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Introduction.

(0.1) The Stasheff polytope, or associahedron, Kn, is a convex polytope of dimension n− 2
whose vertices correspond to complete parenthesizings of the product of n factors x1, ..., xn.
It was introduced by J. Stasheff [St] in his study of homotopy associativity for binary multi-
plications on topological spaces. In this paper we describe a surprising appearance of Stasheff
polytopes in two related classical problems which, on the surface, have nothing to do with
non-associative or weakly associative binary operations.

(0.2) The first is the problem of higher syzygies among row operations on matrices; a row
operation with coefficient a is a left multiplication by the familiar “elementary matrix” eij(a),
see [M]. There are well known Steinberg relations among the eij(a), the most non-trivial being

(1) [eij(a), ejk(b)] = eik(ab).

Any relation in a group can be drawn as a polygon, and to treat meaningfully higher syzygies,
i.e., “relations among relations” we can understand them as 3-dimensional polytopes with
boundary composed of such polygons, and so on for higher syzygies (see §1). Now, the
relation (1) is represented in this language by a pentagon. It turns out that this pentagon
should be seen as K4, the simplest instance of a Stasheff polytope! More precisely, our first
result is that there is a syzygy among the Steinberg relations which has the shape of K5, the
3-dimensional Stasheff polytope and in fact, this pattern continues to hold in all dimensions.
Note that the study of higher syzygies among row operations is, at least, ideally, the aim
of algebraic K-theory. However, the existing approaches to higher K-theory follow this ideal
only vaguely, with elementary treatment available only for Ki, i ≤ 2.

(0.3) The second situation in which Stasheff polytopes make an unexpected appearance, is
Morse theory. It is well known that a Morse function f on a manifold X which, in addition,
satisfies the Smale transversality condition, gives rise to a CW-decomposition of X.
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Given a Morse but not Morse-Smale function f , we can form its “bifurcation diagram”
whose vertices are topologically different ways to make f Smale by small deformation (for-
mally, they are some regions in the function space, see §4), edges correspond to “smalefi-
cations” lying in adjacent regions and so on. Note that the Smale condition prohibits, in
particular, a gradient trajectory joining two critical points of the same index. Let us consider
a Morse function which has gradient trajectories joining a string of critical points of the same
index: x1 → x2 → ... → xn and generic (Smale) apart from this. Our second observation is
that the bifurcation diagram for such f is the Stasheff polytope Kn+1!

(0.4) The second order syzygies among the Steinberg relations were studied by K. Igusa in
terms of “pictures”, see [Ig2], [W]. In fact, the Stasheff polytope K5 can be recognized as the
subdivision of the 2-sphere dual to one of Igusa’s pictures, but this fact, as well as the pattern
of appearance of all higher Stasheff polytopes, has not been noticed before. In §2 we describe
a conjectural picture of how all syzygies of all orders should ideally look like: they should
be parametrized by some labelled graphs which we call “hieroglyphs”. We also present in
§3 a general construction which to any hieroglyph Γ associated a CW-complex P (Γ) covered
by some subcomplexes called “faces” and in many cases, including the one with Stasheff
polytopes, P(Γ) is the desired polytope with faces having the usual meaning. So in these
cases we can produce a syzygy directly from the hieroglyph. This construction is similar to
the prime spectrum of a ring in that vertices of P(Γ) are prime ideals in the category formed
by paths in Γ. The faces are also obtained in “algebro-geometric” terms, remindful of the
Zariski topology. So in fact, we get a third, purely combinatorial, description of the Stasheff
polytope: as the “spectrum” of a certain category.

(0.5) The relation between (0.2) and (0.3), i.e., the relation between algebraic K-theory and
Morse theory, is well known in topology: when a 1-parameter family of Morse function hits
an elementary catastrophe consisting of two critical points of the same index i being joined
by a gradient trajectory, the corresponding CW decomposition changes by a transformation
known as “handle sliding”; in the cases when one can identify cellular i-chains with ith
homology we get two bases in the homology differing by an elementary matrix. This is at
the basis of the approach to algebraic K-theory developed by Cerf [C], Hatcher and Wagoner
[HW] and many subsequent works. In particular, Hatcher and Wagoner observed that for a
function with two consecutive trajectories joining three critical points of the same index, the
bifurcation diagram is the Steinberg pentagon. However, little explicit information seems
to be known about bifurcation diagrams for higher-codimensional catastrophes, and the
appearance of the Stasheff polytopes in this problem has not been noticed before as well.

(0.6) One explanation of the appearance of the Stasheff polytopes Kn in (0.3) and thus
in (0.2), can be given by comparison with Teichmüller theory which studies manifolds of
dimension 2. There, the role of the Kn has been known for some time. For instance, in the
cell decomposition of the moduli space of pointed curves given by R. Penner [Pe1-2], the links
of some cells are Stasheff polytopes. Even more transparent is the relation of Kn with the
moduli space of stable pointed curves of genus 0, see, e.g., [K]. The combinatorial formalism
of nested and mounting caps of §3 is very similar to that of “secondary structures of the
RNA” used by R. Penner and C. Waterman [PW] and motivated by Teichmüller theory.
While preparing this paper, we received a preprint [B] of Y. Baryshnikov, who studied the
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bifurcation diagram for a singular point of a quadratic differential on a Riemann surface and
found it to be the product of two Stasheff polytopes. Since the global topological behavior
of a quadratic differential involves the interaction of two 1-dimensional foliations, this seems
to match very well our statement about Morse functions.

(0.7) We are grateful to Y. Baryshnikov for pointing out the reference [PW] and for sending
his paper [B]. The first author would like to acknowledge financial support from NSF grants
and A.P. Sloan Research Fellowship as well as from the Max-Planck Institute für Mathematik
in Bonn which provided excellent conditions for working on this paper. The second author
is supported, in part, by the University of South Florida Research and Creative Scholarship
Grant Program under Grant Number 1249932R0.

3



§1. Syzygies among row operations.

(1.1) Higher syzygies in noncommutative groups. Let G be a group (possibly non-
commutative) given by generators xi, i ∈ I and relations rj = 1, j ∈ J where rj are some
formal expressions in the xi. We would like to study syzygies (i.e., relations, or dependencies)
among the relations rj. One way of approaching this is as follows.

It is well known that the data {xi, rj} give rise to a 2-dimensional CW - complex Z2 =
Z2({xi, rj}) with the fundamental group π1(Z2) being G. Explicitly, Z2 has a unique 0-cell;
its 1-cells (loops) Xi are in bijection with the generators xi and 2-cells Rj are in bijection
with the relations rj. If rj = xε1

i1 ...x
εm

im , εν = ±1, then the cell Rj has the shape of an m -
gon and its ν-th edge is identified with the 1-cell Xiν (in the direction specified by εν).

(1.1.1) Convention. We depict generators by arrows; the product of generators corre-
sponds to the “composition” of arrows as if they were morphisms in a category. Thus the
product of generators x and y is represented by the composite arrow •

y
→ •

x
→ •, and not

by •
x
→ •

y
→ •. This means that we choose the group operation in the fundamental group to

be such that the product of paths γ and δ is the path going first along δ and then along γ.

In general, the space Z2 is far from being a model for the classifying space BG, i.e.,
we have πi(Z2) 6= 0 for i > 1. For example, an element of π2(Z2) can be represented by
a polyhedral 2-sphere S which is composed from the 2-cells Rj so that the 1-cells at the
boundaries of the Rj match. In this paper we adopt the point of view that such spheres
should be regarded as non-commutative syzygies among the Rj. This point of view goes back
at least to J.H.C. Whitehead, as it was pointed out by Igusa [Ig2] who called polyhedral 2-
spheres in Z2 “geometric pictures”. Let us develop this point of view systematically.

Call a system of such syzygies Sk, k ∈ K, complete if after filling the 2-spheres Sk by
3-balls Bk attached to Z2, we get a CW - complex Z3 with π2(Z3) = 0. Similarly, by a
(second order) syzygy among the Si we will mean a polyhedral 3-sphere in Z3 composed out
of the Bk and so on.

Thus the analog of a full chain of syzygies (free resolution) for a non-commutative group
G presented by generators xi and relations rj is an explicit CW - model Z of the space
BG whose 2-skeleton is the complex Z2({xi, rj}) described above. Such a model gives, in
particular, an explicit chain complex for calculating the homology of G.

xgxh

xgh

g,h

xg

xhxk

xghk
xgh

xhk
R

Figure 1: The triangular relation and the tetrahedral syzygy of groups
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(1.2) Examples. This very naive point of view on higher non-Abelian syzygies is not so
absurd at it might seem to anyone familiar with complicated behavior of higher homotopy
groups. Namely, for groups with “good” systems of generators and relations encountered in
practice, it is often possible to construct equally good systems of higher syzygies. We start
by reviewing three examples.

(1.2.1) Bar-construction: the simplices. Every group G has a “stupid” presentation
in which there is one generator xg for every element g ∈ G and the relations are given by
the multiplication table: xgxh = xgh. So we have one relation rg,h for each pair of elements
(g, h). Each such relation is depicted as a triangle Rg,h, while the generator xg is depicted
by a segment Xg. For any triple (g, h, k) of elements of G the triangles Rg,h, Rgh,k, Rg,hk, Rh,k

fit together to form a tetrahedron Sg,h,k which is, therefore, a syzygy (Fig.1). Continuing
in this way, we get the standard simplicial model for BG (whose n-simplices correspond to
n-tuples of elements of G). It is the geometric version of the bar-construction. Of course,
this is not the most economical model.

(1.2.2) Koszul complex: the cubes. As another trivial example, we consider the com-
mutative group Z3 given by generators x, y, z and relations xy = yx, xz = zx, yz = zy. The
corresponding space Z has three 1-cells corresponding to x, y, z and three 2-cells which have
the shape of squares of commutativity. A syzygy among the relations is provided by the
boundary of the cube in Fig.2. After attaching to Z this cube we get a CW - decomposition
of the torus T 3 = B(Z3), so the system of syzygies is complete and there are no further
syzigies. This cube is the geometric version of the Koszul complex. One can treat the group
Zn is the same way.

x

y

x

x

x
z

y

y

zz
z

y

Figure 2: The cubic syzygy for Z3.

(1.2.3) The braid group: the permutohedra. Consider the braid group Brn on n
strings. It has the presentation by generators s1, ..., sn−1 and the following relations

(1.2.4) sisj = sjsi, |i− j| ≥ 2, sisi+1si = si+1sisi+1, i < n− 1.

Geometrically, they are depicted as squares and hexagons. More generally, one has a series of
polytopes known as permutohedra: the (n− 1)-dimensional permutohedron Pn is the convex
hull of a generic orbit of the symmetric group Sn in its natural action in Rn, see, e.g., [K].
Thus P2 is the hexagon. It follows from the results of Deligne [Del] (see also Salvetti [Sa]) that
one can continue the above pattern constructing a full chain of syzygies for Brn consisting
permutohedra and their products. The idea of viewing faces of Pn as “higher syzygies” in
Brn is prominent in the paper [MS] by Manin and Schechtman which influenced our outlook
considerably.
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(1.3) The Steinberg group. Now we consider the main example of interest in the present
paper. Let A be a ring. For a ∈ A and a pair of indices i, j ≤ n, i 6= j we denote by eij(a) we
the n by n matrix over A with 1’s on the diagonal, a at the place (i, j) and zeroes elsewhere.
Thus left multiplication by eij(a) amounts to a row transformation of a matrix. One would
like to know all the relations, syzygies etc. among the transformations eij(a).

