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Abstract

The Vietoris-Rips complex characterizes the topology

of a point set. This complex is popular in topological

data analysis as its construction extends easily to higher

dimensions. We formulate a two-phase approach for

its construction that separates geometry from topology.

We survey methods for the first phase, give three algo-

rithms for the second phase, implement all algorithms,

and present experimental results. Our software can also

be used for constructing any clique complex, such as the

weak witness complex.

1 Introduction

In this paper, we present fast algorithms for construct-

ing the filtered Vietoris-Rips complex of a point set. Our

software can compute arbitrary dimensional complexes

for point sets in arbitrary dimensions, and may be applied

toward constructing other clique complexes, such as the

weak witness complex. Figure 1 shows the performance

of our fastest algorithm to inspire interest. On this point

set, we compute a complex consisting of 24M simplices

in about 80 seconds at scale ǫ = 0.15. All our timings

are done on a 64-bit GNU/Linux machine with two dual-

core 3 GHz Xeon processors, although our software is not

threaded and uses only one core.

1.1 Motivation

Scientific data, whether acquired or simulated, may be

modeled as point cloud data, finite sets of points em-

bedded in metric spaces. Analysis assumes that data has

structure: It is sampled from some underlying geometric

space. Within computational topology, the emerging area

of topological data analysis focuses on the recovery of

the lost topology of this underlying space. In topological

analysis, we generally follow a two step process. In the

first step, we approximate the underlying structure of the

point set using a combinatorial structure, such as a sim-

plicial or cubical complex. In the second step, we utilize

techniques from algebraic topology to compute topolog-

ical invariants of these structures. One popular invariant

is persistent homology [14, 39] which analyzes the rela-

tionship between structures at different scales.
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Figure 1: Construction time and complex size of the 3-

dimensional Vietoris-Rips complex at scale ǫ for a set of

10,000 uniformly sampled points from the unit 2-sphere

in R
3. The results are averaged over 20 independent runs

per plot point.

There are a number of methods for completing the

first step of topological analysis. We may partition these

methods roughly into geometric and algebraic techniques.

Geometric methods include the alpha complex [15], its

conformal variant [6], and the flow complex [18], to name

a few. When the data is embedded in R
2 or R

3, geometric

methods are ideal as they are fast and produce small em-

bedded complexes. Unfortunately, these methods depend

on the Delaunay complex [10]. Currently, we do not have

robust software for computing the Delaunay complex in

dimensions higher than three, although progress is being

made [3].

The classic algebraic method is the Čech complex [20]

whose construction is infeasible in practice. For this rea-

son, this complex is often approximated by the Vietoris-

Rips complex or VR complex for short, the focus of this

paper [35]. The VR complex is currently the only practi-

cal complex for analyzing datasets in higher dimensions.

We have used it, for instance, to compute shape descrip-

tors based on curvature [8] and to characterize the local

structure of natural images [5]. Another popular method

is the family of witness complexes [12] which approxi-

mate topology. As we will see, the variant of this com-

plex often used in practice, the weak witness complex, is

related to the VR complex, so our work is immediately

applicable to its construction.
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1.2 Prior Work

Due to its simplicity, the VR complex has been computed

often using ad-hoc algorithms in the past, including in

our prior work [5]. These implementations were suffi-

cient because the datasets were small or sampled to be

small, generally a few hundred points in size. Also, only

low-dimensional complexes were built. Currently, public

implementations are available in PLEX [30], a MATLAB

library, and its java descendant JPlex [32]. We compare

our implementation to JPlex which may be viewed as the

state of the art. We did not have access to the source code

of JPlex, but corresponded with its authors regarding the

algorithm used. JPlex takes an inductive approach as does

our first algorithm. We know of no other publicly avail-

able software for computing the VR complex.

1.3 Contributions

As detailed in Section 3, our approach is to separate the

construction of the filtered VR complex into two phases.

In the first phase, we compute a neighborhood graph on

the input points based on the ambient metric. We review

several methods for computing this graph, including ex-

act, approximate, and randomized nearest neighbors, as

well as landmarking. In the second phase, we expand the

graph to include higher-dimensional simplices, an oper-

ation often called the Vietoris-Rips expansion. In Sec-

tion 4, we describe three algorithms for expansion. We

begin with an inductive algorithm that is similar to al-

gorithms that have been implemented in the past. We

then introduce two novel algorithms: an incremental al-

gorithm and one employing a dramatically different ap-

proach: enumeration of maximal cliques. We have im-

plemented all of our algorithms and examine their per-

formance in practice in Section 5, including comparisons

to existing software, and computing clique complexes of

graphs.

Our work represents the first systematic examination

of all the stages of the construction of the Vietoris-

Rips complex. It also lays the foundation of our cur-

rent work in computing smaller representations for point

cloud data [38]. As Figure 1 demonstrates, our software

is currently the fastest available, constructing complexes

with millions of simplices in arbitrary dimensions in sec-

onds.

