
University of Aarhus
Department of computer science
Åbogade 34
8000 Århus C
Denmark

Masters Thesis
Ronni Laursen Daniel Nielsen

rage@daimi.au.dk djn@daimi.au.dk
19993343 19992541

18th September 2005

Investigating small scale combat situations in
real time strategy computer games

Supervisor: Ole Caprani
ocaprani@daimi.au.dk

Abstract

This thesis presents and analyses the problem of small scalecombat (SSC) in real
time strategy (RTS) computer games. An RTS game is a war simulator where
several opposing factions battle in a virtual world. The problem of SSC appears
when soldiers, calledunits, of opposing factions meet in this virtual world.

In commercial RTS games SSC situations are handled by applying simple
rules to each unit involved such as “attack the nearest enemyunit”. The result
is far from optimal as several examples will show. Therefore, we will investigate
other methods for handling SSC situations.

The commercial computer game industry’s name for modules handling com-
puter controlled characters isGame AI. In this thesis we investigate which meth-
ods and algorithms this concept covers. This investigationincludes an overview
of selected computer game genres, an introduction to what quality in computer
games is, and an overview of how Game AI is handled in different genres.

We will define the concept ofconsistentcharacters. On this basis we will dis-
cuss how consistency influences the quality of a computer game. We will argue
that if units in an RTS game are to be considered consistent they ought to behave
optimally regarding the rules of the game world.

In this thesis we present a method for solving SSC based on rule-induced
timestamped game trees. Due to the amount of information in the nodes we inves-
tigate a machine learning approach to derive a node rating function. We achieve
a reduction of the number of nodes in the tree by applying a sequence of rules
to each node, thereby reducing the fanout. We present several examples of rating
functions and rule sequences.

For evaluation of methods solving the SSC problem we use a complete, mature
and commercially comparable Open Source RTS game calledWargus. We will
measure the performance of each variation of the game tree-based methods. This
is done by comparing the performance of the variations with the performance of
the built-in module in Wargus.

The experiments performed in this thesis show that there is room for improve-
ment in the way SSC situations are handled in Wargus. With appropriate rule
sequences and rating methods the game tree-based methods perform better than
the rule-based systems currently in use.

i

Resumé

Dette speciale præsenterer og analyserersmall scale combat(SSC) situationer i
realtids strategispil (RTS). Et RTS spil er en krigssimulator hvor forskellige frak-
tioner kæmper i en virtuel verden. SSC situationer opstår når soldater, kaldet en-
heder, fra forskellige fraktioner kæmper i denne virtuelleverden.

I kommercielle RTS spil håndteres SSC situationer ved at anvende regler til at
styre hver enhed, såsom “angrib den nærmeste fjende”. Resultatet er ikke optimalt,
som flere eksempler vil vise. Derfor vil vi undersøge andre metoder til at håndtere
SSC situationer.

Computerspilsbranchen bruger navnetGame AItil at betegne moduler, som
håndterer computerstyrede karakterer. I dette speciale vil vi præsentere hvad dette
begreb dækker over mht. metoder og algoritmer. Denne undersøgelse inkluderer
et overblik over udvalgte computerspilsgenrer, en introduktion til hvad computer-
spilskvalitet er, samt et overblik over hvordan Game AI bliver brugt indenfor
forskellige genrer. Vi vil introducere begrebetkonsistentekarakterer og på dette
grundlag vil vi diskutere, hvorledes konsistens påvirker et computerspils kvalitet.
Vi vil argumentere for, at hvis RTS enheder skal betragtes som konsistente så skal
de opføre sig på en optimal måde med hensyn til den virtuelle verdens regler.

I dette speciale præsenterer vi en metode til håndtering SSCsituationer. Meto-
den baseres på et regel-induceret tidsstemplet spiltræ. Grundet mængden af in-
formation i spiltræsknuderne vil vi kigge nærmere på en maskinindlæringstilgang
til at afgøre knudernes værdi. Vi reducerer antallet af børntil hver knude ved
at anvende sekvenser af regler på disse. Vi præsenterer adskillige eksempler på
værdifunktioner og regelsekvenser.

Til at evaluere metoder der håndterer SSC situationer, bruger vi et komplet
og kommercielt sammenligneligt Open Source RTS spil, kaldet Wargus. Eksperi-
menter der viser spiltræsvarianternes ydeevne er udført ved at evaluere hver spil-
træsvariation på flere konstruerede SSC situationer mod detindbyggede modul i
Wargus.

De målte resultater viser at den måde Wargus håndterer SSC situationer på
kan forbedres. Med egnede regelsekvenser og værdifunktioner kan en spiltræs-
baseret metode yde bedre end de regelbaserede systemer der bliver brugt i RTS
computerspil idag.

ii

Preface

About the authors

The authors of this masters thesis are Ronni Laursen and Daniel Nielsen, both
masters students of computer science. Ronni holds a bachelor in multimedia and
computer science; while Daniel has a bachelor in mathematics and computer sci-
ence.

Both authors gained an interest in computers and computer games in the late
1980’s and that interest has increased ever since. The natural curiosity of what
comes next in the market of computer games is a big part of being in the computer
game “sphere”. Both authors take great pleasure in following the media outlets
dealing with computer games, to glean the latest news about new releases and
technologies.

Daniel’s primary interests in computer games are real time strategy games, role
playing games and the ever evolving market for console games. Ronni’s interests
are primarily first person shooters and role playing games.

Acknowledgements

A big thank you from both authors goes to

Ole Caprani for supervising us when everybody else had left.

Thiemo Krink for countless fruitful discussions.

Brian Mayoh for several references and discussions.

Daniel also wishes to thank his family, Christine and Marie,for support and
for putting up with the long hours that went into the making ofthis thesis.

Ronni wishes to thank his family for support and love. A special appreciation
goes to all of my close friends for your support throughout the years. Love you
all.

iii

Contents

Abstract i

Resumé ii

Preface iii
About the authors . iii
Acknowledgements . iii

List of Figures viii

1 Introduction 1
1.1 Motivation for improving unit behaviour 2
1.2 Goals . 3
1.3 Thesis overview . 3

2 Computer games 6
2.1 Terminology . 6
2.2 Computer game genres . 8

2.2.1 Adventure . 8
2.2.2 Board games . 9
2.2.3 Strategy games . 10
2.2.4 Shooters . 11
2.2.5 Role playing games . 12
2.2.6 Simulators . 14
2.2.7 Action based games . 16
2.2.8 An example of genre combination 18

2.3 Computer game quality . 20
2.3.1 Immersion as a mark of quality 21
2.3.2 Consistent character behaviour 24

iv

CONTENTS

3 Game AI problems 28
3.1 Information available to characters 29
3.2 Game AI problems in genres . 30

3.2.1 Adventure . 30
3.2.2 Board games . 31
3.2.3 Strategy games . 31
3.2.4 Shooters . 32
3.2.5 Role playing games . 33
3.2.6 Simulators . 33
3.2.7 Action based games . 35

3.3 Examples of applied Game AI 35
3.3.1 Black & White . 36
3.3.2 No One Lives Forever 2 37
3.3.3 Half-Life . 38
3.3.4 Warcraft III . 39

3.4 Real time strategy (RTS) AI . 40
3.4.1 RTS games in detail . 40
3.4.2 Game AI problems in RTS games 44
3.4.3 Subproblems in small scale combat (SSC) 45
3.4.4 Consistent behaviour in SSC situations 46

4 The Wargus platform 48
4.1 The Wargus game world . 48

4.1.1 Scenarios . 49
4.1.2 Map . 49
4.1.3 Units . 49
4.1.4 The built-in participant 51

5 Game trees applied to small scale combat 53
5.1 Methods for solving SSC . 53

5.1.1 Rule based methods . 53
5.1.2 Evolutionary based methods 54
5.1.3 Game tree based methods 55

5.2 Game trees . 55
5.2.1 Timestamped game trees 57
5.2.2 Issues . 60

5.3 Representation . 60
5.3.1 Threat matrix . 61
5.3.2 Deriving a threat value for units 61
5.3.3 An SSC example . 64

5.4 Pruning . 64

v

CONTENTS

5.4.1 Rules for game tree pruning 67
5.4.2 Rules . 69
5.4.3 Rules and their sequencing 73

5.5 Rating game states . 75
5.5.1 Handcrafted rating method 76
5.5.2 Machine learning rating methods 77
5.5.3 Choosing actions for units 78

5.6 Measuring the performance of an SSC situation 79
5.6.1 SSC situation value . 79
5.6.2 Experiments . 80

6 Extending the Stratagus engine 81
6.1 The Stratagus engine background 81
6.2 The Stratagus engine . 82

6.2.1 Communication protocol 82
6.2.2 Unit control mechanisms 83

6.3 Integration with the engine . 84
6.3.1 Execution path . 84
6.3.2 The C to Java link . 85

6.4 Java Packages . 86
6.4.1 Stratagus Java package 86
6.4.2 Rada Java package . 86

7 Results 88
7.1 Setup . 88

7.1.1 Experiments . 89
7.1.2 SSC situations . 90

7.2 Questions . 93
7.3 Presentation of results . 95
7.4 Presentation of movies . 96
7.5 Discussion . 98

7.5.1 A problem with the game tree method 98

8 Future work 109
8.1 Engine enhancements . 109
8.2 Machine learning accuracy . 109
8.3 Improving evaluation methods 110
8.4 Improving the integration with Wargus110
8.5 Game tree extensions . 111

9 Conclusion 113

vi

CONTENTS

Bibliography 115

A A note on search for literature 124

B Summary of diary 126

C Design and Implementation 129
C.1 Design . 129

C.1.1 Java packages . 129
C.2 Implementation . 136

C.2.1 Datastructures and methods 136
C.2.2 Game tree construction 138

D Results 144
D.1 Reading the tables . 144
D.2 The tables . 146

E Contents of the enclosed CD 154

vii

List of Figures

1.1 A sample small scale combat (SSC) situation in the game ofWargus 2

2.1 Screenshot from Monkey Island by LucasArts from 1990 9
2.2 Screenshot from Grand Master Chess v.2.5 by MediaResearch-

Group from 2004 . 10
2.3 Screenshot from Dune II by Westwood Studios from 1992 11
2.4 Screenshot from Half-Life: Counter-Strike by Valve Software and

CSteam from 1999 . 12
2.5 Screenshot from Tomb Raider: Angel of Darkness by Core Design

from 2003 . 13
2.6 Screenshot from Eye of the Beholder II by Westwood Studios

from 1991 . 14
2.7 Screenshot from Madden NFL 2004 by EA Sports from 2004 . . .15
2.8 Screenshot from Gran Turismo II by Polyphony Digital from 2000 16
2.9 Screenshot from SimCity 4 by Maxis from 2003 17
2.10 Screenshot from Super Mario Brothers by Nintendo from 1985 . . 18
2.11 Screenshot from Street Fighter Alpha II by Capcom from 1996 . . 19
2.12 Screenshot from Warcraft III by Blizzard from 2002 19

3.1 Screenshot from Zork I: The Great Underground Empire by Info-
com from 1980 . 31

3.2 Screenshot from Transport Tycoon Deluxe by MicroProse from
1995 . 34

3.3 Screenshot from Black And White by Lionhead Studios from2001. 36
3.4 Screenshot from Warcraft III by Blizzard from 2002 depicting the

cheating of the participant at the highest difficulty level.. 39
3.5 Screenshot from Warcraft III by Blizzard from 2002 showing a

typical game start for the Orcs. 40
3.6 Screenshot from Warcraft III by Blizzard from 2002 showing the

options available at the Orc War Mill. 42

viii

LIST OF FIGURES

4.1 The movement possibilities for a lone melee unit 51
4.2 A scenario with several units . 51

5.1 An example of a game tree in the game ofTic Tac Toe. 56
5.2 A sample timestamped game tree 58
5.3 The situation, which figure 5.4 and figure 5.5 model 58
5.4 Two opposing units ready in the same timestamp58
5.5 Two opposing units ready in different timestamps 59
5.6 An SSC situation in Wargus . 65
5.7 The snapshot corresponding to figure 5.665
5.8 The threat matrix derived from the snapshot in figure 5.7 66
5.9 A sample influence map . 68
5.10 A game tree and a sample rating method 76

6.1 A callgraph depicting the overall communication between the en-
gine and our module . 84

7.1 A simple SSC situation with two opposing melee units called
Scen1vs1 . 90

7.2 Two melee units opposing three melee units calledScen3vs2 . . . 91
7.3 Two squads with four melee and three ranged units each called

Scen7vs7 . 92
7.4 Two squads with two melee and four ranged units each called

archer-ambush . 92
7.5 Three melee and two ranged units surrounded by four meleeunits

and one ranged unit calledCaptured 93
7.6 A problem with our game tree-based method 99

C.1 The UML diagram of the Stratagus package 130
C.2 The UML diagram of the Experiments component 132
C.3 The UML diagram of the rada package 134
C.4 The full recursion graph . 142
C.5 The reduced recursion graph . 142

ix

Chapter 1

Introduction
"So long as there are men there will be wars"

- Albert Einstein

The commercial computer game industry has evolved into a major part of today’s
entertainment industry. Contributing factors to this growth are an increased inter-
est in computer games from players of all ages and an ever increasing budget for
production and marketing of computer games. This interest has grown to a point
where even the enormous Hollywood movie industry has reacted by producing
movies such as the Tomb Raider series,[Paramount, 2005], based on computer
game worlds and the characters within.

The amount of interest in computer games has furthermore created a large
consumer demand for more photo realistic graphics, more interesting game char-
acters and a more immersed feeling when playing. This has ledto a boom in the
graphics branch whereas methods dealing with behaviour of the characters popu-
lating and interacting with the game world still lacks the breakthrough computer
graphics have had.

Techniques for controlling computer game characters vary greatly in sophis-
tication. All to often a static method such as scripting is chosen. Such methods
can often lead to repetitive behaviour and a lack of adaptation to situations not
foreseen by the designer of the scripts.

The methods which control computer game characters are calledGame AIby
the commercial game industry. A method for controlling characters should ensure
a consistentbehaviour. Consistency means that a character supposed to fill some
specific part in the world has to ensure that the player believes in it. Given the
concepts of the game world the player expects a certain behaviour from the game
world characters. The pixels on the screen are not just RGB-values, but constitute
living characters in the game world.

Real time strategy (RTS) games are war simulators where several factions bat-
tle in a virtual game world. Several characters, calledunits, are situated in this

1

CHAPTER 1. INTRODUCTION

Figure 1.1: A sample small scale combat (SSC) situation in the game of Wargus

world and belong to different factions representing the factions’ soldiers. Here,
consistent behaviour implies that the RTS units must convince the player that they
are hardened soldiers and fight as such. When these units fighta small scale com-
bat (SSC) situation appears and the goal in these situationsis to kill the enemy
units. How this goal can be reached is the main focus of this thesis.

Figure 1.1 depicts an SSC situation in the RTS game of Wargus in which units
from a red faction is fighting units from a green faction in a grassy environment.

1.1 Motivation for improving unit behaviour

RTS games are among the most popular games in today’s computer game market.
The reasons are that RTS games include several aspects and challenges which all
must be tackled by the player in real time. Combat must be conducted while plan-
ning logistic routes and constructing defensive buildings. The actual gameplay
in RTS games vary from game to game but many focus on a player controlled
low-level handling of units. This reduces the attention from the high-level aspects
which often leads to a sub-optimal handling of these.

This thesis proposes an alternative. We will argue that RTS games are often
won on high-level decisions rather than handling a handful of units better than
the opponent. By giving the player a near-optimal autonomous handling of SSC
situations a shift in focus from low-level handling of unitsto high-level strategic
decision making is made. We believe that this shift in focus and thus in gameplay

2

CHAPTER 1. INTRODUCTION

is needed to ensure victory in those RTS games where both low-level and high-
level aspects are included.

RTS games are also interesting from a computer science perspective since
solving the problems within this domain is difficult. Methods handling the sub-
problems of RTS must furthermore find solutions without violating the real time
demands.

