
Contents lists available at ScienceDirect
Acta Astronautica

Acta Astronautica 112 (2015) 89–101
http://d
0094-57

n Corr
E-m

pascoa@
journal homepage: www.elsevier.com/locate/actaastro
Numerical analysis of real gas MHD flow on two-dimensional
self-field MPD thrusters

Carlos M. Xisto n, José C. Páscoa, Paulo J. Oliveira
Departamento de Engenharia Electromecânica, Universidade da Beira Interior, C-MAST: Center for Mechanical and Aerospace Sciences
and Technologies, FCT Research Unit No. 151, Covilhã 6201-001, Portugal
a r t i c l e i n f o

Article history:
Received 11 September 2014
Received in revised form
7 February 2015
Accepted 6 March 2015
Available online 14 March 2015

Keywords:
MHD
AUSM-MHD
MHD
PISO
Self-field MPD
Real-gas
x.doi.org/10.1016/j.actaastro.2015.03.009
65/& 2015 IAA. Published by Elsevier Ltd. A

esponding author.
ail addresses: xisto@ubi.pt (C.M. Xisto),
ubi.pt (J.C. Páscoa), pjpo@ubi.pt (P.J. Oliveira
a b s t r a c t

A self-field magnetoplasmadynamic (MPD) thruster is a low-thrust electric propulsion
space-system that enables the usage of magnetohydrodynamic (MHD) principles for
accelerating a plasma flow towards high speed exhaust velocities. It can produce an high
specific impulse, making it suitable for long duration interplanetary space missions. In this
paper numerical results obtained with a new code, which is being developed at C-MAST
(Centre for Mechanical and Aerospace Technologies), for a two-dimensional self-field MPD
thruster are presented. The numerical model is based on the macroscopic MHD equations
for compressible and electrically resistive flow and is able to predict the two most
important thrust mechanisms that are associated with this kind of propulsion system,
namely the thermal thrust and the electromagnetic thrust. Moreover, due to the range of
very high temperatures that could occur during the operation of the MPD, it also includes
a real gas model for argon.

& 2015 IAA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Low-thrust electric propulsion systems are being devel-
oped for long duration space missions [1] and station
keeping [2]. In classical chemical propulsion devices,
thrust is a product of an exothermic process of combus-
tion. By using an electrical propulsion system, it is possible
to decouple the achievable exhaust speed from the
amount of energy produced by the reaction. Therefore,
the specific impulse achievable via electrically-based
thrusters is as high as the amount of energy one can put
into the exhaust, which uniquely depends on the technol-
ogy level. Among the electrical propulsion systems, the
MPD (magnetoplasmadynamic) thruster is capable of
delivering one of the highest thrust densities [3,4]: e.g.
ll rights reserved.

).
the DT2-IRS self-field thruster is capable of providing a
thrust density of around 3565 N=m2 [5]. There are several
parameters that need to be considered during the devel-
opment of an electric propulsion device, namely optimal
exhaust velocity; generator specific power; mission dura-
tion; and total impulse. All of these need to be properly
related. The optimal exhaust velocity is determined by
the generator specific power, by the duration of the
mission and by the necessary total impulse to fulfil such
mission [6].

Fig. 1 shows a planar (a) and a co-axial (b) self-field
MPD thruster. In a simplified form the co-axial device can
be represented by a central cathode surrounded by a
concentric anode [7]. Both surfaces will define a chamber
that will accommodate a discharge current of several kA.
Afterwards, the propellant is injected and the interaction
between the self-generated azimuthal magnetic field
and the radial and axial components of the discharge
current will generate processes of acceleration. MPD
thrusters can also be categorized by different regimes of
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electromagnetic interaction. In self-field MPD nozzles the
only available component of the magnetic field is the self-
induced one, and its interaction with the discharge current
will give rise to axial ðjrBθÞ and radial ð� jzBθÞ components
of the Lorentz force ðFELM ¼ j� BÞ. In applied-field thrus-
ters, there is an extra magnetic field that is imposed by an
external coil and its radial and axial components will
interact with the discharge current in order to stabilize
and accelerate the plasma flow [8]. In both devices the
high temperature that is triggered by the Joule heating
effect will result in an electro-thermal component of
thrust.

The usage of MPD thrusters in a regular basis for space
propulsion or satellite reposition is being consecutively
delayed because of their relatively low efficiency for the
relevant regimes of operation. The highest efficiency recorded
for an MPD nozzle was 69% for a specific impulse of 5500 s
with a power consumption of 20 kW [9]. However the most
efficient regime of operation lies between 200 kW and
500 kW. For a power value closer to these ones (100 kW)
the highest value for efficiency (50%) was recorded by [10]
while using vaporized lithium as a propellent. However, one
knows that vaporized lithium normally leads to condensation
problems that may damage the surface of the spacecraft [7].
Argon or hydrogen can also be considered with a cost of
reducing the efficiency. Nevertheless, several studies show
Fig. 1. Representation of two different types of magnetoplasmadyn
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Fig. 2. Two-dimensional representation of the discharge current a
that the efficiency is improved, not just by selecting a
propellant with better electrical properties [11], but also by
modifying the geometry of the electrodes [12,13], or by
imposing an externally generated magnetic field [14].