2 Background

In this section, we begin a quick review of simplicial

complexes, the objects that we build. We then define the

Vietoris-Rips complex and an associated weight function

on its simplices. For an accessible introduction to com-

putational topology, we recommend a recent survey [37].

A simplicial complex is a set K of finite sets such that

if σ ∈ K and τ ⊆ σ, then τ ∈ K. For every τ ⊆ σ ∈ K,

we say τ is a face of σ, its coface. The (−1)-simplex ∅
is a face of any simplex. A simplex is maximal if it has

no proper coface in K. If σ ∈ K has cardinality |σ| =
k+1, we call σ a k-simplex of dimension k, dim(σ) = k.

This name stems from our ability to realize a k-simplex

geometrically as a k-dimensional subspace of R
d, d ≥

k, namely, the convex hull of k + 1 affinely-independent

points. Given this view, a k-simplex is called a vertex,

an edge, a triangle, or a tetrahedron for 0 ≤ k ≤ 3,

respectively. A simplicial complex may be embedded in

Euclidean space as the union of its geometrically realized

simplices such that they only intersect along shared faces.

A subcomplex is a subset L ⊆ K that is also a simpli-

cial complex. An important subcomplex is the k-skeleton

consisting of simplices in K of dimension less than or

equal to k. A filtration of a complex K is a sequence of

nested subcomplexes ∅ = K0 ⊆ K1 ⊆ . . . ⊆ Km = K.
A complex with a filtration is a filtered complex.

Suppose we are given a finite set of d-dimensional

points S ⊆ R
d, such as the set of 13 points in the plane

in Figure 2(a). The Vietoris-Rips complex (VR complex)

Vǫ(S) of S at scale ǫ is

Vǫ(S) = {σ ⊆ S | d(u, v) ≤ ǫ, ∀u 6= v ∈ σ}, (1)

where d is the Euclidean metric [19, 35]. In other words,

each simplex σ in Vǫ(S) has vertices that are pairwise

within distance ǫ. In practice, we compute the VR com-

plex for some maximum scale ǫ̂ ∈ R and then extract the

complex at any lower scale ǫ ≤ ǫ̂. To do so, we define a

weight function ω : Vǫ̂(S)→ R over the simplices. Given

σ ∈ Vǫ̂(S), we define:

ω(σ) =







0, dim(σ) ≤ 0,
d(u, v), σ = {u, v}
max
τ⊂σ

ω(τ), otherwise.
(2)

That is, the weight function is the minimum ǫ at which a

simplex σ enters the VR complex, equal to the maximum

of the weights (lengths) of all its edges. Since σ’s faces

share its edges, above we equivalently define the weight

of a simplex to be the maximum of the weights of all its

faces. This inductive definition translates directly into a

recursive algorithm in Section 4.4. We may now sort the

simplices according to their weights, extracting the VR

complex for any ǫ ≤ ǫ̂ as a prefix of this ordering. That is,

we extract the filtration of the Vǫ̂(S). This is a particular

representation of a filtered complex that is very useful in

practice.

Definition 1 (weight-filtered complex) A weight-

filtered complex is the tuple (K, f), where K is a

simplicial complex and f : K → R is a discrete weight

function such that Kǫ = {σ | f(σ) ≤ ǫ} yields a

filtration.

Our goal in this paper is to compute the weight-filtered

VR complex (Vǫ̂(S), ω). This filtered complex is the re-

quired input to the persistence algorithm [39] for topolog-

ical analysis.
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(a) S (b) Gǫ(S) (c) Vǫ(S)

Figure 2: Construction of the Vietoris-Rips complex. Our input (a) is a set of points S. Section 3.2 describes the first

phase, the geometric process of going from (a) to a neighborhood graph (b). Section 4 describes the second phase,

the combinatorial process of expanding from the graph (b) to the Vietoris-Rips complex (c).

3 Approach

In this section, we describe our approach to constructing

the VR complex. We divide this construction into two

phases: one geometric and one topological, as illustrated

in Figure 2. We then survey algorithms for completing the

first phase, the construction of the neighborhood graph.

3.1 Two-Phase Construction

Consider the definition of the VR complex in Equa-

tion (1). Points within distance ǫ create edges in the VR

complex, and together with those edges constitute the 1-

skeleton of the complex, which is equivalently a graph.

We name this graph for ease and separate its construction.

Definition 2 (neighborhood graph) A neighborhood

graph is (G,w), where G = (V,E) is an undirected

graph, and w : E → R is its weight function, defined on

its edges.

The 1-skeleton of the VR complex is a neighborhood

graph.

