and beyond the scope of this article.
Instead, the remainder of this section focuses on describing the type
of information provided by each source and how it will be provided
through the CCG architecture.

3.3.1. Historical Job Records
Section 3.2, discussed the need for historical job information. Cur-
rent plans involve the use of a third party grid service such as RUS
(Ainsworth et al., 2005) to provide this information.

3.3.2. Static and Dynamic Resource Descriptions
Data can be placed in one of two categories: static or dynamic. Static
data is data that changes very rarely, or not at all. A machine’s name is
an example of static data. Dynamic data is data that requires frequent
updates. The load on a machine, the available bandwidth on a network,
the number of available licenses for a piece of software, are all examples
of dynamic data. Static information is relatively easy to acquire. It can
be read from a text file or hard coded into an application. Dynamic
information acquisition requires more creativity.

Dynamic information involves monitoring. In the context of this
paper, monitoring is defined as consistently checking and recording
the status of a particular property of interest. That property may be
derived from reading a file, querying a web service, or explicitly mea-
suring a quantity of interest. Whatever the actual mechanism used to
collect the data, monitoring requires its repeated application to ensure
accurate, up to date information.

The act of monitoring is useless if the data produced does not
become information. A grid information service (GIS) is a means of
aggregating large amounts of data into meaningful information. Briefly,
a GIS provides a public schema for representing data. It accepts infor-
mation formatted for this schema from a set of providers (or monitoring
applications) and stores it for future reference. In the CCG, two infor-
mation services, iGrid (iGrid, 2005) and GPIR (GPIR, 2005), were
considered for use suppling resource information to the CCG.

iGrid is a hierarchical information service shown to perform upwards
of an order of magnitude faster than the Globus MDS (Aloisio et al.,
2005). The iGrid hierarchy is comprised of multiple layers of iServe and
iStore instances. Each node in the iGrid tree has both an iServe and an
iStore. iServes pull information from local resource. iStores make that
information available for direct query. After careful review, it was found
that the basic installation of iGrid does not provide resource descrip-
tions robust enough to meet all the needs of the CCG grid architecture.
Specifically, support for administrative information, software resource

JOGC_Experiences.tex; 10/06/2006; 10:15; p.13



14

descriptions, and individual node information were lacking. This was
enough for us to recommend against using iGrid for this particular
project.

The GridPort Information Repository (GPIR), in contrast to iGrid,
is an aggregated information service. GPIR is designed for performance
and employs a portal-oriented view of data (GPIR, 2005). In addition
to providing traditional job and resource information, GPIR supports
both, “dynamic data and ’human-centric’ data (such as where a re-
source is located or whom to call for support).” (GPIR, 2005). An
example of such information is listed in Figure 4.

Figure 4. Description of the GPIR compute description. Notice the non-technical
information (listed in italics) available in the GPIR information schema.

Rather than building up an information hierarchy, GPIR exists at
the very highest level in the information chain, acting as a consumer of

JOGC_Experiences.tex; 10/06/2006; 10:15; p.14



15

several other information services. Thus, iGrid could potentially serve
as an information provider to GPIR.

One advantage of designing GPIR with portal support in mind
is that it includes non-technical, administrative information. This is
one immediate and attractive argument for GPIR over iGrid. A sec-
ond advantage is the fact that GPIR is in it’s third full release and
currently used by several projects including Open Grid Computing En-
vironments (OGCE) (OGCE, 2005), TeraGrid (TeraGrid, 2005), Fleet
Numerical Meteorology and Oceanography Center (FNMOC, 2004),
the University of Tennessee Grid project (UTGrid, 2005), Southeastern
Universities Research Association (SURA, 2005), and Texas Advanced
Computing Center (TACC, 2005).

As with iGrid, initial examinations showed some drawbacks to using
GPIR. As before, home-grown providers will have to be provided to
fill in the missing pieces required from their information schema. To
address the second problem, researchers in the CCG middleware group
developed a new information provider, the Job And Machine Monitor
Service (JAMMS) (Milfeld et al., 2005), discussed in the next section. It
was also observed that data acquisition is done using unsecure remote
database calls. While faster and more efficient than traditional web
service calls, this may be an undesirable technique when transmitting
user information.

