
Even One-Dimensional Mobility

Increases Ad Hoc Wireless Capacity

S N. Diggavi ∗ M. Grossglauser † D N C. Tse‡

Abstract

We study the capacity of ad hoc wireless networks with mobile nodes. The mobility
model examined is one where the nodes are restricted to move along one-dimensional paths.
We examine the scaling laws for the per-user throughput achievable over long time-scales,
making this suitable for applications with loose delay constraints. We show that under this
regime of restricted mobility, we attain a constant throughput (i.e., Θ(1)) per user, which is
significantly higher than the throughput of fixed networks, which decays as O( 1√

n
) with the

number of nodes n, as shown in [4].

1 Introduction

The study of the capacity of wireless ad hoc networks has received significant attention recently. The
seminal work of Gupta and Kumar [4] considered a model in which n nodes are randomly located
in a disk of unit area and each node has a random destination node it wants to communicate to.
They showed that as the number of nodes n increases, the throughput per source and destination
(S-D) pair goes to zero like1 O( 1√

n
) even allowing optimal scheduling and relaying of packets. The

nodes are however assumed to be fixed throughout the duration of the communication sessions.
Grossglauser and Tse [3] considered an alternative model in which the nodes are mobile, and they
showed that in sharp contrast to the fixed node case, the throughput per S-D pair can actually be
kept constant even as the number of nodes scale.

In the mobility model considered in [3], the trajectory of each node is an independent, stationary
and ergodic random process with a uniform stationary distribution on the unit disk. This mobility
model is a generous one since, (a) it is homogeneous, i.e., every node has the same mobility process,
and (b) the sample path of each node “fills the space over time”. A natural question that arises
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is then how strongly the throughput result in [3] depends on these two features of the mobility
model. This is the main theme of this paper, where we try to isolate some of the reasons why we
get a constant throughput by studying a more restricted mobility model.

We show in this paper that the throughput result in [3] still holds even when nodes have much more
limited mobility patterns. Specifically, the mobility model discussed in this paper is an abstraction
that embodies two salient features that many real mobility processes seem to possess (e.g., cars
traveling on roads, people walking in buildings or cities, trains, satellites circling earth), which are
not captured by the model in [3]. First, an individual node typically visits only a small portion
of the entire space, and rarely leaves this preferred region. Second, the nodes do move frequently
within their preferred regions, and an individual region often covers a large distance.

As an extreme abstraction of such mobility processes, we study mobility patterns where nodes
move along a given set of one-dimensional paths. In order to isolate the effects of one-dimensional
mobility from edge effects, we consider a model in which the nodes are on a unit-radius sphere
but each node is constrained to move on a single-dimensional great circle. These great circles are
random, but remain fixed over time. Each node moves randomly along its own circle, independently
of the other nodes. The mobility process is therefore ergodic only in a single dimension. There is
another reason to study mobility over great circles of a sphere instead of line segments or curves in
two-dimensional spaces. Many of the results derived on the surface of the sphere can be translated
to one-dimensional paths on a plane using an inversion mapping from a sphere to a plane as used
in Section IV in [4]. In fact all the results in the random model used in [4] were actually proved
on the surface of a sphere and were translated to the unit area on a plane using such an argument.
Therefore, the insights gained from studying our one-dimensional mobility model can be used in
paths over planes as well.

In the mobility model considered in [3], the distribution of the random distance between two nodes
was the same for every pair. In the present model, as every node is constrained to its great circle,
the distance distribution depends on the node pair. Thus, the homogeneity assumption in [3] is now
relaxed. In particular, there can be pairs of nodes that are far more likely to be in close proximity
to each other than other pairs. For example, if two great circles nearly overlap, the probability of
close encounter between the nodes is significantly larger than for two great circles that intersect
at a large angle. This lack of homogeneity implies, as shown in Section 4.2, that we can construct
configurations where constant throughput is unattainable even with mobility. Given this, it is now
unclear what the throughput scaling law that can be attained by the one-dimensional mobility
model considered in the paper. Therefore, this also focuses our attention on what property in the
mobility pattern allows us to attain a constant throughput, i.e., sufficient conditions which allows
Θ(1) throughput.

Since the capacity of such a network then depends on the constellation of the great circles the
question becomes one of scaling laws for a random configuration. One of the key contributions of our
work in this paper is the identification of “typical” configurations, on which the average long-term
throughput per node can be kept constant as the number of nodes increases. Therefore, even for a
particular deterministically chosen configuration which satisfies the typicality condition, the result
continues to hold. Our main result is that if the locations of the great circles are chosen randomly
and independently, then for almost all constellations of such great circles, the throughput per S-D
pair can be kept constant as the number of nodes increase. Therefore, for random configurations
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the probability of an “atypical” configuration is shown to go to zero asymptotically in network size.
Thus, although each node is restricted to move in a one-dimensional space, the same asymptotic
performance is achieved as in the case when they can move in the entire 2-D region. Intuitively the
definition of typical configuration, defined formally in Section 4.2, is interpreted as configurations
where the fraction of great circles intersecting any given area is close to its expected number. That
is, the empirical probability counts are close to the underlying probability of a random great circle
intersecting that area. As mentioned earlier, we focus on the unit-radius sphere instead of the unit
disk to avoid edge effects, but the results should also be valid for nodes moving along line segments
within the unit disk.

