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Abstract

DynamicSpectrumAccess (DSA) approaches, which propose to opportunistically use underutilized portions of
licensed wireless spectrum such as cellular bands, are increasingly being seen as a way to alleviate spectrum scarcity.
However, before DSA approaches can be enabled, it is important that we understand the dynamics of spectrum usage
in licensed bands. Our focus in this paper is the cellular band. Using a unique dataset collectedinside a cellular
network operator, we analyze the usage in cellular bands anddiscuss the implications of our results on enabling
DSA in these bands. One of the key aspects of our dataset is itsscale – it consists of data collected over three weeks
at hundreds of base stations. We dissect this data along different dimensions to characterize if and when spectrum
is available, develop models of primary usage and understand the implications of these results on DSA techniques
such as sensing.

I. I NTRODUCTION

The prevailing approach to wireless spectrum allocation is based on statically allocating long-term licenses on
portions of the spectrum to providers and their users. It is,however, well known that any static allocation leads
unavoidably to underutilization – at least from time to time. Therefore, the option of reusing assigned spectrum
when it is temporarily (and locally) available – frequentlyreferred to as Dynamic Spectrum Access (DSA) –
promises to increase the efficiency of spectrum usage. A multitude of DSA-based approaches have been proposed
for secondary spectrum usage in whichSecondaryUsers (SUs) use parts of the spectrum that are not being used
by the licensedPrimary Users (PUs). PUs can enable such secondary usage, for instance,by using short-term
auctions of underutilized spectrum [1]. Alternatively, SUscan sense and autonomously use parts of the spectrum
that are currently not being used by (licensed) PUs. A key technical component of such approaches areCognitive
Radios (CRs), which enable spectrum sensing. Apart from detecting idle spectrum, the sensing done by CRs is also
needed by SUs to vacate the spectrum again when PUs resume theirusage. Hence, understanding the way PUs use
spectrum is very important to implementing DSA.

We present the results of a large-scale measurement-drivenstudy of PUs (also, see [2]) in cellular bands and
the implications of these results on enabling DSA in these bands. Our focus on cellular spectrum is important for
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several reasons. Apart from TV bands, cellular bands are viable band to implement DSA – both because they are
widely used throughout the world and also because engineering devices and data applications for these bands are
well understood. In fact, cellular femtocells, which have recently become popular, can be viewed as implementing
a type of secondary usage that uses a naive mechanism, namely, reduced power, to avoid interference. We believe
that future femtocells will likely incorporate more sophisticated mechanisms based on sensing that minimize such
interference.

Our study is based on the analysis of a unique dataset consisting of call records collectedinside a cellular
network. Thus, we are able to provide insights on a call level that prior sensing-based studies [3], [4], [5] were
unable to. Another advantage of our study is its scale – we areable to study usage at hundreds of base stations
simultaneously. In contrast, sensing-based studies are usually based on only a few spectrum analyzers and, typically,
have limited spatial resolution. Moreover, we are able to study the entire spectrum band used by a cellular operator.
Sensing-based studies take time to “sweep” such a band and, hence, have to tradeoff the sampling frequency with
the width of a band. The temporal diversity of our data is also large - we use measurements of tens of millions of
calls over a period of three weeks. Finally, by looking at callrecords, we measure the “ground truth” as seen by
the network, and, hence, are able to model call arrival processes as well as system capacity.

We provide insights into three different aspects relevant for enabling cellular DSA. First, we show that cellular
DSA is viable and attractive, especially during nights and weekends. Hence, we recommend an emphasis on
developing scenarios for secondary usage that operate during such non-peak hours. Second, we describe two models
of primary usage. The first models the call arrival process but needs to account for the skewed distribution of call
durations. The second model tracks the total number of calls and does not require any knowledge of call durations.
However, it is less successful than the call-based model andis more applicable during peak hours when the number
of calls is high. We also find that rare but significant spikes in usage exist and must be guarded against. Third,
since the success of cognitive radios depends crucially on how readily spectrum bands can be sensed, we provide
guidelines for sensing in cellular bands. This is much more challenging compared to sensing in TV bands, for
example, because cellular voice usage exhibits frequent variations in time and space. Hence, SUs of cellular voice
bands likely need to employ more agile DSA techniques than SUs of TV bands.

