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Abstract

Dynamic SpectrumAccess (DSA) approaches, which propose to opportunisticaé underutilized portions of
licensed wireless spectrum such as cellular bands, areasicigly being seen as a way to alleviate spectrum scarcity.
However, before DSA approaches can be enabled, it is imptdahat we understand the dynamics of spectrum usage
in licensed bands. Our focus in this paper is the celluladb&ising a unique dataset collectetside a cellular
network operator, we analyze the usage in cellular bandsd&uwiliss the implications of our results on enabling
DSA in these bands. One of the key aspects of our datasetseals — it consists of data collected over three weeks
at hundreds of base stations. We dissect this data alorgretiff dimensions to characterize if and when spectrum
is available, develop models of primary usage and undeatdtaa implications of these results on DSA techniques
such as sensing.

. INTRODUCTION

The prevailing approach to wireless spectrum allocationaised on statically allocating long-term licenses on
portions of the spectrum to providers and their users. Ih@asyever, well known that any static allocation leads
unavoidably to underutilization — at least from time to timiderefore, the option of reusing assigned spectrum
when it is temporarily (and locally) available — frequentigferred to as Dynamic Spectrum Access (DSA) —
promises to increase the efficiency of spectrum usage. A toddtiof DSA-based approaches have been proposed
for secondary spectrum usage in whisdcondaryUsers (SUs) use parts of the spectrum that are not being used
by the licensedPrimary Users (PUs). PUs can enable such secondary usage, for instancsjng short-term
auctions of underutilized spectrum [1]. Alternatively, Stin sense and autonomously use parts of the spectrum
that are currently not being used by (licensed) PUs. A keyrtieah component of such approaches @agnitive
Radios (CRs), which enable spectrum sensing. Apart fromctatgidle spectrum, the sensing done by CRs is also
needed by SUs to vacate the spectrum again when PUs resumaghgé. Hence, understanding the way PUs use
spectrum is very important to implementing DSA.

We present the results of a large-scale measurement-dstugly of PUs (also, see [2]) in cellular bands and
the implications of these results on enabling DSA in thesal®a@ur focus on cellular spectrum is important for



several reasons. Apart from TV bands, cellular bands ardeviadind to implement DSA — both because they are
widely used throughout the world and also because engigeeliévices and data applications for these bands are
well understood. In fact, cellular femtocells, which haeeently become popular, can be viewed as implementing
a type of secondary usage that uses a naive mechanism, naetklged power, to avoid interference. We believe
that future femtocells will likely incorporate more sopitated mechanisms based on sensing that minimize such
interference.

Our study is based on the analysis of a unique dataset dogsist call records collectednside a cellular
network. Thus, we are able to provide insights on a call lelat prior sensing-based studies [3], [4], [5] were
unable to. Another advantage of our study is its scale — weable to study usage at hundreds of base stations
simultaneously. In contrast, sensing-based studies adlydased on only a few spectrum analyzers and, typically,
have limited spatial resolution. Moreover, we are able tmgthe entire spectrum band used by a cellular operator.
Sensing-based studies take time to “sweep” such a band ance,heave to tradeoff the sampling frequency with
the width of a band. The temporal diversity of our data is atsgd - we use measurements of tens of millions of
calls over a period of three weeks. Finally, by looking at catiords, we measure the “ground truth” as seen by
the network, and, hence, are able to model call arrival psee as well as system capacity.

We provide insights into three different aspects relevantehabling cellular DSA. First, we show that cellular
DSA is viable and attractive, especially during nights ancekesds. Hence, we recommend an emphasis on
developing scenarios for secondary usage that operategdsuich non-peak hours. Second, we describe two models
of primary usage. The first models the call arrival process betla to account for the skewed distribution of call
durations. The second model tracks the total number of caflsdaes not require any knowledge of call durations.
However, it is less successful than the call-based modelsanbre applicable during peak hours when the number
of calls is high. We also find that rare but significant spikes $sage exist and must be guarded against. Third,
since the success of cognitive radios depends cruciallyown rieadily spectrum bands can be sensed, we provide
guidelines for sensing in cellular bands. This is much morallehging compared to sensing in TV bands, for
example, because cellular voice usage exhibits frequeidticas in time and space. Hence, SUs of cellular voice
bands likely need to employ more agile DSA techniques than $U3/dands.