The paper is organized as follows. We introduce the model under consideration and the definition
of per-user throughput in Section 2. In Section 3 we state the protocol studied and the main result
of the paper. The ingredients of the proof are developed in Section 4 and some of the details of
the proofs are given in the Appendices. Finally in Section 5 we conclude with a discussion of the
scope of our result and some of the open questions.

2 Model and Performance Measure

The mobility patterns of the users are defined by a constellation C = {G1, . . . , Gn} of great circles on
the unit-radius sphere. Generate a point uniformly randomly on the sphere, and the great circle is
taken as the “equator” corresponding to this point as the pole, i.e., the great circle associated with
y is in the plane perpendicular to y and the center of the sphere. We generate n such independent
great circles {G1, . . . , Gn} to form a random constellation C.
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Figure 1: A sample constellation with n = 100 random great circles. In our model, each node is
restricted to move on its great circle.

Over time, each node moves in a stationary, ergodic manner along its own circle with a uniform
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stationary distribution. The mobility processes of the nodes are identically distributed and inde-
pendent of each other. Since the movements of the nodes are independent of each other we do not
expect any “synchronization” that might occur in the mobility pattern across nodes.

Other than the mobility pattern of the nodes, the rest of the model is the same as the one used
in [3], which we briefly review here. Each of the n nodes is a source node for one communication
session, and a destination node for another session. The S-D pairs are randomly selected and
independent of the constellation. There are n communication sessions in parallel.

At (slotted) time t, a packet is successfully transmitted from node i to node j if the signal-to-
interference ratio (SIR) exceeds a target prescribed requirement β. The channel attenuation of the
signal from node i to node j is given by 1

rα where r is the distance2 between the two nodes and
α is a parameter greater than 2. This models large-scale path loss characteristics of the channel.
Packets can be transmitted directly from a source to its destination, or they can go through one or
more other nodes serving as relays.

Consider a scheduling and relay policy π. Let Mπ
i (t) be the number of source node i packets (either

0 or 1) that destination d(i) receives at time t under policy π. In a system of size n, we shall say a
policy π achieves a throughput λ(n) if for every S-D pair i,

lim inf
T→∞

1

T

T
∑

t=1

Mπ
i (t) ≥ λ(n).

We say that a policy achieves a throughput λ > 0, if asymptotically a constant throughput is
achievable, i.e.,

lim
n→∞

Pr {λ(n) ≥ λ is feasible} = 1.

Note that the performance of a policy depends implicitly on the constellation C of great circle.

3 Main Result

In [3] a simple policy π is shown to achieve asymptotically a constant throughput. Let us first
review the policy.

Protocol 3.1 There are two phases, alternating in time. In both phase nodes are randomly divided
into n/2 senders and n/2 receivers at every time slot. At each time, every node carries source
packets, which originate from that node, and relay packets, which originated from other nodes and
to be forwarded to their final destinations. In phase 1, each sender attempts to transmit a source
packet to its nearest receiver, who will serve as a relay for that packet In phase 2, each sender
identifies its nearest receiver and attempts to transmit a relay packet destined for it, if the sender
has one. When nodes transmit, they all use the same power level.

2Throughout this paper the distances are measured on the surface of the disk. This is defined as the length of
the segment of a great circle connecting any two points on the surface of the sphere S [5].
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Basically, the first phase spreads the packets from each source node to every other node in the
network, and the second phase merges the packets to the destination nodes. See Figure 2. When
the nodes are moving in a stationary ergodic manner, uniformly on the disk, packets are spread to
the fullest extent and each node carries the packets for every S-D pair in the steady-state. It was
shown that this state of affairs results in an asymptotically constant throughput per S-D pair.

phase 1 phase 2

Destination D

n−2 relay nodes

n−1 routes

Source S

Direct transmission

Figure 2: A source node spreads its packets to n − 2 relay nodes in phase 1, and the packets are
merged back into the destination node in phase 2. There is also direct transmission between the
source and the destination when they are close to each other.

The main quest in this paper is to determine what happens when each node is constrained to
move on a one-dimensional great circle. The performance of the policy clearly depends on the
constellation C of the great circles. It is in fact not true that the policy can achieve a constant
throughput for every possible constellation, but only for most.

Our main result is as follows.