The Steinberg group St(A) is obtained by considering those relations among the eij(a)
which can be written off-hand for any A. More precisely (see [M]), St(A) is given by gener-
ators xij(a), a ∈ A, i, j = 1, 2, 3, ..., i 6= j which are subject to the following relations:

(1.3.1) xij(a)xij(b) = xij(a+ b);

(1.3.2) xij(a) commutes with xkl(b), if i 6= l and j 6= k;

(1.3.3): xij(a)xjk(b) = xjk(b)xik(ab)xij(a).

In virtue of (1.3.2), the relations (1.3.3) can be written in the more standard form

(1.3.3’) [xij(a), xjk(b)] = xik(ab), if i 6= k.

In this paper we will consider the presentation of St(A) given by the generators xij(a)
and the relations (1.3.1-3).

We would like to find the syzygies among these relations. According to n. 1.1, we
represent the relations geometrically, as triangles Tij(a, b), squares Sij,kl(a, b) and pentagons
Pijk(a, b) (Fig. 3) whose edges are labelled by the generators, so that the edge corresponding
to xij(a) is denoted by Xij(a). It is convenient to use the following graphical notation for
the generators and relations. Namely, we encode the Steinberg generator xij(a) by an arrow
i

a
−→ j pointing from i to j and carrying the element a. We think of the Steinberg relations

as describing the “interaction” of these arrows and encode each relation by a graph composed
of arrows, each arrow carrying one or more ring element. We call this graph the hieroglyph
of the relation, cf. [KV]. On Fig.3 we depict geometrically the Steinberg relations and the
corresponding hieroglyphs. For instance, the commutativity of xij(a) and xkl(b) takes place
each time when the arrow i → j (carrying a) and the arrow k → l (carrying b) do not
interact in the sense that they cannot be composed one way or another. This allows for
three possible shapes of the hieroglyph.

Now, to find a syzygy among the Steinberg relations, we should construct a polytope
whose boundary is composed of the above triangles, squares and pentagons in such way that
the two labellings of any edge (which is common to two faces) coincide. We will use the
hieroglyphical notation to encode the syzygies as well.

We start with some obvious syzygies. First, for any i 6= j and any 3 elements a, b, c ∈ A
the triangles Tij(a, b), Tij(a, b+ c), Tij(a+ b, c), Tij(b, c) fit together to form the boundary of

a tetrahedron as in Fig.1. To this tetrahedron we associate the hieroglyph i
a,b,c
−→ j.

Second, if we have three pairs (i, j), (k, l), (m,n) such that the generators xij(a), xkl(b),
xmn(c) commute with each other in virtue of the Steinberg relation (1.3.2), then we have a
cube as in Fig.2. To such a cube we associate the hieroglyph which is the union of the three

arrows i
a
→ j, k

b
→ l and m

c
→ n. The actual shape of the graph may vary but each graph

obtained in this way has no pair of composable arrows.

A couple of less trivial syzygies and the corresponding hieroglyphs is given in Figs. 4, 5.
The polytope in Fig. 4 is the celebrated Stasheff polytope (or associahedron) [St] whose
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x    (a)ijx   (b)ij

x   (a+b)ij

x   (a)ij

x   (b)kl x   (b)kl

x   (a)ij

x   (a)ij

x   (b)jkx   (a)ij

x   (ab)ik

x   (b)jk

i                 j i          j            k

i j  k           l

i=k
j

l

i

k
j=l

T   (a,b)
ij

Q      (a,b)
ij,kl

P    (a,b)
ijk

a,b

a b

a
b

a

b

a b

Figure 3: Relations of the Steinberg group

x   (ab)

x   (a)

ik

x   (a)

x   (b)jk

ij ij

x   (b)jk

x    (c)
kl

x    (bc)
jl

x   (b)jk

x    (c)
kl

x   (a)ij

x    (c)
kl

x    (c)
kl

x   (a)ij

x    (c)
kl

x   (ab)ik

x    (abc)
il

x   (b)jk

x   (a)ij

x   (b)jk

x    (abc)
il

x    (bc)
jl

j ki l
a b c

Figure 4: The Stasheff polytope.
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x   (a)ij

x   (ab)ik x   (b)jk

x   (b)jk

x   (a)ij

x   (ac)
il

x   (c)
jl

x   (a)ij

x   (c)
jl

x   (b)jk
x   (c)

jl

x   (ac)
il

x   (c)
jl

x   (a)ij

x   (b)jkx   (ab)ik

x   (ab)ik
x   (c)

jl

x   (b)jk

x   (ac)
il

k

ji
a

l

b

c

Figure 5: The Chicago building.

vertices correspond to complete parenthesizings of a product of five terms a1a2a3a4a5. Note
that, unlike the appearance of the permutohedron as a syzygy for the braid group, there is
no a priori reason for the Stasheff polytope to appear in this context: we do not consider any
kind of “homotopy associativity” problem, as Stasheff did, but rather a more naive problem
of syzygies for row transformations of matrices in linear algebra.

The “Chicago building” on Fig.5 corresponds to the hieroglyph in the shape of a fork.
There is also another, “dual”, building corresponding to the fork with the opposite orienta-
tion: we leave its construction to the reader.

There remain a few more patterns for interaction of the arrows i
a
→ j. One, depicted

on Fig.6, corresponds to the graph in the shape of a triangle and is a pentagonal prism
(with one square face, the left one in the front row, being actually the union of two triangles
expressing the identities xik(ab)xik(c) = xik(ab + c) and xik(c)xik(ab) = xik(ab + c)).

The other, which we call the bowtie polytope, corresponds to the hieroglyph i
a,a′

−→ j
b

−→ k
and is depicted on Fig.7. There is also the dual bowtie polytope corresponding to the

hieroglyph i
a

−→ j
b,b′
−→ k, which we leave to the reader.

Finally, we have hieroglyphs consisting of two non-interacting arrows of which one carries
one element of A and the other carries two elements, e.g.,

i
a,a′

−→ j k
b

−→ l.

To such an hieroglyph we associate the triangular prism which is the product of the triangle
Tij(a, a

′) and the interval corresponding to xkl(b).

The geometric syzygies among the Steinberg relations described above can all be rec-
ognized (in a different, but equivalent form) in the work of Igusa (see [W] for a published
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x   (a)ij
x   (b)jk

x   (c) 
ik

x   (ab)ik

x   (c) 
ik

x   (c) 
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x   (c) 
ik

x   (a)ij x   (b)jk

x   (b)jk

x   (a)ij

x   (ab)ik x   (a)ij
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a b

c

x   (c) 
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Figure 6: The pentagonal prism.
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x   (b)jk
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Figure 7: The syzygy corresponding to i
a,a′

−→ j
b

−→ k: the bowtie polytope.
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account). However, the appearance of the Stasheff polytopes in this problem and the ensu-
ing pattern for still higher syzygies was not noticed before. Before analyzing this pattern
in general, we spend the rest of this section discussing the 3-dimensional syzygies in more
detail.

(1.4) Summary. Properties of the polytopes. Let us summarize what has been done
so far and introduce some notation. We have associated generators, relations and syzygies
of the Steinberg group (or, in geometric language, polyhedral 1-, 2- or 3-cells) to certain
hieroglyphs. Formally, a hieroglyph Γ is just an oriented graph without oriented loops and
at most 3 edges together with labelling of vertices by distinct natural numbers and assignment
of an ordered sequence of elements of A to each edge. The weight wt(Γ) of a hieroglyph
Γ is the total number of ring elements on edges. We consider here only hieroglyphs with
weight ≤ 3. Thus, to each such hieroglyph Γ we have associated a polyhedral ball P (Γ) of
dimension wt(Γ) in such a way that every face of P (Γ) is identified with P (Γ′) for some other
hieroglyph Γ′. In particular, the edges of P (Γ) are canonically oriented and labelled by the
Steinberg generators; if we want to refer to the edge labelled by xij(a) as to a topological
space, we will denote it Xij(a). Let us note the following properties of the P (Γ) which all
are obvious from the pictures.

(1.4.1) Proposition. (a) The orientations of edges make the 1-skeleton of P (Γ) into an
oriented graph without oriented loops which possesses a unique minimal vertex (source) αΓ)
and a unique maximal vertex (sink) ωΓ.
(b) There are exactly wt(Γ) edges of P (Γ) originating at αΓ and the Steinberg generators on

these edges are precisely xij(aν + ... + ar), where i
(a1 ,...,ar)
−→ j is an arbitrary arrow of Γ and

1 ≤ ν ≤ n.
(c) Similarly, there are exactly wt(Γ) edges of P (Γ) terminating at ωΓ and their Steinberg

generators are xij(a1 + ... + aν), where i
(a1 ,...,ar)
−→ j and ν are as before.

Call a sequence l1, ..., lm of distinct edges of Γ regular, if, for any ν, the beginnig of lν
does not coincide with the end of any of the l1, ..., lν−1. Clearly, any hieroglyph Γ admits at
least one maximal regular sequence in which each edge enters exactly once.

(1.4.2) Proposition. The minimal length of an edge path on P (Γ) from αΓ to ωΓ is equal
to the number of edges in Γ. All paths of this minimal length are monotone (i.e., follow the
directions on the edges) and are in bijection with maximal regular sequences of arrows of Γ.

If l1, ..., lm is such a sequence and lν = {iν
(aν

1
,...,aν

n)
−→ jν}, then the corresponding edge path

consists of Xiν ,jν
(aν

1 + ... + aν
n), ν = 1, ..., m.

(1.5) Completeness of the syzygies. Since any face of any of the P (Γ) is identified with
some P (Γ′), this allows us to glue all the P (Γ) (wt(Γ) ≤ 3) together, getting a 3-dimensional
CW-complex B≤3.

The next question is how complete this system of syzygies is. In other words, what is
π2(B≤3)?

We should keep in mind that the Steinberg relations themselves do not form a com-
plete system of relations among the elementary matrices eij(a): the natural homomorphism
St(A) → GL(A) has, in general, nontrivial kernel, which is the Milnor group K2(A). So
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we have no reason to expect that our system of syzygies is complete. Instead, we have the
following fact.

(1.5.1) Theorem. The group π2(B≤3) is isomorphic to K3(A).

This is in fact a reformulation of the result of Igusa on description of K3(A) in terms of
his “pictures” (see [W], [Ig 2]). Igusa’s result is that K3(A) is isomorphic to P (A)/H(A)
where P (A) is the group of all pictures and H(A) is the subgroup generated by the special
pictures. In fact, there is a one-to-one correspondence between Igusa’s special pictures and
our 3-dimensional syzygies: given one of our polytopes, one can take the CW -decomposition
of S2 dual to that given by the faces of the polytope. This will produce a special picture.
More precisely, Igusa’s special pictures are in addition labelled by an element of the group
St(A). So they correspond to 3-cells in B̃≤3, the universal covering of B≤3. In our language,
P (A) is the group of 2-cycles in B̃≤3 while H(A) is the group of boundaries of 3-cells, so
K3(A) = H2(B̃≤3,Z). Now noticing that H2(B̃≤3,Z) = π2(B̃≤3) by Hurewitz theorem and
that, as in the case of any covering, π2(B̃≤3) = π2(B≤3), we find that K3(A) = π2(B≤3) as
claimed.

(1.6) Monotone hieroglyphs and the triangular group. Let Tn(A) be the group of
upper triangular n by n matrices over A with unities on the diagonal. Thus the elementary
matrix eij(a) lies in Tn(A) iff 1 ≤ i < j ≤ n. It is known [M] that the system of Steinberg
relations among these particular eij(a) is complete. In other words, Tn(A) is isomorphic to
an abstract group generated by symbols xij(a), 1 ≤ i < j ≤ n, a ∈ A which are subject only
to the relations (1.3.1-3) involving these symbols.

