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Di�erent industries are considering implementing vendor managed resupply. Tradi-tionally, vendor managed resupply has been high on the wish list of logistics managers inthe petrochemical and industrial gas industry. More recently, the automotive industry(parts distribution) and the soft drink industry (vending machines) have entered thisarena.One reason that vendor managed resupply is receiving a lot of attention is the rapidlydecreasing cost of technology that allows monitoring customers' inventories. Vendormanaged resupply requires accurate and timely information about the inventory statusof customers.If vendor managed resupply is a win-win situation for both suppliers and customers,and relatively cheap monitoring technology is available, then why is vendor managedresupply not applied on a larger scale? One reason is that it is a complex task todevelop a distribution strategy that minimizes the number of stockouts and at the sametime realizes the potential savings in distribution costs. The task of developing such adistribution strategy is called the inventory routing problem.In this paper, we present and discuss the inventory routing problem (IRP) and ap-proaches for its solution. The IRP is a challenging and intriguing problem that alsoprovides a good starting point for studying the integration of di�erent components ofthe logistics value chain, i.e., inventory management and transportation. Integrationof production and transportation is another hot item on the wish list of logistics man-agers. Traditionally, production and transportation have been dealt with separately.However, it is expected that improvements may be obtained by coordinating productionand transportation. It is less obvious how to do it.The purpose of this paper is to introduce the IRP, to discuss its intrinsic complexity,to review some of the methods that have been proposed for its solution, and to presenttwo new approaches that we are currently investigating.The remainder of the paper is organized as follows. In Section 2, we formally de�nethe IRP. In Sections 3 and 4, we take a closer look at single and two-customer prob-lems. In Section 5, we review the literature. In Section 6, we propose two new solutionapproaches. In Section 7, we address some practical issues. Finally, in Section 8, wepropose the creation of set of standard test problems.2 The Inventory Routing ProblemThe IRP is concerned with the repeated distribution of a single product, from a singlefacility, to a set of n customers over a given planning horizon of length T , possiblyin�nity. Customer i consumes the product at a given rate ui (volume per day) and hasthe capability to maintain a local inventory of the product up to a maximum of Ci.The inventory at customer i is Ii at time 0. A 
eet of m homogeneous vehicles, withcapacity Q, is available for the distribution of the product. The objective is to minimize2



the average distribution costs during the planning period without causing stockouts atany of the customers.Three decisions have to be made:� When to serve a customer?� How much to deliver to a customer when it is served?� Which delivery routes to use?The IRP di�ers from traditional vehicle routing problems because it is based oncustomers' usage rather than customers' orders.The IRP de�ned above is deterministic and static due to our assumption that usagerates are known and constant. Obviously, in real-life, the problem is stochastic anddynamic. Therefore, an important variant of the IRP is the stochastic inventory routingproblem (SIRP). The SIRP di�ers from the IRP in that the future demand of a customeris uncertain. In the SIRP, we are given the probability distribution of the demand uit ofcustomer i between decision points t and t+1 for t = 1; :::; T�1. Because future demandis uncertain, there is often a positive probability that a customer runs out of stock, i.e,stockouts cannot always be prevented. Stockout costs can be modeled in various ways.We suggest a penalty function with a �xed as well as a variable component, i.e., Si+sid,where Si is a �xed stockout cost, si is a variable stockout cost (per unit shortage), andd is the shortage, i.e., the demand between the time of stockout and the replenishmentdelivery. The objective is to choose a delivery policy that minimizes the average cost perunit time, or the expected total discounted cost, over the planning horizon.To gain a better understanding of the IRP and SIRP, as well as the di�erence betweenthem, we analyze single and two-customer problems in the next two sections.3 The single customer problemThe single customer analysis also applies when we have multiple customers but alwaysvisit only a single customer on a vehicle trip (direct delivery), and we have a su�centnumber of vehicles to visit all customers that we want to visit in a day.First, we consider the IRP. Let the usage rate of the customer be u, the tank capacityof the customer be C, the initial inventory level be I , the delivery cost to the customerbe c, the vehicle capacity be Q, and the planning horizon be T .It is easy to see that an optimal policy is to �ll up the tank precisely at the time itbecomes empty. Therefore the cost vT for a planning period of length T isvT = max(0; d Tu� Imin(C;Q)e)c:3



