
Parallel Selectivity Estimation for Optimizing Multidimensional Spatial
Join Processing on GPUs

Jianting Zhang

Dept. of Computer Science
City College of New York
New York City, NY, 10031

jzhang@cs.ccny.cuny.edu

Simin You
Dept. of Computer Science

CUNY Graduate Center
New York, NY, 10016

syou@gc.cuny.edu

Le Gruenwald
School of Computer Science

University of Oklahoma
Norman, OK 73071

ggruenwald@ou.edu

ABSTRACT
Managing large-scale data is typically memory intensive. The
current generation of GPUs has much lower memory capacity
than CPUs which is often a limiting factor in processing large
data. It is desirable to reduce memory footprint in spatially
joining large-scale datasets through query optimization. In this
study, we present a technique of selectivity estimation for
optimizing spatial join processing on GPUs. By seamlessly
integrating multi-dimensional cumulative histograms and the
summed-area-table algorithm, our technique can be efficiently
realized on GPUs with good portability. Our experiments on
spatially joining two sets of Minimum Bounding Boxes (MBBs)
derived from real point and polygon data, each with about one
million MBBs, have shown that computing the total numbers of
MBB pairs at four grid levels took only about 3/4 second. By
using the best grid resolution, our technique saves 38.4%
memory for the spatial join. When histograms are materialized,
it only took a few tens of milliseconds to search for the best grid
level for the spatial join.

1. INTRODUCTION
Spatial data volumes are fast increasing due to

advances of locating, sensing and simulation techniques. For
example, although navigation devices (e.g. GPS, cellular and
WIFI network-based, and, their combinations) embedded in
smartphones (nearly 500 million sold in 2011 [1]) have already
generated large volumes of location and trajectory data, the next
generation of consumer electronics, such as Google Glasses, are
likely to generate even larger volumes of location-dependent
multimedia data. Objects identified from high-resolution
satellite imagery and medical imagery, when represented as
vectors of geometric coordinates, can also be considered as
spatial data. In addition, large-scale climate, astronomical and
molecular simulations are likely to produce even larger spatial
datasets. Very often different spatial datasets need to be joined
to derive new information and knowledge to support decision
making. For example, GPS traces can be better interpreted when

aligned with urban infrastructures, such as road networks and
Point of Interests (POIs), through spatial joins. As spatial
datasets are getting increasingly larger, techniques for high-
performance spatial join processing on commodity and
inexpensive parallel hardware become crucial in addressing the
“BigData” challenge.

Spatial joins can be considered as extensions of
relational theta joins [2] where spatial relationships, such as
distance and topology, are involved in joining criteria [3]. While
considerable research on join processing for both relational and
spatial data have been reported, including those targeted for
parallel computing platforms [2,3], there is little research on
spatial join optimization on GPUs. Compared with multi-core
CPUs, the current generations of GPUs typically have limited
memory capacity, which frequently becomes a constraining
factor for parallel spatial joins on large-scale spatial datasets. In
addition, different from multi-core CPUs that are designed to
support coarse-grained task-level parallelisms, fine-grained data
parallelisms are crucial in achieving hardware potentials on
GPUs. As such, many existing spatial join techniques that are
either sequential in nature or rely on coarse-grained parallelisms
cannot be efficiently applied to GPUs. The combined technical
challenges in minimizing memory footprints and maximizing
data parallelisms has motivated us to develop novel spatial join
techniques on GPUs. In our previous studies, we have explored
several GPU-based techniques for parallel spatial join
processing, such as distance based point-to-polyline join [4],
trajectory similarity join [5], and topology based point-in-
polygon-test spatial join [6]. Our techniques adopt the classical
two-phase spatial join framework, i.e., a filtering phase to pair
MBBs followed by a refinement phase to evaluate the spatial
relationships of geometric objects inside the MBBs [3]. While
the refinement phase typically involves more floating point
computation and is desirable to utilize GPUs for speeding up [4-
6], we believe it is more technically challenging in improving
the efficiency of the filtering phase on GPUs under stricter
resource constraints, e.g., GPU memory capacity. Compared
with the refinement phase that can relatively easily utilize batch
processing to reduce resource requirements in a single batch, it
is more difficult to explore a similar strategy for filtering as
global information is typically required in the phase. Spatial
filtering techniques that minimize memory consumption are thus
preferred from an implementation and application perspective.

While spatial indexing techniques, such as pre-built
quad-trees and R-Trees [7], have been frequently used to speed
up spatial joins in classic computing models that are designed
for serial algorithms, uniprocessors and disk-resident systems,

their suitability on GPUs for spatial joins needs to be
reevaluated. First of all, very often their hierarchical tree
structures and irregular memory access patterns incur significant
performance penalty on parallel hardware, especially GPUs.
Second, the complex data structures are expensive to construct
and maintain (on both CPUs and GPUs) and difficult to
manipulate (especially on GPUs). In this study, we aim at
utilizing multi-dimensional histograms as light-weighted indices
that are parallelization friendly to facilitate spatial join
processing on GPUs. Different from heavy-weighted spatial
index structures that are associated with data items for direct
query processing, these histograms contain only essential
statistical information to guide the choice of optimal/suitable
parameters for spatial joins under resource constraints, with or
without using spatial indices. Our technique is based on
Cumulative Histogram (CD) in 2D space [8] to count the
numbers of Minimum Bounding Boxes (MBBs) that intersect
with cells in uniformly tessellated grids, compute the possible
numbers of pairs in the grid cells, and choose an optimal grid
level that satisfies GPU memory footprint budget. While CDs
have been utilized in previous studies (e.g. [8]), we believe we
are the first to take advantage of data parallelisms in
constructing and utilizing CDs for parallel selectivity estimation
and guide the optimization of spatial joins on GPUs. We provide
a simple design and implementation that can be presented as a
chain of sort-reduce-scatter-transform parallel primitives [18,
20]. These parallel primitives are well-supported across multiple
parallel hardware platforms, including Nvidia and AMD GPUs.