1.2 Goals

The notion of Game AI includes more than just character control mechanisms.
We will introduce selected computer game genres and investigate which Game AI
methods are used in these. Attempts at achieving consistentcharacter behaviour
will be presented and discussed. We will argue that if a consistent character be-
haviour is reached the overall quality of the computer game increases.

We will argue that an optimal handling of SSC situations is required to make
the RTS units exhibit consistent behaviour thereby increasing an RTS game’s qual-
ity. We propose a method for handling SSC situations in an near-optimal fashion.
The success criteria of the presented method is thus to handle SSC situations as
optimally as possible.

We investigate how SSC situations are handled by contemporary commercial
RTS games and present a game tree-based method which allows for near-optimal
solutions to SSC. An evaluation-suite is set up to test and analyse which of several
game tree-based methods perform best. Ian Lane Davis,[Davis, 1999], has the
following remark concerning game trees used in RTS games:

“Optimal solutions such as game trees [. . .] that try to predict several
moves ahead (useful for tic-tac-toe, and some other small games) are
inappropriate and infeasible due to the relatively enormous branching
factor”, [Davis, 1999]

Although we acknowledge the problematic issues involved inusing game trees in
real time games we find it interesting and challenging to investigate such a method
and measure its performance against methods currently in use.

1.3 Thesis overview

This thesis consists of the following chapters:

3

CHAPTER 1. INTRODUCTION

Chapter two presents computer games and selected computer game genres
which make up the background this thesis is based on. Chaptertwo furthermore
introduces and discusses computer game quality and which elements are included
in a game of high quality.

Chapter three presents which methods are used to create high-quality char-
acters in the presented computer game genres. Chapter threecontinues with a
detailed description of RTS games. An examination of SSC is given special atten-
tion.

Chapter four presents the RTS game of Wargus in which our method for
handling SSC situations is based. The presentation will describe the rules of War-
gus in detail.

Chapter five presents game trees and the modifications needed to handle
the real time constraints and concurrent actions of RTS games. Furthermore, the
chapter will present and elaborate on the remaining issues associated with game
trees.

Chapter six describes how the chosen RTS platform works and how our
game tree-based method is integrated with this platform.

Chapter seven presents the collected results along with a discussion of these.
The results are based on several SSC situations where the game tree-based meth-
ods are evaluated when playing against the built-in methodsof the Wargus game.

Chapter eight presents and elaborates on several future work-topics.

Chapter nine concludes the thesis.

Appendix A elaborates on the background and validity of the collected ma-
terial and literature.

Appendix B presents an extract from the diary held during the course of this
thesis.

Appendix C presents the full design and implementation details of our game
tree-based method.

4

CHAPTER 1. INTRODUCTION

Appendix D shows the result-tables collected during evaluation of ourgame
tree method.

Enclosed CD We have recorded a number of movies illustrating several is-
sues encountered during the making of this thesis. A description of the enclosed
CD is given in appendix E on page 154.

5

Chapter 2

Computer games
"It’s a me, Mario!"

- Mario

A computer game is a game set in a computer-controlled virtual universe that play-
ers interact with. In this chapter several computer game genres will be introduced
and examples of game which are stereotypical for their genres will be presented.

We seek a foundation to answer the seemingly easy question – when is a com-
puter game said to be of high quality? This innocent questionhas been the topic of
research in human computer interaction and aesthetics. Theanswer depends very
much on which definition of quality is used. Does it mean that agame is tech-
nically superior to its contemporary peers? Is it the overall impression the game
has on a human player? Or is it the kind of interactivity whichis available in the
game?

It is obvious that ensuring a technical superior game requires insight into sev-
eral branches of computer science, but what else is requiredto make a high quality
game? We will argue that the concept ofconsistent charactersis equally as im-
portant to game quality as consistent graphics.

2.1 Terminology

Before discussing the different genres in the realm of computer games, some com-
mon terminology for describing computer games is needed. Since most concepts
in the area of computer games are interpreted differently, the following definitions
will be adopted throughout this thesis. An complementary survey of terminology
is presented in[Nareyek, 2001], where Alexander Nareyek defines modules of ar-
tificial intelligence (AI) in commercial computer games along with their area of
responsibility within the game. Our list is based partly on Nareyek’s definitions
along with definitions from[Champandard, 2003, Chap. 1], [Rabin, 2004b], [Ra-

6

CHAPTER 2. COMPUTER GAMES

bin, 2004c] and our own experiences as computer game players and students of
several AI related courses.

Player is the term used for the human being playing the computer game. Through-
out this thesis the human player will be referred to ashe.

Avatar is the game’s representation of a player. In games, where only one player
plays at a time, this often equals the lead role in the story ofthe game – al-
though some games lack an avatar altogether. An example of this is strategy
games where the player often assumes the role of a general over vast armies
and is not explicitly represented in the game world.

Game world is the virtual universe in which the game takes place. The game
world is presented to the player by means of graphics, soundsand the story
of the game.

Game objects are objects which appear in a computer game. Game objects can
either beactiveor reactive. Active means that the object can actively con-
duct actions upon itself or upon the game world. Reactive means that the
object cannot by itself perform actions, but only react as aneffect of an
action.

Characters are active game objects situated in the game world. Characters do not
have a direct motive, e.g. mood-setting animals in digital forests. Characters
are said to beconsistentif these follow the game’s rules and theme and if
these are able to portray their part in the game world convincingly. For more
detail on consistency, see section 2.3.2 on page 24.

Non-Player Characters are those characters who participate in the game’s story.
A non-player character (NPC) can be seen and understood as subsidiary
character in a movie.

Participants are active game objects which assume the role of a player. Unlike
both its character-counterparts, described above, a participant is not neces-
sarily situated in the game world.

Support routine is a software module which in some way assists the player in
playing the game at hand. Examples include methods for controlling many
characters simultaneously,[Blizzard, 1995], implementing path-finding al-
gorithms,[Wikipedia, 2005a], or methods choosing near optimal weapons
for specific combat situations,[Champandard, 2003, Chap. 23].

7

CHAPTER 2. COMPUTER GAMES

Game AI is the term used to describe the commercial game industry’s methods
for controlling active game objects and for support routines. Game AI in-
cludes methods which intelligently control a camera’s position and orienta-
tion, [Carlisle, 2004], create interesting auto-generated worlds,[Adams and
Mendler, 2002] and as used in the computer game Diablo,[Blizzard, 2000],
or methods which help the player cleverly control many characters simul-
taneously such as pathfinding,[Patel, 2004], simple behaviours in Warcraft
II, [Blizzard, 1995] and create opposing participants and characters for the
player to face in the game,[Champandard, 2003].

2.2 Computer game genres

This section describes some of the more persistent and popular computer game
genres and presents a game stereotypical of each genre discussed. The list is by no
means exhaustive, but is meant to give the reader an overviewof today’s popular
computer game genres. The list is based on our experiences asavid computer
game players, the accumulated knowledge obtained by following many computer
game media web-sites such as[IGN, 2005] and[GameSpot, 2005] and of course
from literature about computer games. For complementary reviews of computer
game genres the reader is referred to[Wolf, 2002] and[Wikipedia, 2005b].

A game is said to belong to a certain genre if the game has the traits which
the genre represents. A game can possess traits from severalgenres and thereby
belong to many genres. The traits are not carved in stone and the line between
several of the presented genres is blurry.

2.2.1 Adventure

The adventure game genre concerns exploring a game world andconversing with
the non-player characters (NPCs) which inhabit the world. Conversational details
and the portraying of a detailed story are the fundamental elements in this genre.
Often used styles for the story are humour, horror and love.

The lead role in the story is controlled by the player. Following the story of
the game, the player is subjected to solving various puzzles– ranging from get-
ting into a guarded mansion to obtaining a specific item from an NPC. Generally
a non-violent approach is needed to solve the puzzle at hand.The stories are typi-
cally very rigid and progress is only made if certain key-puzzles are solved. Other
actions have little or no effect on the main story but may reveal side-stories.

In figure 2.1 on the next page a screenshot from Monkey Island,[LucasArts,
1990], is shown. The avatar is the sailor standing up. There are three NPCs, all

8

CHAPTER 2. COMPUTER GAMES

Figure 2.1: Screenshot from Monkey Island by LucasArts from1990

pirates and sitting down. In the bottom half of the screen theinterface for control-
ling the avatar is located – a list of actions and an iconic representation of items
currently in the avatar’s possession. It is the responsibility of the player to discover
the story of the game by means of his avatar.

Examples of popular adventure games are the Leisure Suit Larry series,[Sierra,
1987], and the Maniac Mansion series[LucasArts, 1987].

2.2.2 Board games

The classical board game genre involves two players playingagainst each other.
Taking turns, the players move one piece at a time and each game usually has
three possible outcomes – either player can win or the game can end in a draw.
Computer board games are based on real games, such as Chess and made digital
due to their popularity. Board games are often enhanced to enable players to play
against each other via the Internet.

Figure 2.2 on the following page shows a screenshot from Grand Master Chess,
[Media Research Group, 2004]. This is a digital version of Chess where the no-
table difference to ordinary Chess is the possibility of playing against a participant.
The screenshot shows the Chess board in the middle and the game interface to the
left and right hand of the screen.

The most popular board games are often implemented on community web sites
where people compete. Examples of these are[TV2, 2005] and[Yahoo, 2005].
Games such as Chess, Go, Checkers and Backgammon are examples of popular
board games made digital.

9

CHAPTER 2. COMPUTER GAMES

Figure 2.2: Screenshot from Grand Master Chess v.2.5 by MediaResearchGroup
from 2004

2.2.3 Strategy games

Strategy games are war simulators where the player is controlling armies to com-
pete for various resources and face opponents. These games often focus on plan-
ning, resource management and combat in order to achieve victory. These games
can be divided into turn based strategy games and real time strategy (RTS) games.

Turn based strategy games allow all players to consider all actions carefully
in turn before choosing an action. Also, turn based strategygames often focus
on simulating real armies with great realism and careful planning. RTS games
primarily focus on resource gathering, rapid unit handlingand base construction
and has a stronger focus on combat. Furthermore, RTS games require the players
to choose actions continuously. RTS games are described in detail in section 3.4.1
on page 40.

Before playing the actual game all players must decide theirallegiance. Most
strategy games have several opposing factions. The types ofcharacters, called
units, and buildings available is determined by the choice of allegiance.

In figure 2.3 on the following page a screenshot from Dune 2,[Studios, 1992],
is depicted. At the top of the screen the player’s amount ofcreditsavailable for
unit and building construction is seen. The large section positioned lower left on
the screen is the view of the battlefield, called the view-port. The black shroud is
known asfog of warand represents areas of the map which are currently outside
the view of the player’s units or undiscovered territory. The middle right of the

10

CHAPTER 2. COMPUTER GAMES

Figure 2.3: Screenshot from Dune II by Westwood Studios from1992

screen shows the status of the selected unit and its available actions. At the lower
right of the screen themini mapis depicted. This is a small representation of the
battlefield which allows the player to quickly survey the battlefield and position
the view-port over interesting events.

Examples of popular RTS games are Starcraft,[Blizzard, 1998], and the Age
of Empires series,[Ensemble Studios, 1997]. An example of a turn based strategy
game is Civilization III,[Firaxis Games, 2001].

2.2.4 Shooters

Shooters are one of today’s most popular genres. The human player controls an
avatar in real time in either a first person or third person perspective. First person
means the view of the world is presented through the eyes of the avatar whereas
third person perspective implies that the player is viewingthe avatar from behind.
A shooter with a first person perspective is called a first person shooter (FPS).

In a shooter the player is fighting dangerous animals, vicious monsters and
tough marines with various advanced weaponry. Most of thesegames are primar-
ily based on action. Even though action is an important element in this genre
developers are increasingly including stories which entangles the player further in
the game.

Figure 2.4 on the next page shows a screenshot from an FPS called Counter-
Strike, [CSteam, 1999]. This game containsteamsconsisting of human players
and participants. Counter-Strike pits a team of counter-terrorists against a team of

11

CHAPTER 2. COMPUTER GAMES

Figure 2.4: Screenshot from Half-Life: Counter-Strike by Valve Software and
CSteam from 1999

terrorists in rounds of competition won by completing an objective or eliminating
the opposing team. Most of the screen is reserved for viewingthe landscape where
the avatar is situated. The upper left corner shows the radar, which indicates the
general direction of the player’s teammates. The bottom of the screen shows the
chat-window and status of the avatar along with the time remaining on this map.
Also depicted on the screen is a pair of hands and a weapon. This represents
the weapon currently equipped by the avatar. The cross-hairin the middle of the
screen represents the avatar’s current aim. The red marker in the middle of the
screen above the cross-hair indicates that the avatar has taken or is taking damage
from that direction.

Figure 2.5 on the following page shows a screenshot from TombRaider: Angel
of Darkness,[Design, 2003] – the sixth instalment in the Tomb Raider series, all
of which are third person shooters. The image shows the avatar in a gunfight with
two monsters.

The list of marketed shooters is long, but some of the most successful today
are the Quake series,[ID Software, 1999], and the Unreal series,[Epic Games,
2004].

2.2.5 Role playing games

Role playing games (RPGs) have their roots in the pen and paper role-playing
communities. In these communities the role-players often identify themselves

12

CHAPTER 2. COMPUTER GAMES

Figure 2.5: Screenshot from Tomb Raider: Angel of Darkness by Core Design
from 2003

with a fictional character in a fictional world.
The digital version of this type of game bears resemblance tothe adventure

genre, but has a higher focus on the avatar’s skills. The player is identifying him-
self with the avatar and information gathering is a very important element in these
games. Often the game world is a fictional medieval world which is called fantasy
based RPG. The stories in RPGs areexperiencedmore thanplayedby the player.
The story’s progress is influenced by the player’s choices. Also, many RPGs have
an element of combat in them. This allows the player to see howthe level of
interactivity changes as his avatar gains more abilities and skills.

In figure 2.6 on the next page a screenshot from Eye of the Beholder, [West-
wood Studios, 1991], is shown. The player controls a group of characters called
a party. Their images, names and some iconography describing theirequipped
items and abilities are shown in the right of the screen. At the bottom of the screen
a textual representation of what has happened in the game is seen. The upper left
depicts the current view of the party. Two enemies are also depicted with whom
there currently is battle. The arrows in the lower left is used for controlling the
party’s movement.

The RPG genre’s most popular games today include both new andold games,
since the stories in these are the primary source of player interest. Examples are

13

CHAPTER 2. COMPUTER GAMES

Figure 2.6: Screenshot from Eye of the Beholder II by Westwood Studios from
1991

The Elder Scrolls,[Bethesda Softworks, 1994], and the Fallout series,[Interplay,
1997].

A sub-genre called massive multi-player online role playing games (MMO-
RPGs) is currently growing in popularity. In MMORPGs he players inhabit the
same virtual world concurrently. This allows for players toform groups and op-
pose other groups of either players or characters. Examplesare World of War-
craft, [Blizzard, 2005], the EverQuest series,[Sony Online Entertainment, 1999],
and the danish newcomer Seed,[Runestone, 2005], (in development at time of
writing).

2.2.6 Simulators

The simulator genre contains games which simulate a sport, acar race or a whole
world. Games in this genre generally simulate a real life concept such as soccer or
a town. The degree of realism in each game varies greatly, mainly in the physics
simulation and in the actions available. For example, it might be possible to shoot
weapons at the opponents in some car simulators.

The following subsections briefly describe three kinds of simulators which
have proven to be popular.

Sport simulators

These games simulate, as the name implies, a sport be that soccer, American foot-
ball, basketball or tennis. Realism and the right “feel” with the ball are important
elements in this genre.

14

CHAPTER 2. COMPUTER GAMES

Figure 2.7: Screenshot from Madden NFL 2004 by EA Sports from2004

Figure 2.7 shows a screenshot from Madden NFL 2004,[EA-Sports, 2004].
The quarterback with number 97 has the ball. In the middle of the screen the 10
yard line is highlighted in yellow. At the left side of the image a yellow marker is
placed indicating the avatar’s current aim with the ball.

Examples of sport simulators are the FIFA-based,[GameFAQs, 1996], and the
NBA-based series,[GameFAQs, 1993].

