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Abstract

Vendor managed resupply is an emerging trend in logistics and refers to situ-
ations in which a supplier manages the inventory replenishment of its customers.
Vendors save on distribution cost by being able to better coordinate deliveries to
different customers, and customers do not have to dedicate resources to inventory
management. We present and discuss the inventory routing problem. The inven-
tory routing problem captures the basic characteristics of situations where vendor
managed resupply may be used, and methodologies developed for its solution could
become building blocks for logistics planning systems.

October 1997

1 Introduction

The role of logistics management is changing. Many companies are realizing that value
for a customer can, in part, be created through logistics management [JH96]. Customer
value can be created through product availability, timeliness and consistency of delivery,
ease of placing orders, and other elements of logistics service. Consequently, logistics
service is becoming recognized as an essential element of customer satisfaction in a
growing number of product markets today.

Vendor managed resupply is an example of value creating logistics. Vendor managed
resupply is an emerging trend in logistics and refers to a situation in which a supplier
manages the inventory replenishment of its customers. Vendor managed resupply cre-
ates value for both suppliers and customers, i.e., a win-win situation. Vendors save on
distribution cost by being able to better coordinate deliveries to different customers, and
customers do not have to dedicate resources to inventory management.

!This research was supported by NSF Grant No. DDM-9115768



Different industries are considering implementing vendor managed resupply. Tradi-
tionally, vendor managed resupply has been high on the wish list of logistics managers in
the petrochemical and industrial gas industry. More recently, the automotive industry
(parts distribution) and the soft drink industry (vending machines) have entered this
arena.

One reason that vendor managed resupply is receiving a lot of attention is the rapidly
decreasing cost of technology that allows monitoring customers’ inventories. Vendor
managed resupply requires accurate and timely information about the inventory status
of customers.

If vendor managed resupply is a win-win situation for both suppliers and customers,
and relatively cheap monitoring technology is available, then why is vendor managed
resupply not applied on a larger scale? One reason is that it is a complex task to
develop a distribution strategy that minimizes the number of stockouts and at the same
time realizes the potential savings in distribution costs. The task of developing such a
distribution strategy is called the inventory routing problem.

In this paper, we present and discuss the inventory routing problem (IRP) and ap-
proaches for its solution. The IRP is a challenging and intriguing problem that also
provides a good starting point for studying the integration of different components of
the logistics value chain, i.e., inventory management and transportation. Integration
of production and transportation is another hot item on the wish list of logistics man-
agers. Traditionally, production and transportation have been dealt with separately.
However, it is expected that improvements may be obtained by coordinating production
and transportation. It is less obvious how to do it.

The purpose of this paper is to introduce the IRP, to discuss its intrinsic complexity,
to review some of the methods that have been proposed for its solution, and to present
two new approaches that we are currently investigating.

The remainder of the paper is organized as follows. In Section 2, we formally define
the IRP. In Sections 3 and 4, we take a closer look at single and two-customer prob-
lems. In Section 5, we review the literature. In Section 6, we propose two new solution
approaches. In Section 7, we address some practical issues. Finally, in Section 8, we
propose the creation of set of standard test problems.

2 The Inventory Routing Problem

The IRP is concerned with the repeated distribution of a single product, from a single
facility, to a set of n customers over a given planning horizon of length T, possibly
infinity. Customer ¢ consumes the product at a given rate u; (volume per day) and has
the capability to maintain a local inventory of the product up to a maximum of C;.
The inventory at customer ¢ is I; at time 0. A fleet of m homogeneous vehicles, with
capacity ¢, is available for the distribution of the product. The objective is to minimize



the average distribution costs during the planning period without causing stockouts at
any of the customers.
Three decisions have to be made:

e When to serve a customer?
e How much to deliver to a customer when it is served?
¢ Which delivery routes to use?

The IRP differs from traditional vehicle routing problems because it is based on
customers’ usage rather than customers’ orders.

The IRP defined above is deterministic and static due to our assumption that usage
rates are known and constant. Obviously, in real-life, the problem is stochastic and
dynamic. Therefore, an important variant of the IRP is the stochastic inventory routing
problem (SIRP). The SIRP differs from the IRP in that the future demand of a customer
is uncertain. In the SIRP, we are given the probability distribution of the demand u;; of
customer ¢ between decision points t and t+1 for¢t = 1,...,7—1. Because future demand
is uncertain, there is often a positive probability that a customer runs out of stock, i.e,
stockouts cannot always be prevented. Stockout costs can be modeled in various ways.
We suggest a penalty function with a fixed as well as a variable component, i.e., 5; + s;d,
where 5; is a fixed stockout cost, s; is a variable stockout cost (per unit shortage), and
d is the shortage, i.e., the demand between the time of stockout and the replenishment
delivery. The objective is to choose a delivery policy that minimizes the average cost per
unit time, or the expected total discounted cost, over the planning horizon.

To gain a better understanding of the IRP and SIRP, as well as the difference between
them, we analyze single and two-customer problems in the next two sections.