More generally, call a hieroglyph Γ monotone if each time that there is an arrow i → j
in Γ, we have i < j. Let Hn be the set of all monotone hieroglyphs (of weight ≤ 3) whose
labels on vertices belong to {1, ..., n}. Then any face of P (Γ),Γ ∈ Hn, has the form P (Γ′)
with Γ′ ∈ Hn. Thus the subset BT ≤3

n ⊂ B≤3, defined as the union of P (Γ),Γ ∈ Hn, is a
CW-subcomplex.

(1.6.1) Theorem. The space BT ≤3
n has π1 = Tn(A), π2 = 0, i.e., the above system of

syzygies among the uppertriangular Steinberg generators is complete.

This statement in fact implies Theorem 1.5.1 (or, equivalently, Igusa’s result) if one makes
use of Volodin’s description of K-theory (§2).

Proof: If G is a group acting on a topological space M , we denote by M//G the homotopy
quotient of M by G, i.e., M//G = (EG×M)/G, where EG is a contractible space with free
G-action. Thus there is a Serre fibration

G→M →M//G.

Suppose that a complete system of syzygies for G is given, starting with generators (xi)i∈I

and relations (rj)j∈J . Let Z ' BG be the corresponding CW-complex with 1-cells Xi, 2-cells
Rj etc. We think of these cells as being closed topological balls mapping into Z. Then we can
construct an explicit model for M//G by using Z̃, the universal cover of Z, as the model for
EG, i.e., define M//G = (Z̃×M)/G. Explicitly, for each i ∈ I we glue M ×Xi ' M × [0, 1]
to X by identifying (m, 0) with m and (m, 1) with xim. Then for each j ∈ J we attach
M ×Rj to the previous space by identifying each M × e, where e is an edge of the polygon
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Rj labelled by xi, with M × Xi, and so on. In particular, if M is a CW-complex and the
action of G is by cellular homeomorphisms, then we get an explicit CW model for M//G. Its
cells are products of cells of M and those of Z with attachment maps given by the G-action.

Consider now the group Tn(A). It acts on the Abelian group An in a standard way
(matrices act on vectors) and thus we get an action on the classifying space B(An).

(1.6.2) Lemma. The homotopy quotient B(An)//Tn(A) is homotopy equivalent toBTn+1(A).

Proof: We have the exact sequence of groups with Abelian kernel

(1.6.3) 1 → An α
→ Tn+1(A)

β
→ Tn(A) → 1,

where β is given by forgetting the last row and column of a triangular matrix and α takes
(a1, ..., an) ∈ An into the matrix e1,n+1(a1)...en,n+1(an). The conjugation action of the right
term Tn(A) on the left term An is just the standard matrix action. This exact sequence gives
a Serre fibration

Tn(A) → B(An) → BTn+1(A),

which implies our statement.

We will use the standard simplicial model for B(An). Thus, according to the convention of
(1.2.1), its 1-simplices are denoted by Xa, a ∈ An, its 2-simplices are denoted R(a,b), a,b ∈ An

and so on. It will also be convenient for us to view An as a subset in Tn+1(A), via (1.6.3)
and write, for instance, Xe2,n+1(a) instead of X(0,a,0,...,0). The action on Tn(A) on B(An) is
cellular.

Let (BA)n be the n-fold Cartesian product of the simplicial complex B(A). As a CW-
complex, it is glued of polysimplices (i.e., of products of simplices). Of course, (BA)n is
homeomorphic to B(An), the latter being obtained by triangulating each polysimplex in a
canonical way, but we want to distinguish B(An) and (BA)n as CW-complexes. The action
of T (n,A) on (BA)n is not cellular.

We will now prove Theorem 1.6.1 by induction in n, the case n = 1 being trivial. Suppose
n is such that the statement of the theorem is true for BT ≤3

n . In other words, the map
BT ≤3

n → BTn(A) coming from the identification π1(BT
≤3
n ) = Tn(A), is 2-connected i.e., it

induces isomorphisms on πi, i ≤ 2. Then we can use B̃T
≤3

n , the universal covering of BT ≤3
n ,

as an approximation for ETn(A) in dimensions ≤ 2 and construct the space

Q =
(
B̃T

≤3

n ×B(An)
)/

Tn(A).

It is inductively constructed in the way similar to what was described above: we first attach,
for any 1 ≤ i < j ≤ n and a ∈ A a copy of B(An) × Xij(a) ' B(An) × [0, 1] to B(An) by
using the action of xij(a), then attach products of B(An) with any of the 2-cells depicted
in Fig.3, and then doing the same with the 3-cells we described in the following figures. In
other words, Q is the union

(1.6.4) Q =
⋃

Γ∈Hn

P (Γ) ×B(An),

with the attaching maps coming from the group action.

12



By our assumptions and by Lemma 1.6.2, there is a 2-connected mapQ→ B(An)//Tn(A) '
BTn+1(A) and the same of course remains true if we replace Q by its 3-skeleton Y = sk3(Q).
Let W denote for short the space BT ≤3

n+1. To make the inductive step in the proof of Theorem
1.5.1, it is enough therefore to prove that Y is homotopy equivalent to W .

Let H0
n+1 ⊂ Hn+1 be the subset of hieroglyphs Γ such that any arrow in Γ has the label

(n + 1) on its endpoint. Note that the 3-skeleton of (BA)n is realized inside BT ≤3
n+1 as a

subcomplex formed by cells P (Γ) with Γ ∈ H0
n+1 (these cells are polysimplices). We now

want to compare the way W = BT ≤3
n+1 is obtained from the subcomplex sk3((BA)n) by

attaching all the other cells P (Γ) with the way Y is obtained from sk3(B(An)) by attaching
cells, as described in (1.6.4).

As we said, the cells (polysimplices) P (Γ1),Γ1 ∈ H0
n+1, can be viewed as unions of

simplices in B(An). Let us call rough cells of Y the images of products of these polysimplices
with P (Γ2),Γ2 ∈ Hn with respect to the map from the decomposition (1.6.4). Of course, the
closure of a rough cell may not lie in the union of rough cells of smaller dimension, because
the action of T (n,A) on B(An+1) does not preserve the polysimplices. Denote by Ya, a ≤ 3,
the union of B(An) and all the rough cells of dimension ≤ i.

For any hieroglyph Γ ∈ Hn+1 we denote by Γ′ the sub-hieroglyph in Γ formed by all
arrows not touching the (n + 1)th vertex, so Γ′ ∈ Hn and by Γ′′ the sub-hieroglyph formed
by all arrows terminating at the (n + 1)th vertex, so Γ′′ ∈ H0

n+1. Let Wa ⊂ W , a ≤ 3, be
the union of P (Γ) with wt(Γ′) ≤ a. Note that there is a bijection between cells P (Γ) in W
and rough cells in Y of the same dimension, namely to P (Γ) we just associate the product
P (Γ′) × P (Γ′′).

We now note that there are two distinguished faces of P (Γ) isomorphic to P (Γ′), and
same for P (Γ′′). More precisely, we have the following lemma, in which we use the notations
of (1.4).

(1.6.5) Lemma-Definition. Let Γ ∈ Hn+1. Then:

(a) The edges of P (Γ) originating at αΓ and labelled by xij(aν + ...+ar), where i
(a1 ,...,ar)
−→ j is

an arrow of Γ′, lie on a unique face of P (Γ) isomorphic (together with the labelling of edges)
to P (Γ′) and denoted P (Γ′)α.

(b) The edges of P (Γ) terminating at ωΓ and labelled by xij(a1 + ...+ aν), where i
(a1 ,...,ar)
−→ j

is an arrow of Γ′, lie on a unique face of P (Γ) isomorphic (together with the labelling of
edges) to P (Γ′) and denoted P (Γ′)ω.
(c) Similar statements as (a), (b) but with P (Γ′′) instead of P (Γ′). The corresponding faces
are denoted by P (Γ′′)α, P (Γ′′)ω.
(d) The sink of P (Γ′′)α coincides with the source of P (Γ′)ω.

The lemma is established by direct inspection of pictures. Note that the sink of P (Γ′)α

differs, in general, from the source of P (Γ′′)ω.

We now use this lemma to define a kind of product structure on P (Γ). For any edge e
of any hieroglyph ∆ ∈ Hn, let ge ∈ Stn+1(A) be the corresponding Steinberg generator. If
v ∈ P (∆) is a vertex, then let gv ∈ Stn+1(A) be the product of the ge for any monotone edge
path joining α∆ and v.
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(1.6.6) Lemma. There exist (non-cellular) homeomorphisms

ϕΓ : P (Γ′) × P (Γ′′) → P (Γ), Γ ∈ Hn+1

with the properties:

(a) ϕΓ(ski(P (Γ′) × P (Γ′′))) = ski(P (Γ)).

(b)
ϕΓ(P (Γ′)×{αΓ′′}) = P (Γ′)α, ϕΓ(P (Γ′)×{ωΓ′′}) = P (Γ′′)ω, ϕΓ({αΓ′}×P (Γ′′)) = P (Γ′′)α.

(c) If v is a vertex of P (Γ′) and e is an edge of P (Γ′′), then ϕΓ({v} × e) is a monotone edge
path in P (Γ) whose composition is gvgeg

−1
v .

Note that ge for e an edge of P (Γ′′), always lies in the subgroup An ⊂ Tn+1(A), see
(1.6.3), so the effect of conjugation is just the action the matrix corresponding to gv on the
vector represented by ge.

Proof: If Γ′ or Γ′′ is empty, we set ϕΓ = Id. If Γ′,Γ′′ are nonempty, then, since wt(Γ) ≤ 3,
either P (Γ′) or P (Γ′′) is a segment.

Consider first the case when P (Γ′′) is a segment, say P (Γ′′) = Xj,n+1(a). For a vertex
v ∈ P (Γ′) let vα (resp. vω) be the corresponding vertex of P (γ ′)α (resp. P (Γ′)ω). Note that
there is a unique minimal monotone edge path γv joining vα and vω. For v = αΓ′ the path
γv is just the segment P (Γ′), in other cases this path can be composite. Note also that the
element of Stn+1(A) represented by γv is precisely gvxj,n+1(a)g

−1
v . So we define ϕΓ on each

{v} × P (Γ′′) to identify P (Γ′′) with γv, and then extend ϕΓ on the whole P (γ′) × P (Γ′′) in
an arbitrary way so as to satisfy the conditions of the lemma.

If P (Γ′′) is not a segment and Γ′,Γ′′ are not empty, then the only possibility is that

Γ = {p
a

−→ q
b,b′
−→ (n+ 1)} and so P (Γ) is the dual bowtie polytope similar to Fig.7. In this

case P (Γ′′) is a triangle formed by Xq,n+1(b), Xq,n+1(b
′), Xq,n+1(b + b′), while P (Γ′) is the

segment Xpq(a). By making a picture of P (Γ), it is immediate to find there the two edge
paths

Xq,n+1(b)Xp,n+1(ab)Xq,n+1(b
′)Xp,n+1(ab

′), Xq,n+1(b + b′)Xp,n+1(ab + ab′)

both originating at the sink of P (Γ′) and terminating at ωΓ. We define ϕΓ on ωΓ′ × P (Γ′′)
to take the sides of this triangle into the paths Xq,n+1(b)Xp,n+1(ab) etc. (each of length 2),
and extend ϕγ from there to satisfy the conditions of the lemma which is thus proved.