Driving simulators

Games of this type simulate motorised vehicle driving. The “feel” with the vehicle
is very important. E.g. how the car slides when turning hard and how the vehicle
accelerates on rainy or snowy surfaces.

In figure 2.8 on the next page a screenshot from Grand Turismo,[Polyphony,
2000], is depicted. Gran Turismo is a game about cars where the focus is on tuning
and designing a car and then race it against other players. Inthe screenshot the
view is placed within the car. The lower left shows a miniature representation
of the track. To the lower right, upper right and upper left different statistics are
presented to the player.

Examples of car simulators are the Driver series,[Atari, 2000], and TOCA
race driver,[Codemasters, 1998].

15

CHAPTER 2. COMPUTER GAMES

Figure 2.8: Screenshot from Gran Turismo II by Polyphony Digital from 2000

World simulators

These games are simulating a city, a theme park or possibly a world. It is usually
the player’s obligation to control the game objects in such away that characters
populating the game world are happy or such that economic charts improve.

In figure 2.9 on the following page a screenshot from Sim City 4, [Maxis,
2003], is shown. In this game, the player is responsible for managing an entire
city – from city planning, emergency response-times to sewer systems. A large
section of the screen shows the city to be managed. Together with the elaborate
menu system to the left and the ability to zoom and turn the camera the player
interacts directly with the city. The bottom right half of the screen shows a lot of
statistics necessary to supervise the city. The lower left shows a simple mini-map
and controls for the speed of the simulation.

Examples of popular world simulators include the Black & White series,[Li-
onhead Studios, 2001], and The Sims series,[EA Games, 2000].

2.2.7 Action based games

Action based computer games focus on action. Among others this genre captures
the platform genre and one-on-one fighting games. These genres are described
below.

16

CHAPTER 2. COMPUTER GAMES

Figure 2.9: Screenshot from SimCity 4 by Maxis from 2003

Platform games

This genre places the avatar in an environment where the avatar collects points
often in the form of coins, fruit or jewelry. When enough points are collected the
player can proceed to the next level. The main player challenge is coordination of
the avatar’s movement as the levels contain pitfalls and other obstacles.

In figure 2.10 on the next page a screenshot from Super Mario Brothers,[Nin-
tendo, 1985b], is shown. The top of the screen depicts the current score, amount of
coins collected, the map the player is in and the time left to complete the map. The
avatar is currently in the middle of a jump. The two mushroomswalking on the
ground are characters which can damage the avatar. The bricks hanging in mid-air
can be either jumped to and from or smashed by jumping up into the them. The
brick with the question mark can be jumped into from beneath and contains either
coins or upgrades for the avatar to collect.

The Sonic series,[Sonic Team, 1991], and the Mario series,[Nintendo, 1985a],
are two of the most popular and successful game series in thisgenre.

Fighting games

Fighting games consist of a player’s avatar fighting an opponent using kicks,
punches and various special moves. Each time the avatar or the opponent is hit
health is lost. When the health reaches zero the avatar or opponent has lost the
round.

17

CHAPTER 2. COMPUTER GAMES

Figure 2.10: Screenshot from Super Mario Brothers by Nintendo from 1985

In figure 2.11 on the following page a screenshot from Street Fighter Alpha
2, [Capcom, 1996], is depicted. The top of the screen has two bars indicating
the current health of the player and opponent. At the upper middle a number is
showing the amount of seconds left in this round. The avatar to the left is currently
performing some special move which deals damage to the opponent to the right.

Examples of popular fighting games are the Mortal Kombat series,[Midway,
1992], and the Tekken series,[Namco, 1994].

2.2.8 An example of genre combination

Warcraft III (see section 3.3.4 on page 39) is primarily a real time strategy (RTS)
game. However, Warcraft III also possesses traits from the role playing game
genre through the use of NPCs, calledHeroes. The player is not identifying him-
self with the heroes but these are a vital element in the storyand game world. The
heroes are able to carry items, gain experience points through fighting and gain
magical abilities far better than the RTS characters.

In figure 2.12 on the following page the heroes Jaina and Arthas are fighting
enemies inhabiting the game world. Jaina is selected and in the bottom of the
screen her experience, inventory and available spells are visualised.

18

CHAPTER 2. COMPUTER GAMES

Figure 2.11: Screenshot from Street Fighter Alpha II by Capcom from 1996

Figure 2.12: Screenshot from Warcraft III by Blizzard from 2002

19

CHAPTER 2. COMPUTER GAMES

2.3 Computer game quality

What is it that makes a computer game good or worth playing? Isit beautiful
environmental sounds, a photo-realistic game world, the interaction possibilities
with game objects and characters or a combination of these elements?

Playing computer games is all about having fun and aestheticconsiderations
can play a major role in the quality of the game. The concept known asimmersion
is a way of measuring the quality of a game. Even though the main focus of this
thesis is the Game AI subsystem the following presentation and discussion will
introduce computer game quality as a more general concept. This is primarily
to motivate the quality introduced with consistent characters in computer games
obtained by means of Game AI methods.

The essential aesthetic elements in a computer game are thenarrative, the
awardand thegameplaywhich are all presented in detail in[Rouse, 2000]. These
elements will be described in short while the concept ofimmersionpresented in
[Taylor, 2002] will be described in higher detail in section 2.3.1 on the next page.
It should be noted that these elements should not be seen in isolation nor as the
only ones. Some games do not include a narrative but should not be seen as inferior
just like some games do not include an award to the player.

The narrative

Some narrative elements in a computer game can be seen as purebackground
elements which has no direct effect on the game. It could be the implicit reasons
why the avatar is behind enemy lines or why the avatar is running through level
after level collecting gold rings as in the Sonic series,[Sonic Team, 1991].

The narrative element can also be realised as an interactivestory in which the
player experiences and occasionally changes the story. It could be that a choice
between good and evil is to be made and the choice changes the layout of the
following level. Either way the narrative factor can have a heavy impact on the
quality of the game depending on whether the player can conceptually understand
andlive the story. A good narrative can increase the quality of a gamebut a poor
narrative can decrease it.

The award

The player award in a computer game is also a major influence onthe quality of a
game. The most commonly used award is points which are accumulated through-
out the game. The player continues to play the game only to increase his amount
of points and possibly to obtain a high-score or to obtainbragging rights, [Rouse,

20

CHAPTER 2. COMPUTER GAMES

2000], over his friends. In the RPG genre these award-points are shaped asex-
perience pointsand make the avatar better in some way – either by increasing
the avatar’s skills, fighting abilities or alleviation of some tedious task. A similar
point-mapping exists in car games. The points are not collected directly but are
specified as the time it takes to complete a racing circuit – the quicker the better.

An award can also be conceptualised as a short movie in the story. These
movies are shown between levels and present the player for the next step in the
narrative which then hopefully involves the player furtherin the game.

Awards come in many disguises and range from letting the player see the con-
ceptual art of the game, movies which show how the game was created, additional
levels and much more.

Gameplay

In [Rouse, 2000], Richard Rouse presents and explains how game-design is car-
ried out – from the early design phases to the final play-testing of the product.
Rouse has the following definition of gameplay:

“The gameplay is the component of computer games that is found in
no other art form: interactivity. A game’s gameplay is the degree and
nature of the interactivity that the game includes, i.e., how players are
able to interact with the game-world and how that game-worldreacts
to the choices players make.”,[Rouse, 2000]

The notion of interactivity is a valid definition of the concept of gameplay
because gameplay does not exist in books or movies, but exists in games where
players can interact with game objects and other players. Rouse’s definition is
throughout this thesis used asthedefinition of gameplay.

2.3.1 Immersion as a mark of quality

The conceptimmersionexamined in[Manovich, 2001] and in[Taylor, 2002] con-
cerns an immersed feeling with a work – be this a painting, a web site, a piece
of music or a computer game. The human computer interaction (HCI) branch
discusses when the “feeling” of immersion exists and when and how it is bro-
ken. These guidelines can be used to create better interaction possibilities which
support a feel of immersion. The HCI communities are furthermore concerned
with explaining and understanding the atomic parts of the interface to describe its
whole.

The aesthetics branch is on the other hand actively seeking to explain the rep-
resentations of the work rather than dividing it up in smaller and perhaps more

21

CHAPTER 2. COMPUTER GAMES

comprehensible parts. A work is understood and viewed distinctively by the indi-
vidual person and is therefore not purely understood by analytical methods.

Generally speaking, one can be immersed in a work such as a novel or the-
atrical performance and the reader or spectator can either objectively follow the
narrative or subjectively experience it. Immersion can be described as an act upon
a work or described as an involvementwithin a work.

These two aspects of immersion can also be applied to computer games as a
player can play a game as an act upon input devices i.e. actingupon the game or
the player can be immersed within the game. A feeling of immersion raises the
interest a player has in a particular game and thereby raisesthe quality of the game
seen from that player’s perspective. As such, a game with a high quality should at
least not repel the feeling of immersion from the player.

In [Taylor, 2002], Laurie Taylor discusses perspectives and point-of-viewsin
computer games. By means of immersion terminology she discusses gaming ex-
periences for various representations of perspective. Sheargues that perspective
and point-of-view concepts are fundamental issues in computer game immersion
and discusses primarily third- and first-person perspectives. Taylor’s conclusion
is that the third-person view entails immersion in a more situated sense than the
first-person counterpart due to peripheral information available to the player in
this view.

The notion of immersion should be seen as a general concept inwhich many
sub-concepts such as a narrative or a game’s gameplay exist.A good narrative in a
game or a consistent game world are seen as contributing factors to the more gen-
eral concept of immersion. If a game includes good gameplay this also increases
the level of immersion a player has within the game. Immersion can be seen as a
general impression a game has on a player.

Consistency

Consistency is a major part of Taylor’s thesis. She uses the concept ofgame space
consistencymeaning that the game world needs to uphold some form of consis-
tency for the player to be immersed within it. Consistency isthus a way to obtain
immersion within a computer game.

Taylor argues that consistency within a game need not be visually presented,
but lack of consistency in game representations can force player immersion break-
downs. Several events can force breakdowns in a computer game and an inconsis-
tency can often result in total breakdown of immersion a player has.

If this feeling is broken the game is no longer seen as an interactive narrative
or an intriguing fantasy adventure, but is instead reduced to chunks of graphics,
music tracks and transparent character behaviours. Consistency should thus be
seen as a way to obtain immersion, but also a way to rate the amount of immersion

22

CHAPTER 2. COMPUTER GAMES

achieved. It is also Taylor’s point that inconsistency deprives a computer game of
the feeling of immersion.

Inconsistencies in computer game graphics are prime examples of where the
feeling of immersion can fade. Low polygon count or low resolution on game ob-
ject models, homogeneous texture mappings and identical objects are all graphi-
cally immersion repelling aspects. If the game is in low resolution the player will
find it hard to believe that the depicted graphics is real, butthis does not mean
that the game is of low quality. The player can still be immersed in a low reso-
lution game – it is then other factors such as a good narrativewhich increase the
immersion.

Sound and music is a well known method in films and in theatrical perfor-
mances for increasing tension or otherwise placing the audience in a specific
mood. Sounds and music in computer games can immerse the player, but sounds
and music can also be immersion-breaking in a computer game context. Mono-
tonous background music or playing music in a loop can be a source of irritation
for the player. But can actually help the player grasp the theme of the game, since
the music’s uniformity gets the player in the “mood” the gameimposes. Singular
and monotone digital voices for the game’s characters are not realistic and forces
the player to mentally withdraw himself from the game.

The game’s level-design can also be an important immersion support, but can
unfortunately also be the reason why a player cannot immersehimself in the game.
If each level has a uniform layout or game objects placed in one location are
similar or perhaps identical to game objects placed in another location, the player’s
immersion will fade. Uniformity in the layout of the game world where only one
way through the level exists is known asgoadingor railroading. The element of
uniformity often helps novice players to complete the levelinstead of wandering
hopelessly around for hours. But this can be a tedious experience for advanced
players. Badly designed levels can be disastrous for the player’s immersion since
each level look alike. Clever level-design can create a realistic game world model
for the player and can occasionally be the sole reason for theplayer’s immersion
in the game.

Consistent characters in a game world is also an important aspect in a player’s
ability to immerse himself in a computer game. Even if the game world is realistic
the characters’ behaviour can have a great influence on how the game world is
experienced and understood by the player. The behaviour of the characters should
thus be consistent with the game world. This form of consistency is genre de-
pendent since an adventure NPC is very different from an FPS character, because
these have different goals. The adventure NPC gives puzzlesto the player and un-
folds a story while the FPS character opposes and combats theplayer. Consistency
should be seen as the characters’ ability to appear as part ofthe game world. If
this appearance is not explicitly present the player might misinterpret the actions

23

CHAPTER 2. COMPUTER GAMES

of a character which often leads to a breakdown of immersion.
A consistency measure of an FPS character might be how much challenge

the player receives from this character. A character who fights poorly would not
be considered consistent, since the player expects challenge from a character as-
suming the role of a tough veteran marine. A consistent FPS character should at
least be able to show signs of combat experience such as running for cover when
shot at. How the behaviour of RTS characters affect consistency in RTS games is
discussed further in section 3.4.4 on page 46.

The goal of a game’s graphics, animations and sounds are to portray an illu-
sion of a consistent game world to the player. As an example let us assume that the
game world contains some kind of forest as known from the realworld. The devel-
opers wish to assure by all means at their disposal that when aplayer encounters
this forest then it actually is a forest. Animations, soundsand overall “look and
feel” must convince the player that it is indeed a collectionof trees, which consti-
tute a forest. If this forest contains characters i.e. wild life like rabbits animations
and sounds are not always enough to accurately portray a rabbit. The behaviour
now becomes an important factor in the “look and feel” of the illusionary rabbit so
what looks like a rabbit actuallyis a rabbit. How this illusion is obtained is irrel-
evant. A simple random replay of animation which show a rabbit jumping around
might be enough. If the player is required to interact with the rabbit in some way
more advanced methods might be required.

Inconsistencies in computer games are occasionally used topresent an authen-
tic game world to the player. The conceptlens flareis a phenomenon caused by
the scattering and internal reflection and refraction of bright light in the optical
components of complex lens systems,[Wikipedia, 2004]. Even though a lens flare
is not experienced when walking around in the park almost allFPS games in-
corporate this feature to increase visual photo-realism, because this phenomenon
occurs in movies. Ironically, this inconsistency often creates a more consistent
game experience.

2.3.2 Consistent character behaviour

Now that the notions of narrative, award, gameplay, immersion and consistency
have been introduced the discussion how consistent behaviour can improve the
quality of a game has a solid foundation. We will present bothacademical and
commercial views on consistent behaviour in games where combat is an essen-
tial element of the gameplay. This focus was chosen because we investigate RTS
games which has combat as an important element of gameplay.

24

CHAPTER 2. COMPUTER GAMES

Academical vs. commercial approaches Lars Lidén, a developer of Half-
Life, describes in[Lidén, 2004] that consistent characters should intentionally
react such that the player feels superior. Lidén believes that the player is supposed
to win since he is the one to be entertained. Lidén suggests that letting the player
win should be an intentional act, obtained with Game AI methods, rather than bad
design or bad control mechanisms.

Lidén furthermore suggests several approaches to obtain consistent characters
even if the opposing characters are doomed to lose in the end.Methods such as
a bad aiming ability raise the tension for the player but not if the characters miss
every time. An opposing character should at least miss the first time to warn the
player of its whereabouts instead of killing the player and leave him utterly con-
fused.

The peculiarity of Lidén’s approach is that the goal he triesto obtain can be
seen as a way to assist the player in playing the game, but without the player
knowing. If the player notices this help the character ceases to appear consistent
and a breakdown in immersion is unavoidable.