Definition 3 (VR neighborhood graph) Given S ⊆ R
d

and scale ǫ ∈ R, the VR neighborhood graph is a neigh-

borhood graph (Gǫ(S), w), where Gǫ(S) = (S,Eǫ(S))
and

Eǫ(S) = {{u, v} | d(u, v) ≤ ǫ, u 6= v ∈ S}, (3)

w({u, v}) = d(u, v), ∀{u, v} ∈ Eǫ(S). (4)

Figure 2(b) shows a VR neighborhood graph with 18

edges, where w is the length of the edges. We may expand

any neighborhood graph up to a weight-filtered complex.

Definition 4 (Vietoris-Rips expansion) Given a

neighborhood graph (G,w), we compute the weight-

filtered Vietoris-Rips complex (V(G), ω) via Vietoris-

Rips expansion: If all the edges of a simplex σ are in

G, then σ is in V(G). For G = (V,E), we have

V(G) = V ∪ E ∪
{

σ |
(

σ
2

)

⊆ E
}

, (5)

For σ ∈ V(G),

ω(σ) =







0, σ = {v}, v ∈ V,
w({u, v}), σ = {u, v} ∈ E
max
τ⊂σ

ω(τ), otherwise.
(6)

Note that the definition of V(G) is completely combina-

torial and makes no reference to the metric on the em-

bedding space. The definition of ω is inductive as be-

fore. Figure 2(c) shows the result of VR expansion on a

neighborhood graph, adding two triangles and a tetrahe-

dron along with its four triangular faces.

This approach gives us a two-phase scheme for con-

structing the Vǫ̂(S) for input S ⊆ R
d and maximum scale

ǫ̂ ∈ R.

1. Compute (Gǫ̂(S), w) by Definition 3. This is the VR

neighborhood graph and its construction constitutes

a geometric phase as it requires the distance metric.

We survey methods for completing this phase next.

2. Compute (V(Gǫ̂(S)), ω) by Definition 4. This is the

weight-filtered VR complex computed via expan-

sion and its construction is purely combinatorial or

topological. We give three algorithms for this phase

in Section 4.

Now Vǫ̂(S) = V(Gǫ̂(S)), so we are done. This char-

acterization exhibits the beauty of the VR complex in its

separation of geometry from topology. It also liberates

us from Euclidean geometry, defining a family of com-

plexes that are based on VR expansion from any type of

neighborhood graphs.

3.2 Computing a Neighborhood Graph

We now focus on completing the first phase: construct-

ing the neighborhood graph. We review eight algorithms

from two main approaches: nearest neighbors and land-

marking. All the algorithms have the following interface.

• Input: finite set S ⊆ R
d and scale ǫ̂ ∈ R

• Output: Neighborhood graph (G,w)
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The first approach is a classic problem in computational

geometry with a rich literature: the nearest neighbor

problem: Preprocess S so that given any query q, the clos-

est p ∈ S can be reported quickly [26]. This problem has

a variety of geometric applications, such as pattern classi-

fication [13] and quantization in image compression [21].

We need neighbors of all points in S within distance ǫ,

so we have a combination of two variants of this prob-

lem: the ǫ-nearest neighbor problem and the all nearest

neighbors problem. There are a number of approaches.

Exact We may use the all-pairs brute-force algorithm

to report pairs in S within distance ǫ in O(n2) time with-

out any preprocessing. A simple but empirically faster

approach is to scanning. We project the points onto a

random vector in R
d and sort the points along that vec-

tor, using the projection distance as a lower-bound on the

actual distance. In practice, we use all-pairs and scan-

ning to verify the more sophisticated methods. Fried-

man et al. combine kd-trees with a search algorithm to

achieve an O(log n) query time with O(n) space in the

expected case [17]. Arya et al. describe the balanced box-

decomposition tree (BBD-tree) and priority search to de-

velop a method with an error parameter that may be set

to zero for an exact algorithm [2]. Any exact solution

hides exponential dependence on the embedding dimen-

sion in its constants as it suffers from the so-called curse

of dimensionality. In particular, in any fixed dimension

greater than 2, we cannot achieve linear space and loga-

rithmic query time [2].

Approximate Since we are approximating the under-

lying space of S to recover its topology, we may argue

that computing an exact solution is not necessary if the

computation is intractable. Therefore, we may use ap-

proximate methods if they are faster. It should be clear,

however, that approximating the neighborhood graph will

not yield the exact VR complex but an approximation of

the complex. Given error δ > 0, a point p ∈ S is a

(1 + δ)-approximate neighbor of a query q if d(p, q) ≤
(1 + δ) · d(p′, q), where p′ is the true nearest neighbor to

q. The algorithm of Arya et al. above is an asymptotically

optimal solution to this problem. We may also replace

the BBD-tree with the kd-tree or adapt Friedman et al.’s

search scheme for approximate solutions with either tree.

