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ABSTRACT 
Managing large-scale data is typically memory intensive. The 
current generation of GPUs has much lower memory capacity 
than CPUs which is often a limiting factor in processing large 
data. It is desirable to reduce memory footprint in spatially 
joining large-scale datasets through query optimization.  In this 
study, we present a technique of selectivity estimation for 
optimizing spatial join processing on GPUs. By seamlessly 
integrating multi-dimensional cumulative histograms and the 
summed-area-table algorithm, our technique can be efficiently 
realized on GPUs with good portability. Our experiments on 
spatially joining two sets of Minimum Bounding Boxes (MBBs) 
derived from real point and polygon data, each with about one 
million MBBs, have shown that computing the total numbers of 
MBB pairs at four grid levels took only about 3/4 second. By 
using the best grid resolution, our technique saves 38.4% 
memory for the spatial join. When histograms are materialized, 
it only took a few tens of milliseconds to search for the best grid 
level for the spatial join.  
 

1. INTRODUCTION 
Spatial data volumes are fast increasing due to 

advances of locating, sensing and simulation techniques. For 
example, although  navigation devices (e.g. GPS, cellular and 
WIFI network-based, and, their combinations) embedded in 
smartphones (nearly 500 million sold in 2011 [1]) have already 
generated large volumes of location and trajectory data, the next 
generation of consumer electronics, such as Google Glasses, are 
likely to generate even larger volumes of location-dependent 
multimedia data. Objects identified from high-resolution 
satellite imagery and medical imagery, when represented as 
vectors of geometric coordinates, can also be considered as 
spatial data. In addition, large-scale climate, astronomical and 
molecular simulations are likely to produce even larger spatial 
datasets. Very often different spatial datasets need to be joined 
to derive new information and knowledge to support decision 
making. For example, GPS traces can be better interpreted when 

aligned with urban infrastructures, such as road networks and 
Point of Interests (POIs), through spatial joins. As spatial 
datasets are getting increasingly larger, techniques for high-
performance spatial join processing on commodity and 
inexpensive parallel hardware become crucial in addressing the 
“BigData” challenge.   

Spatial joins can be considered as extensions of 
relational theta joins [2] where spatial relationships, such as 
distance and topology, are involved in joining criteria [3]. While 
considerable research on join processing for both relational and 
spatial data have been reported, including those targeted for 
parallel computing platforms [2,3], there is little research on 
spatial join optimization on GPUs. Compared with multi-core 
CPUs, the current generations of GPUs typically have limited 
memory capacity, which frequently becomes a constraining 
factor for parallel spatial joins on large-scale spatial datasets. In 
addition, different from multi-core CPUs that are designed to 
support coarse-grained task-level parallelisms, fine-grained data 
parallelisms are crucial in achieving hardware potentials on 
GPUs. As such, many existing spatial join techniques that are 
either sequential in nature or rely on coarse-grained parallelisms 
cannot be efficiently applied to GPUs. The combined technical 
challenges in minimizing memory footprints and maximizing 
data parallelisms has motivated us to develop novel spatial join 
techniques on GPUs. In our previous studies, we have explored 
several GPU-based techniques for parallel spatial join 
processing, such as distance based point-to-polyline join [4], 
trajectory similarity join [5], and topology based point-in-
polygon-test spatial join [6]. Our techniques adopt the classical 
two-phase spatial join framework, i.e., a filtering phase to pair 
MBBs followed by a refinement phase to evaluate the spatial 
relationships of geometric objects inside the MBBs [3]. While 
the refinement phase typically involves more floating point 
computation and is desirable to utilize GPUs for speeding up [4-
6], we believe it is more technically challenging in improving 
the efficiency of the filtering phase on GPUs under stricter 
resource constraints, e.g., GPU memory capacity. Compared 
with the refinement phase that can relatively easily utilize batch 
processing to reduce resource requirements in a single batch, it 
is more difficult to explore a similar strategy for filtering as 
global information is typically required in the phase. Spatial 
filtering techniques that minimize memory consumption are thus 
preferred from an implementation and application perspective.  

While spatial indexing techniques, such as pre-built 
quad-trees and R-Trees [7], have been frequently used to speed 
up spatial joins in classic computing models that are designed 
for serial algorithms, uniprocessors and disk-resident systems, 