Next, we consider the SIRP in which we decide daily whether to make a deliveryto the customer or not. The demand U between consecutive decision points, i.e., thedemand per day, is a random variable with known probability distribution.Jaillet et al. [JHBD97] analyze the \d-day" policy that makes a delivery to thecustomer every d days and delivers as much as possible, unless a stockout occurs earlier.When a stockout occurs earlier, the truck is sent right away which incurs a cost S.It is assumed that deliveries are instantaneous, so no additional stockout penalties areincurred. Let pj be the probability that a stockout �rst occurs on day j (1 � j � d� 1).Then p = p1 + p2+ : : :+ pd�1 is the probability that there is a stockout and 1� p is theprobability that there is no stockout in the period [1; :::; d� 1]. Furthermore, let vT (d)be the expected total cost of this policy over a planning period of length T . We nowhave for d > T vT (d) = X1�j�T pj(vT�j(d) + S)and for d � T vT (d) = X1�j�d�1 pj(vT�j(d) + S) + (1� p)(vT�d(d) + c):As a consequence, the expected total cost of �lling up a customer's tank every d daysover a T -day period (T � d) is given byvT (d) = �(d) + �(d)T + f(T; d)where �(d) is a constant depending only on d, f(T; d) a function that goes to zeroexponentially fast as T goes to 1, and�(d) = pS + (1� p)cP1�j�d jpj ;with pd = 1� p. The value �(d) is the long-run average cost per day. To �nd the bestpolicy in this class, we need to minimize vT (d), which for large T means �nding a d forwhich �(d) is minimum.The above d-day policies have the advantage that they can be used even if theinventory at the customer cannot be measured and we are informed only when a stockoutoccurs. The d-day policies have a number of disadvantages though. The �rst is that ad-day policy is not optimal in general if the inventory at the customer can be measured.Intuitively it is clear that policies that use information on the amount of inventory atthe customer can do better than d-day policies. We give an example below in whichthe best d-day policy is compared with the optimal policy. The second disadvantage isthat the stockout probabilities pj used in the analysis of d-day policies are very hard4



to obtain, and may not be well de�ned, unless the inventory at the customer is alwaysreplenished up to the same level (for example, if the vehicle capacity is at least as largeas the customer's storage capacity). The reason is that the probability pj of a stockoutexactly j days after the previous replenishment depends on the inventory level afterreplenishment.To compare the best d-day policy with the optimal policy, consider a customer whosedemand is uniformly distributed on the integers from 1 to 20. There is a �xed cost of 40to replenish the customer, and an additional penalty of 50 each day that the customerexperiences a shortage. Figure 1 shows the long-run average cost per day of the bestd-day policy, as a function of the customer's storage capacity C, for di�erent values ofthe vehicle capacity Q. Figure 2 shows the optimal long-run average cost per day, againas a function of the customer's storage capacity C, for di�erent values of the vehiclecapacity Q. If the vehicle capacity Q = 10, then the customer is visited almost everyday under the optimal policy, and the best d-day policy has d� = 1, i.e., the customeris visited every day. The long-run average cost per day is therefore almost the samefor the optimal policy and the best d-day policy. However, if the vehicle capacity Q islarger than 10, then the optimal policy bene�ts from the greater 
exibility of makingthe replenishment decision depend on the inventory at the customer. For example, ifthe vehicle capacity is 14 or 16, the customer is visited on average about twice everythree days under the optimal policy, while a d-day policy visits the customer every dayor every other day.If the vehicle capacity Q is at least as large as the customer's storage capacity C, thenit can be shown that there is an optimal policy �� with a threshold l�, such that if theinventory at the customer is less than l�, then it is optimal to replenish the customer'sinventory up to the customer's storage capacity C, and if the inventory at the customeris more than l�, then it is optimal not to replenish. The proof of this result is similarto the proof of the optimality of (s; S) policies in classical inventory theory. We arecurrently working on extending these results to more general problem settings.4 The two-customer problemWhen more than one customer is served, the problem becomes signi�cantly harder. Notonly do we have to decide which customers to visit next, but also how to combine theminto vehicle tours, and how much to deliver to each customer. Even if there are only twocustomers, these decisions may not be easy.In a two-customer IRP, there are two extreme solutions: visit each customer by itselfeach time, and always visit both customers together. It is easy to express the costassociated with these solutions, where for simplicity we have assumed that I1 = I2 = 0:vT = max(0; d Tu1min(C1; Q)e)c1 + max(0; d Tu2min(C2; Q)e)c2;5
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Q = 30Figure 1: Long-run average cost per day of the best d-day policywhere we have implicitly assumed that we have can either implement the solution withone vehicle or that we have two vehicles, andvT = d Tmin(C1u1 ; C2u2 ; Qu1+u2 )ec12;where c12 denotes the cost of the optimal traveling salesman tour through both customers.Since traveling salesman problems on two customers are easy to solve, it is still easyto �gure out which of these two extreme strategies is the best. However, there are otherstrategies possible: sometimes visit the customers together, and sometimes visit them bythemselves. Intuitively, we expect that when one customer has a much higher usage rateor a much smaller tank size than the other, we would visit that customer by itself severaltimes and occasionally visit the two of them together. However, what if this customercannot take a full truckload? Or, what if the two customers are close together? And, if6
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Q = 30Figure 2: Long-run average cost per day of the optimal policywe visit them together how much do we deliver to each of them? We soon realize thatthe answer is not so obvious.When the two customers are visited together, it is intuitively clear that given theamount delivered at the �rst customer, it is optimal to deliver as much as possible at thesecond customer (determined by the remaining amount in the vehicle, and the remainingcapacity at the second customer). Thus the problem of deciding how much to deliverto each customer involves a single decision. However, making that decision may not beeasy, as the following two-customer SIRP example shows.The product is delivered and consumed in discrete units. Each customer has a storagecapacity of 20 units. The daily demands of the customers are independent and identicallydistributed (across customers as well as across time), with P [demand = 0] = 0:4 andP [demand = 10] = 0:6. The shortage penalty is s1 = 1000 per unit shortage at customer1 and s2 = 1005 per unit shortage at customer 2. The vehicle capacity is 10 units.Every morning the inventory at the two customers is measured, and the decision7