In [Buro, 2004] and[Buro and Furtak, 2004] Buro and Furtak describes Game
AI in an RTS context and advocates strong participants. Burofocuses on giving
the player the greatest challenge by means of strong and near-optimal participants.
The approach can give the best players a hard challenge and bedowngraded to
adjust difficulty for novice players. In contrast, it is veryhard to create a challenge
for advanced players if the design is aimed towards giving only novice players an
interesting opponent. Buro states:

“The main goal behind the AI research [. . .] is not to increasethe
entertainment value of RTS games, but rather to create the strongest
RTS game AI possible. The former goal is pursued by the commer-
cial games industry, whereas the latter tries to push the cognitive abil-
ities of machines to new levels. Note, however, that increased playing
strength can be converted into higher entertainment value by adapting
to the player’s performance level to keep games challenging.”, [Buro,
2004].

Buro furthermore presents and discusses how and why participants in RTS games
should incorporate learning mechanisms, planning under uncertainty and spatial
and temporal reasoning. Buro is well aware that all of these features cannot be
tackled easily, but argues for a gradual improvement of RTS participants since
small steps can have enormous effects on the further improvement of these. Buro
continues:

“[. . .] because current AI systems do not reach human planning, learn-
ing, and reasoning levels, machines can at least aid them playing

25

CHAPTER 2. COMPUTER GAMES

RTS games. [. . .] It should be possible to create AI modules tohan-
dle those local combat situations much more efficiently thanhumans
who have to point and click to give them orders. What makes this
hybrid AI approach attractive is that now human players can choose
their favourite AI plugins. Moreover, players then can concentrate on
high-level decisions without being forced to compete with the World’s
fastest mouse virtuosos in terms of speed.”,[Buro, 2004].

In the same paper Buro also mentions that the lack of an academical RTS Game
AI competition is a contributing factor to the lack of academical interest in this
area. He hopes that his ORTS platform,[Buro, 2002], helps remedy this problem.

Marco van de Wijdeven has, like Lidén, a background in the commercial com-
puter game industry and captures the commercial computer game industry’s view
of optimal characters’ goals nicely:

“Stated concisely, the challenge is: Creating an agent thatcan provide
a suitable challenge no matter who or what is opposing it.”[van de
Wijdeven, 2002]

Van de Wijdeven’s view does not contradict Lidén’s view. If an optimal character
is to provide a suitable challenge to novice players modifications could include
Lidéns ideas such as intentional misses.

Although the commercial game industry’s focus is on increasing the quality of
games, the game industry is not exclusively interested in optimising the challenges
provided by the characters. The main goal is to create a behaviour which increases
the quality of the game. The goal of academic AI research is onthe other hand
to create near-optimal characters, because such methods may push the cognitive
abilities of machines further. Both approaches pursue and is capable of providing
consistent character behaviour.

Entertainment value vs. optimality The essential point in this discussion is
whether a character should behave reasonable while being fun to play against, as
Lidén believes, or the character should be optimised to givethe player the hardest
challenge possible, as Buro believes.

Either way, the approach taken to increase the performance of the characters
should not make them inconsistent. Depending on the actual game the charac-
ters should behave in a consistent way. How the consistent behaviour is achieved
depends very much on the genre of the game and of course the actual game.

Optimal characters are needed in the domain of RTS games according to Buro,
[Buro and Furtak, 2004]. The primary reason is that research results found in the
field of RTS Game AI can possibly be extended to real world problems. Issues

26

CHAPTER 2. COMPUTER GAMES

such as tactical decision-making can have an enormous effect on army protocols
as the digital method can assist army leaders in real tactical battles.

The measure of the character’s level of consistency and how fun this character
is to oppose is genre specific, but some general issues can be elaborated upon. The
optimality of the character is one such issue. The character’s optimality regards
how difficult the character is to defeat. If an optimal behaviour approach is taken
the result is scalable because the approach can be downgraded to ease difficulty
for novice players. A near-optimal behaviour is in some genres seen as the only
way to obtain character consistency whereas a non-optimal approach would have
created an inconsistent behaviour. We believe that the subproblem of small scale
combat (SSC) in the area of RTS, see section 3.4.2 on page 45, needs to include a
near-optimal solution if the resulting behaviour can be seen as consistent. Such a
behaviour helps to portray the illusion that the RTS units are soldiers.

An optimised approach such as a seemingly unbeatable opponent can appear
to be a waste of the player’s time. This is only half the truth since the player
probably already has won against the second-highest difficulty level meaning that
the player searches for more challenge from the opponent.

An optimal opponent cannot in some respect decrease a game’squality if a
choice of difficulty level exists. On the other hand can an easily fought opponent
decrease a game’s quality and force the player to quit the game prematurely if this
opponent is too easily beaten. An easily fought opponent canhowever be hours of
fun for novice players which first have to learn the game and its controls.

Like everything else in the world, there exists a compromisebetween creating
an easily (non-optimal) or hard (near-optimal) fought opponent. The compromise
involves a mix of the targeted audience’s flavour, the game world and what objec-
tive the gameplay has.

27

Chapter 3

Game AI problems
"If I only had a brain"

- The Scarecrow

Most commercial computer games published today contain many different mod-
ules, which must work together. The physics simulation, graphics pipeline, sound
subsystem and Game AI subsystem must all cooperate in delivering a superb ex-
perience to the player. In the rest of this thesis the focus issolely on the Game AI
subsystem.

In this chapter we will give an introduction to Game AI problems found in
the genres introduced in section 2.2 on page 8. Afterwards, the RTS Game AI
problems will be defined in detail. For a reminder of terminology used, please
consult section 2.1 on page 6.

Literature in this area is relatively hard to come by. The commercial computer
game industry is not overly happy for providing concrete examples and detailed
explanations of how they solve the various Game AI problems in their products.
They often regard these solutions as trade-secrets and as iscommon with such se-
crets they only speak reluctantly or in marketing tongues about their methods. For
more information about literature in this area, see appendix A on page 124. The
concepts we define in the following sections are based on our personal experiences
along with notions from the available literature.

When designing a Game AI subsystem for a computer game some questions
must be asked. What problems are to be solved and how advancedneed the Game
AI methods be to solve these in a timely manner? No player willbe immersed in
a game if the characters act so slowly that the game grinds to ahalt. The Game AI
algorithms must therefore be able to run fast enough while providing the charac-
ters with consistent behaviours.

In Chess a well defined time limit exists. Special designed super computers
are used to play near-optimally within the given time limit.In real time games the
demands of the subsystem are even higher. The Game AI subsystem must react to

28

CHAPTER 3. GAME AI PROBLEMS

player input with little or no delay. Of course this also means that the reaction may
not necessarily be the optimal one. This does not matter as long as the reaction of
the characters is consistent.

3.1 Information available to characters

In [Champandard, 2003] Alex J. Champandard presents an approach to creating
consistent participants and characters in shooters. Champandard believes that con-
sistent characters ought to be fully embodied and situated in the game world. This
implies that in a given situation the character must not haveaccess to any informa-
tion the player cannot also access in the same situation – such as looking through
walls. In other words the character must not cheat. Creatinga consistent character
within these restrictions is what Champandard deals with inhis book.

In [McLean, 2004] Alex McLean describes a method for handling situations in
which characters hunt the player. Requirements for his method includes full access
to information about the entire game world, the absolute location of the player and
the absolute location of all other hunting characters. Using this information the
method enables the characters to hunt the player in a consistent way. The method
could be seen as cheating, because characters are able to obtain the location of the
player without ever having line of sight to him.

Champandard and McLean both strive to create consistent behaviour for the
characters, but their methods differ as seen above. Champandard allows the char-
acters to access the same information as the player and nothing else whereas
McLean allows the characters to access more information than the player. Their
methods both achieve the wanted behaviour.

This is a prime example of the computer game industry’s focuson the end
result. The computer game industry provide characters withconsistent behaviour
but are indifferent to how it is achieved. The commercial game industry is not
concerned about whether their consistent characters exhibit true intelligence. It is
sufficient if the characters behave consistently in the gameworld. Therefore, the
used methods can be seen as tricks with the sole purpose of upholding the illusion
of intelligent characters. Michael Buro writes about this method when applied to
RTS games:

“Also, we acknowledge that commercial RTS game AI often cheats to
compensate for its lack of sophistication. Tricks of the trade include
map revealing and faster resource gathering. The resultingAI systems
may outperform human players and may even create challenging en-
counters, but they do not advance our understanding of how tocreate
intelligent entities.”,[Buro, 2004]

29

CHAPTER 3. GAME AI PROBLEMS

Having access to more information than the player is just another trick used by the
commercial game industry in their hunt for consistent behaviour in their games.

3.2 Game AI problems in genres

The requirements of the Game AI subsystem in a game differ much from genre
to genre. There is no need for advanced algorithms for language understanding,
[Callan, 2003, Chap. 18 & 19] and [Nilsson, 1998, Chap. 24], in action based
games, since the player does not need to talk to the characters. Likewise there is no
need for combat strategies,[Champandard, 2003, Chap. 34 & 44], in a simple 2D
platform game. Thus the natural and intuitive way to create the required behaviour
is to analyse the game and the game world in detail and thereafter decide which
Game AI methods to use.

Many Game AI problems such as pathfinding,[Patel, 2004], and camera po-
sitioning, [Carlisle, 2004], are common to many games regardless of genre and
will therefore not be covered here. For further informationabout these problems
and a general introduction to common Game AI methods, see[Rabin, 2004b] and
[Rabin, 2004c].

The following sections present an overview of how consistent behaviour is
achieved in different genres. The list does not cover all Game AI problems but
tries to exemplify how this goal is reached.

3.2.1 Adventure

In the adventure game genre the quality of the non-player characters (NPCs) is
determined by the NPCs’ ability to conform to the story beingdiscovered through
the game.

The NPCs in adventure games are in most cases scripted. Sincethe player is
following a static story line there is usually no need for adaptiveness nor flexibility
in the NPC behaviour. Whether the NPCs are consistent depends entirely upon the
quality of their scripting.

Early adventure games were textual and the only means of input was by typing
in the commands on the keyboard in some almost-natural language. In figure 3.1
on the next page a screenshot from Zork I,[Infocom, 1980] is shown. Zork I was
one of the earliest adventure games and as illustrated in thescreenshot the natural
language parser was not optimal and the error messages sometimes only added to
the confusion.

30

CHAPTER 3. GAME AI PROBLEMS

Figure 3.1: Screenshot from Zork I: The Great Underground Empire by Infocom
from 1980

3.2.2 Board games

The consistency of a participant in the board game genre depends entirely on
how well it plays the game. The better the participant plays the game, the more
consistent it is perceived.

To enable a participant to play a board game well, variants ofgame tree mod-
els, see section 5.3 on page 60, are often used.

Many board games are subject to academic interest groups whouse these
games as testing grounds for machine learning,[Mitchell, 1997], and artificial
intelligence algorithms,[Nilsson, 1998], since the problem of winning the actual
game is well defined. An example of this is David Fogel’sBlondie24-algorithm,
[Fogel, 2002], which plays Checkers using a neural network method. Blondie24
was a huge success and performed better than 99% of the registered Checkers
players at the website where it was the tested.

3.2.3 Strategy games

In the strategy game genre the consistency of the behaviour is far-reaching since
the Game AI subsystem acts on many levels. This ranges from simple character
behaviour to participant planning tasks. All units available to the player are con-
sidered characters and as such their behaviour ought to be consistent. This implies
that units representing soldiers should be seen as such by the player.

The consistency of a participant in an RTS game implies that it should show

31

CHAPTER 3. GAME AI PROBLEMS

a high level knowledge of the game world and the units’ capabilities. According
to Buro, [Buro and Furtak, 2004], a participant should be able to among other
things do adversarial real-time planning[Callan, 2003, Chap. 9 & 10], spatial and
temporal reasoning,[Nilsson, 1998, Chap. 19] and resource management.

The behaviour of units is generally controlled by simple rules and all high level
decisions are deferred to the player. The rules only handle local information and
provide local actions. The consistency of the unit solely depends on these rules.
The Game AI methods used for controlling participants consist of a collection of
overall strategies. An overall strategy dictates the base layout and the construction
sequence of units and buildings. These strategies also contain group composition
and overall tactics for combat in the game world. Among thesestrategies a random
one is often chosen at the beginning of the game. Again the consistency of the
participant depends on the quality of the strategies used.

The performance of some rules for unit handling can be can be seen in the
movies section on the enclosed CD, see appendix E on page 154.The movies is
recorded from the game Warcraft III,[Blizzard, 2002], which is further discussed
in 3.3.4 on page 39. The movies illustrate two situations:

Ranged attack formation In this situation a group of ranged units is seen attack-
ing a sole melee unit. The melee unit is instructed to hold position which
means that it will not move. The ranged units spend a lot of time positioning
themselves in a circle with a radius of their attack range. A more consistent
method would be if the first arriving ranged units to move closer to the
melee unit. This would allow more ranged units to stand behind these and
begin firing sooner.

Ranged movementThis situation depicts a group of ranged units moving across
the game world. When moving they walk in line – looking like a snake
traversing the game world. When reaching the destination they align them-
selves in a matrix shape with no wasted time in marching around one an-
other. This is consistent with the way real soldiers align.

3.2.4 Shooters

Creating a consistent character in a shooter requires understanding of the game
world in which the character must operate. Examples of consistent behaviour from
characters in shooters are target selection[Champandard, 2003, Chap. 20], aiming
[Champandard, 2003, Chap. 18] and cooperative behaviour,[Orkin, 2004b] and
[Reynolds, 2004].

To create a consistent character, finite state automata,[Kozen, 1997, Chap. 3]
and[Fu and Houlette, 2004], are often used since these allow easy handling of the
state of the character.

32

CHAPTER 3. GAME AI PROBLEMS

For an example of a shooter striving to achieve a consistent character be-
haviour, see section 3.3.2 on page 37.

3.2.5 Role playing games

In the role playing game (RPG) genre the consistency of the characters lies in their
ability to portray their part in the story of the game and their ability to provide the
player with consistent battles.

As in the adventure game genre the most used method for controlling char-
acter behaviour is scripting. Furthermore, many games employ more or less so-
phisticated methods to let the NPCs respond to the player’s actions in various
ways. Examples of this include reputation systems where an NPC’s knowledge of
a player’s previous actions determines how the NPC react to the player whenever
they meet.

At Runestone,[Runestone, 2005], the developers are creating a MMORPG
called Seed where NPCs have a personality and memory of theirencounters with
other NPCs and players. Each NPC maintains a list of known players and NPCs.
With each list entry a value is associated. This value represents how much this
NPC likes and trusts the corresponding player or NPC. Over time this value reverts
towards neutral, but new encounters refreshes and updates this value. So if a player
is not encountered for a period of time the NPC can forget thisplayer.

3.2.6 Simulators

In the genre of simulators the requirements of the Game AI subsystem often shifts
from the requirements of the above genres. Above, the focus is generally on cre-
ating consistent behaviour for characters. In this genre more emphasis is put on
making the game world consistent through well-constructedsupport routines.

Sport simulators

In the sport simulator genre a consistent participant should be able to play the
sport at hand. A prerequisite for creating consistent behaviour is that the game
world e.g. the actual game rules and limits of the sport simulator is well defined.

In sports requiring interaction with a ball such as soccer the ability to antic-
ipate the effects of kicking the ball must be present to create consistent football
players. To be able to predict the whereabouts of the ball a method called Dead
Reckoning,[Wikipedia, 2005c], can be used. This method is applied to the prob-
lem of predicting future locations of game objects in[Laraée, 2004].

33

CHAPTER 3. GAME AI PROBLEMS

Figure 3.2: Screenshot from Transport Tycoon Deluxe by MicroProse from 1995

Driving simulators

In the driving simulator genre a consistent participant driving another car needs to
be able to keep the vehicle on the road. To portray the illusion of a professional
driver the participant must also drive near-optimally.

To portray a professional driver a set of way-points are associated with each
track. The way-points represent a near-optimal route through the track allowing
participants to steer towards these. Along with these way-points simple reactions
to other cars are encoded. An example of this method is presented in [Manslow,
2004].

World simulators

In world simulators there often are no characters for the player to interact with.
Usually there is no opponent either. The game creates problems for the player in
terms of traffic jams, fires, earthquakes and so on. In a city-simulator the player’s
choices for placement of fire brigades, parks and community features all influence
whether the characters, i.e. inhabitants of the city want tomove to the neighbour-
hood.