The numerical modeling of MPD thrusters is an impor-
tant tool for analysing the complex interaction between the
flow of a conducting gas and the applied and/or induced
magnetic fields. Several codes with different levels of
complexity were introduced for analysing self-field coaxial
MPD thrusters. Models were developed assuming a two-
dimensional axisymmetrical approximation [12,15–19],
while others were applied for computing bi-dimensional
geometries using pure 2D cartesian formulations [20,21,11].
Extensions of the previous models for solving the plasma
flow in applied-field MPD thrusters have also been pro-
posed in the subsequent years [14,22,8]. The earlier
attempts assumed that the plasma flow could be approxi-
mated by a one-fluid model [23,20]. Such assumption leads
to errors in the prediction of plasma transport coefficients,
since these need to be defined in different ways for the
electrons, ions and neutral species [24]. Others have con-
sidered a one-fluid approach but have assumed a thermal
non-equilibrium between species [12,15,16,25]. Neverthe-
less, a single fluid model like the one here proposed is still
useful for a better understanding of the main acceleration
mechanisms that are generated by this kind of systems [26].
amic thrusters. (a) Two-dimensional MPD; (b) co-axial MPD.
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In the current paper, results obtained with a plasma
dynamic numerical code that is being developed at
C-MAST (Centre for Mechanical and Aerospace Technol-
ogy), for solving three-dimensional flows on MPD thrus-
ters, are presented and discussed. In the current state of
development, the model considers the plasma as a con-
tinuum medium in a state of total ionization, and thermal
equilibrium between species is assumed. In this way a
single system of conservation laws is to be solved and we
will also assume a single temperature for the plasma.
These assumptions will lead to some discrepancies
between the computed and the real transport properties.
The effects of radiation, ion slip, Hall effect, and anomalous
transport will also be neglected during this phase of code
development. That said, the model here presented allows
us to analyse with some detail the main acceleration
mechanisms present in MPD thrusters. We have also
included a real gas model for argon, based on partition
functions [27,28], which will be adapted into the current
numerical framework so as to allow for a more realistic
solution of plasma temperature. The model also employs
one of the most recent and accurate flux schemes [29] for
computing MHD discontinuities, and can cope with
plasma flows at arbitrary Mach numbers [30], one feature
that was missing from the previous formulations.

In the next section, the set of equations that govern
resistive MHD flow are presented. Afterwards, in Section 3,
the numerical model is briefly described and the plasma
parameters here analyzed are highlighted. That section is
closed with the formulation employed for the real gas
model. In Section 4 the numerical method is applied to the
computation of the two-dimensional self-field MPD thrus-
ter flows. Here the effects due to the geometry of the
anode and the cathode, and the influence of mass flow rate
are analysed.

2. Magnetohydrodynamics

If the most recent conjectures about the existence of
dark matter in the interstellar space are ignored, one can
assume that the Universe is essentially composed by
plasma. A brief definition of plasma states that it is a gas
that has suffered a process of ionization, thus guaranteing
that will be mostly composed by particles of negative
charge (electrons) and particles of positive or negative
charge (ions). If one assumes a state of total ionization, the
presence of neutral charge particles can be neglected and
the plasma thus becomes an excellent conductor of elec-
tricity. Electric and magnetic fields exist with some abun-
dance in space, therefore one is led to believe that much of
the plasma dynamics that occurs in the Universe is due to
its interaction with those same fields. As an example, we
refer the Earth magnetic field and its interaction with the
solar winds [31].

MHD is the field of physics that studies the interaction
between magnetic fields and electrically conducting fluids.
Such a statement indicates that the MHD macroscopical
approximation might be an excellent approach for study-
ing the physics of plasma flow. However, such a statement
is not entirely correct since, from a microscopic point of
view, a plasma cannot be considered as a continuum
medium. Still, there are additional assumptions that guar-
antee the applicability of MHD in the description of plasma
flow. It is imperative that the reference length scale of the
plasma be much larger than the diameter of the volume
where the positive and negative charges cancel each other;
this volume is known as Debye sphere. The temporal
length scale of interest should also be much larger than
the collision time between ions, meaning that the colli-
sions between particles have reach a steady state and do
not influence the main flow. These assumptions are
normally valid for most of the plasma flow in laboratorial
scale, in the field of astrophysics [32] and in most of the
working regimes of MPD thrusters [6].