The rest of the paper is arranged as the following.
Section 2 introduces the background, motivation and related
work. Section 3 presents the details of the parallel selectivity
estimation technique. Section 4 presents the experiments and
results. Finally, Section 5 is the conclusions and future work
directions.

2. BACKGROUND, MOTIVATION AND
RELATED WORK
Given two spatial datasets each with a geometric attribute
the_geom, i.e., T1(id, the_geom) and T2(id, the_geom), the
basic form of spatial join processing can be expressed as the
following SQL statement:

SELECT * from T1, T2

WHERE ST_OP (T1.the_geom, T2 the_geom)

Here the geometric attributes in T1 and T2 can be any of the
geometric types (e.g., point, polygon and polyline) and ST_OP
can be any of the spatial relationships (e.g., intersect, within)
defined by the Open Geospatial Consortium (OGC) Simple
Feature Specification (SFS) [10] which has been the cornerstone
of virtually all commercial (e.g., Oracle Spatial and Microsoft
SQL Server Spatial) and open source (PostgreSQL/PostGIS)
spatial databases. More complex queries may also involve
additional attributes in T1 and T2, additional operators (e.g.,
count, sum) and additional clauses (e.g., group by, having and
order by). Similar to theta joins in relational queries, spatial
joins can be conceptually formulated as Cartesian products
followed by evaluating spatial relationships between two
geometric objects based on some well-established principles
(e.g., nearest neighbor) and/or computational geometry
algorithms (e.g., point-in-polygon test). Assuming the

cardinality of T1 and T2 are n1 and n2, respectively, similar to
processing relational joins, indices can be constructed to reduce
the complexity from O(n1*n2) to O(n1) or O(n2) provided that a
good spatial filtering strategy is available so that a spatial object
in T1 will only be paired with a limited number of spatial
objects in T2. As argued in [3], spatial joins are distinguished
from relational joins due to the fact that spatial data are
inherently multi-dimensional data that exhibits several unique
features, e.g., lacking ordering that preserves proximity (which
makes sort-merge join largely inapplicable), unsuitable for
grouping due to having extents (which makes equijoin
inapplicable), and, requiring complex geometric computation
(which is typically much more expensive than arithmetic
operations).

Hundreds of indexing structures have been developed in the past
few decades to index and query spatial data [7]. In addition, we
refer to the excellent survey paper [3] for a comprehensive
review on spatial join techniques, including several parallel
spatial join techniques on traditional cluster computing
environments. We also refer to several recent works on spatial
join processing on MapReduce/Hadoop clusters [11,12] with
demonstrated scalability at the expenses of singe node
efficiency. Despite that shared-memory systems are getting
increasingly popular and affordable in both personal and cluster
computing settings and typically are easy to program, almost all
existing parallel spatial join techniques are designed for shared-
nothing architectures. As GPUs that are capable of general
computing typically have large numbers of processors (102-103),
much higher bandwidth (~100 GB/s vs. ~100 MB/s) and more
floating point computing power (by design), an alternative to
cluster computing (including Hadoop clusters running
MapReduce jobs) in solving moderate sized spatial join
problems on single GPU devices becomes promising. We note
that as GPUs are typically used as accelerators in computing
nodes, it is quite possible to integrate the two sets of techniques
to solve larger scale spatial join problems when needed.

As detailed in [3], spatial joins can be performed on two spatial
datasets that both, one or none of them have indices. Although
using pre-built indices typically can significantly boost the
performance of spatial joins on CPUs, we argue that traditional
tree-based hierarchical indices are less effective to be ported to
GPUs for parallel execution directly. While more and more
programming language constructs are increasingly available for
GPU computing, e.g., recursions, pointers and dynamic memory
allocations/deallocations, which makes porting serial code to
GPUs easier, they can bring significant performance penalty if
applied inappropriately. Naïve GPU implementations can
perform even worse than serial CPU implementations.
Furthermore, we strongly believe that identifying the inherent
parallelisms in spatial joins, which are likely to sustain several
hardware generations, is more important than optimizing a
particular design for a specific hardware platform. As such,
instead of porting existing popular tree-based spatial indexing
techniques to GPUs to speed up spatial join processing, our
focus in this research is to develop novel parallel techniques
that can make full use of GPU hardware computing power
under memory capacity constraints. The research is in parallel
with several existing research efforts on indexing and querying
multi-dimensional spatial data on GPUs [13,14,15].

Selectivity estimation is considered a vital component in query
optimization in both relational databases and spatial databases.
Given a set of query items in T1, selectivity estimation
techniques estimate the numbers of items in T2 that are likely to
be joined with each of the query items. Fast and accurate
selectivity estimations can help database query optimizers to
choose better query plans under resource constraints. A slightly
different problem that provides summary information of query
results (e.g., counts) for a single query or a set of queries
without actually querying database records essentially require a
same set of techniques as selectivity estimation. These typically
can be achieved by maintaining data structures of essential
statistics. Several techniques on selectivity estimation for spatial
joins and query processing have been reported (see Appendix 2
for a brief review and a list of related publications), but none of
them has been researched in parallel computing settings.