 



their suitability on GPUs for spatial joins needs to be 
reevaluated. First of all, very often their hierarchical tree 
structures and irregular memory access patterns incur significant 
performance penalty on parallel hardware, especially GPUs. 
Second, the complex data structures are expensive to construct 
and maintain (on both CPUs and GPUs) and difficult to 
manipulate (especially on GPUs). In this study, we aim at 
utilizing multi-dimensional histograms as light-weighted indices 
that are parallelization friendly to facilitate spatial join 
processing on GPUs. Different from heavy-weighted spatial 
index structures that are associated with data items for direct 
query processing, these histograms contain only essential 
statistical information to guide the choice of optimal/suitable 
parameters for spatial joins under resource constraints, with or 
without using spatial indices. Our technique is based on 
Cumulative Histogram (CD) in 2D space [8] to count the 
numbers of Minimum Bounding Boxes (MBBs) that intersect 
with cells in uniformly tessellated grids, compute the possible 
numbers of pairs in the grid cells, and choose an optimal grid 
level that satisfies GPU memory footprint budget. While CDs 
have been utilized in previous studies (e.g. [8]), we believe we 
are the first to take advantage of data parallelisms in 
constructing and utilizing CDs for parallel selectivity estimation 
and guide the optimization of spatial joins on GPUs. We provide 
a simple design and implementation that can be presented as a 
chain of sort-reduce-scatter-transform parallel primitives [18, 
20]. These parallel primitives are well-supported across multiple 
parallel hardware platforms, including Nvidia and AMD GPUs.  

The rest of the paper is arranged as the following. 
Section 2 introduces the background, motivation and related 
work. Section 3 presents the details of the parallel selectivity 
estimation technique. Section 4 presents the experiments and 
results. Finally, Section 5 is the conclusions and future work 
directions.    

2. BACKGROUND, MOTIVATION AND 
RELATED WORK 
Given two spatial datasets each with a geometric attribute 
the_geom, i.e., T1(id, the_geom) and T2(id, the_geom), the 
basic form of spatial join processing can be expressed as the 
following SQL statement:  

SELECT * from T1, T2  

WHERE ST_OP (T1.the_geom, T2 the_geom)  

Here the geometric attributes in T1 and T2 can be any of the 
geometric types (e.g., point, polygon and polyline) and ST_OP 
can be any of the spatial relationships (e.g., intersect, within) 
defined by the Open Geospatial Consortium (OGC) Simple 
Feature Specification (SFS) [10] which has been the cornerstone 
of virtually all commercial (e.g., Oracle Spatial and Microsoft 
SQL Server Spatial) and open source (PostgreSQL/PostGIS) 
spatial databases. More complex queries may also involve 
additional attributes in T1 and T2, additional operators (e.g., 
count, sum) and additional clauses (e.g., group by, having and 
order by). Similar to theta joins in relational queries, spatial 
joins can be conceptually formulated as Cartesian products 
followed by evaluating spatial relationships between two 
geometric objects based on some well-established principles 
(e.g., nearest neighbor) and/or computational geometry 
algorithms (e.g., point-in-polygon test). Assuming the 

cardinality of T1 and T2 are n1 and n2, respectively, similar to 
processing relational joins, indices can be constructed to reduce 
the complexity from O(n1*n2) to O(n1) or O(n2) provided that a 
good spatial filtering strategy is available so that a spatial object 
in T1 will only be paired with a limited number of spatial 
objects in T2. As argued in [3], spatial joins are distinguished 
from relational joins due to the fact that spatial data are 
inherently multi-dimensional data that exhibits several unique 
features, e.g., lacking ordering that preserves proximity (which 
makes sort-merge join largely inapplicable), unsuitable for 
grouping due to having extents (which makes equijoin 
inapplicable), and, requiring complex geometric computation 
(which is typically much more expensive than arithmetic 
operations).   

Hundreds of indexing structures have been developed in the past 
few decades to index and query spatial data [7]. In addition, we 
refer to the excellent survey paper [3] for a comprehensive 
review on spatial join techniques, including several parallel 
spatial join techniques on traditional cluster computing 
environments. We also refer to several recent works on spatial 
join processing on MapReduce/Hadoop clusters [11,12] with 
demonstrated scalability at the expenses of singe node 
efficiency. Despite that shared-memory systems are getting 
increasingly popular and affordable in both personal and cluster 
computing settings and typically are easy to program, almost all 
existing parallel spatial join techniques are designed for shared-
nothing architectures. As GPUs that are capable of general 
computing typically have large numbers of processors (102-103), 
much higher bandwidth (~100 GB/s vs. ~100 MB/s) and more 
floating point computing power (by design), an alternative to 
cluster computing (including Hadoop clusters running 
MapReduce jobs) in solving moderate sized spatial join 
problems on single GPU devices becomes promising. We note 
that as GPUs are typically used as accelerators in computing 
nodes, it is quite possible to integrate the two sets of techniques 
to solve larger scale spatial join problems when needed.  