Returning to the proof of Theorem 1.6.1, let us now compare W with Y . It is clear that
W0 = Y0 = sk3((BA)n)). Note that if wt(Γ) = 1, then either Γ = Γ′, or Γ = Γ′′. This
means that W1 = Y1. Further, if wt(Γ) = 2, then P (Γ) = P (Γ′) × P (Γ′′) except for the case

when Γ has the form i
b
→ j

c
→ n+ 1, in which case P (Γ) is a pentagon while P (Γ′) × P (Γ′′)

is a square. Note that the attaching map for ∂P (Γ′) × P (Γ′′) = {0, 1} × P (Γ′′) identifies
{0}×P (Γ′′) with P (Γ′′), i.e., with the edge Xej,n+1(c) of the simplicial complex B(An), while
the other side, {1} × P (Γ′′) is identified with the edge Xei,n+1(bc)ej,n+1(c) ⊂ B(An) which is
the diagonal of the square formed by the product of edges Xei,n+1(bc) × Xej,n+1(c) of (BA)n.
The difference between W2 and Y2 is just that in W2 the other side is identified not with
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the diagonal but rather with the composite path formed by two sides of the square, so that
P (Γ′) × P (Γ′′) becomes identified with the pentagon P (Γ), as in the lemma above. This
means that there is a continuous deformation of attaching maps for rough cells of Y2 into
those of W2 and therefore Y2 and W2 are homotopy equivalent.

The deformation of Y3 into W3 in achieved in a similar fashion: by using Lemma 1.6.6, it
amounts to replacing an edge of the simplicial complex B(An) by a possibly composite egde
of the polysimplicial complex (BA)n with the same end points and then doing the same for
polyhedral surfaces forming the boundary of the polytopes.
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§2. Higher syzygies in the Steinberg group: conjectural general picture.

(2.1) Hierogliphs and syzygies. We now describe the general formalism of hieroglyphs.
Fix a ring A. By a hieroglyph we will mean an oriented graph Γ without oriented loops,
equipped with the following additional structure:

(a) An assignment of a positive integer to each vertex of Γ so that all these integers are
distinct.

(b) An assignment of a nonempty ordered sequence of elements of A to each edge of Γ.

The number of elements written on the edge of a hieroglyph is called the weight of the
edge. It is a positive integer. The weight of the whole hieroglyph is by definition the sum of
weights of all the edges.

A sub-hieroglyph in a hieroglyph Γ is just a subgraph (given by a subset of edges) with
the induced hieroglyph structure. We say that two sub-hieroglyphs are disjoint if their sets
of edges do not intersect. Note that the sets of vertices are allowed to intersect. Two disjoint
sub-hieroglyphs Γ1,Γ2 ⊂ Γ are said to be non-interacting, if no arrow of Γ1 can be composed
with that of Γ2, nor any arrow from Γ2 can be composed with that of Γ1. An hieroglyph will
be called irreducible if it can not be represented as a disjoint union of two non-interacting
sub-hieroglyphs. It is clear that any hieroglyph Γ can be decomposed, in a unique way, as a
union of non-interacting irreducible hieroglyphs called the irreducible components of Γ.

(2.1.1) Conjecture. For every hieroglyph Γ there is a polyhedral ball P (Γ) with the fol-
lowing properties:
(a) The dimension of P (Γ) is equal to the weight of Γ. The combinatorial type of P (Γ)
depends only on the underlying graph of Γ and on weights of the edges.
(b) If Γ =

⋃
Γi is the irreducible decomposition of a hieroglyph Γ, then P (Γ) =

∏
P (Γi).

(c) The boundary of each P (Γ) is composed of the balls P (Γ′) for some hieroglyphs Γ′.

(d) For the hieroglyph Γ of the form •
(a1 ,...,an)
−→ • the polyhedral ball P (Γ) is a simplex.

(e) For the hieroglyph Γ of the form

•
a1→ •

a2→ ...
an−1

→ •

(n vertices and n− 1 arrows) the polyhedral ball P (Γ) is the Stasheff polytope Kn+1 whose
vertices correspond to parenthesizings of the product of n+ 1 factors.
(f) For hieroglyphs of weight ≤ 3 the balls P (Γ) are the same as described in §1.

Let B be the union of the polyhedral balls P (Γ) for all the hieroglyphs Γ according to
the identifications of their boundaries given by part (c) of the above conjecture. Then the
2-skeleton of B is the space Z2 corresponding to the presentation of the Steinberg group.
The 3-skeleton of B is the space B≤3 studied in the previous section.

(2.1.2) Conjecture. We have π1(B) = St(A) and πi(B) = Ki+1(A), i ≥ 1. In other words,
B is the homotopy fiber of the natural map BGL(A) → BGL+(A).

(2.2) Stasheff polytope as a higher syzygy. In this paper we will prove that the Stasheff
polytopes Kn indeed form higher syzygies among the Steinberg generators: after gluing in
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the 3-dimensional polytopes as in §1, there will be 4-dimensional Stasheff syzygies among
them, then 5-dimensional ones and so on. To formulate the result precisely, recall first of
all, that any face of Kn+1 is a product Km1+1 × ...×Kmr+1 for some mν with

∑
mν = n, see

[St].
Now, for each n ≥ 1 we will prove:

(2.2.1)n Theorem. Let a sequence of elements a12, ..., an−1,n ∈ A be given, and denote
aij = ai,i+1ai+1,i+2...aj−1,j for i < j. Then one can associate:
(a) To each vertex β ∈ Kn+1, a matrix Mβ = Mβ(a12, ..., an−1,n) in Tn(A);
(b) To each edge l of Kn+1, an orientation and and a pair 1 ≤ il < jl ≤ n so that if, with

respect to his orientation, we have β
l
→ β ′, then

Mβ′ = eil,jl
(ail,jl

)Mβ

and, moreover,
(c) If a face of Kn+1 has the form Km1+1 × ... × Kmr+1, then the elementary matrices
associated to edges of different Kmν+1, commute with each other, while on each Kmν+1 we
have an instance of Theorem (2.2.1)mν

.

The proof will be given in §3.

(2.3) Monotone hieroglyphs. Relation with Volodin K-theory. Let Tn(A) be the
group of upper triangular n by n matrices with entries from A with units on the diagonal.
For any permutation σ ∈ Sn let T σ

n (A) be the image of Tn(A) under the conjugation by σ,
i.e., the group of matrices ‖aij‖ such that aij = 0 unless σ(i) ≤ σ(j) and aii = 1. The n - th
Volodin space Vn(A) is, by definition, the union, in the simplicial classifying space BGLn(A),
of the subspaces BT σ

n (A). Let V (A) =
⋃

n Vn(A) be the stable Volodin space. It is known
[Su] that V (A) has the homotopy type of the fiber BGL(A) → BGL+(A). In other words,
Conjecture 2.1.2 can be reformulated by saying that the space B is homotopy equivalent to
V (A). In fact, we can establish a more direct relation between the two spaces.

Note that any hieroglyph Γ defines some partial order <Γ on the set of its vertices: we
say that v <Γ w if there is a chain of oriented arrows starting at v and ending at w. Thus the
polyhedral ball P (Γ) represents a higher syzygy among the Steinberg generators which all
belong to some subgroup T σ

n (A). We say that Γ is monotone if these generators belong to the
standard subgroup Tn(Z). In other words, a hieroglyph is monotone if for any oriented edge
i→ j joining vertives with numbers i and j we have i < j . Let BT n be the subcomplex is B
consisting of the cells P (Γ) for monotone hieroglyphs in which, in addition, all the numbers
on the vertices are less or equal to n.

Conjecture 2.1.2 can be deduced from the following one.

(2.3.1) Conjecture. The subcomplex BT n ⊂ B is the classifying space of the group Tn(A).

(2.4) The case A = Z: simple hieroglyphs and the nilmanifold Tn(R)/Tn(Z). If
A = Z, we can consider only the subset of generators xij = xij(1) and of Steinberg relations
(1.3.2) and (1.3.3) involving these generators. Accordingly, we call a hieroglyph simple if the
sequence of elements of A = Z written on each edge consists of just one element, the unity.
For a simple hieroglyph Γ the weight is just the number of edges and the combinatorial type
of P (Γ) depends, according to conjecture 2.1.1, only on the underlying graph of Γ. The
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problem of constructing polyhedral balls P (Γ) for simple hieroglyphs seems easier than the
general problem: as we will see in the next section, a candidate for such a P (Γ) is in a sense
already realized inside the space of Morse functions as a bifurcation diagram of a function
with a Γ-pattern of gradient trajectories between critical points of the same index. The only
problem is thus to find some combinatorial description of these bifurcation diagrams.

A face of P (Γ) for a simple hieroglyph Γ may, in fact, not correspond to a simple hiero-
glyph, as we saw, for example, in Fig.6. However, in that case the square formed by the
two triangles Tik(ab, c), Tik(c, ab), a = b = c = 1, can be collapsed since the two paths on its
boundary are identical: Xik(1)Xik(1).

(2.4.1) Conjecture. (a) For a simple hieroglyph Γ all faces of P (Γ) corresponding to non-
simple hieroglyphs, can be collapsed in the sense that the two halves of the boundary of such
a cell are identical.
(b) Let B be the CW-complex obtained by gluing in the cells P (Γ) for all simple hieroglyphs
Γ and collapsing their faces corresponding to non-simple hieroglyphs. Then B has homotopy
type of the Volodin space V (Z).
(c) Let BT n ⊂ B be the union of the P (Γ) for all monotone simple hieroglyphs Γ with
numbers of vertices not exceeding n. Then BT n is homotopy equivalent to the classifying
space of Tn(Z).

Recall that the classifying space B(Tn(Z)) has a particularly nice model: namely, the
quotient Tn(R)/Tn(Z). It is a compact manifold of dimension n(n − 1)/2. Note that the
cells of the space BT n also have dimension ≤ n(n− 1)/2, with the equality holding for just
one cell corresponding to the “complete graph” with n vertices 1, ..., n and one edge from i to
j for any i < j. So it is natural to expect that BT n is in fact homeomorphic to Tn(R)/Tn(Z).
In other words, we have the following question.

(2.4.2) Question. Is there a natural CW decomposition of the manifold Tn(R)/Tn(Z) into
2n(n−1)/2 cells P (Γ) corresponding to all monotone graphs Γ numbered by numbers between
1 and n?

One possible way to construct such a decomposition would be to exhibit a particularly
nice Morse function on Tn(R)/Tn(Z). Another approach might be to try to mimic the
inductive proof of Theorem 1.5.1. Namely, Lemma 1.5.2 has the following obvious analog for
our chosen model of BTn(Z). Note that the group GLn(Z) and, in particular, the subgroup
Tn(Z) acts on the n-fold Cartesian product of any Abelian group, in particular, on the
n-torus T n = (S1)n.

(2.4.3) Lemma. For each n we have a diffeomorphism

Tn+1(R)/Tn+1(Z) ' (Tn(R) × T n)/Tn(Z).

Note that T n has the standard CW-decomposition into cubes and these cubes are pre-
cisely P (Γ) for simple hieroglyphs Γ with the properti that each of their arrows terminates
at the vertex n+ 1.

(2.5) The case A = Z: relation to Lie algebra homology. Let us keep the assumption
A = Z. Notice that monotone numbered graphs involved in the definition of BT n are in
bijection with arbitrary subsets of the set of pairs (i, j), i < j, or, in other words, with subsets
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Figure 8: Constructing T3(R)/T3(Z).

of the set of positive roots of the Lie algebra gln(R). Let tn be the Lie algebra of the group
Tn(R), i.e., algebra of strictly upper-triangular real n by n matrices. Its basis is formed by
the matrix units εij, i < j having 1 at the position (i, j) and 0 elsewhere. Consider the Lie
algebra homology H•(tn,R). It is calculated by the Chevalley-Eilenberg complex

C•(tn,R) =
{
...→

2∧
(tn) →

1∧
(tn) →

0∧
(tn)

}
.

Note that a basis in
∧m(tn) is formed by wedge products εi1j1 ∧ ... ∧ εimjm

for all m-element
subsets {(i1, j1), ..., (im, jm)}, 1 ≤ iν < jν ≤ n i.e., by monotone numbered graphs labeling
the cells from BT n. Thus the chain complex of the CW-complex BT n (calculating the
group homology of Tn(Z)) should be “of the same size” as the Chevalley-Eilenberg complex
C•(tn,R) calculating the Lie algebra homology. Note that by Malcev’s theorem the group-
theoretic homology of Tn(Z) with real (or rational) coefficients is the same as the Lie algebra
homology of tn.

