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Interpolated Rectangular 3-D Digital Waveguide
Mesh Algorithms With Frequency Warping

Lauri Savioja Member, IEEEand Vesa ValiméakiSenior Member, IEEE

Abstract—Various interpolated three-dimensional (3-D) digital The basic version of the 3-D WGM suffers from error in wave
waveguide mesh algorithms are elaborated. We introduce an travel speed, which depends on both direction and frequency
optimized technique thatimproves a formerly proposed trilinearly - 5] Thjg is called the direction-dependent dispersion error. It
interpolated 3-D mesh and renders the mesh more homogeneous. th - hv the WGM thod 1d not h b
in different directions. Furthermore, various sparse versions of 1S e'maln reasor.l why the - method could no gve gen
the interpolated mesh algorithm are investigated, which reduce Used in many design tasks until now. To reduce the dispersion,
the computational complexity at the expense of accuracy. Fre- an interpolation technique was incorporated in the 3-D WGM
quency-warping techniques are used to shift the frequencies of [7]. While the mesh was made more homogeneous in different
the output signal of the mesh in order to cancel the effect of gireciions, the frequency-dependence was not cured. A similar

dispersion error. The extensions improve the accuracy of 3-D . .
digital waveguide mesh simulations enough so that in the future effect has been formerly observed in the interpolated 2-D WGM

it can be used for acoustical simulations needed in the design of [8]. As a solution, a frequency-warping method can be used in
listening rooms, for example. the 2-D case to cut down the remaining error [9]. Alternative
Index Terms—Acoustic propagation, acoustic signal processing, 5D Mesh structures, such as a tetrahedral network [6], [10],

FDTD methods, interpolation, multidimensional systems. have been shown to be successful in suppressing the disper-
sion problem, but at the expense of a complicated tessellation

of space. We believe that the usefulness of the method relies on
an effortless filling of space, and thus we prefer the rectangular
HE three-dimensional (3-D) digital waveguide mesmesh and aim at making it an accurate and reliable method for
T (WGM) algorithm was introduced in 1994 [2] as aracoustic simulations.

extension to the formerly developed two-dimensional (2-D) The contributions of this paper are a new optimized inter-
WGM algorithm [3]. The technique is actually a finite differ-polation method, which is preferable to the former one, sim-
ence scheme, but we still call it a digital waveguide mesh sinpéified versions of the interpolated mesh algorithm, and fre-
its background lies in that tradition. The WGM approach iguency-warping methods that are optimized for the new interpo-
suitable for modeling acoustic wave propagation in restrictéated 3-D WGM. This paper is organized as follows. In Section
media, such as in musical instruments or in a room. As the 3!Dwe give a formulation of the 3-D WGM update rule as a fi-
WGM can be used for simulating wave propagation in a spadgie difference scheme and present an error analysis. Section IlI
it turns out more important for practical applications than thaéiscusses the interpolated mesh algorithm, and the optimization
2-D WGM, which is mostly useful for physical modeling ofof the interpolation coefficients. In Section IV, we apply the fre-
drum membranes or other flexible vibrating surfaces. The 3quency-warping technigques to the optimally interpolated mesh
WGM could be used as an alternative to the other techniquassd demonstrate how the error characteristics are improved. In
aiming at solving the wave equation such as the finite elemeatidition, the valid frequency range of WGM simulations is eval-
method (FEM) [4] and the boundary element method (BEMJated. In Section V, new interpolated sparse mesh structures are
[5]. For these techniques there exist numerous practical applipgesented. In those algorithms the number of neighbors and thus
tion areas, which include the acoustical design of concert hakidso the computational load are reduced. Section VI presents re-
churches, auditoria, listening rooms, movie theaters, cabinssoifts from a simulation of a rectangular space, which shows that
various vehicles, or loudspeaker enclosures. Also simulaticasufficient level of accuracy has been finally reached and that
for testing echo cancellation and active noise control systeithe method is ready for practical use.

require the knowledge of room impulse responses.