The MHD equations couple the magnetic field, given by
Maxwell equations, with the flow of a conducting fluid,
ruled by the Navier–Stokes equations. The resistive form of
the MHD system of equations is given by

∂ρ
∂t

þ= � ρU
� �¼ 0; ð1Þ

∂ρU
∂t

þ= � ρUUþ pþB � B
2μ0

� �
I�BB

μ0

� �
¼= � τvisc; ð2Þ

∂ρet
∂t

þ= � ρetþpþB � B
2μ0

� �
U� U � BB

μ0

� �
¼= � B� ηj

μ0
þτvisc � U

� �
;

ð3Þ

∂B
∂t

þ= � UB� BUð Þ ¼ � =� ηj
� �

; ð4Þ

where η¼ 1=σ represents the plasma electric resistivity, μ0

is the permeability of free space and the electrical current
density is j. This system expresses the conservation of
mass (1), momentum (2), total energy (3), and propagation
of the magnetic field (4). The viscous stress tensor for
compressible newtonian flow is given by

τvisc ¼ � 2
3 μ= � U� �

Iþμ =Uþ =Uð ÞT
h i

; ð5Þ

where μ is the dynamic viscosity of the plasma. Tempera-
ture is a derived quantity and can be obtained from an
equation of state:

T ¼ 1
cv

et�
1
2

U2þ B2

ρμ0

 !" #
: ð6Þ

Using Ampère's law and some standard vector identities,
the last term of Eq. (4) can be re-written in terms of B:

=� ηj
� �¼=� η

=� B
μ0

� �
¼ �= � η=

B
μ0

� �
: ð7Þ

The electrical conductivity is computed as a scalar field
formulated using the Spitzer–Harm approximation:

σ ¼ 1:53� 10�2T
3=2

ln Λ
; ð8Þ

where

ln Λ¼ ln
12

ffiffiffi
2

p
π kBϵ0Tð Þ3=2
q3n1=2

 !
; ð9Þ

is the Coulomb logarithm. In Eq. (9) kB is the Boltzmann
constant, q is related to electron particle charge, ϵ0 is the
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permittivity of free space and n is the particle number
density expressed in particles per cubic meter of plasma.
3. Numerical model

The numerical method that is going to be used
throughout this paper was developed and validated for
the ideal MHD equations by Xisto et al. [33] and for the
resistive MHD equations by [34]. This method is based on
the PISO algorithm of Issa [35] which was previously
modified to solve arbitrary Mach number flows by Xisto
et al. [30]. In order to improve accuracy and stability in the
computation of the various types of MHD discontinuities,
the AUSM-MHD [29] flux scheme was adapted into the
current numerical method. The AUSM-MHD method is an
improved version of the AUSMPW scheme [36] for ideal
MHD, where the pressure-based weight functions were
adapted in order to account for the magnetic pressure. For
variable interpolation a high resolution scheme, namely
the CUBISTA of Alves et al. [37] was used. In multidimen-
sional MHD cases one must ensure = � B¼ 0 and for that
purpose the hyperbolic/parabolic divergence cleaning
technique proposed by Dedner et al. [38] was incorporated
in the present model.

The code was developed within the Open Field Opera-
tion And Manipulation (OpenFOAM) CFD package. The
OpenFOAM package is an object-oriented numerical simu-
lation toolkit for continuum mechanics written in Cþþ
language and is currently released by ESI Group.
3.1. Description of the algorithm

The method employs a segregated approach, whereby
the system of equations is solved in a sequential way.
Therefore in order to couple the dependent variables there
is the need to select an appropriate algorithm. Since many
of the MHD flows are time-dependent by nature the PISO
algorithm was selected. The iterative procedure consists of
successive prediction and correction steps, with values
obtained at a previous time step denoted with n, and
consecutive predictions and corrections denoted with n, nn,
nnn. In the following subsections units for B were chosen
such that μ0 ¼ 1 H=m. The convective fluxes are calculated
with the AUSM-MHD method using the appropriate char-
acteristic speed, U7c. The common fast magnetosonic
speed is given by

cf ¼min cL; cRð Þ; ð10Þ

where

cL;R ¼
1
2

a2L;Rþ
B2
L;R

ρL;R
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2L;Rþ

B2
L;R

ρL;R

 !2

�4a2L;R
B2
n;L;R

ρL;R

vuut
2
64

3
75

8><
>:

9>=
>;

1=2

:

ð11Þ

In Eq. (11) aL;R are the left and right states for the speed of
sound and Bn ¼ Ŝf � B is the face normal component of the
magnetic field.
3.1.1. Prediction step
In the prediction step the values for the dependent

variables are known from the previous time level n. At
the beginning of the computation a suitable estimation
for those variables should be provided. One starts by
calculating the interpolation Mach number functions (M7

4 ,
P7

5 ), which allows the assembling of the flux vectors for the
three-dimensional MHD equations (see [34] for more
details):