Randomized For high dimensions (greater than 20),

space partitioning schemes such as the kd-tree or BBD-

tree offer little improvement over brute-force search [2].

Instead, we may employ a probabilistic approach. The

(1 − γ)-nearest neighbor problem reports the nearest

neighbors with probability at least 1 − γ. One solution

to this problem is the dimensionality reduction scheme

of locality sensitive hashing (LSH). Andoni and Indyk

give an algorithm for Euclidean L2 spaces from this fam-

ily [1].

Landmarking Yet another approach to approximating

the neighborhood graph is by constructing it on a subset

of the input points. We begin by selecting a set of land-

marks L ⊆ S. The remaining points, W = S − L, are

the set of potential witnesses. The witness graph at scale

ǫ ∈ R is the graph G = (L,Eǫ,L), where {l1, l2} ∈ Eǫ,L

if there exists a witness w ∈ W that is closer to li than

any other landmark, and d(w, li) ≤ ǫ for i = 1, 2. The

weight function is d(u, v) as before. This approach re-

laxes the Delaunay test that requires an equidistant point

from two vertices for an edge to exist [10]. The family of

complexes based on this notion are called witness com-

plexes [12]. Searching for witnesses is easy as we only

have to compute an |S| × |L| distance matrix, and by de-

sign, |L| ≪ |S|. Once we have the graph, we may VR

expand to construct the weak witness complex. In other

words, our algorithms for VR expansion in the next sec-

tion apply toward constructing this complex.

We now have several algorithms for completing the

first phase of our construction: computing the neighbor-

hood graph. We will look at the performance of most of

these algorithms in Section 5.2. We do not implement

landmarking, however, due to our focus on the VR com-

plex.

4 VR Expansion Algorithms

In this section, we focus on the second phase of con-

structing the VR complex: Vietoris-Rips expansion of the

neighborhood graph, as shown in Figure 2(c). Recall that

this phase is purely combinatorial. We assume that our

input is a neighborhood graph constructed by one of the

methods in the previous section. Our task is to augment

this graph with higher-dimensional simplices to complete

the VR complex. We give three algorithms for accom-

plishing this task, ending the section with an algorithm to

compute the associated weight function.

We generally characterize the topology of space up to

homology. In this formalism, a space only has trivial in-

variants in dimensions higher than its embedding dimen-

sion [20]. Also, if we need to compute i-dimensional ho-

mology, we require only the (i + 1)-skeleton. Therefore,

we usually compute the k-skeleton of for some k ≤ d.

The VR expansion algorithms have the following inter-

face.

• Input: Neighborhood graph (G,w) and maximum

dimension k.

• Output: k-skeleton of weight-filtered VR complex

(V(G), ω).

In the rest of this section, we assume k > 1 since G itself

is the 1-skeleton.

4.1 Inductive Algorithm

For our first algorithm, we induct on dimension. We may

construct any simplicial complex inductively by gluing
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simplices of dimension i to simplices of dimension i −
1. Throughout this section, we assume we have a total

ordering on the vertices in the neighborhood graph (an

arbitrary ordering will do.) We begin with a simple utility

function that finds all neighbors of vertex u within G that

precede it in the given ordering. The function uses dot

notation from C++ to access the elements of G.

LOWER-NBRS(G, u)

1 return {v ∈ G.V | u > v, {u, v} ∈ G.E}

We use this function in our first algorithm below.

INDUCTIVE-VR(G, k)

1 V← G.V ∪G.E
2 for i← 1 to k
3 do foreach i-simplex τ ∈ V

4 do N ←
⋂

u∈τ LOWER-NBRS(G, u)
5 foreach v ∈ N
6 do V← V ∪ {τ ∪ {v}}
7 return V

The algorithm is reminiscent of the inductive definition of

the CW complex [20]. We describe the algorithm in the

proof of the following theorem.

Theorem 1 INDUCTIVE-VR(G, k) computes the k-

skeleton of V(G).

Proof: We begin by initializing the V on line 1 with the

input graph, so it now contains its 1-skeleton. We es-

tablish the invariant that V must contain the i-skeleton at

the beginning of the ith iteration of the loop on line 2.

This invariant clearly holds for i = 1. We maintain this

invariant by adding co-dimension one cofaces of the i-
simplices in the ith iteration of the loop. For each i-
simplex τ on line 3, we compute the set N of the vertices