maker decides how much to deliver to each customer. There are three possible vehicletours, namely tours exclusively to customers 1 and 2, with costs of 120 each, and a tourto both customers 1 and 2, with a cost of 180. Only one vehicle tour can be completedper day.This situation can be modeled as an in�nite horizon Markov decision process, withobjective to minimize the expected total discounted cost. Due to the small size of thestate space, it is possible to compute the optimal expected value and the optimal policy.Figure 3 shows the expected value (total discounted cost) as a function of the amountdelivered at customer 1 (and therefore also at customer 2), when the inventory at eachcustomer is 7, and both customers are to be visited in the next vehicle tour (which is theoptimal decision in the given state). It shows that the objective function is not unimodal,with a local minimum at 3, and a global minimum at 7. Consequently, just to decide howmuch to deliver to each customer may require solving a nonlinear optimization problemwith a nonunimodal objective function. This is a hard problem, for which improvingsearch methods are not guaranteed to lead to an optimal solution.It is also interesting to observe that it is optimal to deliver more at customer 1 thanat customer 2, although the shortage penalty at customer 2 is higher than the shortagepenalty at customer 1, and all other data, including demand probabilities, costs, andcurrent inventories, are the same for the two customers. However, this decision makessense when we look ahead at possible future scenarios. If in the next time period,customer 1 uses 10 units and customer 2 uses 0 units (with probability 0.24), then at thenext decision point the inventories will be 4 and 10 units respectively, and the vehiclewill replenish 10 units at customer 1. In all other cases (with probability 0.76), thevehicle will replenish 10 units at customer 2 in the next time period. Thus, in all cases,the vehicle will visit only one customer in the next time period, and it is more thanthree times as likely to be customer 2. Also, in all cases customer 2 will have 10 or moreunits in inventory after the delivery in the next time period, whereas customer 1 willhave only 4 units in inventory with probability 0.36. This illustrates the importance oflooking ahead more than one time period when choosing the best action.5 Solution approachesBefore discussing some of the solutions approaches that have been proposed and discussedin the literature, we present some general observations about the inventory routing prob-lem and some common elements found in most solution approaches.The inventory routing problem is a long-term dynamic control problem. This long-term control problem is already hard to formulate, it is almost impossible to solve.Therefore, almost all approaches that have been proposed and investigated up to nowsolve only a short-term planning problem. In early work, short-term was often just asingle day, later short-term was expanded to a couple of days.8
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Figure 3: Example illustrating that the objective function for determining the optimalamount to deliver to each customer may be nonunimodalTwo key issues need to be resolved with all of these approaches: how to model thelong-term e�ect of short-term decisions, and which customers to include in the short-termplanning period.A short-term approach has the tendency to defer as many deliveries as possibleto the next planning period, which may lead to an undesirable situation in the nextplanning period. Therefore, the proper projection of a long-term objective into a short-term planning problem is essential. The long-term e�ect of short-term decisions needsto capture the costs and bene�ts of delivering to a customer earlier than necessary.Delivering earlier than necessary, which usually means delivering less than a truck load,may lead to higher future distribution costs, but it reduces the risk of a stockout andmay thus reduce future shortage costs.We can distinguish two short-term approaches. In the �rst, it is assumed that allcustomers included in the short-term planning period have to be visited. In the second,9



