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Biomechanical modeling methods can be used to predict deforma-
tions for medical image registration and particularly, they are
very effective for whole-body computed tomography (CT) image
registration because differences between the source and target
images caused by complex articulated motions and soft tissues
deformations are very large. The biomechanics-based image
registration method needs to deform the source images using the
deformation field predicted by finite element models (FEMs). In
practice, the global and local coordinate systems are used in finite
element analysis. This involves the transformation of coordinates
from the global coordinate system to the local coordinate system
when calculating the global coordinates of image voxels for warp-
ing images. In this paper, we present an efficient numerical
inverse isoparametric mapping algorithm to calculate the local
coordinates of arbitrary points within the eight-noded hexahedral
finite element. Verification of the algorithm for a nonparallele-
piped hexahedral element confirms its accuracy, fast convergence,
and efficiency. The algorithm’s application in warping of the
whole-body CT using the deformation field predicted by means of
a biomechanical FEM confirms its reliability in the context of
whole-body CT registration. [DOI: 10.1115/1.4027667]
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1 Introduction

Whole-body CT plays an important role in cancer diagnosis,
therapy planning, and treatment [1–3]. It typically involves com-
parison of the images acquired for different postures/positions of
a patient [2]. Before such comparison can be conducted, the
images need to be aligned in a process known as nonrigid (as both
rigid body motion and deformations are involved) image registra-
tion [4]. In the past nonrigid registration of CTs (and other radio-
graphic image modalities) relied solely on image processing
methods that predict the deformation field within the human body
organs/tissues without taking into account the principles of
mechanics governing deformations of such organs/tissues [2,4].
Such methods do not ensure plausibility of the predicted deforma-
tions and their accuracy tends to decrease when the differences
between the source and target images become large due to articu-
lated motion of the body segments and soft tissue deformations
[4–6]. Therefore, biomechanical models, in which predicting the
organs/tissue deformation is treated as a computational problem
of solid mechanics, have been introduced [7–11]. In most practical
cases, such models utilize the FEM [12] with isoparametric ele-
ment formulation to solve sets of partial differential equations
governing the deformation behavior of continua.

Efficient specialized finite element algorithms that facilitate
real-time prediction of organ deformations for radiographic image
registration are available [13,14]. However, relatively little effort
has been devoted to creating efficient algorithms for warping the
source image using the predicted deformations. In this study, we
propose such an algorithm in the context of computation of soft
body organs deformations using explicit dynamics finite element
procedures with hexahedral elements for spatial discretization.
We verify the algorithm on simple wedge geometry and present
an example of its application in warping a CT scan of the human
lungs in the context of whole-body CT registration.

2 Methods

2.1 Problem Formulation. The deformation field predicted
using a FEM is described at the nodes of the computation grid
(finite element mesh). Displacements and position/location of an
arbitrary point within the discretized continuum are determined
from the nodal displacements and coordinates through interpola-
tion within the element using element shape functions. In this
study, we use eight-noded hexahedral isoparametric elements in
which the same shape functions are used for interpolation of posi-
tions and displacements [12]. The eight-noded hexahedron is
regarded as the most efficient element type for nearly incompres-
sible very soft continua, such as soft tissues when explicit time
integration schedule is used [15].

Locations of the finite element mesh nodes are typically differ-
ent from locations of centers of the voxels in the image. There-
fore, interpolation using nodal positions must be performed for
every voxel center in the image [16]. Such interpolation requires
the information about coordinates of a voxel in the element’s local
coordinate system, and the local coordinates need to be deter-
mined from the voxel’s known coordinates in the global coordi-
nate system in a process referred to as inverse isoparametric
mapping (Fig. 1).

Inverse isoparametric mapping has been previously addressed
in the publications by our research group (Intelligent System for
Medicine Laboratory) and by other researchers. For instance, in
our previous study [16], we presented a robust implementation of
an algorithm for inverse isoparametric mapping in the context of
neuroimage (MIR) registration for image-guided neurosurgery.
However, this implementation requires splitting of all hexahedral
elements in the model into tetrahedrons. A comprehensive but rel-
atively complex numerical algorithm for the inverse isoparametric
mapping transformation verified for 2D and 3D finite elements
was presented in Refs. [17,18]. In Ref. [19], a general solution for
the inverse transformation in 2D was proposed, and a general
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analytical expression of the inverse isoparametric relations for the
linear hexahedral element was given in Ref. [20]. However, these
approaches presented in the literature appear to be too complex
for the problem considered in this study. The solution to inverse
isoparametric mapping problem we proposed here is based on the
numerical method using the Taylor’s expansion presented in Ref.
[21]. We selected this method for its simplicity, and the algorithm
we introduce in this study further improves its efficiency.