in G that are neighbors of all the vertices of τ and pre-

cede τ ’s vertices in the ordering. For any vertex v ∈ N ,

we now claim that σ = τ ∪ {v} is an (i + 1)-simplex

as all its edges are in G. To see this, take any two dis-

tinct vertices in u 6= w ∈ σ. If both u,w ∈ τ , then

{u,w} ∈ G as τ is a simplex in V. For the other case,

assume WLOG that only w ∈ τ and u = v. Then since

v ∈ N , {u,w} ∈ G. Therefore, all edges of σ are in

G and σ is an (i + 1)-simplex in V. We add σ to the

complex on line 6. We end by noting that the inequal-

ity within LOWER-NBRS enforces the invariant that v is

the minimal vertex of σ according to the ordering. Since

any simplex has a minimal vertex, we report each simplex

only once. �

Analyzing the complexity of VR expansion algorithms

is difficult, as the output has exponential size, so we need

output-sensitive complexity. Here, we consider the first

expansion from edges to triangles, when i = 1. For each

edge, we look at all the neighbors of the endpoints on

line 4 to compute the set of shared neighbors. Each ver-

tex is visited as many times as the degrees of its neigh-

bors. By double counting, the total number of visits is

∑

v∈V deg(v)2. This sum was bounded by de Caen [11]:

4|E|2

|V |
≤

∑

v∈V

deg(v)2 ≤ |E| ·

(

2|E|

|V − 1|
+ |V | − 2

)

,

with equality on the lower bound iff G is regular [36]. In

the worst-case, |E| = O(|V |2) = O(n2) for n points,

giving us a cubic bound, which is the same as the brute-

force method that considers all
(

n
3

)

triples of points. In

practice, however, we have sparse graphs. For instance,

when |E| = O(|V |), the upper bound is quadratic. For

the next iteration, we only need to sum the degrees of the

vertices of triangles in the complex. Worst-case analysis

becomes meaningless as the triangles are very sparse in

practice. It is not clear how to analyze the general situa-

tion when we have a bound on the number of triangles.

4.2 Incremental Algorithm

While the algorithm from the previous section is intuitive,

it is not necessarily efficient as it computes the simplices

in order of dimension. As a result, it repeats some of

the computations on line 4 as it collects the neighbors of

a simplex and its faces in different iterations. We now

take an alternate approach of adding vertices incremen-

tally. When a vertex is added, we construct all needed

cofaces for which the vertex is maximal, eliminating the

repeated computations.

INCREMENTAL-VR(G, k)

1 V← ∅
2 foreach u ∈ G.V
3 do N ← LOWER-NBRS(G, u)
4 ADD-COFACES(G, k, {u}, N,V)
5 return V

ADD-COFACES(G, k, τ,N,V)

1 V← V ∪ {τ}
2 if dim(τ) ≥ k
3 then return

4 else foreach v ∈ N
5 do σ ← τ ∪ {v}
6 M ← N ∩ LOWER-NBRS(G, v)
7 ADD-COFACES(G, k, σ,M,V)

Theorem 2 INCREMENTAL-VR(G, k) computes the k-

skeleton of V(G).

Proof: At the start of each iteration of the loop in

INCREMENTAL-VR, V contains all simplices of the k-

skeleton whose maximal vertex (according to the order-

ing) precede the current vertex u. This invariant is main-

tained in the body of the loop: ADD-COFACES adds all

simplices of the k-skeleton whose maximal vertex is u.

This recursive procedure has the following requirements

on its input:

1. τ is a simplex of the k-skeleton

5



2. N is the set of the lower neighbors of the vertices of

τ

These are initially correct as INCREMENTAL-VR calls

this procedure with a vertex and its lower neighbors and

by Definition (4), all vertices are simplices in V. The body

of ADD-COFACES maintains this invariant. On line 1, it

adds τ to V as it is a legitimate simplex due to the invari-

ant. Line 2 is the base case of the recursion. At the start

of the loop on line 4, we know τ is a simplex in V and any

vertex v ∈ N is a neighbor of the vertices of τ . By the

argument in the proof of Theorem 1, σ = τ ∪ {v} must

also be a simplex of V. Moreover, dim(σ) ≤ k because

of the base case. Therefore, we compute σ’s neighbors

M on line 6 and add σ’s cofaces via a recursive call on

line 7. Note that both invariants have been maintained

and the procedure recursively adds all cofaces of input τ
of dimension k or lower as required. �

The incremental algorithm may be used for applica-

tions where the point set S itself is filtered, such as a

manifold equipped with a Morse function. For example,

our shape description application generates point sets fil-

tered by curvature [8]. We simply add the points accord-

ing to the filtration ordering and modify the definition of

the weight function ω to be the maximum of the weights

of the vertices.

4.3 Maximal Algorithm

Both our previous algorithms work bottom-up, starting

with lower-dimensional faces and adding cofaces. We

now present a top-down algorithm based on the follow-

ing simple observation: The VR complex is the clique

complex of the VR graph. Recall that a clique is a set of

vertices in a graph that induces a complete subgraph [9].

A clique is maximal if it cannot be made any larger. The

clique complex, also called the flag complex, has the max-

imal cliques of a graph as its maximal simplices [25].