I. INTRODUCTION

Il. THE 3-D DIGITAL WAVEGUIDE MESH

The digital waveguide mesh is based on digital waveguides
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A. Rectangular Mesh Structure

%)

e

In the original three-dimensional mesh, digital Waveguidei ol
in three orthogonal directions are interconnected to each oth ~
The final structure is a rectangular grid, in which each nod_
has a neighbor at a unit distance in six directions, namely u& _,,
down, left, right, front, and back. The wave propagation in sucE _20
a structure is governed by the following difference equation:
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wherep(n, z,y, z) represents the sound pressure at time step 0 0.05

at position(z, y, z) [2]. This structure can be analyzed by Von

Neumann.analy3|s (see, e.g., [12])' in which a spatial Fourﬁﬁ. 1. Relative frequency error (RFE) in (a) the original 3-D WGM,

transform is performed to the difference scheme. Formerly thig the optimally interpolated WGM fmax = 0.25), (c) the optimally

same technique has been used for 2-D meshes (see, e.g.,8[polated WGM with a two-stage multiwarpird, = 0.275389,A, =

9]). In the 3-D WGM the dispersion factor is a function of threg o> 29L. D1 = 248579, D> = 0.852843), and (d) the optimally

[ ]) - ] p %terpolated WGM with a frequency-domain warping. The curves show RFE

normalized spatial frequenci€s, &,, and¢. in axial (solid line), 2-D diagonal (dashed line), and 3-D diagonal (dash-dotted
line) directions. Note the different vertical scales between the first two and the

4 —=b(&, 6 2 last two plots.
k(gmgy/gz) = % arctan b(f (i_ gg )f ) (3)
Ty SYys» Sz

0.1 0.15
NORMALIZED FREQUENCY

curring in the rectangular mesh [6], [10]. In this structure each
node has a connection to four neighbors. The result is computa-
tionally efficient avoiding all the multiplications. But even this
structure does not cure the dispersion error. The wave propa-
gation characteristics are slightly better than in the rectangular
wherew; = 27¢,,ws = 27§y, w3 = 27¢;, andc = (1/V/3T).  mesh, but there still remains dispersion, which depends on the
The selection for speed of sounds based on the nature of they o nagation directions. A thorough analysis of this tetrahedral

digital waveguide mesh, and most of the results presentedgipcture can be found in the thesis by Bilbao [13]. In earlier

the paper are valid only with the chosen speed in which wavgg,gies it has been shown that the dispersion error can be com-
propagate the 3-D diagonal of a unit cube in three time step§,ensated to a certain degree, only if the dispersion is indepen-

Fig. 1(a) shows the relative frequency error (RFE}ent of direction [14], [9]. Therefore this structure is not used
E(& &y, ¢:) in the 3-D WGM structure. The RFE is re-jp this study. An alternative tetrahedral structure has been pre-
lated to the dispersion factor by the following equation: sented by Campos [15]. That structure has its background in
k(€p, €y, E2) — Kae chemistry and the mesh is designed to be similar to the struc-

E(&, &y, E) = : J,;, -100% (5) ture of crystal. Unfortunately, there is no analysis of dispersion

de error available for this structure, yet.

in which

2
b(&s, &y, &x) = g(cos w1cT + coswacT + coswzcT)  (4)

wherekg. = limg, ¢, ¢. 0 k(&, &y, €. ) inthis case equals to 1.
In the original rectangular 3-D mesh the maximal RFE is 23.6%  ||I. | NTERPOLATED3-D DIGITAL WAVEGUIDE MESH

fi band [0, 0.25]. . . .
on frequency band [ ] The basic structure for the interpolated 3-D WGM is illus-

B. Other Mesh Structures trated in Fig. 2. In the original rectangular mesh each node has
a connection to six neighbors [see Fig. 2(a)], and that causes

_ In ea_réller StUd'E_S' it was shown that_by ushlng mterpc_)latlorrl]ff.lﬁ direction dependent dispersion. In the interpolated mesh the
Is possible to achieve wave propagation characteristics Whigh,her of neighbors is increased by inserting delay lines from a
are nearly independent of the wave propagation direction in t

