University of Aarhus

Department of computer science
Abogade 34

8000 Arhus C

Denmark

Masters Thesis

Ronni Laurse Daniel Nielsen
rage@lai m . au. dk | dj n@ai m . au. dk
1999334 19992541

18th September 2005

Investigating small scale combat situations in
real time strategy computer games

Supervisor: Ole Caprani
ocapr ani @ai m . au. dk

Abstract

This thesis presents and analyses the problem of smallsmalkat (SSC) in real
time strategy (RTS) computer games. An RTS game is a war atorulvhere
several opposing factions battle in a virtual world. Thebpeon of SSC appears
when soldiers, callednits, of opposing factions meet in this virtual world.

In commercial RTS games SSC situations are handled by aygpbimple
rules to each unit involved such as “attack the nearest enemity The result
is far from optimal as several examples will show. Therefare will investigate
other methods for handling SSC situations.

The commercial computer game industry’s name for modulesdlivey com-
puter controlled characters @ame Al In this thesis we investigate which meth-
ods and algorithms this concept covers. This investigatioludes an overview
of selected computer game genres, an introduction to whalttgun computer
games is, and an overview of how Game Al is handled in diffegenres.

We will define the concept afonsistentharacters. On this basis we will dis-
cuss how consistency influences the quality of a computeregé&vie will argue
that if units in an RTS game are to be considered consistegtdaght to behave
optimally regarding the rules of the game world.

In this thesis we present a method for solving SSC based @enimduced
timestamped game trees. Due to the amount of informatidmeimodes we inves-
tigate a machine learning approach to derive a node ratingtitn. We achieve
a reduction of the number of nodes in the tree by applying aesacge of rules
to each node, thereby reducing the fanout. We present $examraples of rating
functions and rule sequences.

For evaluation of methods solving the SSC problem we use plete) mature
and commercially comparable Open Source RTS game ceedus We will
measure the performance of each variation of the game &gedimethods. This
is done by comparing the performance of the variations wighgerformance of
the built-in module in Wargus.

The experiments performed in this thesis show that the@oisirfor improve-
ment in the way SSC situations are handled in Wargus. Withogpjate rule
sequences and rating methods the game tree-based methfmshdeetter than
the rule-based systems currently in use.

Resumé

Dette speciale praesenterer og analyssneall scale combaiSSC) situationer i
realtids strategispil (RTS). Et RTS spil er en krigssimortditvor forskellige frak-
tioner keemper i en virtuel verden. SSC situationer opstasoldater, kaldet en-
heder, fra forskellige fraktioner keemper i denne virtugteden.

| kommercielle RTS spil handteres SSC situationer ved atraaw regler til at
styre hver enhed, sdsom “angrib den neermeste fiende”. fae=tdr ikke optimalt,
som flere eksempler vil vise. Derfor vil vi undersgge andréoaber til at handtere
SSC situationer.

Computerspilsbranchen bruger nav@stme Altil at betegne moduler, som
handterer computerstyrede karakterer. | dette specialepricesentere hvad dette
begreb daekker over mht. metoder og algoritmer. Denne uadelse inkluderer
et overblik over udvalgte computerspilsgenrer, en intktidn til hvad computer-
spilskvalitet er, samt et overblik over hvordan Game Al @tibrugt indenfor
forskellige genrer. Vi vil introducere begrebeainsistentéarakterer og pa dette
grundlag vil vi diskutere, hvorledes konsistens pavirkezaenputerspils kvalitet.
Vi vil argumentere for, at hvis RTS enheder skal betragtes lsansistente sa skal
de opfare sig pa en optimal made med hensyn til den virtuelidens regler.

| dette speciale preesenterer vi en metode til handteringsg8&tioner. Meto-
den baseres pa et regel-induceret tidsstemplet spiltresddt maengden af in-
formation i spiltreesknuderne vil vi kigge neermere pa en nmasttleringstilgang
til at afggre knudernes veerdi. Vi reducerer antallet af kdrhver knude ved
at anvende sekvenser af regler pa disse. Vi preesenteretligdsiksempler pa
veerdifunktioner og regelsekvenser.

Til at evaluere metoder der handterer SSC situationer,doruiget komplet
og kommercielt sammenligneligt Open Source RTS spil, kaldergus Eksperi-
menter der viser spiltreesvarianternes ydeevne er udfdratvevaluere hver spil-
treesvariation pa flere konstruerede SSC situationer mothdieyggede modul i
Wargus.

De malte resultater viser at den made Wargus handterer SG&liener pa
kan forbedres. Med egnede regelsekvenser og veerdifuektian en spiltrees-
baseret metode yde bedre end de regelbaserede systemévelebingt i RTS
computerspil idag.

Preface

About the authors

The authors of this masters thesis are Ronni Laursen anceDidiglsen, both
masters students of computer science. Ronni holds a bachetaltimedia and
computer science; while Daniel has a bachelor in mathesatid computer sci-
ence.

Both authors gained an interest in computers and computeeg@ the late
1980’s and that interest has increased ever since. Theahauwnosity of what
comes next in the market of computer games is a big part ogbeithe computer
game “sphere”. Both authors take great pleasure in follgwire media outlets
dealing with computer games, to glean the latest news almumtraleases and
technologies.

Daniel’s primary interests in computer games are real tinagegyy games, role
playing games and the ever evolving market for console gaR@ai’s interests
are primarily first person shooters and role playing games.

Acknowledgements

A big thank you from both authors goes to

Ole Caprani for supervising us when everybody else had left.
Thiemo Krink for countless fruitful discussions.

Brian Mayoh for several references and discussions.

Daniel also wishes to thank his family, Christine and Mafog,support and
for putting up with the long hours that went into the makinglo$ thesis.

Ronni wishes to thank his family for support and love. A spkappreciation
goes to all of my close friends for your support throughouet ylears. Love you
all.

Contents

Abstract i
Resumé i
Preface iii
Abouttheauthors ii
Acknowledgements iii
List of Figures vili
1 Introduction 1
1.1 Motivation for improving unit behaviour 2
1.2 Goals e 3
1.3 Thesisoverview 3
2 Computer games 6
21 Terminology e 6
2.2 Computergamegenres i e e e 8
221 Adventure. 8
222 Boardgames 9
2.2.3 Strategygames 10
224 Shooters 11
225 Roleplayinggames. 12
226 Simulators 14
2.27 Actionbasedgames 16
2.2.8 Anexample of genre combination 18
2.3 Computergamequality L. 20
2.3.1 Immersionasamarkofquality 21
2.3.2 Consistent character behaviour 24

CONTENTS

3 Game Al problems 28
3.1 Information available to characters 29
3.2 Game Al problemsingenres 30
3.2.1 Adventure. 30
3.22 Boardgames 31
3.2.3 Strategygameso 31
3.24 Shooters 32
3.25 Roleplayinggames. 33
3.26 Simulators 33
3.2.7 Actionbasedgames 35
3.3 Examples of applied Game Al 35
3.3.1 Black&White 36
3.3.2 NoOnelLivesForever2 37
3.3.3 Half-Life 38
3.34 Warcraftlll 39
3.4 Realtime strategy (RTS)Al 40
3.41 RTSgamesindetail 40
3.4.2 Game Al problemsinRTSgames 44
3.4.3 Subproblems in small scale combat (SSC) 45
3.4.4 Consistent behaviour in SSC situations 46
4 The Wargus platform 48
4.1 TheWargusgameworld 48
411 SCeNarios v v i 49
412 Map 49
41.3 Units 49
4.1.4 The built-in participant 51
5 Game trees applied to small scale combat 53
5.1 MethodsforsolvingSSC 53
5.1.1 Rulebasedmethods 53
5.1.2 Evolutionary based methods 54
5.1.3 Gametree based methods 55
52 Gametrees e 55
5.2.1 Timestampedgametrees 57
5.2.2 ISSUES 60
5.3 Representation 60
531 Threatmatrix 61
5.3.2 Deriving athreatvalue forunits 61
533 AnSSCexample 64
54 Pruning 64

CONTENTS

5.4.1 Rulesforgametreepruning
542 Rules
5.4.3 Rules andtheirsequencing
5,5 Ratinggamestates
5.5.1 Handcrafted ratingmethod
5.5.2 Machine learning rating methods
5.5.3 Choosing actions forunits

5.6 Measuring the performance of an SSC situation

5.6.1 SSCsituationvalue
5.6.2 Experiments

6 Extending the Stratagus engine

6.1 The Stratagus engine background
6.2 The Stratagusengine
6.2.1 Communication protocol
6.2.2 Unit control mechanisms
6.3 Integration withtheengine
6.3.1 Executionpath
6.3.2 TheCtoJavalink
6.4 JavaPackages
6.4.1 Stratagus Javapackage
6.4.2 RadaJavapackage

7 Results

7.1 Setup
7.1.1 Experiments
7.1.2 SSCsituations

7.2 Questions

7.3 Presentationofresults.

7.4 Presentationofmovies

7.5 DISCUSSION e e
7.5.1 A problem with the game tree method . .

8 Future work

8.1 Engineenhancements
8.2 Machine learning accuracy
8.3 Improving evaluation methods
8.4 Improving the integration with Wargus
8.5 Gametreeextensions

9 Conclusion

Vi

CONTENTS

Bibliography 115
A A note on search for literature 124
B Summary of diary 126
C Design and Implementation 129
C.1l Design. i i e 129
C.1.1 Javapackages. i 129
C.2 Implementation 136
C.2.1 Datastructuresand methods 136
C.2.2 Gametreeconstruction 138
D Results 144
D.1 Readingthetables. 144
D.2 Thetables 146
E Contents of the enclosed CD 154

Vil

List

11

2.1
2.2

2.3
2.4

2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

3.1
3.2

3.3
3.4

3.5

3.6

of Figures

A sample small scale combat (SSC) situation in the garii¢éaous 2

Screenshot from Monkey Island by LucasArts from 1990 9
Screenshot from Grand Master Chess v.2.5 by MediaR#sear
Group from 2004 10
Screenshot from Dune Il by Westwood Studios from 1992 ... 11

Screenshot from Half-Life: Counter-Strike by Valve ®@fre and
CSteam from1999 12
Screenshot from Tomb Raider: Angel of Darkness by Corsegbe
from2003 13
Screenshot from Eye of the Beholder Il by Westwood Studio
from1991 14
Screenshot from Madden NFL 2004 by EA Sports from 2004 . 15

Screenshot from Gran Turismo Il by Polyphony Digitahir@a000 16
Screenshot from SimCity 4 by Maxis from 2003 71

Screenshot from Super Mario Brothers by Nintendo fr&861. . 18
Screenshot from Street Fighter Alpha Il by Capcom fr@®6L. . 19
Screenshot from Warcratft Il by Blizzard from 2002 19
Screenshot from Zork I: The Great Underground Empireniby-I
comfrom1980 31
Screenshot from Transport Tycoon Deluxe by MicroProsmf

1005 & . 34

Screenshot from Black And White by Lionhead Studios f&1. 36
Screenshot from Warcratft Il by Blizzard from 2002 d¢jpig the

cheating of the participant at the highest difficulty level. 39
Screenshot from Warcratft Il by Blizzard from 2002 shiogvia

typical game startfortheOrcs. 40
Screenshot from Warcratft Il by Blizzard from 2002 shiogvthe

options available atthe Orc WarMill. 42

viii

LIST OF FIGURES

4.1
4.2

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

6.1

7.1

7.2
7.3

7.4
7.5

7.6

C1l
C.2
C.3
CA4
C.5

The movement possibilities for a lone melee unit 51

A scenariowith severalunits 51
An example of a game tree in the gam&iafTac Toe. 56

A sample timestampedgametree 58
The situation, which figure 5.4 and figure 5.5 model 58
Two opposing units ready in the same timestamp 58.
Two opposing units ready in different timestamps 59

An SSC situationinWargus 65
The snapshot corresponding to figure5.6 65.
The threat matrix derived from the snapshotin figure 5.7... . 66

A sampleinfluencemap. L. 68
A game tree and a sample ratingmethod 76
A callgraph depicting the overall communication betwte en-
gineandourmodule o o 84
A simple SSC situation with two opposing melee unitsezhll
Scenlvsl 90
Two melee units opposing three melee units cefleen3vs2. . . 91
Two squads with four melee and three ranged units eatddcal
SCENTVST o e e 92
Two squads with two melee and four ranged units eachdcalle
archer-ambush oo 92
Three melee and two ranged units surrounded by four meiee

and one ranged unit call&captured 93

A problem with our game tree-based method 9 9
The UML diagram of the Stratagus package Q 13
The UML diagram of the Experiments component 321
The UML diagram of therada package 134
The fullrecursiongraph. 142
Thereduced recursiongraph 142

Chapter 1

Introduction

"So long as there are men there will be wars"
- Albert Einstein

The commercial computer game industry has evolved into ampajrt of today’s
entertainment industry. Contributing factors to this gttoare an increased inter-
est in computer games from players of all ages and an evegasitrg budget for
production and marketing of computer games. This interastgnown to a point
where even the enormous Hollywood movie industry has rdaayeproducing
movies such as the Tomb Raider seri¢zaramount, 2045 based on computer
game worlds and the characters within.

The amount of interest in computer games has furthermoedea large
consumer demand for more photo realistic graphics, moeeasting game char-
acters and a more immersed feeling when playing. This hamladoom in the
graphics branch whereas methods dealing with behaviolweoftiaracters popu-
lating and interacting with the game world still lacks thedkthrough computer
graphics have had.

Techniques for controlling computer game characters vesgtly in sophis-
tication. All to often a static method such as scripting iss#gn. Such methods
can often lead to repetitive behaviour and a lack of adaptat situations not
foreseen by the designer of the scripts.

The methods which control computer game characters aedéiime Alby
the commercial game industry. A method for controlling elcéers should ensure
a consistenbehaviour. Consistency means that a character supposdicstmie
specific part in the world has to ensure that the player besien it. Given the
concepts of the game world the player expects a certain mmirdvom the game
world characters. The pixels on the screen are not just R&&esg, but constitute
living characters in the game world.

Real time strategy (RTS) games are war simulators whereadaetions bat-
tle in a virtual game world. Several characters, calieds, are situated in this

CHAPTER 1. INTRODUCTION

Figure 1.1: A sample small scale combat (SSC) situationergime of Wargus

world and belong to different factions representing theidas’ soldiers. Here,
consistent behaviour implies that the RTS units must caa/ihe player that they
are hardened soldiers and fight as such. When these unitsfaghall scale com-
bat (SSC) situation appears and the goal in these situasdoskill the enemy
units. How this goal can be reached is the main focus of tleisigh

Figure 1.1 depicts an SSC situation in the RTS game of Wargwsich units
from a red faction is fighting units from a green faction in aggy environment.

1.1 Motivation for improving unit behaviour

RTS games are among the most popular games in today’s congaume market.
The reasons are that RTS games include several aspectsallehghs which all
must be tackled by the player in real time. Combat must bewcted while plan-
ning logistic routes and constructing defensive buildinfise actual gameplay
in RTS games vary from game to game but many focus on a playerotied
low-level handling of units. This reduces the attentionrirthe high-level aspects
which often leads to a sub-optimal handling of these.

This thesis proposes an alternative. We will argue that RAiSes are often
won on high-level decisions rather than handling a handfulnits better than
the opponent. By giving the player a near-optimal autonasrwandling of SSC
situations a shift in focus from low-level handling of unitshigh-level strategic
decision making is made. We believe that this shift in foaud aus in gameplay

CHAPTER 1. INTRODUCTION

is needed to ensure victory in those RTS games where botlel®i-and high-
level aspects are included.

RTS games are also interesting from a computer science gungp since
solving the problems within this domain is difficult. Mett®tandling the sub-
problems of RTS must furthermore find solutions without &iwig the real time
demands.

1.2 Goals

The notion of Game Al includes more than just character cbmirechanisms.
We will introduce selected computer game genres and irgagstivhich Game Al
methods are used in these. Attempts at achieving considtanacter behaviour
will be presented and discussed. We will argue that if a gbest character be-
haviour is reached the overall quality of the computer gamesiases.

We will argue that an optimal handling of SSC situations tuieed to make
the RTS units exhibit consistent behaviour thereby inénggan RTS game’s qual-
ity. We propose a method for handling SSC situations in an-apamal fashion.
The success criteria of the presented method is thus to @&&IC situations as
optimally as possible.

We investigate how SSC situations are handled by contempooanmercial
RTS games and present a game tree-based method which adlomesair-optimal
solutions to SSC. An evaluation-suite is set up to test aatyaa which of several
game tree-based methods perform best. lan Lane Didyasjs, 1999, has the
following remark concerning game trees used in RTS games:

“Optimal solutions such as game trees [...] that try to preskeveral
moves ahead (useful for tic-tac-toe, and some other smalégpare
inappropriate and infeasible due to the relatively enorsrtmanching
factor”, [Davis, 1999

Although we acknowledge the problematic issues involvagdsing game trees in

real time games we find it interesting and challenging tostigate such a method
and measure its performance against methods currentlyein us

1.3 Thesis overview

This thesis consists of the following chapters:

CHAPTER 1. INTRODUCTION

Chapter two presents computer games and selected computer game genres
which make up the background this thesis is based on. Chiapdeflurthermore
introduces and discusses computer game quality and weahesits are included
in a game of high quality.

Chapter three presents which methods are used to create high-quality char
acters in the presented computer game genres. Chaptercibméaues with a
detailed description of RTS games. An examination of SS@/engspecial atten-
tion.

Chapter four presents the RTS game of Wargus in which our method for
handling SSC situations is based. The presentation witlrdesthe rules of War-
gus in detail.

Chapter five presents game trees and the modifications needed to handle
the real time constraints and concurrent actions of RTS gafmethermore, the
chapter will present and elaborate on the remaining issssscated with game
trees.

Chapter six describes how the chosen RTS platform works and how our
game tree-based method is integrated with this platform.

Chapter seven presents the collected results along with a discussioresith
The results are based on several SSC situations where thetgssrbased meth-
ods are evaluated when playing against the built-in metbbtisee Wargus game.

Chapter eight presents and elaborates on several future work-topics.
Chapter nine concludes the thesis.

Appendix A elaborates on the background and validity of the collectad m
terial and literature.

Appendix B presents an extract from the diary held during the courdeisf t
thesis.

Appendix C presents the full design and implementation details of anng
tree-based method.

CHAPTER 1. INTRODUCTION

Appendix D shows the result-tables collected during evaluation ofyaume
tree method.

Enclosed CD We have recorded a number of movies illustrating several is-
sues encountered during the making of this thesis. A ddsmmipf the enclosed
CD is given in appendix E on page 154.

Chapter 2

Computer games

"It's a me, Mario!"
- Mario

A computer game is a game set in a computer-controlled Vutugerse that play-
ers interact with. In this chapter several computer gamesgenill be introduced
and examples of game which are stereotypical for their ganiébe presented.

We seek a foundation to answer the seemingly easy questitwer is a com-
puter game said to be of high quality? This innocent questasbeen the topic of
research in human computer interaction and aestheticsai$wer depends very
much on which definition of quality is used. Does it mean thgaae is tech-
nically superior to its contemporary peers? Is it the ovengpression the game
has on a human player? Or is it the kind of interactivity whihvailable in the
game?

It is obvious that ensuring a technical superior game reguisight into sev-
eral branches of computer science, but what else is requuimradke a high quality
game? We will argue that the conceptaainsistent charactens equally as im-
portant to game quality as consistent graphics.

2.1 Terminology

Before discussing the different genres in the realm of cdemmames, some com-
mon terminology for describing computer games is needetteSnost concepts
in the area of computer games are interpreted differeihtdyfdllowing definitions
will be adopted throughout this thesis. An complementaryesyof terminology

is presented ifNareyek, 200], where Alexander Nareyek defines modules of ar-
tificial intelligence (Al) in commercial computer games radpwith their area of
responsibility within the game. Our list is based partly ocar&yek’s definitions
along with definitions frodfChampandard, 2003, Chayg, IRabin, 2004h [Ra-

CHAPTER 2. COMPUTER GAMES

bin, 2004¢ and our own experiences as computer game players and suafent
several Al related courses.

Player isthe term used for the human being playing the computer géhmeugh-
out this thesis the human player will be referred tinas

Avatar is the game’s representation of a player. In games, wheyeond player
plays at a time, this often equals the lead role in the stoth@fgyame — al-
though some games lack an avatar altogether. An examplesa$ tstrategy
games where the player often assumes the role of a generalastearmies
and is not explicitly represented in the game world.

Game world is the virtual universe in which the game takes place. Theegam
world is presented to the player by means of graphics, soamdishe story
of the game.

Game objects are objects which appear in a computer game. Game objects can
either beactiveor reactive Active means that the object can actively con-
duct actions upon itself or upon the game world. Reactivens¢iaat the
object cannot by itself perform actions, but only react astiect of an
action.

Characters are active game objects situated in the game world. Chasasbenot
have a direct motive, e.g. mood-setting animals in digae¢$ts. Characters
are said to beonsistenif these follow the game’s rules and theme and if
these are able to portray their part in the game world comgigz. For more
detail on consistency, see section 2.3.2 on page 24.

Non-Player Characters are those characters who participate in the game’s story.
A non-player character (NPC) can be seen and understoodbaglsuy
character in a movie.

Participants are active game objects which assume the role of a playeikéJnl
both its character-counterparts, described above, acjpatit is not neces-
sarily situated in the game world.

Support routine is a software module which in some way assists the player in
playing the game at hand. Examples include methods for @diny many
characters simultaneous|[Blizzard, 199%, implementing path-finding al-
gorithms,[Wikipedia, 20054 or methods choosing near optimal weapons
for specific combat situationBChampandard, 2003, Chap.]23

CHAPTER 2. COMPUTER GAMES

Game Al is the term used to describe the commercial game industrgthoals
for controlling active game objects and for support rougin@ame Al in-
cludes methods which intelligently control a camera’s posiand orienta-
tion, [Carlisle, 2004, create interesting auto-generated worldslams and
Mendler, 2002and as used in the computer game DiafBdizzard, 2000,
or methods which help the player cleverly control many ctiars simul-
taneously such as pathfindiratel, 2004 simple behaviours in Warcraft
Il, [Blizzard, 199% and create opposing participants and characters for the
player to face in the gamgChampandard, 2003

2.2 Computer game genres

This section describes some of the more persistent and gopoinputer game
genres and presents a game stereotypical of each genreshigcihe list is by no
means exhaustive, but is meant to give the reader an oveofiesday’s popular
computer game genres. The list is based on our experiencagdasomputer
game players, the accumulated knowledge obtained by foitpmany computer
game media web-sites such[#8N, 2005 and[GameSpot, 20d5and of course
from literature about computer games. For complementafigwes of computer
game genres the reader is referrefMitolf, 2002 and[Wikipedia, 2005k,

A game is said to belong to a certain genre if the game has dfte twhich
the genre represents. A game can possess traits from sgeearals and thereby
belong to many genres. The traits are not carved in stonelentine between
several of the presented genres is blurry.

2.2.1 Adventure

The adventure game genre concerns exploring a game worldoamwversing with
the non-player characters (NPCs) which inhabit the wortthv@rsational details
and the portraying of a detailed story are the fundameneahehts in this genre.
Often used styles for the story are humour, horror and love.

The lead role in the story is controlled by the player. Follugvthe story of
the game, the player is subjected to solving various puzzlkesging from get-
ting into a guarded mansion to obtaining a specific item fronN&C. Generally
a non-violent approach is needed to solve the puzzle at Fdredstories are typi-
cally very rigid and progress is only made if certain key-flag are solved. Other
actions have little or no effect on the main story but may a¢gede-stories.

In figure 2.1 on the next page a screenshot from Monkey IsldnatasArts,
199d, is shown. The avatar is the sailor standing up. There aeetNIPCs, all

CHAPTER 2. COMPUTER GAMES

Figure 2.1: Screenshot from Monkey Island by LucasArts fa0

pirates and sitting down. In the bottom half of the screenntexface for control-
ling the avatar is located — a list of actions and an iconicasgntation of items
currently in the avatar’s possession. It is the responsilaf the player to discover
the story of the game by means of his avatar.

Examples of popular adventure games are the Leisure Suit saries[Sierra,
1987, and the Maniac Mansion serilsucasArts, 198J.

2.2.2 Board games

The classical board game genre involves two players plaggainst each other.
Taking turns, the players move one piece at a time and eacle gaoally has
three possible outcomes — either player can win or the gamered in a draw.

Computer board games are based on real games, such as Cthesadendigital

due to their popularity. Board games are often enhancedablemplayers to play
against each other via the Internet.

Figure 2.2 on the following page shows a screenshot fromd@véaster Chess,
[Media Research Group, 2004 his is a digital version of Chess where the no-
table difference to ordinary Chess is the possibility of/plg against a participant.
The screenshot shows the Chess board in the middle and theeigearface to the
left and right hand of the screen.

The most popular board games are often implemented on coitymeb sites
where people compete. Examples of these[@k&2, 2005 and[Yahoo, 2005.
Games such as Chess, Go, Checkers and Backgammon are exafmpbgular
board games made digital.

CHAPTER 2. COMPUTER GAMES

3

LAST MOVE.

|GAME

[HISTORY

Figure 2.2: Screenshot from Grand Master Chess v.2.5 by &fRediearchGroup
from 2004

2.2.3 Strategy games

Strategy games are war simulators where the player is dimngrarmies to com-
pete for various resources and face opponents. These gdtmedarus on plan-
ning, resource management and combat in order to achietgrwi@ hese games
can be divided into turn based strategy games and real trategy (RTS) games.

Turn based strategy games allow all players to considerctbiras carefully
in turn before choosing an action. Also, turn based stragggyes often focus
on simulating real armies with great realism and carefuhipilag. RTS games
primarily focus on resource gathering, rapid unit handingl base construction
and has a stronger focus on combat. Furthermore, RTS gaméseréhe players
to choose actions continuously. RTS games are describeiarl th section 3.4.1
on page 40.

Before playing the actual game all players must decide HilgEigiance. Most
strategy games have several opposing factions. The typebavécters, called
units and buildings available is determined by the choice ofidiece.

In figure 2.3 on the following page a screenshot from Durl&fdios, 199
is depicted. At the top of the screen the player's amourtredits available for
unit and building construction is seen. The large sectiaitpmed lower left on
the screen is the view of the battlefield, called the viewkpbine black shroud is
known asfog of warand represents areas of the map which are currently outside
the view of the player’s units or undiscovered territoryeTiddle right of the

10

CHAPTER 2. COMPUTER GAMES

Figure 2.3: Screenshot from Dune Il by Westwood Studios fi&®2

screen shows the status of the selected unit and its avadabbns. At the lower
right of the screen theini mapis depicted. This is a small representation of the
battlefield which allows the player to quickly survey thetledield and position
the view-port over interesting events.

Examples of popular RTS games are Starcf&flizzard, 1998, and the Age
of Empires serie§Ensemble Studios, 1997An example of a turn based strategy
game is Civilization lll,[Firaxis Games, 20Q1

2.2.4 Shooters

Shooters are one of today’s most popular genres. The hunagerptontrols an
avatar in real time in either a first person or third persorsjpective. First person
means the view of the world is presented through the eyeseadthtar whereas
third person perspective implies that the player is viewiregavatar from behind.
A shooter with a first person perspective is called a firstgeshooter (FPS).

In a shooter the player is fighting dangerous animals, vEimonsters and
tough marines with various advanced weaponry. Most of tgasses are primar-
ily based on action. Even though action is an important etgnre this genre
developers are increasingly including stories which egisthe player further in
the game.

Figure 2.4 on the next page shows a screenshot from an FRS &dunter-
Strike, [CSteam, 19909 This game containteamsconsisting of human players
and participants. Counter-Strike pits a team of counteoiists against a team of

11

CHAPTER 2. COMPUTER GAMES

Figure 2.4: Screenshot from Half-Life: Counter-Strike bglé Software and
CSteam from 1999

terrorists in rounds of competition won by completing aneahive or eliminating
the opposing team. Most of the screen is reserved for viethi@tandscape where
the avatar is situated. The upper left corner shows the radach indicates the
general direction of the player’'s teammates. The bottonmefstreen shows the
chat-window and status of the avatar along with the time reim@ on this map.
Also depicted on the screen is a pair of hands and a weapos.répresents
the weapon currently equipped by the avatar. The crossthttie middle of the
screen represents the avatar’s current aim. The red markbeimiddle of the
screen above the cross-hair indicates that the avatar kersdais taking damage
from that direction.

Figure 2.5 on the following page shows a screenshot from TRaiter: Angel
of Darkness[Design, 2008 the sixth instalment in the Tomb Raider series, all
of which are third person shooters. The image shows theravagagunfight with
two monsters.

The list of marketed shooters is long, but some of the mostessful today
are the Quake serieBD Software, 1999 and the Unreal serie§Epic Games,
2004.

2.2.5 Role playing games

Role playing games (RPGs) have their roots in the pen andr pajfeeplaying
communities. In these communities the role-players oftemiify themselves

12

CHAPTER 2. COMPUTER GAMES

Figure 2.5: Screenshot from Tomb Raider: Angel of Darkngs€bre Design
from 2003

with a fictional character in a fictional world.

The digital version of this type of game bears resemblandbamdventure
genre, but has a higher focus on the avatar’s skills. Theeplayidentifying him-
self with the avatar and information gathering is a very intgot element in these
games. Often the game world is a fictional medieval world Wisacalled fantasy
based RPG. The stories in RPGs axperienceanore tharplayedby the player.
The story’s progress is influenced by the player’s choicéso Anany RPGs have
an element of combat in them. This allows the player to see th@nlevel of
interactivity changes as his avatar gains more abilitiessdills.

In figure 2.6 on the next page a screenshot from Eye of the BehdWest-
wood Studios, 1991 is shown. The player controls a group of characters called
a party. Their images, names and some iconography describing ¢lyeipped
items and abilities are shown in the right of the screen. Atabittom of the screen
a textual representation of what has happened in the gareeris $he upper left
depicts the current view of the party. Two enemies are algacted with whom
there currently is battle. The arrows in the lower left isdi$ar controlling the
party’s movement.

The RPG genre’s most popular games today include both newldrghmes,
since the stories in these are the primary source of playerast. Examples are

13

CHAPTER 2. COMPUTER GAMES

Figure 2.6: Screenshot from Eye of the Beholder Il by WestvStudios from
1991

The Elder Scrolls[Bethesda Softworks, 1984and the Fallout seriefinterplay,
1997,

A sub-genre called massive multi-player online role plgygames (MMO-
RPGs) is currently growing in popularity. In MMORPGs he @ey inhabit the
same virtual world concurrently. This allows for playerddom groups and op-
pose other groups of either players or characters. Exanap&e$Vorld of War-
craft, [Blizzard, 200%, the EverQuest serieSony Online Entertainment, 1909
and the danish newcomer Se¢Runestone, 20Q5(in development at time of
writing).

2.2.6 Simulators

The simulator genre contains games which simulate a spoat;, eace or a whole
world. Games in this genre generally simulate a real lifecept such as soccer or
a town. The degree of realism in each game varies greatly)lynai the physics
simulation and in the actions available. For example, ithhige possible to shoot
weapons at the opponents in some car simulators.

The following subsections briefly describe three kinds afiidators which
have proven to be popular.

Sport simulators

These games simulate, as the name implies, a sport be tlcat s@merican foot-
ball, basketball or tennis. Realism and the right “feel’twiite ball are important
elements in this genre.

14

CHAPTER 2. COMPUTER GAMES

Figure 2.7: Screenshot from Madden NFL 2004 by EA Sports 200v

Figure 2.7 shows a screenshot from Madden NFL 20BA-Sports, 2004
The quarterback with number 97 has the ball. In the middidefscreen the 10
yard line is highlighted in yellow. At the left side of the ig@a yellow marker is
placed indicating the avatar’s current aim with the ball.