As detailed in [3], spatial joins can be performed on two spatial 
datasets that both, one or none of them have indices. Although 
using pre-built indices typically can significantly boost the 
performance of spatial joins on CPUs, we argue that traditional 
tree-based hierarchical indices are less effective to be ported to 
GPUs for parallel execution directly. While more and more 
programming language constructs are increasingly available for 
GPU computing, e.g., recursions, pointers and dynamic memory 
allocations/deallocations, which makes porting serial code to 
GPUs easier, they can bring significant performance penalty if 
applied inappropriately. Naïve GPU implementations can 
perform even worse than serial CPU implementations. 
Furthermore, we strongly believe that identifying the inherent 
parallelisms in spatial joins, which are likely to sustain several 
hardware generations, is more important than optimizing a 
particular design for a specific hardware platform. As such, 
instead of porting existing popular tree-based spatial indexing 
techniques to GPUs to speed up spatial join processing, our 
focus in this research is to develop novel parallel techniques 
that can make full use of GPU hardware computing power 
under memory capacity constraints. The research is in parallel 
with several existing research efforts on indexing and querying 
multi-dimensional spatial data on GPUs [13,14,15].  



Selectivity estimation is considered a vital component in query 
optimization in both relational databases and spatial databases. 
Given a set of query items in T1, selectivity estimation 
techniques estimate the numbers of items in T2 that are likely to 
be joined with each of the query items. Fast and accurate 
selectivity estimations can help database query optimizers to 
choose better query plans under resource constraints. A slightly 
different problem that provides summary information of query 
results (e.g., counts) for a single query or a set of queries 
without actually querying database records essentially require a 
same set of  techniques as selectivity estimation. These typically 
can be achieved by maintaining data structures of essential 
statistics. Several techniques on selectivity estimation for spatial 
joins and query processing have been reported (see Appendix 2 
for a brief review and a list of related publications), but none of 
them has been researched in parallel computing settings.  

Among these techniques, we are particularly interested in works 
that are based on regularly spaced multi-dimensional 
histograms. This is because when the histogram bins use the 
same configuration for both datasets involved in a spatial join, 
the total number of pairs to be processed in the refinement phase 
in each bin is s=Ʃ|B1i|*|B2i| where |B1i| and |B2i| are the numbers 
of geometric objects that intersect with spatial extents of the 
common bins in T1 and T2, respectively. However, as shown in 
the example in Fig. 1, bin sizes of such 2D histograms (typically 
the same as grids that used for indexing/querying) play a very 
important role in determining the memory footprint of spatial 
filtering. As our GPU based spatial join framework (Appendix 
1) requires pairing all the MBRs from both datasets, very often a 
large number of pairs, need to be output before unique pairs can 
be computed and used in the refinement phase. Although the 
number of unique pairs might be small, the number of 
intermediate pairs can be too large to be fit in GPU memory. On 
the other hand, if a small cell size is chosen, while |B1i| and |B2i| 
are likely to be smaller, N usually grows quadratically which 
may also incur large numbers of intermediate pairs. For the 
example shown in Fig. 1, the grid at the bottom (Fig. 1C) is 
most memory efficient where the number of candidate pairs (4) 
is significantly smaller than using a coarser grid (Fig. 1A) or 
finer grid (Fig. 1B). This is also the primary motivation of our 
proposed technique.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Illustration of Choosing Optimal Grid Level in 
Minimizing Memory Footprint for Spatial Filtering 

By observing that generating a 1D cumulative histogram is 
equivalent to performing a scan (prefix-sum [18]) on the 
original regular histogram, and generating a 2D cumulative 
histogram can be realized using two scans on the original 2D 
regular histogram using both row-major order and transposed 
row-major order (to be detailed in Section 3), we have 
developed a simple yet effective parallel approach to derive|B1i|     
and |B2i| counts for all bins from the two sets of MBBs in a 
spatial join and use them to choose the appropriate grid level 
under GPU memory constraints. The technique will be presented 
in details in Section 3.  

As more recent GPUs increasingly support unified memory 
addressing on both CPUs and GPUs, it becomes possible to use 
CPU memory and/or external memories to virtually increase 
GPU memory to avoid GPU memory capacity limit. While this 
may be promising for certain applications, such as certain 
relational joins as reported in [16,17] where slow data 
movement across GPU/CPU/disk boundaries can be hidden by 
computing, it may not be efficient for spatial filtering based on 
our current framework for spatial join processing (Appendix 1). 
This is because sort/search/unique primitives in spatial filtering 
are largely bounded by memory bandwidth and do not exhibit 
blocked memory access patterns unless specially designed.  

3. PARALLEL SELECTIVITY 
ESTIMATION ON GPUs  
The parallel selectivity estimation algorithm presented in this 
section is an important component in our GPU based parallel 
spatial join framework using regularly spaced grid file structure 
[7,14] for spatial filtering (see Appendix 1 for details). The 
algorithm aims at estimating the total numbers of pairs of MBBs 
that will be generated during the spatial filtering phase at 
multiple grid levels and guide the query optimizer to choose an 
optimal grid level that minimizes GPU memory footprint during 
spatial filtering.  