3 The single customer problem

The single customer analysis also applies when we have multiple customers but always
visit only a single customer on a vehicle trip (direct delivery), and we have a sufficent
number of vehicles to visit all customers that we want to visit in a day.

First, we consider the IRP. Let the usage rate of the customer be u, the tank capacity
of the customer be C, the initial inventory level be I, the delivery cost to the customer
be ¢, the vehicle capacity be @, and the planning horizon be T.

It is easy to see that an optimal policy is to fill up the tank precisely at the time it
becomes empty. Therefore the cost vy for a planning period of length T is

Tu—1
min(C,Q)UC'

vy = max(0, [



Next, we consider the SIRP in which we decide daily whether to make a delivery
to the customer or not. The demand U between consecutive decision points, i.e., the
demand per day, is a random variable with known probability distribution.

Jaillet et al. [JHBD97] analyze the “d-day” policy that makes a delivery to the
customer every d days and delivers as much as possible, unless a stockout occurs earlier.
When a stockout occurs earlier, the truck is sent right away which incurs a cost 5.
It is assumed that deliveries are instantaneous, so no additional stockout penalties are
incurred. Let p; be the probability that a stockout first occurs on day j (1 < j <d—1).
Then p=py +p2+ ...+ ps_1 is the probability that there is a stockout and 1 — p is the
probability that there is no stockout in the period [1,...,d — 1]. Furthermore, let vy(d)
be the expected total cost of this policy over a planning period of length 7. We now
have for d > T

vr(d)= > pilor—i(d)+ )

1<j<T

and for d < T

As a consequence, the expected total cost of filling up a customer’s tank every d days
over a T-day period (17" > d) is given by

vr(d) = o(d) + 5(d)T + f(T',d)

where a(d) is a constant depending only on d, f(7,d) a function that goes to zero
exponentially fast as T goes to oo, and

_ pS4(1—-p)e

d) =
ﬁ( ) lejsd]p] ’

with pg = 1 — p. The value 8(d) is the long-run average cost per day. To find the best
policy in this class, we need to minimize vr(d), which for large T' means finding a d for
which §(d) is minimum.

The above d-day policies have the advantage that they can be used even if the
inventory at the customer cannot be measured and we are informed only when a stockout
occurs. The d-day policies have a number of disadvantages though. The first is that a
d-day policy is not optimal in general if the inventory at the customer can be measured.
Intuitively it is clear that policies that use information on the amount of inventory at
the customer can do better than d-day policies. We give an example below in which
the best d-day policy is compared with the optimal policy. The second disadvantage is
that the stockout probabilities p; used in the analysis of d-day policies are very hard



to obtain, and may not be well defined, unless the inventory at the customer is always
replenished up to the same level (for example, if the vehicle capacity is at least as large
as the customer’s storage capacity). The reason is that the probability p; of a stockout
exactly j days after the previous replenishment depends on the inventory level after
replenishment.

To compare the best d-day policy with the optimal policy, consider a customer whose
demand is uniformly distributed on the integers from 1 to 20. There is a fixed cost of 40
to replenish the customer, and an additional penalty of 50 each day that the customer
experiences a shortage. Figure 1 shows the long-run average cost per day of the best
d-day policy, as a function of the customer’s storage capacity C', for different values of
the vehicle capacity ). Figure 2 shows the optimal long-run average cost per day, again
as a function of the customer’s storage capacity C, for different values of the vehicle
capacity ¢). If the vehicle capacity ¢ = 10, then the customer is visited almost every
day under the optimal policy, and the best d-day policy has d* = 1, i.e., the customer
is visited every day. The long-run average cost per day is therefore almost the same
for the optimal policy and the best d-day policy. However, if the vehicle capacity @ is
larger than 10, then the optimal policy benefits from the greater flexibility of making
the replenishment decision depend on the inventory at the customer. For example, if
the vehicle capacity is 14 or 16, the customer is visited on average about twice every
three days under the optimal policy, while a d-day policy visits the customer every day
or every other day.

If the vehicle capacity @) is at least as large as the customer’s storage capacity C', then
it can be shown that there is an optimal policy 7* with a threshold [*, such that if the
inventory at the customer is less than [*, then it is optimal to replenish the customer’s
inventory up to the customer’s storage capacity C', and if the inventory at the customer
is more than [*, then it is optimal not to replenish. The proof of this result is similar
to the proof of the optimality of (s,9) policies in classical inventory theory. We are
currently working on extending these results to more general problem settings.

4 The two-customer problem

When more than one customer is served, the problem becomes significantly harder. Not
only do we have to decide which customers to visit next, but also how to combine them
into vehicle tours, and how much to deliver to each customer. Even if there are only two
customers, these decisions may not be easy.

In a two-customer IRP, there are two extreme solutions: visit each customer by itself
each time, and always visit both customers together. It is easy to express the cost
associated with these solutions, where for simplicity we have assumed that Iy = I, = 0:

Tu1 TUQ _‘ )C
2
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vy = max(0, |
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Figure 1: Long-run average cost per day of the best d-day policy

where we have implicitly assumed that we have can either implement the solution with
one vehicle or that we have two vehicles, and

T
UT = [ . Ol 02 Q —‘6127
mm(ﬁ’ uy u1+u2)

where ¢15 denotes the cost of the optimal traveling salesman tour through both customers.