Examples of sport simulators are the FIFA-bas&imeFAQs, 1996and the
NBA-based serie§GameFAQs, 1993

Driving simulators

Games of this type simulate motorised vehicle driving. Tieel” with the vehicle
is very important. E.g. how the car slides when turning haudl lrow the vehicle
accelerates on rainy or snowy surfaces.

In figure 2.8 on the next page a screenshot from Grand Turirodyphony,
2004, is depicted. Gran Turismo is a game about cars where the fescun tuning
and designing a car and then race it against other playetbelscreenshot the
view is placed within the car. The lower left shows a miniatuepresentation
of the track. To the lower right, upper right and upper leffatent statistics are
presented to the player.

Examples of car simulators are the Driver ser{égari, 200d, and TOCA
race driver[Codemasters, 1998

15

CHAPTER 2. COMPUTER GAMES

Figure 2.8: Screenshot from Gran Turismo Il by Polyphonyitaigrom 2000

World simulators

These games are simulating a city, a theme park or possibtyrla wt is usually
the player’s obligation to control the game objects in suetag that characters
populating the game world are happy or such that economitscimaprove.

In figure 2.9 on the following page a screenshot from Sim CityMaxis,
2004, is shown. In this game, the player is responsible for mampgn entire
city — from city planning, emergency response-times to sesystems. A large
section of the screen shows the city to be managed. Togeittethe elaborate
menu system to the left and the ability to zoom and turn theetarthe player
interacts directly with the city. The bottom right half oktlscreen shows a lot of
statistics necessary to supervise the city. The lower leftvs a simple mini-map
and controls for the speed of the simulation.

Examples of popular world simulators include the Black & Weéhseries[Li-
onhead Studios, 20pland The Sims seriefEA Games, 2000

2.2.7 Action based games

Action based computer games focus on action. Among othexgémre captures
the platform genre and one-on-one fighting games. Theseegieme described
below.

16

CHAPTER 2. COMPUTER GAMES

§94.953 |
831,356

§30,025
596,284

Figure 2.9: Screenshot from SimCity 4 by Maxis from 2003

Platform games

This genre places the avatar in an environment where tharawallects points
often in the form of coins, fruit or jewelry. When enough psiare collected the
player can proceed to the next level. The main player chgdélémcoordination of
the avatar's movement as the levels contain pitfalls andraibstacles.

In figure 2.10 on the next page a screenshot from Super MadthBrs [Nin-
tendo, 1985h is shown. The top of the screen depicts the current scor@,anof
coins collected, the map the player is in and the time lefotaglete the map. The
avatar is currently in the middle of a jump. The two mushroavatking on the
ground are characters which can damage the avatar. The Iaciging in mid-air
can be either jumped to and from or smashed by jumping up h@dhem. The
brick with the question mark can be jumped into from beneatha@ntains either
coins or upgrades for the avatar to collect.

The Sonic seriegSonic Team, 1991 and the Mario serie$Nintendo, 1985k
are two of the most popular and successful game series igehie.

Fighting games

Fighting games consist of a player’s avatar fighting an oppbmusing kicks,
punches and various special moves. Each time the avatae @pgponent is hit
health is lost. When the health reaches zero the avatar mnepp has lost the
round.

17

CHAPTER 2. COMPUTER GAMES

MAR IOD
002000

demd G sl < S s < S <

Figure 2.10: Screenshot from Super Mario Brothers by Nithdefnom 1985

In figure 2.11 on the following page a screenshot from StregtEr Alpha
2, [Capcom, 199k is depicted. The top of the screen has two bars indicating
the current health of the player and opponent. At the uppddiaia number is
showing the amount of seconds left in this round. The avattd left is currently
performing some special move which deals damage to the @ppdomthe right.
Examples of popular fighting games are the Mortal Kombaesdiidway,
1994, and the Tekken serielfjlamco, 1994

2.2.8 An example of genre combination

Warcraft Il (see section 3.3.4 on page 39) is primarily d tieae strategy (RTS)
game. However, Warcraft Il also possesses traits from dhe playing game
genre through the use of NPCs, callddroes The player is not identifying him-
self with the heroes but these are a vital element in the stodygame world. The
heroes are able to carry items, gain experience pointsghrfighting and gain
magical abilities far better than the RTS characters.
In figure 2.12 on the following page the heroes Jaina and Aréna fighting

enemies inhabiting the game world. Jaina is selected ankeirbottom of the
screen her experience, inventory and available spellsismahsed.

18

CHAPTER 2. COMPUTER GAMES

Figure 2.11: Screenshot from Street Fighter Alpha 1l by @apérom 1996

Figure 2.12: Screenshot from Warcratft Il by Blizzard fro@02

19

CHAPTER 2. COMPUTER GAMES

2.3 Computer game quality

What is it that makes a computer game good or worth playing® beautiful
environmental sounds, a photo-realistic game world, theraction possibilities
with game objects and characters or a combination of theseeglts?

Playing computer games is all about having fun and aestbetisiderations
can play a major role in the quality of the game. The conceptnasimmersion
is a way of measuring the quality of a game. Even though the eaus of this
thesis is the Game Al subsystem the following presentatrmhdiscussion will
introduce computer game quality as a more general concé. i3 primarily
to motivate the quality introduced with consistent chagescin computer games
obtained by means of Game Al methods.

The essential aesthetic elements in a computer game areatheive, the
awardand thegameplaywhich are all presented in detail [Rouse, 200D These
elements will be described in short while the concepihahersionpresented in
[Taylor, 2002 will be described in higher detail in section 2.3.1 on thetpage.
It should be noted that these elements should not be seealatia® nor as the
only ones. Some games do not include a narrative but shotilwers®en as inferior
just like some games do not include an award to the player.

The narrative

Some narrative elements in a computer game can be seen abgukground
elements which has no direct effect on the game. It could éentiplicit reasons
why the avatar is behind enemy lines or why the avatar is nghthrough level
after level collecting gold rings as in the Sonic ser[&nic Team, 1991

The narrative element can also be realised as an interattixein which the
player experiences and occasionally changes the storgult de that a choice
between good and evil is to be made and the choice changeaythet lof the
following level. Either way the narrative factor can haveeavy impact on the
quality of the game depending on whether the player can gdunally understand
andlive the story. A good narrative can increase the quality of a gaume poor
narrative can decrease it.

The award

The player award in a computer game is also a major influentleeoguality of a
game. The most commonly used award is points which are adatedithrough-
out the game. The player continues to play the game only tease his amount
of points and possibly to obtain a high-score or to obbmagging rights [Rouse,

20

CHAPTER 2. COMPUTER GAMES

200d, over his friends. In the RPG genre these award-points aapeshasex-
perience pointand make the avatar better in some way — either by increasing
the avatar’s skills, fighting abilities or alleviation ofree tedious task. A similar
point-mapping exists in car games. The points are not deledirectly but are
specified as the time it takes to complete a racing circuie-gticker the better.

An award can also be conceptualised as a short movie in ting Jtoese
movies are shown between levels and present the playerdandkt step in the
narrative which then hopefully involves the player furtirethe game.

Awards come in many disguises and range from letting thesplsge the con-
ceptual art of the game, movies which show how the game wasscteadditional
levels and much more.

Gameplay

In [Rouse, 200 Richard Rouse presents and explains how game-design-is car
ried out — from the early design phases to the final playsigstf the product.
Rouse has the following definition of gameplay:

“The gameplay is the component of computer games that isdfgun
no other art form: interactivity. A game’s gameplay is thgme and

nature of the interactivity that the game includes, i.ew ptayers are

able to interact with the game-world and how that game-waétts

to the choices players makelRouse, 200D

The notion of interactivity is a valid definition of the compteof gameplay
because gameplay does not exist in books or movies, busexrigames where
players can interact with game objects and other playeras®&e definition is
throughout this thesis used e definition of gameplay.

2.3.1 Immersion as a mark of quality

The conceptmmersionexamined ifManovich, 2001 and in[Taylor, 2002 con-
cerns an immersed feeling with a work — be this a painting, b s, a piece
of music or a computer game. The human computer interactii)(branch
discusses when the “feeling” of immersion exists and whesh fzow it is bro-
ken. These guidelines can be used to create better intamgmdissibilities which
support a feel of immersion. The HCI communities are furi@e concerned
with explaining and understanding the atomic parts of tierface to describe its
whole.

The aesthetics branch is on the other hand actively seekiegjiain the rep-
resentations of the work rather than dividing it up in snra#led perhaps more

21

CHAPTER 2. COMPUTER GAMES

comprehensible parts. A work is understood and viewedmndistiely by the indi-
vidual person and is therefore not purely understood byyéinal methods.

Generally speaking, one can be immersed in a work such asel aothe-
atrical performance and the reader or spectator can eitfjectovely follow the
narrative or subjectively experience it. Immersion can é&gcdbed as an act upon
a work or described as an involvemevithin a work.

These two aspects of immersion can also be applied to comgarees as a
player can play a game as an act upon input devices i.e. agbioig the game or
the player can be immersed within the game. A feeling of inmoer raises the
interest a player has in a particular game and thereby réisepiality of the game
seen from that player’s perspective. As such, a game witgtaduality should at
least not repel the feeling of immersion from the player.

In [Taylor, 2002, Laurie Taylor discusses perspectives and point-of-views
computer games. By means of immersion terminology she s&sugaming ex-
periences for various representations of perspective aBiees that perspective
and point-of-view concepts are fundamental issues in coengame immersion
and discusses primarily third- and first-person perspestifaylor's conclusion
is that the third-person view entails immersion in a moread sense than the
first-person counterpart due to peripheral informationilakée to the player in
this view.

The notion of immersion should be seen as a general concegtiah many
sub-concepts such as a narrative or a game’s gameplayAgasad narrative in a
game or a consistent game world are seen as contributing$aotthe more gen-
eral concept of immersion. If a game includes good gamepiigyalso increases
the level of immersion a player has within the game. Immersian be seen as a
general impression a game has on a player.

Consistency

Consistency is a major part of Taylor’s thesis. She usesdheept ofgame space
consistencyneaning that the game world needs to uphold some form of gonsi
tency for the player to be immersed within it. Consistendpiss a way to obtain
immersion within a computer game.

Taylor argues that consistency within a game need not baNyspresented,
but lack of consistency in game representations can foeggeepimmersion break-
downs. Several events can force breakdowns in a compute¥ gadan inconsis-
tency can often result in total breakdown of immersion a @tdas.

If this feeling is broken the game is no longer seen as anaotee narrative
or an intriguing fantasy adventure, but is instead reduoezhtinks of graphics,
music tracks and transparent character behaviours. Gensysshould thus be
seen as a way to obtain immersion, but also a way to rate thar@mbimmersion

22

CHAPTER 2. COMPUTER GAMES

achieved. It is also Taylor’s point that inconsistency degs a computer game of
the feeling of immersion.

Inconsistencies in computer game graphics are prime exxangbiwhere the
feeling of immersion can fade. Low polygon count or low resian on game ob-
ject models, homogeneous texture mappings and identigattsbare all graphi-
cally immersion repelling aspects. If the game is in low heSon the player will
find it hard to believe that the depicted graphics is real,thist does not mean
that the game is of low quality. The player can still be imredrgn a low reso-
lution game — it is then other factors such as a good narrathieh increase the
immersion.

Sound and music is a well known method in films and in thedtpeafor-
mances for increasing tension or otherwise placing theesmaei in a specific
mood. Sounds and music in computer games can immerse ther,dbay sounds
and music can also be immersion-breaking in a computer gamiext. Mono-
tonous background music or playing music in a loop can be eceaf irritation
for the player. But can actually help the player grasp thentnef the game, since
the music’s uniformity gets the player in the “mood” the gameoses. Singular
and monotone digital voices for the game’s characters aresabstic and forces
the player to mentally withdraw himself from the game.

The game’s level-design can also be an important immersippat, but can
unfortunately also be the reason why a player cannot imniérsself in the game.
If each level has a uniform layout or game objects placed i location are
similar or perhaps identical to game objects placed in ardtitation, the player’s
immersion will fade. Uniformity in the layout of the game Vawhere only one
way through the level exists is known geadingor railroading. The element of
uniformity often helps novice players to complete the lemstead of wandering
hopelessly around for hours. But this can be a tedious expegifor advanced
players. Badly designed levels can be disastrous for theepsaimmersion since
each level look alike. Clever level-design can create astgafjame world model
for the player and can occasionally be the sole reason fgol#yer's immersion
in the game.

Consistent characters in a game world is also an importgecas a player’s
ability to immerse himself in a computer game. Even if the gavorld is realistic
the characters’ behaviour can have a great influence on hewgame world is
experienced and understood by the player. The behaviobeafttaracters should
thus be consistent with the game world. This form of consistas genre de-
pendent since an adventure NPC is very different from an FRa&acter, because
these have different goals. The adventure NPC gives puzztbs player and un-
folds a story while the FPS character opposes and combagtéatyer. Consistency
should be seen as the characters’ ability to appear as p#re @fame world. If
this appearance is not explicitly present the player migktnterpret the actions

23

CHAPTER 2. COMPUTER GAMES

of a character which often leads to a breakdown of immersion.

A consistency measure of an FPS character might be how muaiteicge
the player receives from this character. A character whadgigborly would not
be considered consistent, since the player expects challeom a character as-
suming the role of a tough veteran marine. A consistent FR®acker should at
least be able to show signs of combat experience such aswgufaricover when
shot at. How the behaviour of RTS characters affect consigtimn RTS games is
discussed further in section 3.4.4 on page 46.

The goal of a game’s graphics, animations and sounds arerti@pan illu-
sion of a consistent game world to the player. As an exampleslassume that the
game world contains some kind of forest as known from thewedd. The devel-
opers wish to assure by all means at their disposal that wipdsyar encounters
this forest then it actually is a forest. Animations, souadd overall “look and
feel” must convince the player that it is indeed a collectbirees, which consti-
tute a forest. If this forest contains characters i.e. wikelllke rabbits animations
and sounds are not always enough to accurately portray &.rable behaviour
now becomes an important factor in the “look and feel” of thesionary rabbit so
what looks like a rabbit actuallig a rabbit. How this illusion is obtained is irrel-
evant. A simple random replay of animation which show a rigjolonping around
might be enough. If the player is required to interact with thbbit in some way
more advanced methods might be required.

Inconsistencies in computer games are occasionally uggdsent an authen-
tic game world to the player. The concéens flareis a phenomenon caused by
the scattering and internal reflection and refraction offirlight in the optical
components of complex lens systeiWijkipedia, 2004. Even though a lens flare
Is not experienced when walking around in the park almoseBB games in-
corporate this feature to increase visual photo-realissoabse this phenomenon
occurs in movies. Ironically, this inconsistency oftenates a more consistent
game experience.

2.3.2 Consistent character behaviour

Now that the notions of narrative, award, gameplay, imno@rsind consistency
have been introduced the discussion how consistent belrav@ém improve the
quality of a game has a solid foundation. We will present katademical and
commercial views on consistent behaviour in games whereébabm an essen-
tial element of the gameplay. This focus was chosen becaasewastigate RTS
games which has combat as an important element of gameplay.

24

CHAPTER 2. COMPUTER GAMES

Academical vs. commercial approaches Lars Lidén, a developer of Half-
Life, describes inLidén, 2004 that consistent characters should intentionally
react such that the player feels superior. Lidén believatsttie player is supposed
to win since he is the one to be entertained. Lidén suggestédtting the player
win should be an intentional act, obtained with Game Al md#hoather than bad
design or bad control mechanisms.

Lidén furthermore suggests several approaches to obtasistent characters
even if the opposing characters are doomed to lose in theMeithods such as
a bad aiming ability raise the tension for the player but htte characters miss
every time. An opposing character should at least miss thetiime to warn the
player of its whereabouts instead of killing the player agalve him utterly con-
fused.

The peculiarity of Lidén’s approach is that the goal he tt@esbtain can be
seen as a way to assist the player in playing the game, bubutitihhe player
knowing. If the player notices this help the character ceas@appear consistent
and a breakdown in immersion is unavoidable.

In [Buro, 2004 and[Buro and Furtak, 20448uro and Furtak describes Game
Al in an RTS context and advocates strong participants. Bagases on giving
the player the greatest challenge by means of strong anebpéiaral participants.
The approach can give the best players a hard challenge addvwegraded to
adjust difficulty for novice players. In contrast, it is vérgrd to create a challenge
for advanced players if the design is aimed towards givirlg pavice players an
interesting opponent. Buro states:

“The main goal behind the Al research [...] is not to incretse
entertainment value of RTS games, but rather to create tbegsst
RTS game Al possible. The former goal is pursued by the commer
cial games industry, whereas the latter tries to push theiteg abil-
ities of machines to new levels. Note, however, that inadgdaying
strength can be converted into higher entertainment valaelapting

to the player’s performance level to keep games challerigiiguro,
2004.

Buro furthermore presents and discusses how and why petits in RTS games
should incorporate learning mechanisms, planning undeertainty and spatial
and temporal reasoning. Buro is well aware that all of thes¢ures cannot be
tackled easily, but argues for a gradual improvement of Ra&igipants since
small steps can have enormous effects on the further imprentof these. Buro
continues:

“[. ..] because current Al systems do not reach human plajpiearn-
ing, and reasoning levels, machines can at least aid theyingla

25

CHAPTER 2. COMPUTER GAMES

RTS games. [...] It should be possible to create Al moduldsato
dle those local combat situations much more efficiently ttamans
who have to point and click to give them orders. What makes thi
hybrid Al approach attractive is that now human players daoose
their favourite Al plugins. Moreover, players then can camicate on
high-level decisions without being forced to compete whthtVorld’s
fastest mouse virtuosos in terms of speddijro, 2004.

In the same paper Buro also mentions that the lack of an acedeRTS Game
Al competition is a contributing factor to the lack of acadeanh interest in this
area. He hopes that his ORTS platfofiauro, 2003, helps remedy this problem.

Marco van de Wijdeven has, like Lidén, a background in theroencial com-
puter game industry and captures the commercial computee gadustry’s view
of optimal characters’ goals nicely:

“Stated concisely, the challenge is: Creating an agentdraprovide
a suitable challenge no matter who or what is opposindvgh de
Wijdeven, 2002

Van de Wijdeven’s view does not contradict Lidén’s view. hf @gptimal character
is to provide a suitable challenge to novice players moditica could include
Lidéns ideas such as intentional misses.

Although the commercial game industry’s focus is on indregathe quality of
games, the game industry is not exclusively interestedtimaging the challenges
provided by the characters. The main goal is to create a b@ivawvhich increases
the quality of the game. The goal of academic Al research itherother hand
to create near-optimal characters, because such methgdgusha the cognitive
abilities of machines further. Both approaches pursue swdpable of providing
consistent character behaviour.

Entertainment value vs. optimality The essential point in this discussion is
whether a character should behave reasonable while bemig folay against, as
Lidén believes, or the character should be optimised tothieglayer the hardest
challenge possible, as Buro believes.

Either way, the approach taken to increase the performainite @haracters
should not make them inconsistent. Depending on the actrmkghe charac-
ters should behave in a consistent way. How the consistéwviomur is achieved
depends very much on the genre of the game and of course tiad gatme.

Optimal characters are needed in the domain of RTS gamesdaagdo Buro,
[Buro and Furtak, 2004 The primary reason is that research results found in the
field of RTS Game Al can possibly be extended to real world lemols. Issues

26

CHAPTER 2. COMPUTER GAMES

such as tactical decision-making can have an enormoug effiezrmy protocols
as the digital method can assist army leaders in real thtiattes.

The measure of the character’s level of consistency and towhis character
is to oppose is genre specific, but some general issues céaldoeaged upon. The
optimality of the character is one such issue. The charaatetimality regards
how difficult the character is to defeat. If an optimal beloaviapproach is taken
the result is scalable because the approach can be dowddradase difficulty
for novice players. A near-optimal behaviour is in some gsergeen as the only
way to obtain character consistency whereas a non-optippabach would have
created an inconsistent behaviour. We believe that thereblgm of small scale
combat (SSC) in the area of RTS, see section 3.4.2 on pagedds to include a
near-optimal solution if the resulting behaviour can bensegconsistent. Such a
behaviour helps to portray the illusion that the RTS uniessaidiers.

An optimised approach such as a seemingly unbeatable oppcawe appear
to be a waste of the player’s time. This is only half the trutice the player
probably already has won against the second-highest diffi@vel meaning that
the player searches for more challenge from the opponent.

An optimal opponent cannot in some respect decrease a gaomisy if a
choice of difficulty level exists. On the other hand can anlg&sught opponent
decrease a game’s quality and force the player to quit theegmematurely if this
opponent is too easily beaten. An easily fought opponenhoarever be hours of
fun for novice players which first have to learn the game asdontrols.

Like everything else in the world, there exists a comprorbetgveen creating
an easily (non-optimal) or hard (near-optimal) fought apgat. The compromise
involves a mix of the targeted audience’s flavour, the gandrand what objec-
tive the gameplay has.

27

Chapter 3

Game Al problems

"If I only had a brain"
- The Scarecrow

Most commercial computer games published today contairyrddferent mod-
ules, which must work together. The physics simulationpgies pipeline, sound
subsystem and Game Al subsystem must all cooperate in detive superb ex-
perience to the player. In the rest of this thesis the focsslsly on the Game Al
subsystem.

In this chapter we will give an introduction to Game Al prailke found in
the genres introduced in section 2.2 on page 8. AfterwalgsRTS Game Al
problems will be defined in detail. For a reminder of termogyl used, please
consult section 2.1 on page 6.

Literature in this area is relatively hard to come by. The pwercial computer
game industry is not overly happy for providing concretenegbkes and detailed
explanations of how they solve the various Game Al problemtbeir products.
They often regard these solutions as trade-secrets and@smon with such se-
crets they only speak reluctantly or in marketing tonguesiatheir methods. For
more information about literature in this area, see appeAdn page 124. The
concepts we define in the following sections are based oneyappal experiences
along with notions from the available literature.

When designing a Game Al subsystem for a computer game soesi@js
must be asked. What problems are to be solved and how advaeeddhe Game
Al methods be to solve these in a timely manner? No playerbeiimmersed in
a game if the characters act so slowly that the game grindbadt.arhe Game Al
algorithms must therefore be able to run fast enough whogigmng the charac-
ters with consistent behaviours.

In Chess a well defined time limit exists. Special designqgeesgomputers
are used to play near-optimally within the given time linhitreal time games the
demands of the subsystem are even higher. The Game Al sabsgaist react to

28

CHAPTER 3. GAME Al PROBLEMS

player input with little or no delay. Of course this also mg#mat the reaction may
not necessarily be the optimal one. This does not mattemasds the reaction of
the characters is consistent.

3.1 Information available to characters

In [Champandard, 2003\lex J. Champandard presents an approach to creating
consistent participants and characters in shooters. Céraahaypd believes that con-
sistent characters ought to be fully embodied and situatétel game world. This
implies that in a given situation the character must not la@eess to any informa-
tion the player cannot also access in the same situationh-asulooking through
walls. In other words the character must not cheat. Creatic@nsistent character
within these restrictions is what Champandard deals witkisrbook.

In [McLean, 2004 Alex McLean describes a method for handling situations in
which characters hunt the player. Requirements for his ogkticludes full access
to information about the entire game world, the absolutatioa of the player and
the absolute location of all other hunting characters. gs$ims information the
method enables the characters to hunt the player in a censigay. The method
could be seen as cheating, because characters are ablaitotbbtlocation of the
player without ever having line of sight to him.

Champandard and McLean both strive to create consisteatvtzelr for the
characters, but their methods differ as seen above. Chataphallows the char-
acters to access the same information as the player andngottse whereas
McLean allows the characters to access more informatiam tita player. Their
methods both achieve the wanted behaviour.

This is a prime example of the computer game industry’s fanushe end
result. The computer game industry provide characters eatisistent behaviour
but are indifferent to how it is achieved. The commercial gandustry is not
concerned about whether their consistent charactersiekii® intelligence. It is
sufficient if the characters behave consistently in the ganardd. Therefore, the
used methods can be seen as tricks with the sole purpose atiupithe illusion
of intelligent characters. Michael Buro writes about thisthod when applied to
RTS games:

“Also, we acknowledge that commercial RTS game Al often thea
compensate for its lack of sophistication. Tricks of thel&anclude
map revealing and faster resource gathering. The res#{tisgstems
may outperform human players and may even create challgmegin
counters, but they do not advance our understanding of havnetide
intelligent entities.”[Buro, 2004

29

CHAPTER 3. GAME Al PROBLEMS

Having access to more information than the player is justtaardrick used by the
commercial game industry in their hunt for consistent behavin their games.

3.2 Game Al problems in genres

The requirements of the Game Al subsystem in a game diffeihnfraen genre
to genre. There is no need for advanced algorithms for lagguaderstanding,
[Callan, 2003, Chap. 18 & 1%nd[Nilsson, 1998, Chap. 24in action based
games, since the player does not need to talk to the chasaktieewise there is no
need for combat strategid€hampandard, 2003, Chap. 34 &]4#h a simple 2D
platform game. Thus the natural and intuitive way to crela¢aequired behaviour
is to analyse the game and the game world in detail and thereddcide which
Game Al methods to use.

Many Game Al problems such as pathfindib@atel, 200& and camera po-
sitioning, [Carlisle, 2004, are common to many games regardless of genre and
will therefore not be covered here. For further informatatout these problems
and a general introduction to common Game Al methods|[Rakin, 2004band
[Rabin, 2004t

The following sections present an overview of how consisbethaviour is
achieved in different genres. The list does not cover all &#&hproblems but
tries to exemplify how this goal is reached.

3.2.1 Adventure

In the adventure game genre the quality of the non-playerackers (NPCs) is
determined by the NPCs’ ability to conform to the story bailiggovered through
the game.

The NPCs in adventure games are in most cases scripted. tBempéayer is
following a static story line there is usually no need foratileeness nor flexibility
in the NPC behaviour. Whether the NPCs are consistent dsggriolely upon the
quality of their scripting.

Early adventure games were textual and the only means afwgmiby typing
in the commands on the keyboard in some almost-natural &gegun figure 3.1
on the next page a screenshot from Zorkifocom, 198Q is shown. Zork | was
one of the earliest adventure games and as illustrated sctieenshot the natural
language parser was not optimal and the error messagesis@msenly added to
the confusion.

30

CHAPTER 3. GAME Al PROBLEMS

il Enpire
Infocom, Inc. All rights

. of Infocom, Inc.
0726

ing in an open field west of a white house,
d fron

o ¥ is closed.

¥ Open
ce isn't one I recoghize.

¥ Open
tence isn't one I recognize.

-open mailbox
Opening the swall wailbox reveals a leaflet.

Figure 3.1: Screenshot from Zork I: The Great Undergroungbiiegrby Infocom
from 1980

3.2.2 Board games

The consistency of a participant in the board game genrendispentirely on
how well it plays the game. The better the participant pléagsgame, the more
consistent it is perceived.

To enable a participant to play a board game well, variantmafe tree mod-
els, see section 5.3 on page 60, are often used.

Many board games are subject to academic interest groupsustdhese
games as testing grounds for machine learnidjtchell, 1997, and artificial
intelligence algorithmdgNilsson, 1998, since the problem of winning the actual
game is well defined. An example of this is David Fog@lsndie24algorithm,
[Fogel, 2002, which plays Checkers using a neural network method. Byl
was a huge success and performed better than 99% of theeregisCheckers
players at the website where it was the tested.

3.2.3 Strategy games

In the strategy game genre the consistency of the behawdar-reaching since
the Game Al subsystem acts on many levels. This ranges frmplesicharacter
behaviour to participant planning tasks. All units avaieto the player are con-
sidered characters and as such their behaviour ought tasestent. This implies
that units representing soldiers should be seen as suclelpfaper.

The consistency of a participant in an RTS game implies thettould show

31

CHAPTER 3. GAME Al PROBLEMS

a high level knowledge of the game world and the units’ cdjieds. According
to Buro, [Buro and Furtak, 2044 a participant should be able to among other
things do adversarial real-time plannif@allan, 2003, Chap. 9 & 10spatial and
temporal reasoningNilsson, 1998, Chap. 1&nd resource management.

The behaviour of units is generally controlled by simplesusnd all high level
decisions are deferred to the player. The rules only hawdi& information and
provide local actions. The consistency of the unit solelgaals on these rules.
The Game Al methods used for controlling participants csiredia collection of
overall strategies. An overall strategy dictates the bagaut and the construction
sequence of units and buildings. These strategies alsaiogroup composition
and overall tactics for combat in the game world. Among tisésgegies a random
one is often chosen at the beginning of the game. Again thsistemcy of the
participant depends on the quality of the strategies used.

The performance of some rules for unit handling can be carebae B the
movies section on the enclosed CD, see appendix E on pagdt&4novies is
recorded from the game Warcraft I[Blizzard, 2002, which is further discussed
in 3.3.4 on page 39. The movies illustrate two situations:

Ranged attack formation In this situation a group of ranged units is seen attack-
ing a sole melee unit. The melee unit is instructed to holdtjposwhich
means that it will not move. The ranged units spend a lot o fpositioning
themselves in a circle with a radius of their attack range.dgerconsistent
method would be if the first arriving ranged units to move elo® the
melee unit. This would allow more ranged units to stand letkiese and
begin firing sooner.

Ranged movementThis situation depicts a group of ranged units moving across
the game world. When moving they walk in line — looking like rzake
traversing the game world. When reaching the destinatiey atign them-
selves in a matrix shape with no wasted time in marching atame an-
other. This is consistent with the way real soldiers align.

3.2.4 Shooters

Creating a consistent character in a shooter requires stadeling of the game
world in which the character must operate. Examples of sb@si behaviour from
characters in shooters are target seledi@imampandard, 2003, Chap]28iming
[Champandard, 2003, Chap.]1@hd cooperative behaviodQrkin, 20048 and
[Reynolds, 200

To create a consistent character, finite state autorftédaen, 1997, Chap.]3
and[Fu and Houlette, 20(4are often used since these allow easy handling of the
state of the character.

32

CHAPTER 3. GAME Al PROBLEMS

For an example of a shooter striving to achieve a consisteatacter be-
haviour, see section 3.3.2 on page 37.

3.2.5 Role playing games

In the role playing game (RPG) genre the consistency of theacters lies in their
ability to portray their part in the story of the game and tladiility to provide the
player with consistent battles.

As in the adventure game genre the most used method for torgrohar-
acter behaviour is scripting. Furthermore, many games @mplore or less so-
phisticated methods to let the NPCs respond to the playetiers in various
ways. Examples of this include reputation systems whereR@'&lknowledge of
a player’s previous actions determines how the NPC reatietplayer whenever
they meet.

At Runestone[Runestone, 20Q5the developers are creating a MMORPG
called Seed where NPCs have a personality and memory ofetheaunters with
other NPCs and players. Each NPC maintains a list of knowyeptaand NPCs.
With each list entry a value is associated. This value remtsshow much this
NPC likes and trusts the corresponding player or NPC. Orrex this value reverts
towards neutral, but new encounters refreshes and uptigesitue. So if a player
is not encountered for a period of time the NPC can forgetylaiger.

3.2.6 Simulators

In the genre of simulators the requirements of the Game Adystlkm often shifts
from the requirements of the above genres. Above, the facgenerally on cre-
ating consistent behaviour for characters. In this genreeremphasis is put on
making the game world consistent through well-construstggport routines.

Sport simulators

In the sport simulator genre a consistent participant shbel able to play the
sport at hand. A prerequisite for creating consistent belavs that the game
world e.g. the actual game rules and limits of the sport sataulis well defined.

In sports requiring interaction with a ball such as soccerahility to antic-
ipate the effects of kicking the ball must be present to ereansistent football
players. To be able to predict the whereabouts of the ball taodecalled Dead
Reckoning[Wikipedia, 2005¢, can be used. This method is applied to the prob-
lem of predicting future locations of game objectgliaraée, 2004

33

CHAPTER 3. GAME Al PROBLEMS

Figure 3.2: Screenshot from Transport Tycoon Deluxe by dfcose from 1995

Driving simulators

In the driving simulator genre a consistent participantidg another car needs to
be able to keep the vehicle on the road. To portray the illusioa professional
driver the participant must also drive near-optimally.