II. METHODOLOGY

The dataset we use in this paper was collected from hundredslio§ector$ of a US CDMA-based cellular
operator. The data captured voice call information at thessoss, which were all located in densely-populated
urban areas of Northern California, over a period of threekseln particular, our dataset captured the start time,
the duration, the initial and final sector of each call. Not&t thhe call duration reflects the RF emission time of the
data transmission for the call, i.e., the duration of timevibich a data channel was assigned. This is precisely what
is relevant for DSA questions. The start time of the call wassue=d with a resolution of several milliseconds.
The duration was measured with a resolutionlomillisecond. Overall, our data consists of tens of millicofs
calls and billions of minutes of talk time. To our knowledgeich a large-scalaetwork viewpoint of spectrum
usage has not been analyzed in prior work.

As with any measurement-based study, our dataset hasrcéirtdiations. We state these up-front since it is
important to understand what our results capture and wlest dlo not.

The first limitation of our dataset is its lack of full informati on mobility. We were able to record only the
initial and final sector of each call. Thus, we are unable to actéor spectrum usage in the other sectors that
users may have visited during calls. To address the reguhicompleteness of information, we use two types of
approximations. In the first approximation, we assign thé@@miall as having taken place in the initial sector. We
use this approximation by default. In the second approxonatwe assign the first (last) half of the call to the
initial (final) sector. We refer to this as thmobile approximation. Throughout the paper, we provide resultsgusi
both approximations and find that our conclusions do not chambese results indicate that the results are not
sensitive to our approximations and would likely not chamgg full mobility information.

The second limitation relates to the cellular system fromciwhive collected our dataset — a CDMA-based
network. Without additional knowledge from the base stajothe precise CDMA system capacity cannot be
easily calculated. Hence, we implicitly assume that eadhevoall uses the same portion of a cell capacity. This
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assumption, which is correct for TDMA-based systems like G&Mbviously not precise for CDMA. Due to the
critically important power control loop, individual CDMAatls may require different portions of the cell capacity,
which cannot be easily expressed only in the number of dallsertheless, since user calling behavior is unlikely
to depend on the underlying technology, except under raeel@ad conditions, many aspects of our analysis are
likely to apply to other cellular voice networks.

Using either of the aforementioned approximations, we agmphe total number of ongoing calls in each cell
sector during the entire time period of our study. To do sospld the call records based on the sector. We create
two records for each call — corresponding to the beginnind) @md of each call. Then, we sort these records in
order of their time. We maintain a running count that is iased by+1 when a call begins and decreased-by
when a call terminates.

I11. DYNAMICS OF SPECTRUMAVAILABILITY

We plot the obtained “load” of three representative cell§igure 1. For proprietary reasons, we normalize the
values of load by a constant value such that only the relathange is seen. The top cell has low load only at night
whereas the middle cell has low load during the weekends riote (that the second Monday in the observation
period was a public holiday). The bottom cell always has loadloi.e., during both day and night. Our plots in
Figure 1 show that spectrum usage varies widely over @me space — an illustration of the challenges that are
likely to be faced with cellular DSA.

The day/night dependence is exhibited system-wide as seéiigime 2. Here, we ignore information about
the individual cells to which calls are assigned and comsalecalls as arriving to a single entity. For such a
hypothetical system, we plot the normalized average callarates during four different days. Figure 2 illustrates
three key effects regarding the dynamics observed in themsys-irst, there are two distinct periods, which roughly
correspond to day and night and have high and low arrivakred¢spectively. Moreover, the steepest change in
arrival rates occurs in the morning and late in the evenirgclvcorrespond to the transition between the day and
night periods. Second, the system characteristics arealyltk remain stationary at timescales beyond an hour.
Except for the transition hours, the mean arrival rates dovaoy significantly during an hour. Third, weekdays
and weekends appear to show distinct trends. This is not whléxpected since many cellphone pricing plans
provide unlimited calling in the weekend.