2.2. Proposed Solution: Algorithm for Inverse
Isoparametric Mapping. As explained in Sec. 2.1, we focus on
isoparametric eight-noded hexahedral element as it is regarded as
the most efficient element type for explicit integration of nearly
incompressible very soft continua, such as soft tissues. As this ele-
ment has been described and analyzed in numerous publications
[22–24], here we provide only the key information necessary to
explain our algorithm for inverse isoparametric mapping.

The global coordinates of an arbitrary point within a eight-noded
hexahedral element are calculated using the following formula [12]:

x ¼
X8

i¼1

Nixi; y ¼
X8

i¼1

Niyi; z ¼
X8

i¼1

Nizi (1)

where ðx; y; zÞ are the global coordinates of an arbitrary point p
belonging to the discretized continuum and ðxi; yi; ziÞ are the
global coordinates of nodes (i.e., vertices of the element within
which the point p is located), and Ni are the shape functions. For a
eight-noded hexahedral element, the shape functions are [12]

Ni ¼
1

8
1þ nnið Þ 1þ ggið Þ 1þ uuið Þ (2)

where ðn; g; uÞ and ðni; gi; uiÞ are the local coordinates for a
given point and nodes, respectively.

For the source configuration, the global nodal coordinates and
global coordinates of the image voxels (defined as voxel centers)
are known. For the deformed configuration, we predict the global
nodal coordinates using a biomechanical FEM. From prediction,
the global coordinates of the image voxels in the deformed con-
figuration can be determined using Eqs. (1) and (2). This necessi-
tates computation of the coordinates of the voxel centers in the
element local coordinate system using the inverse coordinate
transformation

n ¼ nðx; y; zÞ; g ¼ gðx; y; zÞ; u ¼ uðx; y; zÞ (3)

Given Eq. (2), the transformation defined by Eq. (3) is nonlin-
ear. Therefore, using a numerical inverse isoparametric mapping
method based on Taylor expansion presented in Ref. [21], we
express the global coordinates of a voxel center (and any other ar-
bitrary points) located within a given hexahedral element as
follows:

xp ¼ x0 þ
@x

@n

����
ðn0 ;g0 ;u0Þ

n� n0ð Þþ@x

@g

����
ðn0;g0;u0Þ

ðg� g0Þ þ
@x

@u

����
ðn0;g0;u0Þ

u� u0ð Þ
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@y

@n

����
ðn0 ;g0 ;u0Þ

n� n0ð Þþ@y

@g

����
ðn0;g0;u0Þ
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@y

@u

����
ðn0;g0;u0Þ

u� u0ð Þ

zp ¼ z0 þ
@z

@n

����
ðn0 ;g0 ;u0Þ

n� n0ð Þþ@z

@g

����
ðn0;g0;u0Þ

ðg� g0Þ þ
@z

@u

����
ðn0;g0;u0Þ

u� u0ð Þ

(4)

In Eq. (4), the expansion takes place about a point with the
global coordinates, ðx0; y0; z0Þ and ðn0; g0; u0Þ, as the corre-
sponding local coordinates. Equation (4) can be rewritten in a ma-
trix form as

Xp ¼ X0 þ J � np � n0

� �
(5)

where J is the Jacobian matrix, and

np ¼ n0 þ J�1 Xp � X0

� �
(6)

where J�1 is the inverse of Jacobian matrix. Given Eqs. (5) and
(6), for the global coordinates (of the voxel center)

Xp ¼ ðxp; yp; zpÞ, the corresponding local coordinates np ¼ ðnp;
gp;upÞ can be calculated using the following iterative algorithm:

nkþ1 ¼ nk þ J�1
k Xp � Xk

� �
k ¼ 0; 1; 2::: (7)

where nk is the kth approximation for np and Xk are the global
coordinates that correspond to nk. Termination criterion for itera-
tions in Eq. (7) is defined using the L1 norm

Xp � Xk

�� �� � e (8)

where e is the iteration convergence tolerance. In the examples
shown here we used e of 10�6 [21].