To portray a professional driver a set of way-points are @ased with each
track. The way-points represent a near-optimal route gjindbe track allowing
participants to steer towards these. Along with these wagitp simple reactions
to other cars are encoded. An example of this method is presém[Manslow,
2004.

World simulators

In world simulators there often are no characters for thgeyléo interact with.
Usually there is no opponent either. The game creates pnsbier the player in
terms of traffic jams, fires, earthquakes and so on. In a aityHator the player’s
choices for placement of fire brigades, parks and commuedtufes all influence
whether the characters, i.e. inhabitants of the city wantdoe to the neighbour-
hood.

In figure 3.2 a screenshot from Transport Tycoon DelliMégroProse, 199h
is depicted. Transport Tycoon Deluxe places the player mrobof a transport
company which manages inter-city transportation of gogdsiahabitants. It is
the player’s duty to build infrastructure between the sitiereate and manage
bus routes, railroads, trains and airlines — and turn a drofin this. Competing
participant-controlled transport companies also inhidgitworld in Transport Ty-
coon. The Game Al subsystem focuses on simulating city ashastnial develop-
ment and controlling the participants. In figure 3.2 a raittduilt by a participant

34

CHAPTER 3. GAME Al PROBLEMS

is shown. Clearly, that way of constructing a railroad isinsistent with the game
world as it adds to transportation times and has an increasstdor the company.

3.2.7 Action based games
Platform games

In platform games the emphasis of the Game Al subsystem ikawiag the sim-
ple characters of the game to respond to the actions of tigemplBome characters
are oblivious to the whereabouts of the player’s avatar aoekrin predefined pat-
terns. Other characters break their movement pattern déhtar comes within a
predefined range.

Based on personal experience we find that many platform gasesimple
stateless behaviour. Recently however, platform gamesstatted from 2D side-
scrolling games to 3D games in third person view. This shiftdthe distinction
between platform games and other genres such as the advanuishooter gen-
res. This allows the platform games to share Game Al methaithstive before
mentioned genres.

Fighting games

A consistent participant in a fighting game is able to fightcedfitly. Here, con-
trolling the avatar often means applying long input combores with the cor-
rect timing thereby performing special moves. For the pgudint to predict what
moves the player might use a pattern matching algorithm tibghepplied. De-
pending on the difficulty setting the participant is ableegmember which moves
the player used and in what order. Based on these data anduahekige of avail-
able moves, the participant can predict which moves thegplage trying to per-
form and counter them effectively. The participant accesis¢a from the game to
read the input sequences performed by the player.

The player is also able to predict what moves the participaght use as the
animations of the avatars include plenty of hints to whapicipant is currently
attempting. As a reference to pattern matching algorithmfgyhting games, see
[Dalmau, 2003, Chap]7

3.3 Examples of applied Game Al

In the following, four concrete examples of how Game Al peshs are solved in
commercial computer games are presented.

35

CHAPTER 3. GAME Al PROBLEMS

Figure 3.3: Screenshot from Black And White by Lionhead #tsidrom 2001.

3.3.1 Black & White

The Black & Whiteseries,[Lionhead Studios, 20Q1are simulators where the
player plays a God and battles against other Gods for cointrifle form of faith,
of the land. The player can guide the inhabitants of the gaor&ho perform var-
ious tasks such as harvesting resources and expanding. tbhaasvay the player
battles against the opposing Gods is by means of a largegadtice. This creature
somewhat becomes the main focus of the game. The creatine nsanifestation
of the player-controlled God in the game world.

The creature is wandering about the land to satisfy desirel as eating,
playing and sleeping. The desire from the start is eatingesthis is a natural
instinct. Eating something which is not satisfying the twe&'s hunger, e.g. arock
will be saved in the creature’s memory so it knows that a reckat particular
tasty. Each desire has an associated intensity and theueraat“intelligently”
choosing the highest rated desire. The player can punigward decisions made
by the creature. Either by smacking it around when bad dewsare conducted
or petting it when good decisions are made. In this way thgeples granted some
control over the creature and this process bears some signitateaching a dog
tricks.

In figure 3.3 the creature in this case a cow is entertainimgesimhabitants.
Luckily, it seems that the cow is not interested in eatingiti@bitants — either it
has been properly trained or it is simply not hungry.

The interesting Game Al part of this creature is its innerkirggs. The crea-

36

CHAPTER 3. GAME Al PROBLEMS

ture has a decision tree using the ID3 algorithMitchell, 1997, Chap. B and
feedback weights with which it evaluates potential decisid he feedback weights
are game specific values such that attacking a friendly t@amot encouraged.
These values are modified by the player's punishment or cevldris way, the
creature learns that eating a town inhabitant and rece&ipgnishment is not a
good solution for satisfying the hunger — even though thaliitiant probably is
tasty.

For a more exhaustive description of the creature behaindgiack & White,
see[Wexler, 2002.

3.3.2 No One Lives Forever 2

No One Lives Forever NOLF 2),[Sierra Entertainment, 2005s an example of

a first person shooter (FPS). A lot of work has gone into im@puire characters
with a “understanding of human concepts” to create moreisterd character
behaviour. INOrkin, 20044, real time decision-making using Game Al methods
in complex 3D FPS environments is explained from one of theldper’s point

of view. Instead of having characters which follow simpléegy the developers
worked hard to:

“[...] make the characterfive in the environment instead of just
standing around waiting for the player to show up. Becausehave
the option of sneaking around, we felt it was critical thag game
had a life of its own.{Hubbard, 200P

Concepts such as game object ownership, concept dependespynsibility
issues and priority of these, expected state and preseontiesst were all included
in NOLF 2 as important elements of character behaviour. Hagacters have an
“understanding” of these concepts and are able to appear aomisistent in the
game world. Active game objects which emitted informatibow their interac-
tion possibilities were implemented. In this way, the clotges were able teeeor
heargame objects. This, along with the above-mentioned conaegé¢rstanding,
created character consistency accordinfukin, 20044

To further improve the consistency of the characters theldeers created
simple techniques to improve the characters’ ability topsyate. ABlackboard
Architecture[Orkin, 20048, was constructed. This allowed the characters to share
information about various game objects —whether the abjeete being used, de-
stroyed or turned on or off. E.g. a character standing in aroould check the
immediate game world for information and decide to sit dowd ase a com-
puter. Another character walking into the room would now bke @0 notice that
the computer was being used and decide upon other actignpening a file
cabinet.

37

CHAPTER 3. GAME Al PROBLEMS

The methods used in conjunction created consistent clearbehaviour ac-
cording to[Orkin, 2004&. For further information about methods used for char-
acter improvements in NOLF 2, please con§0ltkin, 20044 and[Orkin, 20044.

3.3.3 Half-Life

Half-Life, [Sierra Entertainment, 1998s another FPS game. It uses simple be-
haviour models for its characters. These behaviours arbynttemselves very
innovative, but additional tricks ensures “character amahlgat believability” ac-
cording to[Lidén, 2004. The method used maintains the illusion that the player
is actually fighting tough and well trained soldiers.

In [Lidén, 2004 Lars Lidén describes the ideas behind the Game Al methods
used in Half-Life. He introduces the conceptkaing Fufighting borrowed from
the Kung-Fu movie genre, where only a couple of opposing ialaatts com-
batants are battling at any given time. This creates intanserealistic combat
situations for the player.

The basic idea is to only allow a few of the characters to ktthe player
at any given time. When a non-attacking character is readytéck, an already
attacking character is chosen and instructed to run for ok #ehind cover. This
creates the illusion that the characters are cooperatingivthey truly are not. In
Half-Life, the number of simultaneously attacking chagastwas set to two. This
proved to be sufficient to increase the combat tension. Itfaasd that players
confronted by the scenario did not notice that only two ctimrs were attacking
at the same time, but were surprisingly overwhelmed by thsidn of collabora-
tive teamwork.

To further increase character consistency within the gaorddwhe develop-
ers added speech to the characters. This was implementaddaesome players
did not notice or in some cases misinterpreted the chageetions. When run-
ning for cover a character would yell “Cover me” or “Flankirgnd this made
the player aware of the character’s actions and intenti@egarding this simple
method, Lidén states:

“Such cues can be highly effective and often have the beakfite
effect that players assume intelligence where none €exigtsdén,
2004

This is another example which shows that for the commer@aiputer game
industry the end always justifies the means.

38

CHAPTER 3. GAME Al PROBLEMS

Figure 3.4: Screenshot from Warcraft 11l by Blizzard from020depicting the
cheating of the participant at the highest difficulty level.

3.3.4 Warcraft Il

Warcraft I, [Blizzard, 2002, is one of the most popular real time strategy (RTS)
games available. The units belong to one of four factiongsOiHlumans, Un-
dead or Elves. Units have different strengths and weakesetsgending on the
faction. This makes a consistent faction-independentbehamodel complex to
derive. Instead static methods, e.g. scripted behaviewsed. The capabilities of
the Warcraft 11l characters and participants are descrfbetier in [Gustafsson,
2004.

In [AMAI, 2005] a group of developers have been creating an extension called
AMAI to the Game Al subsystem of Warcraft Ill. The main attractammplayers
lies in the large collection of available rules and scriptgfarticipant or character
control, calledprofilesandscriptsin AMAL.

In the original Warcraft 11l Game Al the highest difficultyMel calledinsane
awards participants more resources than it actually hesvEésgery time a resource
is gathered and returned to the base the participant reshigelouble of the actual
harvested resource. Figure 3.4 shows a screenshot whiattsidpe early game
for a participant playing the Human faction. The importaatps the two yellow
+20 symbols positioned to the upper right of the building tedan the centre.
The symbols represent gold deposits made by the two smalirbkn — these are
harvester characters. Even though 20 gold is depositedafdr &ip to the gold
mine only 10 gold is removed from the mine. The amount of galdhie mine

39

CHAPTER 3. GAME Al PROBLEMS

Figure 3.5: Screenshot from Warcraft Il by Blizzard fron020showing a typical
game start for the Orcs.

was from the beginning 12500 gold. This behaviour is alsavshio a movie on
the enclosed cd, see appendix E on page 154. In this way tiseoiil that the
participant playsnsanelywell is maintained even if it actually is not. However, if
the player discovers the cheat the consistency of the gaatitdiminishes.

3.4 Realtime strategy (RTS) Al

A real time strategy game is as mentioned in section 2.2.3age @0 a war sim-
ulator wherein players with different allegiances bafflee main Game Al prob-
lems in the RTS domain were briefly presented in section &2 @age 31. In this
section we will elaborate upon the essential RTS game cosiegjol problems in
greater detail. A complementary description of real tintatsgy games can be
found in[Wikipedia, 2005¢ The following sections present RTS games in detail.
There are many ways of playing an RTS game, but here the fecos multi-
player battles in which several players battle on equaldefirhis way of playing
will be referred to askirmish

3.4.1 RTS games in detalil

An RTS skirmish starts with each player choosing an alleggaand agreeing on
a scenario to play. A scenario contains a game world called@and a start sit-

40

CHAPTER 3. GAME Al PROBLEMS

uation. The latter includes starting buildings and chaagtcalledunits possible
starting resources for each player and a background staghwhn have more or
less impact on the actual scenario.

Figure 3.5 on the previous page shows a typical startingtsin in a Warcraft
[l skirmish. Each player starts with five harvester unitsl @nbuilding in which
resources are stored.

Map

An RTS map contains deposits of resources such as gold nmddsases. Reactive
game objects callednvironmental featuresuch as water, mountains and rocks
also exists on the map. A map is often s m matrix of tiles where each tile
or matrix-entry can contain one land-unit if the tile allosA land-unit can be
positioned on grass or sand-tiles, but not on mountain oemtdées. Airborne
units can be placed on any tile since they fly over environaidaatures and in
particular a land-unit and an air-unit can both occupy thmeestile.

Information about the environmental features is availébk! players before
the game starts, but the starting positions of each oppaeat. The whereabouts
of enemy units and buildings is hidden from the player uii@ise come within
view of a unit. This is represented ligg of warwhich hides enemy units and
buildings in the entire map except for areas within view & tontrolled units.

Base

Each player must build, control and maintain a base. A basedsllection of
buildings and structures. Each building takes up a numbtiesfon the map and
cannot be repositioned once built. The buildings cost a rexrabresource points
and give the controlling player various advantages.

Each building has some effect which is available when thi&ling has been
constructed or when resources are spent on the particd&at.eNormally, an
effect is gained through the construction of one buildirgg,many. E.g. darrack
gives the player the possibility of creating combat unitd arplayer who builds
a blacksmithgets the possibility of upgrading his units’ damage cajagbénd
armour rating. Some buildings are also needed to suppogxiséence of units.
These buildings create food or shelter for the units and gaas the player the
possibility to support additional units. Some buildings @& defensive structures
and inflict damage to enemy units within a specified range.eoomstructions
give the player the possibility of constructing new typeswildings which again
gives the player additional advantages.

In figure 3.6 on the following page the interface for the Oradiksmith in
Warcraft 3, called &Var Mill, is shown. The cursor hovers above an upgrade for

41

CHAPTER 3. GAME Al PROBLEMS

Upgrade to Steel Melee Weapons

=100 775

he melee attack damage of
iders and Tauren.
T

Figure 3.6: Screenshot from Warcraft Il by Blizzard from020showing the op-
tions available at the Orc War Mill.

melee weapons which provides the portrayed Orc units withegised damage
capability. The only way to upgrade damage capabilities i@f @its is through
the War Mill.

Units

The units in a skirmish are either resource gatherers, coomis or specialised
units. In general the more powerful the unit, the more resemiis required to
build it. Each unit has several attributes such as a heatthesmovement-speed
and perhaps special abilities. It is these attributes whattide the unit’'s overall
strength and resource cost.

Resource gatherers gather resources around the map asplartaimese back
to the base allowing the player to spend the resources. Resgatherers are very
ineffective in combat and therefore need protection agamsmy combat units.

Combat units can either be of melee-type, ranged-type gedigpe. The
melee-type combat unit can only attack land-units and ointhe enemy unit
stands on an adjacent tile. A ranged unit can attack bothgflgmd land units and
from a distance. Ranged units can sustain less damage thiamtlee counter-
parts and is often protected by the latter. When attackilegestype units inflict
damage to all land-units including the friendly ones posiéd in the targeted
area. Siege-type units are extremely effective againsdibgs, since buildings
generally take up several tiles. Siege units often have @&mim range so letting
enemy combat units come close will diminish their capabsgigreatly.

Specialised units are units which do not fall into eitherghtherer- or combat-
category. These can be invisible fast moving units whicmoaxeal damage in

42

CHAPTER 3. GAME Al PROBLEMS

combat, but can spy on enemy troop logistics and base catistna. Another

example is transport units which can carry other units duittkvarious destina-

tions. Destinations could be the opposing player’s basa gurprise attack or the
player's own base for repairs or healing.

Specialised combat units also exists. These can cast magissathe map or
incapacitate enemy units for a short duration. Specialiset$ often have a high
resource cost which makes them inapplicable in all but sfieed tactics and
strategic plans.

Combat

Combat in an RTS skirmish is resolved in real time. The notbreal time is
achieved through a sub-division of a wall clock second imeesal micro-turns
calledgame cyclesThus, all players’ units move and attack simultaneoushjtsJ
can be divided into groups and be given commands as a grougisTprimarily
done to ease the player of giving commands to each unit inribigpg A move-
command can be given to a group and every unit in that groulptgh move
towards the destination.

When a player or participant orders units around the mape tisex limited list
of orders available. A list of common orders available tay&runits and groups
of units is given below:

Move orders a move to a destination along the shortest path known.

Attack orders a move within attack range of another unit and keepldttg that
unit.

Stop orders units to stop whatever order they were doing.

Stand Ground does as the stop order described above. Furthermore, itesnsu
that the units remain stationary.

Guard orders the units to follow and defend a given target be thagheer unit,
building or environmental feature.

Attack-move orders a move to a given destination and to attack all enenty un
encountered along the path.

Patrol orders an continuous attack-move between a list of degimat

The attack-move order deserves special mention. It allopkger to select a

number of units and order them to attack any enemy units thegunter on their

way to a destination. The possibility of giving an attackv@order was added to
RTS games, because too much time was spent selecting ueitst@time and

telling them which enemy unit to attack.

43

CHAPTER 3. GAME Al PROBLEMS

Default behaviour for units

How the units carry out their assigned orders is determineith® behaviour as-
sociated with those orders. This is referred tadafault behaviourDefault be-
haviour for a unit is also needed when no orders are assigntat unit. E.g. if
a player has ordered a unit to move to a certain destinatidthenunit completes
that order how should the unit behave now that no orders aen@i

End condition

An RTS skirmish is lost when the player’s base is destroyetainthe player’s

units are killed. Likewise, the game is won when all oppogfayers’ units are

killed and their buildings destroyed. However, scenariec#ic goals may also be
the cause of defeat or victory.

3.4.2 Game Al problems in RTS games

This section introduces some of the most important Game éblpms within an
RTS skirmish and thus which requirements the Game Al subsyshould meet
to provide consistent behaviour.

Several problems in the RTS Game Al domain are already sdiyemadi-
tional methods such as the problem of finding the shortestipad game world
by using Dijkstra’s algorithm[Goodrich and Tamassia, 1998, Chap. 1Gdd
[Main, 1999, Chap. 14]4These problems will not be covered here even though
their solutions are part of a consistent character behaviou

Base layout

Base layout concerns the problem of how to construct bugklsuch that the po-
sitioning allows buildings to fulfil their purpose in the gamAn example could
be a building which must be defended. It could be positiortetthe far end of

the base such that enemy units must travel further to reabefensive buildings
should maximise protection of the base. Building positignshould also allow
for quick passage of friendly units. Positioning walls adtuces further consider-
ations. An attempt at solving these problems using gragbrsthms is described
in [Grimani, 2004.

Resource management

The problem of resource management involves which and wésources should
be gathered and spent. The Game Al method responsible tamzsmanagement
needs information about the amount of resources availaitleeomap, an estimate

44

CHAPTER 3. GAME Al PROBLEMS

of how much can be gathered given a time frame and heurisstosaing the
military and technological needs of the participant. Giveis information the
Game Al method provides a handling of resources.

Map analysis

The map is analysed to find places of interest such as strdtegilocations. Lo-

cations with many resources, good positions for bases astligges which are

suited for ambushes are all of interest to a participants Game Al method is

also responsible for studying the map for static informagach as where moun-
tains and water-deposits are located. Dynamic informagioch as enemy unit
movement and placement of opposing bases must be evalunateal time, since

this information changes continuously. For a presentaif@alayered method for
handling map analysis, sé&ent, 2004.

High level tactics

When and how to attack the enemy units, how to ambush the eneits/and
estimating what offensive capabilities are needed areaatspf high level tac-
tics. This Game Al method should provide solutions to thatfmsng of several
groups of units. Factors to consider are the units’ defenaid offensive capa-
bilities so key locations can be protected or enemy groupsbeacountered. As
reference to Game Al methods for high level tactics in ddfégrdomains, see
[Champandard, 2003, Chap. 44 &]4md[Ramsey, 2004

Small scale combat (SSC)

An SSC situation consists of several units from more thanfaogon fighting
each other. The problem of positioning the units is calied placementvhile
the problem of maximising damage to enemy units is cabeget selectionThe
problem ofgroup decisionss of more general nature such as when to flee an SSC
situation.

Since these concepts are the primary focus in this thesss thre further elab-
orated upon in the following section.

3.4.3 Subproblems in small scale combat (SSC)

We have identified three sub-problems which we believe tosserdial in solv-
ing the SSC problem. These are described in the followinggaleith concrete
examples of problem instances.

45

CHAPTER 3. GAME Al PROBLEMS

Target selection

Target selection is the problem of hawunits should target enemy units given
a map and the status and capabilities of all units.

E.g. should the ranged units concentrate on firing on a serg@eny unitor is it
better to let every ranged unit fire at different enemy unitis€ problem depends
on the enemy units’ health, the amount of damage which canfbetéd and the
types of the enemy units. Positioning of the units is alsoartgnt, since some of
the ranged units might have to move before attacking.

Unit placement

The problem of unit placement is how to positioanits given a map and positions
of menemy units.

E.g. should the ranged units be positioned close to the en@itg/as sacrifice
thus giving the enemy something to attack while the meletsatiack from the
side? Is it perhaps better to have formations in which upitew a given pattern
such as ranged units move to the left of the enemy units andemglits move to
the right?

The quality of the solution depends very much on the tardetgen method
used and thus solving this problem could decrease or imgh@s/eolution to the
target selection problem.

Group decisions

The problem of group decisions involves how the units as agh®haves.

E.g. should the group attack from the left side, the righe ©idflee from the
combat situation? The quality of the solution depends on aoivplacement is
performed and how target selection is applied.

3.4.4 Consistent behaviour in SSC situations

As previously mentioned in section 2.3 on page 20 consisteartacter behaviour
means that the characters appear as a part of the game wogdrticular, this
implies that the RTS units need to follow the rules and thefteegame world.
For units to portray consistency the units must be seen asised combatants. In
an SSC situation this means that the units involved muste@adg as real soldiers
would, i.e. fight efficiently. To obtain this illusion of sokt behaviour a near-
optimal solution to handling the SSC situation is needed.

As Buro and Furtak discusses [iBuro and Furtak, 2044we are also con-
vinced that RTS games are won on high level decisions. Toexe$upport rou-
tines must be able to assist the player in the handling osuWE believe that by

46

CHAPTER 3. GAME Al PROBLEMS

handling SSC situations as optimally as possible the bebawf units in an SSC
situation becomes consistent, because soldiers in a ganhekkimow how to fight
given the conditions and limits of this world.

Optimal behaviour in SSC situations is to minimise susthidemage while
damage dealt is maximised. This is a balancing act, sincemmsirg the dealt
damage requires that the units engage in combat and theeebive damage.
Optimality thus implies that the chance of winning the SSQation, i.e. Killing
each enemy unit, is maximised.

As handling of SSC situations can be implemented as a suppgdihe avail-
able to players and participants the gameplay (see sectBoonZpage 20) of the
RTS game shifts from manual handling of SSC situations tb-fegel decisions.
As a support routine the optimality of the solution to SSCdoet decrease the
entertainment value of an RTS game, as discussed in sec8¢hdh page 24, but
the gameplay merely shifts focus.

47

Chapter 4

The Wargus platform

"It's not easy being green”
- Warcraft Grunt

To measure the performance of our solution to small scalebedftSC) an ex-
tensible and commercially comparable RTS game was needeadhdée to use
the game engine known &tratagus[Stratagus, 2034 due to its maturity and
reliability. The Stratagus engine delivers a platform inethdevelopers can im-
plement an actual RTS game. Several games exists for Sissdéizgl we chose the
Wargusgame for our solution.

In the following the story of Wargus will be introduced. Afteards, the rules
and game world of Wargus are presented.

4.1 The Wargus game world

Wargus implements the complete Warcraft [| game which mdaatdVargus fully
adopts the story, setting and game world of Warcraft Il.

The Warcraft series are set in the fantasy world of Azerotleremythical
creatures like elves, humans, dwarves and orcs roam. THe fhaws with magic
allowing all races to bend reality at their will. Unfortuedt, the handling of these
powers got out of hand and attracted the attention of powddmons intending
on destroying all life. The demons managed to corrupt the.ofbe orcs now
bloodthirsty and crazed had only one purpose in life: to gheheir thirst for
battle. The demons let the orcish horde run rampant on Azefbis is the setting
for Warcratft I.

When Warcraft Il starts, the orcish horde has almost wipéaliaf the human
race. A handful surviving humans were able to rally the dwamand elves to their
cause. From this pointon itis the player’s responsibibtfurther discover the tale
of Azeroth. For the complete tale of Azeroth as told througghgames Warcraft
I-111, readers are referred tdlizzard, 2004.

48

CHAPTER 4. THE WARGUS PLATFORM

4.1.1 Scenarios

A typical Wargus game calledszenariostarts by explaining what the player must
do and why. Common main goals in Wargus scenarios includtiosving:

e Destroy the opponent All players start out almost equally regarding re-
sources and must each build and maintain bases and coretmies. This
is a skirmish scenario.

e Survive for x minutes: Resources are sparse and units are limited. The
opponent is considerably stronger and attacks continuBfg number of
minutes usually ranges from ten to thirty minutes.

e Destroy or protect a specific assefThe player must either destroy or pro-
tect some asset in the map. Typically this asset is a unit iddibg. In the
case of a unit it usually represents an important NPC in g .st

e Adventure mode The player only has a fixed amount of units usually a
handful at his disposal and the map is designed for expl@nmbadventur-

ing.

Wargus also contains a campaign mode where the player ®llowredefined
set of scenarios. Together these scenarios constitutetabtaion to the tale of
Azeroth. In this thesis we solely focus on the skirmish sdesa

4.1.2 Map

A map in Wargus is a discreetx m matrix world where field(i, j),i € [0,n—

1], j € [0,m— 1] can contain one land unit or an environmental feature such as
a rock, a tree or some water. Fields with environmental featare always un-
traversable by land units and in some cases flying units aceuslable to traverse
the field in question.

4.1.3 Units

The units in Wargus have different abilities and strengffisshave chosen a subset
of the many available units in Wargus for inclusion in ourusin to the SSC
problems. The units in Wargus fall into the three categotasvesters, combat
units and specialised units, as described in section 3rghge 40. Each type of
unit has different actions available. In this thesis onkyasic units of typenelee
and typerangedwill be examined thus ignoring the siege-type units, haeres
units, flying units and advanced melee and ranged units.

49

CHAPTER 4. THE WARGUS PLATFORM

In Wargus the basic human affiliated melee and ranged umatsalledfoot-
menandarchersrespectively while the orcish counterparts are cafjashtsand
axethrowers A footman and a grunt have identical attributes just asexschre
identical to axethrowers — only the associated graphidsrdif

It should be mentioned that other units in Wargus have othtebates —
Knightsan upgraded footman is faster than footmen &heen rangersan up-
graded archer can shoot further than archers. These typawarconsidered in
the method presented.

Unit actions

A unitin Wargus has the possibility of moving in eight ditéet directions, as well
as standing still. Figure 4.1 on the next page shows a lona,gheG depicted,
standing in an empty section of a Wargus map. The movemesitplises of this
unit is showed. Since no obstacles nor other units are aajate unit has eight
possible movement actions.

When a melee unit attacks the targeted enemy unit must beistaim one of
the eight adjacent fields, because the melee unit’s attaulerequals one field. A
ranged unit can attack enemy units from a distance. In Watfgaslistance for
archers and axethrowers is four fields from the unit’s positRanged units can
also shoot over some environmental features making thé hoap information
extremely important for this type of unit.

As mentioned in section 3.4.1 on page 40 RTS games subdiwgsl dime
second into several micro-turns called game cycles. Watiyudes a second into
30 game cycles. The time needed to complete an action, tle'adime-length,
differs in most RTS games and this is also the case in Wargssardstill-action
takes one game cycle to complete while a movement actios tetkgame cycles.
An attack from a footman or grunt takes 26 game cycles whilattack from an
archer or axethrower takes 66 game cycles to complete.

It should be noted that damage dealt from attacks is notcathtidecided.
Each time a unit deals damage small fluctuations (randoiisgtare incorpo-
rated. E.g. melee units deal between two and nine pointsrafda instead of a
constant value.

How actions are handled by the Stratagus engine requirescé gurvey.
When a unit begins an action an animation-loop depicts taptgcs seen on the
screen. When a predefined number of game cycles have elapgetanimation
the effect of the action is applied within the engine. Thisamethat the effect is
applied before the action is completed. The predefined numslsefined in the
CCL-scripts on a per-unit type basis.

Figure 4.2 on the next page shows several units about to eotebat. The
star depicted in the middle section of the map segment reptesan obstacle,

50

CHAPTER 4. THE WARGUS PLATFORM

Figure 4.1: The movement possibilities for a lone melee unit

'ﬂ
>
>
>

Figure 4.2: A scenario with several units

e.g. a rock, and cannot be traversed. The unit depicted &sisa footman and

the Gs are grunts. Archers are depictedAss How this actual combat situation
ends depends on the tactic used. In this situation the Huathghe Orcs are
approximately equally strong.

4.1.4 The built-in participant

The built-in participant in Wargus assumes the role of a huplayer. The par-
ticipant has no level of difficulty setting so players canadjust the difficulty of
this built-in participant. When more challenge is desireel player must choose
to fight two or more built-in participants simultaneously.

The built-in participant in Wargus uses the interface pied by the Stratagus
engine. The CCL provides an interface for Game Al modificatiothe form of
an order-queue. Each order is executed consecutively ipattieipant. Examples

51

CHAPTER 4. THE WARGUS PLATFORM

of orders are to build a barrack or to train a footman. Thepsefilling the order-
gueue is provided by the developers of Wargus and they contavariations in
the composition of orders. The optimality of the queue theggsathds entirely on
the order-composition. This method results in similarkiog bases and identical
groups of units. The scripts incorporate a trigger mectmanvich allows scripts
to activate when certain conditions are met. E.g. an attewk fan opponent or
the completed construction of a building. The activategpsthen fills the queue
with additional orders.

When an SSC situation arises the default behaviour of this talkes over.
To avoid a seemingly static group behaviour the Wargus deeet use a sim-
ple cheat to enable a more consistent behaviour. They isereach participant
controlled unit’s sight range by two map-fields comparechtplayer controlled
equivalents. When a player encounters participant cdattainits these move to-
wards the player’s units before they are within sight rafidps creates the illusion
that the participant units already were moving around wihiéy truly were not.

52

Chapter 5

Game trees applied to small scale
combat

"Under a good general there are no bad soldiers"
- Sun Tzu

The primary goal in this chapter is to present a solution égaitoblem of creating
consistent real time strategy (RTS) unit behaviour in sreedlle combat (SSC)
situations, as examined in section 3.4.3 on page 45. Themexsmethod handles
SSC situations near-optimally by means of a timestampedinaduced game tree.

This chapter starts with an overview of methods for solvilBLCSsituations.
Secondly, an introduction to game trees and a definitionméstamped game
trees are presented. Then three sections are dedicatedgmthlems which arise
when using game trees. Finally, a discussion of how to meakeroptimality of
a method for solving SSC is presented.

5.1 Methods for solving SSC

We have investigated the game mechanics of Wargus and nousbliehaviour
model resulting in a near-optimal solution to SSC could lenidied. Therefore,
more complex methods for controlling characters are nedddithis section we
will describe the advantages and disadvantages of thesmdeet

5.1.1 Rule based methods

A rule based method uses rules to govern unit behaviour.dlke normally have
access to map information and unit states. Based on thiemafiton actions for
units are derived. The rules often consist of nested then - el se statements

53

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

which combined with information of unit states is equivdlenFinite State Au-
tomata[Kozen, 1997, Chap.]3

To apply a rule based method to SSC the wanted behaviournsfidd and
then encoded in the rules. If the wanted behaviour for a and attack the nearest
enemy unit a rule implementing this behaviour have to sd¢lechearest enemy
unit and attack it.

An advantage of a rule based method is that when the wantealioein is
identified the rules are quickly both implemented and exeatuhdditionally, be-
cause the rules have full control over the units a wide rarfgeebaviours are
achievable.

A disadvantage of the rule based method is that when unitsuener a sit-
uation not anticipated by the designers of the rules thehebais undefined.
The optimality of the rules thus depends on the designemérstanding of the
problem domain.

5.1.2 Evolutionary based methods

An evolutionary based method uses an Evolutionary AlgorifEA), [Mitchell,
1997, Chap. B [Nilsson, 1998, Chap.J4[Callan, 2003, Chap. 1&and[Michale-
wicz and Fogel, 2004 to evolve character behaviour. An EA is a randomised,
parallel, hill-climbing algorithm which optimises a prdoted fithess function.
Deriving a fitness function to describe all nuances of SSChalenging since
SSC contains many elements. Elements such as positiorangge dealt and re-
ceived, enemy units’ actions and current unit states alienfte the optimality of
a solution.