Among these techniques, we are particularly interested in works
that are based on regularly spaced multi-dimensional
histograms. This is because when the histogram bins use the
same configuration for both datasets involved in a spatial join,
the total number of pairs to be processed in the refinement phase
in each bin is s=Ʃ|B1i|*|B2i| where |B1i| and |B2i| are the numbers
of geometric objects that intersect with spatial extents of the
common bins in T1 and T2, respectively. However, as shown in
the example in Fig. 1, bin sizes of such 2D histograms (typically
the same as grids that used for indexing/querying) play a very
important role in determining the memory footprint of spatial
filtering. As our GPU based spatial join framework (Appendix
1) requires pairing all the MBRs from both datasets, very often a
large number of pairs, need to be output before unique pairs can
be computed and used in the refinement phase. Although the
number of unique pairs might be small, the number of
intermediate pairs can be too large to be fit in GPU memory. On
the other hand, if a small cell size is chosen, while |B1i| and |B2i|
are likely to be smaller, N usually grows quadratically which
may also incur large numbers of intermediate pairs. For the
example shown in Fig. 1, the grid at the bottom (Fig. 1C) is
most memory efficient where the number of candidate pairs (4)
is significantly smaller than using a coarser grid (Fig. 1A) or
finer grid (Fig. 1B). This is also the primary motivation of our
proposed technique.

Fig. 1 Illustration of Choosing Optimal Grid Level in
Minimizing Memory Footprint for Spatial Filtering

By observing that generating a 1D cumulative histogram is
equivalent to performing a scan (prefix-sum [18]) on the
original regular histogram, and generating a 2D cumulative
histogram can be realized using two scans on the original 2D
regular histogram using both row-major order and transposed
row-major order (to be detailed in Section 3), we have
developed a simple yet effective parallel approach to derive|B1i|
and |B2i| counts for all bins from the two sets of MBBs in a
spatial join and use them to choose the appropriate grid level
under GPU memory constraints. The technique will be presented
in details in Section 3.

As more recent GPUs increasingly support unified memory
addressing on both CPUs and GPUs, it becomes possible to use
CPU memory and/or external memories to virtually increase
GPU memory to avoid GPU memory capacity limit. While this
may be promising for certain applications, such as certain
relational joins as reported in [16,17] where slow data
movement across GPU/CPU/disk boundaries can be hidden by
computing, it may not be efficient for spatial filtering based on
our current framework for spatial join processing (Appendix 1).
This is because sort/search/unique primitives in spatial filtering
are largely bounded by memory bandwidth and do not exhibit
blocked memory access patterns unless specially designed.

3. PARALLEL SELECTIVITY
ESTIMATION ON GPUs
The parallel selectivity estimation algorithm presented in this
section is an important component in our GPU based parallel
spatial join framework using regularly spaced grid file structure
[7,14] for spatial filtering (see Appendix 1 for details). The
algorithm aims at estimating the total numbers of pairs of MBBs
that will be generated during the spatial filtering phase at
multiple grid levels and guide the query optimizer to choose an
optimal grid level that minimizes GPU memory footprint during
spatial filtering.

Fig. 2 Illustration of Spatial Cumulative Histogramming and
Selectivity Estimation for a Single Query Window

Four 2D cumulative histograms (Hll, Hlr, Hul and Hur) are
required to store the numbers of MBBs whose lower-left, lower-
right, upper-left and upper-right corners fall within grid cells
[8]. Assuming the bin values of a regular histogram are mi, then
the corresponding bin values of a cumulative histogram are

∑ =
= k

i ik mm
1

. Given a query window W(x1,y1,x2,y2) where x1,

y1, x2 and y2 are given as grid coordinates, the number of MBBs
that intersect with W can be calculated as N= Hll(x2,y2) - Hlr(x1-
1,y2) - Hul(x2,y1-1) + Hur (x1-1,y1-1) (we refer to [8] for the
derivation). As an example shown in Fig. 2, the number of
MBBs that intersect with the query window shown as a dashed

34 2 3 3
1 2 2 2
1 1 1 1
1 1 1 1

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 1 34 2 2 3
0 2 2 2
0 1 1 1
0 1 1 1

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0

Hul

Hur

34 2 3 3
1 2 3 3
1 2 2 2
1 1 1 1

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 1 34 2 2 3
0 2 2 3
0 2 2 2
0 1 1 1

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0 Hll
Hlr

N=3-0-1+0=2

34

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34

|{1,2,3,4,5} ⋈ {A,B,C}|=15

1

2

3

4 5
B

A

C

(A) Spatial Join using Coarser Grid (B) Spatial Join using Finer Grid

(C) Spatial Join using
Optimal Grid

10|2|*|1|
16

1
=∑ =i ii BB

1

2
3

4 5
B

A

C

1

2
3

4 5
B

A

C

4|2|*|1|4
1

=∑ =i ii BB

rectangle is N=2 by accessing the four highlighted bins in the
four cumulative histograms. While the approach allows
arbitrarily shaped rectangles, we set x1=x2 and y1=y2 so that N
will be the number of MBBs that intersect with the grid cell
(histogram bin) at (x1,y1). It is easy to see that the computation
has perfect data parallelism on GPUs.