 

 

 

 

 

 

 

 

Fig. 2 Illustration of Spatial Cumulative Histogramming and 
Selectivity Estimation for a Single Query Window 

Four 2D cumulative histograms (Hll, Hlr, Hul and Hur) are 
required to store the numbers of MBBs whose lower-left, lower-
right, upper-left and upper-right corners fall within grid cells 
[8]. Assuming the bin values of a regular histogram are mi, then 
the corresponding bin values of a cumulative histogram are 

∑ =
= k

i ik mm
1

. Given a query window W(x1,y1,x2,y2) where x1, 

y1, x2 and y2 are given as grid coordinates, the number of MBBs 
that intersect with W can be calculated as N= Hll(x2,y2) - Hlr(x1-
1,y2) - Hul(x2,y1-1) + Hur (x1-1,y1-1) (we refer to [8] for the 
derivation).  As an example shown in Fig. 2, the number of 
MBBs that intersect with the query window shown as a dashed 
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rectangle is N=2 by accessing the four highlighted bins in the 
four cumulative histograms. While the approach allows 
arbitrarily shaped rectangles, we set x1=x2 and y1=y2 so that N 
will be the number of MBBs that intersect with the grid cell 
(histogram bin) at (x1,y1). It is easy to see that the computation 
has perfect data parallelism on GPUs.  

To derive each of the four cumulative histograms for all grid 
cells, we first re-use the design and implementation of point 
aggregation approach in our previous work [4,19] to compute 
regular 2D histograms (B) where corner points are transformed 
to cell identifiers by applying a transform parallel primitive. A 
reduce (by key) parallel primitive is then applied to count the 
number of corner points that fall within each grid cell/bin. As 
the grids/histograms might be sparse, the counts need to be 
scattered to the respective histogram bins by applying a scatter 
parallel primitive. The second step in computing a cumulative 
histogram is to apply the parallel summed-area-table algorithm 
outlined in [9] that includes four sub-steps: applying an 
(inclusive) scan primitive on row-majored grid cells (assuming 

the result is B’), transpose B’ to B’’, applying the same 
(inclusive) scan primitive on B’’ to derive B’’’ before finally 
transpose B’’’ back to the original row-major order to derive H.  
The complete algorithm is provided in Fig. 3. Note that we use 
upper case variables to represent vectors and lower case 
variables to represent scalars. In case we need to refer to 
individual vector elements, we put indices as superscripts on the 
corresponding vectors. In the presentation, parallel primitives 
that are used in the algorithms are both bolded and italicized. As 
these parallel primitives are either directly supported by CUDA 
SDK (through its Thrust library [20]) or have been widely 
implemented on GPUs (e.g., transpose), we will not further 
explain the implementations of these functions and we refer to 
the interested readers to the Thrust library documentation. To 
better illustrate algorithms compute_counts and gen_sat, an 
example using the same data as in Fig. 2 is shown in Fig. 4. The 
example calculates Hll using algorithm gen_sat and calculates 
the N grid in Step 2 of algorithm compute_counts after all the 
four cumulative histograms have been derived. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Algorithms for Parallel Selectivity Estimation 

 

 

 

 

 

 

 

 

Fig. 4 An example to illustrate algorithms compute_counts and gen_sat 
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Ni=  Hll(x2,y2) - Hlr(x1-1,y2) - Hul(x2,y1-1) + Hur (x1-1,y1-1) 

Algorithm compute_counts 
Inputs: MBB set M and resolution r 

Outputs: grid N representing the numbers of MBBs intersect with each grid cell 
Step 1 For each of H in {Hll, Hlr, Hul and Hur} 

Step 1.1 V����Transform(M) where Vi={lower-left, lower-right, upper-
right, upper-right} corner coordinates of Mi 
Step 1.2  Call point_aggregation(V,B,r)  
Step 1.3 Call gen_sat(B,H) 

Step 2 Transform on Hll, Hlr, Hul and Hur and put the result in N where Ni= 
Hll(x2,y2) - Hlr(x1-1,y2) - Hul(x2,y1-1) + Hur (x1-1,y1-1) and x1=x2=i%c and 
y1=y2=i/c (c=2k) 

Algorithm selectivity_estimation 
Inputs: MBB sets M1 and M2 
Outputs: optimal grid resolution ro  
 
For each candidate resolution rk 
Step 1 call compute_counts(M1, rk, N1) 
Step 2 call compute_counts(M2, rk, N2)  
Step 3: N3�transform(N1,N2) where N3i=N1i*N2i 
Step 4: sk=reduce(N3)  
Step 5: if sk exceeds memory budget then break 
Return ro that corresponds to the smallest sk 
 

Algorithm point_aggregation 
Inputs: Point set V in the form of (x,y) pairs and grid resolution r; 
Coordinate system origin x0 and y0 (global variables) 
Outputs: Grid B representing the numbers of corner points  

Step 1 transform V to generate cell identifiers Ci=(y-y0)/r*COL+(x-x0)/r 
Step 2 sort C 
Step 3: reduce C (by key), count the numbers of keys (K,D)�reduce_by_key(C) 
Step 4: scatter D to B according to K where (row,col)i