Theorem 3.2 There exists a λ > 0 such that the above policy π achieves a throughput of λ for
almost all constellations as n → ∞, i.e. the probability of the set of constellations for which the
policy achieves a throughput of λ goes to 1 as n →∞.
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4 Main Ideas in the Proof

Notation

n the number of nodes/great circles
i, j sender and receiver of an individual transmission
S, D the source and destination of a session
π scheduling policy
λ achievable throughput
Mπ

S (r) average throughput from S to D(S) under policy π
Mπ

i→j long-term average of successful transmission from i to j under π
α the path loss exponent
β the SIR threshold for a successful transmission
S the surface of the unit-radius 3-dimensional sphere
Xi(t) the position of node i at time t
Dx,r a disk centered at x of radius r on the unit-radius sphere
V Cd(.) the Vapnik-Chervonenkis dimension of a set
G a great circle
C a constellation of great circles, i.e., a set of n great circles
MC(Dx,r) the number of great circles intersecting Dx,r

M̄(Dx,r) expected number of great circles intersecting Dx,r

NC(x, r1, r2) the number of great circles intersecting the annulus Dx,r2\Dx,r1

Nk abbreviation for NC(x, dk−1, dk), i.e. number of great circles in the annulus Dx,dk
\Dx,dk−1

dS(x, y) the distance of a points x and y on the sphere
d(x, G) the distance of a point x from a great circle G, i.e. d(x, G) = infy∈G dS(x, y)
γ normalized number of disks for binning
dk for k = 1, . . . , γ

√
n, set of distances such that sin(dk) = k

γ
√

n

St, Rt the sets of potential senders and potential receivers at time t
j(i) the closest j ∈ Rt of i ∈ St

Pi the received signal power at the receiver j(i)
Ii the interference power at the receiver j(i)

4.1 Key Properties to Guarantee High Throughput

A closer examination of [3] reveals that there are two main reasons why the policy π achieves an
asymptotically constant throughput in the mobility model considered there:

• Property I: Every node spends the same order of time as the nearest neighbor to every other
node. This ensures that each source can spread its packets uniformly across all other nodes,
all acting as relays, and these packets can in turn be merged back into their respective final
destinations.

• Property II: When communicating with the nearest neighbor receiver, the capture proba-
bility is not vanishingly small even in a large system, even though there are O(n) interfering
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nodes transmitting simultaneously.

The first property ensures that there are no bottlenecks/hotspots in the relaying mechanism. It
ensures that if we think of the different relays as queues for the S-D pair (see Figure 2), there is an
equitable distribution of the traffic over these queues.

The second property is due to the heavy-tailed characteristic of the received power distribution
from a random interfering node: the complementary cumulative distribution function (ccdf) decays

faster than x−
2
α . This ensures that the received power from the nearest neighbor is of the same

order as the total interference from the other senders, so that the probability that the SIR exceeds
the target threshold does not vanish with n. The decay condition in turn depends on the fact that
the nodes are uniformly distributed in the space.

4.2 Typical Constellations

Going back to our present mobility model, it is not difficult to see that these two key properties
do not necessarily hold for any arbitrary constellation C of great circles. For example, consider a
degenerate constellation with only two distinct great circles, where half of the nodes live on one
circle and the other half live on the other. Since there are n/2 nodes on each great circle, the
typical distance between nearest neighbors is of order 1/n. It can be seen that a given node i is the
nearest neighbor to a node on the same great circle for a fraction of order 1/n of the time, while
it is the nearest neighbor to a node on the other great circle only for a fraction of order 1/n2 of the
time (when both are of distance 1/n to one of the intersections of the two circles.) Thus, property
I does not hold, and the policy cannot deliver an O(1) throughput for any S-D pair whose source
and destination do not lie on the same great circle. Intuitively, the two intersections of the circles
become bottlenecks through which too much of the traffic has to pass.

The proof of Theorem 3.2 shows that for typical constellations, property I and II hold. The key
technical step is an appropriate definition of “typicality”. Basically, we require that for any point
x on the sphere S, there are not an “atypically” large number of great circles “close” to it. More
precisely, for a given constellation C, define MC(Dx,r) to be the number3 of great circles passing
through a disk Dx,r of radius r around x ∈ S. Let M̄(Dx,r) be the expected number of such great
circles in a random constellation. Therefore intuitively it means that a typical configurations is one
whose empirical distribution of the number of great circles in any given area on the surface of the
sphere is close to the underlying probability generating the configuration.

Definition 4.1 A constellation C is said to be ε-typical if

|MC(Dx,r)− M̄(Dx,r)|
n

< ε for every point x ∈ S and every r > 0.