∂H
∂t

þ= �F f ¼S: ð12Þ

In Eq. (12) H is the state vector for the conservative
variables, the flux vectors for the multidimensional MHD
equations are given byF f and S, which are the diffusion and
source term contributions, respectively. These are given by

H¼

ρ
ρUx

ρUy

ρUz

Bx

By

Bz

ρet
Ψ

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

; S¼

0
= � ðτxx; τyx; τzxÞ
= � ðτxy; τyy; τzyÞ
= � ðτxz; τyz; τzzÞ

= � ðη=BxÞ
= � ðη=ByÞ
= � ðη=BzÞ

= � ðB� η=� Bþτvisc � UÞ
� c2h

c2
d
Ψ

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

; ð13Þ

F f ¼ cf Mþ
4 Φn

L þM�
4 Φn

R

	 

þ Pþ

5 Pn
L þP�

5 Pn
R

� �þ1
2 Φn

B;LþΦn
B;R

	 

;

ð14Þ

Φ¼

ρ
ρUx

ρUy

ρUz

Bx

By

Bz

ρetþpG
0

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

; P¼

0
SxpG
SypG
SzpG
�Bf Ux

�Bf Uy

�Bf Uz

�Bf U � Bð Þ
0

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

; ΦB ¼

0
�BxBf

�ByBf

�BzBf

SxΨ
SyΨ
SzΨ
0

c2hBf

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

:

ð15Þ
In Eq. (15) pG ¼ pþB2=2 is the global pressure and
Bf ¼ Bf ;LþBf ;R

� �
=2 is the magnetic flux. The variable Ψ is a

scalar field and ch is a numerical speed that allows us to
convect the errors associated to = � B≠0; both variables are
related to the hyperbolic divergence cleaning technique, see
[38] for more details. The PISO algorithm is a pressure-based
method, which means that we need to calculate the thermo-
dynamic pressure in a separated way:

pnf ¼Pþ
5 pnL þP�

5 pnR: ð16Þ
In the prediction step the full system of equations (1)–(4) is
solved in a segregated way. The first equation to be solved is
an explicit version of the continuity equation, based on the
mass flux mf previously assembled with the AUSM-MHD
method (Eqs. (14) and (15), first line). The solution of this
equation gives a predicted value for density. Afterwards, an
explicit equation for each component of the magnetic field is
solved, with the magnetic fluxes calculated previously with



C.M. Xisto et al. / Acta Astronautica 112 (2015) 89–101 93
the AUSM-MHD method (Eqs. (14) and (15), fifth, sixth and
seventh lines). The solution of Eq. (4) provides predicted
values of Bn

x , Bn

y , and Bn

z . The Laplacian term (Eq. (7)) is
calculated implicitly with a fully implicit Euler time-discre-
tization, thus avoiding time-step restrictions that normally
arise due to the different time scales between convection
and diffusion terms. The predicted velocity field, Un, is
obtained by solving the explicit momentum equations for
each direction. The pressure gradient and the magnetic field
terms are treated in an explicit way using the predicted
magnetic field values Bn

x , Bn

y , Bn

z (from Eq. (4)) and the
previously calculated face values of pressure, Eq. (16). The
discretized momentum equation for Un is given by

auPU
n ¼H Un� ��∇pnf ; ð17Þ

where aUP is the central velocity coefficient and the operator
H Un� �

is built using the convective and diffusive terms of
neighbour cells to P, the magnetic explicit terms and the
explicit part of the time derivative:

H Un� �¼ X
aUNU

n
NþSnBþ

ρnUnVP

Δt
; ð18Þ

where VP is the geometrical volume of cell P. In order to
remove time step restrictions, the second order viscous term
is solved in an implicit way using Euler time discretization
and a central differencing scheme is used for interpolation.
The last equation to be solved, before the PISO correction
cycle, is an equation for the total energy. Afterwards, the
temperature field, T, is updated using the correspondent
equation of state:

Tn ¼ 1
cv

ent �
1
2

U � Uð Þnþ B � Bð Þn
ρn

� �� �
: ð19Þ

With the new temperature, new values for the compressi-
bility coefficient are evaluated, ψ n ¼ 1=RTn, and density can
then be updated, ρnn ¼ψnpn.
3.1.2. Correction step
The H Un� �

operator gives an intermediate velocity field
which does not take into account the effect of pressure,
refer to [30] for more details. Mach number interpolation
functions are calculated once again inside the PISO loop,
with the AUSM-MHD method. These new functions are
applied to calculate the sonic flux to be used in the
pressure equation:

Fn

s ¼ cnf Mþ
4 ψ

n

L þM�
4 ψ

n

R

	 

: ð20Þ

The pressure equation is built and solved using the
previously obtained values for compressibility, ψn, and
density, ρnn, as

∂ ψnpn
� �
∂t

þ∇ � Fn

s p
n

� ��= � ρnn

aUP
∇pn

 !
¼ 0; ð21Þ

and gives the predicted value for the pressure, pn. The velocity
field is corrected in an explicit way using the new pressure
gradient and the first predicted velocity. The pressure gra-
dient is again calculated with the pressure face value
obtained using the interpolated Mach number functions:

Unn ¼
H Un� ��∇pn

f

aUP :
ð22Þ

Finally, density is corrected using the equation of state
ρnnn ¼ψnpn. This cycle should be repeated until the continu-
ity equation is satisfied and in all calculations we have applied
two correction steps.