Figure 3, which plots average call durations as a functionneé tillustrates similar trends as Figure 2. However,
we find that the range of variability in mean call duration isamgmaller than that of arrival rates. Note that there
are a few large spikes in Figure 3. These are caused by a brgfuption in the data collection, which caused
some short calls to not be recorded, thereby artificially imitathe mean duration of calls.

Secondary usage requires the availability of free spectssuming secondary users are immobile, the best
scenario is one in which free spectrum is available for ag laa possible in any given cell. In other words,
variability in per-cell spectrum availability is not deslile. We quantify this variability by computing the varaati
in load of each cell during each hour. We calculate the “ayeease” variation using the standard deviation and the
“worst-case” variation as the difference between maximumeh @inimum 1-minute load in a cell during each hour.
We average these over all cells and plot them on an hourytedais in Figure 4. As before, we normalize the
metrics by a constant factor for proprietary reasons. Mdtiat both metrics show the same trends. Not surprisingly,
the variation is larger during the day, when the load is highe

A. Implications

Knowing the spectrum occupancy of a PU, more precisely thamyn change of the occupancy over time, is
crucial to determining the degree to which secondary usagebe allowed, for example, as discussed in [6], [7].
First of all, the instantaneous occupancy sets an upper timithe resources available for SUs. Thus, our results
in Figure 2 indicate that significant secondary usage is plesdlilring the night until almost 7AM, regardless of
the location. Additionally, in some locations, spectrunm deecome available during the weekends and weekdays.
Knowing the future trends of occupancy further helps sp@ctowners optimize their auction process without
impairing PUs. For instance, if the primary spectrum occepaends to vary significantly (as can be observed
in Figure 4 for the afternoon hours), secondary usage has tlltaeed more conservatively, such that enough
resources are available for new PUs. On the other hand, if thedeupancy tends to decrease, spectrum can be



rented more aggressively. Figure 4 highlights a significaatlehge for cellular DSA - when there is less spectrum
available, the availability is more variable, too. Hencarenspectrum should be left unused when more spectrum
is being used.

IV. M ODELING PRIMARY USAGE

Since secondary users opportunistically use spectrum flizedtby primary users, models of primary usage in
individual cells play an important role in designing and ldgmg cellular DSA approaches. There are two simple
models that fit the behavior of primary users well (see [2] fetails). One such model is tloall-based modelThis
model uses two random variablés,and D to describe the inter-arrival time between two calls anddhetion of
calls. An obvious and popular choice is to model call arevas a Poisson call process (independent and identically
distributed exponential inter-arrival times) and call alions as being exponentially distributed.

It turns out that the distribution of call inter-arrival t@n is well described by an exponential distribution in more
than90% of the hours for most cells. We use tAederson-Darlingtest with95% confidence level as a goodness-
of-fit test for exponential distribution. Note that, since wse a95% confidence level for the Anderson-Darling
test, we expect onlg5% of our tests to succeed. The technical details of these tastbe found in [2].

We also calculate the auto-correlation coefficient for eaghagell per-hour sequence of call inter-arrival times.
We find that only20% of these sequences have auto-correlation coefficients (az@m lags) higher thaf.16.
Though not conclusive, such low auto-correlation is coesiswith independence. Hence, we believe that call
inter-arrivals are well-modeled as an exponentially disted i.i.d. sequence. In other words, call arrivals can be
viewed as Poisson processes. Though Poisson processes hawesbddo model fixed telephone calls for a long
time, our study is one of the first to show that this is largeletforindividual cellsin mobile systems.