3MC(Dx,r) =
∑n

i=1 1{great circle Gi intersecting Dx,r}, where 1{·} denotes the indicator function.
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Lemma 4.2 For any ε, δ > 0, the probability that a constellation C is ε-atypical is less than δ
provided that the system size n > K(ε, δ), where

K(ε, δ) := max

{

V Cd(D)

ε
log

16e

ε
,
4

ε
log

2

δ

}

2

Proof: To prove the lemma, we need to show that the empirical measure on the number of
randomly generated great circles intersecting a disk Dx,r converges uniformly (on the set of all
disks D) to the probability of a randomly generated great circle intersecting the disk. This involves
uniform convergence of this empirical probability measure and uses the Vapnik-Chervonenkis The-
orem [1]. To do this we use some results from Gupta and Kumar [4] and we use the notation from
that paper. Lemma 4.11 (pp 400, [4]) states that a great circle intersects a disk if and only if the
polar point associated with the great circle is contained in the equatorial band of the disk (see
Figure 5 of that paper). The empirical measure MC(Dx,r) is therefore the number of randomly
generated points on the sphere that lie in the equatorial band corresponding to the disk. The key
parameter governing the uniform convergence of the empirical measure is the VC dimension of the
set of equatorial bands corresponding to the set of all disks on the sphere. From Lemma 4.12 of
[4], the VC dimension of this set is finite, which implies the uniform convergence of the empirical
measure of number of great circles over the set of disks on the sphere.

More specifically:

Pr

{

sup
D∈D

∣

∣

∣

∣

MC(D)

n
− Pr {G ∩D 6= ∅}

∣

∣

∣

∣

> ε

}

< δ (1)

for n > max

{

V Cd(D)

ε
log

16e

ε
,
4

ε
log

2

δ

}

def
= K(ε, δ),

where D is the set of all disks on the sphere and it is shown by [4] (Lemma 4.7, pp 398) that this
has finite VC-dimension. 2

The number M̄(D(x, r)) can be explicitly computed.

M̄(Dx,r) = E [MC(Dx,r)] =

n
∑

i=1

Pr {Gi : d(x, Gi) < r} (a)
= nPr {G : d(x, G) < r} .

Here (a) is because {G1, . . . , Gn} are independently and identically distributed.

The probability of a randomly generated great circle intersecting a disk is the probability that a
randomly generated point on the sphere is in the equatorial band corresponding to the disk. If the
area of the equatorial band of a disk Dx,r is denoted by E(Dx,r), then

E(Dx,r) = 4π sin(r), (2)

on a unit-radius sphere. Therefore, the probability of a randomly generated great circle to intersect
a disk Dx,r is

Pr {G : d(x, G) < r} = sin(r). (3)
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Hence,
M̄(Dx,r)/n = sin(r)

We now apply Lemma 4.2 to a particular set of disks. As will become apparent later, we are
interested in dγ√n e disks around a point x ∈ S with radii, di, i = 1, . . . , dγ√ne, such that

sin(di) =
i

dγ√ne . (4)

For brevity of notation, we will interchangeably use dγ√ne with γ
√

n with the understanding that
this would not make a difference in the asymptotics. Also note that γ is a constant parameter that
controls the number of disks and is used for analysis. For this set of disks (which depend on n), we
get the following result,

Pr







sup
1≤i≤γ

√
n

x∈S

1

n

∣

∣MC(Dx,di
)− M̄(Dx,di

)
∣

∣ > εn/2







< δn/2 (5)

for n > max

{

2V Cd(D)

εn
log

32e

εn
,

8

εn
log

4

δn

}

,

An important consequence of this is that we can analyze the number of great circles which intersect
an annulus, i.e., for r1 < r2,

NC(x, r1, r2)
def
= MC(Dx,r2)−MC(Dx,r1). (6)

In analogy to (6), we define

N̄(x, r1, r2) = E [NC(x, r1, r2)] = M̄(Dx,r2)− M̄(Dx,r1). (7)

Using (5) and the union bound, we get:

Pr

{

sup
1≤i≤γ

√
n

1

n

∣

∣NC(x, di−1, di)− N̄(x, di−1, di)
∣

∣ > εn

}

≤ δn (8)

for n > K(εn, δn).

Note that we can choose εn = 1
2γ
√

n
, δn = 1

n2 in the above result. For this choice, together with the

observation that the expected number of great circles intersecting each annulus is Θ(
√

n), implies:

Ni
def
= NC(x, di−1, di) = Θ(

√
n), (9)

with high probability.

4.3 Throughput Analysis on Typical Constellation

Our proof strategy is to show that Properties I and II hold for Θ( 1√
n
)-typical constellations, so

that the throughput achievable by Protocol 3.1 is high. This is given respectively by the following
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two lemmas. We will be assuming the constellation C is Θ( 1√
n
)-typical and considered fixed. The

randomness to which the probabilities refer is due to the random positions of the nodes in their
respective great circles, and the random partition of the set of nodes into potential senders and
receivers in each time slot.

The following lemma formalizes Property I.

Lemma 4.3 There exist constant c1 > 0 and integer n0 such that for any two arbitrary nodes i
and j, the probability that node j is the nearest neighbor of node i is at least c1/n, provided n > n0.