Since traveling salesman problems on two customers are easy to solve, it is still easy
to figure out which of these two extreme strategies is the best. However, there are other
strategies possible: sometimes visit the customers together, and sometimes visit them by
themselves. Intuitively, we expect that when one customer has a much higher usage rate
or a much smaller tank size than the other, we would visit that customer by itself several
times and occasionally visit the two of them together. However, what if this customer
cannot take a full truckload? Or, what if the two customers are close together? And, if
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Figure 2: Long-run average cost per day of the optimal policy

we visit them together how much do we deliver to each of them? We soon realize that
the answer is not so obvious.

When the two customers are visited together, it is intuitively clear that given the
amount delivered at the first customer, it is optimal to deliver as much as possible at the
second customer (determined by the remaining amount in the vehicle, and the remaining
capacity at the second customer). Thus the problem of deciding how much to deliver
to each customer involves a single decision. However, making that decision may not be
easy, as the following two-customer SIRP example shows.

The product is delivered and consumed in discrete units. Each customer has a storage
capacity of 20 units. The daily demands of the customers are independent and identically
distributed (across customers as well as across time), with Pldemand = 0] = 0.4 and
Pldemand = 10] = 0.6. The shortage penalty is s; = 1000 per unit shortage at customer
1 and s = 1005 per unit shortage at customer 2. The vehicle capacity is 10 units.

Every morning the inventory at the two customers is measured, and the decision



maker decides how much to deliver to each customer. There are three possible vehicle
tours, namely tours exclusively to customers 1 and 2, with costs of 120 each, and a tour
to both customers 1 and 2, with a cost of 180. Only one vehicle tour can be completed
per day.

This situation can be modeled as an infinite horizon Markov decision process, with
objective to minimize the expected total discounted cost. Due to the small size of the
state space, it is possible to compute the optimal expected value and the optimal policy.

Figure 3 shows the expected value (total discounted cost) as a function of the amount
delivered at customer 1 (and therefore also at customer 2), when the inventory at each
customer is 7, and both customers are to be visited in the next vehicle tour (which is the
optimal decision in the given state). It shows that the objective function is not unimodal,
with a local minimum at 3, and a global minimum at 7. Consequently, just to decide how
much to deliver to each customer may require solving a nonlinear optimization problem
with a nonunimodal objective function. This is a hard problem, for which improving
search methods are not guaranteed to lead to an optimal solution.

It is also interesting to observe that it is optimal to deliver more at customer 1 than
at customer 2, although the shortage penalty at customer 2 is higher than the shortage
penalty at customer 1, and all other data, including demand probabilities, costs, and
current inventories, are the same for the two customers. However, this decision makes
sense when we look ahead at possible future scenarios. If in the next time period,
customer 1 uses 10 units and customer 2 uses 0 units (with probability 0.24), then at the
next decision point the inventories will be 4 and 10 units respectively, and the vehicle
will replenish 10 units at customer 1. In all other cases (with probability 0.76), the
vehicle will replenish 10 units at customer 2 in the next time period. Thus, in all cases,
the vehicle will visit only one customer in the next time period, and it is more than
three times as likely to be customer 2. Also, in all cases customer 2 will have 10 or more
units in inventory after the delivery in the next time period, whereas customer 1 will
have only 4 units in inventory with probability 0.36. This illustrates the importance of
looking ahead more than one time period when choosing the best action.

5 Solution approaches

Before discussing some of the solutions approaches that have been proposed and discussed
in the literature, we present some general observations about the inventory routing prob-
lem and some common elements found in most solution approaches.

The inventory routing problem is a long-term dynamic control problem. This long-
term control problem is already hard to formulate, it is almost impossible to solve.
Therefore, almost all approaches that have been proposed and investigated up to now
solve only a short-term planning problem. In early work, short-term was often just a
single day, later short-term was expanded to a couple of days.
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Figure 3: Example illustrating that the objective function for determining the optimal
amount to deliver to each customer may be nonunimodal

Two key issues need to be resolved with all of these approaches: how to model the
long-term effect of short-term decisions, and which customers to include in the short-term
planning period.

A short-term approach has the tendency to defer as many deliveries as possible
to the next planning period, which may lead to an undesirable situation in the next
planning period. Therefore, the proper projection of a long-term objective into a short-
term planning problem is essential. The long-term effect of short-term decisions needs
to capture the costs and benefits of delivering to a customer earlier than necessary.
Delivering earlier than necessary, which usually means delivering less than a truck load,
may lead to higher future distribution costs, but it reduces the risk of a stockout and
may thus reduce future shortage costs.

We can distinguish two short-term approaches. In the first, it is assumed that all
customers included in the short-term planning period have to be visited. In the second,



it is assumed that customers included in the short-term planning period may be visited,
but the decision whether or not to actually visit them still has to be made.