it is assumed that customers included in the short-term planning period may be visited,but the decision whether or not to actually visit them still has to be made.Decisions regarding who needs to be visited and how much should be delivered areusually guided by the following assumptions about what constitute good solutions:� Always try to maximize the quantity delivered per visit.� Always try to send out trucks with a full load.When the short-term planning problem consists of a single day, the problem can beviewed as an extension of the vehicle routing problem (VRP) and solution techniquesfor the VRP can be adapted. Single day approaches usually base decisions on the lat-est inventory measurement and maybe on a predicted usage for that day. Therefore,they avoid the di�culty of forecasting long-term usage, which makes the problem muchsimpler.When the short-term planning problem consists of several days, the problem be-comes harder, but has the potential to yield much better solutions. Typically the re-sulting short-term problems are formulated as mathematical programs and solved usingdecomposition techniques, such as Lagrangean relaxation.5.1 Literature reviewIt is not our intention to provide a comprehensive review of the literature, but rather todiscuss papers that are representative of the solution approaches that have been proposedand investigated.Federgruen and Zipkin [FP84] approach the inventory routing problem as a singleday problem and capitalize on many of the ideas from vehicle routing. Their version ofthe problem has a plant with a limited amount of available inventory and the demandsper day at a customer are assumed to be a random variable. For a given day, the problemis to allocate this inventory among the customers so as to minimize transportation costsplus inventory and shortage costs at the end of the day (after the day's usage andreceipt of the day's delivery). Federgruen and Zipkin model the problem as a nonlinearinteger program. Because of the inventory and shortage costs and the limited amountof inventory available, not every customer will be selected to be visited every day. Thisis handled in the model by the use of a dummy route that includes all the customersnot receiving a delivery. The nonlinear integer program has the property that for anyassignment of customers to routes, the problem decomposes into an inventory allocationproblem which determines the inventory and shortage costs and a TSP for each vehiclewhich yields the transportation costs. This property is the key to the solution approachtaken. The idea is to construct an initial feasible solution and iteratively improve thesolution by exchanging customers between routes. Obviously, evaluating such exchangesis more computationally intensive than in standard vehicle routing algorithms. Each10



exchange de�nes a new customer to route assignment, which in turn de�nes a newinventory allocation problem and new TSPs.Golden, Assad, and Dahl [GAD84] develop a heuristic that tries to minimize costs ona single day while maintaining an \adequate" inventory at all customers. The heuristicstarts with computing the `urgency' of each customer. The urgency is determined bythe ratio of tank inventory level to tank size. All customers with an urgency smallerthan a certain threshold are excluded. Next, customers are selected to receive a deliveryone at a time according to the highest ratio of urgency to extra time required to visitthis customer. A large TSP tour is iteratively constructed. Initially, a time limit for thetotal travel time of the tour, say TMAX, is set to the number of vehicles multiplied bythe length of a day. Customers are added until this limit is reached or there are no morecustomers left. The �nal tour is partitioned into a set of feasible routes by enforcingthat each customer must be �lled up when it receives a delivery. If this turns out to beimpossible, the heuristic can be re-run with a smaller value for TMAX.Chien, Balakrishnan, and Wong [CBW89] also develop a single day approach, buttheirs is distinctly di�erent from that of Golden, Assad, and Dahl [GAD84], because itdoes not treat each day as a completely separate entity. By passing information fromone day to the next, the system simulates a multiple day planning model. Assumingthat the maximum usage per day for each customer is known, the daily pro�t can bede�ned in terms of a revenue per unit delivered and a penalty per unit of unsatis�eddemand (lost revenue). Their heuristic tries to maximize the total pro�t on a single day.Once a solution for one day is found, the results are used to modify the revenues for thenext day. Unsatis�ed demand today is re
ected by an increased revenue tomorrow. Aninteger program is created that handles the allocation of the limited inventory availableat the plant to the customers, the customer to vehicle assignments, and the routing. ALagrangean dual ascent method is used to solve the integer program.Fisher et al. [FGJK82], [BDF+83] study the inventory routing problem at Air Prod-ucts, a producer of industrial gases. The objective considered is pro�t maximization fromproduct distribution over several days. Rather than considering demand to be a randomvariable or completely deterministic, demand is given by upper and lower bounds on theamount to be delivered to each customer for every period in the planning horizon. Aninteger program is formulated that captures delivery volumes, assignment of customersto routes, assignments of vehicles to routes, and assignment of start times for routes.This integer program is solved using a Lagrangean dual ascent approach.In two companion papers, Dror and Ball [DBG85, DB87] propose a way to take intoconsideration what happens after the short-term planning period. Using the probabilitythat a customer will run out on a speci�c day in the planning period, the average cost todeliver to the customer, and the anticipated cost of a stockout, the optimal replenishmentday t� minimizing the expected total cost can be determined for each customer. If t�falls within the short-term planning period, the customer will de�nitely be visited, and11