(2.6) Example for T3(Z). In the case n = 3 we can answer Question 2.3.3 in the affirmative
by direct analysis of the 3-fold T3(R)/T3(Z). Denote this threefold simply by B. Let B ′ be
the CW-complex obtained by identifying the faces of the pentagonal prism P in Fig.6 and
collapsing the left square in the front row. We want to prove that B is homeomorphic to B ′.
The argument for that is similar to the proof of Theorem 1.6.1.

For any homeomorphism ϕ : M → M of a space M its mapping torus is defined to be
the result of identifications of the two bases of the cylinder M × [0, 1] according to ϕ, i.e.,
(m, 0) ' (ϕ(m), 1). In other words, this is the homotopy quotient M//Z with the Z-action
given by powers of ϕ.

Lemma 2.4.3 says in our case thatB is the mapping torus of the automorphism e12 : T 2 →
T 2. The torus T 2 can be seen as the classifying space of the subgroup in T3(Z) generated
by e13 = e13(1) and e23 = e23(1). Let us view this torus as obtained by identifying the
opposite sides of a square ABCD in the square lattice in R2, see Fig.8. Then B is obtained
by identifying one base ABCD×{0} of the cylinder ABCD× [0, 1] with ABCD×{0} and
the other base with the skew parallelogram ACDE × {1}, so that AB × {0} is identified
with the diagonal AC × {1} and so on.

19



Now to get B′ we need to do a very similar thing but with the diagonal [AC] replaced by
the composite path [AD]∪ [DC] (which is a closed path in T 2 homotopic to the closed path
represented by [AC]). This in fact describes a map ψ from the pentagonal prism P into B
which collapses the square face we mentioned, into the composite segment ADF . It is now
clear that ψ does not collapse any other faces and thus provides a CW-decomposition for B
identical to the one used to construct B ′.
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§3. The prime spectrum of a simple hieroglyph.

In this section we describe a construction which to any simple hieroglyph Γ associates a
CW-complex P(Γ) which is directly related to syzygies in the Steinberg group and in many
cases is the desired polyhedral ball P (Γ) from §2. In particular, this construction agrees
with the direct descriptions for wt(Γ) ≤ 3 given in §1. Also, we will prove that for a linear
graph the complex P(Γ) is the Stasheff polytope and will deduce Theorem 2.2.1 from this.

Everywhere in this section the word “hieroglyph” will mean “simple hieroglyph”.

(3.1) Polyhedral complexes and posets. We will use the term “polyhedral complex’
to signify what is sometimes called a regular cell complex [LW]. Such complexes differ from
general CW-complexes in that for any r-cell σ in a complex X the structure map of the
r-ball fσ : Br → X (which is always an embedding of the interior of Br), is required to be
an embedding of the whole Br, so that the image of ∂Br is an embedded sphere represented
as a union of (r − 1)-cells and so on.

To describe a polyhedral complex X, it is enough to describe the partially ordered set
(poset) F(X) of its (closed) cells, ordered by inclusion. Namely, every poset (Y,≤) gives a
category with the set of objects Y and a unique morphism from x to y existing iff x ≤ y.
The complex X is homeomorphic to Nerv(F(X)), the simplicial nerve of F(X) considered
as a category. More precisely, Nerv(F(X)) is the barycentric subdivision of X, and the cells
σ ⊂ X are recovered as nerves of subposets [σ] = {τ : τ ≤ σ}.

In order to construct a polyhedral complex, it is thus natural to first describe its poset of
cells. Given a poset F , we may ask when there exists a polyhedral ball X with F = F(X),
and the answer is that the nerve of every [σ] should be, topologically, a ball. Posets with
this property will be called ball-like.

In the rest of this section we will construct some posets asociated to hieroglyphs.

(3.2) The path category. Let Γ be a hieroglyph, i.e., a finite oriented graph without
oriented loops. We will ignore the question of numbering of vertices by integers, working
with objects directly indexed by Vert(Γ).

The path category π(Γ) has, by definition, vertices of Γ as objects and oriented edge
paths as morphisms. We associate to Γ its characteristic matrix M(Γ) whose set of indices
in Vert(Γ) and for two vertices i, j the matrix element M(Γ)ij is equal to the cardinality of
Homπ(Γ)(i, j).

Note that any subcategory in π(Γ) has the form π(Γ′) for a uniquely defined hieroglyph
Γ′. We will call an embedding π(Γ′) ↪→ π(Γ) a morphism of hieroglyphs Γ′ → Γ.

(3.3) Prime ideals in categories. Let C be any category. A left ideal in C is a family I
of morphisms in C with the properties:

(3.3.1) No isomorphism lies in I;

(3.3.2) Whenever a composition fg, f ∈ Mor(C), g ∈ I, is defined, the value of this compo-
sition lies in I.

If k is a field and C is a small category, then we can form the algebra k[C] =
⊕

i,j∈Ob(C) HomC(i, j).
A left ideal I ⊂ C gives, in an obvious way, a left ideal k[I] ⊂ k[C] in the usual sense of ring
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Figure 9: Nested caps

theory.

A left ideal ℘ in C is called prime, if the family F of all morphisms in C which are not in
℘, is closed under composition. In this case, by (3.3.1), F contains all the identity morphisms
so it is a category.

The conditions on a family of morphisms F to be the complement of a prime ideal, are
as follows:

(3.3.3) F is a subcategory;

(3.3.4) If γδ ∈ F , then δ ∈ F .

We will call such families of morphisms admissible.

(3.4) Examples: corruption orders, nested caps. Let (Y,≤) be a partially ordered set.
We can associate to it a category C as in (3.1). An admissible family of morphisms in C is
just another partial order ∝ on Y with the following properties:

(3.4.1) The order ∝ is weaker than ≤, i.e., a ∝ b implies a ≤ b.

(3.4.2) If a ∝ c and a ≤ b ≤ c then a ∝ b.

We will call such orders ∝ on a poset (Y,≤) corruption orders. One can imagine a large
corporation with set of managers Y and ≤ describing the relation of being subordinate. If
the system is corrupt, some of the managers can exercise influence on the decisions of their
superiors (by bribing or otherwise). This relation is denoted by ∝. Clearly, if a can influence
decisions of his superior c, then by this, he can influence decisions of anyone subordinate
to c (we presume that no manager has any stake in decisions of someone not his superior).
This explains our terminology.

Consider the special case when Y = [n] := {1, 2, ..., n} with the standard linear order.
Let Cn be the corresponding category. A morphism in the category Cn is thus a pair of
integers 1 ≤ i ≤ j ≤ n. The algebra k[Cn] is nothing but the algebra of upper triangular n
by n matrices. Corruption orders on [n] have a geometric description in terms of systems
of nested caps. More precisely, we consider all topologically different ways of arranging n
non-intersecting arcs (“caps”) in the upper half plane in R2 whose ends lie on the boundary
line R, see Fig. 9. Given such a system, we number the caps according to the x-coordinate
of the left end of the arc. So the caps will be denoted C1, ..., Cn according to this numbering.
We get a partial order ∝ on [n] defined as follows: i ∝ j if Ci contains Cj inside it. Because
of our numbering it is clear that ∝ satisfies (3.4.1-2). We leave to the reader the proof that
this establishes a bijection between corruption orders on [n] and systems of n nested caps.

The next proposition gives the first indication how the “prime spectrum” of Cn is related
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Figure 10: An encircled product and the corresponding parenthesized product

to Stasheff polytopes.

(3.4.3) Proposition. There is a bijection between prime ideals in Cn (i.e., corruption orders
on [n], or (topologically different) systems of n nested caps), and complete parenthesizings
of the product of n+1 factors a0...an. In particular, the number of such prime ideals in cn+1,
the Catalan number.

Proof: We first insert the letters ai on the line R between the points of intersection with the
caps. Namely, we write the letter a0 on the left of the leftmost cap C1 and write ai, i ≥ 1
immediately after the left intersection point of Ci with R. Then we complete each cap to a
circle by reflecting with respect to the x-axis. In this way we get an “encircled product”, as
in Fig.10.

Note that inside each circle we again have an encircled product. We now convert an
encircled product into a parenthesized product by induction, assuming that for any encircled
product of ≤ n letters this has already been done. Look at the outermost circles, i.e., those
not contained in any other circles. Suppose that are Ci1 , ..., Cim, i1 < ... < im. By inductive
assumption we already know how to convert the encircled product of the letters inside each
Ciν into a parenthesized product of these letters. Let this parenthesized product be Aν.
Then the parenthesized product which we associate to the whole circle arrangement is just
(...(a0A1)A2)...Am). Thus the arrangement of n caps with disjoint interiors corresponds to
the left parenthesizing (...(a0a1)a2)...an) and the arrangement of n caps whose interiors form
a chain of embedded half-disks, corresponds to the right parenthesizing a0(a1(a2(...an)...).

(3.5) The prime spectrum and its edges. Let Γ be an oriented graph as above. Denote
by Spec(Γ) the set of all prime ideals in π(Γ). For a prime ideal ℘ it is convenient to denote
the correspoding element of Spec(Γ) by [℘]. If F is an admissible system of morphisms
which is the complement of ℘, then we will also use the notation [F ] for [℘]. Introduce the
characteristic matrix M(℘) = M(F ) with the set of indices Vert(Γ) and the (i, j)th matrix
element equal to the number of morphisms i→ j lying in F .

The categories of the form π(Γ) have the special property of unique factorization: each
morphism (i.e., edge path) can be represented uniquely as composition of “irreducible” mor-
phisms (namely, individual edges), so if we have an equality ab = cd then a, b as well as
c, d are compositions of the same edges. This property gives an especially good behavior of
prime ideals. Let us note the following.
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(3.5.1) Proposition. If ℘ is a prime ideal in π(Γ) and S ⊂ ℘ is any subset of morphisms
then among the prime sub-ideals in ℘ which do not meet S, there is a maximal one, which
we denote by ℘↘ S.

Proof: In the dual language this means that if F is an admissible system of paths and S is
any set of paths not intersecting F , then there is a minimal admissible system of paths F [S]
containing F and S. But such a system is constructed in an obvious way: we define F [S] to
consist of all paths obtained from paths in F ∪ S by iterated application of two operations:
composition of composable paths and taking an initial segment of any path.

Let us also highlight one situation when F [S] or ℘↘ S can be described more explicitly.

(3.5.2) Definition. Let ℘ be a prime ideal in π(Γ). Call a morphism p ∈ ℘ irreducible
(with respect to ℘) if it cannot be represented as a nontrivial composition p = aq with a
being any morphism and q ∈ ℘. In other words, a path p ∈ ℘ is irreducible if no initial
segment of p lies in ℘. Call p co-irreducible (with respect to ℘), if no non-trivial composition
pu lies in ℘. In other words, p is coirreducible, if the intersection of (the left ideal) ℘ and
the right ideal generated by p consists of p alone. A morphism which is irreducible and
co-irreducible, will be called bi-irreducible.

(3.5.3) Proposition. (a) Let p ∈ ℘ be irreducible, and set S = {p}. Let F be the
complement of ℘. Then F [{p}] is obtained by adding to F all morphisms of the form αpβ
with α, β ∈ F .
(b) If p is, in addition, coirreducible, then F [{p}] is obtained by adding to F all morphisms
of the form αp with α ∈ F . .

Proof: (a) Let F ′ be the union of F and the morphisms defined above. It is enough to show
that F ′ is admissible, i.e., an initial segment of any morphism γ from F ′ lies in F ′. We need
only to consider the case γ = αpβ. Let γ ′ be an initial segment of γ. Then we have three
possibilities depending on the length of γ ′:

(1) γ′ is an initial segment of β. In this case γ ∈ F ⊂ F ′ because F is admissible.