3.2. Thruster parameters

Several parameters are used to assess the performance
of an MPD thruster. The overall thrust force is computed
from the momentum flux at the thruster exit:

F ¼
Z
out

ρU2þp
	 


dS: ð23Þ

Eq. (23) is similar to the one that is normally used for
calculating the thrust in rocket engines. Note that an MPD
is not an air-breathing propulsion system and that the
propellant is stored on-board. The free-stream pressure is
here neglected since the thruster exit is assumed to be on
vacuum conditions. The electromagnetic (ELM) compo-
nent of the total force is calculated with the volume
integral of the axial component of the Lorentz force:

FELM ¼
Z
V
ðj� BÞx dV : ð24Þ

The thermal contribution is easily obtained as the differ-
ence between total and ELM forces:

FTerm ¼ F�FELM : ð25Þ
The specific impulse is a way of measuring the effi-

ciency of a propulsion system:

Ispec ¼ F
_mg0

; ð26Þ

where g0 ¼ 9:8 m=s2 is the acceleration of gravity. The
efficiency of a two-dimensional nozzle can be obtained by
the relation between the propulsion force and inlet para-
meters [39]:

Eff :¼ F2

2 _mI VþVeletð Þ; ð27Þ

where V is the electrical potential difference across the
plasma, which can be obtained by the line integral of
Ohm's law from anode to cathode:

V ¼
Z

E � dl¼
Z

ðηj�U� BÞ � dl: ð28Þ

The potential drop due to electric sheath formation near
the electrode walls was estimated to be Velet ¼ 20 V based
on the experimental observations [21,40]. It is known that
the potential drop due to electric sheath formation, when
compared with the potential drop in the plasma, may
assume a significant value, which will tend to decrease the
efficiency of the nozzle. Therefore, assuming a constant
value for Velet could lead to an error in the performance
computation. Nonetheless, the modeling of such phenom-
ena is frequently discarded by several researchers [40] and
the same will be done here. This needs to be taken into
account in the results, since it will only allow for a
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qualitative comparison between the performance of the
several computed thrusters.

3.3. Real gas model

For the range of temperatures of a self-field MPD
thruster the ideal gas model fails in the prediction of the
thermodynamic variables. It is known that, for argon, the
perfect gas approximation is not accurate for temperatures
greater than 5000 K. Above this limit there is a huge
discrepancy between the behavior of an ideal and real
gas. For an ideal gas the inverse of compressibility is a
linear function of temperature:

ψ �1 ¼ RT ; ð29Þ
where R¼ kB=Mi is the plasma constant that is obtained by
the relation between the Boltzmann constant, kB, and the
mass of a particle of argon, Mi. The temperature slope given
by Eq. (29) is not satisfactory and we have already remarked
that the plasma transport properties are highly dependent
on the temperature field; for example, in Eq. (8) the value of
σ increases with T3=2. This is a crucial point in plasma
modeling, since an incorrect prediction of temperature can
completely alter the character of the induction equation
and of the remaining system of equations. It is therefore
very important to include a real gas model into the MHD
numerical method.

The real gas approximation that has been incorporated
in the current numerical model is based on partition
functions for argon [17]. This results in a particular func-
tion for compressibility (T(K)):

ψ ¼ 1
R

� �
1
T

if To5000

ψ ¼ 2K2

�K1þ K2
1�4K2 K0�Tð Þ

h i1=2 if 1n

ψ ¼ K1

T�K0
if 2n

8>>>>>>>>><
>>>>>>>>>:

; ð30Þ

with

1n5000oTr11 498 [ 14 488oTo21 688
2n11 498oTr14 488 [ T421 688
Table 1
Coefficients for the calculation of ψ as a function of temperature [41].

Range for T (K) K0 K1 K2

Tr11 497:9 0 0.00599 �7:18� 10�10

11 497:9oTr14 488:3 7935 0.00119 0
14 488:3oTr21 687:7 0 0.00317 �9:79� 10�11

21 687:7oTr29 652:6 12 460 0.00094 0
T429 652:6 14 820 0.000811 0

Table 2
Coefficients for the calculation of γ as a function of temperature [41].

Range for T (K) K3 K4

8000oTr13 000 1.112166 0.52995
13 000oTr40 000 1.105401 0.02526
In Eq. (30) K0, K1 and K2 are coefficients that were
calculated to replicate the data from [27], see Table 1. This
model was incorporated by [41] in the framework of a
density-based code and we have here adapted his formu-
lation for inclusion on a pressure-based method [33].