II. M ETHODOLOGY

The dataset we use in this paper was collected from hundreds ofcell sectors1 of a US CDMA-based cellular
operator. The data captured voice call information at those sectors, which were all located in densely-populated
urban areas of Northern California, over a period of three weeks. In particular, our dataset captured the start time,
the duration, the initial and final sector of each call. Note that the call duration reflects the RF emission time of the
data transmission for the call, i.e., the duration of time for which a data channel was assigned. This is precisely what
is relevant for DSA questions. The start time of the call was measured with a resolution of several milliseconds.
The duration was measured with a resolution of1 millisecond. Overall, our data consists of tens of millionsof
calls and billions of minutes of talk time. To our knowledge,such a large-scalenetwork viewpoint of spectrum
usage has not been analyzed in prior work.

As with any measurement-based study, our dataset has certain limitations. We state these up-front since it is
important to understand what our results capture and what they do not.

The first limitation of our dataset is its lack of full information on mobility. We were able to record only the
initial and final sector of each call. Thus, we are unable to account for spectrum usage in the other sectors that
users may have visited during calls. To address the resulting incompleteness of information, we use two types of
approximations. In the first approximation, we assign the entire call as having taken place in the initial sector. We
use this approximation by default. In the second approximation, we assign the first (last) half of the call to the
initial (final) sector. We refer to this as themobileapproximation. Throughout the paper, we provide results using
both approximations and find that our conclusions do not change. These results indicate that the results are not
sensitive to our approximations and would likely not changewith full mobility information.

The second limitation relates to the cellular system from which we collected our dataset – a CDMA-based
network. Without additional knowledge from the base stations, the precise CDMA system capacity cannot be
easily calculated. Hence, we implicitly assume that each voice call uses the same portion of a cell capacity. This

1We do not give the specific number for proprietary reasons.
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assumption, which is correct for TDMA-based systems like GSM,is obviously not precise for CDMA. Due to the
critically important power control loop, individual CDMA calls may require different portions of the cell capacity,
which cannot be easily expressed only in the number of calls.Nevertheless, since user calling behavior is unlikely
to depend on the underlying technology, except under rare overload conditions, many aspects of our analysis are
likely to apply to other cellular voice networks.

Using either of the aforementioned approximations, we compute the total number of ongoing calls in each cell
sector during the entire time period of our study. To do so, wesplit the call records based on the sector. We create
two records for each call – corresponding to the beginning and end of each call. Then, we sort these records in
order of their time. We maintain a running count that is increased by+1 when a call begins and decreased by−1
when a call terminates.

III. D YNAMICS OF SPECTRUMAVAILABILITY

We plot the obtained “load” of three representative cells inFigure 1. For proprietary reasons, we normalize the
values of load by a constant value such that only the relativechange is seen. The top cell has low load only at night
whereas the middle cell has low load during the weekends too (note that the second Monday in the observation
period was a public holiday). The bottom cell always has low load, i.e., during both day and night. Our plots in
Figure 1 show that spectrum usage varies widely over timeand space – an illustration of the challenges that are
likely to be faced with cellular DSA.

The day/night dependence is exhibited system-wide as seen inFigure 2. Here, we ignore information about
the individual cells to which calls are assigned and consider all calls as arriving to a single entity. For such a
hypothetical system, we plot the normalized average call arrival rates during four different days. Figure 2 illustrates
three key effects regarding the dynamics observed in the system. First, there are two distinct periods, which roughly
correspond to day and night and have high and low arrival rates respectively. Moreover, the steepest change in
arrival rates occurs in the morning and late in the evening, which correspond to the transition between the day and
night periods. Second, the system characteristics are unlikely to remain stationary at timescales beyond an hour.
Except for the transition hours, the mean arrival rates do notvary significantly during an hour. Third, weekdays
and weekends appear to show distinct trends. This is not wholly unexpected since many cellphone pricing plans
provide unlimited calling in the weekend.