To derive each of the four cumulative histograms for all grid
cells, we first re-use the design and implementation of point
aggregation approach in our previous work [4,19] to compute
regular 2D histograms (B) where corner points are transformed
to cell identifiers by applying a transform parallel primitive. A
reduce (by key) parallel primitive is then applied to count the
number of corner points that fall within each grid cell/bin. As
the grids/histograms might be sparse, the counts need to be
scattered to the respective histogram bins by applying a scatter
parallel primitive. The second step in computing a cumulative
histogram is to apply the parallel summed-area-table algorithm
outlined in [9] that includes four sub-steps: applying an
(inclusive) scan primitive on row-majored grid cells (assuming

the result is B’), transpose B’ to B’’, applying the same
(inclusive) scan primitive on B’’ to derive B’’’ before finally
transpose B’’’ back to the original row-major order to derive H.
The complete algorithm is provided in Fig. 3. Note that we use
upper case variables to represent vectors and lower case
variables to represent scalars. In case we need to refer to
individual vector elements, we put indices as superscripts on the
corresponding vectors. In the presentation, parallel primitives
that are used in the algorithms are both bolded and italicized. As
these parallel primitives are either directly supported by CUDA
SDK (through its Thrust library [20]) or have been widely
implemented on GPUs (e.g., transpose), we will not further
explain the implementations of these functions and we refer to
the interested readers to the Thrust library documentation. To
better illustrate algorithms compute_counts and gen_sat, an
example using the same data as in Fig. 2 is shown in Fig. 4. The
example calculates Hll using algorithm gen_sat and calculates
the N grid in Step 2 of algorithm compute_counts after all the
four cumulative histograms have been derived.

Fig. 3 Algorithms for Parallel Selectivity Estimation

Fig. 4 An example to illustrate algorithms compute_counts and gen_sat

34 0 0 0
0 0 1 0
0 1 0 0
1 0 0 0

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0 B 34 0 0 0
0 0 1 1
0 1 1 1
1 1 1 1

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0 34 1 1 0
1 1 1 0
1 1 0 0
1 0 0 0

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 1

34

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34

34 2 3 3
1 2 3 3
1 2 2 2
1 1 1 1

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 1
B’

B’’ B’’’
Scan

 (by row)

Transpose

Scan
 (by row)

Transpose

34 0 1 1
0 1 1 1
0 1 0 0
1 1 0 0

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0

N

34 2 3 3
1 2 3 3
1 2 2 2
1 1 1 1

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 1

Hll

34 2 3 3
1 2 2 2
1 1 1 1
1 1 1 1

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 1 34 2 2 3
0 2 2 2
0 1 1 1
0 1 1 1

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0 34 2 2 3
0 2 2 3
0 2 2 2
0 1 1 1

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0

Hlr Hul Hur

Ni= Hll(x2,y2) - Hlr(x1-1,y2) - Hul(x2,y1-1) + Hur (x1-1,y1-1)

Algorithm compute_counts
Inputs: MBB set M and resolution r

Outputs: grid N representing the numbers of MBBs intersect with each grid cell
Step 1 For each of H in {Hll, Hlr, Hul and Hur}

Step 1.1 V����Transform(M) where Vi={lower-left, lower-right, upper-
right, upper-right} corner coordinates of Mi
Step 1.2 Call point_aggregation(V,B,r)
Step 1.3 Call gen_sat(B,H)

Step 2 Transform on Hll, Hlr, Hul and Hur and put the result in N where Ni=
Hll(x2,y2) - Hlr(x1-1,y2) - Hul(x2,y1-1) + Hur (x1-1,y1-1) and x1=x2=i%c and
y1=y2=i/c (c=2k)

Algorithm selectivity_estimation
Inputs: MBB sets M1 and M2
Outputs: optimal grid resolution ro

For each candidate resolution rk
Step 1 call compute_counts(M1, rk, N1)
Step 2 call compute_counts(M2, rk, N2)
Step 3: N3�transform(N1,N2) where N3i=N1i*N2i
Step 4: sk=reduce(N3)
Step 5: if sk exceeds memory budget then break
Return ro that corresponds to the smallest sk

Algorithm point_aggregation
Inputs: Point set V in the form of (x,y) pairs and grid resolution r;
Coordinate system origin x0 and y0 (global variables)
Outputs: Grid B representing the numbers of corner points

Step 1 transform V to generate cell identifiers Ci=(y-y0)/r*COL+(x-x0)/r
Step 2 sort C
Step 3: reduce C (by key), count the numbers of keys (K,D)�reduce_by_key(C)
Step 4: scatter D to B according to K where (row,col)i

�Ki

Algorithm gen_sat
Inputs: Grid B
Outputs: summed area table H

Step 1 H�inclusive_scan_by_key(B) using row
identifiers as keys
Step 2: H�transpose(H)
Step 3: H�inclusive_scan_by_key(H) using row
identifiers as keys
Step 4: H�transpose(H)

We next provide a brief time and space analysis of the proposed
technique. For algorithm point_aggregation, assume the number
of grid cells is Ng and the number of points is Np, then the time
complexity is O(Np) for Step1, O(Np) for Step 2 using radix
sort (which is the case for our GPU implementation),
max(O(Np),O(Ng)) for Step 3, and O(Ng) for Step 4. As such,
the total time complexity of algorithm point_aggregation is
O(Np)+O(Ng). The time complexity for the algorithm gen_sat is
O(Ng) for all the four steps. As the time complexity for Step 1.1
and Step 2 of algorithm compute_counts are O(Np) and O(Ng),
respectively, the total time complexity of the algorithm is
4*(O(Np)+O(Np)+O(Ng)+4*O(Ng))+O(Ng)=O(Np)+O(Ng).
Assuming that the numbers of MBBs in T1 and T2 are |M1|=U1
and |M2|=U2 and the number of grid cells (histogram bins) at
the grid level rk is Wk, by substituting Np with U1/U2 and
substituting Ng with Wk, the time complexity of the first two
steps in algorithm selectivity_estimation is

O(U1)+O(Wk)+O(U2)+O(Wk)=O(U1)+O(U2)+O(Wk).