Decisions regarding who needs to be visited and how much should be delivered are
usually guided by the following assumptions about what constitute good solutions:

e Always try to maximize the quantity delivered per visit.
e Always try to send out trucks with a full load.

When the short-term planning problem consists of a single day, the problem can be
viewed as an extension of the vehicle routing problem (VRP) and solution techniques
for the VRP can be adapted. Single day approaches usually base decisions on the lat-
est inventory measurement and maybe on a predicted usage for that day. Therefore,
they avoid the difficulty of forecasting long-term usage, which makes the problem much
simpler.

When the short-term planning problem consists of several days, the problem be-
comes harder, but has the potential to yield much better solutions. Typically the re-
sulting short-term problems are formulated as mathematical programs and solved using
decomposition techniques, such as Lagrangean relaxation.

5.1 Literature review

It is not our intention to provide a comprehensive review of the literature, but rather to
discuss papers that are representative of the solution approaches that have been proposed
and investigated.

Federgruen and Zipkin [FP84] approach the inventory routing problem as a single
day problem and capitalize on many of the ideas from vehicle routing. Their version of
the problem has a plant with a limited amount of available inventory and the demands
per day at a customer are assumed to be a random variable. For a given day, the problem
is to allocate this inventory among the customers so as to minimize transportation costs
plus inventory and shortage costs at the end of the day (after the day’s usage and
receipt of the day’s delivery). Federgruen and Zipkin model the problem as a nonlinear
integer program. Because of the inventory and shortage costs and the limited amount
of inventory available, not every customer will be selected to be visited every day. This
is handled in the model by the use of a dummy route that includes all the customers
not receiving a delivery. The nonlinear integer program has the property that for any
assignment of customers to routes, the problem decomposes into an inventory allocation
problem which determines the inventory and shortage costs and a TSP for each vehicle
which yields the transportation costs. This property is the key to the solution approach
taken. The idea is to construct an initial feasible solution and iteratively improve the
solution by exchanging customers between routes. Obviously, evaluating such exchanges
is more computationally intensive than in standard vehicle routing algorithms. FEach

10



exchange defines a new customer to route assignment, which in turn defines a new
inventory allocation problem and new TSPs.

Golden, Assad, and Dahl [GAD84] develop a heuristic that tries to minimize costs on
a single day while maintaining an “adequate” inventory at all customers. The heuristic
starts with computing the ‘urgency’ of each customer. The urgency is determined by
the ratio of tank inventory level to tank size. All customers with an urgency smaller
than a certain threshold are excluded. Next, customers are selected to receive a delivery
one at a time according to the highest ratio of urgency to extra time required to visit
this customer. A large TSP tour is iteratively constructed. Initially, a time limit for the
total travel time of the tour, say TMAX, is set to the number of vehicles multiplied by
the length of a day. Customers are added until this limit is reached or there are no more
customers left. The final tour is partitioned into a set of feasible routes by enforcing
that each customer must be filled up when it receives a delivery. If this turns out to be
impossible, the heuristic can be re-run with a smaller value for TMAX.

Chien, Balakrishnan, and Wong [CBW89] also develop a single day approach, but
theirs is distinctly different from that of Golden, Assad, and Dahl [GADS84], because it
does not treat each day as a completely separate entity. By passing information from
one day to the next, the system simulates a multiple day planning model. Assuming
that the maximum usage per day for each customer is known, the daily profit can be
defined in terms of a revenue per unit delivered and a penalty per unit of unsatisfied
demand (lost revenue). Their heuristic tries to maximize the total profit on a single day.
Once a solution for one day is found, the results are used to modify the revenues for the
next day. Unsatisfied demand today is reflected by an increased revenue tomorrow. An
integer program is created that handles the allocation of the limited inventory available
at the plant to the customers, the customer to vehicle assignments, and the routing. A
Lagrangean dual ascent method is used to solve the integer program.

Fisher et al. [FGJKS&2], [BDF*83] study the inventory routing problem at Air Prod-
ucts, a producer of industrial gases. The objective considered is profit maximization from
product distribution over several days. Rather than considering demand to be a random
variable or completely deterministic, demand is given by upper and lower bounds on the
amount to be delivered to each customer for every period in the planning horizon. An
integer program is formulated that captures delivery volumes, assignment of customers
to routes, assignments of vehicles to routes, and assignment of start times for routes.
This integer program is solved using a Lagrangean dual ascent approach.

In two companion papers, Dror and Ball [DBG85, DB87] propose a way to take into
consideration what happens after the short-term planning period. Using the probability
that a customer will run out on a specific day in the planning period, the average cost to
deliver to the customer, and the anticipated cost of a stockout, the optimal replenishment
day t* minimizing the expected total cost can be determined for each customer. If ¢*
falls within the short-term planning period, the customer will definitely be visited, and
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a value ¢; is computed for each of the days in the planning period that reflects the
expected increase in future cost if the delivery is made on day ¢ instead of on t*. If
t* falls outside the short-term planning period a future benefit g; can be computed for
making a delivery to the customer on day ¢ of the short-term planning period. These
computed values reflect the long term effects of short term decisions. An integer program
is then solved that assigns customers to a vehicle and a day, or just day, that minimizes
the sum of these costs plus the transportation costs. This leaves either TSP or VRP
problems to solve in the second stage.