Figure 3, which plots average call durations as a function of time, illustrates similar trends as Figure 2. However,
we find that the range of variability in mean call duration is much smaller than that of arrival rates. Note that there
are a few large spikes in Figure 3. These are caused by a brief interruption in the data collection, which caused
some short calls to not be recorded, thereby artificially inflating the mean duration of calls.

Secondary usage requires the availability of free spectrum.Assuming secondary users are immobile, the best
scenario is one in which free spectrum is available for as long as possible in any given cell. In other words,
variability in per-cell spectrum availability is not desirable. We quantify this variability by computing the variation
in load of each cell during each hour. We calculate the “average-case” variation using the standard deviation and the
“worst-case” variation as the difference between maximum and minimum 1-minute load in a cell during each hour.
We average these over all cells and plot them on an hour-of-day basis in Figure 4. As before, we normalize the
metrics by a constant factor for proprietary reasons. Notice that both metrics show the same trends. Not surprisingly,
the variation is larger during the day, when the load is higher.

A. Implications

Knowing the spectrum occupancy of a PU, more precisely the dynamic change of the occupancy over time, is
crucial to determining the degree to which secondary usage can be allowed, for example, as discussed in [6], [7].
First of all, the instantaneous occupancy sets an upper limiton the resources available for SUs. Thus, our results
in Figure 2 indicate that significant secondary usage is possible during the night until almost 7AM, regardless of
the location. Additionally, in some locations, spectrum can become available during the weekends and weekdays.
Knowing the future trends of occupancy further helps spectrum owners optimize their auction process without
impairing PUs. For instance, if the primary spectrum occupancy tends to vary significantly (as can be observed
in Figure 4 for the afternoon hours), secondary usage has to beallowed more conservatively, such that enough
resources are available for new PUs. On the other hand, if the PUoccupancy tends to decrease, spectrum can be
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rented more aggressively. Figure 4 highlights a significant challenge for cellular DSA - when there is less spectrum
available, the availability is more variable, too. Hence, more spectrum should be left unused when more spectrum
is being used.

IV. M ODELING PRIMARY USAGE

Since secondary users opportunistically use spectrum not utilized by primary users, models of primary usage in
individual cells play an important role in designing and deploying cellular DSA approaches. There are two simple
models that fit the behavior of primary users well (see [2] for details). One such model is thecall-based model. This
model uses two random variables,T andD to describe the inter-arrival time between two calls and theduration of
calls. An obvious and popular choice is to model call arrivals as a Poisson call process (independent and identically
distributed exponential inter-arrival times) and call durations as being exponentially distributed.

It turns out that the distribution of call inter-arrival times is well described by an exponential distribution in more
than90% of the hours for most cells. We use theAnderson-Darlingtest with95% confidence level as a goodness-
of-fit test for exponential distribution. Note that, since weuse a95% confidence level for the Anderson-Darling
test, we expect only95% of our tests to succeed. The technical details of these tests can be found in [2].

We also calculate the auto-correlation coefficient for each per-cell per-hour sequence of call inter-arrival times.
We find that only20% of these sequences have auto-correlation coefficients (at non-zero lags) higher than0.16.
Though not conclusive, such low auto-correlation is consistent with independence. Hence, we believe that call
inter-arrivals are well-modeled as an exponentially distributed i.i.d. sequence. In other words, call arrivals can be
viewed as Poisson processes. Though Poisson processes have been used to model fixed telephone calls for a long
time, our study is one of the first to show that this is largely true for individual cells in mobile systems.

A. Call Durations

Though the inter-arrival times of calls are well modeled as a Poisson process, the call-based model has a significant
disadvantage, namely, the distribution of call durations.In Figure 5, we plot the empirically-observed histogram
of call durations. The histogram is quite unlike that of an exponential distribution. In fact, the histogram is not
even monotonic. We see about10% of calls having a duration of about27 seconds. These correspond to calls
during which the called mobile users did not answer and the calls were redirected to voice-mail. However, RF
voice channels were allocated during these calls. This illustrates that call durations can be significantly skewed
towards smaller durations due to non-technical failures, e.g., failure to answer. Also, note that the variance of the
call durations is more than three times the mean, which is significantly higher than that of exponential distributions.