3.3.3. Monitoring Output
Monitoring data will come from several sources. It is anticipated that
the majority of these sources will be information providers distributed
with the chosen information service. As stated in Section 3.3.2, there
will be some discrepancy between the information needed and the infor-
mation provided by these monitoring tools. To fill this gap, researchers
in the CCG middleware group developed a new information provider,
the Job And Machine Monitor Service (JAMMS). JAMMS is a Perl
script that pulls information on queues, jobs, CPU’s, machine utiliza-
tion, and overall system status. This script is run as a cron job at
each site. By default, JAMMS is set to run every 5 minutes as a local
user (e.g. under the community account on each site). It uses the Perl
Database Interface (DBI) module for sending information to a MySQL
data base located on the CCG middleware server. A PHP program is
used to extract information from the database and present it to the
user, through their browser.

JAMMS programs, called filters, execute batch utilities (for either
PBS, LSF, or LoadLeveler), and extract (filter out) needed information.
Two or three batch utilities might be invoked from within the Perl script

JOGC_Experiences.tex; 10/06/2006; 10:15; p.15



16

to obtain the relevant information. For LSF, a single API program was
developed to quickly extract all relevant information.

After several months of use, JAMMS has shown the potential to be
an acceptable complement to existing information providers. Current
plans are to augment JAMMS data with other system-level tools to
ensure adequate total system information is collected in whatever GIS
is employed. Work is currently underway to modify the JAMMS output
format so it can serve as a provider to the iGrid information service.
Plans are also in place to examining how JAMMS can be integrated into
the GPIR framework. As of the writing of this paper, the final solution
to the information needs of the CCG remains an open question.

3.4. Resource Brokering

It was stated in Section 2, that the problem addressed with the CCG is
to provide cyberinfrastructure to enable the computational chemistry
community to submit and manage jobs using a select set of well-known
applications. Narrowing the focus from the general case of enabling
complex workflows and scheduling for any given application, to the
specific case of only supporting a few known software packages, sim-
plifies the task of resource brokering. The applications the CCG user
community will employ are known. The finite list of dedicated machines
on which the user will run these applications are known. The means in
which this introduction will happen are also known. Using such concrete
information greatly reduces the complexity of a task and allows the
SoA model to again be leveraged to perform resource brokering at two
distinct levels.

At the lowest level, grid schedulers are used to submit and manip-
ulate the user’s job on every resource. Existing tools such as Condor
(Thain et al., 2003), the Grid Resource Management System (GRMS)
(GridLab, 2005), and GRAM (Globus, 2005)(Czajkowski et al., 1998)
fit this description. In order to avoid dependence on any one schedul-
ing service, the Grid Application Toolkit (GAT) (Allen et al., 2002)
is employed. The GAT enables interchanging grid schedulers without
altering the code base. It also allows the best features of each technology
to be used to provide an overall service that is more sophisticated than
it’s individual parts. For example, GMS could use GRMS for resource
selection based on predicted run time, and Condor for job submission.

A good example of leverage existing technology to solve low-level
problems is proxy certificate management. Computational chemistry
jobs can vary in length from a couple hours to many months. As job
run time increases, so to does the possibility that a user’s proxy will
expire long before their job finishes. If the user’s proxy expires, all grid-

JOGC_Experiences.tex; 10/06/2006; 10:15; p.16



17

based output file transfer will fail due to an expired credential. Condor-
G is a grid scheduler that performs credential management on behalf
of the user. Thus in the case of long running jobs, as an alternative
to generating a credential with an extremely long life, Condor-G can
be used as the underlying grid scheduler to renew the user’s proxy
credential on their behalf.

At the highest level, sophisticated services will be provided to the
user such as throughput scheduling, economic scheduling, job moni-
toring, and notification. Intelligent scheduling of jobs, using different
criteria for optimality, is one of the second year goals of the project
and is crucial in ensuring efficient use of grid resources. By definition,
throughput scheduling seeks to maximize job throughput by minimiz-
ing job turnaround time. Aside from requiring dynamic information
that reflects current resource utilization, throughput scheduling ne-
cessitates reasonable values of three parameters that determine total
job execution time, namely queue wait, data transfer time, and ap-
plication run time. To obtain estimates of these parameters (within
some specified error bounds) the CCG metascheduler will utilize a web
services-based prediction toolkit that implements the instance-based
learning (IBL) method pioneered by Smith (Smith, 2003).