�Ki 
 

Algorithm gen_sat 
Inputs: Grid B   
Outputs: summed area table H  
 
Step 1 H�inclusive_scan_by_key(B) using row 
identifiers as keys 
Step 2: H�transpose(H) 
Step 3: H�inclusive_scan_by_key(H) using row 
identifiers as keys 
Step 4: H�transpose(H) 
 



 

We next provide a brief time and space analysis of the proposed 
technique. For algorithm point_aggregation, assume the number 
of grid cells is Ng and the number of points is Np, then the time 
complexity is O(Np) for  Step1, O(Np) for Step 2 using radix 
sort (which is the case for our GPU implementation), 
max(O(Np),O(Ng)) for Step 3, and O(Ng) for Step 4. As such, 
the total time complexity of algorithm point_aggregation is 
O(Np)+O(Ng). The time complexity for the algorithm gen_sat is 
O(Ng) for all the four steps. As the time complexity for Step 1.1 
and Step 2 of algorithm compute_counts  are O(Np) and O(Ng), 
respectively, the total time complexity of the algorithm is 
4*(O(Np)+O(Np)+O(Ng)+4*O(Ng))+O(Ng)=O(Np)+O(Ng). 
Assuming that the numbers of MBBs in T1 and T2 are |M1|=U1 
and |M2|=U2 and the number of grid cells (histogram bins) at 
the grid level rk is Wk, by substituting Np with U1/U2 and 
substituting Ng with Wk, the time complexity of the first two 
steps in algorithm selectivity_estimation is        

O(U1)+O(Wk)+O(U2)+O(Wk)=O(U1)+O(U2)+O(Wk). 

As both Step 3 and Step 4 in algorithm 
selectivity_estimation have a time complexity of O(Wk) and 
Step 5 has a time complexity of O(1), the total time complexity 
for grid level rk is thus  

O(U1)+O(U2)+O(Wk)+O(Wk)+O(Wk)+O(1) 
=O(U1)+O(U2)+O(Wk)  

As k is limited to a small number in practice, the final time 
complexity of the algorithm is linear with respect to U1, U2 and 
max(Wk). With respect to space complexity, while conceptually 
memory storage for M1, M2, N1, N2, N3, Hll, Hlr, Hul,Hur, C and 
K is required at the same time, we note that optimizations to 
consolidate among N1/N2/N3 and Hll/Hl/Hul/Hur might be 
possible through GPU kernel fusion/fission [21].  As U1 and U2 
are typically in the order of millions and Wk is typically 
between W10=1024*1024 and W13=8192*8192, the proposed 
approach can be applied to GPU devices with a few tens of 
megabytes memory capacity, which can be easily satisfied. 

Despite the linear time and space complexity of the proposed 
approach, we note that the two parallel primitives (scan and 
transpose) in the gen_sat algorithm are invoked eight times each 
for the two input MBB sets. Similarly, the four parallel 
primitives (transform, sort, reduce and scatter) in the 
point_aggregation algorithm are invoked four times. As such, 
the efficiency of the implementations of these parallel primitives 
is crucial for the overall efficiency of the proposed technique. In 
our implementation, we implement the transpose primitive using 
CUDA and shared memory is used to further improve the 
efficiency. For the rest of the parallel primitives, we use those  
provided by the Thrust library although we believe there are still 
rooms to further improve their efficiency (e.g., as demonstrated 
by the MGPU library [22]). The improvements are left for our 
future work. 

4. EXPERIMENTS AND RESULTS  
To validate our design and implementation, we use two real 
datasets in our experiments. The first dataset contains 168 
million taxi trip records each with a pick-up and drop-off 
location. We generate quadrants from the point dataset by 
setting the maximum number of points in each quadrant to 

K=1024 points [6]. We use the MBBs of the points in the 
quadrants. We call the first MBB set as Taxi and the number of 
MBBs in the set U1=|Taxi|= 990,142. The second dataset to 
participate in the spatial join  is the NYC MapPluto tax lot data 
[23] with 735,488 polygons and 4,698,986 vertices. We use the 
MBBs of the polygons as our second MBB set, i.e., 
U2=|MapPluto|= 735,488. We use four grid  levels, i.e., k varies 
from 10 to 13 and grid size varies from 1024*1024 to 
8192*8192 for both selectivity estimation and spatial filtering. 
All experiments are performed on an Nvidia Quadro 6000 GPU 
device with 448 cores and 6 GB memory.  