Further analysis shows that there are likely two different distributions of call durations – one during the day
and the other during the night (11PM-5AM). Furthermore, the transition hours between day and night likely see
a mixture of both these distributions. In Figure 6(Left), we compare the overall and nighttime distributions of
call durations. Note that we use the log-log scale. We find thatthe nighttime distribution has more short calls as
well as a heavier tail compared to the overall distribution.Both distributions have a “semi-heavy” tail and are not
well-modeled by classic short-tailed distributions such as Erlang (results not shown). However, the shape of the
above distributions is reminiscent of the lognormal distribution, which is parabolic in log-log scale. Recall thatD

is lognormally distributed with parametersµ andσ2 if log(D) is normally distributed with the same parameters. In
Figure 6(Left), we also plot the best lognormal fits for the distributions of call durations. The head of the empirical
distribution shows significant deviation from the best lognormal fit. Although the tails of the empirical and best fit
agree better, they too diverge at large values.

Not only is the distribution of call durations hard to model,there can also be significant deviations during certain
hours. We plot two such “outlier hours” in Figure 6(Right). The two outlier plots correspond to the weekday hours
plotted in Figure 2 – the spikes in the arrival rate correspondto the spikes of Figure 6(Right). Both hours see a
sudden spurt in short calls. We verified that at least one of these is caused by a large number of calls to a popular
television show, whose telephone lines are often busy. Figure 6 (Right) thus demonstrates that social behavior and
external events, which may not be easily predicted, can and do have significant short-term impact on spectrum
usage.
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B. Event-based Model

The skewed distribution of call durations is the primary disadvantage of the call-based model and can be eliminated
by using an alternativeevent-basedmodel. This model ignores details about individual calls andinstead models
only the loadX(·), i.e., the total number of ongoing calls. Under this model, the load is considered to be a one-
dimensional, continuous-time random walk where steps are either +1 or −1, corresponding to the initiation and
termination events of a call:

X(t + E) = X(t) + (−1)Φ. (1)

HereE is a random variable representing the time between consecutive steps/events andΦ is a Bernoulli random
variable, which takes the value+1 with probability p and0 otherwise. Since there is a+1 for every−1, p should
be 1

2
. A Poisson process is the obvious choice to model the inter-event times.

It turns out that inter-event times are well-modeled as exponential distributions for only about50% of the hours
in most cells. As shown in Figure 7(Left), exponential modeling fails almost twice as often during the night (when
the load is low) than during the day.

The skewed distribution of call durations is also responsible for the failures of the event-based model. This is
because the+1 and −1 events correspond to the initiation and termination of a call and are separated by the
duration of that call, which is not exponentially distributed. If there are no additional events during the duration
of that call, the duration itself will be an inter-event time. In general, call durations or portions thereof will be
part of the inter-event times. Thus, during the hours of the night when the system load is low, the non-exponential
distribution of call durations has a significant impact on thedistribution of inter-event times. During the day, this
impact is reduced.

A second component of the event-based model is that the±1 events form a Bernoulli process. A necessary (but
not sufficient) condition for this to be true is that the sequence of ±1s should have close to zero auto-correlation
at non-zero lags. To understand if this is true, we plot the mean autocorrelation at non-zero lag values on an
hour-of-day basis in Figure 7(Right). We see a similar effect as above. During the nighttime, whenthe load is
lower, the+1 of a call is more likely to be followed by the−1 of that call. This causes negative correlation at odd
lags. Accordingly, we can also see the positive correlationat even lags. During the day this effect is reduced.

The above discussion shows that the event-based model is moreapplicable when the load is high, though the
Bernoulli assumption is not strictly valid. However, when the load is low, the call-based model with a skewed
distribution of call durations is the superior model.