In figure 3.2 a screenshot from Transport Tycoon Deluxe,[MicroProse, 1995],
is depicted. Transport Tycoon Deluxe places the player in control of a transport
company which manages inter-city transportation of goods and inhabitants. It is
the player’s duty to build infrastructure between the cities, create and manage
bus routes, railroads, trains and airlines – and turn a profitfrom this. Competing
participant-controlled transport companies also inhabitthe world in Transport Ty-
coon. The Game AI subsystem focuses on simulating city and industrial develop-
ment and controlling the participants. In figure 3.2 a railroad built by a participant

34

CHAPTER 3. GAME AI PROBLEMS

is shown. Clearly, that way of constructing a railroad is inconsistent with the game
world as it adds to transportation times and has an increasedcost for the company.

3.2.7 Action based games

Platform games

In platform games the emphasis of the Game AI subsystem is on allowing the sim-
ple characters of the game to respond to the actions of the player. Some characters
are oblivious to the whereabouts of the player’s avatar and move in predefined pat-
terns. Other characters break their movement pattern if theavatar comes within a
predefined range.

Based on personal experience we find that many platform gamesuse simple
stateless behaviour. Recently however, platform games have shifted from 2D side-
scrolling games to 3D games in third person view. This shift blurs the distinction
between platform games and other genres such as the adventure and shooter gen-
res. This allows the platform games to share Game AI methods with the before
mentioned genres.

Fighting games

A consistent participant in a fighting game is able to fight efficiently. Here, con-
trolling the avatar often means applying long input combinations with the cor-
rect timing thereby performing special moves. For the participant to predict what
moves the player might use a pattern matching algorithm might be applied. De-
pending on the difficulty setting the participant is able to remember which moves
the player used and in what order. Based on these data and on knowledge of avail-
able moves, the participant can predict which moves the player are trying to per-
form and counter them effectively. The participant accesses data from the game to
read the input sequences performed by the player.

The player is also able to predict what moves the participantmight use as the
animations of the avatars include plenty of hints to what theparticipant is currently
attempting. As a reference to pattern matching algorithms in fighting games, see
[Dalmau, 2003, Chap. 7].

3.3 Examples of applied Game AI

In the following, four concrete examples of how Game AI problems are solved in
commercial computer games are presented.

35

CHAPTER 3. GAME AI PROBLEMS

Figure 3.3: Screenshot from Black And White by Lionhead Studios from 2001.

3.3.1 Black & White

The Black & Whiteseries,[Lionhead Studios, 2001], are simulators where the
player plays a God and battles against other Gods for control, in the form of faith,
of the land. The player can guide the inhabitants of the game world to perform var-
ious tasks such as harvesting resources and expanding towns. The way the player
battles against the opposing Gods is by means of a large pet creature. This creature
somewhat becomes the main focus of the game. The creature is the manifestation
of the player-controlled God in the game world.

The creature is wandering about the land to satisfy desires such as eating,
playing and sleeping. The desire from the start is eating since this is a natural
instinct. Eating something which is not satisfying the creature’s hunger, e.g. a rock
will be saved in the creature’s memory so it knows that a rock is not particular
tasty. Each desire has an associated intensity and the creature is “intelligently”
choosing the highest rated desire. The player can punish or reward decisions made
by the creature. Either by smacking it around when bad decisions are conducted
or petting it when good decisions are made. In this way the player is granted some
control over the creature and this process bears some similarity to teaching a dog
tricks.

In figure 3.3 the creature in this case a cow is entertaining some inhabitants.
Luckily, it seems that the cow is not interested in eating theinhabitants – either it
has been properly trained or it is simply not hungry.

The interesting Game AI part of this creature is its inner workings. The crea-

36

CHAPTER 3. GAME AI PROBLEMS

ture has a decision tree using the ID3 algorithm,[Mitchell, 1997, Chap. 3], and
feedback weights with which it evaluates potential decisions. The feedback weights
are game specific values such that attacking a friendly town is not encouraged.
These values are modified by the player’s punishment or reward. This way, the
creature learns that eating a town inhabitant and receivinga punishment is not a
good solution for satisfying the hunger – even though the inhabitant probably is
tasty.

For a more exhaustive description of the creature behaviourin Black & White,
see[Wexler, 2002].

3.3.2 No One Lives Forever 2

No One Lives Forever 2(NOLF 2),[Sierra Entertainment, 2005], is an example of
a first person shooter (FPS). A lot of work has gone into imbuing the characters
with a “understanding of human concepts” to create more consistent character
behaviour. In[Orkin, 2004a], real time decision-making using Game AI methods
in complex 3D FPS environments is explained from one of the developer’s point
of view. Instead of having characters which follow simple rules, the developers
worked hard to:

“[. . .] make the characterslive in the environment instead of just
standing around waiting for the player to show up. Because you have
the option of sneaking around, we felt it was critical that the game
had a life of its own.”[Hubbard, 2002]

Concepts such as game object ownership, concept dependency, responsibility
issues and priority of these, expected state and presence ofothers were all included
in NOLF 2 as important elements of character behaviour. The characters have an
“understanding” of these concepts and are able to appear more consistent in the
game world. Active game objects which emitted information about their interac-
tion possibilities were implemented. In this way, the characters were able toseeor
heargame objects. This, along with the above-mentioned concept-understanding,
created character consistency according to[Orkin, 2004a].

To further improve the consistency of the characters the developers created
simple techniques to improve the characters’ ability to cooperate. ABlackboard
Architecture, [Orkin, 2004b], was constructed. This allowed the characters to share
information about various game objects – whether the objects were being used, de-
stroyed or turned on or off. E.g. a character standing in a room could check the
immediate game world for information and decide to sit down and use a com-
puter. Another character walking into the room would now be able to notice that
the computer was being used and decide upon other actions, e.g. opening a file
cabinet.

37

CHAPTER 3. GAME AI PROBLEMS

The methods used in conjunction created consistent character behaviour ac-
cording to[Orkin, 2004a]. For further information about methods used for char-
acter improvements in NOLF 2, please consult[Orkin, 2004a] and[Orkin, 2004b].

3.3.3 Half-Life

Half-Life, [Sierra Entertainment, 1998], is another FPS game. It uses simple be-
haviour models for its characters. These behaviours are notby themselves very
innovative, but additional tricks ensures “character and combat believability” ac-
cording to[Lidén, 2004]. The method used maintains the illusion that the player
is actually fighting tough and well trained soldiers.

In [Lidén, 2004] Lars Lidén describes the ideas behind the Game AI methods
used in Half-Life. He introduces the concept ofKung Fu-fighting borrowed from
the Kung-Fu movie genre, where only a couple of opposing martial arts com-
batants are battling at any given time. This creates intenseand realistic combat
situations for the player.

The basic idea is to only allow a few of the characters to attack the player
at any given time. When a non-attacking character is ready toattack, an already
attacking character is chosen and instructed to run for or duck behind cover. This
creates the illusion that the characters are cooperating which they truly are not. In
Half-Life, the number of simultaneously attacking characters was set to two. This
proved to be sufficient to increase the combat tension. It wasfound that players
confronted by the scenario did not notice that only two characters were attacking
at the same time, but were surprisingly overwhelmed by the illusion of collabora-
tive teamwork.

To further increase character consistency within the game world the develop-
ers added speech to the characters. This was implemented because some players
did not notice or in some cases misinterpreted the characters’ actions. When run-
ning for cover a character would yell “Cover me” or “Flanking” and this made
the player aware of the character’s actions and intentions.Regarding this simple
method, Lidén states:

“Such cues can be highly effective and often have the beneficial side
effect that players assume intelligence where none exists.”, [Lidén,
2004]

This is another example which shows that for the commercial computer game
industry the end always justifies the means.

38

CHAPTER 3. GAME AI PROBLEMS

Figure 3.4: Screenshot from Warcraft III by Blizzard from 2002 depicting the
cheating of the participant at the highest difficulty level.

3.3.4 Warcraft III

Warcraft III, [Blizzard, 2002], is one of the most popular real time strategy (RTS)
games available. The units belong to one of four factions, Orcs, Humans, Un-
dead or Elves. Units have different strengths and weaknesses depending on the
faction. This makes a consistent faction-independent behaviour model complex to
derive. Instead static methods, e.g. scripted behaviour are used. The capabilities of
the Warcraft III characters and participants are describedfurther in [Gustafsson,
2004].

In [AMAI, 2005] a group of developers have been creating an extension called
AMAI to the Game AI subsystem of Warcraft III. The main attractionfor players
lies in the large collection of available rules and scripts for participant or character
control, calledprofilesandscriptsin AMAI.

In the original Warcraft III Game AI the highest difficulty level calledinsane
awards participants more resources than it actually harvests. Every time a resource
is gathered and returned to the base the participant receives the double of the actual
harvested resource. Figure 3.4 shows a screenshot which depicts the early game
for a participant playing the Human faction. The important part is the two yellow
+20 symbols positioned to the upper right of the building located in the centre.
The symbols represent gold deposits made by the two small blue men – these are
harvester characters. Even though 20 gold is deposited for each trip to the gold
mine only 10 gold is removed from the mine. The amount of gold in the mine

39

CHAPTER 3. GAME AI PROBLEMS

Figure 3.5: Screenshot from Warcraft III by Blizzard from 2002 showing a typical
game start for the Orcs.

was from the beginning 12500 gold. This behaviour is also shown in a movie on
the enclosed cd, see appendix E on page 154. In this way the illusion that the
participant playsinsanelywell is maintained even if it actually is not. However, if
the player discovers the cheat the consistency of the participant diminishes.

3.4 Real time strategy (RTS) AI

A real time strategy game is as mentioned in section 2.2.3 on page 10 a war sim-
ulator wherein players with different allegiances battle.The main Game AI prob-
lems in the RTS domain were briefly presented in section 3.2.3on page 31. In this
section we will elaborate upon the essential RTS game concepts and problems in
greater detail. A complementary description of real time strategy games can be
found in[Wikipedia, 2005e]. The following sections present RTS games in detail.
There are many ways of playing an RTS game, but here the focus is on multi-
player battles in which several players battle on equal terms. This way of playing
will be referred to asskirmish.

3.4.1 RTS games in detail

An RTS skirmish starts with each player choosing an allegiance and agreeing on
a scenario to play. A scenario contains a game world called amapand a start sit-

40

CHAPTER 3. GAME AI PROBLEMS

uation. The latter includes starting buildings and characters, calledunits, possible
starting resources for each player and a background story which can have more or
less impact on the actual scenario.

Figure 3.5 on the previous page shows a typical starting situation in a Warcraft
III skirmish. Each player starts with five harvester units and a building in which
resources are stored.

Map

An RTS map contains deposits of resources such as gold mines and trees. Reactive
game objects calledenvironmental featuressuch as water, mountains and rocks
also exists on the map. A map is often ann×m matrix of tiles where each tile
or matrix-entry can contain one land-unit if the tile allowsit. A land-unit can be
positioned on grass or sand-tiles, but not on mountain or water-tiles. Airborne
units can be placed on any tile since they fly over environmental features and in
particular a land-unit and an air-unit can both occupy the same tile.

Information about the environmental features is availableto all players before
the game starts, but the starting positions of each opponentis not. The whereabouts
of enemy units and buildings is hidden from the player until these come within
view of a unit. This is represented byfog of war which hides enemy units and
buildings in the entire map except for areas within view of the controlled units.

Base

Each player must build, control and maintain a base. A base isa collection of
buildings and structures. Each building takes up a number oftiles on the map and
cannot be repositioned once built. The buildings cost a number of resource points
and give the controlling player various advantages.

Each building has some effect which is available when the building has been
constructed or when resources are spent on the particular effect. Normally, an
effect is gained through the construction of one building, not many. E.g. abarrack
gives the player the possibility of creating combat units and a player who builds
a blacksmithgets the possibility of upgrading his units’ damage capability and
armour rating. Some buildings are also needed to support theexistence of units.
These buildings create food or shelter for the units and eachgives the player the
possibility to support additional units. Some buildings act as defensive structures
and inflict damage to enemy units within a specified range. Some constructions
give the player the possibility of constructing new types ofbuildings which again
gives the player additional advantages.

In figure 3.6 on the following page the interface for the Orc blacksmith in
Warcraft 3, called aWar Mill, is shown. The cursor hovers above an upgrade for

41

CHAPTER 3. GAME AI PROBLEMS

Figure 3.6: Screenshot from Warcraft III by Blizzard from 2002 showing the op-
tions available at the Orc War Mill.

melee weapons which provides the portrayed Orc units with increased damage
capability. The only way to upgrade damage capabilities of Orc units is through
the War Mill.

Units

The units in a skirmish are either resource gatherers, combat units or specialised
units. In general the more powerful the unit, the more resources is required to
build it. Each unit has several attributes such as a health-score, movement-speed
and perhaps special abilities. It is these attributes whichdecide the unit’s overall
strength and resource cost.

Resource gatherers gather resources around the map and transport these back
to the base allowing the player to spend the resources. Resource gatherers are very
ineffective in combat and therefore need protection against enemy combat units.

Combat units can either be of melee-type, ranged-type or siege-type. The
melee-type combat unit can only attack land-units and only if the enemy unit
stands on an adjacent tile. A ranged unit can attack both flying and land units and
from a distance. Ranged units can sustain less damage than their melee counter-
parts and is often protected by the latter. When attacking, siege-type units inflict
damage to all land-units including the friendly ones positioned in the targeted
area. Siege-type units are extremely effective against buildings, since buildings
generally take up several tiles. Siege units often have a minimum range so letting
enemy combat units come close will diminish their capabilities greatly.

Specialised units are units which do not fall into either thegatherer- or combat-
category. These can be invisible fast moving units which cannot deal damage in

42

CHAPTER 3. GAME AI PROBLEMS

combat, but can spy on enemy troop logistics and base constructions. Another
example is transport units which can carry other units quickly to various destina-
tions. Destinations could be the opposing player’s base fora surprise attack or the
player’s own base for repairs or healing.

Specialised combat units also exists. These can cast magic across the map or
incapacitate enemy units for a short duration. Specialisedunits often have a high
resource cost which makes them inapplicable in all but specialised tactics and
strategic plans.

Combat

Combat in an RTS skirmish is resolved in real time. The notionof real time is
achieved through a sub-division of a wall clock second into several micro-turns
calledgame cycles. Thus, all players’ units move and attack simultaneously. Units
can be divided into groups and be given commands as a group. This is primarily
done to ease the player of giving commands to each unit in the group. A move-
command can be given to a group and every unit in that group will then move
towards the destination.

When a player or participant orders units around the map there is a limited list
of orders available. A list of common orders available to single units and groups
of units is given below:

Move orders a move to a destination along the shortest path known.

Attack orders a move within attack range of another unit and keep attacking that
unit.

Stop orders units to stop whatever order they were doing.

Stand Ground does as the stop order described above. Furthermore, it ensures
that the units remain stationary.

Guard orders the units to follow and defend a given target be this another unit,
building or environmental feature.

Attack-move orders a move to a given destination and to attack all enemy units
encountered along the path.

Patrol orders an continuous attack-move between a list of destinations.

The attack-move order deserves special mention. It allows aplayer to select a
number of units and order them to attack any enemy units they encounter on their
way to a destination. The possibility of giving an attack-move order was added to
RTS games, because too much time was spent selecting units one at a time and
telling them which enemy unit to attack.

43

CHAPTER 3. GAME AI PROBLEMS

Default behaviour for units

How the units carry out their assigned orders is determined by the behaviour as-
sociated with those orders. This is referred to asdefault behaviour. Default be-
haviour for a unit is also needed when no orders are assigned to that unit. E.g. if
a player has ordered a unit to move to a certain destination and the unit completes
that order how should the unit behave now that no orders are given?

End condition

An RTS skirmish is lost when the player’s base is destroyed and all the player’s
units are killed. Likewise, the game is won when all opposingplayers’ units are
killed and their buildings destroyed. However, scenario specific goals may also be
the cause of defeat or victory.