A. Call Durations

Though the inter-arrival times of calls are well modeled asiagem process, the call-based model has a significant
disadvantage, namely, the distribution of call duratidnsFigure 5, we plot the empirically-observed histogram
of call durations. The histogram is quite unlike that of anangntial distribution. In fact, the histogram is not
even monotonic. We see abold% of calls having a duration of abo@7 seconds. These correspond to calls
during which the called mobile users did not answer and this @&re redirected to voice-mail. However, RF
voice channels were allocated during these calls. Thistiitess that call durations can be significantly skewed
towards smaller durations due to non-technical failures,, €ailure to answer. Also, note that the variance of the
call durations is more than three times the mean, which igfgggntly higher than that of exponential distributions.

Further analysis shows that there are likely two differemtriiutions of call durations — one during the day
and the other during the night (11PM-5AM). Furthermore, tladition hours between day and night likely see
a mixture of both these distributions. In Figure(left), we compare the overall and nighttime distributions of
call durations. Note that we use the log-log scale. We find thatnighttime distribution has more short calls as
well as a heavier tail compared to the overall distributiBoth distributions have a “semi-heavy” tail and are not
well-modeled by classic short-tailed distributions sushEalang (results not shown). However, the shape of the
above distributions is reminiscent of the lognormal digttion, which is parabolic in log-log scale. Recall that
is lognormally distributed with parametegsando? if log(D) is normally distributed with the same parameters. In
Figure 6(L eft), we also plot the best lognormal fits for the distributions @if durations. The head of the empirical
distribution shows significant deviation from the best lognal fit. Although the tails of the empirical and best fit
agree better, they too diverge at large values.

Not only is the distribution of call durations hard to modélere can also be significant deviations during certain
hours. We plot two such “outlier hours” in Figure(Right). The two outlier plots correspond to the weekday hours
plotted in Figure 2 — the spikes in the arrival rate correspianthe spikes of Figure GRight). Both hours see a
sudden spurt in short calls. We verified that at least one dfetlie caused by a large number of calls to a popular
television show, whose telephone lines are often busy. EigyRight) thus demonstrates that social behavior and
external events, which may not be easily predicted, can antlade significant short-term impact on spectrum
usage.



B. Event-based Model

The skewed distribution of call durations is the primary dismtage of the call-based model and can be eliminated
by using an alternativevent-basednodel. This model ignores details about individual calls armstead models
only the loadX(-), i.e., the total number of ongoing calls. Under this mode, bbad is considered to be a one-
dimensional, continuous-time random walk where steps #heret1 or —1, corresponding to the initiation and
termination events of a call:

X(t+E)=X(t)+(-1)2. (1)

Here E is a random variable representing the time between corige@ieps/events and is a Bernoulli random
variable, which takes the valugl with probability p and0 otherwise. Since there is-al for every—1, p should
be 1. A Poisson process is the obvious choice to model the intemetimes.

It turns out that inter-event times are well-modeled as agptial distributions for only about0% of the hours
in most cells. As shown in Figure (L eft), exponential modeling fails almost twice as often during tiight (when
the load is low) than during the day.

The skewed distribution of call durations is also respomsibl the failures of the event-based model. This is
because thet1 and —1 events correspond to the initiation and termination of 4 aall are separated by the
duration of that call, which is not exponentially distribdt If there are no additional events during the duration
of that call, the duration itself will be an inter-event tim@ general, call durations or portions thereof will be
part of the inter-event times. Thus, during the hours of tlggnivhen the system load is low, the non-exponential
distribution of call durations has a significant impact on th&tribution of inter-event times. During the day, this
impact is reduced.

A second component of the event-based model is that-thevents form a Bernoulli process. A necessary (but
not sufficient) condition for this to be true is that the sequeenf +1s should have close to zero auto-correlation
at non-zero lags. To understand if this is true, we plot themmautocorrelation at non-zero lag values on an
hour-of-day basis in Figure {Right). We see a similar effect as above. During the nighttime, wihenload is
lower, the+1 of a call is more likely to be followed by the 1 of that call. This causes negative correlation at odd
lags. Accordingly, we can also see the positive correlasibeven lags. During the day this effect is reduced.