Gde to its diagonal neighbors. Finally, a node has connections

2-D case [8], [9]. The same technique works also in 3-D WGM 1o separate type, 6 axial neighbors [Fig. 2(a)], 12 2-D di-
systems as shown in [7]. The interpolated rectangular mesrhbsonal neighbors [Fig. 2(b)], and eight 3-D diagonal neighbors

discussed in detail in Section I_”' ) I[iFig. 2(c)], or altogether 26 neighbors as illustrated in Fig. 2(d).
There are several other applicable 3-D mesh structures in ad-

dition to the rectangular one. Their design goal has been the '®The difference scheme for the interpolated 3-D WGM is [7]
duction of the dispersion error. The main problem with these is
that they are more difficult to construct and analyze. For prac- 11 1
tical simulations the rectangular mesh is superior in ease of user + 1, z,y, 2) = Z Z Z h(k,l,m)p(n,z
The tetrahedral mesh is the oldest of the other structures that k=—1l=—1m=—-1
have been developed to overcome the dispersion problems oc- +ky+l,z+m)—pln—1,z,y,2z) (6)
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. TABLE |
® D / 7 VALUES FOR SPATIAL FREQUENCY COORDINATES 6; AND ; REPRESENTING
\ / THE 2-D DIAGONAL AND 3-D DIAGONAL NEIGHBORS OF ANODE

/ 1
‘\:\\: s |-
3 - I ! Sl =witws | 1 =w+wstws
S0 NN

0 S p=witws | 7=w —wtws

® o ‘
¢ 03 =wy+w3 | 73=w;+wy—w3
(a) 64=w1~w2 Y4 = W1 — W — w3

05 = w1 — w3

0 = wo — w3

Therefore, the coefficient for the center node can be chosen as

he = 2 — 6h, — 12hap — Shsp. (10)

d . . .
© @ The second constraint comes from the dispersion factor, see

Fig. 2. Sketch of (a) six axial neighbors in the original WGM, (b) 12 2—[(3)' which should equal to 1 at the zero frequency' that is
diagonal neighbors, (c) 8 3-D diagonal neighbors, and (d) all neighbors in the

interpolated WGM. The center node is indicated with the large dot in all cases. ka. = ¢ lIm k(€. &y,&:)
r7§1/7§:_>0
where h(k,l,m) are the weighting coefficients for different = \/12hap + 12hsp + 3he = 1. (11)
neighbor types. In the following the coefficients are denoted as -
follows: From that we can solve another coefficient. Let us chdagse

ha, i [k|+ |l +|m| =1
h(k,1,m) = hap, if k] + ] + |m] = 2
hsp, ?f |6 + 12| + [m| = 3 In the original interpolated rectangular mesh the interpolation
he, i |k] + i + |m| =0 coefficients were obtained by trilinear interpolation, which is
The original rectangular mesh is obtained by settipg= (1/3) the extension of linear interpolation in three dimensions, but the
andhap = hap = h. = 0. Ininterpolated mesh algorithms, allresults were not accurate enough and in addition the coefficients

hsp = 1—12(1 — 12hop — 3ha)- (12)
(7

or many of the above coefficients are nonzero. do not satisfy the wave propagation speed constraint by (11),
[7], [16]. Therefore we were obliged to search for more suitable

A. Dispersion Analysis coefficients.

For the dispersion analysis (3) is still valid, B(t,, &,, €.) Based on the previous constraints we still have two variables,
gets a new formulation hop andh,, which can be optimized to achieve as uniform dis-

5 . persion characteristics as possible in all directions.
b(&w: &y €2) = 2 [ ha Z coswicl'+ hap Z cos 8;cT’ C. Optimization of Interpolation Coefficients
=1 =1

4 5 The optimization of coefficients was performed such that the
+ hsp Z cosv;cT + —| (8) maximal and minimal error curves are as close to each other as
i=1 2 possible by minimizing the difference between the two curves.