3.4.2 Game AI problems in RTS games

This section introduces some of the most important Game AI problems within an
RTS skirmish and thus which requirements the Game AI subsystem should meet
to provide consistent behaviour.

Several problems in the RTS Game AI domain are already solvedby tradi-
tional methods such as the problem of finding the shortest path in a game world
by using Dijkstra’s algorithm,[Goodrich and Tamassia, 1998, Chap. 10.1] and
[Main, 1999, Chap. 14.4]. These problems will not be covered here even though
their solutions are part of a consistent character behaviour.

Base layout

Base layout concerns the problem of how to construct buildings such that the po-
sitioning allows buildings to fulfil their purpose in the game. An example could
be a building which must be defended. It could be positioned at the far end of
the base such that enemy units must travel further to reach it. Defensive buildings
should maximise protection of the base. Building positioning should also allow
for quick passage of friendly units. Positioning walls introduces further consider-
ations. An attempt at solving these problems using graph-algorithms is described
in [Grimani, 2004].

Resource management

The problem of resource management involves which and when resources should
be gathered and spent. The Game AI method responsible for resource management
needs information about the amount of resources available on the map, an estimate

44

CHAPTER 3. GAME AI PROBLEMS

of how much can be gathered given a time frame and heuristics estimating the
military and technological needs of the participant. Giventhis information the
Game AI method provides a handling of resources.

Map analysis

The map is analysed to find places of interest such as strategic key locations. Lo-
cations with many resources, good positions for bases and positions which are
suited for ambushes are all of interest to a participant. This Game AI method is
also responsible for studying the map for static information such as where moun-
tains and water-deposits are located. Dynamic informationsuch as enemy unit
movement and placement of opposing bases must be evaluated in real time, since
this information changes continuously. For a presentationof a layered method for
handling map analysis, see[Kent, 2004].

High level tactics

When and how to attack the enemy units, how to ambush the enemyunits and
estimating what offensive capabilities are needed are all parts of high level tac-
tics. This Game AI method should provide solutions to the positioning of several
groups of units. Factors to consider are the units’ defensive and offensive capa-
bilities so key locations can be protected or enemy groups can be countered. As
reference to Game AI methods for high level tactics in different domains, see
[Champandard, 2003, Chap. 44 & 45] and[Ramsey, 2004].

Small scale combat (SSC)

An SSC situation consists of several units from more than onefaction fighting
each other. The problem of positioning the units is calledunit placementwhile
the problem of maximising damage to enemy units is calledtarget selection. The
problem ofgroup decisionsis of more general nature such as when to flee an SSC
situation.

Since these concepts are the primary focus in this thesis these are further elab-
orated upon in the following section.

3.4.3 Subproblems in small scale combat (SSC)

We have identified three sub-problems which we believe to be essential in solv-
ing the SSC problem. These are described in the following along with concrete
examples of problem instances.

45

CHAPTER 3. GAME AI PROBLEMS

Target selection

Target selection is the problem of hown units should targetm enemy units given
a map and the status and capabilities of all units.

E.g. should the ranged units concentrate on firing on a singleenemy unit or is it
better to let every ranged unit fire at different enemy units?The problem depends
on the enemy units’ health, the amount of damage which can be inflicted and the
types of the enemy units. Positioning of the units is also important, since some of
the ranged units might have to move before attacking.

Unit placement

The problem of unit placement is how to positionnunits given a map and positions
of m enemy units.

E.g. should the ranged units be positioned close to the enemyunits as sacrifice
thus giving the enemy something to attack while the melee units attack from the
side? Is it perhaps better to have formations in which units follow a given pattern
such as ranged units move to the left of the enemy units and melee units move to
the right?

The quality of the solution depends very much on the target selection method
used and thus solving this problem could decrease or improvethe solution to the
target selection problem.

Group decisions

The problem of group decisions involves how the units as a group behaves.
E.g. should the group attack from the left side, the right side or flee from the

combat situation? The quality of the solution depends on howunit placement is
performed and how target selection is applied.

3.4.4 Consistent behaviour in SSC situations

As previously mentioned in section 2.3 on page 20 consistentcharacter behaviour
means that the characters appear as a part of the game world. In particular, this
implies that the RTS units need to follow the rules and theme of the game world.
For units to portray consistency the units must be seen as seasoned combatants. In
an SSC situation this means that the units involved must cooperate as real soldiers
would, i.e. fight efficiently. To obtain this illusion of soldier behaviour a near-
optimal solution to handling the SSC situation is needed.

As Buro and Furtak discusses in[Buro and Furtak, 2004] we are also con-
vinced that RTS games are won on high level decisions. Therefore, support rou-
tines must be able to assist the player in the handling of units. We believe that by

46

CHAPTER 3. GAME AI PROBLEMS

handling SSC situations as optimally as possible the behaviour of units in an SSC
situation becomes consistent, because soldiers in a game world know how to fight
given the conditions and limits of this world.

Optimal behaviour in SSC situations is to minimise sustained damage while
damage dealt is maximised. This is a balancing act, since maximising the dealt
damage requires that the units engage in combat and thereby receive damage.
Optimality thus implies that the chance of winning the SSC situation, i.e. killing
each enemy unit, is maximised.

As handling of SSC situations can be implemented as a supportroutine avail-
able to players and participants the gameplay (see section 2.3 on page 20) of the
RTS game shifts from manual handling of SSC situations to high-level decisions.
As a support routine the optimality of the solution to SSC does not decrease the
entertainment value of an RTS game, as discussed in section 2.3.2 on page 24, but
the gameplay merely shifts focus.

47

Chapter 4

The Wargus platform
"It’s not easy being green"

- Warcraft Grunt

To measure the performance of our solution to small scale combat (SSC) an ex-
tensible and commercially comparable RTS game was needed. We chose to use
the game engine known asStratagus, [Stratagus, 2004], due to its maturity and
reliability. The Stratagus engine delivers a platform in which developers can im-
plement an actual RTS game. Several games exists for Stratagus and we chose the
Wargusgame for our solution.

In the following the story of Wargus will be introduced. Afterwards, the rules
and game world of Wargus are presented.

4.1 The Wargus game world

Wargus implements the complete Warcraft II game which meansthat Wargus fully
adopts the story, setting and game world of Warcraft II.

The Warcraft series are set in the fantasy world of Azeroth where mythical
creatures like elves, humans, dwarves and orcs roam. The world flows with magic
allowing all races to bend reality at their will. Unfortunately, the handling of these
powers got out of hand and attracted the attention of powerful demons intending
on destroying all life. The demons managed to corrupt the orcs. The orcs now
bloodthirsty and crazed had only one purpose in life: to quench their thirst for
battle. The demons let the orcish horde run rampant on Azeroth. This is the setting
for Warcraft I.

When Warcraft II starts, the orcish horde has almost wiped out all of the human
race. A handful surviving humans were able to rally the dwarves and elves to their
cause. From this point on it is the player’s responsibility to further discover the tale
of Azeroth. For the complete tale of Azeroth as told through the games Warcraft
I-III, readers are referred to[Blizzard, 2004].

48

CHAPTER 4. THE WARGUS PLATFORM

4.1.1 Scenarios

A typical Wargus game called ascenariostarts by explaining what the player must
do and why. Common main goals in Wargus scenarios include thefollowing:

• Destroy the opponent: All players start out almost equally regarding re-
sources and must each build and maintain bases and constructarmies. This
is a skirmish scenario.

• Survive for x minutes: Resources are sparse and units are limited. The
opponent is considerably stronger and attacks continually. The number of
minutes usually ranges from ten to thirty minutes.

• Destroy or protect a specific asset: The player must either destroy or pro-
tect some asset in the map. Typically this asset is a unit or building. In the
case of a unit it usually represents an important NPC in the story.

• Adventure mode: The player only has a fixed amount of units usually a
handful at his disposal and the map is designed for exploringand adventur-
ing.

Wargus also contains a campaign mode where the player follows a predefined
set of scenarios. Together these scenarios constitute a contribution to the tale of
Azeroth. In this thesis we solely focus on the skirmish scenarios.

4.1.2 Map

A map in Wargus is a discreetn×m matrix world where field(i, j), i ∈ [0,n−
1], j ∈ [0,m− 1] can contain one land unit or an environmental feature such as
a rock, a tree or some water. Fields with environmental features are always un-
traversable by land units and in some cases flying units are also unable to traverse
the field in question.

4.1.3 Units

The units in Wargus have different abilities and strengths.We have chosen a subset
of the many available units in Wargus for inclusion in our solution to the SSC
problems. The units in Wargus fall into the three categories, harvesters, combat
units and specialised units, as described in section 3.4.1 on page 40. Each type of
unit has different actions available. In this thesis only the basic units of typemelee
and typerangedwill be examined thus ignoring the siege-type units, harvester
units, flying units and advanced melee and ranged units.

49

CHAPTER 4. THE WARGUS PLATFORM

In Wargus the basic human affiliated melee and ranged units are calledfoot-
menandarchersrespectively while the orcish counterparts are calledgruntsand
axethrowers. A footman and a grunt have identical attributes just as archers are
identical to axethrowers – only the associated graphics differ.

It should be mentioned that other units in Wargus have other attributes –
Knights an upgraded footman is faster than footmen andElven rangersan up-
graded archer can shoot further than archers. These types are not considered in
the method presented.

Unit actions

A unit in Wargus has the possibility of moving in eight different directions, as well
as standing still. Figure 4.1 on the next page shows a lone grunt, theG depicted,
standing in an empty section of a Wargus map. The movement possibilities of this
unit is showed. Since no obstacles nor other units are adjacent, the unit has eight
possible movement actions.

When a melee unit attacks the targeted enemy unit must be standing in one of
the eight adjacent fields, because the melee unit’s attack-range equals one field. A
ranged unit can attack enemy units from a distance. In Wargusthis distance for
archers and axethrowers is four fields from the unit’s position. Ranged units can
also shoot over some environmental features making the local map information
extremely important for this type of unit.

As mentioned in section 3.4.1 on page 40 RTS games subdivide awall time
second into several micro-turns called game cycles. Wargusdivides a second into
30 game cycles. The time needed to complete an action, the action’s time-length,
differs in most RTS games and this is also the case in Wargus. Astandstill-action
takes one game cycle to complete while a movement action takes 16 game cycles.
An attack from a footman or grunt takes 26 game cycles while anattack from an
archer or axethrower takes 66 game cycles to complete.

It should be noted that damage dealt from attacks is not statically decided.
Each time a unit deals damage small fluctuations (randomisations) are incorpo-
rated. E.g. melee units deal between two and nine points of damage instead of a
constant value.

How actions are handled by the Stratagus engine requires a quick survey.
When a unit begins an action an animation-loop depicts the graphics seen on the
screen. When a predefined number of game cycles have elapsed in the animation
the effect of the action is applied within the engine. This means that the effect is
applied before the action is completed. The predefined number is defined in the
CCL-scripts on a per-unit type basis.

Figure 4.2 on the next page shows several units about to entercombat. The
star depicted in the middle section of the map segment represents an obstacle,

50

CHAPTER 4. THE WARGUS PLATFORM

G
Figure 4.1: The movement possibilities for a lone melee unit

A
G

F
G

AAA
G

Figure 4.2: A scenario with several units

e.g. a rock, and cannot be traversed. The unit depicted as anF is a footman and
the Gs are grunts. Archers are depicted asAs. How this actual combat situation
ends depends on the tactic used. In this situation the Humansand the Orcs are
approximately equally strong.

4.1.4 The built-in participant

The built-in participant in Wargus assumes the role of a human player. The par-
ticipant has no level of difficulty setting so players cannotadjust the difficulty of
this built-in participant. When more challenge is desired the player must choose
to fight two or more built-in participants simultaneously.

The built-in participant in Wargus uses the interface provided by the Stratagus
engine. The CCL provides an interface for Game AI modification in the form of
an order-queue. Each order is executed consecutively by theparticipant. Examples

51

CHAPTER 4. THE WARGUS PLATFORM

of orders are to build a barrack or to train a footman. The scripts filling the order-
queue is provided by the developers of Wargus and they contain no variations in
the composition of orders. The optimality of the queue thus depends entirely on
the order-composition. This method results in similar-looking bases and identical
groups of units. The scripts incorporate a trigger mechanism which allows scripts
to activate when certain conditions are met. E.g. an attack from an opponent or
the completed construction of a building. The activated script then fills the queue
with additional orders.

When an SSC situation arises the default behaviour of the units takes over.
To avoid a seemingly static group behaviour the Wargus developers use a sim-
ple cheat to enable a more consistent behaviour. They increase each participant
controlled unit’s sight range by two map-fields compared to the player controlled
equivalents. When a player encounters participant controlled units these move to-
wards the player’s units before they are within sight range.This creates the illusion
that the participant units already were moving around whilethey truly were not.

52

Chapter 5

Game trees applied to small scale
combat

"Under a good general there are no bad soldiers"
- Sun Tzu

The primary goal in this chapter is to present a solution to the problem of creating
consistent real time strategy (RTS) unit behaviour in smallscale combat (SSC)
situations, as examined in section 3.4.3 on page 45. The presented method handles
SSC situations near-optimally by means of a timestamped rule-induced game tree.

This chapter starts with an overview of methods for solving SSC situations.
Secondly, an introduction to game trees and a definition of timestamped game
trees are presented. Then three sections are dedicated to the problems which arise
when using game trees. Finally, a discussion of how to measure the optimality of
a method for solving SSC is presented.

5.1 Methods for solving SSC

We have investigated the game mechanics of Wargus and no obvious behaviour
model resulting in a near-optimal solution to SSC could be identified. Therefore,
more complex methods for controlling characters are needed. In this section we
will describe the advantages and disadvantages of these methods.

5.1.1 Rule based methods

A rule based method uses rules to govern unit behaviour. The rules normally have
access to map information and unit states. Based on this information actions for
units are derived. The rules often consist of nestedif - then - else statements

53

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

which combined with information of unit states is equivalent to Finite State Au-
tomata,[Kozen, 1997, Chap. 3].

To apply a rule based method to SSC the wanted behaviour is identified and
then encoded in the rules. If the wanted behaviour for a unit is to attack the nearest
enemy unit a rule implementing this behaviour have to selectthe nearest enemy
unit and attack it.

An advantage of a rule based method is that when the wanted behaviour is
identified the rules are quickly both implemented and executed. Additionally, be-
cause the rules have full control over the units a wide range of behaviours are
achievable.

A disadvantage of the rule based method is that when units encounter a sit-
uation not anticipated by the designers of the rules the behaviour is undefined.
The optimality of the rules thus depends on the designers’ understanding of the
problem domain.

5.1.2 Evolutionary based methods

An evolutionary based method uses an Evolutionary Algorithm (EA), [Mitchell,
1997, Chap. 9], [Nilsson, 1998, Chap. 4], [Callan, 2003, Chap. 17] and[Michale-
wicz and Fogel, 2004], to evolve character behaviour. An EA is a randomised,
parallel, hill-climbing algorithm which optimises a predefined fitness function.
Deriving a fitness function to describe all nuances of SSC is challenging since
SSC contains many elements. Elements such as positioning, damage dealt and re-
ceived, enemy units’ actions and current unit states all influence the optimality of
a solution.

To apply an EA to SSC the behaviours of the units have to be parameterised
in some way. E.g. if rules describe the behaviour of units an EA could evolve
compositions of rules and at the same time also tune the parameters in the rules.

An advantage of using an EA is its ability to locate near-optimal solutions
given enough computation time. Additionally, no prior knowledge of how an op-
timal solution might look is needed to locate a near-optimalsolution.

The EA method also has disadvantages. No guarantees for locating a near-
optimal solution within a certain timeframe can be given. This means that an EA
might run for extensive periods of time and only locate poor solutions. The fitness
function raises another problem, because it must rate solutions to the problem
domain accurately. Otherwise, good solutions from the EA might result in poor
solutions in the actual problem domain. Lastly, an EA algorithm requires extensive
tuning of selection, mutation and crossover-methods.