As both Step 3 and Step 4 in algorithm
selectivity_estimation have a time complexity of O(Wk) and
Step 5 has a time complexity of O(1), the total time complexity
for grid level rk is thus

O(U1)+O(U2)+O(Wk)+O(Wk)+O(Wk)+O(1)
=O(U1)+O(U2)+O(Wk)

As k is limited to a small number in practice, the final time
complexity of the algorithm is linear with respect to U1, U2 and
max(Wk). With respect to space complexity, while conceptually
memory storage for M1, M2, N1, N2, N3, Hll, Hlr, Hul,Hur, C and
K is required at the same time, we note that optimizations to
consolidate among N1/N2/N3 and Hll/Hl/Hul/Hur might be
possible through GPU kernel fusion/fission [21]. As U1 and U2
are typically in the order of millions and Wk is typically
between W10=1024*1024 and W13=8192*8192, the proposed
approach can be applied to GPU devices with a few tens of
megabytes memory capacity, which can be easily satisfied.

Despite the linear time and space complexity of the proposed
approach, we note that the two parallel primitives (scan and
transpose) in the gen_sat algorithm are invoked eight times each
for the two input MBB sets. Similarly, the four parallel
primitives (transform, sort, reduce and scatter) in the
point_aggregation algorithm are invoked four times. As such,
the efficiency of the implementations of these parallel primitives
is crucial for the overall efficiency of the proposed technique. In
our implementation, we implement the transpose primitive using
CUDA and shared memory is used to further improve the
efficiency. For the rest of the parallel primitives, we use those
provided by the Thrust library although we believe there are still
rooms to further improve their efficiency (e.g., as demonstrated
by the MGPU library [22]). The improvements are left for our
future work.

4. EXPERIMENTS AND RESULTS
To validate our design and implementation, we use two real
datasets in our experiments. The first dataset contains 168
million taxi trip records each with a pick-up and drop-off
location. We generate quadrants from the point dataset by
setting the maximum number of points in each quadrant to

K=1024 points [6]. We use the MBBs of the points in the
quadrants. We call the first MBB set as Taxi and the number of
MBBs in the set U1=|Taxi|= 990,142. The second dataset to
participate in the spatial join is the NYC MapPluto tax lot data
[23] with 735,488 polygons and 4,698,986 vertices. We use the
MBBs of the polygons as our second MBB set, i.e.,
U2=|MapPluto|= 735,488. We use four grid levels, i.e., k varies
from 10 to 13 and grid size varies from 1024*1024 to
8192*8192 for both selectivity estimation and spatial filtering.
All experiments are performed on an Nvidia Quadro 6000 GPU
device with 448 cores and 6 GB memory.

Table 1 lists the computed numbers of pairs of MBBs (sk) and
query estimation times (Ts) at the four levels. For grid level 10,
there are 86 million pairs. The two data vectors that store the
pairs require nearly 700 megabytes of GPU memory (4 bytes for
each of the two identifiers in a pair). The spatial filtering module
may fail on certain GPU devices due to memory capacity limit.
On the other hand, if level k=12 is chosen, the memory footprint
will be reduced by more than half which clearly demonstrates
the importance of query optimization. Assuming that the chance
of picking all grid levels for spatial filtering is the same, then the
expected number of estimated pairs is AvgN=ƩNi/4. After
applying the selectivity estimation algorithm, we are able to pick
the grid level that incurs the minimum number of pairs
minN=min(Ni). As such, the benefit is (AvgN-
minN)/AvgN=34.8%. The total cost of the optimization is
simply the total runtimes ƩTsi=744 ms. In other words, we are
able to reduce the memory footprint of the spatial join by 34.8%
in 744 ms, which is desirable in many cases.

Table 1 Memory Footprints and Runtimes for Selectivity
Estimation and Spatial Filtering at Multiple Grid Levels
Grid
Level k

Grid Size # of Estimated
Pairs (N)

Ts
(ms)

Tf
(ms)

13 8192*8192 78,328,554 496 1090
12 4096*4096 40,414,590 146 432
11 2048*2048 43,121,125 62 332
10 1024*1024 86,103,593 39 525

For comparison purposes, we also list the spatial filtering
runtimes (Tf) among the two datasets (without using the
selectivity estimation module) in the last column of Table 1. We
can see that Ts is significantly lower than Tf at all grid levels,
especially for grids with lower sizes, e.g., 1024*1024 when
k=10. The observation that Ts grows superlinearly with grid
level can be explained by the fact that Ts is a combination of the
cost that is linear with Np (U1/U2) and the cost that is linear
with Ng (Wk) but quadratic with grid resolution (2k), based on
the cost model presented in Section 4. In contrast, although the
details were skipped in Section 3, Tf is a combination of the cost
that is linear with U1/U2 and the cost that is linear with N.
Different from cumulative histograms that require using 2D
grids in selectivity estimation, vectors representing sparse 2D
grids are used in spatial filtering which is more efficient. As the
grid size gets higher, selectivity estimation becomes more costly
and the performance advantage of selectivity estimation over
complete spatial filtering decreases. It is possible that the ƩTsi