To apply an EA to SSC the behaviours of the units have to bepetaaised
in some way. E.qg. if rules describe the behaviour of units AncBuld evolve
compositions of rules and at the same time also tune the péeasnn the rules.

An advantage of using an EA is its ability to locate near+ojli solutions
given enough computation time. Additionally, no prior kriedge of how an op-
timal solution might look is needed to locate a near-optiszdition.

The EA method also has disadvantages. No guarantees famip@anear-
optimal solution within a certain timeframe can be givenisTineans that an EA
might run for extensive periods of time and only locate padutsons. The fithess
function raises another problem, because it must rateisnkito the problem
domain accurately. Otherwise, good solutions from the E&hnresult in poor
solutions in the actual problem domain. Lastly, an EA aldponirequires extensive
tuning of selection, mutation and crossover-methods.

An example of an applied EA method is Per Jefsen’s evolutionzethod,
[Jefsen, 2000 to develop solutions for SSC. In order to do so he implentente
his own simple RTS game. In this, the units had a very limigatge of actions

54

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

and attributes. He used a genetic programming algorithmeteldp finite state
automatas to control the units. Jefsen concluded that thétsewere promising.
But the game was much too simple and he suggested that imetirgpadditional
actions and types of units would provide more interestirsglts.

5.1.3 Game tree based methods

A game tree based method models SSC situations by calalatinre game
situations. This is done as in Chess by examining all possbtions from the
current state and estimating their effect.

An advantage is that game tree allows for near-optimal swistwhich in
the problem of SSC gives consistent character behaviodikéJtne rule based
method this method has the advantage of estimating the metod all possible
actions before actually choosing an action.

Applying game trees to SSC situations raises three fundahissues. The
size of the game tree is one. The number of game states issreaponentially.
Removal of unwanted game states somewhat alleviates thidgon. Secondly,
the representation of a game state in the tree must be degmted Thirdly, it
is obvious that if the tree can be fully built the only remaipichallenge is to
select the optimal path through the tree. Stated conci€glge the tree is built the
problem is to choose the path where the chance of winning Ismised while
the opponent’s chance is minimised.

We have chosen to investigate the performance and appiigatbigame trees
to handle SSC situations. In the following sections gamestiend the attached
issues will be examined in detail.

5.2 Game trees

A game tree is a game modelling method used primarily in bgardes such as
Chess and in the Chinese game of Go. A game tree is a datéusérwdich mod-
els a course of a game by looking at possible moves each mlaggyerform each
turn. An action corresponds to a change in game state. Eagtaom in Chess is a
valid relocation of exactly one of the player's Chess-pgedée nodes in the game
tree represent states in the game and encapsulate relevaatdppendent infor-
mation. E.g. in Chess each node contains information abbetaveach Chess-
piece is located. Whose turn it is to move a piece is impli@ticoded in the tree
since each level in the tree directly corresponds to eagreptaturn. Therefore,
this information is not encoded in the nodes.
Formally speaking a game tree is a non-balanced tree whererealen is

equivalent to a state in the game. The edges representtivasdbetween game

55

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

\
/

;%ﬁ/gx
%\oo
i

Q01X
S % 0.—.

4%/“
N
_%E/

-5 o\ g

0
QX
>

Q0]

X
e X 0_

Figure 5.1: An example of a game tree in the gam@&iofTac Toe

states. Noden's fanout corresponds to the number of possible moves fram th
staten represents. The root of the treeepresents the start-state and the nodes in
the first level, i.er’s children represent the states reachable with a singleemov
The path from the roat to a noden is thus the series of moves which leadsito
fromr.

Game trees have been used effectively in turn-based boardsyahere play-
ers take turn playing one piece at a time. Turn-based ganeegearerally well
suited for a game tree method, because each level directigspmnds to a single
player’s turn to act.

An example game tree used in the gam@&iofTac Toes depicted in figure 5.1.
The root of the tree represents the current state of the gacieia the player who
placesXs on the board who is next. Since this player only has thresilpbses
of placing anX the root's fanout is three. Beneath each leaf-node is a nuarize
this number indicate the end-result of the game. In the chaezero underneath
the leaf the game ends in a draw. If the number underneathid d@ine player who
placesXs has lost. Finally, a win-situation for théplacing player is indicated by
an 1. The problem is for th&-placing player to choose a move which minimises
the chance of losing while maximising the chance of winnifige optimal way
to play from this specific state is to select the move whichltesn the right-most
sub-tree. This is optimal, because this move either resulidie, the left leaf, or
in a victory, the right leaf. So independent of what move thpanent makes the
X-placing player cannot lose. The figure is frgBrockington, 2000}

SSC is somewhat similar to ordinary board games. Both typgsimes use

56

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

a discreet matrix for game world representation. The mdfaréince is that units
in RTS games can be moved simultaneously in real time. Fumibve, the actions
available to the units have different time lengths assediatherefore, modifica-
tions to the traditional game tree method are needed.

5.2.1 Timestamped game trees

In real-time games an ordinary game tree method is inadeqUhé action of the
units can have different time lengths. E.g. maveould take two game cycles to
execute and movk could take three game cycles. In ordinary turn-based board
games all moves have equal time lengths — in Chess, the tieteeddo move a
Queen equals the time needed to move a Pawn. In real time gamesmodifi-
cations to the game tree method must be thought of. What tedeis a way to
represent the time length associated with the actions.

A timestamped game tree encodes the basic information fr@rotdinary
game tree, but also encodes the time needed to move from stes¢ate). This
is done by timestamping each node such that mpdehildren,njy, njo, ..., Njk,
all have higher timestamps than The root has due to the above definition the
lowest timestamp in the tree.

Table 5.1 shows the actions available to the Wargus units.fifst column
presents the name of the action and the second column shewassbciated ab-
breviation. The third column shows the number of game cyatsociated with
the action. Finally the damage of attack-actions is shovatelthat a melee attack
has the same abbreviation as a ranged attack.

Name Abbreviation | Game cycles| Damage
Stand-ground SG 1 -
Move upper left UL 16 -
Move upper UP 16 -
Move upper right UR 16 -
Move left LE 16 -
Move right RI 16 -
Move lower left LL 16 -
Move lower LO 16 -
Move lower right LR 16 -
Melee attack fronx againsty XVYy 26 2t09
Ranged attack from againsty XVYy 66 3to9

Table 5.1: Actions available to Wargus units

57

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

1-UL~ 1-UP/1-URI-LE \I-RI

1-U 1-UP/ 1-UR[L-LE \1-RI 1Ll

Figure 5.2: A sample timestamped game tree

Figure 5.3: The situation, which figure 5.4 and figure 5.5 nhode

The tree in figure 5.2 is a timestamped game tree built for glesiarc grunt
with all movement actions available. This is similar to thteation in figure 4.1
on page 51. The tree is built with a lookahead of one game eyloéze the actions
available in the next game cycle also are included. The nusribside the nodes
are the timestamps. The text on the transitions tells whigtsware performing
actions in this timestamp and gives an abbreviation of them@sin concern. The
text always binds to the left transition. The leftmost clofdthe root models an
SG-action for unit 1 whereas the rightmost child models arelcRon also for unit
1. It can be seen from the figure that the grunt has eight monepussibilities
and one stand-ground action available in game cycle 1.

Figure 5.3 shows a situation where two opposing units, atgnmh a footman,
are adjacent. A sample game tree, where unit 1 (the gruntuan@ (the foot-

1 RI l RI 1-RI 1-RI 1v2 1v2 |1v2 1v2 1v2 1-LR 1-LR 1- LR 1- LR
2-LO 2-LR 2vl/ 2-URP-RI 2-LR 2vl 2-UR

Figure 5.4: Two opposing units ready in the same timestamp

58

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

Figure 5.5: Two opposing units ready in different timestamp

man) both are ready to perform actions in game cycle 1 is tipia figure 5.4
on the preceding page. The fanout of the root becomes theigiroflactions of
both units. Unit 1 is placed in the top left corner of the mapmitry(0,0) whereas
unit 2 is placed just below in ent{@,1). Unit 1 has three possible actions: move
right, lower right or attack. Unit 2 has five action possiigs. A total of 15 pos-
sible combinations of actions. As figure 5.4 on the previcagepshows the total
number of children is 13 which could be confusing at first gearThe reason why
there are 13 combinations of actions and not 15 is that twbefttion combi-
nations are illegal — they conflict. The problem is that twasiare ready at the
same time and both want to move into the same field. This situat resolved by
letting only one unit move. Figure 5.4 on the preceding pdge iflustrates the
timestamping of nodes. Firstly, the shaded state with tiamep 27 occurs when
both units choose to attack. Secondly, the timestampindnase nodes where
only one of the units attack are also of importance. Thes¢imestamped with
17, because the movement action is completed before thekattaion and thus
the moving unit should be allowed to take action(s) againameg cycle 17 and
not wait until game cycle 27.

In figure 5.5 a similar situation to the one in figure 5.3 on thecpding page
is shown. The difference from figure 5.4 on the previous pagiat unit 1 is
ready in game cycle 1 and unit 2 is ready in game cycle 2. It easden that
in the middle subtree unit 1 has already begun an attack.rregaccle 2 unit 2
is allowed to perform actions. If unit 2 performs a movemestiam it is ready
again in game cycle 18 thereby letting unit 2 begin anothgomadbefore unit 1
has finished its attack.

Generally, units are not ready to perform actions in the sgarae cycles.
Therefore the kind of tree presented in figure 5.5 is encoedtmore frequently
than the kind of tree shown in figure 5.4 on the previous page.

59

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

5.2.2 Issues

As mentioned in section 5.1.3 on page 55 three issues musirigfdd to apply
game trees to SSC situations.

How SSC situations are represented is one of them. The esgsg®n of a
game state must be precise enough to capture the esseatiigiefe e.g. unit states
and environmental features. How this is done is examindtidéuin section 5.3.

The size of the game tree is another issue. To get an idea sizéhef the game
tree, recall that the fanout of a node is calculated as theéyatoof the available
actions of the units. Assume that four units ready at gamk e are involved
and that the lookahead is 150 game cycles equivalent to fillel@ek seconds in
Wargus. If three movement actions are available to eachthmitesulting number

of leaves is
150

3T _ 81104 1,21 x 1019 (5.1)

This tree can obviously not be fully built within the real #nconstraints of the
game. This issue is elaborated further upon in section 5ghge 64.

When the game tree has been constructed the remaining ssisoe o assign
a numerical value to each node to determine the node’s ddaya/Vhen this has
been done, the actions leading to the subtree minimisingtthece of losing and
maximising the chance of winning can be chosen. Handlirgjisisue is described
in section 5.5 on page 75.

Measuring the quality of solutions to the above three issudgficult. These
depend on each other to deliver a solution to SSC. It is plessikestimate the op-
timality of the game tree method but this implies only tha three sub-solutions
work well together and not whether each one is solved oplymal

5.3 Representation

A node in the timestamped game tree represents an SSCaitaadimore or less
simplified image of the game state. We will from here on rebethis simplified
image as anapshatA snapshot encapsulates the position of each unit, the map
environment and also at which game cycle each unit is reaggiorm actions.

A snapshot is a 28 20 subset of the map centred around the group of controlled
units. The snapshot corresponds to the controlled unisvaf the immediate en-
vironment. Furthermore, a node contairibi@at matrixdescribed in section 5.3.1
on the following page which form the basis of the rating methpplied as ex-
amined in 5.5 on page 75. A sample SSC situation, the comelspg snapshot
and threat matrix are shown in figures 5.6 on page 65, 5.7 oa agnd 5.8 on
page 66.

60

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

Note that we ignore the fog of war described in section 3.4.page 40 since
we implicitly assume that all of the snapshot is within siginige of the controlled
units.

Transitions between two snapshots are nhactions, which lead from one
snapshot to another. In Chessalways equals one because moving two pieces
simultaneously is not allowed. In an RTS gamean be as large as the number
of units considered since units can perform actions simattasly. Each transi-
tion thus models a change in state such as a change in uniiopssichange in
unit state or a change in the environment. When a transisareated the re-
sulting child node is timestamped with the minimum completime of all non-
completed actions in the path from the root to this node. FEtaits of how the
timestamped game tree is constructed, see section C.2 2g@n1j38.

5.3.1 Threat matrix

In Chess each piece on the board is given a value which deitgddssirability.
This value is based on empirical and experimental studeldMeeks, 200bthe
values of Chess pieces are investigated. These do not clraudigféerent Chess
situations but are merely used to assess the game statebVheQueen with
value nine is not traded directly for a Rook with value five.

In an RTS game context the value of each unit depends very ondhe
situation at hand. The environment, the actual unit-plaa#rand the composition
of units all have a strong influence on the desirability of ithgividual unit. E.g.
if a unit has a low number of hitpoints this is worth less thanae “lively” unit.

A threat valueg(TV) is a value assigned to units. It constitutes the desitgb
of the unit — the higher the value, the higher the desirgbilihe value is not
statically calculated as in Chess but is based on a numberriaible parameters.
A threat matrixis a 20x 20 matrix of TVs derived from a snapshot. Each entry in
the snapshot can contain one unit and maps to the same ettitiy tinreat matrix
and contains the TV of this unit. Entries in the snapshot wihunits contains a
default TV of zero. A threat matrix corresponding to the stagt in figure 5.7 on
page 65 is depicted in figure 5.8 on page 66.

5.3.2 Deriving a threat value for units

As mentioned above a threat value (TV) represents a unsisatzlity. The higher
the TV, the more desirable the unit is perceived. No litemtlescribing the value
of RTS units has been found. Therefore, the following is asaely on our
understanding of the Wargus game rules.

When is a unit then desirable? A unit which deals damage tognaits is
generally of higher value than one that has to move to deahdarsince game

61

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

cycles are wasted on moving around. If game cycles are usedovement the
game cycles are not used for dealing damage, but moving ceone cases in-
crease the effectiveness of the unit. Recall from sectidl&n page 46 that one
of the goals of solutions to SSC situations is to maximiseddmaage dealt. When
no enemy unit can be attacked the number of move actions deedget within
range becomes important. The attributes of a unit also infleéts TV, because
these represent the flexibility of the unit.

With the above in mind we have identified four different aspdbat must
be incorporated in the formula for calculating TVs. Againfethat no literature
describing how to estimate the threat of units in a RTS gamenbabeen found.
The found literature described turnbased equivalentstefbie, the following is
based on our understanding of threat of units in a RTS gamemodr empirical
testing in the course of this thesis.

1. The unit’'s type A numerical value is introduced for each different type
of unit in the game. The value represents the flexibility & tiipe. The
higher this value the more flexible. In Wargus there are sé\atributes
describing the abilities of each type. The following integéributes have
been identified as important and are incorporated in theavalu

AttackRange(uThe maximum Manhattan distance counted in fields from
u's position, in which enemy units can be attacked. The higher
attack range, the more useful the unitis.

DamageDealt(u)A value which serves as the base for the randomised
damage dealt by when attacking. The higher the damage dealt, the
better.

Armour(u) When calculating the damage which a unit receives from an
attack this value is subtracted. The higher the armour, ¢ieih

MovementSpeed(The speed of a unit. All units included in our solution
have the same movement speed. But to incorporate nuanceticd f
unit types this variable was also added. The higher the spleedet-
ter.

MaxHP(u) The maximum amount of hitpointscan have. The higher hit-
points, the better.

AttackTimelnGameCycles(Hpw many game cycles an attack performed
by u takes to complete. The higher the value, the slower thelattac

The factor representing’s type in the TV calculation iUT(u) and is

62

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

calculated as follows:

1
AttackTimelnGameCyclas 8
DamageDealtu) x Armour(u) x MovementSpegd) x
MaxHP(u) (5.2)

VUT(u) = AttackRangg) x

. Amount of hitpoints A unit’s hitpoints is a very crucial factor. This number
indicates how long the unit will be able to contribute to tH&CSsituation.
Meaning, the higher the hitpoints, the better. To captuiedbpect the rel-

ative amount of hitpoints is calculated ;:FF),((‘IJJ)) whereCurHP(u) is the
actual amount of hitpoints af.

. The placementA unit having to move to attack an enemy unit is as before
mentioned not as desirable as a unit having an enemy unitnwithattack
range. To capture this aspect the number of movement actemded to get
an enemy within range is incorporated in the TV calculations

Thedist(u,v) is introduced where andv are units to indicate the number
of movement actions needed for uaio reachv. This equals the Manhattan
distance between unitsandv. The nearest enemy unitis located as follows:

o) = e i IS 5.3
When the nearest enemy unit is found the factor introducimeg place-
ment aspect can be given. The valistTCE(u) quantifies the notion of
either having an enemy unit within range or having to moves greater
the distance to the nearest enemy unit, the highistT CE(u) becomes.
l.e. the lower theDistTCE(u), the better. NoteAR(u) is a shorthand for
AttackRanggu).

. 1 dist(u,e(u)) <= AR(u)
DistTCHu) = { dist(u,e(u)) —AR(U) +1 otherwise
(5.4)
The reason for not using titst(u,v) by itself is that the ranged units have
an attack range greater than onedli$t(u,v) was used alone the ranged
units would be less desirable even if enemy units were wiltieck range.

. The ready time When calculating the threat matrix of a snapshot, a subset
of units are ready to perform actions and others are not.efbi, it is im-
portant to know when a given unit is ready to perform actidine function

63

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

gameCycleT NAJ) is the number of game cyclesrequires to complete
its current action. This implies that a logameCycleT NA) is favourable
compared to a high one.

Having introduced the four different aspects the equatorcélculating a TV can
be presented:

CurHP(u)
VU T (u) MaxHPu) +1

N \/DistTCE(u) x </gameCycleT NAI)

TV(u) (5.5)

For a unit's TV we chos&UT(u) as a base value. Since the relative amount of
hitpoints of a unit is a very crucial factor we raise the baskei® to the power of

,\C,,:;:FF),((TJ)) + 1. This ensures a huge reward if the unit has a large amount-of h
points left. The square root @iistTCE(u) and cubic root ofameCycleT NA1)
is introduced, because through empirical testing we fotatithe importance of
these factors were less than linear in their value.

Equation (5.5) is normalised to the rangg@fl]. If the formula is calculated
for an enemy unit the value is negated and the range becemeg . This implies
that an enemy unit with a TV of 1 is more of a threat than an enemy unit with a

TV of —0.5.

5.3.3 An SSC example

In figure 5.6 on the following page an SSC situation from Warguvisualised.
The figure shows how the player perceives the situation. Batghhas an equal
number of melee and ranged units (one melee unit and two damgés). It can
be seen that the grunt which is fighting with the footman has fjeceived four
points of damage. It is indicated by thel hovering over the grunt.

Figure 5.7 on the next page shows the snapshot of the situatic figure 5.8
on page 66 depicts the associated threat matrix. In figur@d.Bage 66 each
number represents the units’ threat values. It can be seghi orc grunt is of
lesser value than the human footman which is due to the anadinitpoints.

5.4 Pruning

As mentioned in section 5.2.2 on page 60 the large size ofaheegree must be
handled within the time constraints. In Chess the time camgtimposed is often
in terms of minutes generally one or two. In a real time ganedithe constraints
are much more restrictive and a more heavily pruning of theegree must be
incorporated. In Wargus the specific time constraing%ssecond as mentioned

64

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

Figure 5.6: An SSC situation in Wargus

Figure 5.7: The snapshot corresponding to figure 5.6

65

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

Figure 5.8: The threat matrix derived from the snapshot mrég.7

in section 4.1.3 on page 49. However, we focus solely on inipgothe game
quality of Wargus. If the time constraint is violated but nften and not by much
the perceived quality of the game does not diminish as thgepldoes not notice
these violations.

Traditionally, one way of reducing the size is having a h&twriwhich decides
for each constructed node whether to construct its childigorithms such as,
Min-Max-search andr — B-search|[Nilsson, 1998, Chap. 1and[Bjérnson and
Marsland, 200}, are examples of heuristics.

We have chosen a heuristic method which reduces the size tretiby choos-
ing to construct a subset of a node’s children. In sectiorl®t page 53 a method
for solving SSC using rules to derive actions from the curs#imation was pre-
sented. The general idea to reduce the game tree’s size gettha rule based
method as the heuristic for choosing the subset. This allssvi® estimate the
outcome of each of the available actions. The success opthrsng method re-
lies only on the quality of the rules. Poor rules can prunedtgrable game states
and result in sub-optimal performance. Therefore, desmine rules must be
done very carefully. If done right the less desirable gamagestwill be pruned
while the good states will be kept for potential evaluation.

A problem with the rule-based heuristic is that enemy uniéskeeyond con-
trol. To model the actions of the enemy units three optioesaaailable. First, the
span of actions of the enemy units can be untouched. Meahnatdhe precision

66

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

of future game states is very high since the tree models aBipdities. Unfortu-
nately this option is infeasible, because the size of theegee is not reduced
for the enemy units.

Secondly, the actions of the enemy units can be handled ws#t af rules.
Either the set applied to the controlled units or a sepaeitelsis means that the
precision of future game states decreases since it is iithplassumed that the
enemy units follow the rules.

Lastly, all actions of the enemy units can be ignored impythrat the enemies
always stand still. This is of course very imprecise. In tlaeng these always
perform actions. However, since only near-future situadiare considered this
estimate is partially correct.

Given these options we have chosen to use the third optiorottehenemy
units. This was chosen, because the first option is infeadddth the second and
third options produce inaccurate future game states. Heryéwe third option
decreases the size of the game tree compared to the second.

In the following several rules and sequences hereof willlesgnted. We have
designed the rules with simplicity in mind to allow compasit of the rules into
sequences. Although all implemented rules and their efiécbe described, only
a subset of the rules has been incorporated in the rule-segsi@s described in
section 5.4.3 on page 73.

5.4.1 Rules for game tree pruning

Before the pruning of a game tree node is performed the faadls total number
of available actions as described in section 5.2.1 on pagé/6én selecting the
subset of nodes to construct the number of available actoresach unit must be
limited. A rule used to select the subset consists of a piiton and an effect.
The rule’s precondition captures in what situations the applies. The effect of
arule is a reduction in the number of available actions fehamit. A rule is said
to click if the precondition is satisfied.
Since a few of the rules use a concept knownrdlsience-mappingas de-

scribed in[Sidran, 2008 and [Sweetser, 20G4this concept will be introduced
before presenting the set of rules.

Influence mapping

An influence maps a strategic perspective typically used by Game Al modules
Conceptually, it provides an overall representation oinaronment. It is placed
on top of an environment to gather knowledge in a compressauhar and stores
game-relevant data. Typically, information about playegrggth, resources, valu-
able assets or unit passability is stored.

67

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

T]
o

Figure 5.9: A sample influence map

Figure 5.9 from[Sidran, 200} depicts an influence map, storing information
about player strength. The figure contains six units, thhee &nd three red. Each
unit has a value representing its effectiveness or strefigitase values are visu-
alised as circles. The colour gradient shows the strengtieadinits’ influence. In
the areas where the red units’ circles overlap, each urtiitength contributes to
the influence in that area.

The information stored in the influence map we use regardseplstrength.
Our influence map subdivides a snapshot into a smaller n@irigisting ofcells
A cell represents a connected area of the snapshot and sheresumber of
friendly and enemy units in that specific area. Each cell ateoes a value for
each player which represents the strength of each playersiféngth of a player
in a cell influences the value in all other cells. This valuedkulated in two steps:

1. Initialisation Each influence map cell is initialised with a mapping from
snapshot fields to cells. Each cell is then updated to conkearsum of
threat values (TVs) of each player’s units in the fields wntthis cell. TVs
were defined in section 5.3.2 on page B4,y denotes the initialisation
value for the playep in the cell with coordinategx,y). IV xy is calculated
as follows:

Vpxy = TV(u) (5.6)
ucPlayerUnitsinCel(p,x,y)
wherePlayerU nitsinCel(p,x,y) is the set of units within the cell with co-
ordinategx,y) controlled by the playep.

68

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

2. Influence In the influence step cells influence each other by lettingesl
“flow” from cell to cell. This is done with a diminishing factd based on
the distance between the two cell3/, x y denotes the final value for player
p in the cell with coordinate&x,y). CV, xy is calculated as follows.

i, iy .
CVoxy =Vpxy+ 3 IVpijx A" (5.7)
(i,j)eCells

where 0< A < 1 andCellsis the set of all cells in the influence map.

For more information concerning influence maps and theiliegiulity with neu-
ral networks se¢Sweetser, 2044

5.4.2 Rules

The rules presented in the following reduce the span of agtior a single unit.
As previously mentioned each rule has a precondition andfanoteThese will
be presented along with a description of the rule. This lisutes is devised by
the authors and is based on primitive rules used in other Rih%eg and on our
understanding of the Wargus game rules.

No enemy in cell

The No enemy in celtule applies if there are no enemy units located in the in-
fluence map cell of the considered unit. If this rule clickse tonsidered unit’s
span of actions is reduced such that the unit moves towaedsfiience cell with
the highest opponent value. We chose to let this reductiavel¢hree movement
possibilities towards the before-mentioned cell.

Precondition No enemy units in the cell of the considered unit.
Effect Move towards the cell with the highest opponent value.

Keep attacking same

TheKeep attacking sameule applies if the considered unit has made an attack as
its previous action and if the attacked unit is not dead.iff thle clicks, the unit’'s
span of actions is reduced to one — namely attack the sameyam@tragain or
move towards the enemy unit if it has moved.

Precondition Previous action was an attack and the unit attacked is ndt dea

69

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

Effect Attack or follow the attacked enemy unit.

Flee

TheFleerule applies if the influence map cell of the considered cmitains a too
high opponent value compared to the friendly player valw®. Aigh means that
the opponent value is the double of the friendly player valtithis rule clicks,
the unit's span of actions is reduced to moving out of theaedl towards the cell
with the smallest opponent value. l.e. a reduction to a siagtion.

Precondition Opponent value in considered unit’s cell is twice as large as
the friendly player value.

Effect Move out of the cell towards the neighbour cell with the lotwes-
ponent value.

Ranged attack lowest HP enemy

The Ranged attack lowest HP enemuyle applies only to ranged units and only
clicks if there are enemy units within the considered urat®ck-range. If this
rule clicks, the enemy unit with the least amount of hitpsinill be attacked and
the span of actions is reduced to one.

Precondition Considered unit is of ranged type and has enemy units within
attack-range.

Effect Attack the enemy unit with the lowest hitpoints.

Ranged attack lowest TV enemy

The Ranged attack lowest TV eneme is similar to theRanged attack lowest
enemy HPrule. But instead of choosing the unit with the least amadihitpoints
the unit with the least threat value is chosen.

Precondition Considered unit is of ranged type and has enemy units within
attack-range.

Effect Attack the enemy unit with the lowest threat value.

70

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

Ranged support

The Ranged suppottule allows ranged units to support other units. This rule
clicks if an enemy unit within attack-range of the consider@nged unit is adja-
cent to a friendly unit. The considered unit’s span of agimreduced to one. If
multiple enemy units are adjacent to friendly units, oneaatiom is chosen.

Precondition Considered unit is of ranged type. There is an enemy unit
within attack-range and it is adjacent to a friendly unit.

Effect Attack the enemy unit adjacent to a friendly unit.

Ranged attack nearest

The Ranged attack nearestile applies to ranged units. It only clicks if there
are enemy units within the considered unit's attack-raifigiis rule clicks, the
nearest enemy unit is attacked. If multiple enemy units quaky close, arandom
is chosen.

Precondition Considered unit is of ranged type and has enemy units within
attack-range.

Effect Attack the nearest enemy unit.

Ranged attack maxN enemies

The Ranged attack max N enemirese applies to ranged units with enemy units
within attack-range. If this rule clicks, the consideredtsrspan of actions is
reduced to attacking at mostrandom enemy units within attack-range.

Precondition Considered unit is of ranged type and has enemy units within
attack-range.

Effect Attack at mostN enemy units.

Melee units attack lowest HP adjacent enemy

TheMelee units attack lowest HP adjacent enemle applies to melee units with
enemy units adjacent. If this rule clicks, the span of actismeduced to attacking
the enemy unit with the least amount of hitpoints.

71

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

Precondition Considered unit is of melee type and is adjacent to enemy
units.

Effect Attack the adjacent enemy unit with the least amount of Iitjso

Melee attack lowest TV adjacent enemy

The Melee units attack lowest TV adjacent enemig applies to units of type
melee and is similar to the preceding rule. But the adjaceets unit with the
lowest TV is chosen instead.

Precondition Considered unit is of melee type and is adjacent to enemy
units.

Effect Attack the adjacent enemy unit with the lowest threat value.

Remove stand-ground

TheRemove stand-groundile simply removes the considered unit’s stand ground
action. When this rule clicks, the span of actions is redumedne.

Precondition None.
Effect Removes the considered unit's stand ground action.

Attack K lowest HP enemies

The Attack K lowest HP enemigsile applies if the considered unit has enemy
units within its attack-range. If this rule clicks, the catesed unit's span of ac-
tions is reduced to attacking theenemy units within attack-range with the lowest
amount of hitpoints.

Precondition The considered unit has enemy units within attack-range.
Effect Attack theK enemy units with the lowest amount of hitpoints.

Attack K nearest enemies

TheAttack K nearest enemigsle always applies. The considered unit attacks or
moves towards thK nearest enemy units.

72

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

Precondition None.

Effect Attack or move towards thkK nearest enemy units.

5.4.3 Rules and their sequencing

The rules described in the previous section were design#éd simplicity and
some degree of predictability in mind. This was done to easeffort required to
compose rules. Compositions of rules become importangusecsimple rules of-
ten do not perform near-optimally. Compositions allow gdime rules as building
blocks and thereby allow more complex behaviours.

To enable compositions of rules each rule must only reduwesghan of actions.
This requirement is in order, because rules are appliedqnesee. Thus, it is
expected that if rul& appears before rulg in the sequence then ruBedoes not
violate the intentions of ruld, i.e. ruleB must not add actions removed by rule
A

All rules described in section 5.4.2 on page 69 implementsralo-function
which undo’s the rule’s pruning. This is done to avoid a tetdiaustion of actions
of the unit. The undo-function works as follows:

1. Before applying a rule to a unit take backup of that unitsams.
2. Apply the rule.

3. Check if the unit's number of actions is reduced to zer®olf revert the
unit’'s actions from the backup.

The undo functionality ensures that if ridehas been applied before rubethen
rule B can only prune actions left by ruRwhile not exhausting all actions.

In [Davis, 1999 lan Lane Davis presents an overview of the Game Al system
for a game calledark Reign [Auran, 1997. He discusses the effectiveness of
RTS units in combat situations. He states:

“[...] in most strategy games, the offensive effectivenessa unit
does not diminish at all with damage until the unit is tota#ynoved
from the game. This means it virtually always makes sens@®me c
centrate firepower at one target until it is destroyed and theve on
to the next”[Davis, 1999.

This premise also holds for the game of Wargus and with thatimd some se-
guences of rules will be introduced following this idea.

In the following the sequences of rules we have devised valpbesented
along with a justification and explanation of each sequence.

73

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

Focus fire

Focus fireis a sequence of rules in which primarily ranged units areoiseg to
focus attacks on the weakest enemy unit within attack-rafige idea behind the
Focus firesequence is to let ranged units concentrate on killing thekest enemy
units instead of damaging many. At the same time the melds omave towards
the enemy units and attack these.

Focus fireconsists of the following four rules applied in the orderagibelow:

1. Ranged attack lowest HP enemy
2. No enemy in cell
3. Attack K lowest HP enemies

4. Remove stand-ground

In this sequence the ranged units prioritises attackingngnanits over moving
towards them. Th&kanged attack lowest HP enemye removes all except an
attack action if this rule clicks. If so the considered rashgait has no movement
actions available. Since rules cannot add actions\theenemy in celfule has
no effect even if it clicks. TheAttack K lowest HP enemiesbviously has no
effect on a ranged unit either. Melee units are guided togvire enemy units and
if several units are within attack-range tHeweakest are attacked. THemove
stand-grounerule is added because standing still is regardless of to@tsin
almost never optimal.