Table 1 lists the computed numbers of pairs of MBBs (sk) and 
query estimation times (Ts) at the four levels. For grid level 10, 
there are 86 million pairs. The two data vectors that store the 
pairs require nearly 700 megabytes of GPU memory (4 bytes for 
each of the two identifiers in a pair). The spatial filtering module 
may fail on certain GPU devices due to memory capacity limit. 
On the other hand, if level k=12 is chosen, the memory footprint 
will be reduced by more than half which clearly demonstrates 
the importance of query optimization.  Assuming that the chance 
of picking all grid levels for spatial filtering is the same, then the 
expected number of estimated pairs is AvgN=ƩNi/4. After 
applying the selectivity estimation algorithm, we are able to pick 
the grid level that incurs the minimum number of pairs 
minN=min(Ni). As such, the benefit is (AvgN-
minN)/AvgN=34.8%. The total cost of the optimization is 
simply the total runtimes ƩTsi=744 ms. In other words, we are 
able to reduce the memory footprint of the spatial join by 34.8% 
in 744 ms, which is desirable in many cases.   

Table 1 Memory Footprints and Runtimes for Selectivity 
Estimation and Spatial Filtering at Multiple Grid Levels 
Grid 
Level k 

Grid Size # of Estimated 
Pairs (N) 

Ts 
(ms) 

Tf 
(ms) 

13 8192*8192 78,328,554 496 1090 
12 4096*4096 40,414,590 146 432 
11 2048*2048 43,121,125 62 332 
10 1024*1024 86,103,593 39 525 
 
For comparison purposes, we also list the spatial filtering 
runtimes (Tf) among the two datasets (without using the 
selectivity estimation module) in the last column of Table 1. We 
can see that Ts is significantly lower than Tf at all grid levels, 
especially for grids with lower sizes, e.g., 1024*1024 when 
k=10. The observation that Ts grows superlinearly with grid 
level can be explained by the fact that Ts is a combination of the 
cost that is linear with Np (U1/U2) and the cost that is linear 
with Ng (Wk) but quadratic with grid resolution (2k), based on 
the cost model presented in Section 4. In contrast, although the 
details were skipped in Section 3, Tf is a combination of the cost 
that is linear with U1/U2 and the cost that is linear with N. 
Different from cumulative histograms that require using 2D 
grids in selectivity estimation, vectors representing sparse 2D 
grids are used in spatial filtering which is more efficient. As the 
grid size gets higher, selectivity estimation becomes more costly 
and the performance advantage of selectivity estimation over 
complete spatial filtering decreases. It is possible that the ƩTsi 

can be larger than Tfk. at a certain point. Selectivity estimation 
overhead could become a significant portion of the end-to-end 



spatial filtering runtime when the selectivity estimation module 
is included. Since we increase grid level (k) gradually, we can 
include the projected spatial filtering cost into the stop criteria in 
Step 5 of algorithm selectivity_estimation in Fig. 3 in addition to 
memory budget. Given that using high grid resolution will 
increase selectivity estimation times superlinearly and may not 
always be able to improve memory consumption for spatial 
filtering, we recommend stop increasing k as soon as ƩTsi 
reaches a time budget limit (e.g., 100-500 ms).  
By observing that N1 and N2 histograms (grids) that are used to 
compute Sk are only related to their respective MBB sets and do 
not depend on each other, a viable solution to improve 
selectivity performance is to use prebuilt N1 and N2 grids to 
compute N3 and sk. As such, algorithm selectivity_estimation 
needs only to compute N3 on-the-fly (Step 3) before reducing  
N3 to calculate sk (Step 4). These two steps are extremely fast on 
GPUs as they are embarrassingly parallelizable and can make 
full use of GPU hardware resources. Our experiments have 
shown that the runtimes vary from about 3 ms for the 
1024*1024 grid size (k=10) to about 10 ms for the 8192*8192 
grid size (k=13) which is fast enough for most spatial datasets. 
However, as the prebuilt N1 and N3 grids need to be streamed 
from hard drives to CPU memories and then to GPU memories, 
I/O overheads can be significant. For an 8192*8192 integer grid, 
the storage requirement is about 256 megabytes which may 
require 3-5 seconds to read from disks to CPU memory and 50-
200 ms to transfer from CPU memory to GPU memory. Note 
these I/O overheads do not exist when N1 and N2 are computed 
on-the-fly on GPUs. Fortunately, as many real world spatial 
datasets are highly clustered, N1 and N2 grids are likely to be 
sparse and many data compression techniques can be applied to 
reduce storage overheads and data transfer times. Furthermore, 
as approximate sk values are sufficient for finding the optimal 
grid level (k) in most cases, lossy compression techniques such 
as wavelet based ones, are acceptable. In addition, as CPU 
memory capacity limit can reach hundreds of gigabytes on 
commodity workstations in an economically sound way, these 
grids can be pre-loaded to CPU memory to avoid excessive disk 
I/O latency. While it is beyond the scope of this study to 
evaluate these data compression and buffer management 
techniques, we will explore this direction in our future work. 