Some of the ideas of Dror and Ball are extended and improved in Trudeau et al.
[TD92]. Dror and Levy [DL86] use a similar analysis to yield a weekly schedule, but
then apply node and arc exchanges to reduce costs in the planning period.

Jaillet et al. [JHBD97, BHJD96, BHDJ97] discuss an extension of this idea. They
take a rolling horizon approach to the problem by determining a schedule for two weeks,
but only implementing the first week. The scenario includes a central depot and cus-
tomers that need replenishing to prevent stockout, but also included is the idea of satel-
lite facilities. Satellite facilities are locations other than the depot where trucks can
be refilled. An analysis similar to Dror and Ball’s is done to determine an optimal re-
plenishment day for each customer, which translates to a strategy for determining how
often that customer should receive a delivery. A key difference is that only customers
that have an optimal replenishment day within the next two weeks are included in the
schedule. Incremental costs are computed that are the cost for changing the next visit
to a customer to a different day but keeping the optimal schedule in the future. These
costs are used in an assignment problem formulation that assigns each customer to a
day in the two week planning horizon. This again yields a VRP for each day, but only
the first week is actually routed. At the beginning of the next week, the problem will be
solved again for the next two week horizon.

A slight variation on the inventory routing problem is the strategic inventory routing
problem discussed by Webb and Larson [WL95] and is related to Larson’s earlier work
on scheduling ocean vessels [Lar88]. For many companies, the fleet of vehicles needs to
be purchased or leased months or even years before actual deliveries to customers start
taking place. The strategic inventory routing problem seeks to find the minimum fleet size
to service the customers from a single depot. This determination is based on information
currently known about customers’ usage rates. Consequently, this minimum fleet size
must be able to handle a reasonable amount of variation in these usage rates. The fleet
size estimate is determined by separating the customers into disjoint clusters and creating
a route sequence for each cluster. A route sequence is a permanent set of repeating
routes. Customers are allowed to be on more than one route in the sequence. The route
sequences are created using a savings approach that maximizes vehicle utilization, which
effectively minimizes the number of vehicles.

Anily and Federgruen [AF90, AF91] look at minimizing long run average transporta-
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tion and inventory costs by determining long term routing patterns. The routing patterns
are determined using a modified circular partitioning scheme. After the customers are
partitioned, customers within a partition are divided into regions so as to make the de-
mand of each region roughly equal to a truckload. A customer may appear in more than
one region, but then a certain percent of his demand is allocated to each region. When
one customer in a region gets a visit, all customers in the region are visited. They also
determine a lower bound for the long run average cost to be able to evaluate how good
their routing patterns are.

Using ideas similar to those of Anily and Federgruen, Gallego and Simchi-Levi
[GSLI0] evaluate the long run effectiveness of direct shipping (separate loads to each
customer). They conclude that direct shipping is at least 94% effective over all in-
ventory routing strategies whenever minimal economic lot size is at least 71% of truck
capacity. This shows that direct shipping becomes a bad policy when many customers
require significantly less than a truckload, making more complicated routing policies the
appropriate choice.

Another adaptation of these ideas can be found in Bramel and Simchi-Levi [BSL95].
They consider the variant of the IRP in which customers can hold an unlimited amount
of inventory. To obtain a solution, they transform the problem to a capacitated con-
centrator location problem (CCLP), solve the CCLP, and transform the solution back
into a solution to the IRP. The solution to the CCLP will partition the customers into
disjoint sets, which in the inventory routing problem, will become the fixed partitions.
These partitions are then served similar to the regions of Anily and Federgruen. Chan,
Federgruen, and Simchi-Levi [CFSL97] analyze zero-inventory ordering policies for this
problem setting and derive asymptotic worst-case bounds on their performance.

Minkoff [Min93] formulated the stochastic inventory routing problem as a Markov de-
cision process. He focused on the case with an unlimited number of vehicles. To overcome
the computational difficulties caused by large state spaces, he proposed a decomposition
heuristic. The heuristic solves a linear program to allocate joint transportation costs to
individual customers, and then solves individual customer subproblems. The value func-
tions of the subproblems are added to approximate the value function of the combined
problem.

6 Solution approaches under investigation

In the next two subsections, we propose two new solution approaches that we are cur-
rently investigating.

13



6.1 An integer programming approach for the IRP

We have developed a two-phase algorithm for the IRP. In the first phase, we determine
when and how much to deliver to each customer on each day of the planning period. In
the second phase, given that we know how much to deliver to each customer on each day
of the planning period, we determine sets of delivery routes for each day.