Proof: We will lower bound the probability that j is the nearest neighbor of i with the probability
that j is within a disk of radius d1 = sin−1( 1√

n
) centered around i and that there is no other node

in such a disk. More precisely, consider a disk DXi,d1 of radius d1 around the location Xi of sender
i.

Pr {j is closest node to i} ≥ Pr {Xj ∈ DXi,d1}Pr {No other node is in DXi,d1} . (10)

Let the intersection point between the great circles Gi, Gj corresponding to i and j be F (i, j) ∈ S

(see Figure 3).

1Disc of radius d
Disc of radius d  /21

G

iG
j

SENDER

RECEIVER

i

F(i,j)

X

Figure 3: Region of intersection between two great circles Gi, Gj used in the proof of Lemma 4.3

We can see that

Pr {Xj ∈ DXi,d1} ≥ Pr
{

Xj ∈ D
F (i,j),

d1
2

}

Pr
{

Xi ∈ D
F (i,j),

d1
2

}

= (
d1

2π
)2 (11)

Pr {No other node is in DXi,d1} ≥ (1− 2d1

2π
)N1 ,

where N1 is the number of great circles passing through the disk DXi,d1, which we know by the typ-
icality of the constellation is N1 = Θ(

√
n). Hence, using these results and using binning parameter
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γ = 1 we get,

lim inf
n→∞

nPr {j is closest receiver to i} ≥ lim inf
n→∞

[√
n sin−1(

1√
n

)
1

2π

]2 (

1− 1

π
sin−1(

1√
n

)

)N1

= c1 > 0.

(12)
Hence there exists n0 such that for n > n0, the probability that node j is the nearest neighbor of
node i is at least c1/n. 2

Basically, the proof of the above lemma says that any two nodes are nearest neighbors to each other
typically when they are both of order 1/

√
n from the intersection of their great circle and that the

probability with which this occurs is O( 1
n
).

The following lemma formalizes Property II.

Lemma 4.4 Fix a given time slot. For an arbitrary sender node i, let Pi be the received power of its
signal at the intended receiving node, and let Ii be the total power of the interference at that receiver,
due to all the other senders. Then there exists constant c2 > 0 such that the signal-to-interference
ratio at the receiver satisfies

lim inf
n→∞

Pr

{

Pi

Ii
> β

}

> c2. (13)

2

Let j(i) denote the receiver closest to sender node i. Conditional on that receiver’s position Xj(i),
Pi and Ii are independent. This is because the position Xk of every interfering sender k ∈ St, k 6= i
is independent of Xi. However, note that the conditional distribution of Pi and Ii does depend on
Xj(1).

The proof of Lemma 4.4 hinges on the following two results.

Lemma 4.5 Fix a time slot. For an arbitrary sender node i ∈ St at location Xi, for any constant
B > 0 there exists a constant cP > 0 such that the received signal power Pi at the intended receiver
of i satisfies

lim inf
n→∞

Pr
{

Pi > Bnα/2|Xi

}

> cP . (14)

2

Lemma 4.6 Fix a time slot. For an arbitrary sender node i ∈ St at location Xi, there exist
constants A > 0 and cI < 1 such that the received interference power at the intended receiver of i
(i.e., j(i)) at location Xj(i) satisfies

lim inf
n→∞

Pr
{

Ii > Anα/2|Xj(i)

}

< cI . (15)

2

These two lemmas are proved in Appendix A and B, respectively. We have already seen that nearest
neighbors are typically at distance 1/

√
n, so it is not too surprising that the received power Pi is of
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the order nα/2, as stated in Lemma 4.5. The other senders are more or less uniformly distributed
on the sphere, by the typicality of the constellation. The total interference Ii at the receiver is
therefore of the same order as a sum of O(n) uniformly distributed senders, calculated in [3] to be
of order nα/2. Therefore, the result stated in Lemma 4.6 is not unexpected. However, this intuition
is imprecise, and the technical arguments to make a precise statement rely heavily on the typicality
of the constellations; the details are given in B.

We are now in a position to prove Lemma 4.4.

Proof: (Lemma 4.4) We need to show that the probability that for a particular sender the
signal-to-interference ratio at its nearest receiver (chosen by the sender as the intended receiver) is
large enough, so that a successful transmission is accomplished. Let us define the following events

E = {Pi > βAnα/2} (16)

F = {Ii < Anα/2}
From Lemma 4.6 we see that, lim sup

n→∞
Pr

{

Ii > Anα/2|Xj

}

< cI < 1, therefore lim inf
n→∞

Pr {F |Xj} ≥
1− cI > 0. Using this we have,

Pr

{

Pi

Ii

> β

}

= EXi,Xj(i)

[

Pr

{

Pi

Ii

> β|Xi, Xj(i)

}]

(17)

≥ EXi,Xj(i)

[

Pr
{

E
⋂

F |Xi, Xj(i)

}]

= EXi,Xj(i)

[

Pr
{

E|Xi, Xj(i)

