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Dynamic Sampling Rate Adjustment for
Compressive Spectrum Sensing over Cognitive Radio Network

Ching-Chun Huang and Li-Chun Wang

Abstract—In this paper, a dynamic sampling rate adjustment
scheme is proposed for compressive spectrum sensing in cognitive
radio network. Nowadays, compressive sensing (CS) has been
proposed with a revolutionary idea to sense the sparse spectrum
by using a lower sampling rate. However, many methods for
compressive spectrum sensing assume that the sparse level is
static and a fixed compressive sampling rate is applied over time.
To adapt to time-varying sparse levels and adjust the sampling
rate, we proposed to model sparse levels as a dynamic system
and treat the dynamic rate selection as a tracking problem.
By introducing the Sequential Monte Carlo (SMC) algorithm
into a distributed compressive spectrum sensing framework, we
could not only track the optimal sampling rate but determine
the unoccupied channels accurately in a unified method.

Index Terms—Cognitive radio, dynamic system, sequential
Monte Carlo, compressive spectrum sensing.

I. INTRODUCTION

AN emerging idea to solve the problem of spectrum
drought relies on cognitive radio (CR) networks where

the unlicensed users are allowed to cleverly utilize the spec-
trum holes when the induced interference causes harmless
effects. To dynamically switch among available spectrum
holes, each CR user has to sense the wideband spectrum in
a fast and efficient manner. To fulfill the goal, compressive
spectrum sensing has been proposed to sense the spectrum at
a sub-Nyquist sampling rate.

Compressive spectrum sensing methods could be roughly
divided as single-CR and multiple-CR approaches. For single-
CR approaches, Tian and Giannakis [1] proposed to sense
the wideband spectrum based on the concept of compressive
sampling (CS) [2] for a single CR user. Because the spectrum
is found to be sparse, the original wireless signals could be
reconstructed even when the problem formulation is under-
constrained. Meanwhile, Polo et al. [3] proposed an analog-to-
information converter (AIC) to sense the target signal at the in-
formation rate rather than Nyquist rate. Recently, unlike [1][3],
which reconstruct the complete spectrum and then apply a
wavelet approach [4] to estimate the energy of each channel,
the authors in [5] introduced a novel compressive detection
method which bypasses the step of spectrum reconstruction
and estimates the channel energies directly.

However, a single-CR approach may not accurately sense
the activities of primary users due to channel fading effects.
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To better the results, a novel way is to rely on a multiple-
CR approach to well utilize the spatial diversity gain. Among
those approaches, Tian [6] proposed a distributed compressed
spectrum sensing approach, where CS is performed at each
local CR and one-hop local communications are developed
for collaborative sampling and data fusion. In [7], instead of
performing CS in each CR, the authors proposed to collect the
autocorrelations of the compressed signals from all CRs. The
CS reconstruction algorithm is finally operated at the fusion
center in order to well exploit joint sparsity among CRs.

Many CS methods assume that the sparse level of spectrum
is static. However, the sparse level is varying; the optimal
sampling rate for CS should be adaptive from time to time.
Recently, some researchers start to discuss dynamic CS. Zhang
et al. [8] proposed a correlation-based method to classify the
status of spectrum as sparse or non-sparse statuses. Still, the
method mainly switches between a fixed compressive rate
and Nyquist rate. Yin et al. [9] proposed a dynamic CS,
which merely needs to recover the recent change of channels.
Comparing with static CS, the method is fast and requires
fewer measurements. However, correct results of previous
estimation are the precondition. While false detection and
rejection are inevitable, error propagation may occur.

In this paper, we focus on the adaptation of sampling rate
adjustment. Our goal is similar to Wang et al.’s work in [10],
which proposed an adaptive CS method for a single CR to
dynamically select the optimal sampling rate. Their system,
before locating the convergence point of the optimal rate,
has to experience a transient time period. However, during
the period, the detection of channel status presents unreliable
performance owing to the incorrect setting of the sampling
rate. If the sparse level keeps varying, the transient time
may be prolonged, which will lead to the degradation of
the detection performance. To secure stable detection per-
formance and adjust the sampling rate simultaneously, we
suggest exploiting the spatial diversity gain over a multiple-
CR network. Here, we model the dynamic rate adaptation as
a tracking problem and propose a Sequential Monte Carlo
(SMC) approach to integrate distributed compressive spectrum
sensing, data fusion, channel status estimation, and optimal
rate selection into a unified framework. By using the proposed
framework, our system could reduce the requirement of overall
samples and ensure the accuracy of spectrum sensing. In
contrast to previous works, our scheme presents the capability
of adapting to dynamic sparse level without error propagation
and unreliable transient periods.