whered; correspond to the centers of all the edges of a unit cubTJ?e. ”f’S“'.“”g coefficients are presented in Table Il in which Fhef
timization has been conducted for two separate upper limit

and~; are all the corners of the spatial frequency unit cube. T P ! o R
values fors; and~; are shown in Table I. Equations (3) and (8 requencies .. On the first line the error has been minimized

now enable the dispersion analysis for the interpolated struct B.to f.ma" = 0.25, which has bee’? the typical limit for WGM.
n the interpolated system the valid frequency range extends to

0.29 as discussed in Section IV.C, and the corresponding coef-
B. Constraints for Interpolation Coefficients ficients are shown on the second line of Table Il. The maximum

difference between minimum and maximumif,., &, £ ) in

The coefficient values in the interpolated three—dimensionglll directions is given for eacf,., in the rightmost column of
WGM must satisfy two constraints [1]. First of all the stability. 9 ax g

criterion states thdtmust be real anth| < 2. Based on (8), the Table I . : . . . .
. . There still remains dispersion which increases steadily as a
maximum ofb, or by, is reached wheg — 0

function of frequency, as shown in Fig. 1((nax = 0.25). In
this case the dispersion is nearly independent of the propagation

brnax = 2 |3ha + 6h 4h hel _ 2 9
max a +6h2p +4hsp + | T ©) direction which can be seen by comparing the RFE curves in
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TABLE I
OPTIMIZED VALUES FOR INTERPOLATION COEFFICIENTS FORTWO DIFFERENT UPPERLIMIT FREQUENCIES
f maz ha h2D h3D hc Max diff. (%)
0.25 || 0.12052 | 0.03860 | 0.01460 | 0.69686 0.947
0.29 || 0.10861 | 0.03967 | 0.01652 | 0.74025 1.756

There are various techniques to find an optimal value
for the warping coefficientA [9]. With a single warping

(A = —0.253059) the best result was 3.8% maximal error for
fmax = 0.25. The error can still be reduced by applying the
multiwarping technique in which multiple signal resampling
and frequency warping operations are cascaded [18], [19]. By
using multiwarping which contains two warping and two signal
resampling operations, a maximal error of 1.8% is achieved.
The corresponding error curves are given in Fig. 1(c).

The warping techniques discussed in this article are suitable
for offline processing such that both the input and output signals
of a mesh are processed. Lately there have been suggestions
also on implementing the warping inside a mesh structure thus
enabling online warping [20], [21].

@ O1¢ g%y 0.1 B. Frequency Warping in the Frequency Domain
y’ "z

Warping in the frequency domain is made by nonuniform re-
Fig. 3. Dispersion error in the full interpolated and in various sparse mesmmpling of the Fourier transformed signal [22], [23, p. 13]. In

structures as afun_ctlon of sp_at|a| frequencies s_uch that th_e data reprgsentsﬁ.ﬁg case, the resampling intervals are determined by the rela-
in one diagonal slice of a unit cube as a function of spatial frequencies. Eac

contour represents a 2% decrease in speed from the center. In (a) the optinfii¢ Wave propagation speed curves. The applied warping curve
interpolated structure is illustrated. In (b)—(d) sparse structures are shown sggrresponds to average of RFE’s shown in Fig. 1(b) thus mini-
that (b) represents only 2-D diagonal connections, (c) depicts axial and 2 |zing the maximal error. Note that the Fourier transform must
diagonal connections, and (d) is for the structure containing axial and 3- . ) . .
diagonal neighbors. be performed with a large number of datapoints so that the in-
terpolation of spectral data causes only minimal error. Due to
) . L . . the nature of the transform, the frequency response is complex.
three different directions in Fig. 1(b). The dispersion in all they o etore the interpolation has to be applied to both the real
directions is illustrated in Fig. 3(a). and the imaginary parts thus preserving both the magnitude and
phase of the response. By this technique the maximal error is
V. APPLYING FREQUENCY WARPING TO REDUCE THE reduced to 0.474%, as illustrated in Fig. 1(d). That error is one
DISPERSIONERROR half of the maximal difference presented ffit.x = 0.25 in