5. CONCLUSION AND FUTURE WORK  
In this study, we have provided a parallel selectivity estimation 
technique to reduce memory footprint in spatial join processing 
on GPUs where memory capacity is typically a limiting factor in 
processing large-scale data. Experiments on joining the two 
MBB sets with nearly a million MBBs each have shown that our 
technique is able to reduce memory footprint by 38.4% in about 
750 milliseconds when histograms are computed on-demand at 
multiple scales. When histograms are materialized, it only takes 
a few tens of milliseconds to search the best grid level for spatial 
join across multiple grid levels. The design is both simple and 
portable by utilizing well researched parallel primitives. GPU 
implementation is efficient and the proposed technique is 
effective in query optimization on large-scale spatial joins.  

For future work, first, we would like to identify the performance 
bottleneck in the parallel primitives based implementation, re-
implement the relevant parallel primitives and fine tune 
parameters to improve the overall performance. Second, we plan 
to systematically investigate whether to include larger grid sizes 

(e.g., 4096*4096 and up) in our selectivity estimation algorithm 
as they both provide memory footprint reduction potentials and 
incur high computing and memory overheads. Finally, we plan 
to compare our technique with alternative ones, e.g., using 
pinned CPU memory, in reducing GPU memory constraints in 
processing large-scale data.  
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Appendix 1: A parallel Spatial join framework on GPUs 
Spatial data is rich in data types and different spatial data types 
may allow different spatial operations, for example, distance 
calculation between points and polylines and point-in-polygon 
tests among points and polygons. We refer to the OGC SFS [10] 
for more details on spatial data modeling. While most of the 
existing spatial databases adopt Object-Relational data models 
for spatial data to extend relational databases functionality to 
spatial data, extensive dynamic memory allocations to construct 
spatial objects in memory is not cache friendly and can 
significantly degrade the performance. To boost the performance 
of the in-memory data structures for complex and read-only 

spatial data, we have designed an array-based physical data 
layout scheme [19]. For complex spatial objects such as 
polylines and polygons, in addition to their vertex arrays, 
auxiliary index arrays are also created. Point/vertex arrays and 
index arrays can be efficiently streamed among disks, CPU 
memories and GPU memories. While we are still actively 
experimenting the performance of R-Tree and Quadtree based 
spatial indexing and query processing techniques [19], in this 
study, we assume spatial index structures are available for 
neither datasets involved in a spatial join and we thus resort to a 
simple grid file based approach for spatial filtering (middle of 
Fig. A1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A1 A Framework of Parallel Spatial Join Processing on GPU 
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While points can be easily grouped into grid cells by chaining 
sorting and reduction (using grid cell identifiers as keys), MBBs 
of polylines and polygons may intersect with multiple grid cells. 
After both geometric objects are aligned with one or more grid 
cells, generating (P, Q) pairs can be transformed into a binary 
search problem.  For each grid cell in the VPC vector, which 
stores the one-to-many mappings between the MBB of a 
geometric object in T1 to the grid cells that the MBB intersects, 
we search the cell in the VQC vector, which stores the one-to-
many mappings between the MBB of a geometric object in T2 to 
the grid cells that the MBB intersects (as illustrated in the center 
of Fig. A1). The matched objects in T1 and T2 will be paired for 
subsequent refinement. Clearly, for MBB pairs that cover 
multiple grid cells, the (P, Q) pairs will be duplicated and need 
to be removed to avoid redundant spatial refinements.  

During the refinement phase, (P, Q) pairs will be 
assigned to computing blocks as shown at the bottom part of 
Fig. A1. As there will be multiple points/vertexes in both P and 
Q (here we treat grouped points as a point collection object), we 
assign one set of points/vertexes to threads in the computing 
block while looping through all the other sets of points/vertexes 
to derive results that will be associated with either 
points/vertexes or the pairs of MBBs assigned to the computing 
block. This nested-loop style design is very efficient on GPUs as 
neighboring threads read neighing points/vertexes in one object 
(assuming  P) before a loop begins and write to neighboring 
positions for outputting results after the loop finishes while they 
access the same point/vertex in another object (assuming Q) 
throughout the looping process. The memory access pattern is 
perfectly coalesced which is critical in GPU computing.  

As an example, assuming P contains M points in a 
grid cell and Q contains the N vertices of a polygon, we can 
assign M points to threads while looping through the N vertices. 
Depending on the sizes of points/vertexes in P and Q and the 
configurations of GPU computing blocks, we may need to 
reshape the O(M*N) computation to maximize the utilization of 
GPU hardware. For example, when M is less than the warp size 
(currently 32 on CUDA enabled GPUs [20]), we can loop 
through K (>=2) points in the Q polygon simultaneously and 
reduce the number of the looping steps to ceiling(N/K). 
Similarly, when M is larger than the number threads in the 
computing block (assuming T), we may need to loop over the M 
points in ceiling(M/T) rounds. The parallel designs and 
implementations of point grouping, MBB rasterization, spatial 
filtering and several spatial filtering are documented in our 
previous work [4,5,6]. 
 