II. SYSTEM MODEL

The system model we consider is shown in Fig. 1. Here,
there are M neighboring CRs randomly located in a region and
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Fig. 1. Our system model for cooperative compressive spectrum sensing
with dynamic sampling rate adjustment.

there is a computing-and-fusion center working as a server.
The server collects M statue reports of N channels from M
local CRs to infer the final channel statuses. At the same
time, the server also computes the optimal sampling rate and
determines the assignments of sampling rates to local CRs
for the next sensing process. On the other hand, based on
the assigned sample rate, each CR senses the spectrum and
performs the CS algorithm to detect the statuses of N local
channel. Specifically, for a local CR, say the ith CR, it outputs
a status vector Zi

N×1 , where the nth element zn ∈ {0, 1}
indicates the status of the nth channel.

III. THE PROPOSED METHOD

To model the dynamic sampling rate adjustment, we treat
sampling rate X as a random variable and attempt to approx-
imate its posterior probability distribution P (XK |CZ1:K) at
sensing index K given all collected channel statuses CZ1:K

from index 1 to K . Here, CZ1:K = {Zi
N×1,t}i=1:M

t=1:M is the
channel status set reported by M CRs up to sensing index K .
With the estimated P (XK |CZ1:K), the optimal sampling rate
is determined by securing the maximum of the distribution. In
our system, to efficiently estimate P (XK |CZ1:K), we make
the Markov assumption and apply a dynamic system as shown
in Fig. 2. With the model, the estimation problem could be
re-formulated by the Bayesian rule as

P (Xk|CZ1:K) ∼ L(Z1:M
K , XK)× P (XK |CZ1:K−1)× P (XK),

(1)
where L(Z1:M

K , XK) is the likelihood term of current status
observation Z1:M

K , P (XK |CZ1:K−1) illustrates the temporal
prior of XK propagated from previous processes, and P (XK)
represents the preference prior.

Below, we illustrate how to derive the channel statuses
Zi
N×1 based on CS for each local CR. Next, the formulations

of the likelihood term and prior terms are to be detailed.
Finally, we explain the proposed SMC method to numerically
estimate P (XK |CZ1:K) and track the dynamic sampling rate.

A. Compressive Spectrum Sensing (CS) for a Local CR

Before the inference process in (1), the detection of channel
statuses in local CRs should be determined. Many previous

Fig. 2. The dynamic system for sampling rate tracking.

single-CR approaches could be applied to achieve the goal. In
our system, due to the robustness, we adopt the compressive
sensing method proposed by Polo et al. [3] to reconstruct the
spectrum; exploit the wavelet-based edge detector [4] to iden-
tify the number of channels and their frequency ranges; finally
apply an energy-based detection method [11] to determine the
channel status. From the process, we could directly identify the
channel number N and the frequency range of each channel.
Also, we could systematically determine the channel statuses.
Since those methods are well-known, we only provide the gist
of this process.

For each local CR, at sensing index K , based on previous
interference of sparse level, the fusion-and-computing center
assigns a sampling rate xi to the ith CR. Adopting the
AIC method in [3] and according to xi, the ith CR senses
Si = R(xi) samples instead of SNyq samples and generates
a compressed autocorrelation vector rC with size 2Si × 1;
function R(.) here maps an assigned sampling rate to its
sample number. In [1], it showed that the edge spectrum
En, which is the derivative of the power spectrum density
(PSD) Fn, presents the sparse property. Based on the CS
theory [3][4], we can formulate an l1-norm optimization
problem and recover the edge spectrum En. Hence, we have

Ên = argmin
En

‖En‖1 s.t. rC = PW−1F−1D−1En, (2)

where P is the 2Si × 2SNyq projection matrix relating the
compressed autocorrelation vector rC and the uncompressed
autocorrelation vector rN . The derivation of P could be found
in [3]. Also, W is a wavelet-based smoothing used for noise
suppression; F represents the Fourier transform in a matrix
form; D could be any derivative operation such as first-order
difference matrix; finally, (.)−1 denotes matrix inverse. Note
that W , F , and D have the size 2SNyq×2SNyq. To solve the
optimization problem in (2), many linear programming meth-
ods, such as basis pursuit [12], could be applied. Next, PSD
Fn is reconstructed for the detection of channel occupancy by
Fn = D−1En. By applying an adaptive threshold [11], the N
channel statuses Zi

N×1(x
i) = {zin}n=1:N reported by the ith

CR with sampling rate xi is determined.