The number of voxels in a typical whole-body CT image is
over 3� 107, and biomechanical models applied to compute
deformations for registrations of such images tend to consist of
over 5� 104 hexahedral elements [25]. As inverse of the Jacobian
needs to be computed for every element of the mesh and local
coordinates must be computed for every voxel in the image, the
computational cost of numerical operations associated with
Eq. (7) is substantial. To reduce this cost, we propose the
following:

Fig. 1 A schematic diagram of warping the source whole-body
CT images using the deformation field predicted by the patient-
specific nonlinear finite element model
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(1) Following Ref. [12], we notice that for eight-noded hexahe-
dral elements, the Jacobian matrix can be expressed as

J ¼

@x

@n
@y
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@z
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@g
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@g
@z

@g
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�������������

�������������
¼

@N1

@n
@N2

@n
:::

@N8
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�������������
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�

x1 y1 z1

:::

x8 y8 z8

�������
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(9)

where ð@Ni=@njÞði ¼ 1; 2; � � �8; nj ¼ n; g;uÞ is the deriva-
tive of element shape functions with respect to local coordi-
nates, ðxi; yi; ziÞ i ¼ 1; 2 � � � 8 are the global nodal
coordinates of a hexahedral element. Substituting Eq. (2)
for Ni into Eq. (9), the derivatives of shape functions at the
origin (0, 0, 0) of the element local coordinate system are

@N1

@n
@N2

@n
:::

@N8

@n

@N1

@g
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@g
:::

@N8
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n1 n2 ::: n8
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u1 u2 ::: u8

���������

���������
(10)

where ðni; gi;uiÞ i ¼ 1; 2 � � � 8 are the local nodal coordi-
nates of the isoparametric hexahedral element. As for eight-
noded hexahedral elements, the local nodal coordinates are
(for convention of node numbering see Fig. 2)

n1 n2 ::: n8

g1 g2 ::: g8

u1 u2 ::: u8

��������

��������
¼

1; 1; 1; 1;�1;�1;�1;�1

�1; 1; 1;�1;�1; 1; 1;�1

1; 1;�1;�1; 1; 1;�1;�1

��������

��������
(11)
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and

@y
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¼1

2

1

4
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(13)

(2) If a eight-noded hexahedral element remains rectangular
parallelepiped, lyn, lzn, lxg, lzg, lxu, and lyu are equal to 0,
and the Jacobian matrix for such element is

J� ¼ 1

2

lxn 0 0

0 lyg 0

0 0 lzu

��������

��������
(14)

where the superscript * means this formula is exact for rec-
tangular parallelepiped eight-noded hexahedral elements.

(3) Given Eq. (14), the local coordinates calculated by Eq. (6),
can be written as

n�p ¼ n�0 þ X�p � X�0

� �
:=L (15)

where the operator := means element-wise division, and

L ¼ 1

2

lxn
lyg
lzu

������
������ (16)

(4) For finite element meshes (Fig. 3) used in biomechanical
models for computing the deformations for whole-body ra-
diographic image registration, the vast majority of the ele-
ments are general hexahedrons rather than rectangular
parallelepipeds. For such elements, the Jacobian matrix
(Eq. (14)) is not diagonal (i.e., elements lyn, lzn, lxg, lzg, lxu,
and lyu may be nonzero) and Eq. (15) is not satisfied. How-
ever, as matrix inversion is computationally expensive, we
do not use the exact inverse of the Jacobian matrix. Instead,
we approximate the inverse using the following iterative
formula derived from Eq. (15):

nkþ1 ¼ nk þ ðXp � XkÞ � =L k ¼ 0; 1; 2::: (17)

where L is a vector which contains only the diagonal ele-
ments in the Jacobian matrix (Eq. (14)) and Xk is the kth
approximation for Xp. Convergence of the iterative formula
given by Eq. (17) is evaluated in Sec. 3.1 against a very
stringent tolerance criterion.

(5) As in any iterative algorithm, the estimation of the initial
value (i.e., initial local coordinates nInit) for Eq. (17) is of
key importance as it tends to determine the number of itera-
tions needed and associated computational cost. For an

Fig. 2 The numbering system for the isoparametric hexahedral
element
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isoparametric element, the local coordinates of any point
within the element must be between �1 and 1, and coordi-
nates ð0; 0; 0Þ are at the centroid. Therefore, for the eight-
noded hexahedral element with shape functions given by
Eq. (2), we propose to use the following formula to esti-
mate the initial local coordinates nInit for the iterative algo-
rithm defined by Eq. (17):

nInit ¼ ðXp � XCentreÞ:=L (18)

where XCentre is the centroid of the hexahedral element
which contains a given point (voxel center) Xp.