There are two different principles to apply the frequencyable .

warping. In our previous studies concerning the 2-D WGI\/&3
we have utilized warping in the time domain [14], [9]. In the™" . _ o
case of the 3-D WGM more accurate results may be obtained\ext, we discuss the question of the upper frequency limit

by warping in the frequency domain. In the following we showf the interpolated and warped WGM simulations. It is known
results for both techniques. that the limiting frequency in the case of the original waveguide

mesh is 0.25, and above that frequency only mirror images of
lower frequencies occur [3], [24]. However, when interpolation

) _ and frequency-warping methods are used, itis no longer obvious
Since the error curves are smooth and nearly the same in@ll,t the highest frequency is. In the following, we demonstrate

the directions [see Fig. 1(b)], itis possible to apply a frequengy,y it is possible to extend the frequency range of digital wave-

warping to reduce the dispersion [9]. The warping is performeg;ige mesh simulations. A similar study has been presented pre-
to the input and output signals of the mesh [9] using a warpgg)us|y for the 2-D case [18].

FIR filter [17]. It is an FIR filter in which each unit delay el- Fig. 4 shows the mapping of the original normalized fre-
ement has been replaced with a first-order allpass filter haViHGencies to the frequencies occurring on the mesh in the case
the transfer function of the original [Fig. 4(a)] and optimally interpolated meshes,
when the frequency limit has been set to 0.25 [in Fig. 4(b)] and
A(z) = (71 4+ 0 /(1T + A7), (13) 0.29 [in Fig. 4(c)]. The maximum value of all axial mapping

Extending the Frequency Range

A. Frequency Warping in the Time Domain
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Fig. 4. Mapping of frequencies in the (a) original, (b) optimally interpolated (up to 0.25), and (c) another optimally interpolated (up to 0.28)evavesh
together with (d) warped mapping for case (b). The axial direction is shown with the solid, the 2-D diagonal direction with the dashed, and then8withago
dash-dotted line. The dotted line indicates the desired ideal mapping fuligtienx).

curves without warping is 0.196, and it occurs at normalizel
frequency 0.29. This appears to be the highest frequency the«
can be simulated using the interpolated rectangular 3-D digiti
waveguide meshes. Frequency warping could at its best shift t|
mesh frequencies so that 0.29 would again occur at the right fre
quency. Assuming ideal frequency warping, the remaining errc
is caused by the differences between different directions. No
that in 2-D WGM similar behavior is observed, but in the 2-D
case the maximum frequency is 0.35 [18].

As an example, we display in Fig. 4(d) the frequency mappin
of the warped interpolated mesh optimized up to the normalize
frequency 0.25. It can be seen that both the axial and diagorT -
frequency mappings follow the ideal mapping function [dottet
line in Fig. 4(d)] well until about 0.25. Above this frequency,
also the difference between the diagonal and axial properties
the mesh begins to increase substantially, and it is impossible

0

extend the bandwidth much higher. However, it would be pos | .-
sible to warp the interpolated mesh that has been optimized
to 0.29 [see Fig. 4(c)], and then it would be feasible to obtain (© @

reasonably gOOd accuracy up to 0.29. Fig.5. Various sparse mesh structures utilizing different number of neighbors:

(a) all the neighbors are involved, (b) axial and 2-D diagonal connections, (c)
axial and 3-D diagonal connections, and (d) 2-D and 3-D diagonal connections.