B. Formulations of Probability Models in the Server End

On the server side, the fusion center collects the channel
statuses CZ1:K from M CRs and next computes the three
system models to estimate the posterior P (XK |CZ1:K) in (1).
Below we illustrate the three system models.
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1) Evaluation of Likelihood Term L(Z1:M
K , XK): To com-

pute the likelihood, we well utilize the joint consistency
property of channel statuses among multiple CRs. Ideally,
the channel statuses reported by neighboring CRs should be
similar. This spatial correlation property enables our system
to adjust the sampling rate. Here, for XK = xi is a sampling
rate with high likelihood, the corresponding channel statuses
Zi
N×1|xi reported by the ith CR under sampling rate xi should

be consistent with the status reports from other CRs. Hence,
we could measure the likelihood of XK = xi by evaluating
the consistency level. Assume we receive M statues reports,
where each report indicates the status measurements of N
channels. Based on the M statues reports, we evaluate the
occupied probability Pn(1) of the nth channel by calculating
the ratio of occupied observations to the total observations M .
That is

Pn(1) =

∑M
i zin
M

. (3)

The available probability Pn(0) is then estimated by 1−Pn(1).
It should be noted that zin ∈ {0, 1} indicates the status of the
nth channel reported by the ith CR. The likelihood value of
the sampling rate XK = xi is then evaluated by

L(Z1:M
K , XK = xi) =

N∏
n=1

Pn(1)
zin|xi

Pn(0)
1−zin|xi

. (4)

Moreover, based on the fused statues reports, we decide the
status of nth channel to be free (0) if Pn(1) < 0.5; otherwise
the channel is occupied.

2) Formulation of the Temporal Prior: Based on the pro-
posed dynamic system as shown in Fig. 2, the temporal prior
is decoupled as

P (XK |CZ1:K−1) =

∫
P (XK |XK−1)P (XK−1|CZ1:K−1)dXK−1,

(5)
where P (XK |XK−1) introduces a temporal prediction process
of the sampling rate and P (XK−1|CZ1:K−1) represents the
previous posterior distribution estimated at sensing index
K − 1. To determine the temporal prior, we need to calculate
the probability P (XK |XK−1). In this paper, we define the
prediction process of a sampling rate as
{

XK = U(XK−1, X
∗
K−1) + nk,CR if XK−1 �= X∗

K−1,
XK = nk,ER if XK−1 = X∗

K−1,
(6)

where U(XK−1, X
∗
K−1) indicates the uniform sampling pro-

cess modeling a random walk behavior between the rate XK−1

and the optimal rate X∗
K−1 at sensing index K − 1; nK,CR

is a uniform random variable between [0, CR], representing
the uncertainty of prediction inside a predefined confidence
range CR; nK,ER is also a uniform random sample between
[0,−ER], designed to explore some possible smaller sampling
rate inside the predefined explore range ER. In this process,
the prediction of XK−1 is set to move toward but still larger
than X∗

K−1 to ensure the correct reconstruction. On the other
hand, we allow an exploration for some possible smaller
sampling rates while XK−1 = X∗

K−1. With the temporal
prediction process, the probability distribution P (XK |XK−1)
could then be determined and so does P (XK |CZ1:K−1).

Fig. 3. Estimation flow of posterior distribution based on SMC.

3) Formulation of the Preference Prior: Besides the tem-
poral prior, we also applied the preference prior P (XK) of
the sampling rate for the optimal solution finding. Intuitively,
our system prefers a smaller sampling rate for efficiency.
Hence, the preference prior, P (XK), is designed to be a linear
function as

P (XK) = sXK +Offset, (7)

where s = −0.01 is a predefined slope of the linear function;
Offset is determined by the normalization process to make
the probability summation of P (XK) equal to 1. Note that the
interesting range of sampling rates is [0, XNyq]. With the prior
P (XK), the proposed system tends to search the minimum
sampling rate and meantime preserve the accuracy.

C. Estimation of Posterior Distribution Based on SMC

Since the prior and likelihood distributions are non-linear,
direct computing of the posterior P (XK |CZ1:K) in equa-
tion (1) is non-trivial. Without a closed-form solution, we
propose a SMC-based method to estimate P (XK |CZ1:K) in
a numerical manner. To illustrate our method, without loss
of generality, we detail how we operate the drawn particles
to represent the evaluation of posterior distributions from the
K − 1th to Kth sensing index. At the initial index where
K = 1, we set all sample rates equal to Nyquist rate.