3 Results

3.1 Convergence of the Proposed Iterative Algorithm. To
evaluate the convergence of the proposed iterative numerical
inverse isoparametric mapping algorithm, a wedge-shaped contin-
uum with brain tissue-like mechanical properties (the Neo-
Hookean hyperelastic model with Young’s modulus of 1000 Pa
and Poisson’s ratio of 0.495 [26]) discretized using eight-noded
hexahedral elements that forming not rectangular parallelepiped
was subjected to the imposed displacement on its top surface
(Fig. 4(a)). The magnitude of displacements was 20% of the
wedge height. Computation of the deformation field within the
continuum was performed using a total Lagrangian explicit
dynamic algorithm that we have previously developed and veri-
fied in numerous applications in image-guided surgery [13,27,28].
The predicted shape of the wedge due to the prescribed displace-
ments is shown in Fig. 4(b).

We select a hexahedral element from the mesh shown in
Fig. 4(a) and place three points in the element at locations defined
by arbitrarily selected sets of global coordinates (�0.4883,
�0.4000, 1.0000), (�0.4267, �0.3111, 1.0000), and (�0.4736,
�0.3688, 0.9513) (Fig. 5(a)): Two points are located at the edges
of the element and one in element interior. The corresponding
point positions in the deformed element are calculated using the
proposed algorithm as shown in Fig. 5(b). Even though the ele-
ment undergoes serious distortion, the points initially located on
the edges remain there.

From Table 1, it can be seen that despite substantial changes in
the element geometry caused by the prescribed displacements, for
the convergence tolerance of 10�6, only up to seven steps were
sufficient for our algorithm (Eq. (17)) to provide converged solu-
tion for coordinates of points P1, P2, and P3 (Fig. 5).

Table 1 indicates that for our inverse mapping algorithm con-
vergence implies accuracy. For all the analyzed points, at the final
iteration step (converged solution), the global coordinates calcu-
lated using local coordinates predicted by our algorithm could not

be distinguished from the actual global coordinates within the
numerical precision used.

Furthermore, the results presented in Table 2 suggest that the
computation time for the algorithm given by Eq. (17) is appreci-
ably reduced (by 40–60%) in comparison with that of the mapping
algorithm using the exact inverse Jacobian matrix (Eq. (7)).

3.2. Application Example: Warping of Lung CT Image.
The whole-body CT image dataset analyzed here is for Case #20
from the National Alliance for Medical Image Computing (NA-
MIC) Registration Library (http://www.na-mic.org/Wiki/index.php/
Projects:RegistrationLibrary:RegLib_C20b).

Deformations within the patient’s organs/soft tissue resulting
from posture differences when acquiring set 1 (source image) and
set 2 (target image) have been previously computed by us [25]
using the FEM shown in Fig. 1. As the deformations are given at
the nodes of the mesh shown in Fig. 3, we apply our inverse map-
ping algorithm given by Eq. (17) to each voxel of image set 1 to
warp the source image to the geometry depicted in the target
image.

When evaluating the warping accuracy and performance of our
inverse mapping algorithm, we compare the predicted (i.e.,
warped using the predicted deformations) surface of the lungs
with the actual surface extracted from the target image. The lungs
were selected as they are a large body organ with boundaries
clearly visible/easy to distinguish in both sets of CT images we
analyzed here. As shown in Fig. 6, the predicted (deformed) and

Fig. 4 A wedge-shaped continuum discretized by hexahedral
elements: (a) the undeformed wedge-shaped geometry and (b)
the wedge-shaped geometry is deformed by an imposed dis-
placement on the top surface

Fig. 3 The whole-body finite element model
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actual (target) (i.e., extracted from the target image) lung contours
align very well, and the differences between them are within two
voxels size of the image.

4 Discussions and Conclusions

Application of the organ deformations predicted by means of
biomechanical models utilizing the FEM with isoparametric ele-
ment formulation in image registration requires inverse mapping
to determine voxels coordinates in local coordinate system and
compute the global coordinates of the voxels in the deformed
(target) image configuration. When conducting registration of
whole-body radiographic images that consist of dozens of millions
of voxels, the computational cost of this operation tends to be
high. Therefore, in this study, we propose an iterative algorithm
that reduces the computational cost of inverse parametric mapping
in the context of whole-body CT registration.

To verify the proposed algorithm, we applied it to compute the
internal coordinates of arbitrarily selected points located at the
edges and within the nonparallelepiped hexahedral element
extracted from a mesh of soft wedge-shaped continuum under-
going compression due to externally applied load (Fig. 4). The
results indicate that the proposed algorithm converges quickly
(within 6–7 iteration steps) and requires less computation time
than the algorithm using the exact form of the inverse Jacobian
matrix (i.e., 40% for the case that the point is within the element
while 60% for the case that the points are at the edges/surfaces, as
shown in Table 2). Similar improvement in the computational effi-
ciency (around 30% reduction in the computation time) was
achieved when applying our algorithm to warp the whole-body
CT images (see Sec. 3.2).