Figure 3 highlights the maximal cliques of our example

graph that become simplices in the VR complex in Fig-

ure 2(c). The algorithm, then, is simple: First enumerate

the all maximal cliques C; Then, generate all (k + 1)-
combinations of these cliques to get the k-skeleton of V.

Figure 3: Maximal cliques. The oval regions highlight the

9 maximal cliques of the graph in Figure 2(b) that become

maximal simplices in the VR complex in Figure 2(c).

MAXIMAL-VR(G, k)

1 C ← IK-GX(G)
2 V← GENERATE-COMBINATIONS(C, k + 1)
3 return V

The problem of enumerating maximal cliques should

not be confused with the maximum clique problem, which

is a classic NP-complete problem [23]. The enumeration

problem is harder since an n-vertex graph may have up to

3n/2 maximal cliques in the worst case [27], so it is not

possible to have polynomial-time algorithms with respect

to input size. There have been two approaches to this

problem:

• Greedy: Greedy algorithms use a depth-first-search

approach for enumeration, starting with the algo-

rithm of Bron and Kerbosch [4]. Koch introduces a

pivoting heuristic to reduce the size of the recursion

tree by eliminating repeated subtrees [24].

• Output sensitive: These algorithms bound the time

between the computation of consecutive maximal

cliques [34]. The best current algorithm enumerates

all maximal cliques using n2 space with time delay

O(M(n)), where M(n) is the cost of multiplying

two n× n matrices.

Greedy algorithms cannot be compared to output sen-

sitive algorithms as no output-sensitive complexity is

known for the former. While the latter are provably opti-

mal, the former outperform them in practice. We use the

algorithm IK-GX which is based on a variation of Koch’s

pivoting strategy [7].

In GENERATE-COMBINATIONS, we need to generate

all combinations of every maximal clique, viewed as a set.

Each r-combination of a maximal clique σ is an (r − 1)-
face of σ as a simplex. Generating combinations is a clas-

sic problem in discrete mathematics [31]. We generate

the combinations lexicographically, but there are also al-

gorithms for other orderings, such as the Gray encoding.

Having detailed the two subroutines, it is clear now that

our third algorithm is correct.

Theorem 3 MAXIMAL-VR(G, k) computes the k-

skeleton of V(G).

4.4 Weight Function

We end by extending the graph weight function to the

simplices of the VR complex. We assume the simplices

are in a filtration ordering, with faces preceding cofaces.

INDUCTIVE-VR automatically provides this ordering as

it constructs the simplices by dimension. We may en-

sure a filtration ordering by careful implementation of the

other two algorithms. Given the VR complex V and the

graph weight w, the function below returns the weight

function ω : V→ R.
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COMPUTE-WEIGHTS(V, w)

1 foreach vertex v ∈ V

2 do ω(v)← 0
3 foreach edge e ∈ V

4 do ω(e)← w(e)
5 foreach simplex σ ∈ V

6 do WEIGHT(σ, ω)
7 return ω

WEIGHT(σ, ω)

1 if ω(σ) is defined

2 then return ω(σ)
3 else

4 return ω(σ)← max
τ⊂σ

WEIGHT(τ, ω)

The following theorem states that the computed weight is

correct.

Theorem 4 COMPUTE-WEIGHTS(V, w) computes

ω : V→ R.

Proof: The recursive algorithm directly follows the in-

ductive definition (Definition 4). The algorithm WEIGHT

both computes and assigns the weight, short-circuiting

the computation. �

5 Experiments

In this section, we describe implementations of our al-

gorithms and show their performance on both real and

synthetic data. We also compare our performance with

existing software. We end by demonstrating the utility of

our software by empirically verifying recent theoretical

results on the topology of Erdős-Rényi graphs.

Our implementations are in generic C++ and part of

a library we are developing for computational topology.

In particular, we use data structures from this library for

creating simplicial complexes and filtrations. We use

the Boost Graph Library (BGL) to store neighborhood

graphs [33]. For nearest neighbors, we use the ANN li-

brary [28]. As stated earlier, all our timings are done on

a 64-bit GNU/Linux machine with two dual-core 3 GHz

Xeon processors, although our software is not threaded

and uses only one core. We measured all timings with

clock() from the Standard C library, and zero means

that measured time was below the granularity of this func-

tion.

5.1 Data

Our datasets are listed in in Table 1. For each dataset

S, we have a maximum scale ǫ̂ and we set k = dimS,

that is, we compute up to the embedding dimension. G

is Gramicidin A, a small protein. M is a portion of the

van Hateren-Mumford dataset derived from natural im-

ages with parameters k = 30 and cut = 20% [5]. B

and D are points sampled from the surface of the Stan-

ford bunny and dragon, respectively. To create S, we use

Muller’s method to pick points from a uniform distribu-

tion on unit 3-sphere [29]. We then use the 2-fold diago-

nal map x → (x, x) to embed the points in R
8 [20]. We

use our final dataset to demonstrate our ability to compute

arbitrary clique complexes, not just VR complexes. The

dataset E, is a dense Erdős-Rényi graph G(n, p), where

n = 100 and each edge is inserted independently with

probability p = 0.6. We construct this graph as follows.