C. Implications

Characterization and modeling of PU spectrum usage providesseveral insights that are crucial to enable secondary
usage of spectrum. For example, the owners of spectrum need models of their PUs to determine how much secondary
usage is feasible and how it can be priced. Models for call arrival and call duration are essential for optimal pricing
strategies of auctioned spectrum. In [1], [8] the authors develop optimal pricing strategies for secondary usage
of cellular CDMA networks. The strategies only depend on the call arrival and call duration distributions, which
are both assumed to be exponential. Our results show significant deviations of call durations from exponential
distributions. Hence, these strategies may have to be revised. The precise implications are subject to further studies.

V. SHORT-TERM VARIABILITY

One of the primary requirements of DSA-based approaches is that SUs should not affect PUs. Hence, it is critical
that SUs in cellular networks frequently sense the spectrum and vacate it if new PUs are detected. Also, since the
available spectrum could change between two consecutive sensing periods, SUs must be aware of the extent of
such short-term variations, and choose the timeTs between consecutive sensing periods accordingly. Figure 8(Left)
provides insights into this by plotting the maximum increase in load averaged over all cells and plotted for different
values ofTs. We plot the variation during a representative day of our dataset. The low variations at night are seen
again. We see the peak variations late afternoon and a steep reduction thereafter. Notice also that the variation at
Ts = 30 is often close to the variation forTs = 5 and never more than twice. This indicates that20 − 30 seconds
may provide a better tradeoff between sensing overhead and the spectrum that SUs need to leave unoccupied for
a sudden arrival of PUs.
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We take a detailed look at the variation withTs for four representative hours in Figure 8(Right). We see less
variation during the weekend, possibly due to the reduced average load. We also see that during the AM hours, a
small Ts (1 − 2 seconds) does not pay off, since the maximum change in load only increases slightly. We found
this to be true for all morning hours (before 10 AM). In the afternoon hours, however, there might be benefits to
using a smallTs.

A. Implications on Spectrum Sensing

From a CR perspective, there are two fundamental questions tobe answered for the development of sensing
techniques for SUs: (1) How often must sensing be performed? (2) What is the required observation time of a
single channel to reliably detect potential PUs? Answers to these questions determine how much time and resources
are needed for detecting PUs.

The first question is usually answered by the PU, which specifies the so-calledmaximum interference time, i.e.,
the maximum time a SU is allowed to interfere with a PU communication. Clearly, the maximum interference time
sets an upper limit on the periodic time interval after whicha channel used by a SU network has to be sensed (Ts).
Knowing the probability distribution of the arrival process of the primary communication (in our study the call
arrivals), and given a target probabilitypi that the SU interferes with the PU,Ts can be simply calculated using the
CumulativeDistribution Function (CDF) (pi = P (X ≤ Ts)). Equation (2) shows the calculation ofTs assuming an
exponential call arrival process.

pi = 1 − e−λTs ⇔ Ts = −
ln(1 − pi)

λ
(2)

The knowledge of the arrival process, thus, enables us to adjust the time (Ts) after which a channel needs to be
sensed. For our investigation, the mean call inter-arrivaltime (over one hour) per cell varies from the sub-second
range to tens of minutes. Assuming a maximum of30 calls per cell and a probability of interference ofpi = 0.001
this would result in a required inter-sensing time betweenTs = 0.03 s andTs = 18 s. This huge gap clearly indicates
the gains achievable by choosingTs based on the call inter-arrival time, which can itself be gleaned by sensing.
Results such as those in Figure 8 also provide insights into good tradeoffs for sensing strategies.

An answer to the second question, i.e., determining the timeneeded for sensing asingle channel, is much
more complex and depends on various factors such as the sensitivity requirements of the PU, the specific sensing
technique used, distributed/cooperative sensing aspects, etc. However, regardless of the time the sensing process
takes for a specific system, it is desirable not to waste this time for sensing an occupied channel. Here, a model of
the duration of a PU communication can help to determine the time after which a channel sensed to be occupied by
a PU should be sensed again. In particular, our analysis of thecall durations shows that there are many short calls
and the remaining are spread over a “semi-heavy” tail. Hence, a conditional sensing process is well-motivated: the
SU initially uses a rapid sensing frequency for the case that anew call is short. After a few tens of seconds, rapid
sensing is likely to yield little benefit. Hence, slower sensing is justified.