The above discussion shows that the event-based model is apptieable when the load is high, though the
Bernoulli assumption is not strictly valid. However, wheretload is low, the call-based model with a skewed
distribution of call durations is the superior model.

C. Implications

Characterization and modeling of PU spectrum usage progelesal insights that are crucial to enable secondary
usage of spectrum. For example, the owners of spectrum neddlsof their PUs to determine how much secondary
usage is feasible and how it can be priced. Models for callarand call duration are essential for optimal pricing
strategies of auctioned spectrum. In [1], [8] the authorgeltgy optimal pricing strategies for secondary usage
of cellular CDMA networks. The strategies only depend on thk arrival and call duration distributions, which
are both assumed to be exponential. Our results show signiféaviations of call durations from exponential
distributions. Hence, these strategies may have to beevihe precise implications are subject to further studies.

V. SHORT-TERM VARIABILITY

One of the primary requirements of DSA-based approachesisSitis should not affect PUs. Hence, it is critical
that SUs in cellular networks frequently sense the spectmudnvacate it if new PUs are detected. Also, since the
available spectrum could change between two consecutiveirgg periods, SUs must be aware of the extent of
such short-term variations, and choose the tifnpbetween consecutive sensing periods accordingly. Fig(kesia)
provides insights into this by plotting the maximum incre@s load averaged over all cells and plotted for different
values ofTs. We plot the variation during a representative day of ouaskit The low variations at night are seen
again. We see the peak variations late afternoon and a stelegtion thereafter. Notice also that the variation at
Ts = 30 is often close to the variation fdfs = 5 and never more than twice. This indicates that- 30 seconds
may provide a better tradeoff between sensing overheadrendpectrum that SUs need to leave unoccupied for
a sudden arrival of PUs.



We take a detailed look at the variation wiify for four representative hours in Figure(BRight). We see less
variation during the weekend, possibly due to the reducedage load. We also see that during the AM hours, a
small 75 (1 — 2 seconds) does not pay off, since the maximum change in loBdimecreases slightly. We found
this to be true for all morning hours (before 10 AM). In theeaftoon hours, however, there might be benefits to
using a smallls.

A. Implications on Spectrum Sensing

From a CR perspective, there are two fundamental questioh® tanswered for the development of sensing
techniques for SUs: (1) How often must sensing be perform@j?hat is the required observation time of a
single channel to reliably detect potential PUs? Answerbégd questions determine how much time and resources
are needed for detecting PUs.

The first question is usually answered by the PU, which specifesadhcallednaximum interference timee.,
the maximum time a SU is allowed to interfere with a PU commuidoa Clearly, the maximum interference time
sets an upper limit on the periodic time interval after whacbhannel used by a SU network has to be serigd (
Knowing the probability distribution of the arrival procesf the primary communication (in our study the call
arrivals), and given a target probability that the SU interferes with the PW; can be simply calculated using the
CumulativeDistribution Function (CDF) f = P(X < Ts)). Equation (2) shows the calculation 8§ assuming an

exponential call arrival process.

A
The knowledge of the arrival process, thus, enables us testtje time {s) after which a channel needs to be
sensed. For our investigation, the mean call inter-artivaé (over one hour) per cell varies from the sub-second
range to tens of minutes. Assuming a maximung@fcalls per cell and a probability of interference gf= 0.001
this would result in a required inter-sensing time betw&ggr- 0.03 s and7s = 18s. This huge gap clearly indicates
the gains achievable by choosifig based on the call inter-arrival time, which can itself beaglked by sensing.
Results such as those in Figure 8 also provide insights intal gadeoffs for sensing strategies.