An example of an applied EA method is Per Jefsen’s evolutionary method,
[Jefsen, 2000], to develop solutions for SSC. In order to do so he implemented
his own simple RTS game. In this, the units had a very limited range of actions

54

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

and attributes. He used a genetic programming algorithm to develop finite state
automatas to control the units. Jefsen concluded that the results were promising.
But the game was much too simple and he suggested that incorporating additional
actions and types of units would provide more interesting results.

5.1.3 Game tree based methods

A game tree based method models SSC situations by calculating future game
situations. This is done as in Chess by examining all possible actions from the
current state and estimating their effect.

An advantage is that game tree allows for near-optimal solutions which in
the problem of SSC gives consistent character behaviour. Unlike the rule based
method this method has the advantage of estimating the outcome of all possible
actions before actually choosing an action.

Applying game trees to SSC situations raises three fundamental issues. The
size of the game tree is one. The number of game states increases exponentially.
Removal of unwanted game states somewhat alleviates this problem. Secondly,
the representation of a game state in the tree must be decidedupon. Thirdly, it
is obvious that if the tree can be fully built the only remaining challenge is to
select the optimal path through the tree. Stated concisely:Once the tree is built the
problem is to choose the path where the chance of winning is maximised while
the opponent’s chance is minimised.

We have chosen to investigate the performance and applicability of game trees
to handle SSC situations. In the following sections game trees and the attached
issues will be examined in detail.

5.2 Game trees

A game tree is a game modelling method used primarily in boardgames such as
Chess and in the Chinese game of Go. A game tree is a data-structure which mod-
els a course of a game by looking at possible moves each playercan perform each
turn. An action corresponds to a change in game state. E.g. anaction in Chess is a
valid relocation of exactly one of the player’s Chess-pieces. The nodes in the game
tree represent states in the game and encapsulate relevant game-dependent infor-
mation. E.g. in Chess each node contains information about where each Chess-
piece is located. Whose turn it is to move a piece is implicitly encoded in the tree
since each level in the tree directly corresponds to each player’s turn. Therefore,
this information is not encoded in the nodes.

Formally speaking a game tree is a non-balanced tree where each noden is
equivalent to a state in the game. The edges represent transitions between game

55

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

Figure 5.1: An example of a game tree in the game ofTic Tac Toe

states. Noden’s fanout corresponds to the number of possible moves from the
staten represents. The root of the treer represents the start-state and the nodes in
the first level, i.e.r ’s children represent the states reachable with a single move.
The path from the rootr to a noden is thus the series of moves which leads ton
from r.

Game trees have been used effectively in turn-based board games where play-
ers take turn playing one piece at a time. Turn-based games are generally well
suited for a game tree method, because each level directly corresponds to a single
player’s turn to act.

An example game tree used in the game ofTic Tac Toeis depicted in figure 5.1.
The root of the tree represents the current state of the game and it is the player who
placesXs on the board who is next. Since this player only has three possibilities
of placing anX the root’s fanout is three. Beneath each leaf-node is a number and
this number indicate the end-result of the game. In the case of a zero underneath
the leaf the game ends in a draw. If the number underneath is an−1 the player who
placesXs has lost. Finally, a win-situation for theX-placing player is indicated by
an 1. The problem is for theX-placing player to choose a move which minimises
the chance of losing while maximising the chance of winning.The optimal way
to play from this specific state is to select the move which results in the right-most
sub-tree. This is optimal, because this move either resultsin a tie, the left leaf, or
in a victory, the right leaf. So independent of what move the opponent makes the
X-placing player cannot lose. The figure is from[Brockington, 2000].

SSC is somewhat similar to ordinary board games. Both types of games use

56

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

a discreet matrix for game world representation. The main difference is that units
in RTS games can be moved simultaneously in real time. Furthermore, the actions
available to the units have different time lengths associated. Therefore, modifica-
tions to the traditional game tree method are needed.

5.2.1 Timestamped game trees

In real-time games an ordinary game tree method is inadequate. The action of the
units can have different time lengths. E.g. movea could take two game cycles to
execute and moveb could take three game cycles. In ordinary turn-based board
games all moves have equal time lengths – in Chess, the time needed to move a
Queen equals the time needed to move a Pawn. In real time gamessome modifi-
cations to the game tree method must be thought of. What is needed is a way to
represent the time length associated with the actions.

A timestamped game tree encodes the basic information from the ordinary
game tree, but also encodes the time needed to move from statei to statej. This
is done by timestamping each node such that nodeni ’s children,n j1, n j2, . . . ,n jk,
all have higher timestamps thanni . The root has due to the above definition the
lowest timestamp in the tree.

Table 5.1 shows the actions available to the Wargus units. The first column
presents the name of the action and the second column shows the associated ab-
breviation. The third column shows the number of game cyclesassociated with
the action. Finally the damage of attack-actions is shown. Note that a melee attack
has the same abbreviation as a ranged attack.

Name Abbreviation Game cycles Damage
Stand-ground SG 1 –

Move upper left UL 16 –
Move upper UP 16 –

Move upper right UR 16 –
Move left LE 16 –

Move right RI 16 –
Move lower left LL 16 –

Move lower LO 16 –
Move lower right LR 16 –

Melee attack fromx againsty x v y 26 2 to 9
Ranged attack fromx againsty x v y 66 3 to 9

Table 5.1: Actions available to Wargus units

57

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

1

2

1-SG

17

1-UL

17

1-UP

17

1-UR

17

1-LE

17

1-RI

17

1-LL

17

1-LO

17

1-LR

3

1-SG

18

1-UL

18

1-UP

18

1-UR

18

1-LE

18

1-RI

18

1-LL

18

1-LO

18

1-LR

Figure 5.2: A sample timestamped game tree

Figure 5.3: The situation, which figure 5.4 and figure 5.5 model

The tree in figure 5.2 is a timestamped game tree built for a single orc grunt
with all movement actions available. This is similar to the situation in figure 4.1
on page 51. The tree is built with a lookahead of one game cyclewhere the actions
available in the next game cycle also are included. The numbers inside the nodes
are the timestamps. The text on the transitions tells which units are performing
actions in this timestamp and gives an abbreviation of the actions in concern. The
text always binds to the left transition. The leftmost childof the root models an
SG-action for unit 1 whereas the rightmost child models an LR-action also for unit
1. It can be seen from the figure that the grunt has eight movement possibilities
and one stand-ground action available in game cycle 1.

Figure 5.3 shows a situation where two opposing units, a grunt and a footman,
are adjacent. A sample game tree, where unit 1 (the grunt) andunit 2 (the foot-

1

17

1-RI
2v1

17

1-RI
2-RI

17

1-RI
2-LO

17

1-RI
2-LR

27

1v2
2v1

17

1v2
2-UR

17

1v2
2-RI

17

1v2
2-LO

17

1v2
2-LR

17

1-LR
2v1

17

1-LR
2-UR

17

1-LR
2-LO

17

1-LR
2-LR

Figure 5.4: Two opposing units ready in the same timestamp

58

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

1

2

1-RI

2

1v2

2

1-LR

17

2-UP

17

2v1

17

2-RI

17

2-LO

17

2-LR

27

2v1

18

2-UR

18

2-RI

18

2-LO

18

2-LR

17

2-UP

17

2-UR

17

2v1

17

2-LO

17

2-LR

Figure 5.5: Two opposing units ready in different timestamps

man) both are ready to perform actions in game cycle 1 is depicted in figure 5.4
on the preceding page. The fanout of the root becomes the product of actions of
both units. Unit 1 is placed in the top left corner of the map inentry(0,0)whereas
unit 2 is placed just below in entry(0,1). Unit 1 has three possible actions: move
right, lower right or attack. Unit 2 has five action possibilities. A total of 15 pos-
sible combinations of actions. As figure 5.4 on the previous page shows the total
number of children is 13 which could be confusing at first glance. The reason why
there are 13 combinations of actions and not 15 is that two of the action combi-
nations are illegal – they conflict. The problem is that two units are ready at the
same time and both want to move into the same field. This situation is resolved by
letting only one unit move. Figure 5.4 on the preceding page also illustrates the
timestamping of nodes. Firstly, the shaded state with timestamp 27 occurs when
both units choose to attack. Secondly, the timestamping of those nodes where
only one of the units attack are also of importance. These aretimestamped with
17, because the movement action is completed before the attack-action and thus
the moving unit should be allowed to take action(s) again in game cycle 17 and
not wait until game cycle 27.

In figure 5.5 a similar situation to the one in figure 5.3 on the preceding page
is shown. The difference from figure 5.4 on the previous page is that unit 1 is
ready in game cycle 1 and unit 2 is ready in game cycle 2. It can be seen that
in the middle subtree unit 1 has already begun an attack. In game cycle 2 unit 2
is allowed to perform actions. If unit 2 performs a movement action it is ready
again in game cycle 18 thereby letting unit 2 begin another action before unit 1
has finished its attack.

Generally, units are not ready to perform actions in the samegame cycles.
Therefore the kind of tree presented in figure 5.5 is encountered more frequently
than the kind of tree shown in figure 5.4 on the previous page.

59

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

5.2.2 Issues

As mentioned in section 5.1.3 on page 55 three issues must be handled to apply
game trees to SSC situations.

How SSC situations are represented is one of them. The representation of a
game state must be precise enough to capture the essential features, e.g. unit states
and environmental features. How this is done is examined further in section 5.3.

The size of the game tree is another issue. To get an idea of thesize of the game
tree, recall that the fanout of a node is calculated as the product of the available
actions of the units. Assume that four units ready at game cycle one are involved
and that the lookahead is 150 game cycles equivalent to five wall clock seconds in
Wargus. If three movement actions are available to each unitthe resulting number
of leaves is

34⌈
150
16 ⌉

= 8110≈ 1.21×1019 (5.1)

This tree can obviously not be fully built within the real time constraints of the
game. This issue is elaborated further upon in section 5.4 onpage 64.

When the game tree has been constructed the remaining issue is how to assign
a numerical value to each node to determine the node’s desirability. When this has
been done, the actions leading to the subtree minimising thechance of losing and
maximising the chance of winning can be chosen. Handling this issue is described
in section 5.5 on page 75.

Measuring the quality of solutions to the above three issuesis difficult. These
depend on each other to deliver a solution to SSC. It is possible to estimate the op-
timality of the game tree method but this implies only that the three sub-solutions
work well together and not whether each one is solved optimally.

5.3 Representation

A node in the timestamped game tree represents an SSC situation – a more or less
simplified image of the game state. We will from here on refer to this simplified
image as asnapshot. A snapshot encapsulates the position of each unit, the map
environment and also at which game cycle each unit is ready toperform actions.
A snapshot is a 20×20 subset of the map centred around the group of controlled
units. The snapshot corresponds to the controlled units’ view of the immediate en-
vironment. Furthermore, a node contains athreat matrixdescribed in section 5.3.1
on the following page which form the basis of the rating method applied as ex-
amined in 5.5 on page 75. A sample SSC situation, the corresponding snapshot
and threat matrix are shown in figures 5.6 on page 65, 5.7 on page 65 and 5.8 on
page 66.

60

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

Note that we ignore the fog of war described in section 3.4.1 on page 40 since
we implicitly assume that all of the snapshot is within sight-range of the controlled
units.

Transitions between two snapshots are then actions, which lead from one
snapshot to another. In Chessn always equals one because moving two pieces
simultaneously is not allowed. In an RTS gamen can be as large as the number
of units considered since units can perform actions simultaneously. Each transi-
tion thus models a change in state such as a change in unit positions, change in
unit state or a change in the environment. When a transition is created the re-
sulting child node is timestamped with the minimum completion time of all non-
completed actions in the path from the root to this node. For details of how the
timestamped game tree is constructed, see section C.2.2 on page 138.

5.3.1 Threat matrix

In Chess each piece on the board is given a value which decidesits desirability.
This value is based on empirical and experimental studies. In [Weeks, 2005] the
values of Chess pieces are investigated. These do not changein different Chess
situations but are merely used to assess the game state. Thereby a Queen with
value nine is not traded directly for a Rook with value five.

In an RTS game context the value of each unit depends very muchon the
situation at hand. The environment, the actual unit-placement and the composition
of units all have a strong influence on the desirability of theindividual unit. E.g.
if a unit has a low number of hitpoints this is worth less than amore “lively” unit.

A threat value(TV) is a value assigned to units. It constitutes the desirability
of the unit – the higher the value, the higher the desirability. The value is not
statically calculated as in Chess but is based on a number of variable parameters.
A threat matrixis a 20×20 matrix of TVs derived from a snapshot. Each entry in
the snapshot can contain one unit and maps to the same entry inthe threat matrix
and contains the TV of this unit. Entries in the snapshot withno units contains a
default TV of zero. A threat matrix corresponding to the snapshot in figure 5.7 on
page 65 is depicted in figure 5.8 on page 66.

5.3.2 Deriving a threat value for units

As mentioned above a threat value (TV) represents a unit’s desirability. The higher
the TV, the more desirable the unit is perceived. No literature describing the value
of RTS units has been found. Therefore, the following is based solely on our
understanding of the Wargus game rules.

When is a unit then desirable? A unit which deals damage to enemy units is
generally of higher value than one that has to move to deal damage since game

61

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

cycles are wasted on moving around. If game cycles are used onmovement the
game cycles are not used for dealing damage, but moving can insome cases in-
crease the effectiveness of the unit. Recall from section 3.4.4 on page 46 that one
of the goals of solutions to SSC situations is to maximise thedamage dealt. When
no enemy unit can be attacked the number of move actions needed to get within
range becomes important. The attributes of a unit also influence its TV, because
these represent the flexibility of the unit.

With the above in mind we have identified four different aspects that must
be incorporated in the formula for calculating TVs. Again, note that no literature
describing how to estimate the threat of units in a RTS game has not been found.
The found literature described turnbased equivalents. Therefore, the following is
based on our understanding of threat of units in a RTS game andon our empirical
testing in the course of this thesis.

1. The unit’s type A numerical value is introduced for each different type
of unit in the game. The value represents the flexibility of the type. The
higher this value the more flexible. In Wargus there are several attributes
describing the abilities of each type. The following integer attributes have
been identified as important and are incorporated in the value:

AttackRange(u)The maximum Manhattan distance counted in fields from
u’s position, in which enemy units can be attacked. The higherthe
attack range, the more useful the unit is.

DamageDealt(u)A value which serves as the base for the randomised
damage dealt byu when attacking. The higher the damage dealt, the
better.

Armour(u)When calculating the damage which a unit receives from an
attack this value is subtracted. The higher the armour, the better.

MovementSpeed(u)The speed of a unit. All units included in our solution
have the same movement speed. But to incorporate nuances of future
unit types this variable was also added. The higher the speed, the bet-
ter.

MaxHP(u)The maximum amount of hitpointsu can have. The higher hit-
points, the better.

AttackTimeInGameCycles(u)How many game cycles an attack performed
by u takes to complete. The higher the value, the slower the attack.

The factor representingu’s type in the TV calculation isvUT(u) and is

62

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

calculated as follows:

vUT(u) = AttackRange(u)×
1

AttackTimeInGameCycles(u)
×

DamageDealt(u)×Armour(u)×MovementSpeed(u)×

MaxHP(u) (5.2)

2. Amount of hitpoints A unit’s hitpoints is a very crucial factor. This number
indicates how long the unit will be able to contribute to the SSC situation.
Meaning, the higher the hitpoints, the better. To capture this aspect the rel-
ative amount of hitpoints is calculated asCurHP(u)

MaxHP(u) , whereCurHP(u) is the
actual amount of hitpoints ofu.

3. The placementA unit having to move to attack an enemy unit is as before
mentioned not as desirable as a unit having an enemy unit within its attack
range. To capture this aspect the number of movement actionsneeded to get
an enemy within range is incorporated in the TV calculations.

Thedist(u,v) is introduced whereu andv are units to indicate the number
of movement actions needed for unitu to reachv. This equals the Manhattan
distance between unitsu andv. The nearest enemy unit is located as follows:

e(u) = min
i∈EnemyUnits

dist(u, i) (5.3)

When the nearest enemy unit is found the factor introducing the place-
ment aspect can be given. The valueDistTCE(u) quantifies the notion of
either having an enemy unit within range or having to move. The greater
the distance to the nearest enemy unit, the higherDistTCE(u) becomes.
I.e. the lower theDistTCE(u), the better. Note:AR(u) is a shorthand for
AttackRange(u).