}

Pr
{

F |E, Xi, Xj(i)

}]

= EXi,Xj(i)

[

Pr
{

E|Xi, Xj(i)

}

Pr
{

F |Xj(i)

}]

Hence by taking limits we obtain,

lim inf
n→∞

Pr

{

Pi

Ii
> β

}

≥ lim inf
n→∞

EXi,Xj(i)

[

Pr
{

E|Xi, Xj(i)

}

Pr
{

F |Xj(i)

}]

(18)

(a)

≥ (1− cI) lim inf
n→∞

EXi,Xj(i)

[

Pr
{

E|Xi, Xj(i)

}] (b)
> 0,

where in (a), (b) we have exchanged limits and integrals (possible by the Bounded Convergence
Theorem [6]) and obtained the inequalities using Lemmas 4.5–4.6.

This completes the proof of Lemma 4.4. 2

We are now in a position to prove Theorem 3.2, the main result of the paper.

Proof: (Theorem 3.2) We show that for a 1/
√

n-typical constellation, Protocol 3.1 achieves a
throughput λ > 0 for all S-D pairs. If this is done, then the proof is completed by observing that
the probability of a 1/

√
n-typical constellation goes to 1 (asymptotically in the system size) due to

Lemma 4.2.

The average throughput Mπ
S (r) between a source S and its destination D(S) through a relay r is

given by

Mπ
S (r) = min{Mπ

S→r, M
π
r→D}, (19)

where Mπ
i→j = lim

T→∞

T
∑

t=1

1{successful txmt from i to j at time t}
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Due to ergodicity of the node mobility processes, Mπ
i→j is equal to the probability of successful

transmission between i and j. In order for a successful transmission to occur between the sender-
receiver pair (i, j), the j should be the closest receiver to sender i, and the signal-to-interference
ratio should be above threshold β. Using Lemma 4.3 we know that for large enough system size n,
the probability of j being the closest receiver to i is Θ( 1

n
). Lemma 4.4 tells us that the probability

that the signal-to-interference threshold is met is bounded away from zero. Putting these two
together, the probability of successful transmission between a particular sender-receiver pair (i, j)
is Θ( 1

n
). Using this, we have shown that Mπ

S (r) = Θ( 1
n
). As there are Θ(n) such relays, summing

the throughput over these relays gives us the result that the average throughput for any S-D pair
is O(1) for a typical constellation.

2

5 Discussion

In this paper we have shown that the throughput of ad hoc wireless networks can be enhanced
even with limited mobility, i.e., when nodes move on great circles. The proof of this result relied
on what we called typical constellations. This was important since the throughput depends on
the constellation of great circles, and indeed for some configurations the throughput achievable is
low. One of the contributions of this work was in isolating precisely a sufficient property for the
constellation to yield Θ(1) throughput per node. The relaying mechanism used for showing an
achievable throughput requires that there exist a large number, Θ(n), of short hops that a source
can have to a particular destination. However, as was shown in the example of Section 4.2, even
when this property is satisfied, we could have constellations which do not have Θ(1) throughput.
In this example, though the source node did encounter a large number of short routes, there was a
larger proclivity for the source to have a relay node from the same great circle rather than one on the
alternate circle. Therefore, this created a disjoint “connectivity” graph for successful transmission
from source to destination and therefore yielding the negative result for throughput. Another way
one can think of “good” constellations is that of uniformly spreading the circles so that there is
less clustering. However, this notion can be misleading since a constellation where all the users lie
on the same great circle yields Θ(1) throughput. This shows that the necessary condition for such
a result to hold is elusive, and it is important to understand the sufficient condition for a general
class of constellations. Hence, we believe that the notion of typicality on constellations defined in
this paper is a natural and useful one. This also leads to the question that we are still attempting
to answer, i.e., essentially what in the mobility model allows Θ(1) throughput per user? This paper
takes one step in isolating the properties of mobility which allows Θ(1) throughput, but the general
question remains unanswered.

13



Appendices

A Proof of Lemma 4.5

Proof: To prove this lemma, we focus on the great circles intersecting the innermost disk
DXi,d1 centered at sender i. A sufficient condition for the normalized received power n−α/2Pi to
be above a threshold B is that at least one of the nodes on those great circles be close to Xi and
be in the set Rt. More precisely, focus on a great circle G intersecting DXi,d1. Let V denote the
point on G closest to Xi, and let Z = {U ∈ G : d(U, V ) ≤ d1} be a closed segment of length
2d1 centered around V . This is shown in Figure 4. The distance from the sender at Xi to any
point U of the segment Z satisfies4 d(Xi, U) < 2d1. It follows that if the receiver Xj(i) ∈ Z, then
Pi ≥ (2d1)

−α = [2 sin−1( 1
γ
√

n
)]−α. Note that

lim
n→∞

[
√

n2 sin−1(
1

γ
√

n
)]−α = [

γ

2
]α. (20)