(2) γ′ = p′β where p′ is an initial segment of p. If p′ 6= p, then p′ ∈ F by irreducibility of p,
so p′β ∈ F as well. If p′ = p, then pβ is in F ′ by construction.

(3) γ′ = α′pβ where α′ is an initial segment of α. In this case γ ′ ∈ F by construction.
This finishes the proof of (a). To see (b), we need just to notice that if β 6= Id, then

pβ ∈ F by the coirreducibility so α(pβ) already lies in F .

Now we make Spec(Γ) into the set of vertices of an oriented graph by defining oriented
edges [℘] → [℘′] issuing from any given vertex [℘]. They correspond to paths p ∈ ℘ which
are bi-irreducible with respect to ℘. The other end [℘′] of the edge [℘] → [℘′] corresponding

to p is the ideal ℘↘ {p}. We will write [℘]
p
→ [℘′] to indicate p.

The next proposition shows how Spec(Γ) is related to syzygies among elementary matri-
ces.

(3.5.4) Proposition. If [℘]
p
→ [℘′] is an edge where p is a path from i to j, then the

characteristic matrices M(℘),M(℘′) are related by an elementary transformation: M(℘′) =
eijM(℘).

Proof: Immediate corollary of (3.4.3)(b).
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(3.6) The complex P(Γ). We now define a class of subsets in Spec(Γ) called faces. This
construction is remindful of the Zariski topology on the spectrum of a commutative ring.

By definition, faces correspond to pairs (℘, C) where ℘ is a prime ideal in π(Γ) and
C is any subcategory (i.e., the image of an embedding π(Γ′) ↪→ π(Γ)) whose irreducible
morphisms (the images of edges of Γ′) are bi-irreducible with respect to ℘. We denote
the face corresponding to (℘, C) by [℘, C]. We will also use notation [F, C] where F is the
admissible system complementary to ℘. The vertices of [℘, C] are defined to be the points
[℘ ↘ F ′] where F ′ is an arbitrary admissible system of morpisms in C. Thus each [P, C] is
isomorphic (as a set with a distinguished family of subsets called faces) to P (C) = P (Γ′).
Also, the intersection with ℘ of the prime ideals in π(Γ) representing vertices of [P, C] are
precisely all the prime ideals in C.

Let F(Γ) be the set of faces in Spec(Γ), ordered by inclusing and set P(Γ) = Nerv(F(Γ)).
Proposition 3.5.4 implies:

(3.6.1) Proposition. If the poset F(Γ) is ball-like, then the polyhedral ball P(Γ) together
with its faces represents a higher syzygy among the Steinberg generators.

The next proposition is proved by inspecting the polytopes in §1.

(3.6.2) Proposition. For any hieroglyph Γ of weight ≤ 3 the poset F(Γ) is ball-like and
P(Γ) with its polyhedral ball structure is identified with the polytope P (Γ) described in §1.

(3.7) Stasheff polytopes. We first recall the basic properties of the Stasheff polytope
Kn−1, see [St]. Consider n − 1 symbols a1, ..., an−1. By a complete parenthesizing of the
product a1...an−1 we mean a way of inserting n − 3 pairs of parentheses so as the product
makes sense in any (possibly non-associative) algebra. By a partial parenthesizing we mean
a way of inserting some number k ≤ n − 3 of pairs of parentheses which can be extended
to a complete parenthesizing. The set of all partial parenthesizings of a1...an−3 is partially
ordered by reverse inclusion: thus, the empty parenthesizing a1...an−1 is the maximal element
while complete parenthesizings are minimal elements.

It is standard that complete parenthesizings of a1...an−1 are in bijection with triangula-
tions of a convex polygon Pn with n vertices (into triangles whose vertices are among the
vertices of the polygon). More generally, call a polygonal decomposition of Pn a decomposi-
tion of it into convex polygons with vertices among those of Pn. Polygonal decompositions
are partially ordered by refinement (so triangulations are minimal elements with respect to
this order while the decomposition consisting of Pn alone, is the maximal element).

The following is the standard property of Kn−1 and can be in fact considered as a defi-
nition.

(3.7.1) Proposition. The poset of faces of Kn−1 is naturally identified with the poset of
partial parenthesizings of a1...an−1 and with the poset of polygonal decompositions of Pn.

(3.7.2) Corollary. Every face of Kn−1 is a product of Stasheff polytopes of lower dimen-
sions.

Indeed, given a polygonal decomposition Q of Pn into several polygons Q1, ..., Qm, let ni

be the number of vertices of Qi minus 1. To complete this decomposition to a triagulation,
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1 2 3 n

Figure 11: The system Ψn.

we should just triangulate each Qi separately. So the face of Kn−1 corresponding to Q, is
the product Kn1

× ...×Knm
.

Now we can complete the description of the Stasheff polytope in terms of the prime
spectrum.

(3.7.3) Theorem. For a linear hieroglyph Γ with n vertices and (n − 1) edges, the poset
F(Γ) is isomorphic to the poset of faces of Kn+1.

Proof: We already have described vertices of Kn+1 by systems of n nested caps in Proposition
3.4.3. We now describe the full face lattice. Namely, call a system of mounting caps a system
of smooth non-self-intersecting arcs (“caps”) in R2 with the following properties:

(a) All the arcs lie in the upper half plane {y ≥ 0}.
(b) The left end of each arc always lies on the horizontal line R = {y = 0}.
(c) The right and of each arc lies either on R or on another arc; the right ends of different

arcs are different.
(d) Apart from the situations allowed in (c), the arcs do not intersect.

Thus a system of nested caps is a system of mounting caps. Another example is the
system Ψn in Fig. 11.

We will identify any two systems of mounting caps differing by an orientation preserving
homeomorphism of the upper half-plane. Note that the cups are canonically numbered by
abscisses of their left ends.

We now define a binary relation on the set of systems of n mounting cups called refine-
ment. Let C be a system of mounting caps such that an arc Ci has its right end point p
on another arc Cj (i < j). There are two ways, left or right, of sliding down p. Keeping
other arcs fixed topologically, we obtain two elementary refinements of Z by sliding down p.
Arbitrary refinements are obtained by iterating elementary refinements. For instance, after
we slide down p to the left, we may get further refinements. Let Ck be another arc (k < i),
such that there is a sequence Ck1

= Ck, Ck2
, · · · , Ckm

= Ci with the right end point of Ckh

lying on Ckh+1
for any h = 1, · · · , m. Then we can connect the right end point of Ck to Cj,

and slide down p to the left, keeping other arcs fixed topologically. The result is a refinement
of C.

For example, in Fig. 13, in between the left and left bottom nested caps, there is an
arrow labeled 13. To this arrow one can associate a system of mounting caps such that C1
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Figure 12: Perturbing mounting caps

has its right end point on C3, and the right end point of C2 is slid down to the left of C3. A
refinement is defined by applying this operation consectively.

Clearly, refinement is a partial order on the set of systems of mounting caps. With respect
to this order, minimal elements are systems of nested caps while the unique maximal element
is the system Ψn on Fig. 11.

(3.7.4) Proposition. The bijection between systems of n nested caps and vertices of Kn+1

can be extended to an order-preserving bijection between the poset of all systems of n
mounting caps and the poset of all faces of Kn+1.

Proof: Since Ψn is the unique maximal system of mounting caps, we can reformulate our
proposition by saying that there is an order-preserving bijection between refinements of Ψn

and faces of Kn+1. Let us prove this by induction in n.
Given a system C of mounting caps, consider the connected components Z1, ..., Zm of the

union of all the caps. Each Zi is isomorphic to some Ψni
. Further, to construct a refinement

of C, it is enough to construct a refinement of each Zi separately. So the set of all system
of nested caps refining C is the product of similar sets for the Zi ' Ψni

. By induction this
is the set of vertices of Kn1+1 × ...×Knm+1. This is precisely a face of Kn+1 (see Corollary
3.7.2). This proves Theorem 3.7.3.

(3.8) Proof of Theorem 2.2.1. Let elements a12, ..., an−1,n ∈ A be given. According to
Proposition 3.4.3, we can realize vertices of Kn+1 by systems on n nested circles. Let us now
orient each edge of Kn+1 and label it by a Steinberg generator xij(aij), 1 ≤ i < j ≤ n, as
follows. If C and C ′ are two systems of nested circles forming two ends of an edge in Kn+1,
then the relative positions of the circles in C and C ′ are the same except that in one system
(say, C) some two circles, say, with numbers i and j, have disjoint interiors while in the other
the jth circle is inside the ith one. Note that because of our convention for numbering the
circles we have i < j. So we orient the edge by putting the system of nested circles where
the two circles in questions are disjoint, in the beginning, and take xij(aij) to be the label
of the edge. Fig.13 shows what happens for the pentagon. The verification of the properties
required in the theorem, is straightforward.

(3.9) The prime spectrum for the X-graph. As an example of more complicated
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Figure 13: Mounting caps and the graph for the pentagon

behavior of the prime spectrum, consider the case of the graph ΓX depicted in Fig.14 (we
introduce the numbering of vertices for convenient reference).

The poset F(ΓX) is in this case not ball-like, but for any proper face σ ∈ F(ΓX),
σ 6= Spec(ΓX), the poset [σ] is ball-like, so the corresponding balls Nerv([σ]) form a CW-
complex P0(ΓX) such that P(Γ) is just the cone over it. If P0(ΓX) was a 3-sphere, then
P(ΓX) would have been a ball. However, a direct analysis of P(ΓX) shows that it has the
following structure. First, there is a 3-dimensional subcomplex U homeomorphic to a 3-
ball (i.e., to a 3-sphere with a hole). It is formed by 4 Chicago buildings, 4 dual Chicago
buildings, 4 pentagonal prisms and 4 three-dimensional cubes. Next, there is a 4-dimensional
cube Q (spanned by the commuting Steinberg generators x14, x15, x24, x25) which is attached
to the boundary of U along some 2-sphere in the boundary of Q. The resulting complex

1

2

3

4

5
U

Q

Figure 14: The X-graph
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P0(ΓX) = U ∪ Q looks like a 3-dimensional diamond ring and is symbolically depicted as
such in Fig.14.

We shall see in the next section that for any hierogiph Γ a Morse but not Morse-Smale
function with a Γ-pattern of trajectories between critical points of same index gives, as its
bifurcation diagram, a certain polyhedral ball which is, moreover, embedded into P(Γ). In
our example the boundary of the bifurcation diagram will be a 3-sphere in the “diamond
ring” U ∪Q, and different functions can choose different 3-spheres, i.e., different ways to fill
the boundary of U by a polyhedral 3-ball in U .

This example shows that for more complicated hieroglyphs in which vertices may possess
several incoming and outgoing edges, the complex P(Γ) may be even farther from a ball.
However, we would like to conjecture that if a graph Γ does not have a subgraph isomorphic
to ΓX , then F(Γ) is ball-like and in fact the combinatorial ball P(Γ) can be realized as a
convex polytope. Note that the constructions of [DP1-2] allow one to associate a convex
polytope M(Γ) to any (non-oriented) Dynkin graph Γ in such a way that for a linear graph
An we again get a Stasheff polytope.
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§4. The discriminant in the space of Morse functions.

In this section we show that the Stasheff polytope appears as a bifurcation diagram for
“Smalefications” of Morse functions. More generally, we relate these bifurcations diagrams
with prime spectra of hieroglyphs studied in §3.