a value ct is computed for each of the days in the planning period that re
ects theexpected increase in future cost if the delivery is made on day t instead of on t�. Ift� falls outside the short-term planning period a future bene�t gt can be computed formaking a delivery to the customer on day t of the short-term planning period. Thesecomputed values re
ect the long term e�ects of short term decisions. An integer programis then solved that assigns customers to a vehicle and a day, or just day, that minimizesthe sum of these costs plus the transportation costs. This leaves either TSP or VRPproblems to solve in the second stage.Some of the ideas of Dror and Ball are extended and improved in Trudeau et al.[TD92]. Dror and Levy [DL86] use a similar analysis to yield a weekly schedule, butthen apply node and arc exchanges to reduce costs in the planning period.Jaillet et al. [JHBD97, BHJD96, BHDJ97] discuss an extension of this idea. Theytake a rolling horizon approach to the problem by determining a schedule for two weeks,but only implementing the �rst week. The scenario includes a central depot and cus-tomers that need replenishing to prevent stockout, but also included is the idea of satel-lite facilities. Satellite facilities are locations other than the depot where trucks canbe re�lled. An analysis similar to Dror and Ball's is done to determine an optimal re-plenishment day for each customer, which translates to a strategy for determining howoften that customer should receive a delivery. A key di�erence is that only customersthat have an optimal replenishment day within the next two weeks are included in theschedule. Incremental costs are computed that are the cost for changing the next visitto a customer to a di�erent day but keeping the optimal schedule in the future. Thesecosts are used in an assignment problem formulation that assigns each customer to aday in the two week planning horizon. This again yields a VRP for each day, but onlythe �rst week is actually routed. At the beginning of the next week, the problem will besolved again for the next two week horizon.A slight variation on the inventory routing problem is the strategic inventory routingproblem discussed by Webb and Larson [WL95] and is related to Larson's earlier workon scheduling ocean vessels [Lar88]. For many companies, the 
eet of vehicles needs tobe purchased or leased months or even years before actual deliveries to customers starttaking place. The strategic inventory routing problem seeks to �nd the minimum 
eet sizeto service the customers from a single depot. This determination is based on informationcurrently known about customers' usage rates. Consequently, this minimum 
eet sizemust be able to handle a reasonable amount of variation in these usage rates. The 
eetsize estimate is determined by separating the customers into disjoint clusters and creatinga route sequence for each cluster. A route sequence is a permanent set of repeatingroutes. Customers are allowed to be on more than one route in the sequence. The routesequences are created using a savings approach that maximizes vehicle utilization, whiche�ectively minimizes the number of vehicles.Anily and Federgruen [AF90, AF91] look at minimizing long run average transporta-12



tion and inventory costs by determining long term routing patterns. The routing patternsare determined using a modi�ed circular partitioning scheme. After the customers arepartitioned, customers within a partition are divided into regions so as to make the de-mand of each region roughly equal to a truckload. A customer may appear in more thanone region, but then a certain percent of his demand is allocated to each region. Whenone customer in a region gets a visit, all customers in the region are visited. They alsodetermine a lower bound for the long run average cost to be able to evaluate how goodtheir routing patterns are.Using ideas similar to those of Anily and Federgruen, Gallego and Simchi-Levi[GSL90] evaluate the long run e�ectiveness of direct shipping (separate loads to eachcustomer). They conclude that direct shipping is at least 94% e�ective over all in-ventory routing strategies whenever minimal economic lot size is at least 71% of truckcapacity. This shows that direct shipping becomes a bad policy when many customersrequire signi�cantly less than a truckload, making more complicated routing policies theappropriate choice.Another adaptation of these ideas can be found in Bramel and Simchi-Levi [BSL95].They consider the variant of the IRP in which customers can hold an unlimited amountof inventory. To obtain a solution, they transform the problem to a capacitated con-centrator location problem (CCLP), solve the CCLP, and transform the solution backinto a solution to the IRP. The solution to the CCLP will partition the customers intodisjoint sets, which in the inventory routing problem, will become the �xed partitions.These partitions are then served similar to the regions of Anily and Federgruen. Chan,Federgruen, and Simchi-Levi [CFSL97] analyze zero-inventory ordering policies for thisproblem setting and derive asymptotic worst-case bounds on their performance.Minko� [Min93] formulated the stochastic inventory routing problem as a Markov de-cision process. He focused on the case with an unlimited number of vehicles. To overcomethe computational di�culties caused by large state spaces, he proposed a decompositionheuristic. The heuristic solves a linear program to allocate joint transportation costs toindividual customers, and then solves individual customer subproblems. The value func-tions of the subproblems are added to approximate the value function of the combinedproblem.6 Solution approaches under investigationIn the next two subsections, we propose two new solution approaches that we are cur-rently investigating. 13



6.1 An integer programming approach for the IRPWe have developed a two-phase algorithm for the IRP. In the �rst phase, we determinewhen and how much to deliver to each customer on each day of the planning period. Inthe second phase, given that we know how much to deliver to each customer on each dayof the planning period, we determine sets of delivery routes for each day.At the heart of the �rst phase is an integer program. De�ne the following twoquantities: Lti = max(0; tui� I0i ), i.e., a lower bound on the total volume that has to bedelivered to customer i by day t, and U ti = tui + Ci � I0i , i.e., an upper bound on thetotal volume that can be delivered to customer i up to day t. If dti represents the deliveryvolume to customer i on day t, then to ensure that no stockout occurs at customer i andto ensure that we do not exceed the inventory capacity at customer i, we need to havethat Lti � X1�s�t dsi � U ti 8i8t:The total volume that can be delivered on a single day is limited by a combinationof capacity and time constraints. Since vehicles are allowed to make multiple trips perday, we cannot simply limit the total volume delivered on a given day to the sum of thevehicle capacities.The best way to model the resource constraints with some degree of accuracy and tospecify a meaningful objective function is to explicitly use delivery routes. Therefore, letr represent a possible delivery route, Tr the duration of route r (as a fraction of a day),and cr the cost of executing route r. Furthermore, let xtr be a 0-1 variable indicatingwhether route r is used on day t or not. Then the resource constraints can be modeledas Xi:i2r dtir � Qxtr 8r8t;Xr Trxtr � m 8t;which ensures that we do not exceed the vehicle capacity on any of the selected routes andthat the time required to execute the selected routes does not exceed the time available.Consequently, the overall phase I model is given byminXt Xr crxtrLti � X1�s�t Xr:i2r dsir � U ti 8i8t;14