An answer to the second question, i.e., determining the tieeded for sensing single channel, is much
more complex and depends on various factors such as theaiggnsequirements of the PU, the specific sensing
technique used, distributed/cooperative sensing aspetctsHowever, regardless of the time the sensing process
takes for a specific system, it is desirable not to waste this for sensing an occupied channel. Here, a model of
the duration of a PU communication can help to determine the &fter which a channel sensed to be occupied by
a PU should be sensed again. In particular, our analysis atatelurations shows that there are many short calls
and the remaining are spread over a “semi-heavy” tail. Hea@®nditional sensing process is well-motivated: the
SU initially uses a rapid sensing frequency for the case thravecall is short. After a few tens of seconds, rapid
sensing is likely to yield little benefit. Hence, slower segsis justified.

pizl—e_)‘Ts<:>Ts:—

VI. RELATED WORK

In recent years, many measurement studies have been cautetb show the underutilization of licensed
spectrum. Some examples of wide-band measurement campagunde the Chicago spectrum measurements [9],
covering the spectrum range frasd MHz to 3 GHz and960 MHz to 2500 MHz, respectively, and the New Zealand
measurements [10] in the spectrum range fi®k MHz to 2750 MHz. Though these studies show the abundance
of temporally unused spectrum, they give little insightoithe dynamic behavior of the licensed users legally
operating in those bands. A measurement campaign focusitigeocellular voice bands was carried out during the
soccer world-cup 2006 in Germany [3], [4]. The authors shosvdtiferences in spectrum occupancy in the GSM
and UMTS bands before, during, and after a match. Howeveilagito the wide-band measurements mentioned
above, little insight into call dynamics such as call aldvar call durations is gained. The authors of [5] analyze the
spectrum utilization in the New York cellular bands (CDMAwsIl as GSM). The CDMA signals are demodulated
to determine the number of active Walsh codes (i.e., the eurobongoing calls). To determine the number of
calls in the GSM bands, image processing of the spectrograpshots is used. Although this analysis provides
more detailed results for the utilization of the cellulania, call arrivals and durations are also not examined.



VIlI. CONCLUSIONS ANDFUTURE WORK

We presented a large scale characterization of primarg uséne cellular spectrum and discussed the implications
on enabling cellular DSA. We used a dataset that allowed usrigpate the load of hundreds of base stations over
three weeks. We derived several results, some of which arensuized below:

» Often, the duration of wireless calls (and the time for whigice channels are allocated) are assumed to
be exponentially distributed. We find that the durations areaxponential in nature and possess significant
deviations that make them hard to model.

o An exponential call arrival model (coupled with a non-exeotial distribution of call durations) is often
adequate to model the primary usage process.

o A simpler random walk can be used to describe primary usaderumgh load conditions.

o Spectrum usage can exhibit significant variability. We foulmak the load of individual sectors varies signif-
icantly even within a few seconds in the worst case. We alsotfig variability even across sectors of the
same cell.

We believe that our work provides a first-step proof-pointualg both policy and technical developments related
to DSA. In this paper, we made no use of sensing data and reliedlywvon network data. In future work, we
intend to perform simultaneous sensing and in-network datéection. This would allow us to investigate how
accurate a sensing-based approach is and also validateshiésrin this paper.
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Fig. 1. Normalized load of three different cell sectors oSereeks. We plot the moving average of each cell over one secondcéllse

show high loadTop), varying load(Middle), and low loagBottom).
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Fig. 2. Distribution of system-wide average call arrival rates during fiifferent days. The arrival rates are averaged évatinute slots.
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Fig. 3. Distribution of average call duration ovemminute periods during four different days. The large spikes duriegntiornings are
due to small gaps in collection.
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Fig. 4. Average per-cell variation of load on an hour-of-day basis.célculate the variation using the standard deviation and the difference
between maximum and minimum.
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Fig. 5. Histogram of call durations. We plot the histogram using diffebémtsizes.
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(L eft): Duration distributions and lognormal fiteRight): Illustration of anomalous distributions during 2 hours.
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Fig. 7. (Left): The percentage of successful fits (across all cells) averagedpen-@ay basis(Right): The per-hour auto-correlation of
the step sizesd) in our event-based models averaged across all cells.
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Fig. 8. (Left): Maximum change in load, averaged across all cell sectors, plotteah drowarly basis. We use different time windows
over which the maximum change is calculatédight): Maximum change in load, averaged across all sectors, plotted as@ofuf 7
for 4 different hours.