Job scheduling, monitoring and notification services will be made
available through the rich resource descriptions pushed to the informa-
tion service described in Section 3.3. Detailed resource descriptions al-
low accounting to be integrated into the decision making process, which
in turn, enables better decisions than could be made by a third-party
broker.

With better information comes better accounting, with better ac-
counting comes better brokering. As mentioned in Section 3.2, the
CCG development team is working to provide more mature information
providers and an advanced accounting system. As of this writing, these
systems are not in place, thus the current CCG resource brokering capa-
bilities are dependent on the strength of the underlying grid schedulers
employed: currently Condor-G and GRAM.

3.5. Data Management

Data management is never trivial in a grid setting. Different directory
structures, overlapping file and user namespaces, and heterogeneous
site policies on how data should be stored, make the process of ensuring
that the right data is placed in the right location, using the right mech-
anisms difficult. Within the context of this paper, data management is
examined first from a user perspective and then from the perspective
of the CCG architecture.

JOGC_Experiences.tex; 10/06/2006; 10:15; p.17



18

From the user’s perspective data management should be taken for
granted. If their job started, the user should have access to the associ-
ated data through GridChem. In order to achieve this level of fluidity,
two things have been done. First, within the GridChem job creation
editor, the user is allowed to specify a location to stage the output of
their job. Second, the user’s output data is internally mapped to the
record of the job, so the user can simply select a job and use GridChem’s
grid file browser to retrieve that data. Figure 5 shows a screenshot of
this tool.

Figure 5. Screenshot of grid file browser included in the GridChem software.

The grid file browser uses the GAT to provide remote file access.
Specifically, the Java GAT API is used to seamlessly access a user’s
remote files using whatever authorization mechanism the user em-
ploys. Security again, plays a large role in the design of the grid file
browser. Users are pointed directly to the remote directory associated
with their job and prohibited from accessing other areas of the remote
resource. This helps enforce CCG’s internal user tracking and prevents
community users from treating other scientists results as community
data.

From the perspective of the CCG architecture, data management
is simplified by enforcing strict naming and storage policies within
the middleware. When a user submits a job through GridChem, their
request is parsed, validated, and forwarded on to the remote resource.
On that resource, their job request is translated by application-specific
job submission scripts into a file appropriate for input to the remote

JOGC_Experiences.tex; 10/06/2006; 10:15; p.18



19

batch scheduler. Part of the script logic deals with how to handle output
data after the job executes. Currently, a directory structure is created
for the user’s job based on their username, job id, application type,
and project name. Depending on the user’s authentication mechanism,
several options are available for storing data. Community user data, by
default, is pushed into mass storage for permanent archiving. External
users, as mentioned above, have the option of staging their data to a
storage facility, their home directory, or a location specified in the job
creation editor in GridChem. By enforcing this policy on data manage-
ment, job output can be tracked from the middleware and forwarded
back to the user through the GridChem client.

An alternative approach still under consideration is the use of a
logical file service (LFS) such as Globus Replica Location Service (Cher-
venak et al., 2002) or Storage Resource Broker (Rajasekar et al., 2003),
or the use of an advert service such as StorageBox (Hupfeld, 2004),
which can easily double as an LFS. This approach would be more inline
with the SoA discussed up to now. Using this approach, GridChem and
the GMS would defer the responsibility of file management to a third
party rather than splitting the responsibility between the GMS and
client as is done now.

Several other benefits of an LFS are advanced tracking and version-
ing control, a globally unique namespace, and third party file transfers.
Such features are attractive given the added functionality they enable.
Through replica tracking, it would be possible to backup all user data in
the CCG mass storage facility. Another advantage for larger files would
be that the user is always assured that the nearest available copy of the
data is download . At present, however, a working implementation is in
place to handle data for every supported CCG application. Until new
requirements are requested by the user community, there is no plan to
alter the architecture.