At the heart of the first phase is an integer program. Define the following two
quantities: L! = max(0,tu; — I?), i.e., a lower bound on the total volume that has to be
delivered to customer ¢ by day ¢, and U = tu; + C; — I?, i.e., an upper bound on the
total volume that can be delivered to customer 7 up to day ¢. If d! represents the delivery
volume to customer 7 on day t, then to ensure that no stockout occurs at customer 7 and
to ensure that we do not exceed the inventory capacity at customer ¢, we need to have
that

LE< Y di< U Vivt.
1<s<t

The total volume that can be delivered on a single day is limited by a combination
of capacity and time constraints. Since vehicles are allowed to make multiple trips per
day, we cannot simply limit the total volume delivered on a given day to the sum of the
vehicle capacities.

The best way to model the resource constraints with some degree of accuracy and to
specify a meaningful objective function is to explicitly use delivery routes. Therefore, let
r represent a possible delivery route, T, the duration of route r (as a fraction of a day),
and ¢, the cost of executing route r. Furthermore, let ! be a 0-1 variable indicating
whether route r is used on day t or not. Then the resource constraints can be modeled
as

> di < Quy Vvt

1ET
ZTNC; <m Vi,
-

which ensures that we do not exceed the vehicle capacity on any of the selected routes and
that the time required to execute the selected routes does not exceed the time available.
Consequently, the overall phase I model is given by

min Z Z cxt
£ T
LE< > > di, <Ub Vv,

1<s<t ruer
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> dl < Qal Vv,

LHET

ZTNC; <m Vi

This model is not very practical for two reasons: the huge number of possible delivery
routes and, although to a lesser extent, the length of the planning horizon. To make
this integer program computationally tractable we only consider a small (but good) set
of delivery routes and aggregate time periods towards the end of the planning horizon.

Aggregation is achieved by considering weeks rather than days towards the end of
the planning horizon and using continuous variables rather than binary variables. To
handle the approximate nature of the final part of the plan obtained this way, we embed
the algorithm in a rolling horizon framework in which the algorithm is invoked every k
days and only the first & days of the solution are actually implemented.

Our approach to selecting a small but good set of delivery routes is based on the
concept of clusters. A cluster is a group of customers that can be served cost effectively
by a single vehicle for a long period of time. Note that the cost of serving a cluster does
not only depend on the geographic locations of the customers in the cluster, but also
on whether the customers in the cluster have compatible inventory capacities and usage
rates. After determining a set of disjoint clusters covering all customers, we consider
only routes visiting customers in the same cluster.

The following approach is used to identify a good set of disjoint clusters covering all
customers:

1. Generate a large set of possible clusters.
2. Estimate the cost of serving each cluster.
3. Solve a set partitioning problem to select clusters.

We use heuristic rules, mainly based on usage considerations, to limit the number of
possible clusters. For example, five customers that all need a full truck load delivery per
day will not be combined to form a cluster.

We estimate the cost of serving a cluster by solving an integer program. Let ¢, denote
the cost of an optimal route r through a subset of the customers in a cluster. Define
the following variables. The total volume y;. delivered to customer ¢ on route r in the
planning period and the route count z,., and consider the following model

min E Cr 2y
T

15



subject to

Z Yir < min(@v Z Ci)ZT VT,

€T LET

yir <min(Q,Cy)z,  Vr,Vier,

z, integer, y;, > 0,

which ensures that the total volume delivered on route r in the planning period is less
than or equal to the minimum of the vehicle capacity and the total storage capacity times
the number of times route r was executed, that we do not deliver more to a customer
than the minimum of the vehicle capacity and its tank capacity times the number of
times route r was executed, and that the total volume delivered to a customer in the
planning period is equal to its total usage during the planning period.

Note that the number of routes in a cluster is relatively small which makes this integer
program relatively easy to solve. Furthermore, determining a set of disjoint clusters has
to be done only once as a preprocessing step before the actual planning starts.

The solution to the phase I model tells us how much to deliver to each customer for
the next k days. This information is converted to a vehicle routing problem with time
windows (VRPTW) for each day as follows. For each customer ¢, the inventory If_l at
the start of day ¢ can be computed as I? + >, .., ; d¥ — (t — 1)u;. The time window
[af,b!] for customer ¢ on day ¢ is set to guarantee that the delivery d! can be made,
ie., al = max(0,(d! — (C; — I'™"))/w;) and b} = min(24, I7'/u;). We use a standard
algorithm for the VRPTW to solve these instances.

For ease of exposition, we have ignored many of the important practical issues, such
as dispense times at customers and refilling times at the facility. All these can be handled
without complicating the model too much.

6.2 A dynamic programming approach for the SIRP

We model the SIRP as a discrete time Markov decision process (MDP). At the beginning
of each day, the inventory at each customer is measured. Then a decision is made regard-
ing which customers’ inventories to replenish, how much to deliver to each customer, how
to combine customers into vehicle tours, and which vehicle tours to assign to each of the
vehicles. We call such a decision an itinerary. A vehicle can perform more than one tour
per day, as long as all tours assigned to a vehicle together do not take more than a day
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to complete. Thus, all vehicles are available at the beginning of each day, when the tasks
for that day are assigned. Although usage typically occurs throughout the day, and each
customer’s inventory therefore varies during the day, we assume that each customer’s
inventory is measured only at the beginning of the day, before decisions are made, and
the state of the MDP is updated accordingly. The expected cost is computed taking into
account the variation in inventory during the day, and the probability of stockout before
the vehicle arrives at the customer’s site.