Attack K nearest

This is a sequence guiding units to attack the closest eneits, rhe idea behind
the Attack K nearessequence is to minimise the game cycles spent on moving
without considering the positioning directly. Insteads gfame cycles are spenton
dealing damage ignoring any positional advantages preddit the map. Here,
K is set to two.

Attack K nearestonsists of the following three rules applied in the ordeegi
below:

1. Keep attacking same
2. Attack K lowest HP enemies

3. Remove stand-ground

Here, theKeep attacking sameule ensures that all units gives attacking the same
target higher priority than attacking a new. If a unit is nogjaged in combat it is
guided towards th& enemy units with the lowest amount of hitpoints.

74

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

Ranged assist

Here ranged units acts as support to other friendly unitg. iflea is that if the
melee units are engaged in combat the ranged units can askiling the en-
gaged enemy units faster thereby minimising the receivetbge.

Ranged assistonsists of five rules applied in the order given below:

1. Ranged support

2. Keep attacking same

3. No enemy in cell

4. Attack K lowest HP enemies

5. Remove stand-ground

TheRanged suppottule ensures that if there is a possibility to support anfilig

unit within attack-range then the ranged units will do soit¥not handled by the
Ranged suppottule behave almost as in tiidtack K nearessequence. Agairk

is set to two. The difference lies in guidance towards themgnenits. Instead of
moving towards th& weakest enemy units, the units move towards the influence
map cell chosen by thido enemy in celtule.

5.5 Rating game states

Assessing or estimating how good a game state is a game spepifi. The es-

timate method evaluating a game state is very hard to deliggquires an ex-

tensive insight into the game mechanics. Given a game $tatestimate method
should return a value which represents the desirabilityssage. It should be evi-
dent that the precision of the chosen rating method influetieeoptimality of the

game tree method. Also, the speed of the rating method igefast. The rating
method must be able to rate game states in the tree withiimtleditnit.

In order to rate states in a game tree representing an SS&icitwe have
chosen to use the threat matrix (see section 5.3.1 on pages6iput. This ma-
trix was chosen because it captures the elements of SSC wkiblave identified
as important. A rating method was designed by hand. Howéverinterdepen-
dency of the elements in SSC is complex making a precisegratiethod hard
to design. Therefore, machine learning methods were al@siigated for rating
game states. Recall that a threat matrix is of size& 20 and therefore all rating
methods in this project can be seen as functions magpfig—1,1] — R.

75

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

sub sub Y
tree tree
......... --9 HIDDEN ¢}--

()
afeapss

L)

)

Figure 5.10: A game tree and a sample rating method

In figure 5.10 a game tree and a rating method are shown. Nodés itree
contain the threat matrix. The rating method shown is a neetavork explained
in section 5.5.2 on the following page. This figure shows hosvthreat matrix is
mapped via a neural network to a single value.

In the following the handcrafted rating method and the nraelearning based
methods are presented along with their applicabilitiesahé@ntages. Lastly, how
to choose actions is discussed.

5.5.1 Handcrafted rating method

As the threat matrix captures many elements of an SSC situa have designed
a simple rating method call@treat matrix rater(TMR) based on the threat ma-
trix. Recall that TVs for enemy units are negative and TV<famtrolled units are
positive. The value of a game state is calculated as the suatt eftries in the
threat matrix. This rating method uses the overall strenfjrach side to decide
the desirability of each game state. Clearly this methodi$gpmance is entirely
dependent on the ability of the TVs to accurately portraysibeation in the snap-
shot.
A handcrafted rating method’s accuracy depends solely erskiils of the

76

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

designer and the designer’s understanding of the problenaoto This method is
troubled by the fact that it cannot generalise nor adaptt@sons not anticipated
by the designer. This kind of rating method is often an easycarick way to rate
a situation but high precision is hard to achieve.

The time needed for the TMR to rate a threat matrix is linedh@number of
entries in the matrix since the value of each entry must bevseshIn this project
the amount of summations needed is 400 for each rating.

5.5.2 Machine learning rating methods

A machine learning method is another way to rate game state$ methods can
automatically improve their precision through learningy Advantage of these
methods is their ability to generalise from a small set obprm instances with
reasonable precision. To obtain the wanted generalistti®machine learning
methods need to be trained.

We have chosen to apply two machine learning methods to aate gtates. To
train these methods a set of handmade game states was dedipedhreat ma-
trix of each constructed game state was translated intoaesguivalent training
examples to increase the size of the training set.

In the following the two chosen machine learning methodslvalpresented.

Neural networks

A neural network (NN) is a learning method which is modellsdlze way col-
lections of neurons in the human brain work. An output sigei@roduced based
on several input signals. The NN applied in this project ixedifully-connected
layered feed-forward network as defined Milsson, 1998 and[Mitchell, 1997,
Chap. 4.

We have chosen to use three layers for the NN: an input layedden layer
and an output layer. As input for the NN each entry in the thmestrix is mapped
to an input node resulting in 400 nodes in the input layer. &eelchosen to use
the same size for the hidden layer. As a single value is nefedl@tle rating the
output layer contains a single node.

The training of the neural network was performed with Resilient Propaga-
tion-algorithm RProp, [Champandard, 2003, Chap.]18 much used variant of
the Back-Propagatioralgorithm,[Mitchell, 1997, Chap. 4.5]2

The time needed for the NN to rate a threat matrix is linearhi& num-
ber of nodes in each layer in the neural network since eacht-vedue must
be propagated through the network. In this project the nurobe&alculations
is 400x 400x 1 = 160000 for each rating.

77

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

The RMSE [Wikipedia, 20054, for the NN over the validation set extracted
from the training threat matrices is0®76.

K nearest neighbour

TheK nearest neighbour (KNN) is an instance-based learningadefiitchell,
1997, Chap. B The KNN applied in this project views each threat matrix as a
point inR*%0 and uses the euclidean distance to determine closest meighb

As training the KNN method stores each sample threat matrilater usage
in rating. Rating is done by calculating the euclidean disgaof the given threat
matrix to each stored point. The rating value is taken as tleeage of theK
nearest.

The time needed for the KNN to rate a threat matrix is lineaheanumber of
stored threat matrices ad because the distance between the threat matrix and
the stored set must be calculated andKheearest must be found. In this project
the number of stored examples is 3600 &t 5. Therefore, 360@ 400x 5=
7.200000 calculations must be made for each rating. This was &afhyrtested
to be too slow and the number of stored threat matrices wasftite reduced
to 360 resulting in 366 400x 5 = 720000 calculations for each rating which
resulted in no perceived violations of the real time coristsa

The RMSE for the KNN over the validation set extracted frora thaining
threat matrices is.@562.

5.5.3 Choosing actions for units

A game tree is built in game cycles where at least one unitbastons assigned.
This means that the root node of the game tree representsadicit in which
at least one unit is ready to act. When the game tree has bdenhleuaction
sequence leading from the root to the child with the highabievis assigned to
the units in the engine.

The rating methods described in sections 5.5.1 on page 7% .&m2l on the
preceding page only rate single states. This means thaating methods do not
account for states which are reachable from the state bateg.rTo let future
states influence the choice of unit actions we have intraditwe variants of each
rating method:

1. Only rate the children of the root ignoring the futuressateachable beyond
the children of the root. This is the equivalent of ratingraltles in the tree.
But as the rating methods does not explicitly use the redelstates to rate
a given node those states can be ignored.

78

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

2. Only rate the leaves of the game tree and then assign thagavealue of
the children to each internal node. This allows a child noidhe root to
indicate an estimated value of the subtree this node reese

5.6 Measuring the performance of an SSC situation

Recall from section 3.4.4 on page 46 that an optimal solu6@SC leads to con-
sistent behaviour for the involved units. When a method ébrieg SSC has been
implemented a way of measuring the optimality of the methodtbe available.
As optimality leads to consistency all of the created mesifodhandling SSC sit-
uations are evaluated. This provides an indication of wimimputer controlled
method is the most optimal in the designed SSC situations.

As discussed in section 3.4.4 on page 46 human players caheiseethod
as a support routine which automatically carries out comb&SC situations re-
sulting in a near-optimal handling of these. The goal is aatreate an interesting
behaviour but to create the most optimal behaviour whicddea a consistent
behaviour.

5.6.1 SSC situation value

To evaluate a method solving SSC several SSC situations e designed,
as described in section 7.1.2 on page 90. Each method isa¢edlon each de-
signed situation. When two methods oppose each other a nregafquerformance
must be available. Preferably as a numerical value inaigdtow well a particular
method performed. Options for this value include: a binadicator of whether
the given method won or lost, a count of inflicted casualties @ount of the
amount of damage inflicted. We have chosen a more expresaiwe wndicating
the relative strength of each faction in the situation. Weetdesigned &ituation
Value (SV) which indicates how good an situation is for a particglame cycle
compared to the starting situation. We have chosen to useuthéer of units and
their hitpoints as indicators of how good the situation isu3, for a game cycle
we introduce the following factors:

EUnits, is the number of enemy units at game cyxle
FUnits, is the number of friendly units at game cyacle
eHR is the sum of all enemy units’ hitpoints at game cyxcle

fHP is the sum of all friendly units’ hitpoints at game cyale

79

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

The SV is calculated to indicate that the higher the SV, thebthe situation. Itis
considered bad to lose units and thereby hitpoints. Thesgeants should reduce
the SV. It is also considered bad if the enemy has many unitsreany hitpoints.
Given these considerations we have designed the followgogteon:

: fHP . eHR
=F —E :
S\ U nits, x FHP, Umts‘erFb (5.8)
If friendly hitpoints or units are lost the SV is reduced. ey units are damaged
the SV is not reduced as if no enemy unit was damaged. Notedtleato the
calculations involved, the value given to one faction is tlegated value of the
opposing faction’s.

5.6.2 Experiments

In section 5.2.2 on page 60 we identified three issues whidlidbe handled be-
fore the performance of a game tree-based method could heags@. Section 5.3
on page 60 presented one solution to the problem of repaggantAs mentioned
in section 5.4.3 on page 73 we designed three rule sequerisels we deemed
applicable to the game of Wargus. In section 5.5.3 on pagex#@ating methods
were presented to the problem of rating game states.

To investigate these different solutions to the issuesh#agbwith game tree-
based methods we have chosen to evaluate all permutatidhess# resulting in
1x 3 x 6 =18 game tree-based methods. These permutations will beaef®
asexperimentsind are presented in section 7.1.1 on page 89.

80

Chapter 6

Extending the Stratagus engine

"There are no problems, only opportunities"
- Bill Austin

In this chapter we will present the overall scope of our impmated system and
describe how our module interfaces with the Stratagus R#$enAs mentioned
in chapter 4 the Stratagus engine was chosen as the platborevdluations and
from now on the Stratagus engine which is written in C willyobé referred to as
theengine For complete design, implementation details and pseode-tor the
game tree construction, see appendix C on page 129.

For solving the SSC problem the game tree-based method caedreas a
support routine as described in section 3.4.4 on page 46efidre, our module
which handles the problem of SSC should be designed so meglacextending
this module can be accomplished. As such, the design of tipiscst routine was
suited for an object oriented approach. We decided to ceedh interface[Sun
Microsystems, 20Q3for Java v. 1.4.2 since this allowed us to separate the game
tree code from the engine while using object oriented fiedi

6.1 The Stratagus engine background

Stratagus|Stratagus, 2044is an RTS engine written in C and is released under
the GPL [Free Software Foundation, 199Using what the Stratagus developers
call theCraft Configuration LanguagéCCL) a potential game developer can im-
plement an RTS game by specifying the rules of the game antl wbdia files
should be used. The CCL islaia, [lerusalimschyet al, 2003, interface which
exposes some of the Stratagus engine’s internal datastesc The Lua interface
allows developers to modify how the engine runs the actualegand how the
game is presented to the player graphically. There are secheital limits to this
interface which have their roots in the 10 year long develepinhistory of the
Stratagus engine.

81

CHAPTER 6. EXTENDING THE STRATAGUS ENGINE

Wargus [Wargus, 200} is a set of CCL-scripts for Stratagus that enable end-
users to play the famous Warcraft | and[Blizzard, 199%. The Wargus project
does not distribute the media files associated with Wardrdstit includes a con-
version utility which takes the original Warcratft Il (inaing expansion) CDs and
converts the media on these CDs to a format Stratagus can Teadwargus
project is maintained by the Stratagus developers and riiiéies that all new
releases of Stratagus are accompanied by a simultaneeaseaf Wargus.

Stratagus and Wargus started their lives as an applicasilbeddd-reeCraft It
was an Open-Source game which allowed people to play Watenadl 11 on other
platforms than Windows provided the player had the origak from Blizzard.
Blizzard’s legal department struck down on this project tuthe flamboyant use
of the Craft name in the project. From the ashes of FreeCraft rose thea§us
engine and the Wargus project. The inherent limits in the ©C&tratagus stems
from this history as it primarily was designed to play the Y¢m game. Since
then, the Stratagus developers have focused on genegal&@rCCL and thereby
giving new game developers more freedom to deviate from tie Wargus is
played.

6.2 The Stratagus engine

Recall from section 3.4 on page 40 that we focus on multigragtwork games
called skirmishes. To reach the goal of creating a suppatirre enabling both
participants and players to use it we needed to investigatetiie engine handles
network games and unit control.

6.2.1 Communication protocol

For network communications the engine uses a P2P protosetban the UDP-
protocol,[Stallings, 2000, Chap. 17.4nd[Coulouriset al,, 2001, Chap. 3.4.6 &
4.2.3. To minimise the network traffic, all clients in a networkesthge maintain a
complete state of the game. The only traffic occurring on gteark is the orders
assigned by the players. Due to this, all clients which pgdite in a networked
game maintain the complete game world state internally. ppr@ach like this
has several implications. E.g. the computations requicedHe participant are
performed on all clients simultaneously and must be guaeghto reach the same
conclusions on different hardware. More specifically, waemit has no assigned
order and something changes in the unit’s environment tfeutidoehaviour as
previously described in section 3.4.4 on page 46 makes thegariorm some
action. No network traffic occurs with this event as the cleahgppens on all
clients and these all reach the same end-result.

82

CHAPTER 6. EXTENDING THE STRATAGUS ENGINE

Randomisations in the Stratagus engine is a noteworthg.iskuavoid the
network traffic associated with agreeing on a seed to theoramimber generator
the engine uses a static seed which never changes. Thisespht if a player
issues the exact same orders at the exact same time in tveoediffgames on
the same map, the two games evolve exactly alike. This isusecdne estimated
damage and other factors which rely on randomisations awesult in the same.

6.2.2 Unit control mechanisms

To enable our game tree-based module to control indiviciéd we investigated
how the engine handles units and their assigned orders.dllogving methods
which handles units in networked games was found:

SendCommandMove Accepts a pointer to a unit which should be moved and a
pair of coordinates to move to. The path to the target looasaalculated
by the pathfinding algorithm, the A*-algorithfiwikipedia, 20054 incor-
porated in the engine. Technically, this method changesttte of the unit
to amovestate which makes the control loop of the engine move the unit
according to the rules of the actual game.

SendCommandStandGround This method takes a pointer to a unit. This unit’s
state changes to ttetandgroundstate. When trying to override the default
behaviour of the units in Wargus this is the method used taenttadm stand
still.

SendCommandAttack This method accepts two pointers to units. One is the
aggressor and the other is the target. Also accepted is afpadordinates
which indicate whether the attack is an ordinary attack oarsmy unit or
an attack move command. In the case of a zero unit pointestimterpreted
as an attack move command. This method is thus used to i¢aak attions
against enemy units or to issue attack-move actions whiackertiee unit to
the specified location and engages all enemies encounterggitae way.

The engine implements an order queue for each unit. Meahgtgat player can
issue several orders to a unit and this unit will then coneplleese orders in turn.
All the above methods also accept an integer indicating méretr not the order
being assigned should empty the order queue and insert thentwrder as the
next to perform. We always flush the queue, because we detioma continually.

Several other methods for assigning orders to units existarengine. These
control other aspects of the units e.g. following othersjrgonstructing buildings
or harvesting resources. We do not use these in our moduleafailing SSC so
these will not be presented here.

83

CHAPTER 6. EXTENDING THE STRATAGUS ENGINE

Time
engine stratagus rada main

) o) setup)

queries \ REPEAT
== === UNTIL END

end of game
>

Figure 6.1: A callgraph depicting the overall communicatietween the engine
and our module

6.3 Integration with the engine

For realising our game tree-based module we implementedtamatic propaga-
tion of much data and changes herein from the engine to ouulaod@he prop-
agation is done once per game cycle and once the engineiadigait the propa-
gation happens relatively fast, because only changes apagated. Changes in
non-static map-topology such as forests harvested wemrednwhile the static
map-topology such as gold-mines and rocks was includedt 8f ®allbacks was
inserted in the control loop of the engine. These send eWsads to our module
accordingly.

6.3.1 Execution path

In figure 6.1 a simplified call graph is depicted and shows titene of our inte-
gration with the engine. The four modules depicted are tiggnerand three Java
packages calledt r at agus, rada andnmai n. Thestrat agus package encapsu-
lates the engine in an easily accessible Java representdtiog with a set of
methods needed for interaction with the engine. Theéa package contains two
essential elements; a set of auxiliary classes allowing&one tree construction
and a set of classes which contains variants of the gaméasesd methods. The
mai n package is solely responsible for configuring the two Jachages.

84

CHAPTER 6. EXTENDING THE STRATAGUS ENGINE

As depicted in the figure the only package to ever communibia¢etly with
the engine is the stratagus package. This was done to separamodule from
the engine. All communication between the rada packageteneitgine thus goes
through the stratagus package.

All evaluations follow the same pattern. The main packag#igares the rada
and stratagus packages. The stratagus package then cesfigarengine to suit
the needs of the main component — including informing therenghich objects
to use for callback targets. The main component sends asgjadl to the strata-
gus package which is propagated to the engine. The engineptiopagates the
world-model to the stratagus package and sends an evertt vdiicates that the
engine is about to start. This event is propagated to the padkage which al-
lows our code to perform any needed pre-game computatiotiseomap — such
as map analysis, see section 3.4.2 on page 45. When theseatebioms are com-
plete the engine resumes execution and initiates the gaameakEh game cycle the
engine updates the world representation and sends an ewbetstratagus pack-
age which propagates this information on to the rada packdgerada package
then queries the stratagus package for all data neededtompehe computations
at hand. The calculated actions are then applied to the enghis cycle of up-
date/query/apply continues until a game result has beamedavhich results in
the end-of-game event being propagated all the way bacletm#in component.

6.3.2 The Cto Java link

We have implemented a JNBun Microsystems, 2003module which is embed-
ded in the Stratagus engine. It contains several referaonc#dl| data structures
allowing the engine to access fields and call methods in teevigual machine.
The C code references objects from the stratagus Java packagse objects are
used to notify the stratagus package of newly created wpt$ating the location
of existing units, removing dead units, managing contcbyeoups of units and
so on.

The Stratagus package contains several methods with ties retyword.
Meaning that their implementation is given in C but that thetmod is callable
from Java. The noteworthy of these methods are the unit ratipn methods
calledat t ack, move andst andgr ound which directly translate their parameters
to suitable parameters for their C counterparts as destiibsection 6.2.2 on
page 83.

85

CHAPTER 6. EXTENDING THE STRATAGUS ENGINE

6.4 Java Packages

Our primary java packages are thier at agus andr ada packages. These pack-
ages are described briefly in the following. Full design anglementation details
of both java packages are given in appendix C on page 129 aldhghe game
tree construction-algorithms.

6.4.1 Stratagus Java package

The Stratagus package encapsulates the engine enablimg figers to use the
Wargus game as a testbed for Game Al modules. Furtherm@&eNhmodule
and the modifications we have made to the engine completddy thie engine-
specific details of network and unit control from the userefBfore, this package
enables users to quickly implement and test a Game Al moditi®ut worrying
about engine-specific issues.

The Stratagus package contains an interface which must jplenmented by
its user. This interface provides the callbacks needed étigine to propagate
events to the implementing object.

6.4.2 Rada Java package

This packagk uses the stratagus package described above to handle $&C sit
tions. In this package we have createdeaper i nent framework which enables
fast implementation and testing of methods for handling SB@tions. This is
realised by means of an experiment interface and an expetifiaetory. The ex-
periment interface contains several methods. Some argrasfor the game tree-
based experiments and others are general purpose. Thenogkteandles among
other things the setup of the stratagus package and thediegaf situation val-
ues (SVs). We have implemented all experiments using tammdmwork. Another
part of this experiment framework includes the three ratreghods we have used
in this project. Two of these rating methods were impleme@te a part of the
experiment framework. The final rating method, the neuradogk, was included
in the package using the Jooridpone, 200k framework which provided the
necessary functionality for rating the game tree nodes.

The package furthermore contains many supporting classdxdieg us to han-
dle the game tree construction efficiently. Among theseasedccessor methods
to units and fast derivation of game tree child nodes. Thexyaee algorithm con-
structs the tree to a specified depth and assign orders taua#ciihe game tree
construction-algorithm is capable of assigning ordersriibsuat any given game

1The name, rada, is more or less randomly chosen.

86

CHAPTER 6. EXTENDING THE STRATAGUS ENGINE

cyclex as long ascis included in the tree. Meaning, the tree can be hugame
cycles ahead and orders to units can be assigrgaine cycles ahead. The only
requirement is that < y.

To handle the rule sequences used for pruning of nodes wecheated a stan-
dard way of implementing these realised by means of a ruégfate. A factory-
class, as described [Gammaet al,, 1994, Chap. B was implemented as a way
of statically instantiating the rules described in secéohion page 64.

87

Chapter 7

Results

"Success is getting what you want
happiness is wanting what you get"
- Dave Gardner

In this chapter the setup for the evaluation of the game trethod introduced
in chapter 5 on page 53 is presented along with the obtairsedtse To automate
the evaluation of our method we have chosen to create seveyad. Each con-
tains one group of human units and one group of orc unitsipasid in a small
scale combat (SSC) situation. The situation value (SV) e$érsituations is then
measured as described in section 5.6 on page 79.

Firstly, the setup for our evaluations is presented. Sdgptite results are
presented along with a discussion. Thirdly, a subset of @mopmed evaluations
is recorded as movies and these will be presented accongplayia discussion
on the perceived execution time of our method. Lastly, théstareferenced from
this chapter is presented.

7.1 Setup

To measure the different variants of our game tree method ave bhosen to
evaluate a number of experiments. Recall from section ®6.@age 80 that we
have identified 18 variants of the game tree-based methdaselvariants will
be described in the following section and will be used assfasimeasuring the
game tree-based method against the built-in methods ofWarg

All evaluations have been performed on two 2.4 GHz Pentiumi#s512 MB
RAM. We noticed no slowdowns in the game while using the gae®methods.
This hardware is adequate for running the method in real.time

The selected experiments are described in the followinterMards the SSC
situations wherein the evaluation takes place are pregente

88

CHAPTER 7. RESULTS

7.1.1 Experiments

The following experiments which implement different vautis of the game tree
method have been chosen for evaluation. These experimenésoliosen to por-
tray and measure the overall performance of several ratigttpods and rule se-
guences against the Wargus built-in handling of SSC sadnati

KNNGTall -experiment uses thi€ nearest neighbour as rating method. It only
rates the children of the root.

KNNGTavg-experiment uses the nearest neighbour as rating method. It rates
the leaves in the tree. For each internal node it assignsvérage of this
node’s childrens’ value.

NNGTall-experiment uses the neural net as rating method. It ordg tthie chil-
dren of the root.

NNGTavg-experiment uses the neural net as rating method. It rateketves
in the tree. For each internal node it assigns the averadesofode’s chil-
drens’ value.

TVGTall -experiment uses the threat matrix rater (TMR) as ratinghouekt It
only rates the children of the root.

TVGTavg-experiment uses the TMR as rating method. It rates the $eiavie
tree. For each internal node it assigns the average of tlie’'sichildrens’
value.

The different rating methods were described in section &.page 75. Each of
the game tree-based experiments above are each run withrégedifferent rule
sequences for pruning the tree. These were described inrséct.3 on page 73
and are thé&ocus Fire AttackKNearesand theRanged Assistequences.

We have chosen to hold the performance of our method up dgaiosex-
periments. These are called theilt-in methods as they only use simple actions
available from the engine. They simulate the way Wargus leanahits in SSC
situations. These are therefore applicable for investigathether the game tree-
based methods can improve the current handling of SSCisitisat

AttackNearest-experiment orders each controlled unit to attack the rstanme
emy unit.

AttackMove-experiment orders the controlled units to attack-moveatols a
calculated centre of the group of enemy units.

89

CHAPTER 7. RESULTS

Figure 7.1: A simple SSC situation with two opposing meleiésuzalledScenlvsl

7.1.2 SSC situations

All of the designed SSC situations have been created withmifye editor pro-
vided by the engine and each is depicted in figure 7.1 to 7.86hBathe SSC
situations were placed in different maps. On these mapsc<p#renents fought
against the built-in experiments. In the following eachiaiton will be described.
Recall from section 5.6 on page 79 that we use the situatioe ¢&V) to evaluate
the performance of an experiment. We record the SV at the £ad evaluation
as this value depicts the strength of the winning faction.

Scenlvsln figure 7.1 a very simple SSC situation is shown. Each sidérots
only one melee-unit. No environment features exist. Thisasion is used
primarily as a test situation to determine whether each raxeat is able
to perform well in very simple situations. Since each sidegsally strong
and the situation is very simple the winner is expected todmdad ran-
domly. The end SV is expected to be approximately 0 in thigasion. This
situation is referred to @Scenlvsin the results.

Scen3vsFigure 7.2 on the next page shows another SSC situation tinereu-
man footmen combat three orc grunts. No environment fesitanme placed
on the map. The orc faction is very strong compared to the huattion.
In this situation the winner is expected to be the Orcs sihehuman fac-
tion is outnumbered. Therefore, the SV of the orc factionusthalearly

90

CHAPTER 7. RESULTS

Figure 7.2: Two melee units opposing three melee unitsad<en3vs2

indicate that the human faction loses. This map is refeoesBcen3vsin
the results.

Scen7vsFigure 7.3 on the following page shows an SSC situation almé
those encountered in an RTS game. The two groups of unitsfagual
size. Each faction controls four melee units and three mhngets. The
environment contains no environmental features. Thiggduo is expected
to be complex enough to show the diversity of the differenthods for
solving SSC. Therefore, the winner is more dependent on phienality
of the method used than the situations previously describbid map is
referred to asScen7vsin the results.

archer-ambushn figure 7.4 on the next page yet another SSC situation is de-

picted. Each group of units consists of two melee units and fanged
units. The environment consists of small narrow paths bettbe two
groups. The ranged units have high importance, becausehifrearow path
is blocked by a melee unit the ranged units can attack frorstamte while
being out of reach from the enemy melee units. As above, ituat®n is
expected to be complex enough to show the diversity of théoakstused
for SSC. This map is referred to ascher-ambuslin the results.

Capturedin figure 7.5 on page 93 the last SSC situation is shown. Irsthiation
the human faction controls four melee units and one rangédTime orc
faction controls three melee units and two ranged units.hthnean faction

91

CHAPTER 7. RESULTS

Figure 7.3: Two squads with four melee and three ranged wath called
Scen7vs7

Figure 7.4: Two squads with two melee and four ranged unitk ealledarcher-
ambush

92

CHAPTER 7. RESULTS

Figure 7.5: Three melee and two ranged units surroundedurynfelee units and
one ranged unit calle@aptured

is stronger than the orc faction. The orc units are surroditgethe human
units. The winner is expected to be the Humans and the end Bthdéo
human faction should indicate this. This map is referredstoaturedin
the results.

We consider thé&scen7vsandarchers-ambusho be the most interesting situa-
tions as they artair to both factions. The SV is 0 at the beginning of the situation
and none of the groups have any map specific advantages. tUlaais called
Capturedand Scen3vsare on the other hangnfair situations. The starting SV
of Scen3vsor the Orcs is 1, thus the Orcs are the strongest factioreatttrt of
the situation. InCapturedthe starting SV is 0 but the composition of the groups
and start positions favour the Humans.

7.2 Questions

We wish to answer the following questions in order to dis¢hebtained results.

1. Do any of the experiments perform erraticallySoenlvs?l.e. does the SV
measured at the end of the situation provide a clear winner?

2. Do any of the experiments when controlling the orc unitelmScen3vs?2
l.e. was the SV negative for the Orcs?

93

CHAPTER 7. RESULTS

3. In Scen3vs2lo any of the experiments win when controlling the human
units? l.e. was the SV positive for the Humans?

4. Do any of the experiments when controlling the human dags onCap-
tured? I.e. was the SV negative for the Humans?

5. In Captureddo any of the experiments win when controlling the orc units?
l.e. was the SV positive for the Orcs?

6. Which built-in experiment is the best in the designed SB@&sgons?

7. Do any of our game tree-based experiments outperformuifieito experi-
ments in SSC situations?

8. Which rule sequence performs best?
9. Which rating method performs best?

Questions 1, 2, 3, 4 and 5 above serve as tests since answbes#question
should be no. If for a given experiment the answer is yes tocdinlye five ques-
tions this specific experiment deserves greater analysis.

To evaluate the game tree-based experiments we need to khimh tauilt-in
experiment is the most optimal. Question 6 should provigeittfiormation.

We expect that we can answer yes to question 7 making the weitain-
volved with a game tree-based method a worthwhile investriténs would mean
that the built-in methods were outperformed by the gameltesseed methods.

The answers to questions 8 and 9 are of interest when exaginenareas
where more work could be conducted.

To provide a foundation to answer the above questions we blawsen to
compare each game tree-based experiments to each of thénbexperiments.
The built-in experiments are also compared to each othezterighine the optimal
one. Each experiment combination is evaluated in everygdedi SSC situation.
We record the end SV in the game cycle where a winner has beed foe. only
one faction remains on the map. All collected results candlem $n appendix D
on page 144.

Recall from section 6.2 on page 82 that the random numbenrggmen the
engine always returns the same sequence of random numhersoDhis fact
we have chosen to run each evaluation only once and recomeshé, because
running the evaluations multiple times would provide idetresults.

94

CHAPTER 7. RESULTS

7.3 Presentation of results

Here, we will answer the nine questions formulated previous! collected re-
sults can be seen in appendix D on page 144.

1. As seen in tables 7.1 on page 100 and 7.2 on page 101 the epnfl &V
evaluations orscenlvsis approximately O as expected. Thus, none of the
experiments perform erratically @cenlvsl

2. Intable 7.3 on page 102 it is shown that all experimentsmian they con-
trol the orc units orScen3vs2This was expected since this SSC situation
favours the orc side.

3. Table 7.4 on page 103 tells that all experiments lose wbetralling the
human units orscen3vsZThis was also expected.

4. Table 7.5 on page 104 shows that all experiments win whetra@bng the
human units orCaptured It was also expected.

5. Table 7.6 on page 105 tells that all experiments lose wbeiralling the
orc units onCaptured as expected.

6. Recall from section 7.1.1 on page 89 that we evaluate thienality of
an experiment by comparing it to the built-in experimentstable 7.7 on
page 105 the results of evaluating the built-in experimarégshown. Based
on the average SV we conclude that &teackMoveexperiment is the over-
all most optimal built-in experiment. As th&ttackMoveexperiment per-
forms better than théttackNearesexperiment in the fair scenarios this
experiment is the most interesting when evaluating the gaeeebased
methods in these scenarios. When looking at the unfair sicsnae are
interested in théttackNearesexperiment.

7. Tables 7.8 on page 106 and 7.9 on page 107 show the restilts gdme
tree-based experiments against the two built-in experisndiable 7.8 on
page 106 shows the game tree experiments vAtiaekMoveexperiment.
Table 7.9 on page 107 shows the game tree experiments véttdek-
Nearestexperiment.