VI. RELATED WORK

In recent years, many measurement studies have been carriedout to show the underutilization of licensed
spectrum. Some examples of wide-band measurement campaignsinclude the Chicago spectrum measurements [9],
covering the spectrum range from30 MHz to 3 GHz and960 MHz to 2500 MHz, respectively, and the New Zealand
measurements [10] in the spectrum range from806 MHz to 2750 MHz. Though these studies show the abundance
of temporally unused spectrum, they give little insight into the dynamic behavior of the licensed users legally
operating in those bands. A measurement campaign focusing on the cellular voice bands was carried out during the
soccer world-cup 2006 in Germany [3], [4]. The authors show the differences in spectrum occupancy in the GSM
and UMTS bands before, during, and after a match. However, similar to the wide-band measurements mentioned
above, little insight into call dynamics such as call arrivals or call durations is gained. The authors of [5] analyze the
spectrum utilization in the New York cellular bands (CDMA aswell as GSM). The CDMA signals are demodulated
to determine the number of active Walsh codes (i.e., the number of ongoing calls). To determine the number of
calls in the GSM bands, image processing of the spectrogram snapshots is used. Although this analysis provides
more detailed results for the utilization of the cellular bands, call arrivals and durations are also not examined.
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VII. C ONCLUSIONS ANDFUTURE WORK

We presented a large scale characterization of primary users in the cellular spectrum and discussed the implications
on enabling cellular DSA. We used a dataset that allowed us to compute the load of hundreds of base stations over
three weeks. We derived several results, some of which are summarized below:

• Often, the duration of wireless calls (and the time for whichvoice channels are allocated) are assumed to
be exponentially distributed. We find that the durations are not exponential in nature and possess significant
deviations that make them hard to model.

• An exponential call arrival model (coupled with a non-exponential distribution of call durations) is often
adequate to model the primary usage process.

• A simpler random walk can be used to describe primary usage under high load conditions.
• Spectrum usage can exhibit significant variability. We found that the load of individual sectors varies signif-

icantly even within a few seconds in the worst case. We also findhigh variability even across sectors of the
same cell.

We believe that our work provides a first-step proof-point to guide both policy and technical developments related
to DSA. In this paper, we made no use of sensing data and relied wholly on network data. In future work, we
intend to perform simultaneous sensing and in-network datacollection. This would allow us to investigate how
accurate a sensing-based approach is and also validate the results in this paper.
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Fig. 1. Normalized load of three different cell sectors over3 weeks. We plot the moving average of each cell over one second. Thecells
show high load(Top), varying load(Middle), and low load(Bottom).
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Fig. 3. Distribution of average call duration over5-minute periods during four different days. The large spikes during the mornings are
due to small gaps in collection.
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Fig. 4. Average per-cell variation of load on an hour-of-day basis. We calculate the variation using the standard deviation and the difference
between maximum and minimum.
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Fig. 5. Histogram of call durations. We plot the histogram using differentbin sizes.
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Fig. 6. (Left): Duration distributions and lognormal fits.(Right): Illustration of anomalous distributions during 2 hours.
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Fig. 7. (Left): The percentage of successful fits (across all cells) averaged on aper-day basis.(Right): The per-hour auto-correlation of
the step sizes (Φ) in our event-based models averaged across all cells.



FIGURES 17

0 2 4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ax

im
um

 c
ha

ng
e 

in
 lo

ad

Hour of day

5 s
10 s
20 s
30 s

1 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1
M

ax
im

um
 c

ha
ng

e 
in

 lo
ad

Time [sec]

 

 

Weekday am
Weekday pm
Weekend am
Weekend pm

Fig. 8. (Left): Maximum change in load, averaged across all cell sectors, plotted on an hourly basis. We use different time windowsTs

over which the maximum change is calculated.(Right): Maximum change in load, averaged across all sectors, plotted as a function of Ts

for 4 different hours.