The center node is indicated with the large dot in all cases.
V. SPARSEINTERPOLATED MESHALGORITHMS

In the interpolated structure discussed above there are 27 comrnections is reduced. We have tested various sparse structures
nections from each node: 26 connections to the neighbors arayaetting some of the interpolation coefficiehts hop, Orhsp
delayed feedback connection to the node itself [see (6)]. Whinzero, and performing the optimization of interpolation and
compared to the original mesh with six connections the numbearping coefficients in series. All the resulting structures are
of required operations is nearly five times larger. In the folllustrated in Figs. 2 and 5. The obtained RFEs are shown in
lowing, we study some compromises in which the number @hble Ill. All the optimizations were done up Q... = 0.25.
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TABLE Il
OPTIMIZED VALUES FORINTERPOLATION COEFFICIENTS ANDCORRESPONDINGMAXIMAL RFEFOR DIFFERENT STRUCTURESSUCH THAT A STANDS FORAXIAL
DIRECTIONS 2D FOR 2D-DIAGONALS, AND 3D FOR 3-D DIAGONAL DIRECTIONS IN THE FIRST LINE, THE RESULTS FOR THECOMPLETE STRUCTUREW/ITH
26 NEIGHBORS ARE SHOWN. THE FIGURE RFE (SW) SANDS FOR THE RELATIVE FREQUENCY ERRORWITH SINGLE WARPING,
AND THE RFE (FDW) s FOR THEWARPING IN THE FREQUENCY DOMAIN

Structure | Fig. ha hap hsp he RFE (SW) | RFE (FDW)
All 2(d) || 0.12052 | 0.03860 | 0.01460 | 0.69686 || 3.783% 0.474%
A 2(a) || 0.33333 | 0.00000 | 0.00000 | 0.00000 || 16.314% 11.793%
2D 2(b) || 0.00000 | 0.08333 | 0.00000 | 1.00000 || 13.043% 4.858%
3D 2(c) || 0.00000 | 0.00000 | 0.08333 | 1.33333 || 37.332% 13.159%
A2D | 5(b) || 0.09174 | 0.06040 | 0.00000 | 0.72479 || 4.012% 1.380%
A3D | 5(c) || 0.15261 | 0.00000 | 0.04518 | 0.72288 || 4.761% 2.376%
2D3D | 5(d) || 0.00000 | 0.09502 | -0.01168 | 0.95327 || 10.102% 4.005%
The first line of Table Il can be used as a reference since TABLE IV
it stands for the complete interpolated mesh having 27 connecSOMPUTATIONAL LOAD OF VARIOUS MESH STRUCTURES IN THE TOTAL
. . . . LOAD THE ADDITIONS AND MULTIPLICATIONS ARE CONSIDERED
tions. The next three lines represent cases in WhIC.h two of the EQUALLY EXPENSIVE
coefficients have been forced to zero corresponding to struc-
tures 2(a)—(c). In these cases there is no need for optimization Structure || Adds | Muls | Total
of coefficients since there are no more degrees of freedom but
all the values for the remaining coefficients come directly from All 26 4 | 100.0%
the constraints (10) and (12). Note that the structure having A 6 1 23.3%
he, = 1/3 is the original rectangular 3-D digital waveguide
mesh / g g g g 2D 12 | 1 | 43.3%
Fig. 3(b)—(d) illustrates the dispersion error in various sparse 3D 8 2 33.3%
s_tructures such that in (b)_ only the 2-D dlagonals have connec- A2D 18 3 70.0%
tions to the center node, in (c) both the axial and 2-D diagonal
neighbors are utilized, and in (d) axial and 3-D diagonals are A3D 14 3 | 56.7%
connected. The figure shows dispersion in all the directions such 2D3D 20 3 76.7%