(4.1) Morse and Morse-Smale functions. Let X be a smooth compact orientable
manifold of dimension d with Riemannian metric. A smooth function f : X → R is called a
Morse function if all its critical points are non-degenerate and the values of f at these points
are distinct (the second condition added for later convenience). Thus each critical point x
has a well-defined index i = ix, namely the number of negative eigenvalues of the second
differential of f at x. By using the Riemannian metric, we form the gradient vector field ∇f
on X. To eliminate the direction ambiguity, let us stipulate that the gradient flow decreases
the values of f .

For a critical point x we denote by S+(x) = S+(x, f) (resp. S−(x) = S−(x, f)) the
stable (resp. unstable) variety of x, i.e., the union of all gradient trajectories which converge
for t → −∞ (resp. for t → +∞) to x. It is well known that S±(x) are diffeomorphic to
Euclidean spaces, dim(S+(x)) = d− ix, dim(S−(x)) = ix.

A Morse function f is called a Morse-Smale function, if it satisfies the following transver-
sality condition: for any two critical points x and y the intersection of S+(x) and S−(y) is
transversal. This implies, in particular, that the dimension of the space of gradient trajec-
tories beginning at x and ending at y, is equal to ix − iy − 1, if ix > iy and is empty when
ix ≤ iy.

It is well known that for a Morse-Smale function f the varieties S−(x) form a CW-
decomposition ofX. In particular, if f does not have any critical points of index m±1, and we
have chosen orientations of each S−(x), then the m-dimensional cells of this decomposition
provide a basis in Hm(X,Z).

(4.2) The discriminant and its strata. Let F be the space of all smooth functions on X,
and M, MS the subspaces there formed by Morse, resp. Morse-Smale functions. The space
F , being an infinite-dimensional vector space, is contractible, and M, MS are open subsets
in this vector space. Denote the complement F −MS by ∆ and call it the discriminantal
variety, or simply the discriminant. This is a hypersurface in F which is highly singular. We
are interested in certain “strata” in ∆ of finite codimension. A function can lie in ∆, i.e., not
be a Morse-Smale function by one of the two reasons: first, it may have complicated critical
points and second, the transversality condition may be violated. We will concentrate on the
second possibility, and on a particular way of violation of the Smale condition: namely, the
presense of gradient trajectories joining critical points of the same index.

More precisely, let Γ be a finite oriented graph without oriented loops (in particular,
without edges-loops). Denote by Σ(Γ, m) the set of those Morse functions for which there
exists a Γ-patters on trajectories joining critical points of index m. In other words, f ∈
Σ(Γ, m), if there is an embedding v 7→ xv of the set of vertices of Γ into the set of critical
points of f of index m and of edges of Γ into the set of trajectories (joining the corresponding
critical points). Clearly, Σ(Γ, m) has codimension equal to the number of edges of Γ. On
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Figure 15: The catastrophe corresponding to a graph

Fig. 15 we depicted a Γ- pattern of critical points of index 2 on a 3-dimensional manifold.
We are now interested in the local structure of ∆ in the neighborhood of a generic point

f ∈ Σ(Γ, m). To understand this structure, we take a small transversal slice T to Σ(Γ, m) at
f . Thus T is a disc of dimension equal to the codimension of our stratum which intersects
the stratum only at f . Define the bifurcation diagram of Σ(Γ, i) at f as the CW-complex
whose vertices correspond to connected components of T − ∆, the vertices are joined by an
edge if the components are adjacent etc. In other words, it is the CW-decomposition of T
dual to the decomposition formed by closures of connected components of T − ∆. We will
denote this bifurcation diagram Pf(Γ, m). In principle, it can depend not only on Γ and m
but also on the choice of (generic) f . Note that Pf(Γ, m) is always a ball. It can be regarded
as a candidate for the conjectural polyhedral ball P (Γ) of §2, as we shall presently explain.

(4.3) Handle sliding and elementary transformations. We recall some background
material on how the topology of ∆ is related to K-theory. Consider the simplest catastrophe,
corresponding to the graph Γ = {• → •}, i.e., presense of just one trajectory joining two
critical points with numbers, say, i and j of the same index m. Suppose we have a 1-
parameter family ft, 0 ≤ t ≤ 1 of Morse functions crossing the stratum Σ(Γ, m) only once,
for t = t0. Let us number the critical points of index m and retain this numbering during
the deformation by continuity. The cell decomposition undergoes a so-called handle sliding
transformation, shown in Fig.16 for n = 2, m = 1. For any t let S−(i)t be the unstable
variety for the ith critical point at the moment t. If we assume that there are no critical
points of index m± 1, and choose the orientations of all the unstable varieties, then for each
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(c) The catastrophe                                                                    (d) After the catastrophe              

Figure 16: Handle sliding

t 6= t0 we have a basis in Hm(X) given by the unstable varieties of the critical points of index
m (thick lines in Fig.16). Let eν(t) be the basis vector corresponding to the νth critical point
at the moment t. Then the basis for t = 1 differs from the basis for t = 0 by an elementary
transformation:

ei(1) = ei(0) + ej(0), eν(1) = eν(0), ν 6= i,

as it can also be seen from Fig.16: the cell number i “eats” the cell number j.
If now we have a codimension 2 stratum of ∆ whose generic points are Morse functions in

the above sense (so that only the Smale condition becomes violated), then going around this
stratum in a closed path gives a sequence of handle slidings which, being performed one after
another, leave the CW decomposition unchanged. In particular, we get a relation among
the elementary transformations of bases in the homology. As was observed by Hatcher and
Wagoner [HW], we get in this way precisely the Steinberg relations. For instance, going
around the stratum corresponding to the catastrophe i → j → k gives the pentagonal
Steinberg relation xijxjk = xjkxikxij.

According to our point of view on non-Abelian syzygies this means that the bifurcation
diagrams for higher-codimensional strata Σ(Γ, m) give higher syzygies among the Stein-
berg relations. Strangely, the precise structure of these bifurcation diagrams attracted little
attention. In particular, the following surprising generalization of the Hatcher-Wagoner
observation seems to have been overlooked.

(4.4) Theorem. Let Γ be the graph of the form • → • → ... → • (n vertices and (n− 1)
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arrows). For any m there is an open set U ⊂ Σ(Γ, m) such that for f ∈ U the bifurcation
diagram of stratum Σ(Γ, m) at f is the Stasheff polytope Kn.

We will prove this theorem later in the section. Here we make some preliminary analysis
for the case of arbitrary Γ.

(4.5) Combinatorial invariants of a smalefication: preliminaries. Let f ∈ Σ(Γ, n) be
a generic Morse function with a Γ-pattern of trajectories among critical points of index m.
These points are denoted xv, where v ∈ Vert(Γ) is a vertex. We will call a smalefication of f
a Morse-Smale function g which is a small deformation of f . Thus, in the notation of (4.2),
every connected component of T −∆ gives a well defined topological type of a smalefication.
In order to describe the bifurcation diagram in an explicit way, we are now going to define
some combinatorial invariants of a smalefication.

Since Γ is supposed not to have oriented loops, there is a natural partial order ≤Γ on
Vert(Γ): we say that v ≤Γ w, if there is an oriented edge path from v to w. Note that v ≤Γ w
implies f(v) > f(w).

Let g be a smalefication of f . By continuity we have a correspondence between critical
points of f and g. Let yv be the critical point of g corresponding to v ∈ Vert(Γ). Suppose
v ≤Γ w. Then the unstable and stable varieties S−(yv, g) and S+(yw, g) for the smalefication
do not intersect but are very close to intersecting. So our idea is to look at the relative
position of these varieties.

We first assume that Γ is a simple path • → • → ... → •. Let γ be the union of the
gradient trajectories of f joining the critical points xv. Then the varieties S−(yv, g) and
S+(yw, g) come very close to each other near γ, but are otherwise far away. To analyze the
relative position of these varieties, we take a regular value a ∈ [g(yw), g(yv)] and consider
the submanifolds

S−(v, w) := S−(yv, g) ∩ g
−1(a), S+(v, w) := S+(yw, g) ∩ g

−1(a).

These subvarieties are in the linking dimension, i.e., their dimension sum to d − 2 =
dim(g−1(a)) − 1. So we would like to associate to the pair (v, w) a kind of “local link-
ing number” of S±(v, w), an element of ±1. This is to be viewed as higher-dimensional
analog of saying which critical point “eats” which, like in Fig. 16.

To be consistent, we should take care of choices of orientation. Let us do this in some
detail.

(4.6) Reminder on orientations and linking numbers. For a finite-dimensional real
vector space V its orientation torsor o(V ) is the 2-element set of “directions” of the 1-
dimensional real vector space

∧max(V ), the top exterior power. An orientation of V is an
element of o(V ). Clearly, o(V ) is a torsor (principal homogeneous space) over the group
{±1}. For a short exact sequence

0 → V ′ → V → V ′′ → 0

of finite-dimensional real vector spaces we have a natural identification o(V ′)⊗o(V ′′) → o(V ),
where ⊗ is the tensor product of torsors.
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An orientation of a manifold M is a consistent orientation of each tangent space of this
manifold. If M is orientable, then the two possible orientations form a torsor over {±1}
which we denote o(M).

If L,M are two non-intersecting affine subspaces of a real affine space V , such that
dim(L)+dim(M) = dim(V )−1 and all three spaces L,M, V are equipped with orientations,
then we have a well-defined linking index 〈L,M〉V ∈ {±1}. It is changed to the opposite by
a change of orientation of each of the three ingredients: L, M or V ; in particular, it remains
unchanged under a simultaneous change of two of the orientations.

More invariantly, without making any choices of orientation, we can say that 〈L,M〉V

is not a number but an element of the torsor o(L) ⊗ o(M) ⊗ o(V )−1; then, a choice of the
orientations identifies this torsor with {±1} and we get a number. Note also that for any
torsor T over {±1} we can identify T with T−1, so we will not write the inverse sign in the
future.
(4.7) Local linking numbers. Return to our situation of a Morse function f ∈ Σ(Γ, m).
Note that for any critical point xv, v ∈ Vert(Γ) we have an identification

pv : o(S+(xv, f)) ⊗ o(S−(xv, f)) → o(X)

coming from the direct sum decomposition of Txv
X into the direct sum of Txv

S±(xv, f). Thus
every system ε = (εv) of orientations of all the unstable manifolds S−(xv, f) together with an
overall orientation ζ of X itself give rise to a well defined system λ = (λv) of orientations of
the S+(xv). More precisely, λv is defined so as to have pv(λv ⊗εv) = ζ. Given a smalefication
g of f , with critical points yv, denote by ε′v, λ

′
v the orientations of S±(yv, g) obtained from

εv, λv by continuity. The orientations ζ, ε′v and λw give rise to orientations of

g−1(a), S−(v, w) = S−(yv) ∩ g
−1(a), S+(v, w) = S+(yw) ∩ g−1(a)

by trivializing, by means of dg, the 1-dimensional normal bundle to each of these varieties
in X,S−(yv), S

+(yw) respectively.
We now have the oriented submanifolds (spheres) S±(v, w) ⊂ g−1(a) which come very

close together in the vicinity of one point γ ∩ f−1(a), see (4.5). In this region we can replace
these manifolds by affine spaces, take their linking index, denote it by l(v, w) and call the local
linking index of the S±(v, w). This is an element of the torsor o(S+(v, w)) ⊗ o(S−(v, w)) ⊗
o(f−1(a)). By the choices of orientations ζ, ε′v and λw we identify this torsor with {±1} and
thus view l(v, w) as a number. The collection of these numbers is an obvious combinatorial
invariant of the smalefication.