The real gas adiabatic index is also calculated as a
function of temperature:

γ Tð Þ ¼ K3þK4e� T�K5ð Þ=K6ð Þ2 ; ð31Þ

where K3, K4, K5 and K6 are again function coefficients that
were calculated to fit a particular mathematical function,
see Table 2.
4. Numerical modeling of a 2D self-field MPD thruster

In this section the numerical method described in
section 3 is applied for the computation of a two-
dimensional self-field MPD thruster. This quasi-bi-
dimensional experimental MPD setup was built by Toki
et al. (see Fig. 1 in [42]) as a way of analysing and
visualizing the plasma flow and current discharge pattern
inside an MPD. This is normally prohibitive inside co-axial
MPD thrusters due to the geometrical configuration of the
discharge chamber. Here the usage of probes is the only
solution available, but such measuring technique will also
lead to unrealistic perturbations on the main flow. It is
noted that a two-dimensional geometry does not fully
reflect the physics of a co-axial MPD, however it is
governed by the same physical principles and it is char-
acterized by the same acceleration mechanisms. Therefore
it can still provide the needed information for the devel-
opment and validation of MPD numerical codes.

Regarding the numerical model the following assump-
tions were made with respect to the real model. The
propellent gas is argon and we assume that it is injected
in the discharge chamber in a state of total ionization. We
can then assume that the plasma is treated as a single
fluid, quasi-neutral in a state of thermal equilibrium
(T ¼ Te ¼ Ti, where e and i subscripts are related to
electrons and ions, respectively). Several phenomena are
neglected, namely viscosity; thermal conductivity; electri-
cal sheath; Hall effect; and radiation processes. Electrical
resistivity is given by Spitzer–Harm's formulation, see Eq.
(8). Also, the plasma flow is purely two-dimensional in the
xy plane.

In the next subsection the MHD numerical model is
validated for the computation of self-field MPD nozzles.
Afterwards the influence of the geometrical configuration
of the cathode and the anode is analysed. In Section 4.3 the
effect of mass flow rate is computed. Finally, the inclusion
of the real gas model in the developed code is assessed
in Section 4.4.
K5 K6

6 8050.606514 1318.851134
7 15142.82094 2394.061632
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4.1. Validation of the numerical model

For the purpose of validation, the MHD numerical model
results for the FASC (Fig. 3(a)) configuration are compared
against experimental [13] and numerical results from
different sources [20,26]. The dimensions of the anode,
cathode and numerical domain are shown in Fig. 4(a) top
side. The cathode length is equal to 13 mm and the cathode
Fig. 3. Three-dimensional representation of the analysed configurations and re
FALC – flared anode long cathode (132 � 31 cells), (c) CDASC – convergent d
divergent anode long cathode (134 � 31 cells).
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rounded tip is replaced by a sharp tip; for the remaining
dimensions see Fig. 1(a).
4.1.1. Boundary conditions
Regarding boundary conditions, they are defined in the

following way. At inlet, because of its subsonic regime, a
mass flow rate of 2:5 g=s is prescribed. The phenomenon
spective grids. (a) FASC – flared anode short cathode (90 � 31 cells), (b)
ivergent anode short cathode (126 � 31 cells), (d) CDALC – convergent
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associated to plasma ignition at the inlet is too much
complex to be modeled and is here ignored. Instead a
static temperature field of T ¼ 5000 K is assumed and the
highly ionized flow enters the chamber. At the outlet the
flow is supersonic, which requires zero order extrapolation
from the solution domain for all dependent variables. On
all the electrodes and insulated walls a slip boundary
condition is defined for velocity and an adiabatic condition
is imposed for the thermodynamic variables. Regarding
the electromagnetic boundary conditions they were pre-
scribed in the following way. For the electrodes it is
assumed that they are perfect conductors of electricity,
and so the electrical resistivity on the wall is equal to zero.
Such condition requires that the component of the electric
current density tangential to the wall vanishes, therefore,
according to Ampère's law the tangential component of
the magnetic field should be continuous on the electrode
walls. The inlet value of the magnetic flux is calculated as a
function of the discharge current:

B0 ¼
μ0I
2W

; ð32Þ

where I represents the discharge current and W is the
thruster width, in this case W ¼ 84 mm. In the perfect
insulating wall and symmetry plane the magnetic flux
density is set to zero. Fig. 5 shows a representation of the
thruster discharge current and its interaction with the
anode and insulating walls. One can observe that the
induced magnetic field on the wall results from the two
components of the electric current. Close to the anode