For each graph edge, we choose a weight w uniformly at

random from [0, 1]. If w ≤ 0.6, we insert the edge with

that weight w into E.

5.2 Phase I: Neighborhood Graphs

Recall from Section 3.2 that in this phase, our input is

a set of points S ⊆ R
d and a maximum scale ǫ̂ ∈ R,

and our goal is to construct the VR neighborhood graph

(Gǫ(S), w). We have a choice of exact, approximate,

or randomized methods for this construction. Figure 4

displays the performance of four nearest neighbor algo-

rithms for constructing the neighborhood graph on dataset

S. At ǫ = 0.5, we construct an 11.6 million edge graph

in less than 20 seconds on average over 20 independent

runs.
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Figure 4: Phase I: construction time for neighborhood

graph (G,w) for dataset S. The methods compared are

scanning, kd-tree, BBD-tree, and kd-tree with error δ =
0.1. The first three methods are exact and compute the

VR neighborhood graph. The last method computes an

approximate graph.

We also tested E2LSH which is an implementation of

the exact randomized hashing method for L2 spaces [1].

The software was significantly slower due to its long

preprocessing time, e.g. over 622 seconds for a set of

10,000 points on a 2-sphere. Theoretically, this is to be

expected, as the method is designed for manifolds with

high-intrinsic dimension embedded in even higher dimen-

sions. Practically, this is an early implementation (version

0.1), so we expect the performance to improve in time.

From our experiments, we conclude that exact methods

are sufficient for constructing VR neighborhood graphs.
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Input Phase I Phase II
TJS |S| ǫ̂ TG |E| k |Vǫ̂(S)| TD TC TM

G 318 5.00 0.00 3,960 3 71,032 0.12 0.14 0.22 0.13

M 10,000 0.11 0.17 16,210 8 539,627 2.96 1.51 2.90 6.68

B 34,837 0.05 0.37 489,876 3 9,714,912 24.84 20.90 58.81 313.38

S 50,000 0.18 2.17 546,388 8 19,134,612 58.89 121.31 99.70 –

D 88,571 0.0014 1.08 543,996 3 45,995,489 197.23 123.50 – –

E 100 0.60 0.00 2,978 6 1,683,151 5.61 11.88 9.98 –

Table 1: Data, Timing (in seconds), and Statistics
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Figure 5: VR expansion. (a) 3-dimensional complex for B. (b) k-dimensional complex for M at scale ǫ = 0.11.

We may be able to tolerate small errors in data analy-

sis, such as 10%, in order to use approximate methods.

But these methods are not sufficiently faster at this error

rate to justify their use. Finally, randomized methods are

not competitive at this time. For Phase I, Table 1 lists

the time TG for computing the neighborhood graph using

exact methods with the ANN library, and the number of

edges |E| in the computed graph.

5.3 Phase II: VR Expansion

Recall from Section 4 that in this phase, our input is

a neighborhood graph (G,w) and a maximum dimen-

sion k ∈ Z
>1, and our goal is to compute the k-

skeleton of the VR complex V(G) and its weight func-

tion ω. Figure 5 displays the running times for our al-

gorithms on datasets B and M. The times include com-

puting the weight function via COMPUTE-WEIGHTS in

Section 4.4. The fastest algorithm is INCREMENTAL-VR

and the slowest is MAXIMAL-VR, with INDUCTIVE-VR

usually somewhere in between, becoming less compet-

itive in higher dimensions. For Phase II, Table 1 lists

the size |Vǫ̂(S)| of the computed VR complex as well as

times TX for expansion, where X is D for INDUCTIVE-

VR, C for INCREMENTAL-VR, and M for MAXIMAL-

VR. Since our current implementation for combinations

uses bit packing, we are limited to 63-cliques and cannot

handle dataset D, which contains a 73-clique at ǫ̂. It is

easy to remove this limitation, however.

5.4 Enumerating Maximal Cliques

Our third algorithm, MAXIMAL-VR, initially enumerates

all maximal cliques. Figure 6 gives enumeration time,

number of maximal cliques, and histograms of the sizes

of maximal cliques for dataset B. At ǫ = 0, we have

34,837 1-cliques, corresponding to the points in S. At

ǫ = ∞, we would have one 34,837-clique. The num-

ber of maximal cliques is nonmonotonic with increas-

ing ǫ since small cliques merge into larger cliques. The

histograms are usually leptokurtic (have positive kurtosis

and are pointy) and shift right with increasing ǫ. As the

figures demonstrates, we have a large number of cliques,

e.g. 75,011 10-cliques at ǫ̂ = 0.05. Table 2 lists the time

in seconds to enumerate maximal cliques, their number,

and average and maximum size at the maximum scale.