Therefore, asymptotically in n, if a receiver node whose great circle intersects DXi,d1 and is within
the segment Z, then it receives at a power Θ(nα/2[γ

2
]α). We now bound the asymptotic probability

that there is at least one receiver node sufficiently close to Xi. Assume that B ≤
(

γ
2

)α
. Then,

lim inf
n→∞

Pr
{

n−α/2Pi > B|Xi

}

≥ lim inf
n→∞

[1− Pr {Xj 6∈ Zj, {Gj ∩DXi,d1 6= φ} ∩ Rt}]

= lim inf
n→∞

[1− (Pr {Xj 6∈ Zj})N ′
1 ] (21)

where N ′
1 = |{Gj ∩ DXi,d1 6= φ} ∩ Rt| is the number of great circles intersecting the disk DXi,d1

that are potential receivers at time t and Zj = {U ∈ Gj : d(U, V ) ≤ d1}. Now N ′
1 = Θ(

√
n) with

high probability, because |{Gj ∩DXi,d1 6= φ}| = N1 = Θ(
√

n), and because potential receivers are
selected randomly at every time slot t; therefore, N ′

1 → N1/2 a.s. Here we have used the limit
specified in (20) to justify the inequality used.

lim
n→∞

(Pr {Xj 6∈ Zj})N ′
1 ≤ lim

n→∞

(

1− d1

π

)

√
n/2γ

(a)
= lim

n→∞

(

1− 1

πγ
√

n

)

√
n/2γ

= e
− 1

2γ2π < 1, (22)

where in (a) we have used the limit argument of (20). Therefore, cP > 0, for any constant B since
we can choose an appropriate γ for any given B.

2

4The inequality is because the distance metric is defined as distance on the surface of the sphere. Hence,
cos[d(Xi, U)] = cos[d(Xi, V )] cos[d(V, U)] by using the geometry of the triangle formed by {Xi, U, V } on the surface
of the sphere [5]. Moreover, for distances smaller than π/2, it can be shown that the sum of two sides of a triangle on
the sphere is less than the third (analogous to the result of triangles on a plane). This can also be seen by noticing
that for angles smaller than π/2, cos[d(Xi, U)] = cos[d(Xi, V )] cos[d(V, U)] ≥ cos[d(Xi, V ) + d(V, U)]. Since we are
dealing with n large, this condition is clearly satisfied. Hence, given that d(V, U) ≤ d1 and d(Xi, V ) ≤ d1, this shows
that d(Xi, U) ≤ 2d1.
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U

V

Great circle G

1Disc of radius 2d
i

X

d
1

1Disc of radius d

Figure 4: Disc of size d1 around sender Xi with great circle G intersecting disc used in proof of
Lemma 4.5.

B Proof of Lemma 4.6

Proof: We analyze the conditional interference power Ii, conditional on the location Xj of
receiver j(i) for a typical constellation. We can upper bound Ii by lower bounding the distance of
the receiver j from an interfering sender k.

We use the following fact: the received power Pkj at Xj from node k (on great circle Gk) is
stochastically upper bounded by another node k′ (on a great circle Gk′) that satisfies dS(Xj, Gk′) ≤
dS(Xj, Gk)

5. Also, we make the conservative assumption that all nodes are senders, instead of just
the nodes in St.

Let the receiver location be denoted by Xj ∈ S. First, we draw disks DXj ,dl
centered around the

receiver position, where we choose radii dl such that sin(dl) = l
γ
√

n
. This is illustrated in Figure

6. Let W ′
l denote the total received interference power from all the great circles in the annulus

DXj ,dl
\DXj ,dl−1

. This is stochastically upper bounded by considering that all the Nl great circles in
this annulus are at a distance dl−1 from the receiver. We denote the power from the m = 1, . . . , Nl

nodes at a distance dl−1 by Wl,m. Therefore, we can stochastically upper bound Ii with

Ii

st

≤
γ
√

n
∑

l=1

Nl
∑

m=1

Wl,m. (23)

Note that all the Wl,m random variables are independent. We notice that by using (9), for a typical
constellation we obtain Nl = Θ(

√
n).

5In fact, this relationship only holds on the hemisphere with Xj as its pole; the inequality is inverted on the “far”
hemisphere. However, it is easy to show that this does not affect our result, because the impact of the “far” nodes
is negligible.
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Let us first focus on Wl,m for l ≥ 2. For these random variables, there is a lower bound on the
distance from the receiver point Xj of dl = sin−1( l−1

γ
√

n
). Let us examine a great circle G at distance

dl from the receiver point Xj, and let the closest point on G from receiver point Xj (see Figure 5)
be denoted by A on the great circle G. Let the node travel on the great circle and be at distance
of z from the point A of the great circle. If the distance of node from the receiver point is denoted
as v, then the following inequality can be shown,

cos(v) = cos(dl) cos(z) (24)

=⇒ |v| ≥
{

max{|dl|, |z|}, for |z| ≤ π/2
π/2, |z| ≥ π/2

Great circle G

z

v
A

B

lDisc of radius d

l
d

X
j

Figure 5: Figure illustrating bound on power of interferer on great circle at a distance dl from
receiver Xj used in proof of Lemma 4.6.