Formally, the numbers l(v, w) depend on the choice of ε = (εv) and ζ ∈ o(X). However,
changing ζ to the opposite orientation ofX changes each λv to the opposite as well. So in each
of the linking numbers 〈S+(v, w), S−(v, w)〉g−1(a) the orientations of two of the ingredients
will be changed and thus the values of the linking numbers will not change. This shows
that the l(v, w) do not depend on ζ, but depend only on ε. Let us denote them therefore
lε(v, w) ∈ {±1}. If we change just one εv to the opposite, then the result is that each
of the linking numbers involving v will change sign. Thus a simultaneous change of all
the orientations εv to the opposite ones does not affect the l(v, w). So the collection of
these linking numbers really depends only on a compatible system of identifications of all
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the torsors o(S−(xv, f)). We will now discuss how to construct such a system with good
properties and what are the necessary conditions for that.

(4.8) Identifying orientation torsors of unstable manifolds. Let f ∈ Σ(Γ, m) be a
Morse function. Let v and w be two vertices of Γ such that there is an edge v

e
→ w, and γ

be the gradient trajectory of f going from xv to xw. Strictly speaking, the trajectory does
not reach xw at any finite time, but we will include the endpoints xw and xw into γ as well
and speak about the tangent lines to γ at these points (they are clearly well defined as the
limits of the tangent lines at interior points of γ).

Let us look at other trajectories issuing from xv. All together they form the unstable
manifold S−(xv) = S−(xv, f). But since one of the trajectories hits xw ∈ S−(xw, f), the
closure S−(xv) of S−(xv) in X may have non-trivial intersection with S−(xw). In other
words, trajectories issuing from xv and close to γ will asymptotically touch S−(xw) and the
intersection S−(xv)∩S

−(xw) is formed by such asymptotic points. We are interested only in
the germ of this intersection near xw, or, rather, in its “tangent space”. In fact, the following
infinitesimal analysis will be sufficient for our purposes (we do not need any details of actual
structure of S−(xv) ∩ S−(xw), but will define what should be its tangent space by direct
construction).

Take an interior point p ∈ γ and look at the tangent space TpS
−(xv) ⊂ TpX. For

any t ∈ R+ let Et : X → X be the time t translation along the gradient flow. Then
(dpEt)(TpS

−(xv)) is a subspace in the tangent space to Et(p) ∈ γ. When t → ∞, we have
that Et(p) → xw. So the limit position

Lw
v = lim

t→∞
(dpEt)(TpS

−(xv))

is an m-dimensional subspace in Txw
X. The intersection of this subspace with Txw

S−(xw) is
the desired “tangent space” we are interested in.

(4.8.1) Proposition. The intersection of Lw
v with Txw

S−(xw) has codimension 1 in Txw
S−(xw).

The space Lw
v is the direct sum of this intersection and the 1-dimensional subspace Txw

γ.

Informally, this means that S−(xv) ∩ S
−(xw) is a hypersurface in S−(xw).

Proof: Take a small neighborhood U of xw and choose coordinates (s1, ..., sd) in U such that
the gradient of f is given by

∑d−m
i=1 si∂/∂si −

∑d
i=d−m+1 si∂/∂si. Thus S−(xw) is, in these

coordinates, the m-dimensional linear subspace given by s1 = ... = sd−m = 0, while S+(xw)
is given by sd−m+1 = ... = sd = 0. Now if p is any point in U lying on S+(xw) and Λ is any
linear subspace in TpX, then it is very easy to analyze the subspace

L = lim
t→∞

(dpEt)(Λ) ∈ Txw
X.

First of all, this subspace is invariant under the 1-parameter subgroup of linear transforma-
tions of Tyw

X given by differentials of the Et. This follows from the definition of L as a limit.
The 1-parameter subgroup in question multiplies s1, ..., sd−m by t−1 and sd−m+1, ..., sd by t.
Therefore L, being invariant under such transformations, should have the form L = L+⊕L−

where L± ⊂ Txw
S±(yw). Further, dim(L+) = dim(Λ∩TpS

+(xw)) and thus dim(L−) is found
as the difference.
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In our case Λ = TpS
−(xv) we have that Λ ∩ TpS

+(xw) = Tpγ is 1-dimensional, whence
the statement.

Let us denote the hyperplane Lw
v ∩ Txw

S−(xw) in Txw
S−(xw) by Mw

v . Note that the
translation along the gradient flow defines an identification of torsors o(S−(xv)) → o(Lw

v ),
and the direction of the flow identifies o(Lw

v ) with o(Mw
v ).

Let now v → w → u be two consecutive arrows in a graph Γ, and let γvw, γwu be the
gradient trajectories joining xv with xw and xw with xu.

(4.8.2) Definition. A Morse function f ∈ Σ(Γ, m) is called generic, if for each two con-
secutive arrows of Γ as above we have that the hyperplane Txw

(Mw
v ) in Txw

S−(xw) does not
contain the line Txw

γwu.

Let f be a generic Morse function and v, w, u be as above. Then we have a natural
identifications

o(S−(xv)) → o(Mw
v ) → o(S−(xw))

of which the first one was constructed above and the second one is obtained by trivializing
the 1-dimensional normal bundle to Mw

v in Tyw
S−(yw) by means of the direction of γwu. Let

αvwu be the composite identification.
Further, suppose that (−f) is a generic Morse function. Then the unstable manifolds for

(−f) are just the stable manifolds for f and vice versa. So we get an identification

o(S+(xu)) = o(X) ⊗ o(S−(xu)) → o(S+(xw)) = o(X) ⊗ o(S−(xw)).

By tensoring it with the identity map of o(X), we get also an identification βvwu : o(S−(xu) →
o(S−(xw).

Thus for any triple of consecutive vertices of a graph we have an identification of all three
orientation torsors of the unstable manifolds of the corresponding critical points.

From now on we assume that the graph Γ is irreducible in the sense of (2.1). This
is because for a reducible graph the bifurcation diagrams are just products of the diagrams
corresponding to the irreducible components. Consider the binary relation “being connected”
on the set of arrows of Γ defined as the symmetric and transitive closure of the relation “being
composable”. To say that Γ is irreducible (which we assume) is equivalent to saying that
any two edges are connected. Therefore for any two vertices z, z ′ of an irreducible graph
Γ there is at least one composite identification o(S−(xz)) → o(S−(xz′)) constructed out of
the αvwu, βvwu. However, we may get more than one such identification. In order to make
sure that this does not happen, additional conditions on f are necessary. More precisely,
let w ∈ Vert(Γ) be any vertex. Then for all v such that there is an edge v → w we have
a hyperplane Mw

v ⊂ Txw
S−(xw). These hyperplanes cut out Txw

S−(xw) into certain conical
chambers (i.e., the connected components of the complement to all the hyperplanes). On the
other hand, for any vertex u such that there is an edge w → u we have a gradient trajectory
γwu issuing from xw. This trajectory defines the half-line T+

xw
γwu which is the half of the

usual tangent line pointing in the direction of the flow.

(4.8.3) Definition. A Morse function f ∈ Σ(Γ, m) is called 1-sided, if all the half-lines
T+

xw
γwu for w → u lie in the same chamber of the complement to the union of the hyperplanes

Mw
v for v → w.
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(4.8.4) Proposition. If both f and (−f) are 1-sided, then all the identifications αvwu, βvwu

are compatible with each other, i.e., define, for any two vertices v, w, a unique identification
o(S−(xv)) → o(S−(xw)).

Having constructed the compatible identifications, we get, by the above, well-defined
local linking numbers l(v, w).

(4.9) Smalefications and prime ideals. Let f ∈ Σ(Γ, i) be a Morse function such
that both f and (−f) are 1-sided, and let g be a smalefication of f . Let p : v → w be any
oriented edge path in Γ, and γ the corresponding geometric path in X formed by the gradient
trajectories. Then S−(v, g) and S+(w, g) come very close to each other in the vicinity of γ.
So by the above identification of the orientation torsors we have well-defined local linking
numbers lp(v, w) ∈ {±1}. The subscript p is necessary since in general there may be several
edge paths from v to w so there is more than one local linking number,

(4.9.1) Proposition. The collection of all edge paths p : v → w such that lp(v, w) = −1
forms a prime ideal in the category π(Γ). Equivalently, the family F formed by paths p such
that lp(v, w) = +1, is admissible.

Proof: Both conditions (3.3.3-4) for F to be admissible involve only linear subgraphs in Γ.
So in the proof we can assume that Γ is a linear graph. With this assumption, let us first
look at the case d = dim(X) = 2, m = 1. Suppose f is a function allowing a chain of
n critical points x1, ..., xn of index 1 joined by gradient trajectories according to the graph
x1 → ... → xn. Thus at every xi, i < n, one of the two outgoing trajectories goes to xi+1.
Further, our choice of orientations of the unstable varieties is precisely the one obtained
from the orientation of X, if we agree that the trajectory γxi,xi+1

is obtained by making a
left turn after coming to xi along γxi−1,xi

. In other words, if we consider the union of all
the outgoing trajectories of all the xi, then it is just the system Ψn of n mounting caps in
Fig.11. Similarly, for every deformation of f the union of outcoing trajectories will be a
system of mounting caps refining Ψn, in particular, for a Morse-Smale deformation we will
have a system of nested caps without intersections. In these terms the condition lp(i, j) = 1
(with p being the unique path joining i and j) means geometrically that the cap number i
contains “inside” it the cap number j, so the statement of the Proposition is clear for the
case d = 2, m = 1.

Consider now the general case. As we said, we can assume that Γ is a linear graph, so
the system of trajectories has the form x1 → ... → xn. Let us take a 2-dimensional surface
(“ribbon”) X ′ ⊂ X containing all the xi and all the trajectories γxi,xi+1

(thus the tangent
space to X ′ at xi, 1 < i < n, is spanned by the tangent lines of the incoming and the
outgoing trajectory). Given a Smaleficiation g of f with critical points yi (corresponding to
the xi by continuity), we can deform X ′ along with f into a surface X ′′ containing the yi and
such that Tyi

X ′′ intersects both Tyi
S±(yi, g) in 1-dimensional subspaces. So we can identify

X ′ and X ′′ and view g|X′′ as a Smalefication of f |X′ . Then, by quotienting out the overall
orientation torsor for the normal bundle of X ′′ in X, we reduce the calculation of the local
linking number lp(i, j) for g to a similar calculation for g|X′′, i.e., to the situation we have
just considered. This proves the general case.

(4.10) Proof of Theorem 4.4. If Γ is the linear graph, as in the theorem, then any generic
Morse function is automatically one-sided, since at the tangent space to every xv we have

37



just one oriented direction and one hyperplane. We recall the relevant notation from (4.2):
so T is a transversal slice to Σ(Γ, m) at f , and ∆ is the discriminantal variety, so the vertices
of Pf (Γ, m) correspond to chambers, i.e., to connected components of T − ∆. Let C be the
set of chambers.

Note that we can assume that the variety X is a domain in Rd, since we are interested
only in what happens in the neighborhood of the critical points and the corresponding
trajectories, and this neighborhood can be embedded into Rd.

Assuming that f is generic, Proposition 4.9.1 associates to any chamber C a prime ideal
℘C in π(Γ). The resulting map C → Spec(Γ) is surjective. To see this, note that any system
of nested caps, i.e., a Smalefication of a Morse function f(t1, t2) in R2 can be extended
to a Smalefication of a Morse function in Rd by adding to it the function

∑d
i=3 εit

2
i where

the signs εi ∈ {±1} are chosen to achieve the desired index m. Further, by deforming
the 2-dimensional surface X ′ as in the proof of (4.9.1), together with the functions, we
find that each pair of adjacent chambers gives rise to two elements of Spec(Γ) joined by
an edge as described in (3.5). This means that we get a map of polyhedral complexes
Pf(Γ, m) → P(Γ) = Kn surjective on vertices, and the fact that it is an isomorphism
follows by noticing that, similarly to the faces of Kn, each face of Pf (Γ, m) is a product
of similar bifurcation diagrams corresponding to linear graphs describing trajectories in the
corresponding partial Smalefication.
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