From table 7.8 on page 106 it can be seen that the experimegntmpeng
best overall including in the unfair situations is tKBINGTall experiment
with the RangedAssistule sequence. Th&VGTall experiment with the
AttackKNearestule sequence performs best in the fair situations though.

Table 7.9 on page 107 shows that experimeNGTall with the Attack-
KNearestrule sequence performs best overall including the fairasituns.

95

CHAPTER 7. RESULTS

In the unfair situations th&NNGTavgexperiment with thdRangedAssist
rule sequence performs best.

If both tables are taken into consideration it can be seenttieal VGTall
experiment with théttackKNearestule sequence overall averagely outper-
forms both built-in experiments. The average~ 530*049 =0,077. Even
though theNNGTall experiment with theAttackKNearestule sequence
loses to thé\ttackMoveexperiment its overall performance is quite impres-
sive with an average /23%0’153 =0,042.

8. Table 7.10 on page 107 shows the performance of the ruleesegs aver-
aged. It can be seen that tAtackKNearestule sequence overall performs
best. This rule sequence also performs best in the fairtitwa But the
RangedAssisule sequence performs best in the unfair situations.

9. Table 7.11 on page 108 reveals the performance of theynat#thods aver-
aged. It can be seen that the best rating method overall andrathe fair
situations is the threat matrix rating method which onlesathe immedi-
ate children of the root (experimenVGTal)). In the unfair situations thi
nearest neighbour rating method which averages the vafuég internal
nodes (experime{NNGTavg performs best.

The answers to questions 7, 8 and 9 raise a few issues.

Firstly, determining the optimal strategy in a SSC situatitepends on the
opposing player’s strategy, because the game tree expgsnde not perform
equally well when opposing the built-in experiments.

Secondly, choosing the best rule sequence among the ddssgtifficult since
the sequence performing best in the fair situations is netist in the unfair
situations. Meaning, a rule sequence depends on the atttistian as expected.

Thirdly, choosing the best rating method is non-trivial eTirerformance of
designed indicate that thEMR performs well in fair situations and the&NN per-
forms best in the unfair situations. Again, the rating mdtbdepends on the com-
plexity of the situation.

7.4 Presentation of movies

Recall from section 5.4 on page 64 that the time constrambdo method is3l0
seconds. This is the guideline ensuring that the player doesotice a slowdown
in the game caused by the game tree method.

The recorded movies are available on the enclosed CD. Thies#eacribed
in the movies section on the CD. The movies have some grdglaes resulting

96

CHAPTER 7. RESULTS

from very technical linker and compiler problems of the ergand the Mac OS
X 10.4 operating system.

We have recorded four movies. These illustrate how the etaficating method
and rule sequence influences the end-result of an evaludimslowdowns in ei-
ther of the movies can be seen.

1. KNNallAKNasHumansVSAttackMoveOnScen7vs7gmnows the course of
an evaluation orScen7vs./The KNNGTall experiment with theAttack-
KNearestule sequence as Humans fights fteackMoveexperiment which
plays Orcs. Notice there are no slowdowns in the game.

From the table D.2 in appendix D.2 on page 146 we see that th&¥ror
this evaluation is-0,128. Meaning that the game tree based method lost.

2. TVavgAKNasHumansVSAttackMoveOnScen7vs&haovs almost the same
evaluation as above. The difference is thatTM& Tavgexperiment is used
instead of th&KNNGTallexperiment. Again, notice there are no slowdowns.

From table D.2 in appendix D.2 on page 146 we see that the eridr3his
evaluation is 0119. Meaning that the game tree based method won.

3. TVallAKNasOrcsVSAttackNearestOnScen7vs7 shows the course of an
evaluation onScen7vs/ivhere theTVGTall experiment with theAttack-
KNearestrule sequence as Orcs fights thigackNearesexperiment playing
Humans. Again, there are no visual slowdowns.

From table D.11 in appendix D.2 on page 146 we see that the ¥mof S
this evaluation is B5. Meaning that the game tree based method won quite
big.

4. TVallAKNasOrcsVSAttackNearestOnScen7vs7shows almost the same
evaluation as above. The difference is that eeusFirerule sequence is
used instead of thAttackKNearestule sequence. No slowdowns can be
seen.

From table D.10 in appendix D.2 on page 146 we see that the\¢d tBis
evaluation is—0,925, Meaning that the game tree based method lost.

Items 1 and 2 illustrate the difference in the end result wtieoosing different
rating methods. In this case choosing the right rating neethitherefore a crucial
factor. This choice decides whether the game tree-basdubuhetins or loses.

Items 3 and 4 above show the difference in the end result wheosing differ-
ent rule sequences. As with item 1 and 2 this choice of ruleesece determined
which side won.

97

CHAPTER 7. RESULTS

7.5 Discussion

As suspected and described in section 5.2.2 on page 60 thiosslto all of
the issues presented in that section influence the optinaild game tree-based
method. Especially the choice of rating method and rule secgi influence the
end-result, as illustrated in the previous section.

The only requirement of representing a game state in a nottaist must
provide sufficient information for the rating methods antersequences to per-
form well. The questions answered in section 7.3 on page @ate that our
representation contains enough information, because avalde to outperform
the built-in experiments.

From table 7.9 on page 107 it can be seen thatAttieckKNearestule se-
guence almost always outperforms tAtackNearesexperiment regardless of
rating method. This leads us to conclude that it is more fealole to estimate the
outcome of attacking several enemy unit than just attackegnearest. This is
an interesting fact. It means that it is worthwhile to coesitheK nearest enemy
units before actually choosing one to attack.

We have so far introduced our method as a support routine alylieg both
players and participants to use the method. Restrictingaédability to partic-
ipants would allow current games to handle SSC situatioas-ogtimally while
not changing the gameplay for the player. This restrictioabdes the game-
developers to adjust the difficulty level by changing rulgsences, rating meth-
ods or the amount of game cycles predicted by the game tree.

7.5.1 A problem with the game tree method

Figure 7.6 on the following page shows a situation where Hragtree method
performs erratically. It shows theNNGTall experiment with thd-ocusFirerule
sequence as the Orcs in the situation caBa@n3vsdpposing an experiment
where all units stand still. Recall that the Orcs are exmgktdewin in this situ-
ation. The game tree method does win as expected but it takedcager than
necessary. Figure 7.6 on the next page shows the gruntddbelth a 1 as the
only one attacking the enemy footman. The grunts labelledd®23ado nothing.
They just stand still behind grunt 1. This is clearly not atirmpl handling of the
SSC situation as grunts 2 and 3 ought to assist grunt 1 in thekaiRecall from
section 5.4.3 on page 73 that thecusFirerule sequence uses té¢tack K low-
est HP enemierule for melee type units. The erratic behaviour occursabse
this rule sequence ensures that units attack or move tovlaeds enemy units
with the lowest amount of hitpoints. There is only one enemy in the depicted
situation so the rule constraints grunt 2 and 3 to move clusére footman al-
lowing them to attack. As we do not have a dynamic path-findilggrithm the

98

CHAPTER 7. RESULTS

Figure 7.6: A problem with our game tree-based method. Hergtriated by the
KNNGTallexperiment withFocusFirerule sequence as the Orcs

rule chooses one adjacent tile which decreases the distartice target by one.
This leaves only one action available to both grunts but agtgt stands in the
field chosen by the rule for the grunts to move to grunt 2 ancée3at allowed to
move and thus just stand still.

Situations as this show the importance of designing thesrahel the rule se-
guences correctly. We, the designers of the rules and theeseqgs, had not fore-
seen the situation depicted and did not incorporate anylimgaf such situations.
If more work, thought and time was put into the making of tHe sequences such
erratic behaviour could be overcome.

99

CHAPTER 7. RESULTS

Game tree-based experimgnAttackNearest AttackMove
TVGTall w. FF 0,033 0,033
TVGTall w. AKN 0,033 0,033
TVGTall w. RA 0,033 0,033
KNNGTall w. FF 0,033 0,033
KNNGTall w. AKN 0,033 0,033
KNNGTall w. RA 0,033 0,033
NNGTall w. FF 0,033 0,033
NNGTall w. AKN 0,033 0,033
NNGTall w. RA 0,033 0,033
TVGTavg w. FF 0,033 0,033
TVGTavg w. AKN 0,033 0,033
TVGTavg w. RA 0,033 0,033
KNNGTavg w. FF 0,033 0,033
KNNGTavg w. AKN 0,033 0,033
KNNGTavg w. RA 0,033 0,033
NNGTavg w. FF 0,033 0,033
NNGTavg w. AKN 0,033 0,033
NNGTavg w. RA 0,033 0,033
AttackNearest 0,033 0,033
AttackMove -0,033 0,033

Table 7.1: SituatiorScenlvslHuman side. FF isocusFire AKN is Attack-
KNearestand RA isRangedAssisThe important fact in this table is that all values
are approximately zero.

100

CHAPTER 7. RESULTS

Game tree-based experimgnAttackNearest AttackMove
TVGTall w. FF -0,033 0,033
TVGTall w. AKN -0,033 0,033
TVGTall w. RA -0,033 0,033
KNNGTall w. FF -0,033 0,033
KNNGTall w. AKN -0,033 0,033
KNNGTall w. RA -0,033 0,033
NNGTall w. FF -0,033 0,033
NNGTall w. AKN -0,033 0,033
NNGTall w. RA -0,033 0,033
TVGTavg w. FF -0,033 0,033
TVGTavg w. AKN -0,033 0,033
TVGTavg w. RA -0,033 0,033
KNNGTavg w. FF -0,033 0,033
KNNGTavg w. AKN -0,033 0,033
KNNGTavg w. RA -0,033 0,033
NNGTavg w. FF -0,033 0,033
NNGTavg w. AKN -0,033 0,033
NNGTavg w. RA -0,033 0,033
AttackNearest -0,033 0,033
AttackMove -0,033 -0,033

Table 7.2.Scenlvs]Orc side. FF isocusFire AKN is AttackKNearesand RA is
RangedAssisThe important fact in this table is that all values are agpnately
zero.

101

CHAPTER 7. RESULTS

Game tree-based experimgnAttackNearest AttackMove
TVGTall w. FF 1,717 0,900
TVGTall w. AKN 1,883 0,944
TVGTall w. RA 1,717 1,033
KNNGTall w. FF 1,767 1,033
KNNGTall w. AKN 1,800 1,450
KNNGTall w. RA 1,717 1,550
NNGTall w. FF 1,189 1,967
NNGTall w. AKN 1,733 1,467
NNGTall w. RA 1,356 1,967
TVGTavg w. FF 1,783 1,950
TVGTavg w. AKN 1,800 1,533
TVGTavg w. RA 1,767 1,517
KNNGTavg w. FF 1,517 1,133
KNNGTavg w. AKN 1,800 1,033
KNNGTavg w. RA 1,733 0,900
NNGTavg w. FF 1,883 1,289
NNGTavg w. AKN 1,767 1,467
NNGTavg w. RA 1,683 1,750
AttackNearest 1,733 1,033
AttackMove 1,850 1,517

Table 7.3:Scen3vs20rc side. FF idocusFire AKN is AttackKNearesand RA
iIs RangedAssisiThe important fact in this table is that all values are peosit
meaning that the Orcs won as expected.

102

CHAPTER 7. RESULTS

Game tree-based experimgnAttackNearest AttackMove
TVGTall w. FF -1,256 -1,233
TVGTall w. AKN -1,967 -1,967
TVGTall w. RA -1,356 -1,800
KNNGTall w. FF -1,256 -1,222
KNNGTall w. AKN -1,967 -2,017
KNNGTall w. RA -1,322 -2,017
NNGTall w. FF -1,967 -1,933
NNGTall w. AKN -1,917 -2,017
NNGTall w. RA -1,322 -2,017
TVGTavg w. FF -1,967 -2,017
TVGTavg w. AKN -1,967 -2,017
TVGTavg w. RA -1,967 -2,017
KNNGTavg w. FF -1,967 -1,233
KNNGTavg w. AKN -1,967 -2,017
KNNGTavg w. RA -1,256 -2,017
NNGTavg w. FF -1,967 -1,233
NNGTavg w. AKN -1,356 -2,017
NNGTavg w. RA -1,967 -1,222
AttackNearest -1,733 -1,850
AttackMove -1,033 -1,517

Table 7.4:Scen3vs2Human side. FF igocusFire AKN is AttackKNearesaind
RA is RangedAssisThe important fact in this table is that all values are niegat
meaning that the Humans lost as expected.

103

CHAPTER 7. RESULTS

Game tree-based experimgnAttackNearest AttackMove
TVGTall w. FF 0,436 1,671
TVGTall w. AKN 1,271 1,189
TVGTall w. RA 0,500 1,018
KNNGTall w. FF 0,193 1,039
KNNGTall w. AKN 0,464 1,039
KNNGTall w. RA 0,739 1,671
NNGTall w. FF 0,514 1,168
NNGTall w. AKN 1,039 1,600
NNGTall w. RA 0,407 1,200
TVGTavg w. FF 0,421 0,664
TVGTavg w. AKN 0,507 1,061
TVGTavg w. RA 0,393 0,536
KNNGTavg w. FF 0,479 1,671
KNNGTavg w. AKN 0,943 1,514
KNNGTavg w. RA 0,607 1,671
NNGTavg w. FF 0,250 1,157
NNGTavg w. AKN 0,179 1,136
NNGTavg w. RA 0,429 1,629
AttackNearest 1,179 1,571
AttackMove 1,471 1,686

Table 7.5:Captured Human side. FF isocusFire AKN is AttackKNearesand
RA is RangedAssisThe important fact in this table is that all values are pesit
meaning that the Humans won as expected.

104

CHAPTER 7. RESULTS

Game tree-based experimenAttackNearest AttackMove
TVGTall w. FF -1,029 -1,829
TVGTall w. AKN -1,343 -1,629
TVGTall w. RA -0,911 -1,543
KNNGTall w. FF -1,671 -1,471
KNNGTall w. AKN -0,657 -1,700
KNNGTall w. RA -0,921 -0,679
NNGTall w. FF -1,254 -1,339
NNGTall w. AKN -0,657 -1,857
NNGTall w. RA -1,393 -1,093
TVGTavg w. FF -1,757 -1,296
TVGTavg w. AKN -1,039 -1,643
TVGTavg w. RA -0,514 -1,232
KNNGTavg w. FF -1,136 -1,529
KNNGTavg w. AKN -1,050 -1,200
KNNGTavg w. RA -0,586 -1,318
NNGTavg w. FF -0,793 -1,829
NNGTavg w. AKN -1,061 -1,771
NNGTavg w. RA -1,814 -1,657
AttackNearest -1,179 -1,471
AttackMove -1,571 -1,686

Table 7.6:Captured Orc side. FF idocusFire AKN is AttackKNearesand RA
is RangedAssistThe important fact in this table is that all values are negat
meaning that the Orcs lost as expected.

Built-in experiment SV Fair | Unfair
AttackMove 0,060(0.313| -0.179
AttackNearest -0,060| -0.313| 0.179

Table 7.7: End situation value of AttackMove and AttackNsars. each other
(Averaged over sides and situations). The important fathistable is that the
AttackMove performs slightly better than the AttackNeamsthe average.

105

CHAPTER 7. RESULTS

Game tree-based experiment SV Fair | Unfair
TVGTall w. FF 0,013| 0,134 -0,123
TVGTall w. AKN 0,049| 0,458| -0,366
TVGTall w. RA -0,081| 0,123]| -0,323
KNNGTall w. FF 0,039| 0,225| -0,155
KNNGTall w. AKN -0,149| -0,045| -0,307
KNNGTall w. RA 0,067| -0,002| 0,131
NNGTall w. FF -0,186| -0,400| -0,034
NNGTall w. AKN -0,153| -0,160| -0,202
NNGTall w. RA -0,099| -0,254| 0,014
TVGTavg w. FF -0,059| 0,024 -0,175
TVGTavg w. AKN -0,191| -0,180| -0,267
TVGTavg w. RA -0,196| -0,160| -0,299
KNNGTavg w. FF -0,094| -0,240| -0,011
KNNGTavg w. AKN -0,175]| -0,243| -0,167
KNNGTavg w. RA -0,189| -0,252| -0,191
NNGTavg w. FF -0,165| -0,234| -0,154
NNGTavg w. AKN -0,297| -0,389| -0,296
NNGTavg w. RA -0,201| -0,594| 0,125

Table 7.8: End SV result of game tree-based experimentstiasckMove (Aver-
aged over sides and situations). The important fact in #betis that TVGTall
and KNNGTall outperforms AttackMove on average in two outwée situations.

106

CHAPTER 7. RESULTS

Game tree-based experiment SV Fair | Unfair
TVGTall w. FF -0,189| -0,44| -0,033
TVGTall w. AKN 0.105| 0,302/ -0,039
TVGTall w. RA -0.132| -0,319| -0,013
KNNGTall w. FF -0.431| -0,835] -0,242
KNNGTall w. AKN 0.028| 0,160/ -0,090
KNNGTall w. RA -0.320| -0,852| 0,053
NNGTall w. FF -0.281| -0,322| -0,380
NNGTall w. AKN 0.236| 0,539| 0,050
NNGTall w. RA -0.078| 0,043| -0,238
TVGTavg w. FF -0.127| 0,062 -0,380
TVGTavg w. AKN -0.178| -0,269| -0,175
TVGTavg w. RA -0.259| -0,568| -0,080
KNNGTavg w. FF -0.421]| -0,788] -0,264
KNNGTavg w. AKN 0.062| 0,224 -0,069
KNNGTavg w. RA 0.140| 0,226| 0,125
NNGTavg w. FF -0.128| -0,162| -0,157
NNGTavg w. AKN 0.051| 0,245| -0,118
NNGTavg w. RA -0.285| -0,296| -0,417

Table 7.9: End SV result of game tree-based experimentstieciNearest (Aver-
aged over sides and situations). The important fact in #oketis that KNNGTavg
outperforms the AttackNearest on average in two out of thiteations.

Rule sequence SV Fair | Unfair
FocusFire -0,165| -0,248| -0,174
AttackKNearest -0,043| 0,053| -0,170
RangedAssist | -0,159| -0,280| -0,093

Table 7.10: End SV result of rule sequences vs. the builijpreements (Averaged
over sides, situations and opposing experiments). Theritapiofact in this table
is that the AttackKNearest rule-sequence performs bétter the two other rule-
sequences.

107

CHAPTER 7. RESULTS

Rating method SV Fair | Unfair
TVGTall -0,039| 0,043]| -0,149
KNNGTall -0,127| -0,225]| -0,102
NNGTall -0,086| -0,092| -0,132
TVGTavg -0,161| -0,181| -0,229
KNNGTavg -0,135] -0,254| -0,093
NNGTavg -0,160| -0,238| -0,170

Table 7.11: End SV result of rating methods vs. the builbdoeziments (Averaged
over sides, situations and opposing experiments). The rt@piofact this table
shows is that the TVGTall rating method performs overaltbes

108

Chapter 8

Future work

"Choice. The problem is choice"
- Neo

In this chapter we wish to portray the nature of enhanceme&htsh could be
made in our project. We will describe the reason for the ecéa@nts and propose
ways to obtain these.

8.1 Engine enhancements

When designing a system for real time use several optimissitnay be needed
in order to uphold the real time constraints. Even thoughesoptimisations were
implemented in this project additional contributions @bbke made to make the
system even more resilient to the time limitimposed. Thenpry motivations for
the optimisations are that the game tree can be built to sedésypel and that more
game states can be considered in the model.

As our project is written in Java and integrated with the ra@s described
in section 6 on page 81 a possible optimisation would be &gnate the game
tree and its support functions within the engine. This ogation would make
the data-propagation between C and Java unnecessary atditivasiresult in a
quicker solution. Also, an exact representation would lzelable at all times and
no considerations about what to propagate would be needsde $f the code
should be redesigned due to the object hierarchy in the girajel C's non-object
oriented facilities.

8.2 Machine learning accuracy

When using machine learning techniques as described ilosée6 on page 75
their accuracy can always be improved. As we train the maclgarning algo-

109

CHAPTER 8. FUTURE WORK

rithms with handmade training examples and associate@ésahe accuracy of the
algorithms depend solely upon the quality of the examplesofe thorough anal-
ysis of the problem domain would very likely increase theliquaf the training
examples and thereby increase the accuracy of the ratirfgpahetin section 5.5.3
on page 78 we also described how to choose actions. Otheodssftbr choosing
game tree nodes and assign values to the internal nodeslmuldestigated.

The threat values constituting the threat matrix are catedl by a handmade
equation as described in section 5.3 on page 60. It couldatev left out some
essential features and therefore threat value does natreape overall value of a
unit. We chose the parameters involved due to apparent tarpme. But whether
these are the most important features is left unknown. If eeregpressing equa-
tion could be found the obtained results could also be ingutov

8.3 Improving evaluation methods

The scenario value (SV) described in section 5.6 on page Z3umes the course
of an SSC situation. The SV does not incorporate the numbgame cycles spent
in the situation. Incorporation of game cycles would allesta@assign a lower SV
to the erratic behaviour described in section 7.5.1 on p&gé&eby not rating
these evaluations as high as they currently are. How th@pacation could be
achieved is not obvious to us.

The set of situations produced in the engine’s editor-m@dids made to be
able to test our game tree method and to let it battle agdiasither implemented
experiments. By extending the set of SSC situations onaladistover whether
the end-results of the simulations would produce equalbdgesults on these as
well. Also, it would be interesting to implement our methadaa actual support
routine in Wargus thereby making the game tree method &lait® the play-
ers. It would be interesting to see whether human playerddiiod our method
applicable to handle SSC situations.

8.4 Improving the integration with Wargus

Recall from section 5.3 on page 60 that fog of war was ignovee.assumed
implicitly that when the tree is about to be built, an actuainbat situation is
already in process or just about to be. This is partially mect. Enemy units
not yet seen by the controlled units must not influence thésolers made. The
inclusion of fog of war can be achieved by letting the fielddenthe fog of war be
unavailable until these are within sight-range of a frignaihit. Available fields
in the snapshot would thus be the fields in sight. Some membpyeaviously

110

CHAPTER 8. FUTURE WORK

seen enemy units would have to be incorporated as it woullidggcal to ignore
enemy units just seen.

The code handling the units implicitly assumes that therotled units are
either of type melee or type ranged. In these two types threra &t of different
units. We chose two for each side which were identical inkattes to make testing
and correctness of the algorithms easier. Additionally,gbssibility of including
flying units was ignored. Since flying units have the sameagbossibilities as
either the melee land unit or the ranged land unit extendiegcode to include
these could be accomplished.

Allowing additional actions for the units such as the apitd cast magic or
use siege weaponry upon a target area is technically haahteve. The magic or
siege attacks are often in effect for a prolonged time. Wstaading in the target
zone are affected by the magic- or siege-damage for a while.rmodel cannot
currently handle this effect though the design could bereded to model this. The
prolonged effects could be modelled as attacks appearitiggitree at intervals.
Many of the effects give points of damage everyth second. An attack node
could be inserted evenyth game cycle and estimate damage to the units within
the area of effect accordingly.

8.5 Game tree extensions

As described in section 7.5.1 on page 98 we do not use thefipdihg algorithm
in the engine. Instead we statically calculate the shopat$t from all tiles to all
tiles. An extension of the model would naturally be to inavgie the handling
of non-static paths. A dynamic pathfinding-algorithm wob&lneeded to handle
other units obstructing the path. This algorithm would neele extremely fast
since the shortest paths change dynamically during theilegilon of the tree.
Some of the experienced problems with the game tree-basdgthdwere due to
the model’s inability to handle dynamic shortest paths. Ahalgorithm in the
engine could if redesigned be used to give these paths. Bethwhthis would
violate the real time constraint is currently unknown.

Another future work topic is the fairly inflexibility of theagne tree construc-
tion, because the number of game cycles to evaluate is sksifitically. Another
approach could be to incorporate a detection of time speggine tree construc-
tion allowing it to stop if no more time is available. This wdwf course intro-
duce some problems. E.g. if the time limit is exceeded ants wtill exist with
no orders. This problem should then be solved reasonablyg saits would stand
around doing nothing.

As described in section 5.4 on page 64 we model the enemyamgtanding
still in the game tree. This is imprecise and in all SSC siturst the enemy units

111

CHAPTER 8. FUTURE WORK

move around and attack. The problem is that in the currenefrtbd future states
are very imprecise. A different method for pruning the treeadess restrictive
model for the enemy unit’s behaviour could be investigated.

By designing near-optimal rules and sets of rules the ga@eeculd only con-
sider near-optimal states. Finding near-optimal rule&o®urse a game specific
topic. This problem depends on the actual engine, how coatpeenvironment
is and the interdependency of the rules. Sequences of rtdesqaally hard to
design. The order is a very important factor for the succédiseorule sequence.
We designed a few sample rule sequences by hand as previtassigbed in sec-
tion 5.4.3 on page 73 which at the time of creation seemedjldce and simple
strategies. In a further investigation of the area of SSCaal gtarting point would
be to extend this rule set and possibly find better rule sezpgehe rule system
of our game tree based method could also be extended to ebktter debugging
facilities. This would let us detect the erratic behavioasctibed in section 7.5
on page 98 and handle this before it appears in the evalgation

112

Chapter 9

Conclusion

"I may not have gone where | intended to go
but I think | have ended up where | intended to be"
- Douglas Adams

In this thesis we defined the problem of small scale combaCj38uations in
real time strategy (RTS) games. We investigated the areawofeGAl to provide a
basis for understanding the methods used for solving theB&i@lem.

We presented an overview of several computer game genrearganed that
consistent behaviour of characters in a game world is a iboming factor to the
overall quality of a computer game. We examined several\beteal models in
different computer game genres. We discussed whether duensthods resulted
in consistent character behaviour. Based on these inagising we concluded that
in SSC situations an optimal unit behaviour results in a sbast unit behaviour.

We presented different methods for handling SSC situatdosy with a dis-
cussion involving the advantages and disadvantages of thethods. Based on
this examination we chose a game tree model as the methochalling SSC
situations.

Investigating the game tree method applied to RTS gameseiunive intro-
duced the notion of timestamped game trees to handle thengaimne lengths of
actions and concurrent actions. Three issues were idehdifid handled. The first
issue concerning the representation of the tree was habgleabdelling a SSC
situation as a simplified snapshot of the game state. Thenddssue regarding
the size of the tree was handled by letting sequences of retese the fanout
of each node. The last issue involving which states to chafiee the tree had
been constructed was handled by letting different algoréthate the game tree
nodes. A handcrafted rating method and two machine leamggyithms were
designed to perform this rating. As input to the rating mdthwe introduced the
threat matrix which contained all units threat values. Tiredt value formula was
designed to capture units’ desirability in a single value.

113

CHAPTER 9. CONCLUSION

To evaluate the performance of the game tree-based metm@pen Source
RTS game of Wargus was chosen as platform. Wargus was chesaunde it is of
a commercial comparable quality and we had access to theesoade. Further-
more, Wargus contains simple rules for handling SSC sadunati These built-in
rules were opposed to the game tree variations to investighich method per-
formed best.

The results obtained show that the performance of the garaebmsed meth-
ods relies on the actual pruning and rating methods, as teghedevertheless,
the game tree method outperformed the built-in methods afjMéa This fact
suggests that a game tree method which respects the realdims&aints can ac-
tually perform better than methods currently used by theroengial computer
game industry.

If an optimal rule sequence can be devised by analysing iee of the tar-
geted game the game tree model can be used to give playerptiba of au-
tonomously handling SSC situations effectively. This b&is player shift his fo-
cus to the high level decisions needed to win in an RTS ganréhé&mnore, if the
game tree method is used solely by the computer controllpdrognts the chal-
lenge posed by the opponents could be adjusted by usingeatiffeating methods
or different rule sequences without succumbing to lettimgdpponent cheat.

The game tree method is not without its limitations. Much kvsrneeded to
implement the game tree and to fit the rules and the rating odett the actual
game. Also, as rule sequences are used to prune the gamieisrereethod is also
sensitive to the ability of the rule designers to understhedyame at hand.

To conclude, we found that game trees can be used as an tlterway of
obtaining consistent behaviour in SSC situations. But masek could be made
in order to increase the performance of the game tree methibwiki domain.

114

Bibliography

[Abandonia, 2006 Abandonia. Home of abandonware DOS games, 2005:
I/ www. abandoni a. com Visited 18. May 2005.

[Adams and Mendler, 2002David Adams and Michael Mendler. Automated
Generation of Dungeons for Computer Gamaest p: / / www. dcs. shef . ac.
uk/ t eachi ng/ epr oj / ug2002/ pdf / u9da. pdf . Visited 21. May, 2002.

[AMALI, 2005] AMAI. Advanced Melee Al, 2005. http://amai.
we3canpai gns. con . Visited 5. July 2005.

[Atari, 200q Atari. Driver, 2000. http://ww. atari.con driv3r/. Visited
21. June 2005.

[Auran, 1997 Auran. Dark Reign, 1997.http://ww. aur an. com ganes/
darkrei gn/ defaul t. ht m Visited 23. August 2005.

[Bethesda Softworks, 1998Bethesda Softworks. The Elder Scrolls, 198 p:
I ' ww. el derscrol |I's. con . Visited 20. May 2005.

[Bjornson and Marsland, 20DIYngvi Bjérnson and Tony A. Marsland. Multi-
cuta-f pruning in game-tree searchheoretical Computer Scienc2s2:177—
196, 2001.

[Blizzard, 199% Blizzard. Warcraft I, 1995. http://www. bl i zzard. com
war 2bne/ . Visited 18. May 2005.

[Blizzard, 1998 Blizzard. Starcraft, 1998. http://www. blizzard. com
starcraft/. Visited 31. May 2005.

[Blizzard, 2000 Blizzard. Diablo I, 2000. http://ww.blizzard. com
di abl 02/ . Visited 18. May 2005.

[Blizzard, 2002 Blizzard. Warcraft IIl, 2002. http://www. bl i zzard. com
war 3/ . Visited 31. May 2005.

115

BIBLIOGRAPHY

[Blizzard, 2004 Blizzard. The Story of Warcraft, 2004. http://ww.
wor | dof warcraft.cominfo/story/.Visited 22. April 2005.

[Blizzard, 200% Blizzard. World of Warcraft, 2005. http://ww.
wor | dof war craf t. com Visited 20. May 2005.

[Brockington, 2000 Mark Brockington. Pawn Captures Wyvern: How Computer
Chess Can Improve Your Pathfinding, 200Q.t p: / / ww. ganasut r a. cont
f eat ures/ 20000626/ br ocki ngt on_01. ht m Visited 8. July 2005.

[Buckland, 2005 Mat Buckland. Al-Junkie, 2005ht t p: // www. ai - j unki e.
con . Visited 19. July 2005.

[Buro and Furtak, 20d4Michael Buro and Timothy M. Furtak. RTS Games and
Real-Time Al Research. IRroceedings of the Behavior Representation in
Modeling and Simulation Conference (BRIMS), Arlington 2804.

[Buro, 2002 Michael Buro. ORTS: a hack-free RTS game environmenPrin
ceedings of the International Computers and Games Confer2002.

[Buro, 2004 Michael Buro. Call for Al Research in RTS Games Aroceedings
of the AAAI-04 workshop on Al in games, San J@884.

[Callan, 2008 Rob Callan.Artificial Intelligence Palgrave Macmillan, 2003.

[Capcom, 1996 Capcom. Street Fighter Alpha I, 1996. http:// ww.
ganef aqs. conl coi nop/ ar cade/ dat a/ 583633. ht nl . Visited 16. May 2005.

[Carlisle, 2004 Phil Carlisle. An Al Approach to Creating an Intelligent Cara
System. InPAl Game Programming Wisdom harles River Media, Inc., 2004.

[Champandard, 2003Alex J. Champandarddl Game Development - Synthethic
Creatures with Learning and Reactive Behavioliew Riders, 2003.

[Codemasters, 1998Codemasters. TOCA race driver 1lI, 1998.htt p:
I ' ww. codemast ers. com t ocaracedriver2/index. php?territory=
Engl i shUSA. Visited 21. June 2005.