can be larger than Tfk. at a certain point. Selectivity estimation
overhead could become a significant portion of the end-to-end

spatial filtering runtime when the selectivity estimation module
is included. Since we increase grid level (k) gradually, we can
include the projected spatial filtering cost into the stop criteria in
Step 5 of algorithm selectivity_estimation in Fig. 3 in addition to
memory budget. Given that using high grid resolution will
increase selectivity estimation times superlinearly and may not
always be able to improve memory consumption for spatial
filtering, we recommend stop increasing k as soon as ƩTsi
reaches a time budget limit (e.g., 100-500 ms).
By observing that N1 and N2 histograms (grids) that are used to
compute Sk are only related to their respective MBB sets and do
not depend on each other, a viable solution to improve
selectivity performance is to use prebuilt N1 and N2 grids to
compute N3 and sk. As such, algorithm selectivity_estimation
needs only to compute N3 on-the-fly (Step 3) before reducing
N3 to calculate sk (Step 4). These two steps are extremely fast on
GPUs as they are embarrassingly parallelizable and can make
full use of GPU hardware resources. Our experiments have
shown that the runtimes vary from about 3 ms for the
1024*1024 grid size (k=10) to about 10 ms for the 8192*8192
grid size (k=13) which is fast enough for most spatial datasets.
However, as the prebuilt N1 and N3 grids need to be streamed
from hard drives to CPU memories and then to GPU memories,
I/O overheads can be significant. For an 8192*8192 integer grid,
the storage requirement is about 256 megabytes which may
require 3-5 seconds to read from disks to CPU memory and 50-
200 ms to transfer from CPU memory to GPU memory. Note
these I/O overheads do not exist when N1 and N2 are computed
on-the-fly on GPUs. Fortunately, as many real world spatial
datasets are highly clustered, N1 and N2 grids are likely to be
sparse and many data compression techniques can be applied to
reduce storage overheads and data transfer times. Furthermore,
as approximate sk values are sufficient for finding the optimal
grid level (k) in most cases, lossy compression techniques such
as wavelet based ones, are acceptable. In addition, as CPU
memory capacity limit can reach hundreds of gigabytes on
commodity workstations in an economically sound way, these
grids can be pre-loaded to CPU memory to avoid excessive disk
I/O latency. While it is beyond the scope of this study to
evaluate these data compression and buffer management
techniques, we will explore this direction in our future work.

5. CONCLUSION AND FUTURE WORK
In this study, we have provided a parallel selectivity estimation
technique to reduce memory footprint in spatial join processing
on GPUs where memory capacity is typically a limiting factor in
processing large-scale data. Experiments on joining the two
MBB sets with nearly a million MBBs each have shown that our
technique is able to reduce memory footprint by 38.4% in about
750 milliseconds when histograms are computed on-demand at
multiple scales. When histograms are materialized, it only takes
a few tens of milliseconds to search the best grid level for spatial
join across multiple grid levels. The design is both simple and
portable by utilizing well researched parallel primitives. GPU
implementation is efficient and the proposed technique is
effective in query optimization on large-scale spatial joins.

For future work, first, we would like to identify the performance
bottleneck in the parallel primitives based implementation, re-
implement the relevant parallel primitives and fine tune
parameters to improve the overall performance. Second, we plan
to systematically investigate whether to include larger grid sizes

(e.g., 4096*4096 and up) in our selectivity estimation algorithm
as they both provide memory footprint reduction potentials and
incur high computing and memory overheads. Finally, we plan
to compare our technique with alternative ones, e.g., using
pinned CPU memory, in reducing GPU memory constraints in
processing large-scale data.

6. REFERENCES
[1] http://en.wikipedia.org/wiki/Smartphone.
[2] Mishra, P, and Margaret, E. H (1992). Join processing in relational

databases. ACM Computing Surveys. 24(1) 63-113.
[3] Jacox, E. H. and Samet, H. (2007). Spatial join techniques. ACM

Transaction on Database System 32(1).
[4] Zhang, J., You, S. and Gruenwald, L (2012). High-performance

online spatial and temporal aggregations on multi-core CPUs and
many-core GPUs. Proceedings of ACM DOLAP workshop.

[5] Zhang, J., You, S. and Gruenwald, L (2012). U2STRA: High-
Performance Data Management of Ubiquitous Urban Sensing
Trajectories on GPGPUs. Proceedings of ACM City Data
Management Workshop (CDMW).

[6] Zhang, J. and You, S. (2012). Speeding up Large-Scale Point-in-
Polygon Test Based Spatial Join on GPUs. Proceedings of ACM
BigSpatial Workshop.

[7] Samet, H. (2005). Foundations of Multidimensional and Metric
Data Structures Morgan Kaufmann.

[8] Jin, J., An, N. and Sivasubramaniam, A (2000). Analyzing range
queries on spatial data. Proceedings of IEEE ICDE.

[9] Hensley, J., Scheuermann, T., et al (2005). Fast Summed-Area
Table Generation and its Applications. Computer Graphics Forum
24(3) 547-555.

[10] http://www.opengeospatial.org/standards/sfs
[11] Zhang, S., Han, J., Liu, Z., Wang, K. and Xu, Z. (2009). SJMR:

Parallelizing spatial join with MapReduce on clusters. Proceedings
of IEEE International Conference on Cluster Computing.

[12] Aji, A., Wang, F. and Saltz, J.H (2012). Towards building a high
performance spatial query system for large scale medical imaging
data. Proceedings of ACM-GIS. 309-318

[13] Luo, L., Wong, M. D. F., et al. (2011). Parallel implementation of
R-trees on the GPU. Proceedings of Asia and South Pacific Design
Automation Conference (ASP-DAC).