If the node mobility is stationary and ergodic on the great circle (GC), then the empirical probability
distribution of the node on the GC is also uniform, i.e., Z ∼ unif(−π, π). Using this and (24) we
obtain,

E

[

1

vα

]

≤ 2

π

∫ z=dl

z=0

1

max{dα
l , zα}dz +

2

π

∫ z=π/2

z=dl

1

max{dα
l , zα}dz +

2

π

∫ z=π

z=π/2

1

(2/π)α
dz (25)

=
2

π

∫ z=dl

z=0

1

dα
l

dz +
2

π

∫ z=π/2

z=dl

1

zα
dz + (

2

π
)α

=
2α

π(α− 1)

1

dα−1
l

+
α− 2

α− 1
(
2

π
)α

≤ 2α

π(α− 1)

1

sinα−1(dl)
+

α− 2

α− 1
(
2

π
)α
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To find the probability of large interference, we can write

Pr
{

n−α/2Ii > A|Xj

}

≤ Pr







n−α/2

γ
√

n
∑

l=1

Nl
∑

m=1

Wl,m > A|Xj







(26)

≤ Pr

{

n−α/2

N1
∑

m=1

W1,m >
A

2
|Xj

}

+ Pr







n−α/2

γ
√

n
∑

l=2

Nl
∑

j=1

Wl,m >
A

2
|Xj







(27)

We need to show that A can be made large enough so that (26) is less than a constant cI < 1.
For the first term, note that the great circles passing through the innermost disk would cause an
infinite mean power; nevertheless, we can use the theory of stable distributions to bound this term.
For the second term, we use the inequalities developed in (25), and show that for a large enough
A this probability can be made small enough.

Innermost disk: Pr
{

n−α/2
∑N1

m=1 W1,m > A/2|Xj

}

. We can conservatively assume that these

nodes lie on the same great circle as the receiver. Therefore, the W1,m are i.i.d. with distribution
Pr {W1,m ≥ y} = δ

y1/α for y ≥ δα, where δ = 1
π
, and one elsewhere. This can be seen since

Pr {W1,m ≥ y} = Pr {z−α
m ≥ y}, where zm is the distance of interferer to the receiver; using the

uniform distribution of the location of the interferer on the great circle, we get the stated result.
Note zm ≤ π, yielding W1,m ≥ π−α = δα.

Now note that the distribution of W1,m satisfies the requirement for M−α
∑M

m=1 W1,m to converge to
a stable distribution with characteristic exponent 1

α
(see [2], pp 448, Theorem 2). Since N1 = Θ(

√
n)

by the typicality of constellations, N−α
1

∑N1

m=1 W1,m = C−α/2n−α/2
∑N1

m=1 W1,m, for some constant C.

Hence it follows that Pr
{

n−α/2
∑N1

m=1 W1,m > A/2|Xj

}

can be made arbitrarily small by choosing

A large enough. Note that we need to make it small enough so that the terms in (26) sum to

less than 1, and such a choice would depend on the bound on Pr
{

n−α/2
∑γ

√
n

l=2

∑Nl

j=1 Wl,m > A
2
|Xj

}

which is given below.

Outer disks: Pr
{

n−α/2
∑γ

√
n

l=2

∑Nl

m=1 Wl,m > A/2|Xj

}

. For this we just use Markov’s inequality,

i.e., Pr {X > a} ≤ E [X] /a. We obtain,

Pr







n−α/2

γ
√

n
∑

l=2

Nl
∑

m=1

Wl,m > A/2|Xj







≤
γ
√

n
∑

l=2

Nl
∑

m=1

E [Wl,m]

Anα/2/2
=

γ
√

n
∑

l=2

Nl
E [Wl,m]

Anα/2/2
(28)

≤
γ
√

n
∑

l=2

2Nl

Anα/2

[

2α

π(α− 1)

1

sinα−1(dl)
+

α− 2

α− 1

(

2

π

)α]

≤
γ
√

n
∑

l=2

2Nl

Anα/2

[

2α

π(α− 1)

(γ
√

n)α−1

(l − 1)α−1
+

α− 2

α− 1

(

2

π

)α]

≤ c

A

γ
√

n
∑

l=2

1

(l − 1)α−1
+ o(1),
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where c > 0 is a constant. The sum converges for α > 2, which establishes that we can choose A to
make the second term arbitrarily small as well. Therefore we can choose A large enough to make
the sum of the terms in (26) less than 1. This completes the proof of Lemma 4.6. 2

X
j

Figure 6: Binning of region around receiver Xj with discs used in proof of Lemma 4.6.
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