[Coulouriset al,, 2001 George Coulouris, Jean Dollimore, and Tim Kindberg.
Distributed System — Concepts and Desigddison Wesley, 2001.

[CSteam, 1999 CSteam. Counterstrike, 1999. http://counterstrike.
sierra.con . Visited 16. May 2005.

[Dalmau, 2008 Daniel Sanchez-Crespo DalmauCore Techniques and Algo-
rithms in Game ProgrammindNew Riders, 2003.

116

BIBLIOGRAPHY

[Davis, 1999 lan Lane Davis. Strategies for Strategy Game AIAAI Spring
Symposium Technical Report SS-99-1299.

[Design, 2008 Core Design. Tomb Raider: Angel of Darkness, 20081 p:
I I ww. t obr ai der chroni cl es. con t ng/ . Visited 22. June 2005.

[EA Games, 2000 EA Games. The Sims, 2000hesi ms. ea. con . Visited 21.
June 2005.

[EA-Sports, 2004 EA-Sports. Madden NFL 2004, 2004. http:// ww.
easports. cont ganes/ madden2004/ hone. | sp. Visited 16. May 2005.

[Ensemble Studios, 1997Ensemble Studios. Age of Empires, 199t p: //
www. ensenbl est udi os. com aoe. ht m Visited 31. May 2005.

[Epic Games, 2004Epic Games. Unreal, 2004ht t p: // ww. unr eal . con .
Visited 20. June 2005.

[Firaxis Games, 20Q1Firaxis Games. Civilization Ill, 2001. http: // ww.
ci v3. con . Visited 14. July 2005.

[Fogel, 2002 David Fogel.Blondie24: Playing at the Edge of AMorgan Kauf-
mann Publishers, 2002.

[Free Software Foundation, 199Free Software Foundation. GNU General Pub-
lic License version 2, 1991.http://ww. gnu. org/ copyl eft/gpl.htn .
Visited 22. April 2005.

[Free Software Foundation, 199%ree Software Foundation. GNU Lesser Gen-
eral Public License version 2.1, 199%ttp://ww. gnu. or g/ copyl eft/
| esser. htm . Visited 27. July 2005.

[Fu and Houlette, 20Q4Dan Fu and Ryan Houlette. The Ultimate Guide to FSMs
in Games. InAlI Game Programming Wisdom Zharles River Media, Inc.,
2004.

[GameFAQs, 1993GameFAQs. NBA games, 1993t t p: / / ww. ganef ags.
com sear ch/i ndex. ht M ?game=NBA&=08&y=0. Visited 21. June 2005.

[GameFAQs, 1996 GameFAQs. FIFA, 1996. htt p:// www. ganef ags. com
sear ch/ i ndex. ht ml ?gane=fi f a&x=08&y=0. Visited 21. June 2005.

[GameFAQs, 20056GameFAQs. Video game FAQs, 2005.http:// ww.
ganef ags. com Visited 18. May 2005.

117

BIBLIOGRAPHY

[GameSpot, 20d5GameSpot, 2005.htt p: // www. ganespot . com Visited 7.
July 2005.

[Gammaeet al, 1994 Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns - Elements of Reusable Object-Orientetvare
Addison Wesley, 1994.

[Goodrich and Tamassia, 199&lichael T. Goodrich and Roberto Tamassia.
Data Structure and Algorithms in Javdohn Wiley and Sons, 1998.

[Grimani, 2004 Mario Grimani. Wall Building for RTS Games. IAl Game
Programming Wisdom.Zharles River Media, Inc., 2004.

[Gustafsson, 2034Tommi Gustafsson. Warcraft 11l Als, 2004t t p: / / users.
tkk.fi/~tgustafs/we3ai.htm . Visited 6. July 2005.

[Hubbard, 200R Craigh Hubbard. PC Gamer September artitieagine Media
2002.

[ID Software, 1999 ID Software. Quake Il Arena, 1999. http:// ww.
I dsof t war e. conf ganes/ quake/ quake3- ar ena/ . Visited 18. May 2005.

[lerusalimschyet al,, 2003 R. lerusalimschy, L. H. de Figueiredo, and W. Celes.
Lua 5.0 Reference ManualTechnical Report MCC-14/03, PUC-Rig003.
http:// ww. | ua. org. Visited 22. April 2005.

[IGN, 2009 IGN, 2005.htt p://ww. i gn. com Visited 7. July 2005.

[Infocom, 1980 Infocom. Zork I: The Great Underground Empire, 1980t p:
I'I'en.w ki pedi a. org/w ki/ Zork_I. Visited 23. June 2005.

[Interplay, 1997 Interplay. Fallout, 1997.http://ww. nna-fal | out. conl .
Visited 20. May 2005.

[Jefsen, 2000 Per Jefsen. RTS Atrtificial Intelligence - An evolutionanpapach.
Master’s thesis, DAIMI, Aarhus University, 2000.

[Joone, 2006 Joone. Java Object Oriented Neural Engine, 2008.t p: //
j oonewor | d. comi ndex. ht ml . Visited 27. July 2005.

[Kent, 2004 Tom Kent. Multi-Tiered Al Layers and Terrain Analysis for BT
Games. IPAl Game Programming Wisdom €harles River Media, Inc., 2004.

[Kozen, 199F Dexter C. KozenAutomata and ComputabilitySpringer Verlag,
1997.

118

BIBLIOGRAPHY

[Laraée, 2004 Francois Dominic Laraée. Dead Reckoning in Sports andegjyat
games. IPAl Game Programming Wisdom €harles River Media, Inc., 2004.

[Lidén, 2004 Lars Lidén. Artificial Stupidity: The Art of Intentional Mtakes.
In Al Game Programming Wisdom €harles River Media, Inc., 2004.

[Lionhead Studios, 20Q1Lionhead Studios. Black and White, 2004t t p: //
www. | i onhead. com bw/ i ndex. ht ml . Visited 21. June 2005.

[LucasArts, 198F LucasArts. Maniac Mansion, 1987. http://ww
I f-1egends. org/\%Eadvent ure/ LucasArts. ht m \ #Mani ac_Mansi on.
Visited 23. May 2005.

[LucasArts, 199D LucasArts. Monkey Island, 199Gt t p: / / www. wor | dof ni .
con t hegames/ monkey1/i ndex. php. Visited 16. May 2005.

[Main, 1999 Michael Main. Data Structures & Other Objects Using JavAd-
dison Wesley, 1999.

[Manovich, 2001 Lev Manovich. The Language of New MediaMIT Press,
2001.

[Manslow, 2004 John Manslow. Fast and Efficient Approximation of Racing
Lines. InAl Game Programming Wisdom €harles River Media, Inc., 2004.

[Mathiasseret al, 2001 Lars Mathiassen, Andreas Munk Madsen, Peter Axel
Nielsen, and Jan Stag@bjektorienteret Analyse og DesigRorlaget Marko,
2001.

[Maxis, 2003 Maxis. SimCity 4, 2003. http://sinctity. ea. conm about/
sincity4/ overvi ew. php. Visited 16. May 2005.

[McLean, 2004 Alex McLean. Hunting down the Player in a convincing manner.
In Al Game Programming Wisdom €harles River Media, Inc., 2004.

[Media Research Group, 200Media Research Group. Grand Master Chess,
2004.http: // ww. al awar . com’ ganes/ chess/ . Visited 16. May 2005.

[Michalewicz and Fogel, 2004Zbigniew Michalewicz and David B. FogeHow
to Solve It: Modern HeuristicsSpringer, 2004.

[MicroProse, 199b MicroProse. Transport Tycoon Deluxe, 1995t p: / / www.
t ycoonganes. net/introduction. ht m . Visited 30. June 2005.

[Midway, 1993 Midway. Mortal Kombat, 1992ht t p: // en. wi ki pedi a. or g/
wi ki / Mortal _Kombat . Visited 21. June 2005.

119

BIBLIOGRAPHY

[Mitchell, 1997 Tom Mitchell. Machine Learning McGraw Hill, 1997.

[Namco, 1994 Namco. Tekken, 1994.http://en. w ki pedi a. or g/ wi ki /
Tekken. Visited 21. June 2005.

[Nareyek, 200]L Alexander Nareyek. Review: Intelligent Agent for Computer
GamesComputers and Games — Second International Conference -00G 2
pages 414-422, 2001.

[Nilsson, 1998 Nils J. Nilsson.Atrtificial Intelligence A New SynthesiMorgan
Kaufmann Publishers Inc., 1998.

[Nintendo, 1985k Nintendo. Mario, 1985ht t p: // en. wi ki pedi a. or g/ wi ki /
Li st _of Mario_games. Visited 21. June 2005.

[Nintendo, 1985b Nintendo. Super Mario Brothers, 1985.htt p:// ww.
cl assi cgam ng. conl t mk/ smb. sht nl . Visited 16. May 2005.

[Orkin, 20044 Jeff Orkin. Constaining Autonomous Character Behaviouthwi
Human Concepts. 1Al Game Programming Wisdom €harles River Media,
Inc., 2004.

[Orkin, 20048 Jeff Orkin. Simple Techniques for Coordinated BehavionrAl
Game Programming Wisdom €harles River Media, Inc., 2004.

[Paramount, 2005Paramount. Tomb Raider, 2005. http://ww.
t onbr ai der novi e. com . Visited 26. July 2005.

[Patel, 2004 Amit J. Patel. Pathfinding, 200t t p: / / t heory. st anf or d. edu/
~am t p/ GanmePr ogr anm ng/ . Visited 2. May 2005.

[Polyphony, 200D Polyphony. Gran Turismo I, 2000t t p: / / ww. ganef ags.
com consol e/ psx/ dat a/ 197469. ht nl . Visited 16. May 2005.

[Rabin, 2004k Steve Rabin, editorAl Game Programming Wisdom Zharles
River Media, Inc., 2004.

[Rabin, 2004b Steve Rabin. Common Game Al Techniques.AlnGame Pro-
gramming Wisdom.Zharles River Media, Inc., 2004.

[Rabin, 2004t Steve Rabin. Promising Game Al Techniques AlrGame Pro-
gramming Wisdom.Zharles River Media, Inc., 2004.

[Ramsey, 2004 Michael Ramsey. Designing a Multi-Tiered Al Framework. In
Al Game Programming Wisdom €harles River Media, Inc., 2004.

120

BIBLIOGRAPHY

[Reynolds, 200 John Reynolds. Team Member Al in an FPS. AhGame
Programming Wisdom.Zharles River Media, Inc., 2004.

[Rouse, 200p Richard Rouse.Game Design Theory and PracticéVordware
Publishing Inc., 2000.

[Runestone, 20Q5Runestone. Seed, 2005t t p: / / www. seedt hegane. com
Visited 26. July 2005.

[Sidran, 2008 Ezra Sidran. The Current State of Human-Level Atrtificial Intel-
ligence in Computer Simulations and Wargamd2hD thesis, University of
lowa, 2003.

[Sidran, 2004 Ezra Sidran. A Calculated Strategy: Readings directedridsithe
creation of a strategic artificial intelligencBeadings for Research. University
of lowa 2004.

[Sierra Entertainment, 199&ierra Entertainment. Half Life, 1998htt p: //
www. si erra. cont product. do?ganePl at f or nl d=180. Visited 5. July 2005.

[Sierra Entertainment, 2005Sierra Entertainment. No one lives forever I, 2005.
http://nolf2.sierra.comsite.htn .Visited 18. May 2005.

[Sierra, 198¥ Sierra. Leisure Suit Larry, 198%tt p: // ww. i f - | egends. or g/
~adventure/ Sierra_On-Line, _Inc/Larry. htm . Visited 23. May 2005.

[Sonic Team, 1991Sonic Team. Sonic the Hedgehog, 1991.http:
/''en. wi ki pedi a. org/w ki/List_of ganmes_featuring_Sonic_the_
Hedgehog. Visited 21. June 2005.

[Sony Online Entertainment, 19p%ony Online Entertainment. EverQuest,
1999.http://eqlive.station.sony.com . Visted 20. June 2005.

[Stallings, 2000 William Stallings.Data & Computer CommunicationBrentice
Hall, 2000.

[Stratagus, 20Q4Stratagus. The Stratagus Engine v. 2.1, 2004ttp://
stratagus. sf. net. Visited 22. April 2005.

[Studios, 1992 Westwood Studios. Dune I, 1992. http://ww.
fl ashback- aw. net/ ganes. php?CGanel D=38. Visited 16. May 2005.

[Sun Microsystems, 2003Sun Microsystems. Java Native Interface, 2003.
http://java.sun.com j2se/1.4.2/docs/ guide/jni/index.htnm. Vis-
ited 18. July 2005.

121

BIBLIOGRAPHY

[Sweetser, 20d4Penny Sweetser. Strategic Decision-Making with Neural Net
works and Influence Maps. Wl Game Programming Wisdom@harles River
Media, Inc., 2004.

[Taylor, 2002 Laurie N. Taylor. Video Games: Perspective, Point-of-\iawd
Immersion. Master’s thesis, Graduate Art School, Univeisi Florida, 2002.

[TV2,2004 TV2. TV2 spil, 2005. http://spil.tv2. dk/. Visited 23. May
2005.

[van de Wijdeven, 20d2Marco van de Wijdeven. Game Trees in Realtime
Games, 2002ht t p: // ai - depot . com’ GaneAl / GaneTr ee. ht nl . Visited 21.
May 2005.

[Wargus, 2004 Wargus. Wargus v. 2.1, 2004t t p: / / war gus. sf . net . Visited
22. April 2005.

[Weeks, 200b Mark Weeks. Relative Value of Chess Pieces, 2006t p: //
chess. about. com | ibrary/ bl e23pvl . ht m Visited 11. July 2005.

[Westwood Studios, 1991Westwood Studios. Eye of the Beholder I,
1991. http://ww. abandoni a. com games/ 176/ Eye_of _t he_Behol der _
2. ht m Visited 16. May 2005.

[Wexler, 2002 James Wexler. Atrtifical Intelligence in Games. 2002.

[Wikipedia, 2004 Wikipedia. Lens Flare Definition, 2004. http://en.
wi ki pedi a. org/w ki /Lens_fl are. Visited 28. April 2005.

[Wikipedia, 2005h Wikipedia. A* search algorithm, 2005. http://en.
wi ki pedi a. org/ wi ki /A-star_search_al gorithm Visited 2. May 2005.

[Wikipedia, 2005b Wikipedia. Computer and video game genres, 20@3.p:
/' 'en. wi ki pedi a. org/w ki / Conput er _and_vi deo_gane_genres. Visited
12. May 2005.

[Wikipedia, 2005¢ Wikipedia. Dead Reckoning, 2005. http://en.
wi ki pedi a. or g/ wi ki / Dead_r eckoni ng. Visited 28. June 2005.

[Wikipedia, 2005¢1 Wikipedia. Mean squared error, 2005.http://en.
wi ki pedi a. org/w ki / Mean_squar ed_error. Visited 27. July 2005.

[Wikipedia, 2005¢ Wikipedia. Real-time strategy, 2005. http://en.
wi ki pedi a. org/w ki/Real time_strategy. Visited 21. July 2005.

122

BIBLIOGRAPHY

[Wikipedia, 2005F Wikipedia. Wikipedia, 2005ht t p: // en. wi ki pedi a. or g/
wi ki / W ki pedi a. Visited 13. May 2005.

[Wikipedia, 2005¢ Wikipedia. Wikipedia: Neutral point of view, 2005t t p:
/'I'en.w ki pedi a. or g/ w ki / Wki pedi a: Neutral _poi nt_of _vi ew. Visited
15. May 2005.

[Wolf, 2004 Mark J. P. Wolf, editorThe Medium of the Video Ganehapter 6.
University of Texas Press, 2002.

[Woodcock, 200F Steven M. Woodcock. The Game Al Page, 2006t p: //
wwv. ganeai . cont . Visited 19. July 2005.

[Yahoo, 200% Yahoo. Yahoo Games, 2005t t p: / / games. yahoo. cont . Vis-
ited 18. May 2005.

123

Appendix A

A note on search for literature

We have been extensively searching for literature desgibiie application of
methods from soft computing and game theory to commercialpcter games.
This effort was however largely fruitless. Most literatdioeind was from people
within the game industry describing by example how to impridve game and
the experience for the human player. There is little effortdéscribe the theo-
retic foundations for applying these techniques to the cencral computer game
domain.

Aside from papers we also found several websites amongsiaodcock,
2004 and[Buckland, 200bmaintained by people from the commercial computer
game industry regarding Game Al.

The situation is improving thanks to among others the worklmhael Buro
and his team at the University of Alberta. They actively éatla research agenda
in real time strategy gamd8uro, 2004. They are however mostly focused on
creating an open platfornilBuro, 2002, for testing Game Al in RTS games.

Books We also found a few books covering Game Al development. Thes d
thorough job at explaining by examples how to develop GamenAthods for
different types of games. IfChampandard, 2003\lex Champandard develops
a consistent opponent for first person shooters and expédlimaethodologies
used in the process. [Rabin, 2004ha collection of articles concerning the topic
of Game Al written by people from the commercial computer gandustry is
presented.

Older games As a part of this thesis we also researched the games whiel-in r
rospect defined many of the computer game genres (see s2ion page 8) of
today. Official information about these games is hard to cbynas the companies
which created these vanish or devote their official homep&maewer games.

124

APPENDIX A. ANOTE ON SEARCH FOR LITERATURE

As sources of information to older games we found fan-basglokites dedi-
cated gaming sites such @3ameFAQs, 200%r the so-calle@bandonwaresites
such agAbandonia, 200b

Wikipedia.org The online encyclopedia called Wikiped[&Yikipedia, 2005f,
is a source of much information on the Internet. Anyone caha/ entry and
this is why so many topics exist on the site but is also why riéslibility can be
guestioned.

The people behind Wikipedia a group called Wikimedia ard axghare of this
issue. They write:

“Wikipedia’s status as a reference work has been contr@leltshas
received praise for being free, editable, and covering &watge of
topics. It has been criticized for a perceived lack of actabitity and
authority when compared with traditional encyclopedigistamic bi-
ases, and deficiencies in some topidd¥ijkipedia, 2005F.

To remedy this, Wikipedia has adopted an official polidikipedia, 2005,
which asserts that Wikipedia articles must haveeatral point of viewWe ac-
knowledge that Wikipedia might be biased and use referetoc@ékipedia with
care — as a way of getting background information for inticidry purposes and
cross-references where possible.

125

Appendix B

Summary of diary

We have been writing a diary during the making of this thesreme notes of
design- and implementation-progress were kept. The iddali entries which
were updated on a daily basis contains design choices, imgplation details re-
garding non-thesis relevant information, the current peeg of the thesis-report,
notes and general thoughts. We have loosely followed aativersequence of pro-
cess so design, implementation, game-engine examinatiahtesting tasks were
alternated throughout the thesis-work as describ¢Mathiasseret al., 2001.

During the course of this project several seminars were\ub&te this project
was presented. Constructive criticism and many good swlttiodels came from
these meetings where both associate professors and swadi&etwere prepared
to comment on design and general issues.

A diary-extract is presented below giving a general ovenaéthe diary.

September '04 - November’'04 Early work with the general domain of RTS
games was conducted and a choice of game-engine, Strateggidecided upon.
General preliminary design-issues were discussed on nmdes®general levels.

In this early phase the game-engine was investigated torstiaghel whether it
was technically possible to incorporate a Game Al moduledisjanct client. As
such it was found that extending the engine was technicatiserplausible than
extending the network protocols substantially.

Early implementation work based on the language of C++ waagest but was
abandoned due to technical limits of the engine in collatamavith C++.

November '04 - January '05 The general design issues were exemplified
and design-work became more focused in solving the probleithén SSC. An
overview of an RTS opponent was created and identifyingsaoéaesponsibility
was conducted. As a result several packages were identifeedesigned.

126

APPENDIX B. SUMMARY OF DIARY

The game-engine was studied in greater detail to find othplicable ap-
proaches than the disjunct client-model.

Implementation based on Java using the JNI-interface veakedtand within
days the code reached the level of the C++ implementation.

January '05 - March '05 The design progress moved towards a optimal
solution-model for SSC. Several discussions with Asseckibfessor Thiemo
Krink were conducted and it was during these discussionsreegeee method
was considered and afterwards decided upon.

Much work was needed to incorporate JNI in the engine andvibead work
with the link between Java and the engine was performed gluhis period of
time.

Implementation regarding the game tree method was stamtéchany discus-
sions involving learning algorithms primarily a neuralwetk-solution into the
model were conducted. An implementation consisting of grearment frame-
work was started with the objective of engine experimeatatirhis framework
was created in such a way that testing-code and individysr@xent executions
could be incorporated easily.

March 05 - April '05 With the general design-issues in place much of the
work done during this period was used in implementation aeglgh phases of
the actual code.

The engine was now and then referenced to test variousisitgatn which
our code was based.

The implementation reached new heights as the set of rulegm@emented.
This was to allow experiments in real simulations within #reggine. A parser
which was used in context with training the neural netwarkirtg of the individ-
ual runs and testing of the code was created. Several frarkeyaog4J and the
NetBeans profiler were included in the project to allow ma&stihg and timing
capabilities. These were incorporated to allow a collatimmawith our present
code.

April '05 - May '05 Design work in this period was reduced to designing
test-suites (unit-tests and integration-tests), finalgiesf the neural network-
model, evaluation of the timing-runs and general desigotachanges.

The primary implementation work was done in the experimerhework and
in the timing of experiment- and test-cases. Implemenatiork regarding load-
ing and storing training examples was made to the parsetewrdarlier. Imple-
mentation and incorporation of the Joone-framework was edsiducted during
this period of time.

127

APPENDIX B. SUMMARY OF DIARY

For those modules in our project, which deserved speciahtiin, software
reviews were made to secure the correctness of these.

The thesis report was started during the start of this pexrrmtiseveral layout
options were considered.

May '05 - June '05 The design process was extended to include the design
of additional rules which were needed in the pruning of thengdree. Design
of two alternative pruning methods KNN and TVGT was made awdesminor
design changes were also carried out. Training examples areated by hand
and multiple ways of generating a greater number of these discussed. Several
rule-compositions were discussed to give the units a mamsistent behaviour.

During May implementation work was primarily made in extamthe set of
rules and testing this. The two alternative pruning methegl® also implemented
and tested in several scenarios in Stratagus. Methods farging additional
training examples based on the hand-made ones were impiednand tested.
The rule sequences were implemented and tested using gnaitibe test-suite.

Several chapters in the thesis report were written as pirgiry versions.

June '05 - August '05 Design-work in this phase of the project was only
used to discuss and re-design parts of the thesis-report.

Some code was created in the start of this period which cauigbd to collect
and merge various findings from the evaluation-runs. A megs implemented
to automate the data collection and merge the results.

The thesis report was finalised during this phase of the groje

128

Appendix C

Design and Implementation

In this appendix we will present the design and implemeomatetails of our
system. Recall that the communication between our moduletladm Stratagus
engine was examined in chapter 6 and will therefore not bereavhere.

C.1 Design

This section describes the design details of the game tréleocheThe primary
design choice was to create a plugin system for the enginis. désign would
allow some players to use the game tree module for SSC sihsavhile letting
other players use the standard client. l.e. the playersdMaeilable to choose be-
tween several plugin modules and pick the one best suitetthéar playing style
as discussed in section 2.3.2 on page 24. As already exanmrakthpter 6 on
page 81 the method favoured an object oriented approachahiilight we im-
plemented three packages which allowed code-separatiantfie engine along
with an extensible and flexible design model. These packadidse examined in
detail in the following sections.

C.1.1 Java packages

The package calledtr at agus was created solely for interfacing between our
module and the engine. Our implementation for the gamelased methods
calledr ada uses this package for all functions related to the enginkowimg,
each package and the associations between the classesamiitide examined.

129

APPENDIX C. DESIGN AND IMPLEMENTATION

thehsﬂg;tagus 1 1| StratagusMap |~ 1 0..* [StratagusField
stratagusUnits M [unit |

1

1

0.* 0
StratagusUnit
unitType 0..* 1| StratgusUnitType
unitStat 0.*
player »
0.- 0.. y

StratagusUnitStat

o
s

1
StratagusPlayer

thisPlayer
enemyPlayer Grou
units units
GameHandlerinterface
tick(int)
firstRoundEvent()
Change
type 9 endOfGame(bool, int)
History 1 0.* !
unitiD
(changes ____|
value
X, y

Figure C.1: The UML diagram of the Stratagus package

Stratagus package

In the following, the classes which constitute thter at agus package are de-
scribed. The associated UML-diagram is depicted in figufie &Il of the classes
with the prefix Stratagus are used to explicitly represemtidta we need from the
engine whereas the History, Change and GameHandlerlogetfasses represent
non-engine dependent information.

Stratagus Stratagus is the main class of the Stratagus package. Ieimpl
ments all of the required functions which the JNI code uskss dlass furthermore
contains the scenario’s map and all units on this.

StratagusMap The StratagusMap class is a representation of the map in the
scenario. It contains a collection of fields which is asseciavith the map. This
class also contains methods for distance-calculationsig® may quickly access
distance-information.

StratagusField The StratagusField class represents the individual erdne
the map. This class contains information about the fieldation on the map and
whether a unit or a environment feature is positioned inldaation.

130

APPENDIX C. DESIGN AND IMPLEMENTATION

Group The Group class represents a group of units which a singigepla
controls in the engine. This object is a placeholder for dectibn of units and
offers little functionality but accessor-methods.

StratagusUnit The StratagusUnit is an essential class since it repregents
unitin the engine. It contains a large amount of attributé®agh some important
attributes are contained in the StratagusUnitType- anat&jusUnitStat-classes
instead. This is because these either are static for theidudil types of units
(melee or ranged) or depend on upgrades such as an incregis®iar or weapon-
damage.

StratagusUnitType The StratagusUnitType class contains information about
those attributes which are shared for all units of that djeetyipe.

StratagusUnitStat The StratagusUnitStat class contains information about
those attributes which have been upgraded by technologgivances.

StratagusPlayer The StratagusPlayer class represents the player congolli
the units. This class should not been seen as an actual fatysrerely a way of
identifying who controls which units. The class contain®rmation about what
faction is played and which units are in the player’s control

Change and History The Change and History classes are used to record
a complete run of a simulation. A Change-object represemtssaential single
change in a unit-state. The History class contains a cadlectf Change-objects
and the functionality of loading and storing these.

GameHandlerinterface The GameHandlerinterface class is the interface
all applications are required to implement and pass on t&thetagus class to
enable callbacks from the engine.

Rada package

Ther ada package contains several components including an expetifraane-
work which can be used for data collection and testing plepo8 game tree
component also is included along with the set of rules. Eachponent is de-
scribed in turn below.

In figure C.3 on page 134 thieda package is depicted. Tls¢ér at agus com-
ponent described earlier is also shown in this figure. Thi® ismphasise that

131

APPENDIX C. DESIGN AND IMPLEMENTATION

Experiment
prunetUnitRT()

pruneNodeGT()
classifyNode()

setup()
firstRoundEvent() K7 I
tick()

ExperimentAttackMove
I

JAYAN

ExperimentStandGround

ExperimentTVGT
I

[imentRuleGTAIl _| imentRuleGTAvg |
]]

ExperimentTVGTAIl

ExperimentKNNGT

AN

ExperimentKNNGTAvg ExperimentKNNGTAII

ExperimentTVGTAvg

Figure C.2: The UML diagram of the Experiments component

communication is solely transmitted between #he at agus package and the
r ada package and not between theda package and the Stratagus engine.

Firstly, the Experiments-component depicted in figure Cil2be described
and following this description the remaining classes of g component shown
in figure C.3 on page 134 will be elaborated upon.

Experiment framework

The classes which are included in the experiment framewarkiascribed in the
following and the UML associated which depicts the overa8idn of the experi-
ment framework is shown in figure C.2. It should be noted thaegl experiment
classes are not depicted nor described since these onldservesting various
engine-dependent aspects.

Experiment Experimentis an interface and represents a general exgetrim
which all experiments in the framework implement. It consamethods which
aim towards a game tree model since this was the primary foiciings thesis.

ExperimentAttackMove The ExperimentAttackMove class represents the
experiment in which an attack-move command examined inse8t4.1 on page 40
IS given to each controlled unit. The destination of theckttmove is calculated as
the centre of the enemy group. This command is given to eadnated unit ev-
ery 50'th game cycle. From here on the resulting behaviadeiermined solely by

132

APPENDIX C. DESIGN AND IMPLEMENTATION

the attack-move order and the engine’s default behaviodeasribed in section
3.4.4. This way of conducting combat is very similar to theyvaaman players
do since players generally select several units and théorpean attack-move
command towards the enemy forces.

ExperimentAttackNearest The ExperimentAttackNearest class represents
the experiment in which each controlled unit is ordered tacktthe nearest en-
emy unit. If multiple units are equally close a random onéhefe is chosen. This
order is given to each unit every 10'th game cycle. If the gatthe nearest en-
emy unit is blocked by obstacles the controlled unit willauatically find a way
around these. If another unit comes closer this unit willtieécked instead, i.e. no
memory of who engages who is included.

ExperimentStandGround The ExperimentStandGround class orders each
controlled unit to stand ground as described in 3.4.1. Ttaadsground order
is given to each unit every 10’'th game cycle. No movemenbastiwill be per-
formed. Due to the default behaviour a stand ground’ed uiliowly attack if the
enemy stands in front of it.

ExperimentGT This class is the most general experiment which uses a
game tree model. It is the methods within this class whiclstaot the game tree
and apply the chosen actions found in the game tree to theergvery experi-
ment which uses some form of game tree extends this classvanddes certain
methods such as how rating on both internal and leaf nodes @ glished.

ExperimentRuleGT The ExperimentRuleGT class is a super class for sev-
eral experiments. This class extends the ExperimentGT twéloption of using
rules to prune the game tree as described in section 5.4y Bubclass overrides
the rating method used whereas this class uses a neuralrkdétwevaluate the
game tree nodes. Nodes are rated by rating all leaves antytdk@ minimum
value and assigning this to the parent node. Thus, all sshetause the same
game tree construction algorithm and only vary in the ratmeghod and how the
internal nodes are rated.

The ExperimentRuleGTAvg subclass also uses a neural netowoate nodes
but rates each internal node with the average of its children

The ExperimentRuleGTAIl subclasses the same rating medisaabove but
only rates the child-nodes of the root to derive actions.

ExperimentTVGT The ExperimentTVGT class uses tieeat matrix rater
(TMR) rating method as previously described in section15.bhe TMR uses the

133

APPENDIX C. DESIGN AND IMPLEMENTATION

GameHandler

— 1

stratagus

. 0.."
Experiments ! Rule

1.7

1 1

1 0.%
Squad

stratagusUnits

snapshot
1
1
1 /-E 1 0. 1

SnapShot GameTree c 3
e s —
fields 1 Node

1 U

1 .
1.*]

— - Node p _
SnaEShotUnlt ' Actions 1 1. Pair
SnaEShOt Iﬁ

Figure C.3: The UML diagram of the rada package

sum of the threat matrix to decide the related node’s valugis experiment all
game tree leaves are rated according to the sum whereasaihtedes are given
the minimum value of their children.

The ExperimentTVGTAvg subclass also uses the TMR as ratiethod but
rate all internal nodes with the average of the children.

The ExperimentTVGTAIl experiment also uses the TMR ratingtimod but
only rate the the immediate children of the root.

ExperimentKNNGT The ExperimentKNNGT class use&anearest neigh-
bour (KNN) algorithm as rating method. This experiment satee leaves and
assigns to a node the minimum of its children.

The ExperimentKNNGTAvg subclass also uses the KNN ratinthogkto rate
each leaf and each internal node is given the average valtseatfildren.

Finally, the class ExperimentKNNGTAIl uses the KNN methaed bnly rates
the immediate children of the root.

Rada package continued

GameHandler The GameHandler class is an actual implementation of the
GameHandlerinterface from thet r at agus package. This class organises the

134

APPENDIX C. DESIGN AND IMPLEMENTATION

propagation of events to experiments. The GameHandles@rakponsible for
outputting results from the experiments.