Fig. 7. Magnetic field distribution for a discharge current of 2500 A computed for all configurations: (a) FASC; (b) FALC; (c) CDALC; (d) CDASC. The isolines
are represented in terms of percentage of inlet value.
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wall, the net value of the electric current in the axial
direction (Jx) is null because we have a positive and
negative value of the current in the outlet cross section.
Therefore, according to the Ampère theorem, the magnetic
field due to the axial current is null when a small
component due to the current perpendicular to the axis
(Jy) induces a magnetic field at the vicinity of the anode.
But considering the situation at the insulating wall where
the electric current component perpendicular to the wall
vanishes, the same reasoning leads to a zero value of the
magnetic field, thus justifying the choice Bz¼0 at the
insulating wall.
4.1.2. Results
Fig. 2(a) shows the axial velocity distribution computed

along section a–a (y¼ 0:009 m, see Fig. 6(a)), for an applied
discharge current of I¼ 8000 A. For comparison the numerical
results obtained by [20,26] are also plotted. One can observe
that the computed velocity profiles agree very well with each
other inside the discharge chamber, but the velocity here
computed is slightly lower in the nozzle exit plane. A more
realistic validation requires a direct comparison with experi-
mental data. The plot in Fig. 2(b) shows a comparison
between the computed and experimental results for the
momentum thrust on the FASC configuration. It is seen that
the present model over-predicts the propulsion force. Never-
theless, the trend is quite similar and when the solution is
compared with the results obtained by others [26], who used
a similar numerical model, we observe that our results agree
very well. The over-prediction was expected since several
physical aspects of plasma flow were neglected in the model
formulation. However, the computed thrust follows the same
trend of the experimental data as the discharge current
increases, and this is a good indicator that the model is
fulfilling its objectives.
4.2. Cathode and anode geometrical effects

In this section the effects of electrode geometry on the
propulsion efficiency are analyzed. Fig. 3 shows a three-
dimensional representation of the configurations analysed,
while in Fig. 4 the dimensions of the different MPD nozzles
are represented in a xy plot. The geometrical aspects that
were addressed are the cathode length and the orientation
of the anode. Regarding anode orientation a purely diver-
gent (FA) and a convergent-divergent (CDA) configurations
are computed. For the cathode length a short cathode (SC)
with length equal to 13 mm and a long cathode (LC) with
length equal to 40 mm are analysed for each anode type.

Regarding boundary conditions the same parameters of
Section 4.1 are imposed, namely a mass flow rate of 2.5 g/s
and a temperature of 5000 K are fixed at the inlet, and all
the dependent variables are extrapolated from inside the
solution domain at outlet. In the electrodes a perfectly
electrical conducting boundary is specified.

Fig. 6 shows the contours plots of velocity magnitude
for an imposed discharge current of I¼8000 A. The two SC
configurations represented in Fig. 6(a) and (b) show
similar values of velocity between them but, when com-
pared with the LC configurations in (c) and (d), they show
higher exhaust velocity. This behaviour is in agreement
with the experimental results of [13].

The magnetic field distribution for a discharge current
of I¼2500 A is shown in Fig. 7 in terms of percentage of
the inlet value. The results obtained for the different
configurations show that the field lines accumulate near
the cathode tip due to its geometrical orientation. Such
concentration of electric current will generate an increase
of plasma acceleration due to Joule heating effect. We note
that the short cathode configurations are the ones that
result in higher concentration of discharge current lines
near the cathode tip. Indeed it has already been shown in
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Fig. 6 that these are the configurations that achieve higher
exhaust velocities.

Fig. 8(a) shows a comparison between the overall thrust
values computed for each configuration as a function of the
discharge current. We observe that the configurations with
shorter cathode result in higher propulsion force for the
entire range of discharge current. Note that the nozzles with
a convergent-divergent anode, for discharge currents above
I¼8 kA, show lower values of propulsion. The axial velocity
profile computed along section a–a (y¼0.009 m) for each of
the nozzles, and for a discharge current of 8000 A, is plotted
on Fig. 8(b). As expected, the short cathode configurations
produce higher values of axial velocity.

We analyse now separately the electromagnetic (Eq. (24))
and thermal (Eq. (25)) components of the thrust force for the
FA configuration. Fig. 8(c) shows the evolution of these two
propulsion mechanism as a function of the discharge current
for both cathode lengths. The results show that for almost the
entire range of discharge current the thermal thrust is superior
to the electromagnetic thrust, and that the situation is reversed
for a discharge current of I � 13 kA in the short cathode
configuration, and I� 12 kA in the long cathode configuration.
Fig. 8(c) also demonstrates that the superior thrust produced
by the short cathode nozzle is solely related to an higher
thermal contribution, since the electromagnetic thrust curves
are almost coincident. In Fig. 8(d) the results for the specific
impulse (Eq. (26)) and efficiency (Eq. (27)) computed in the
FASC and FALC geometries are plotted. As expected the FASC
configuration shows higher specific impulse since, for the same
mass of propellant and discharge current, it generates higher
values of thrust, hence also resulting in a superior efficiency.