4. Conclusion

Having already released the alpha version of GridChem in August,
the project is now benefiting from user feedback during a “friendly
user” period. One of the largest challenges encountered thus far is basic
account administration. Section 3.2 discussed briefly the user allocation
form. This form has highlighted several problems in the way users were
foreseen using the CCG. Originally it was thought that users would
flock to GridChem at the promise of free resources. What has been
observed thus far is that the ability to use existing allocations on
CCG resources is equally important to early adopters. This may be

JOGC_Experiences.tex; 10/06/2006; 10:15; p.19



20

due to the large percentage of the user community already possessing
CCG allocations, or it may be due to misunderstanding as to how
the community allocation works. To address the latter possibility, the
CCG Education, Outreach, Teaching, and Support (EOTS) committee
is currently working on updated documentation and online tutorials.
As well, a training workshop will be given in November in Seattle,
Washington, at Supercomputing 2005.

One recurring request from many users is for the incorporation of
workflow support into the GridChem client. Several researchers are
currently performing task farming and/or more complex jobs that Grid-
Chem could potentially support. Such a feature request requires signif-
icant adaptation at both the client and server levels. However, because
workflow support is such a powerful tool that can, in the future, dra-
matically expand the CCG user community, it will be incorporated into
GridChem early next year.

One goal put forth at the beginning of the project was to try and
move people towards grid technology. Specifically, the desire was to
make people feel comfortable learning about and using their grid cer-
tificates. At the first CCG Workshop in April, 2005, many users were
enthusiastic about the notion of a community account for running their
jobs. The SSH authentication interface was extremely popular and users
expressed willingness to begin using grid certificates through a similar
interface - especially if it meant gaining access to additional compute
time.

Since that workshop, the CCG infrastructure has grown to enable
such functionality. Users can move seamlessly from one authentication
mechanism to another with nearly no effect on their overall experience.
Now that the tools are in place to make a case to the community, the
process of moving users towards grid technology and addressing the
needs they are sure to raise has begun.

Acknowledgements

Special thanks Ian Kelley and Jon MacLaren for thoughtful review,
as well as Michael Sheetz and the UKy development team for their
contribution to the GridChem GUI. This work was funded in part by
the National Science Foundation, Award #0438312 and the Center for
Computation & Technology at LSU.

JOGC_Experiences.tex; 10/06/2006; 10:15; p.20



21

References

WS-I. Web Services Interoperability Organization Basic Profile Version 1.1. Final
Material, August 2004. http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-
24.html

K. Milfeld, C. Guiang, S. Pamidighantam, J. Giuliani. Cluster Computing through
an Application-oriented Computational Chemistry Grid. Proceedings of the 2005
Linux Clusters: The HPC Revolution.

D. Thain, T. Tannenbaum, and M. Livny. “Condor and the Grid”, in F. Berman, A.
J. G. Hey, G. Fox, editors, Grid Computing: Making The Global Infrastructure
a Reality, John Wiley, 2003.

K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and
S. Tuecke. A Resource Management Architecture for Metacomputing Systems.
In D. Feitelson and L. Rudolph, editors, Job Scheduling Strategies for Parallel
Processing (Proceedings of the Fourth International JSSPP Workshop; LNCS
#1459), pages 6282. Springer-Verlag, 1998.

G. Allen, K. Davis, T. Dramlitsch, T. Goodale, I. Kelley, G. Lanfermann, J. Novotny,
T. Radke, K. Rasul, M. Russell, E. Seidel, O. Wehrens. “The GridLab Grid
Application Toolkit.” HPDC 2002: 411.

W. Smith. “Improving Resource Selection and Scheduling using Predictions,”
in Grid Resource Management. J. Nabrzyski, J.M. Schopf, J. Weglarz (Eds).
Kluwer Publishing, Fall 2003.

S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, S. Tuecke. “A
Directory Service for Configuring High-Performance Distributed Computations”.
Proceedings of the 6th IEEE Symposium on High-Performance Distributed
Computing, pp. 365-375, 1997.

J. Ainsworth, J. MacLaren, J. Brooke. “Implementing a Secure, Service Oriented
Accounting System for Computational Economies.” Proceedings of the 5th IEEE
International Symposium on Cluster Computing and the Grid. Cardiff, Wales.
May, 2005.

G. Aloisio, M. Cafaro, I. Epicoco, S. Fiore, D. Lezzi, M. Mirto and S. Mocavero,
“iGrid, a Novel Grid Information Service”, to appear in Proceedings of Advances
in Grid Computing - EGC 2005 (European Grid Conference, Amsterdam, The
Netherlands, February 14-16, 2005, Revised Selected Papers), Lecture Notes in
Computer Science, Springer-Verlag, Volume 3470, pp. 506-515, 2005.