The operation flow is illustrated in Fig. 3. Assume that, at
the K − 1th index, we have M equal-weighted particles to
numerically approximate the posterior P (XK−1|CZ1:K−1).
To simulate the temporal prior P (XK |CZ1:K−1) at the Kth
sensing index, our system moves each of the M particles to
a predicted location based on the prediction process in (6).
Moreover, we evaluate the values of the likelihood term Li

in (4) and the preference prior term P i in (7) with the
corresponding sampling rate of the ith particle. The product of
Li and P i forms the new weight W i of the ith particle, and the
new particle set {xi

K ,W i
K}i=1∼M approximates the posterior

distribution P (XK |CZ1:K) at the Kth sensing index. Finally,
a resample process is introduced. In the resample process,
samples with larger weights are converted to more equal-
weighted samples, while samples with smaller weights are
converted to fewer equal-weighted samples or null samples.
With this process, particles could be redistributed to the high-
likelihood regions for the search of the optimal rate. The
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Fig. 4. The proposed dynamic rate adjustment scheme over a cognitive radio
network with time-varying sparse levels. Sensing index (K) ∈ [1, 40].

TABLE I
STATUS DETECTION ACCURACY (ACC) AND THE AVERAGE SENSING RATE

(ASR) USED FOR SPECTRUM RECONSTRUCTION. NYQ: NYQUIST RATE.

Sensing Method
High sparse level Medium sparse level Low sparse level
ACC ASR ACC ASR ACC ASR

Nyq Rate 100% 1.00 Nyq 100% 1.00 Nyq 100% 1.00 Nyq
3/4 Nyq Rate 100% 0.75 Nyq 97% 0.75 Nyq 82% 0.75 Nyq
Dynamic Rate 100% 0.66 Nyq 100% 0.77 Nyq 98% 0.91 Nyq

resample process is defined in (8).

{x̂j}j=1:M = resample({xi, CW i}i=1:M ), (8)

where x̂j = xi if CW i−1 < j
M ≤ CW i. CW i is a normalized

and cumulated weight, calculated by

CW i =

∑i
c=1 W

c

∑M
c=1 W

c
. (9)

After the re-sampling process, we have a new equal-weighted
set with again M particles for the next sensing index.

IV. SIMULATION RESULTS AND CONCLUSION

We simulate a cognitive radio network where 20 channel
bands (N = 20) uniformly share the interesting frequency
range [50, 405] MHz for licensed users. White Gaussian
process is used to model the environment noise with PSD
at level 100. The PSD of transmitted signals is set at level 40.
Moreover, we set the CR number M = 20. To emulate the
time-varying sparse levels of a communication environment,
we change the number of occupied channels over time as the
red-and-dotted line shown in Fig. 4. Here, high, medium, and
low sparse levels are defined as 30%, 50%, and 70% of the
channel bands currently being used. Also, there are totally 40
sensing indices (K) ∈ [1, 40] in our simulation.

As could be found in Fig. 4, the sparse level dynamically
changes and our proposed sampling rate adjustment scheme
could adaptively determines the optimal rate according to the
sparse level as the blue line. In Fig. 4, the small blocks at

each sensing index represent the drawn particles for differ-
ent sampling rates. If comparing with some typical sensing
methods which use a fixed sampling rate such as Nyquist rate
or sub-Nyquist rate, our system could look for the optimal
balance between system accuracy and efficiency. A quantita-
tive evaluation of system accuracy and efficiency is listed in

Table I. Here, we measure the status detection accuracy (ACC)
to assess the system accuracy, which is defined as

ACC =
True occupied channel detection + True free channel detection

Total channel number × Sensing index number
.

(10)

Besides, we calculate the average sensing rate (ASR) during
different periods with different sparse levels to assess the
system efficiency. Here, we use Nyquist rate of our transmitted
signal as the reference unit.

In summary, we find that the sparse level of the environment
spectrum is not static but time-varying. To adapt to the
dynamic changing, we proposed an adjustment scheme for
dynamic sampling rate selection. Here, the optimal dynamic
rate selection is treated as a tracking problem. By combining
SMC-based tracking concept with a distributed compressive
spectrum sensing framework, the optimal sampling rate is
well-tracked and the free channels are well-determined.
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