Xi:i2r dtir � Qxtr 8r8t;Xr Trxtr � m 8t:This model is not very practical for two reasons: the huge number of possible deliveryroutes and, although to a lesser extent, the length of the planning horizon. To makethis integer program computationally tractable we only consider a small (but good) setof delivery routes and aggregate time periods towards the end of the planning horizon.Aggregation is achieved by considering weeks rather than days towards the end ofthe planning horizon and using continuous variables rather than binary variables. Tohandle the approximate nature of the �nal part of the plan obtained this way, we embedthe algorithm in a rolling horizon framework in which the algorithm is invoked every kdays and only the �rst k days of the solution are actually implemented.Our approach to selecting a small but good set of delivery routes is based on theconcept of clusters. A cluster is a group of customers that can be served cost e�ectivelyby a single vehicle for a long period of time. Note that the cost of serving a cluster doesnot only depend on the geographic locations of the customers in the cluster, but alsoon whether the customers in the cluster have compatible inventory capacities and usagerates. After determining a set of disjoint clusters covering all customers, we consideronly routes visiting customers in the same cluster.The following approach is used to identify a good set of disjoint clusters covering allcustomers:1. Generate a large set of possible clusters.2. Estimate the cost of serving each cluster.3. Solve a set partitioning problem to select clusters.We use heuristic rules, mainly based on usage considerations, to limit the number ofpossible clusters. For example, �ve customers that all need a full truck load delivery perday will not be combined to form a cluster.We estimate the cost of serving a cluster by solving an integer program. Let cr denotethe cost of an optimal route r through a subset of the customers in a cluster. De�nethe following variables. The total volume yir delivered to customer i on route r in theplanning period and the route count zr, and consider the following modelminXr crzr15



subject to Xi:i2r yir � min(Q;Xi:i2rCi)zr 8r;yir � min(Q;Ci)zr 8r; 8i 2 r;Xr:i2r yir = Tui 8i;zr integer, yir � 0;which ensures that the total volume delivered on route r in the planning period is lessthan or equal to the minimum of the vehicle capacity and the total storage capacity timesthe number of times route r was executed, that we do not deliver more to a customerthan the minimum of the vehicle capacity and its tank capacity times the number oftimes route r was executed, and that the total volume delivered to a customer in theplanning period is equal to its total usage during the planning period.Note that the number of routes in a cluster is relatively small which makes this integerprogram relatively easy to solve. Furthermore, determining a set of disjoint clusters hasto be done only once as a preprocessing step before the actual planning starts.The solution to the phase I model tells us how much to deliver to each customer forthe next k days. This information is converted to a vehicle routing problem with timewindows (VRPTW) for each day as follows. For each customer i, the inventory I t�1i atthe start of day t can be computed as I0i +P1�s�t�1 dsi � (t � 1)ui. The time window[ati; bti] for customer i on day t is set to guarantee that the delivery dti can be made,i.e., ati = max(0; (dti � (Ci � I t�1i ))=ui) and bti = min(24; I t�1i =ui). We use a standardalgorithm for the VRPTW to solve these instances.For ease of exposition, we have ignored many of the important practical issues, suchas dispense times at customers and re�lling times at the facility. All these can be handledwithout complicating the model too much.6.2 A dynamic programming approach for the SIRPWe model the SIRP as a discrete time Markov decision process (MDP). At the beginningof each day, the inventory at each customer is measured. Then a decision is made regard-ing which customers' inventories to replenish, how much to deliver to each customer, howto combine customers into vehicle tours, and which vehicle tours to assign to each of thevehicles. We call such a decision an itinerary. A vehicle can perform more than one tourper day, as long as all tours assigned to a vehicle together do not take more than a day16