[14] Yang, K., He, B., Fang, R., Lu, M., Govindaraju, N., Luo, Q.,
Sander, P. and Shi, J. (2007). In-memory grid files on graphics
processors. Proceedings of ACM DaMoN Workshop.

[15] Beier, F., Kilias, T., and Sattler, K-U (2012). GiST scan
acceleration using coprocessors. Proceedings of DaMoN.

[16] Pirk, H., Manegold, S. and Kersten, M. (2011). Accelerating
Foreign-Key Joins using Asymmetric Memory Channels.
Proceedings of ADMS.

[17] Kaldewey, T., Lohman, G., Mueller, R. and Volk, P. (2012). GPU
join processing revisited. Proceedings of ACM DaMoN
Workshop.

[18] McCool, M., Reinders, J. and Reinders, J. (2012). Structured
Parallel Programming: Patterns for Efficient Computation, Morgan
Kaufmann.

[19] Zhang, J. and You, S. (2012). CudaGIS: Report on the Design and
Realization of a Massive Data Parallel GIS on GPUs. Proceedings
of ACM IWGS Workshop.

[20] Kirk, D. B. and Hwu, W.-M. W. (2012) Programming Massively
Parallel Processors: A Hands-on Approach (2nd ed.), Morgan
Kaufmann.

[21] Wu, H., Diamos, G. F., et al (2012).Optimizing Data Warehousing
Applications for GPUs Using Kernel Fusion/Fission. Proceedings
of IPDPS Workshops, 2433-2442

[22] http://www.moderngpu.com/
[23] http://www.nyc.gov/html/dcp/html/bytes/applbyte.shtml

Appendix 1: A parallel Spatial join framework on GPUs
Spatial data is rich in data types and different spatial data types
may allow different spatial operations, for example, distance
calculation between points and polylines and point-in-polygon
tests among points and polygons. We refer to the OGC SFS [10]
for more details on spatial data modeling. While most of the
existing spatial databases adopt Object-Relational data models
for spatial data to extend relational databases functionality to
spatial data, extensive dynamic memory allocations to construct
spatial objects in memory is not cache friendly and can
significantly degrade the performance. To boost the performance
of the in-memory data structures for complex and read-only

spatial data, we have designed an array-based physical data
layout scheme [19]. For complex spatial objects such as
polylines and polygons, in addition to their vertex arrays,
auxiliary index arrays are also created. Point/vertex arrays and
index arrays can be efficiently streamed among disks, CPU
memories and GPU memories. While we are still actively
experimenting the performance of R-Tree and Quadtree based
spatial indexing and query processing techniques [19], in this
study, we assume spatial index structures are available for
neither datasets involved in a spatial join and we thus resort to a
simple grid file based approach for spatial filtering (middle of
Fig. A1).

Fig. A1 A Framework of Parallel Spatial Join Processing on GPU

Proposed Selectivity Estimation Technique

Selectivity Estimation at
multiple grid resolutions
and choose the best grid
resolution

Group points into
quadrants and derive
MBBs of polylines
and polygons

Filtering phase (global paring)

1 1 1 2 2 2 2 2 1

2 3 … … 3 5 2 … …

1 5 … 2 4 … 3

1 1 2 2 2 1

VQQ

VQC

VPP

VPC

Q1
P1

Q1
P1

Q2
P1

Q1
P2

Q2
P2

 2 1 2 2 ... 1

 2 3 3 5 … 2

VQQ

VQC

Lower bound binary search

Upper bound binary search

Q1

P1
Q2

P1

Q2

P2

Unique

Q1
P1

Q1
P1

Q1
P2

Q2
P1

Q2
P2

Q1

P2

Sort

Q2

5

3

2

Q1 P1

P2

D

Sort
1

2

3
4

D

d1

d2

d3
d4

P2P-T-PiP P2P-D-KNN
P2N-D-NN T2T-D-NN

Thread assignment

Looping

Refinement phase (local evaluation) – each (P,Q) pair is assigned to a GPU computing block

While points can be easily grouped into grid cells by chaining
sorting and reduction (using grid cell identifiers as keys), MBBs
of polylines and polygons may intersect with multiple grid cells.
After both geometric objects are aligned with one or more grid
cells, generating (P, Q) pairs can be transformed into a binary
search problem. For each grid cell in the VPC vector, which
stores the one-to-many mappings between the MBB of a
geometric object in T1 to the grid cells that the MBB intersects,
we search the cell in the VQC vector, which stores the one-to-
many mappings between the MBB of a geometric object in T2 to
the grid cells that the MBB intersects (as illustrated in the center
of Fig. A1). The matched objects in T1 and T2 will be paired for
subsequent refinement. Clearly, for MBB pairs that cover
multiple grid cells, the (P, Q) pairs will be duplicated and need
to be removed to avoid redundant spatial refinements.

During the refinement phase, (P, Q) pairs will be
assigned to computing blocks as shown at the bottom part of
Fig. A1. As there will be multiple points/vertexes in both P and
Q (here we treat grouped points as a point collection object), we
assign one set of points/vertexes to threads in the computing
block while looping through all the other sets of points/vertexes
to derive results that will be associated with either
points/vertexes or the pairs of MBBs assigned to the computing
block. This nested-loop style design is very efficient on GPUs as
neighboring threads read neighing points/vertexes in one object
(assuming P) before a loop begins and write to neighboring
positions for outputting results after the loop finishes while they
access the same point/vertex in another object (assuming Q)
throughout the looping process. The memory access pattern is
perfectly coalesced which is critical in GPU computing.