For dataset B at ǫ̂ = 0.05, the neighborhood graph Gǫ̂(S)
has 489,876 edges or roughly 0.08% of all edges, so we

are in a sparse regime from a graph-theoretic point of

view. Dataset E, in contrast, is a dense graph, contain-

ing approximately 60% of the edges, and the resulting

number and size of cliques reflect its density.

5.5 Comparison with JPlex

We next compare the performance of our algorithms with

JPlex [32] for the full construction of the VR complex.
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Figure 7: Comparison with JPlex for the full construction of the VR complex. (a) On B dataset with increasing ǫ. (b)

On M for ǫ = 0.11 with increasing dimension k. JPlex can compute up to 7 dimensions currently.

S time (s) number ave max

G 0.03 870 8.97 13

M 0.16 10,419 2.93 17

B 8.78 140,052 9.39 16

S 8.96 167,742 6.56 18

D 39.29 123,091 6.91 73

E 0.71 64,055 7.65 11

Table 2: Maximal Clique Enumeration

Currently, JPlex can compute complexes up to 7 dimen-

sions only. It also does not compute the full weight func-

tion but allows the user to discretize it using a parameter

that we set to 0.0001 in our experiments. We compare the

algorithms along two axes: increasing maximum scale or

dimension. In Figure 7(a), we compute on dataset B with

increasing scale. Our fastest algorithm is about 15 times

faster than JPlex at the maximum scale, much faster on

lower scales, and uses about 5 times less memory (1.1

GB vs. 5.3 GB). In Figure 7(b), we compute on dataset M

with increasing dimension. On this dataset, we are about

three times faster than JPlex even though we also compute

the 8-dimensional simplices. In Table 1, TJ is the time

for computing with JPlex. For dataset M, JPlex computes

the 7-skeleton with 472,165 simplices in the time shown.

JPlex is not able to process datasets S and D due to dif-

ficulties with memory allocation. It also cannot compute

clique complexes, so we have no time measurement for

dataset E.

5.6 Homology of Erdős-Rényi Graphs

We end this paper with an application of our software to

the computation of homology of Erdős-Rényi graphs, a

model of random graphs. We say that G(n, p) almost

always (a.a.) has property P if Pr(G(n, p) ∈ P) → 1
as n → ∞. The seminal Erdős-Rényi Theorem sets

thresholds for connectivity: If p = (log n + ω(n))/n and

ω(n) → ∞ as n → ∞, then G(n, p) is a.a. connected;

if ω(n) → −∞, then G(n, p) is a.a. disconnected [16].
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Figure 8: Filtered homology of dataset E, an Erdős-Rényi

graph. We give the ranks βi, 0 ≤ i ≤ 5, of the homology

groups of the clique complex for 0 ≤ p ≤ 0.6.

In other words, below some threshold for p, the graph

is usually disconnected, and above some threshold, it

is usually connected. Connectivity may be viewed as

zero-dimensional homology. Recently, Kahle [22] gives

higher-dimensional analogues to the Erdős-Rényi theo-

rem by studying homology groups of clique complexes

of these graphs. Specifically, he shows that for k > 0, if

p = nα, with α < −1/k or α > −1/(2k + 1), then

the kth homology group of the clique complex is a.a.

vanishing, and if −1/k < α < −1/(k + 1), then it is

a.a. nonvanishing. In other words, there is a unimodality

for each fixed homology group as n → ∞. We verify

Kahle’s results empirically by computing the homology

of E. Figure 8 shows the ranks of the homology groups,

the Betti numbers βi, 0 ≤ i ≤ 5, that we can compute

since we constructed the 6-skeleton for E, an instance

of G(100, 0.6). What is striking about the graph is that

while Kahle’s results are asymptotic, the homology has

already converged to unimodality at n = 100.

6 Conclusion

In this paper, we present a two-phase approach to com-

puting the Vietoris-Rips complex, examine each phase

in detail, implement all algorithms, and present experi-

mental results on their performance. Our work represents

the first systematic examination of all the stages of the

construction of the Vietoris-Rips complex. Our software

is currently the fastest available, constructing complexes

with millions of simplices in arbitrary dimensions in sec-

onds. The algorithms may be used in constructing other

clique complexes, such as the weak witness complex. We

demonstrate their generality and utility by computing ho-

mology of the clique complex of an Erdős-Rényi graph.

From the three algorithms for VR expansion, we find

the maximal one most intriguing. While it is not the

fastest, the algorithm is naturally parallelizable. More-

over, it gives a minimum description of the complete com-

plex as a set of maximal simplices, unlike the bottom-up

algorithms. For these reasons, this algorithm is the basis

of our current work in computing smaller representations

for topological data analysis [38].
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