4.3. Variation of mass flow rate

In this section the effect of mass flow rate on the efficiency
of the two FA geometries is analyzed. The results are obtained
for a discharge current of I¼8000 A and for an imposed inlet
temperature T¼5000 K. For the entire range of tested mass
flow rates (0.5–2.5 g/s) the flow is subsonic at the inlet and
supersonic at the outlet, thus we apply the same boundary
conditions of the previous cases. In Fig. 9(a) the thrust
components are plotted as a function of the mass flow rate.
Once more it is the short cathode configuration that results in
higher values of thrust. As expected the electromagnetic
component is constant for the entire range of mass flow and
the values computed in both geometries are almost coinci-
dent. On the other hand, the thermal component shows a
linear growth as higher quantity of propellant is injected into
the MPD nozzle. However the discrepancy between the SC
and LC geometries is also increasing with the mass flow rate.
Such behaviour should be related to the Joule heating effect
since higher values of mass rate will allow higher absorbtion
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Fig. 10. Temperature contour plots using (a) an ideal gas equation; (b) with inclusion of the real gas model.

Fig. 11. Induced magnetic field distribution: (a) ideal gas equation; (b) real gas model.
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of electrothermal energy. Fig. 9(b) shows the evolution of
efficiency and specific impulse as the mass flow rate increases.
It is observed that at the lower range of mass flow rates the
nozzle produces higher values of specific impulse. Regarding
efficiency, it is again the FASC configuration that preforms
better. The efficiency curves also show that, for the range of
mass flow rate between 0.5 and 1 g/s, the performance
decreases. During this interval, the dominant mechanism of
acceleration is the electromagnetic one; for superior mass
flow rates the flow is ruled by the electrothermal component
of thrust. More investigation is therefore required in order to
address what is the process behind this behaviour of effi-
ciency. One can for example run the same problem for higher
values of discharge current, which will allow to verify if the
efficiency of the MPD decreases for the entire period of ELM
dominance, or if this behaviour is restricted to low values of
mass flow rate.

4.4. Real gas model simulation

We look now into the effect of incorporating the real gas
model in the current numerical method. Fig. 10(a) shows
contour plots of temperature obtained with the ideal gas
equation, at a discharge current of 5000 A. The temperature
distribution computed with the real gas model, for the
same value of discharge current, is shown in Fig. 10(b). It is
clear that both models predict similar values of temperature
inside the discharge chamber. However, near the cathode
tip the ideal gas model predicts significantly higher values
of T.



C.M. Xisto et al. / Acta Astronautica 112 (2015) 89–101100
From Eq. (8) we know that the electrical conductivity
increases with temperature. Thus, an over-prediction of tem-
perature will also result in an incorrect distribution of B. In
Fig. 11 we show a comparison between the magnetic field
distribution computed with the ideal (a) and the real (b) gas
models. It is possible to observe that, inside the discharge
chamber, the predicted solution is similar for both models.
However, near the cathode tip the slope of the induced Bz is
completely different. This is related to the higher values of
electrical conductivity predicted by the ideal gas model, which
will allow the magnetic field lines to be convected by the flow.

5. Conclusions

In the present work a mathematical model for the predic-
tion of plasma flow on two-dimensional self-field MPD thrus-
ters was presented and the related numerical method
explained. Themodel is able to predict the twomost important
thrust mechanisms with some level of detail. Validation with
experiments have shown that the proposed model gives the
same trend of thrust growth as the discharge current increases,
however with an over-prediction of force. This discrepancy is
related to some of the model assumptions which do not
account for several aspects of plasma physics.

The model is able to detect the geometrical influence of
the electrodes on the electric current discharge pattern, which
subsequently affect the efficiency of the MPD. We have
verified that a reduction of cathode length can be beneficial
in the analysed regime. The same behaviour was observed
experimentally by others, hence meaning that the fundamen-
tal part of the code is fulfilling its objectives.

A real gas model was also included in the numerical
formulation. We have shown that the real gas model allows
us to compute a more realistic temperature distribution,
which is going to influence the electrical conductivity and
consequently the magnetic field distribution.

A mass flow rate study was also accomplished, for which
we have verified that for the entire range of studied inflow
mass flow rate the FASC configuration preformed better than
the FALC configuration. We have also shown that for a
constant discharge current, the specific impulse is larger when
the mass flow rate is smaller.

Future work will include more complex models of ioniza-
tion and the inclusion of transport phenomena, namely plasma
viscosity and thermal conductivity. The inclusion of multi-
species models, specially for the internal energy of heavy
species and electrons may also be very important for a correct
prediction of temperature and transport variables.

Another important aspect is related to the possibility of
calculating three-dimensional effects on MPD nozzles. It is
known that an MPD nozzle working on off-project conditions
may generate 3D flows, and that the position of the plasma
injectors could be symmetrical or not. In this way for the
design of MPD nozzles it is particulary important to develop a
3D computational model.
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