As an example, assuming P contains M points in a
grid cell and Q contains the N vertices of a polygon, we can
assign M points to threads while looping through the N vertices.
Depending on the sizes of points/vertexes in P and Q and the
configurations of GPU computing blocks, we may need to
reshape the O(M*N) computation to maximize the utilization of
GPU hardware. For example, when M is less than the warp size
(currently 32 on CUDA enabled GPUs [20]), we can loop
through K (>=2) points in the Q polygon simultaneously and
reduce the number of the looping steps to ceiling(N/K).
Similarly, when M is larger than the number threads in the
computing block (assuming T), we may need to loop over the M
points in ceiling(M/T) rounds. The parallel designs and
implementations of point grouping, MBB rasterization, spatial
filtering and several spatial filtering are documented in our
previous work [4,5,6].

Appendix 2 A brief review on Multi-Dimensional Histograms
for Selectivity Estimation and Data Summation

Multi-dimensional histograms can be built through regular
gridding [24,31,32,36,38], non-regular gridding [33,37,39,41],
clustering [25,40,43,46], quad-tree [44], R-Tree [40,45] and
ECDF-tree [35] constructions. They can be used to estimate
selectivity to facilitate overview style browsing (1,8,15), range
queries [25,26,28,31,32,35,36,40] and spatial joins
[27,28,33,39]. In addition to regular simple statistics, advanced
statistics such as topology [32], sketches [34], density [35,37]
and wavelet [39,42] may also be used.

[24] Beigel,R. and Tanin, E. (1998). The Geometry of Browsing.
Proceedings of LATIN'98: Theoretical Informatics, 331-340.

[25] Acharya,S., Poosala,V. and Ramaswamy,S. (1999). Selectivity
estimation in spatial databases. Proceedings of SIGMOD, 13–
24.

[26] Aboulnaga, A. and Naughton, J. F. (2000). Accurate
estimation of the cost of spatial selections. Proceedings IEEE
ICDE, 123-134.

[27] An, N., Yang, Z.-Y., and Sivasubramaniam, A. (2001).
Selectivity estimation for spatial joins. Proceedings of IEEE
ICDE, 368-375.

[28] Mamoulis, N. and Papadias, D. (2001). Selectivity Estimation
of Complex Spatial Queries. Proceedings of SSTD, 155-174.

[29] Wang, M., Vitter, J., et al (2001). Wavelet-Based Cost
Estimation for Spatial Queries. Proceedings of SSTD, 175-
196.

[30] Choi, Y-J. and Chung, C-W. (2002). Selectivity estimation for
spatio-temporal queries to moving objects. Proceedings of
ACM SIGMOD, 440-451.

[31] Sun, C., Agrawal, D. and El Abbadi, A. (2002). Exploring
spatial datasets with histograms. Proceedings of IEEE ICDE,
93-102

[32] Lin, X, . Liu, Q., et al. (2003). Multiscale histograms:
summarizing topological relations in large spatial datasets.
Proceedings of VLDB, 814-825.

[33] Belussi,A., Bertino, E. and Nucita A. (2004). Grid based
methods for estimating spatial join selectivity. Proceedings of
ACM-GIS, 92-100.

[34] Das, A., Gehrke, J., and Riedewald, M. (2004). Approximation
techniques for spatial data. Proceedings of SIGMOD, 695-706.

[35] Zhang, D., and Tsotras, V. J. and Gunopulos, D (2004).
Efficient aggregation over objects with extent. Proceedings of
PODS, 121-132.

[36] Elmongui, H., Mokbel, M. et al. (2005). Spatio-temporal
Histograms. Proceedings of SSTD, 19-36.

[37] Gunopulos, D., Kollios, G., et al (2005). Selectivity estimators
for multidimensional range queries over real attributes. The
VLDB Journal , 137-154.

[38] Sun, C., Bandi, N. et al (2006). Exploring spatial datasets with
histograms. Distributed and Parallel Databases 20(1) 57-88.

[39] Sun, J., Tao, Y. et al (2006). Spatio-temporal join selectivity.
Information Systems 31(8):793-813.

[40] Eavis,T. and Lopez,A. (2007). rK-Hhist: an R-tree based
histogram for multi-dimensional selectivity estimation.
Proceedings of CIKM, 475–484.

[41] Luo, J., Zhou, X, et al (2007). Selectivity estimation by batch-
query based histogram and parametric method. Proceedings of
ADC. 93-102.

[42] Huang, D-S., Heutte, L.and Loog, M (2007). Spatial
Selectivity Estimation Using Cumulative Density Wavelet
Histogram. Proceedings ICIC (LNAI 4682), 493-504.

[43] Roh, Y. J., Kim, J. H. et al. (2010). Hierarchically organized
skew-tolerant histograms for geographic data objects.
Proceedings of SIGMOD, 627-638.

[44] Roh, Y-J., Kim, J-H, et al (2011). Efficient construction of
histograms for multidimensional data using quad-trees.
Decision Support Systems 52(1), 82 -94.

[45] Achakeev, D. and Seeger, B. (2012) A class of R-tree
histograms for spatial databases. Proceedings of ACM-GIS.
450-453.

[46] Mai, H., Kim, J. et al (2013). STHist-C: a highly accurate
cluster-based histogram for two and three dimensional
geographic data points. GeoInformatica 17(2) 325-352.