to complete. Thus, all vehicles are available at the beginning of each day, when the tasksfor that day are assigned. Although usage typically occurs throughout the day, and eachcustomer's inventory therefore varies during the day, we assume that each customer'sinventory is measured only at the beginning of the day, before decisions are made, andthe state of the MDP is updated accordingly. The expected cost is computed taking intoaccount the variation in inventory during the day, and the probability of stockout beforethe vehicle arrives at the customer's site.We focus on the in�nite horizon MDP; the �nite horizon case can be treated in asimilar way. The MDP has the following components:1. The state x is the current inventory at each customer. Thus the state space X is[0; C1]� [0; C2]� � � � � [0; Cn]. Let Xt 2 X denote the state at time t.2. The action space A(x) for each state x is the set of all itineraries that satisfythe tour duration constraints, such that the vehicles' capacities are not exceeded,and the customers' storage capacities are not exceeded after deliveries. Let A �Sx2X A(x) denote the set of all itineraries. Let At 2 A(Xt) denote the itinerarychosen at time t.3. The known demand probability distribution gives a known Markov transition func-tion Q, according to which transitions occur, i.e., for any state x 2 X , and anyitinerary a 2 A(x),P [Xt+1 2 B j Xt = x;At = a] = ZB Q[dy j x; a]4. Two costs are taken into account, namely transportation costs, which depend onthe vehicle tours chosen, and a penalty when customers run out of inventory. Letc(x; a) denote the expected daily cost incurred if the process is in state x at thebeginning of the day, and itinerary a 2 A(x) is implemented.5. The objective is to minimize the expected total discounted cost over an in�nitehorizon (T =1). Let � 2 [0; 1) denote the discount factor. Let V �(x) denote theoptimal expected cost given that the initial state is x, i.e.,V �(x) � inffAtg1t=0E " 1Xt=0 �tc (Xt; At)�����X0 = x# (1)The actions At are restricted such thatAt 2 A(Xt) for each t, and At has to dependonly on the history (X0; A0; X1; : : : ; Xt) of the process up to time t, i.e., when wedecide on an itinerary at time t, we do not know what is going to happen in thefuture. 17



Under certain conditions that are not very restrictive, the optimal expected costin (1) is achieved by the class of stationary policies �, which is the set of all functionsthat depend only on the current state and return an admissible itinerary for the currentstate. That is, a stationary policy � 2 � is a function � : X 7! A, such that �(x) 2 A(x)for all x 2 X . It follows that for any x 2 X ,V �(x) = inf�2�E " 1Xt=0 �tc (Xt; �(Xt))�����X0 = x#= infa2A(x)�c(x; a) + � ZX V �(y)Q[dy j x; a]� : (2)To determine an optimal policy, we need to solve the optimality equation (2). Thethree major computational requirements involved in solving (2) are the following.1. Estimating the optimal cost function V �.2. Estimating the integral in (2).3. Solving the minimization problem on the right hand side of (2) to determine theoptimal itinerary for each state.Rarely can these three computational tasks be completed sequentially. Usually aniterative procedure has to be used.A number of algorithms has been developed to solve the optimality equation (towithin a speci�ed tolerance ") if X is �nite and the optimization problem on the righthand side can be solved in �nite time (to within a speci�ed tolerance �). Examplesare value iteration or successive approximation, policy iteration, and modi�ed policyiteration. These algorithms are practical only if the state space X is small, and theoptimization problem on the right hand side can be solved e�ciently. None of theserequirements are satis�ed by practical instances of the SIRP, as the state space X is usu-ally extremely large, even if customers' inventories are discretized, and the optimizationproblem on the right hand side has a vehicle routing problem as a special case, whichis NP-hard. Our approach is therefore to develop approximation methods based on theMDP formulation above.One approach is to approximate the optimal cost function V �(x) with a functionV̂ (x; �) that depends on a vector of parameters �. Some of the issues to be addressedwhen using this approximation method are the following.1. The functional form of the approximating function V̂ . This may be the mostimportant step in the approximation method, and also the one in which an intuitiveunderstanding of the nature of the problem and the optimal value function playsthe greatest role. A fair amount of experimentation is needed to develop and test18



di�erent approximations. Functions V̂ that are linear in � have the advantage thatestimation algorithms for � with good theoretical properties have been developed,as discussed below.2. Computational methods to estimate good values for the parameters �. Bertsekasand Tsitsiklis [BT96] discuss a number of simulation based methods. They developpolicy evaluation algorithms for which the parameter estimates �t converge ast ! 1, if V̂ is linear in �, and the usual conditions for the convergence of manystochastic approximation methods hold. In addition, �t converges to parameters ��that give a best �t of the expected value function V � under stationary policy �, ifthe errors are weighted by the invariant distribution under policy �. However, manyof the algorithms exhibit undesirable behavior, and many theoretical properties ofthese approximation methods remain to be established.3. The integral in (2) can be computed explicitly only for some simple demand distri-butions. If the number of customers is small (n � 8), numerical integration can beused. If the demand distributions are more complex, and the number of customersis larger, simulation is usually the most e�cient method to evaluate the integral.4. Methods have to be developed to solve the minimization problem on the right handside of (2). This optimization problem probably requires signi�cant computationale�ort to solve to optimality, because it involves determining delivery quantitiesas well as vehicle routes. Therefore, it seems that heuristic methods have to bedeveloped to �nd good solutions. Such a heuristic has to provide a good trade-o�between computational speed and solution quality, as the optimization problemhas to be solved thousands of times while estimating the parameters �, and thequality of the eventual approximation V̂ and associated policy �̂ may depend to alarge extent on the quality of the heuristic solutions to the minimization problem.7 Practical IssuesA number of important issues that occur in practice, and that have not been discussedabove, are addressed in this section.Usage rates are assumed to be constant in the IRP and probability distributions ofthe demands between consecutive decision points are assumed to be known in the SIRP.In practice, the usage rates or the probability distributions of the demands are typicallynot known, but have to be estimated from inventory measurements. Often these dataare not collected at regular intervals, and thus it may not be easy to convert them tousage rates or probability distributions of demands. The data are also subject to othersources of noise, such as measurement errors, which cause several statistical problems.These estimation problems have to be resolved before an IRP or SIRP can be solved19