We focus on the infinite horizon MDP; the finite horizon case can be treated in a
similar way. The MDP has the following components:

1.

The state z is the current inventory at each customer. Thus the state space A’ is
[0,C4] x [0,09] x ---x[0,C,]. Let X; € X denote the state at time ¢.

. The action space A(z) for each state z is the set of all itineraries that satisfy

the tour duration constraints, such that the vehicles’ capacities are not exceeded,
and the customers’ storage capacities are not exceeded after deliveries. Let A =
Usex A(2) denote the set of all itineraries. Let A; € A(Xy) denote the itinerary
chosen at time .

The known demand probability distribution gives a known Markov transition func-
tion @, according to which transitions occur, i.e., for any state x € X', and any
itinerary a € A(z),

PlXi € B Xi= oA == [ Qldy|o.a
B

. Two costs are taken into account, namely transportation costs, which depend on

the vehicle tours chosen, and a penalty when customers run out of inventory. Let
c(x,a) denote the expected daily cost incurred if the process is in state z at the
beginning of the day, and itinerary ¢ € A(x) is implemented.

. The objective is to minimize the expected total discounted cost over an infinite

horizon (1" = o). Let a € [0, 1) denote the discount factor. Let V*(z) denote the
optimal expected cost given that the initial state is z, i.e.,

Vi¥(z) = {jl}ﬁéo E
tSt=0

E OétC (Xt, At)

t=0

The actions A; are restricted such that A, € A(X,) for each ¢, and A; has to depend
only on the history (Xo, Ao, X1,...,X;) of the process up to time ¢, i.e., when we
decide on an itinerary at time ¢, we do not know what is going to happen in the
future.
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Under certain conditions that are not very restrictive, the optimal expected cost
in (1) is achieved by the class of stationary policies II, which is the set of all functions
that depend only on the current state and return an admissible itinerary for the current
state. That is, a stationary policy = € Il is a function 7 : X — A, such that 7(2) € A(z)
for all x € X'. It follows that for any z € X,

- = inf F
Ve =

zatc (Xt,ﬂ'(Xt))‘ Xo = x]

_ infw){c(w,a)—l—a/XV*(y)Q[dmx,a]}. 2)

a€A(

To determine an optimal policy, we need to solve the optimality equation (2). The
three major computational requirements involved in solving (2) are the following.

1. Estimating the optimal cost function V.
2. Estimating the integral in (2).

3. Solving the minimization problem on the right hand side of (2) to determine the
optimal itinerary for each state.

Rarely can these three computational tasks be completed sequentially. Usually an
iterative procedure has to be used.

A number of algorithms has been developed to solve the optimality equation (to
within a specified tolerance ¢) if A’ is finite and the optimization problem on the right
hand side can be solved in finite time (to within a specified tolerance ¢). Examples
are value iteration or successive approximation, policy iteration, and modified policy
iteration. These algorithms are practical only if the state space X is small, and the
optimization problem on the right hand side can be solved efficiently. None of these
requirements are satisfied by practical instances of the SIRP, as the state space X" is usu-
ally extremely large, even if customers’ inventories are discretized, and the optimization
problem on the right hand side has a vehicle routing problem as a special case, which
is NP-hard. Our approach is therefore to develop approximation methods based on the
MDP formulation above.

One approach is to approximate the optimal cost function V*(z) with a function
V(w,ﬁ) that depends on a vector of parameters 3. Some of the issues to be addressed
when using this approximation method are the following.

1. The functional form of the approximating function V. This may be the most
important step in the approximation method, and also the one in which an intuitive
understanding of the nature of the problem and the optimal value function plays
the greatest role. A fair amount of experimentation is needed to develop and test
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different approximations. Functions V that are linear in 8 have the advantage that
estimation algorithms for § with good theoretical properties have been developed,
as discussed below.

. Computational methods to estimate good values for the parameters 3. Bertsekas
and Tsitsiklis [BT96] discuss a number of simulation based methods. They develop
policy evaluation algorithms for which the parameter estimates [3; converge as
t — oo, if V is linear in 3, and the usual conditions for the convergence of many
stochastic approximation methods hold. In addition, f; converges to parameters 5
that give a best fit of the expected value function V™ under stationary policy =, if
the errors are weighted by the invariant distribution under policy 7. However, many
of the algorithms exhibit undesirable behavior, and many theoretical properties of
these approximation methods remain to be established.

. The integral in (2) can be computed explicitly only for some simple demand distri-
butions. If the number of customers is small (n < 8), numerical integration can be
used. If the demand distributions are more complex, and the number of customers
is larger, simulation is usually the most efficient method to evaluate the integral.