that the error is calculated on a 2-D diagonal surface of a unit
cube of spatial frequenci€s, &, and¢. . Note that we show the
dispersion factor up to spatial frequency radjus 0.25: Inthe  v|, SIMULATION EXAMPLE OF A CUBE AND COMPARISON TO
x direction this implies 0.25 and in the= z diagonal direction THE OTHER TECHNIQUES
0.25/\/5 = 0.1768. It is interesting to see that the mesh con- . )
sisting of 12 2-D axial neighbors yields pretty low RFE of 4.9% AS an example an ideal cube was simulated. The mesh con-
with warping in the frequency domain. The corresponding errdiSted 0f8 x 8 x 8 = 512 nodes and the walls had a reflection
contours without frequency warping are shown in Fig. 3(b). COefficient—1. Hence, we did not have to perform any interpo-
The last three lines of Table Il present results for the cases@ion or filtering at the boundaries. An impulse excitation was
which only one of the coefficients is missing. These structurécated near one corner, and the receiver was at the opposite
are illustrated in Fig. 5. The results show that the case in whi€R¢€- In the simulation 3298 time steps were calculated and the
the axial and 2-D diagonal connections are utilized [Fig. 5(bjjagnitude response was computed by Fourier transforming the
is quite similar to the full structure [Fig. 5(a)] but the number ofbtained impulse response. The simulation was run with four
neighbors has been decreased from 26 to 18. different variations of the algorithms, and the results are illus-
The number of required operations in each structure is p,téated in Fig. 6. In all figures the dashed line stands for the ana-
sented in Table IV. The cases are the same as in Table I11. In fiféically solved magnitude response. In the original rectangular
calculation of the total computational load, additions and multiresh, presented in Fig. 6(a), some of the modes are at correct lo-
plications are considered to cause an equal load. It is interestf@§ions while others are too low. Both the optimally interpolated
to note that in the case of only 2-D diagonal neighbors the fact®esh with multiwarping [Fig. 6(b)] and the optimally interpo-
h. = 1 thus avoiding one multiplication. lated mesh with warping in the frequency domain [Fig. 6(c)]
As a conclusion, we suggest that for applications in whictnhance the situation remarkably. It is easy to see that the most
the computational load is more important than accuracy sorecurate result is obtained when the warping is performed in the
reduced structure can be utilized. The most cost effective striicequency domain, as already shown in Section IV-B. The most
tures seem to be the one having only 2-D diagonal connecti@escurate ofthe sparse constructions is the one having connec-
[see Fig. 2(b)], and the one having both axial and 2-D diagortains to the axial and 2-D diagonal neighbors illustrated in Fig.
neighbors [see Fig. 5(a)]. They have RFEs of 4.9% and 1.4%¢b). The simulation result given by this with warping in the fre-
respectively, with warping in the frequency domain. guency domain is shown in Fig. 6(d). In all the simulations the
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or element methods require inversion of a large matrix, and that is
20f @ not needed in finite difference methods. Therefore the WGM is
-40 computationally easier than FEM and BEM. The power of FEM
and BEM lies in their ability to use arbitrary shaped elements,
T T but that limits the possibility to obtain uniform dispersion prop-
E-zo— erties, which is a strength in our technique. This results in the
>0 ability to utilize the frequency warping technique with WGM to
Z compensate the dispersion error up to a certain degree. In addi-
E: 28: © tion, the WGM is more intuitive and easier to implement than
| the element methods.
o VIl. CONCLUSION
2op @ An optimally interpolated 3-D digital waveguide mesh with
-4 ‘ rectangular structure was presented. By applying interpolation

0.05 to increase the number of propagation directions, nearly direc-
tion independent wave propagation characteristics are obtained.
Fig. 6. Cubic space is simulated and a transfer function is calculated (a) wilie remaining dispersion can be reduced by frequency warping,

the original rectangular mesh, (b) with the optimally interpolated mesh applyifighich can be performed either in the time domain or in the fre-
multiwarping, (c) with the optimally interpolated mesh using warping in the

frequency domain, and (d) with the sparse structure containing axial and Zd€ncy domain. The relative frequency error is reduced to less

diagonal neighbors and warping in the frequency domain. In all the interpolatdtian 0.5% when the warping is done in the frequency domain.
cases the optimization has been performed yptg. = 0.25. The solid line The new method improves the frequency accuracy of the orig—
represents the simulation result and the dashed line is the analytical solution. . .

inal 3-D mesh remarkably. In addition, sparse versions of the

interpolated digital waveguide mesh were derived and tested. In

0. 0.15
NORMALIZED FREQUENCY

0 - the future, research efforts should focus on accurate implemen-
% 100 tation of various boundary conditions in the mesh.
7
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