In the proposed algorithm, the inverse mapping is applied to
each voxel of the source image independently (i.e., computations

Table 1 Convergence performance of the inverse mapping algorithm we proposed in this study when solving the example shown
in Fig. 5. Exact values of the global coordinates are in parentheses.

Global coordinates of point 1
(�0.4883, �0.4000, 1.0000)

Global coordinates of point 2
(�0.4267, �0.3111, 1.0000)

Global coordinates of point 3
(�0.4736, �0.3688, 0.9513)

Local nk Global Xk Local nk Global Xk Local nk Global Xk

Estimation of initial values
of coordinates to start
the iteration

0.0683 �0.5084 0.3197 �0.4508 0.2130 �0.4831
�1.0000 �0.4000 �0.9997 �0.3111 �0.2980 �0.3688

1.0000 1.0000 1.0000 1.0000 0.0260 0.9513

Iteration step 1 0.3122 �0.4894 0.6362 �0.4280 0.3285 �0.4744
�1.1045 �0.4046 �1.1354 �0.3171 �0.3475 �0.3710

1.0000 1.0000 1.0000 1.0000 0.0260 0.9513

Iteration step 2 0.3257 �0.4865 0.6533 �0.4245 0.3380 �0.4728
�1.0058 �0.4003 �1.0071 �0.3114 �0.3021 �0.3690

1.0000 1.0000 1.0000 1.0000 0.0260 0.9513

Iteration step 3 0.3036 �0.4881 0.6207 �0.4269 0.3279 �0.4735
�0.9905 �0.3996 �0.9984 �0.3110 �0.2937 �0.3686

1.0000 1.0000 1.0000 1.0000 0.0260 0.9513

… … … … … … …

Iteration step 6 0.3011 �0.4885 0.6233 �0.4267 0.3272 �0.4736
�0.9989 �0.4000 �1.0009 �0.3112 �0.2980 �0.3688

1.0000 1.0000 1.0000 1.0000 0.0260 0.9513

Iteration step 7 0.3032 �0.4883 0.6235 �0.4267 � �
�1.0000 �0.4000 �0.9998 �0.3111

1.0000 1.0000 1.0000 1.0000

Fig. 5 Inverse isoparametric mapping transformation for a
hexahedral element. (a) Three arbitrary points are placed in an
undeformed hexahedral element and (b) the corresponding
positions of these three points within a deformed element are
calculated using the proposed inverse isoparametric mapping
algorithm.

Table 2 Computation time (in seconds) for the inverse map-
ping algorithm (converged solution) we proposed in this study
and the algorithm using exact form of the inverse Jacobian ma-
trix for the example shown in Fig. 5

Point 1 Point 2 Point 3

The algorithm using exact
form of the inverse Jacobian matrix

6.36� 10-4 6.28� 10-4 5.73� 10-4

Proposed algorithm 3.61� 10-4 3.32� 10-4 3.35� 10-4
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applied to a given voxel do not depend on the computations for
other voxels) using the iterative formula given in Eq. (17). There-
fore, the algorithm can be easily parallelized. Our experience in
application of explicit nonlinear finite element procedures in com-
putation of brain deformations due to surgery indicates that for
algorithms exhibiting such features, orders of magnitude improve-
ment in computational efficiency can achieved through the algo-
rithm implementation on a graphics processing unit (GPU). Such
implementation allows parallel computation using hundreds of
cores available on GPU [29]. Therefore, we are confident that fur-
ther significant improvement of computational speed of inverse
mapping algorithm can be achieved using GPU.

Reliability of the proposed algorithm in the context of whole-
body CT registration is confirmed by the results obtained when
applying the algorithm to warp the whole-body CT acquired in
the source configuration to the target CT geometry using the de-
formation field predicted by means of a biomechanical FEM
(Fig. 6).
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Fig. 6 Results of application of the proposed inverse mapping
algorithm in registration/warping of a whole-body CT image set.
A typical section through the registered image showing the
lungs. Deformations between the source and target images for
the registration were previously obtained in our previous study
using nonlinear finite element procedures [23]. From the com-
puted deformations, the registered/warped image was created
by applying the proposed inverse isoparametric mapping algo-
rithm to every voxel of the source images. The dotted line and
the solid line are the lung contours in source and target images,
respectively. The dashed line is the lung contour in the regis-
tered/warped image. It can be clearly seen that the contour
obtained through registration of the source image agrees very
well with the actual/“true” contour in the target image.
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