Squad The Squad class encapsulates a collection of units and abtsapf
creating a snapshot centred around the units.

SnapShot The SnapShot class represents the controlled units andrthei
mediate environment. This class contains methods for upgléhe state of the
units and is furthermore responsible for detecting and agpdonflicts in unit-
actions. A SnapShot-object is part of a node in the game tree.

SnapShotUnit The SnapShotUnit class represents a unit in our model. It
contains many of the attributes found in the StratagusUastscin thest r at agus
package but has additional methods for calculating itsathwelue and distances
to the nearest enemies. Lastly, a collection of methodsasadte for removing
certain actions which have been deemed by the rules or thalazme’s state to
be illegal.

GameTree The GameTree class is our implementation of a timestamped
game tree. It is responsible for building the tree to a certlEpth and to build
the tree correctly according to included rules.

Node The Node class is our implementation of a node in the game tree
The class does not contain much functionality but acts asbgcbfor holding
references to a SnapShot-object. This class also contag@sentation of the
actions which lead to this node from its parent. This infaiorais obtained by
using a collection of Pair-objects.

Pair Pairis a class which encapsulates information about irmpbchanges
in the game state. A collection of Pair-objects is used tovdex child-node from
its parent.

Rule The Rule class is an abstract class which is used as a pldaeghol
for a rule’s specific priority. The class contains two methdide pruneRT- and
pruneGT-method which an actual implementation of a ruleikhoverride. These
methods are used in the calculations to derive a node’s fanou

A factory-class described iGammaet al., 1994, Chap. Bwas implemented
called RuleFactory. This static class is used for instéingarules described in
section 5.4 and is used from the class responsible for getpirihe Java packages.

135

APPENDIX C. DESIGN AND IMPLEMENTATION

Command The Command class contains actions applicable to unitsain th
engine. This class is used exclusively by the Experimertl@ss and its sub-
classes.

C.2 Implementation

In this section we wish to present the implementation detithe most impor-
tant methods in our module. We also aim to present a detaitad @f how we
construct game trees and how we apply rules to these.

Rating methods

As a handcrafted rating method the threat matrix rater (TMR3 implemented.
The TMR simply iterates through the threat matrix and sura<etitries.

To implement the neural network, a large Java project caltexhe [Joone,
2004, was used. Joone is released under the LGPiee Software Foundation,
19949, license and provided the necessary training and expetatien function-
ality which were needed to rate the game tree nodes. Eachmople in the net-
work is mapped to an entry in the threat matrix. The outputefretwork is a
single value which represents the state’s value.

The K nearest neighbour algorithm was also implemented as raigtyod.
When rating a node the KNN algorithm iterates linearly tlylowevery stored
training threat matrix and calculates the average of tied€ was chosen to 5
in all experiments.

C.2.1 Datastructures and methods

In this section we aim to describe the different methods efttost interesting of
our classes.

StratagusMap

As previously mentioned in section C.1.1 on page 129 tha&jwsMap class is
responsible for representing the map as the engine vielsig is done through a
double array of fields-objects. The most important methoestee following two:

calculateDistancesWe are often interested in knowing the length of the shortest
path between two fields on the map. To obtain this informatiea run a
Dijkstra’s shortest path algorithm on all fields of the majobe starting
the game. This method is responsible for exactly that. As p coatains

136

APPENDIX C. DESIGN AND IMPLEMENTATION

at least 32 32 tiles this computation takes some time. We have incorpo-
rated the loading and saving of precomputed data for eaclsmByjkstra’s
algorithm only runs once per map and this saved informasahen only
loaded on subsequent runs.

getDistance This method accepts two pairs of coordinates and returnietiggh
of the shortest path between these.

SnapShotUnit

A SnapShotUnit instance is a direct representation of d&pusUnit tailored for
inclusion in the game tree calculations. It contains thequaiidentifier of the
StratagusUnit unit it represents along with the importamtbaites of the Strata-
gusUnit. A SnapShotUnit knows in what game cycle it is readygrform actions.
An instance of SnapShotUnit also maintains an array of alkdlactions and if
the unit is of the ranged type a list of ranged attack actisredgo included. The
methods of interest in a SnapShotUnit are the followingfour

estimateDamageWhen a SnapShotUnit attacks a unit, we need a way of estimat-
ing the amount of damage the engine will actually apply if éisdon was
performed in the engine. This method calculates this valire method
takes the target unit as parameter and returns the estimateant of dam-
age. Note that we use the Java random number generator atiek rgsner-
ator in the engine. This implies that this method is not aaigur

calculateTV A SnapShotUnitis able to calculate its own threat value asrileed
in section 5.3 on page 60 and calculateTV returns this value.

getMapDistanceToUnit This method simply queries the static shortest path in-
formation in the map and returns the number of tiles in thetsisd path
between this unit and the unit given as an argument.

getNumberOfActions A simple and efficient way of obtaining the number of
actions currently available to the unit.

SnapShot

To enable efficient access to the SnapShotUnit instanceained in a SnapShot
instance we have three datastructures available depeodirige nature of the
access. These were implemented due to the heavy time dotsiravolved and
are as follows:

To enable a quick lookup of a specific unit given the unit'squ identifier a
hash table using Java’'s HashMap instance contains a reéeterall units in the

137

APPENDIX C. DESIGN AND IMPLEMENTATION

snapshot. This hash table uses the unit identifiers as kegffigent lookups can
be made.

If quick access to the immediate vicinity of a specific unitaguired, i.e. the
position is known we have an array representation of thesuriitere the neigh-
bourhood of a given unit can be efficiently searched.

Lastly, a priority queue contains all units sorted by the gamycle in which
they are ready to perform actions.

A SnapShot instance contains the following methods of @ster

getRatinglnput This method returns an array of doubles with 400 entrieshEac
entry is uniquely mapped to one of the fields in the SnapShibtantains
the threat value for the unit occupying that field or zero asfault value.
This method iterates over the array representation of tite.un

getReadyUnits For easy access to the units ready to perform actions in tie ga
cycle represented by the snapshot, the getReadyUnits the#ttorns an
array containing these. As the ready times of units do nohgaaluring
the life of a single snapshot this method stores the resuheofirst call to
getReadyUnits in an internal variable. Subsequent caltget®eadyUnits
on the same instance of a SnapShot then returns the pretattuksult.
The priority queue allows this method to perform its caltolas quickly.

updateSnapShot When instantiating a new SnapShot we need to update the in-
formation in the new instance. This is achieved through paateSnapShot
method. This method accepts a linked list of actions and tegdae game
state by applying the effect of each action sequentially.

removelllegalMoveAction When a unit performs an action the performed action
might influence the movement actions available to otheisuiiithis method
takes as arguments a unit and a linked list of actions to bieneed by
other units in the snapshot. The method iterates througdnitable actions
of the unit and removes all actions which would conflict witHesast one
action in the linked list.

setUnitActions This method takes a unit as argument and assigns the unit its
available movement actions as determined by the unit'ssph&nt on the
map. No other factors than placement on the map and statimanment
features are handled by this method.

C.2.2 Game tree construction

The GameTree class is responsible for constructing thestamged game tree.
The pseudo-code seen in algorithm 1 on page 140 depicts dditee method

138

APPENDIX C. DESIGN AND IMPLEMENTATION

which builds the tree to a user-defined depth.

The buildTree method first checks if the argument node doesamtain units
from both sides or if the depth given has been reached. IrcHss a leaf node is
identified and a rating of the node is performed.

In the general case the Buildtree-method first assigns thie eaperiment-
independent allowed actions such as not moving outside &y and not mov-
ing into static environment features to each unit. Follayyitimne unit-actions are
pruned according to the associated experiment and itsif@eg. A sorting of the
units based on the amount of actions is then performed. Wdtets, the children
of the node are calculated. The method is then called re@lydior each of the
children and the best rated child maximumWeightChild isesdo

It should be noted that in our game tree model the effect ottaaorais applied
immediately and then the unit performing the action will bady to perform an-
other action when exactly enough game cycles have pasdseinmddel. Meaning,
a node which models an attack reduces the hitpoints of tlewiag unit imme-
diately and not when the action is completed. This is a disaton compared to
the way it is simulated in the engine, because the actiofésidfes implicit in the
transition and not during the transition as in the engine.

The pseudo-code of calculateChildren-method is depiatedlgorithm 2.
This method takes as input a tree node, a list of units and afliactions and
creates the node’s fanout, i.e. the children of the node gmitu

The method first checks if the list of units is empty and if sthédcis created
as a deep copy of the actual node. An update of the child is peeiormed as
well as updating the timestamp of the child. The child-na<hen added to the
children-list of the node.

In the general case the unit with the least amount of activasgable is re-
moved from the list of units and experiment-dependent astiare pruned and
then actions which conflicts with other units’ earlier asgid actions are also re-
moved. Following the removal of actions each availableoacts appended to a
list and the list is then deep copied. The calculateChildnethod is then called
recursively. If all actions for a unit were removed the usaiteives a standGround-
action and the method is then called recursively as above.

Recursion tree construction

When the game tree is being built just before the childrenrad@e are calculated
the units are sorted by their available actions. The reamthifs is of optimisation
reasons since the number of children of a node is the samgendent of the
order of the units. Put another way, the leaves and the nuofdayers in the
recursion tree is always the same regardless of which uhitasched on first,
secondly and so on. The leaves constitute the permutatioagadable actions

139

APPENDIX C. DESIGN AND IMPLEMENTATION

Algorithm 1: The buildTree algorithm
Input: The number of steps to look aheadpth, and the root nodenode
Output: A timestamped game tree, evolved from the input node

begin
if node does not contain units from both sidais

node.timestamp >depth then
Experi ment. rat eNode(node) ;
return ;
end
assi gnAct i onsToReadyUni t s(node.readyUnits ;
Experi ment . pruneNode(node) ;
sort Uni t sByNumber O Avai | abl eAct i ons(node.readyUnits ;
cal cul at eChi | dr en(node, a copy ofnode.readyUnits, empty lijt
val «— —oo
foreach c in node.childrendo
bui | dTr ee(depth, C) ;
if c.weight >val then
val « c.weight;
node.maximumWeightChild— c;
end
end
Experi nent . r at eNode(node) ;
end

and each layer refers to a specific unit. It should be cledmbdes with a large
number of children should be placed as far down the recutst@nas possible for
minimising internal recursion tree nodes.

Figures C.4 on page 142 and C.5 on page 142 shows two equaligssing
trees for three units. In figure C.4 on page 142 the unit witbdlactions available
is chosen to be branched on first, then the unit with two astaomd finally the unit
with one action available. Opposed to this a similar sitwrais shown in figure C.5
on page 142 where the same units exist and have the samesaatatable. The
only difference is that the units in figure C.5 on page 142 arged based on their
available actions before recursing.

Since the number of leaves in the recursion tree is the salgel@internal
nodes can be minimised. This minimisation can be accongdisly inserting the
unit with the fewest actions first.

140

APPENDIX C. DESIGN AND IMPLEMENTATION

Algorithm 2 : The calculateChildren algorithm

Input: A node,node, a list of units,unitList, and a list of actionsctionList
Output: A list of nodesnode.children, constituting the children of the
input node

begin

if unitList is emptythen
child < deep copy ohode ;
updat eNodeFr omAct i ons(child, actionList) ;
child.timestamp— minyechiig.unitsU-ready;
Add child to node.children;

return ;
end

u < renoveFi rst Uni t (unitList) ;

Experi nent. pruneUni t Acti ons(u, actionList) ;
removel | | egal Uni t Acti ons(u, actionList) ;

if u.actions is not emptthen

foreachain u.actionsdo
addAct i onToEndOr Li st (actionList, @) ;

aList < deep copy ofinitList ;

cal cul at eChi | dren(node, aList, actionList) ;

removeAct i onAt EndCf Li st (actionList) ;
end

else
a «— standGround action;

addAct i onToEndOf Li st (actionList, @) ;

aList < deep copy ofinitList ;

cal cul at eChi | dren(node, aList, actionList) ;
renoveAct i onAt EndCf Li st (actionList) ;
end

end

141

APPENDIX C. DESIGN AND IMPLEMENTATION

Unit 1 can move in direction {1}
Unit 2 can move in directions {2,3}
Unit 3 can move in directions {1,2,3}

Figure C.4: The full recursion graph

Unit 1 can move in direction {1}
Unit 2 can move in directions {2,3}
a1 Unit 3 can move in directions {1,2,3}

{1>1,2D>2, 32}
{z<eee 11}

Figure C.5: The reduced recursion graph

142

APPENDIX C. DESIGN AND IMPLEMENTATION

Applying choice

When the game tree has been built and the nodes have beetheatedk at hand
is to give commands to the units in the engine. From the rodertbe maxi-
mumWeightChild node is chosen and the actions which leditortbde are in-
serted into a queue of commands. This queue only containadtiens of the
controlled units and not the actions of non-controlled siWwhen the queue is
filled with the maximumWeightChild’s actions the commands propagated to
the units in the engine.

However, the implemented game tree and the command queubacete
cases much more complex cases than just choosing the immbdkt child-node
of the root. The game tree is as an argument given the amougdroé cycles
to which the tree should be built. The number of game cycledss given to
the method which fills the queue of commands. As such, thecaaee built to
game cycley and the queue can be filled to game cyxclghere the only require-
ment is thaik < y. Due to the uncertainty involved in the model such as oppbnen
modelling and randomisations we chose to only assign cordsas the imme-
diate maximumWeightChild of the root dictated. One couldsbyply changing
an argument value calculate a long list of commands but dileetancertainty
involved the model would hastily become incorrect.

143

Appendix D

Results

In this appendix all tables generated from the evaluatios described in section
7.2 are presented. Firstly, we will describe how the talihesikl be read and then
present the tables.

D.1 Reading the tables

Tables C.1 through C.16 show the results of all evaluations performed.

Tables C.1 through C.3 show the results of the game tree-based experi-
ments playing as Humans against tgackMoveexperiment in all designed sit-
uations.

Tables C.4 through C.6 show the results of the game tree-based experi-
ments playing as Humans against thigackNearesexperiment in all designed
situations.

Tables C.7 through C.9 show the results of the game tree-based experi-
ments playing as Orcs against tAgackMoveexperiment in all designed situa-
tions.

Tables C.10 through C.12 show the results of the game tree-based experi-
ments playing as Orcs against thg#ackNearesexperiment in all designed situ-
ations.

Tables C.13 and C.14 show the results of thattackNearesexperiment as
both Orcs and Humans against the built-in experiments.

144

APPENDIX D. RESULTS

Tables C.15 and C.16 show the results of thAttackMoveexperiment as
both Orcs and Humans against each of the built-in experignent

Tables C.17 through C.20 show the results in tables C.1 through C.12 averaged
over the rule sequences.

Tables C.17 and C.18 show the results of the game tree-based experiments
playing as Humans against the built-in experiments, awstager rule sequences.

Tables C.19 and C.20 show the results of the game tree-based experiments
playing as Orcs against the built-in experiments, averaged rule sequences.

Tables C.21 and C.22 show the results of the game tree-based experiments
against the built-in experiments, averaged over contrgplioth Humans and Orcs
and the rule sequences.

Tables C.23 through C.26 show the results in tables C.1 through C.12 averaged
over rating methods.

Tables C.23 and C.24 show the results of the rule sequences playing as
Humans against the built-in experiments, averaged oviaigratethods.

Tables C.25 and C.26 show the results of the rule sequences playing as Orcs
against the built-in experiments, averaged over ratindnous.

Tables C.27 and C.28 show the results of the rule sequences against the built-
in experiments, averaged over controlling both Humans ard @nd the rating
methods.

Table C.29 shows the results of the built-in experiments playing asfagach
other, averaged over controlling both the Humans and the.Orc

145

APPENDIX D. RESULTS

D.2 Thetables

Scen7vs7 Scenlvsl archer-ambush Scen3vs2 captured
TVGTall -0,428 0,033 0,221 -1,233 1,671
KNNGTall -0,506 0,033 -0,118 -1,222 1,039
NNGTall -1,267 0,033 0,218 -1,933 1,168
TVGTavg -0,528 0,033 -0,118 -2,017 0,664
KNNGTavg -1,1 0,033 -0,121 -1,233 1,671
NNGTavg -0,35 0,033 -0,118 -1,233 1,157

Table D.1: End result of game trees with FocusFire agairesititackMove ex-
periment (GT as Humans.).

Scen7vs7 Scenlvsl archer-ambush Scen3vs2 captured
TVGTall 0,467 0,033 0,379 -1,967 1,189
KNNGTall -0,25 0,033 -0,557 -2,017 1,039
NNGTall -0,128 0,033 -0,307 -2,017 1,6
TVGTavg 0,119 0,033 0,586 -2,017 1,061
KNNGTavg| -1,322 0,033 0,629 -2,017 1,514
NNGTavg -0,792 0,033 -0,443 -2,017 1,136

Table D.2: End result of game trees with AttackKNearestregjdahe AttackMove
experiment (GT as Humans).

Scen7vs7 Scenlvsl archer-ambush Scen3vs2 captured
TVGTall -0,161 0,033 0,086 -1,8 1,018
KNNGTall -1,478 0,033 0,386 -2,017 1,671
NNGTall -1,075 0,033 0,214 -2,017 1,2
TVGTavg -0,875 0,033 0,386 -2,017 0,536
KNNGTavg| -0,842 0,033 -0,132 -2,017 1,671
NNGTavg -0,9 0,033 -0,632 -1,222 1,629

Table D.3: End result of game trees with RangedAssist agtiesAttackMove
experiment (GT as Humans).

146

APPENDIX D. RESULTS

Scen7vs7 Scenlvsl archer-ambush Scen3vs2 captured
TVGTall 0,036 0,033 0,136 -1,256 0,436
KNNGTall -1,444 0,033 0,136 -1,256 0,193
NNGTall -0,081 0,033 0,189 -1,967 0,514
TVGTavg 0,494 0,033 0,136 -1,967 0,421
KNNGTavg| -1,042 0,033 0,207 -1,917 0,479
NNGTavg -0,147 0,033 0,207 -1,967 0,25

Table D.4: End result of game trees with FocusFire agairestAthhlackNearest
experiment (GT as Humans).

Scen7vs7 Scenlvsl archer-ambush Scen3vs2 captured
TVGTall 0,517 0,033 0,879 -1,967 1,271
KNNGTall -0,097 0,033 0,125 -1,967 0,464
NNGTall 0,1 0,033 1,257 -1,917 1,039
TVGTavg -0,108 0,033 -0,45 -1,967 0,507
KNNGTavg| 0,139 0,033 0,429 -1,967 0,943
NNGTavg 0,8 0,033 0,65 -1,356 0,179

Table D.5: End result of game trees with AttackKNearest ragjaihe Attack-
Nearest experiment (GT as Humans).

Scen7vs7 Scenlvsl archer-ambush Scen3vs2 captured
TVGTall -0,378 0,033 0,114 -1,356 0,5
KNNGTall -0,858 0,033 -0,464 -1,322 0,739
NNGTall -0,128 0,033 0,436 -1,322 0,407
TVGTavg -1,167 0,033 -0,471 -1,967 0,393
KNNGTavg| 0,108 0,033 -0,371 -1,256 0,607
NNGTavg -0,4 0,033 0,054 -1,967 0,429

Table D.6: End result of game trees with RangedAssist agdiasAttackNearest
experiment (GT as Humans).

147

APPENDIX D. RESULTS

Scen7vs7 Scenlvsl archer-ambush Scen3vs2 captured
TVGTall 0,092 0,033 0,65 0,9 -1,829
KNNGTall 0,875 0,033 0,65 1,033 -1,471
NNGTall -1,2 0,033 0,65 1,967 -1,339
TVGTavg 0,092 0,033 0,65 1,95 -1,296
KNNGTavg| -0,389 0,033 0,65 1,133 -1,529
NNGTavg -1,117 0,033 0,65 1,289 -1,829

Table D.7: End result of game trees with FocusFire agairesititackMove ex-
periment (GT as Orcs).

Scen7vs7 Scenlvsl archer-ambush Scen3vs2 captured
TVGTall 0,117 0,033 0,868 0,944 -1,629
KNNGTall 0,111 0,033 0,514 1,45 -1,7
NNGTall -0,133 0,033 -0,071 1,467 -1,857
TVGTavg -0,983 0,033 -0,443 1,533 -1,643
KNNGTavg| 0,128 0,033 -0,407 1,033 -1,2
NNGTavg -0,125 0,033 -0,196 1,467 -1,771

Table D.8: End result of game trees with AttackKNearestregjdahe AttackMove
experiment (GT as Orcs).

Scen7vs7 Scenlvsl archer-ambush Scen3vs2 captured
TVGTall 0,317 0,033 0,25 1,033 -1,543
KNNGTall 0,522 0,033 0,564 1,55 -0,679
NNGTall -0,394 0,033 0,239 1,967 -1,093
TVGTavg -0,389 0,033 0,239 1,517 -1,232
KNNGTavg| -0,278 0,033 0,246 0,9 -1,318
NNGTavg -1,083 0,033 0,239 1,75 -1,657

Table D.9: End result of game trees with RangedAssist agtirsAttackMove
experiment (GT as Orcs).

148

APPENDIX D. RESULTS

Scen7vs7 Scenlvsl archer-ambush Scen3vs2 captured
TVGTall -0,925 -0,033 -1,007 1,717 -1,029
KNNGTall -1,025 -0,033 -1,007 1,767 -1,671
NNGTall -0,389 -0,033 -1,007 1,189 -1,254
TVGTavg 0,625 -0,033 -1,007 1,783 -1,757
KNNGTavg| -1,311 -0,033 -1,007 1,517 -1,136
NNGTavg 0,3 -0,033 -1,007 1,883 -0,793

Table D.10: End result of game trees with FocusFire agalresiAttackNearest
experiment (GT as Orcs).

Scen7vs7 Scenlvsl archer-ambush Scen3vs2 captured
TVGTall 0,85 -0,033 -1,039 1,883 -1,343
KNNGTall 0,517 -0,033 0,093 1,8 -0,657
NNGTall 0,708 -0,033 0,093 1,733 -0,657
TVGTavg 0,383 -0,033 -0,9 1,8 -1,039
KNNGTavg| 0,708 -0,033 -0,379 1,8 -1,05
NNGTavg 0,592 -0,033 -1,061 1,767 -1,061

Table D.11: End result of game trees with AttackKNearesiregahe Attack-
Nearest experiment (GT as Orcs).

Scen7vs7 Scenlvsl archer-ambush Scen3vs2 captured
TVGTall -0,511 -0,033 -0,5 1,717 -0,911
KNNGTall -1,544 -0,033 -0,543 1,717 -0,921
NNGTall 0,817 -0,033 -0,954 1,356 -1,393
TVGTavg -0,089 -0,033 -0,543 1,767 -0,514
KNNGTavg| -0,097 -0,033 -0,543 1,733 -0,586
NNGTavg -0,339 -0,033 -0,5 1,683 -1,814

Table D.12: End result of game trees with RangedAssist agtia AttackNearest
experiment (GT as Orcs).

149

APPENDIX D. RESULTS

Scen7vs7 Scenlvsl archer-ambush Scen3vs2 captured
AttackMove 0,289 0,033 0,996 -1,85 1,571
AttackNearest -1,017 0,033 0,771 -1,733 1,179

Table D.13: End result of AttackNearest vs. AttackNearast AttackMove
(AttackNearest as Humans).

Scen7vs7 Scenlvsl archer-ambush Scen3vsZ captured
AttackMove 0,106 0,033 -0,143 1,033 -1,471
AttackNearest 1,017 -0,033 -0,771 1,733 -1,179

Table D.14: End result of AttackNearest vs. AttackNearast AttackMove

(AttackNearest as Orcs).

Scen7vs7 Scenlvsl archer-ambush Scen3vs2 captured
AttackMove 0,128 0,033 -0,121 -1,517 1,686
AttackNearest -0,106 -0,033 0,143 -1,033 1,471

Table D.15: End result of AttackMove vs. AttackNearest artthékMove (At-
tackMove as Humans).

Scen7vs7 Scenlvsl archer-ambush Scen3vs2 captured
AttackMove -0,128 -0,033 0,121 1,517 -1,686
AttackNearest -0,289 -0,033 -0,996 1,85 -1,571

Table D.16: End result of AttackMove vs. AttackNearest artthékMove (At-
tackMove as Orcs).

Scen7vs7 Scenlvsl archer-ambush Scen3vs2 captured
TVGTall -0,041 0,033 0,229 -1,667 1,293
KNNGTall -0,744 0,033 -0,096 -1,752 1,25
NNGTall -0,823 0,033 0,042 -1,989 1,323
TVGTavg -0,428 0,033 0,285 -2,017 0,754
KNNGTavg| -1,088 0,033 0,125 -1,756 1,619
NNGTavg -0,681 0,033 -0,398 -1,491 1,307

Table D.17: End result of game trees averaged over rulesstgae AttackMove
experiment (GT as Humans).

150

APPENDIX D. RESULTS

Scen7vs7 Scenlvsl archer-ambush Scen3vs2 captured
TVGTall 0,058 0,033 0,376 -1,526 0,736
KNNGTall -0,8 0,033 -0,068 -1,515 0,465
NNGTall -0,036 0,033 0,627 -1,735 0,654
TVGTavg -0,26 0,033 -0,262 -1,967 0,44
KNNGTavg| -0,265 0,033 0,088 -1,713 0,676
NNGTavg 0,084 0,033 0,304 -1,763 0,286

Table D.18: End result of game trees averaged over rulessighe AttackNearest
experiment (GT as Humans).

Scen7vs7 Scenlvsl archer-ambush Scen3vs2 captured
TVGTall 0,175 0,033 0,589 0,959 -1,667
KNNGTall 0,503 0,033 0,576 1,344 -1,283
NNGTall -0,576 0,033 0,273 1,8 -1,43
TVGTavg -0,427 0,033 0,149 1,667 -1,39
KNNGTavg| -0,18 0,033 0,163 1,022 -1,349
NNGTavg -0,775 0,033 0,231 1,502 -1,752

Table D.19: End result of game trees averaged over ruleastghe AttackMove
experiment (GT as Orcs).

Scen7vs7 Scenlvsl archer-ambush Scen3vs2 captured
TVGTall -0,195 -0,033 -0,849 1,772 -1,094
KNNGTall -0,684 -0,033 -0,486 1,761 -1,083
NNGTall 0,379 -0,033 -0,623 1,426 -1,101
TVGTavg 0,306 -0,033 -0,817 1,783 -1,104
KNNGTavg| -0,233 -0,033 -0,643 1,683 -0,924
NNGTavg 0,184 -0,033 -0,856 1,778 -1,223

Table D.20: End result of game trees averaged over rulessighe AttackNearest
experiment (GT as Orcs).

151

APPENDIX D. RESULTS

Scen7vs7 Scenlvsl archer-ambush Scen3vs2 captured
TVGTall 0,067 0,033 0,409 -0,354 | -0,187
KNNGTall -0,121 0,033 0,24 -0,204 | -0,017
NNGTall -0,7 0,033 0,157 -0,094 | -0,054
TVGTavg -0,427 0,033 0,217 -0,175 | -0,318
KNNGTavg| -0,634 0,033 0,144 -0,367 0,135
NNGTavg -0,728 0,033 -0,083 0,006 -0,223

Table D.21: End result of game trees averaged over ruleastghe AttackMove
experiment (Also averaged over sides).

Scen7vs7 Scenlvsl archer-ambush Scen3vs2 captured
TVGTall -0,069 -0 -0,236 0,123 -0,179
KNNGTall -0,742 -0 -0,277 0,123 -0,309
NNGTall 0,171 -0 0,002 -0,155 | -0,224
TVGTavg 0,023 -0 -0,539 -0,092 | -0,332
KNNGTavg| -0,249 -0 -0,277 -0,015 | -0,124
NNGTavg 0,134 -0 -0,276 0,007 -0,468

Table D.22: End result of game trees averaged over ruleastghe AttackNearest
experiment (Also averaged over sides).

Scen7vs7 Scenlvsl archer-ambush Scen3vsZ captured
FocusFire -0,696 0,033 -0,006 -1,479 1,229
AttackKNearest -0,318 0,033 0,048 -2,008 1,257
RangedAssist | -0,888 0,033 0,051 -1,848 1,288

Table D.23: End result of rule sequences averaged ovegnat@thods against the
AttackMove experiment (GT as Humans).

Scen7vs7 Scenlvsl archer-ambush Scen3vsZ captured
FocusFire -0,364 0,033 0,168 -1,721 0,382
AttackKNearest 0,225 0,033 0,482 -1,856 0,734
RangedAssist -0,47 0,033 -0,117 -1,531 0,512

Table D.24: End result of rule sequences averaged ovegnat@thods against the
AttackNearest experiment (GT as Humans).

152

APPENDIX D. RESULTS

Scen7vs7 Scenlvsl archer-ambush Scen3vs2 captured
FocusFire -0,275 0,033 0,65 1,379 -1,549
AttackKNearest -0,148 0,033 0,044 1,316 -1,633
RangedAssist | -0,218 0,033 0,296 1,453 -1,254

Table D.25: End result of rule sequences averaged ovegnat@thods against the
AttackMove experiment (GT as Orcs).

Scen7vs7 Scenlvsl archer-ambush Scen3vs2 captured
FocusFire -0,454 -0,033 -1,007 1,643 -1,273
AttackKNearest 0,626 -0,033 -0,532 1,797 -0,968
RangedAssist -0,294 -0,033 -0,597 1,662 -1,023

Table D.26: End result of rule sequences averaged ovegnat@thods against the
AttackNearest experiment (GT as Orcs).

Scen7vs7 Scenlvsl archer-ambush Scen3vsZ captured
FocusFire -0,485 0,033 0,322 -0,05 -0,16
AttackKNearest -0,233 0,033 0,046 -0,346 -0,188
RangedAssist -0,553 0,033 0,174 -0,198 0,017

Table D.27: End result of rule sequences averaged ovegnatathods against the
AttackMove experiment (Also averaged over sides).

Scen7vs7 Scenlvsl archer-ambush Scen3vs2 captured
FocusFire -0,409 -0 -0,419 -0,039 | -0,446
AttackKNearest 0,426 -0 -0,025 -0,03 -0,117
RangedAssist | -0,382 -0 -0,357 0,065 -0,255

Table D.28: End result of rule sequences averaged ovegnat@thods against the
AttackNearest experiment (Also averaged over sides).

Scen7vs7 Scenlvsl archer-ambush Scen3vs2 captured
AttackMove 0,198 0,033 0,427 -0,409 0,050
AttackNearest -0,198 -0,033 -0,427 0.409 -0,050

Table D.29: End result of AttackMove and AttackNearest asheother (Averaged
over sides).

153

Appendix E

Contents of the enclosed CD

We have chosen a web-page layout for browsing the data omttiesed CD. In
the root of the CD there is a file calleddex. ht M which displays the entry page
for the data on the CD.

The movies included on the CD are recorded with Snapz &mnd edited with
Apple Quicktime 7 Pré. Therefore, the viewing the movies require the quicktime
player.

There are the following sections on the CD:

Graphs This section shows the graphs of all performed evaluatigash graph
shows the situation value (SV) for each 25 game cycle.

Movies The movies section contains links to and a description ofesdbrded
movies.

Software This section contains links to Quicktime Player instalferswindows
and Mac OS X. Note that the Windows installer bundles thestaiines
music player.

Stratagus The source code of the Stratagus engine, the Wargus gameuand o
module is available in this section along with a guide toaiistg, compiling
and running this project. Note that we have included the enéblis from
Warcraft Il and expansion for use with the Wargus game. Thesdia files
are copyright of Blizzard. We do not know whether furthertidigition of
these media files is legal but the reader should be awaresoktue.

Ihttp: // ww. anbr osi asw. com uti | ities/snapzprox/
2ht t p: // waw. appl e. com dk/ qui ckt i me/ pr o/

154