in practice. Furthermore, the models ignore the typical time varying characteristics ofusage, such as weekly and seasonal cycles, and any dependence between the usage onsuccessive days.Currently the costs involved in making inventory measurements are not insigni�cant,and these measurements are usually made at most once per day. One should be able toobtain fairly accurate estimates of the inventory levels at times between measurementsbased on the most recent measurements and past data of usage rates. Exactly how todo this estimation has to be addressed. A related problem may be to determine anoptimal policy for making these costly measurements. However, it is expected that thetechnology will soon be available to continuously track customers' inventories at verylow cost. Therefore, in the SIRP the inventories are modeled as known at the times thatdecisions are made, and customers' future demands are modeled as random.The models presented manage only a single resource, namely \vehicles", to performdistribution tasks. In practice, other resources are required as well, for example drivers.The work rules that apply to drivers are quite di�erent from those that apply to vehicles;for example, a vehicle can work more hours per day than a driver. The assignment ofcustomers to tours in such a way that these tours can be performed by the availabledrivers and make the best use of the drivers' time, is therefore likely to be at least asimportant a consideration as the utilization of vehicles. If a su�cient number of vehiclesare available, then driver considerations are the only constraints, and the objective shouldbe to develop optimal driver itineraries.It is not only the availability of drivers that restricts the set of feasible routes. Oftendeliveries at customers can only take place during speci�c time periods of the day.Many companies operate a heterogeneous 
eet of vehicles instead of a homogeneous
eet of vehicles.We have considered the distribution of a product from a single plant. Often a com-pany operates several plants that produce the same product, and distribution to somecustomers can occur from a number of plants. It may be optimal to distribute to acustomer from di�erent plants on di�erent days, depending on how well the customercan be combined in a vehicle tour with the other customers that are to be visited on theparticular day.Frequently, a company produces and distributes several products, using the same
eet of vehicles to transport the di�erent products. Examples are the transportation ofdi�erent grades of oil in compartmentalized vehicles, and the replenishment of beveragesand snacks in vending machines and at restaurants. In this multi-product environment,besides deciding which customers to visit next and how to combine them into vehicletours, we have to decide how much of each product to deliver to each visited customer.We have assumed that a su�cient amount of the product is always available for distri-bution, and issues related to production capacity and scheduling are ignored. However,it is often necessary to coordinate production, storage, and transportation.20



Inventory holding cost have not been addressed in the problem de�nition. In fact,this makes the problem more generic, because the treatment of inventory holding costdepends on the ownership and storage management of inventory at the plant and at thestorage facilities of customers. For example, the distributor may be the same companythat operates the production plant as well as the facilities at the next level of the distri-bution network (the \customers"), or the producer may distribute the product to andmanage the inventory at independent customers (called vendor managed resupply), or anindependent third party logistics provider may distribute the product from the producerto the customers, and manage their inventory. The treatment of inventory holding costsare di�erent for the three cases above, but in all cases it can be incorporated relativelyeasily with the other costs.System disruptions such as product shortages at the plant, vehicle breakdowns, workstoppages, and inventory measurement failures, are not incorporated. To address theseissues, policies have to be developed to provide recourse actions when disruptions occur.Travel times and costs are assumed to be known. A more realistic model may incor-porate random travel times and costs. However, unless transportation occurs in heavilycongested networks, a model assuming known travel times should give good results. Iftransportation networks are very congested, then the time of travel usually has a largeimpact on travel time besides the chosen route, and many other scheduling and routingissues have to be addressed. As the objective of the SIRP is to minimize the expected sumof the costs, only the expected travel costs need to be known, and not their distributions.Many of the practical issues raised above can be easily incorporated in the modelsdiscussed and many of the solution approaches presented can be modi�ed to handlethem.8 Test problemsWe would like to provide researchers with challenging instances of di�cult routing prob-lems. A standard set of instances allows the comparison of the performance of algorithmsand often it also provides an important stimulus for research. We have created a set ofinstances of the IRP that we hope will form such a test set. They have been derivedfrom real data from a company we work with. They are available via the world wideweb at http://tli.isye.gatech.edu/Testcases/irp.html.References[AF90] S. Anily and A. Federgruen. One warehouse multiple retailer systems withvehicle routing costs. Management Science, 36(1):92{114, 1990.21
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