A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Iamnitchi, C. Kessel-
man, P. Kunszt, M. Ripenu, B. Schwartzkopf, H. Stocking, K. Stockinger, B.
Tierney. “Giggle: A Framework for Constructing Scalable Replica Location
Services”, Proceedings of the IEEE Supercomputing 2002.

F. Hupfeld. “Log-Structured Storage for Efficient Weakly-Connected Replication”.
Proceedings of the 24th International Conference on Distributed Computing
Systems (ICDCS) Workshops 2004.

A. Rajasekar, M.Wan, R. Moore, W. Schroeder, G. Kremenek, A. Jaheesan, C.
Cowart, B. Zhu, S. Chen, R. Olschanowsky. Storage Resource Broker - Managing
Distributed Data in a Grid. Computer Society of India Journal, Special Issue on
SAN, Vol. 33, No. 4, pp. 42-54 Oct 2003.

S. See and T. W. Tan. APBioBox and BioClusterGrid: computational infras-
tructure for life sciences. First International Workshop on Life Science Grid
(LSGRID2004), May 31st-June 1st, 2004.

F. Raih, Y. Sharum, R. M. R. Moktar, N. M. Isa, N. L. Kian, N. M. Mahadi, R.
Mohamed. EMASGRID: An NBBnet Grid Initiative for a Bioinformatics and

JOGC_Experiences.tex; 10/06/2006; 10:15; p.21



22

Computational Biology Services Infrastructure in Malaysia. First International
Workshop on Life Science Grid (LSGRID2004), May 31st-June 1st, 2004. 117-
124.

J. Basney, M. Humphrey, and V. Welch. The MyProxy Online Credential Repository.
Software: Practice and Experience, Volume 35, Issue 9, July 2005, pages 801-816.

Aloisio G. , Cafaro M. , Epicoco I. , Fiore S. , Lezzi D. , Mirto M. , Mocavero S.
Resource and Service Discovery in the iGrid Information Service Proceedings of
International Conference on Computational Science and its Applications (ICCSA
2005), Springer-Verlag, Volume 3482, pp. 1-9, 2005.

M. Thomas, J. Boisseau. Grid Computing: Making the Global Infrastructure a
Reality, Ch 28 F. Berman, G. Fox and T. Hey, eds. John Wiley and Sons, Ltd,
Chichester (2003).
http://gridport.net/main/pubs/GridPort Grids02.doc.

Globus WebPage–GRAM Overview.
http://www-unix.globus.org/toolkit/docs/3.2/gram/key/index.html.

Southeastern University Research Association WebPage.
http://www.sura.org/.

Fleet Numerical Meteorology and Oceanography Center WebPage.
http://www.fnmoc.gov.

Texas Advanced Computing Center WebPage.
https://portal.tacc.utexas.edu/portal.html.

Singapore National Grid Life Science Virtual Community Portal
http://www.ngp.org.sg/lsvgc/index.html.

The KISTI Supercomputing Center.
http://www.ksc.re.kr/english/5-1-2 chemistry.htm.

Chemistry at KISTI.
http://www.kisti.re.kr/kisti/english/english main.jsp?content=8.

European Commission Information Technology Society WebPage.
.

IBM Grid Toolbox WebPage.
http://www-1.ibm.com/grid/solutions/grid toolbox.shtml.

Access Grid WebPage. http://www.accessgrid.org/agdp/.
Wiki WebPage. http://wiki.org/wiki.cgi?WhatIsWiki.
OGCD WebPage. http://www.collab-ogce.org/nmi/index.jsp.
GridLab Project WebPage. http://www.gridlab.org/.
The Web Services Resource Framework. http://www.globus.org/wsrf/.
GridChem Project WebPage. http://www.gridchem.org/.
Asia Pacific BioGrid WebPage. http://www.apbionet.org/apbiogrid/.
UTGrid Project WebPage. http://www.ut.edu/grid.
TeraGrid WebPage. http://www.teragrid.org.

JOGC_Experiences.tex; 10/06/2006; 10:15; p.22