Appendix 2 A brief review on Multi-Dimensional Histograms 
for Selectivity Estimation and Data Summation 

Multi-dimensional histograms can be built through regular 
gridding [24,31,32,36,38], non-regular gridding  [33,37,39,41], 
clustering [25,40,43,46], quad-tree [44], R-Tree [40,45] and 
ECDF-tree [35] constructions. They can be used to estimate 
selectivity to facilitate overview style browsing (1,8,15), range 
queries [25,26,28,31,32,35,36,40] and spatial joins 
[27,28,33,39]. In addition to regular simple statistics, advanced 
statistics such as topology [32], sketches [34], density [35,37] 
and wavelet [39,42] may also be used.  
 

[24] Beigel,R. and Tanin, E. (1998). The Geometry of Browsing. 
Proceedings of LATIN'98: Theoretical Informatics, 331-340.  

[25] Acharya,S., Poosala,V. and Ramaswamy,S. (1999). Selectivity 
estimation in spatial databases. Proceedings of SIGMOD, 13–
24. 

[26] Aboulnaga, A. and Naughton, J. F. (2000). Accurate 
estimation of the cost of spatial selections. Proceedings IEEE 
ICDE, 123-134. 

[27] An, N., Yang, Z.-Y., and Sivasubramaniam, A.  (2001). 
Selectivity estimation for spatial joins. Proceedings of IEEE 
ICDE, 368-375. 

[28] Mamoulis, N. and Papadias, D.  (2001). Selectivity Estimation 
of Complex Spatial Queries. Proceedings of SSTD, 155-174. 

[29] Wang, M., Vitter, J., et al (2001). Wavelet-Based Cost 
Estimation for Spatial Queries. Proceedings of SSTD, 175-
196.  

[30] Choi, Y-J. and Chung, C-W. (2002). Selectivity estimation for 
spatio-temporal queries to moving objects. Proceedings of 
ACM SIGMOD, 440-451. 

[31] Sun, C., Agrawal, D. and El Abbadi, A.  (2002). Exploring 
spatial datasets with histograms.  Proceedings of IEEE ICDE,  
93-102 

[32] Lin, X, . Liu, Q., et al. (2003). Multiscale histograms: 
summarizing topological relations in large spatial datasets. 
Proceedings of VLDB, 814-825. 

[33] Belussi,A., Bertino, E.  and Nucita A. (2004). Grid based 
methods for estimating spatial join selectivity. Proceedings of 
ACM-GIS, 92-100. 

[34] Das, A., Gehrke, J., and Riedewald, M. (2004). Approximation 
techniques for spatial data. Proceedings of SIGMOD, 695-706. 

[35] Zhang, D., and Tsotras, V. J. and Gunopulos, D (2004). 
Efficient aggregation over objects with extent. Proceedings of 
PODS, 121-132. 

[36] Elmongui, H., Mokbel, M. et al. (2005). Spatio-temporal 
Histograms. Proceedings of SSTD, 19-36. 

[37] Gunopulos, D., Kollios, G., et al (2005). Selectivity estimators 
for multidimensional range queries over real attributes. The 
VLDB Journal , 137-154.  

[38] Sun, C., Bandi, N. et al (2006). Exploring spatial datasets with 
histograms. Distributed and Parallel Databases 20(1) 57-88.  

[39] Sun, J., Tao, Y.  et al (2006). Spatio-temporal join selectivity. 
Information Systems 31(8):793-813. 

[40] Eavis,T. and Lopez,A. (2007). rK-Hhist: an R-tree based 
histogram for multi-dimensional selectivity estimation. 
Proceedings of CIKM, 475–484. 

[41] Luo, J., Zhou, X, et al (2007). Selectivity estimation by batch-
query based histogram and parametric method. Proceedings of 
ADC. 93-102.  

[42] Huang, D-S., Heutte, L.and Loog, M (2007). Spatial 
Selectivity Estimation Using Cumulative Density Wavelet 
Histogram. Proceedings ICIC (LNAI 4682), 493-504.  

[43] Roh, Y. J., Kim, J. H. et al. (2010). Hierarchically organized 
skew-tolerant histograms for geographic data objects. 
Proceedings of SIGMOD, 627-638.  

[44] Roh, Y-J., Kim, J-H, et al (2011). Efficient construction of 
histograms for multidimensional data using quad-trees. 
Decision Support Systems 52(1), 82 -94.  

[45] Achakeev, D. and Seeger, B. (2012) A class of R-tree 
histograms for spatial databases. Proceedings of ACM-GIS. 
450-453.   

[46] Mai, H., Kim, J. et al (2013). STHist-C: a highly accurate 
cluster-based histogram for two and three dimensional 
geographic data points. GeoInformatica 17(2) 325-352.  

 