. Methods have to be developed to solve the minimization problem on the right hand
side of (2). This optimization problem probably requires significant computational
effort to solve to optimality, because it involves determining delivery quantities
as well as vehicle routes. Therefore, it seems that heuristic methods have to be
developed to find good solutions. Such a heuristic has to provide a good trade-off
between computational speed and solution quality, as the optimization problem
has to be solved thousands of times while estimating the parameters 3, and the
quality of the eventual approximation V and associated policy @ may depend to a
large extent on the quality of the heuristic solutions to the minimization problem.

7 Practical Issues

A number of important issues that occur in practice, and that have not been discussed
above, are addressed in this section.

Usage rates are assumed to be constant in the IRP and probability distributions of

the demands between consecutive decision points are assumed to be known in the SIRP.

In practice, the usage rates or the probability distributions of the demands are typically

not known, but have to be estimated from inventory measurements. Often these data

are not collected at regular intervals, and thus it may not be easy to convert them to
usage rates or probability distributions of demands. The data are also subject to other

sources of noise, such as measurement errors, which cause several statistical problems.
These estimation problems have to be resolved before an IRP or SIRP can be solved

19



in practice. Furthermore, the models ignore the typical time varying characteristics of
usage, such as weekly and seasonal cycles, and any dependence between the usage on
successive days.

Currently the costs involved in making inventory measurements are not insignificant,
and these measurements are usually made at most once per day. One should be able to
obtain fairly accurate estimates of the inventory levels at times between measurements
based on the most recent measurements and past data of usage rates. Exactly how to
do this estimation has to be addressed. A related problem may be to determine an
optimal policy for making these costly measurements. However, it is expected that the
technology will soon be available to continuously track customers’ inventories at very
low cost. Therefore, in the SIRP the inventories are modeled as known at the times that
decisions are made, and customers’ future demands are modeled as random.

The models presented manage only a single resource, namely “vehicles”, to perform
distribution tasks. In practice, other resources are required as well, for example drivers.
The work rules that apply to drivers are quite different from those that apply to vehicles;
for example, a vehicle can work more hours per day than a driver. The assignment of
customers to tours in such a way that these tours can be performed by the available
drivers and make the best use of the drivers’ time, is therefore likely to be at least as
important a consideration as the utilization of vehicles. If a sufficient number of vehicles
are available, then driver considerations are the only constraints, and the objective should
be to develop optimal driver itineraries.

It is not only the availability of drivers that restricts the set of feasible routes. Often
deliveries at customers can only take place during specific time periods of the day.

Many companies operate a heterogeneous fleet of vehicles instead of a homogeneous
fleet of vehicles.

We have considered the distribution of a product from a single plant. Often a com-
pany operates several plants that produce the same product, and distribution to some
customers can occur from a number of plants. It may be optimal to distribute to a
customer from different plants on different days, depending on how well the customer
can be combined in a vehicle tour with the other customers that are to be visited on the
particular day.

Frequently, a company produces and distributes several products, using the same
fleet of vehicles to transport the different products. Examples are the transportation of
different grades of oil in compartmentalized vehicles, and the replenishment of beverages
and snacks in vending machines and at restaurants. In this multi-product environment,
besides deciding which customers to visit next and how to combine them into vehicle
tours, we have to decide how much of each product to deliver to each visited customer.

We have assumed that a sufficient amount of the product is always available for distri-
bution, and issues related to production capacity and scheduling are ignored. However,
it is often necessary to coordinate production, storage, and transportation.
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Inventory holding cost have not been addressed in the problem definition. In fact,
this makes the problem more generic, because the treatment of inventory holding cost
depends on the ownership and storage management of inventory at the plant and at the
storage facilities of customers. For example, the distributor may be the same company
that operates the production plant as well as the facilities at the next level of the distri-
bution network (the “customers”), or the producer may distribute the product to and
manage the inventory at independent customers (called vendor managed resupply), or an
independent third party logistics provider may distribute the product from the producer
to the customers, and manage their inventory. The treatment of inventory holding costs
are different for the three cases above, but in all cases it can be incorporated relatively
easily with the other costs.

System disruptions such as product shortages at the plant, vehicle breakdowns, work
stoppages, and inventory measurement failures, are not incorporated. To address these
issues, policies have to be developed to provide recourse actions when disruptions occur.

Travel times and costs are assumed to be known. A more realistic model may incor-
porate random travel times and costs. However, unless transportation occurs in heavily
congested networks, a model assuming known travel times should give good results. If
transportation networks are very congested, then the time of travel usually has a large
impact on travel time besides the chosen route, and many other scheduling and routing
issues have to be addressed. As the objective of the SIRP is to minimize the expected sum
of the costs, only the expected travel costs need to be known, and not their distributions.

Many of the practical issues raised above can be easily incorporated in the models
discussed and many of the solution approaches presented can be modified to handle
them.

8 Test problems

We would like to provide researchers with challenging instances of difficult routing prob-
lems. A standard set of instances allows the comparison of the performance of algorithms
and often it also provides an important stimulus for research. We have created a set of
instances of the IRP that we hope will form such a test set. They have been derived
from real data from a company we work with. They are available via the world wide
web at http://tli.isye.gatech.edu/Testcases/irp.html.
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