DistTCE(u) =

{

1 dist(u,e(u)) <= AR(u)
dist(u,e(u))−AR(u)+1 otherwise

(5.4)

The reason for not using thedist(u,v) by itself is that the ranged units have
an attack range greater than one. Ifdist(u,v) was used alone the ranged
units would be less desirable even if enemy units were withinattack range.

4. The ready time When calculating the threat matrix of a snapshot, a subset
of units are ready to perform actions and others are not. Therefore, it is im-
portant to know when a given unit is ready to perform actions.The function

63

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

gameCycleTNA(u) is the number of game cyclesu requires to complete
its current action. This implies that a lowgameCycleTNA(u) is favourable
compared to a high one.

Having introduced the four different aspects the equation for calculating a TV can
be presented:

TV(u) =
vUT(u)

CurHP(u)
MaxHP(u)+1

√

DistTCE(u)× 3
√

gameCycleTNA(u)
(5.5)

For a unit’s TV we chosevUT(u) as a base value. Since the relative amount of
hitpoints of a unit is a very crucial factor we raise the base value to the power of
CurHP(u)
MaxHP(u) + 1. This ensures a huge reward if the unit has a large amount of hit-

points left. The square root ofDistTCE(u) and cubic root ofgameCycleTNA(u)
is introduced, because through empirical testing we found that the importance of
these factors were less than linear in their value.

Equation (5.5) is normalised to the range of[0;1]. If the formula is calculated
for an enemy unit the value is negated and the range becomes[−1;0]. This implies
that an enemy unit with a TV of−1 is more of a threat than an enemy unit with a
TV of −0.5.

5.3.3 An SSC example

In figure 5.6 on the following page an SSC situation from Wargus is visualised.
The figure shows how the player perceives the situation. Eachside has an equal
number of melee and ranged units (one melee unit and two ranged units). It can
be seen that the grunt which is fighting with the footman has just received four
points of damage. It is indicated by the−4 hovering over the grunt.

Figure 5.7 on the next page shows the snapshot of the situation and figure 5.8
on page 66 depicts the associated threat matrix. In figure 5.8on page 66 each
number represents the units’ threat values. It can be seen that the orc grunt is of
lesser value than the human footman which is due to the amountof hitpoints.

5.4 Pruning

As mentioned in section 5.2.2 on page 60 the large size of the game tree must be
handled within the time constraints. In Chess the time constraint imposed is often
in terms of minutes generally one or two. In a real time game the time constraints
are much more restrictive and a more heavily pruning of the game tree must be
incorporated. In Wargus the specific time constraint is1

30 second as mentioned

64

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

Figure 5.6: An SSC situation in Wargus

FG AA TT
Figure 5.7: The snapshot corresponding to figure 5.6

65

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

. 6
 . 5 . 8. 8
 . 7
 . 7
Figure 5.8: The threat matrix derived from the snapshot in figure 5.7

in section 4.1.3 on page 49. However, we focus solely on improving the game
quality of Wargus. If the time constraint is violated but notoften and not by much
the perceived quality of the game does not diminish as the player does not notice
these violations.

Traditionally, one way of reducing the size is having a heuristic which decides
for each constructed node whether to construct its children. Algorithms such as,
Min-Max-search andα−β-search,[Nilsson, 1998, Chap. 12] and[Björnson and
Marsland, 2001], are examples of heuristics.

We have chosen a heuristic method which reduces the size of the tree by choos-
ing to construct a subset of a node’s children. In section 5.1.1 on page 53 a method
for solving SSC using rules to derive actions from the current situation was pre-
sented. The general idea to reduce the game tree’s size is to use the rule based
method as the heuristic for choosing the subset. This allowsus to estimate the
outcome of each of the available actions. The success of thispruning method re-
lies only on the quality of the rules. Poor rules can prune thedesirable game states
and result in sub-optimal performance. Therefore, designing the rules must be
done very carefully. If done right the less desirable game states will be pruned
while the good states will be kept for potential evaluation.

A problem with the rule-based heuristic is that enemy units are beyond con-
trol. To model the actions of the enemy units three options are available. First, the
span of actions of the enemy units can be untouched. Meaning that the precision

66

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

of future game states is very high since the tree models all possibilities. Unfortu-
nately this option is infeasible, because the size of the game tree is not reduced
for the enemy units.

Secondly, the actions of the enemy units can be handled with aset of rules.
Either the set applied to the controlled units or a separate set. This means that the
precision of future game states decreases since it is implicitly assumed that the
enemy units follow the rules.

Lastly, all actions of the enemy units can be ignored implying that the enemies
always stand still. This is of course very imprecise. In the game these always
perform actions. However, since only near-future situations are considered this
estimate is partially correct.

Given these options we have chosen to use the third option to model enemy
units. This was chosen, because the first option is infeasible. Both the second and
third options produce inaccurate future game states. However, the third option
decreases the size of the game tree compared to the second.

In the following several rules and sequences hereof will be presented. We have
designed the rules with simplicity in mind to allow composition of the rules into
sequences. Although all implemented rules and their effectwill be described, only
a subset of the rules has been incorporated in the rule-sequences as described in
section 5.4.3 on page 73.

5.4.1 Rules for game tree pruning

Before the pruning of a game tree node is performed the fanoutis the total number
of available actions as described in section 5.2.1 on page 57. When selecting the
subset of nodes to construct the number of available actionsfor each unit must be
limited. A rule used to select the subset consists of a precondition and an effect.
The rule’s precondition captures in what situations the rule applies. The effect of
a rule is a reduction in the number of available actions for each unit. A rule is said
to click if the precondition is satisfied.

Since a few of the rules use a concept known asinfluence-mapping, as de-
scribed in[Sidran, 2003] and [Sweetser, 2004] this concept will be introduced
before presenting the set of rules.

Influence mapping

An influence mapis a strategic perspective typically used by Game AI modules.
Conceptually, it provides an overall representation of theenvironment. It is placed
on top of an environment to gather knowledge in a compressed manner and stores
game-relevant data. Typically, information about player strength, resources, valu-
able assets or unit passability is stored.

67

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

Figure 5.9: A sample influence map

Figure 5.9 from[Sidran, 2004] depicts an influence map, storing information
about player strength. The figure contains six units, three blue and three red. Each
unit has a value representing its effectiveness or strength. These values are visu-
alised as circles. The colour gradient shows the strength ofthe units’ influence. In
the areas where the red units’ circles overlap, each unit’s strength contributes to
the influence in that area.

The information stored in the influence map we use regards player strength.
Our influence map subdivides a snapshot into a smaller matrixconsisting ofcells.
A cell represents a connected area of the snapshot and storesthe number of
friendly and enemy units in that specific area. Each cell alsostores a value for
each player which represents the strength of each player. The strength of a player
in a cell influences the value in all other cells. This value iscalculated in two steps:

1. Initialisation Each influence map cell is initialised with a mapping from
snapshot fields to cells. Each cell is then updated to containthe sum of
threat values (TVs) of each player’s units in the fields within this cell. TVs
were defined in section 5.3.2 on page 61.IVp,x,y denotes the initialisation
value for the playerp in the cell with coordinates(x,y). IVp,x,y is calculated
as follows:

IVp,x,y = ∑
u∈PlayerUnitsInCell(p,x,y)

TV(u) (5.6)

wherePlayerUnitsInCell(p,x,y) is the set of units within the cell with co-
ordinates(x,y) controlled by the playerp.

68

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

2. Influence In the influence step cells influence each other by letting values
“flow” from cell to cell. This is done with a diminishing factor λ based on
the distance between the two cells.CVp,x,y denotes the final value for player
p in the cell with coordinates(x,y). CVp,x,y is calculated as follows.

CVp,x,y = IVp,x,y +
i 6=x, j 6=y

∑
(i, j)∈Cells

IVp,i, j×λmax(i, j) (5.7)

where 0≤ λ≤ 1 andCells is the set of all cells in the influence map.

For more information concerning influence maps and their applicability with neu-
ral networks see[Sweetser, 2004].

5.4.2 Rules

The rules presented in the following reduce the span of actions for a single unit.
As previously mentioned each rule has a precondition and an effect. These will
be presented along with a description of the rule. This list of rules is devised by
the authors and is based on primitive rules used in other RTS games and on our
understanding of the Wargus game rules.

No enemy in cell

The No enemy in cell-rule applies if there are no enemy units located in the in-
fluence map cell of the considered unit. If this rule clicks, the considered unit’s
span of actions is reduced such that the unit moves towards the influence cell with
the highest opponent value. We chose to let this reduction leave three movement
possibilities towards the before-mentioned cell.

Precondition No enemy units in the cell of the considered unit.

Effect Move towards the cell with the highest opponent value.

Keep attacking same

TheKeep attacking same-rule applies if the considered unit has made an attack as
its previous action and if the attacked unit is not dead. If this rule clicks, the unit’s
span of actions is reduced to one – namely attack the same enemy unit again or
move towards the enemy unit if it has moved.

Precondition Previous action was an attack and the unit attacked is not dead.

69

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

Effect Attack or follow the attacked enemy unit.

Flee

TheFlee-rule applies if the influence map cell of the considered unitcontains a too
high opponent value compared to the friendly player value. Too high means that
the opponent value is the double of the friendly player value. If this rule clicks,
the unit’s span of actions is reduced to moving out of the celland towards the cell
with the smallest opponent value. I.e. a reduction to a single action.

Precondition Opponent value in considered unit’s cell is twice as large as
the friendly player value.

Effect Move out of the cell towards the neighbour cell with the lowest op-
ponent value.

Ranged attack lowest HP enemy

The Ranged attack lowest HP enemy-rule applies only to ranged units and only
clicks if there are enemy units within the considered unit’sattack-range. If this
rule clicks, the enemy unit with the least amount of hitpoints will be attacked and
the span of actions is reduced to one.

Precondition Considered unit is of ranged type and has enemy units within
attack-range.

Effect Attack the enemy unit with the lowest hitpoints.

Ranged attack lowest TV enemy

The Ranged attack lowest TV enemy-rule is similar to theRanged attack lowest
enemy HP-rule. But instead of choosing the unit with the least amountof hitpoints
the unit with the least threat value is chosen.

Precondition Considered unit is of ranged type and has enemy units within
attack-range.

Effect Attack the enemy unit with the lowest threat value.

70

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

Ranged support

The Ranged support-rule allows ranged units to support other units. This rule
clicks if an enemy unit within attack-range of the considered ranged unit is adja-
cent to a friendly unit. The considered unit’s span of actions is reduced to one. If
multiple enemy units are adjacent to friendly units, one at random is chosen.

Precondition Considered unit is of ranged type. There is an enemy unit
within attack-range and it is adjacent to a friendly unit.

Effect Attack the enemy unit adjacent to a friendly unit.

Ranged attack nearest

The Ranged attack nearest-rule applies to ranged units. It only clicks if there
are enemy units within the considered unit’s attack-range.If this rule clicks, the
nearest enemy unit is attacked. If multiple enemy units are equally close, a random
is chosen.

Precondition Considered unit is of ranged type and has enemy units within
attack-range.

Effect Attack the nearest enemy unit.

Ranged attack maxN enemies

TheRanged attack max N enemies-rule applies to ranged units with enemy units
within attack-range. If this rule clicks, the considered unit’s span of actions is
reduced to attacking at mostN random enemy units within attack-range.

Precondition Considered unit is of ranged type and has enemy units within
attack-range.

Effect Attack at mostN enemy units.

Melee units attack lowest HP adjacent enemy

TheMelee units attack lowest HP adjacent enemy-rule applies to melee units with
enemy units adjacent. If this rule clicks, the span of actions is reduced to attacking
the enemy unit with the least amount of hitpoints.

71

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

Precondition Considered unit is of melee type and is adjacent to enemy
units.

Effect Attack the adjacent enemy unit with the least amount of hitpoints.

Melee attack lowest TV adjacent enemy

The Melee units attack lowest TV adjacent enemy-rule applies to units of type
melee and is similar to the preceding rule. But the adjacent enemy unit with the
lowest TV is chosen instead.

Precondition Considered unit is of melee type and is adjacent to enemy
units.

Effect Attack the adjacent enemy unit with the lowest threat value.

Remove stand-ground

TheRemove stand-ground-rule simply removes the considered unit’s stand ground
action. When this rule clicks, the span of actions is reducedby one.

Precondition None.

Effect Removes the considered unit’s stand ground action.

Attack K lowest HP enemies

The Attack K lowest HP enemies-rule applies if the considered unit has enemy
units within its attack-range. If this rule clicks, the considered unit’s span of ac-
tions is reduced to attacking theK enemy units within attack-range with the lowest
amount of hitpoints.

Precondition The considered unit has enemy units within attack-range.

Effect Attack theK enemy units with the lowest amount of hitpoints.

Attack K nearest enemies

TheAttack K nearest enemies-rule always applies. The considered unit attacks or
moves towards theK nearest enemy units.

72

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

Precondition None.

Effect Attack or move towards theK nearest enemy units.

5.4.3 Rules and their sequencing

The rules described in the previous section were designed with simplicity and
some degree of predictability in mind. This was done to ease the effort required to
compose rules. Compositions of rules become important, because simple rules of-
ten do not perform near-optimally. Compositions allow using the rules as building
blocks and thereby allow more complex behaviours.

To enable compositions of rules each rule must only reduce the span of actions.
This requirement is in order, because rules are applied in sequence. Thus, it is
expected that if ruleA appears before ruleB in the sequence then ruleB does not
violate the intentions of ruleA, i.e. ruleB must not add actions removed by rule
A.

All rules described in section 5.4.2 on page 69 implements anundo-function
which undo’s the rule’s pruning. This is done to avoid a totalexhaustion of actions
of the unit. The undo-function works as follows:

1. Before applying a rule to a unit take backup of that unit’s actions.

2. Apply the rule.

3. Check if the unit’s number of actions is reduced to zero. Ifso, revert the
unit’s actions from the backup.

The undo functionality ensures that if ruleA has been applied before ruleB then
ruleB can only prune actions left by ruleA while not exhausting all actions.

In [Davis, 1999] Ian Lane Davis presents an overview of the Game AI system
for a game calledDark Reign, [Auran, 1997]. He discusses the effectiveness of
RTS units in combat situations. He states:

“[. . .] in most strategy games, the offensive effectivenessof a unit
does not diminish at all with damage until the unit is totallyremoved
from the game. This means it virtually always makes sense to con-
centrate firepower at one target until it is destroyed and then move on
to the next”,[Davis, 1999].

This premise also holds for the game of Wargus and with that inmind some se-
quences of rules will be introduced following this idea.

In the following the sequences of rules we have devised will be presented
along with a justification and explanation of each sequence.

73

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

Focus fire

Focus fireis a sequence of rules in which primarily ranged units are imposed to
focus attacks on the weakest enemy unit within attack-range. The idea behind the
Focus fire-sequence is to let ranged units concentrate on killing the weakest enemy
units instead of damaging many. At the same time the melee units move towards
the enemy units and attack these.

Focus fireconsists of the following four rules applied in the order given below:

1. Ranged attack lowest HP enemy

2. No enemy in cell

3. Attack K lowest HP enemies

4. Remove stand-ground

In this sequence the ranged units prioritises attacking enemy units over moving
towards them. TheRanged attack lowest HP enemy-rule removes all except an
attack action if this rule clicks. If so the considered ranged unit has no movement
actions available. Since rules cannot add actions theNo enemy in cell-rule has
no effect even if it clicks. TheAttack K lowest HP enemiesobviously has no
effect on a ranged unit either. Melee units are guided towards the enemy units and
if several units are within attack-range theK weakest are attacked. TheRemove
stand-ground-rule is added because standing still is regardless of the situation
almost never optimal.

Attack K nearest

This is a sequence guiding units to attack the closest enemy units. The idea behind
the Attack K nearest-sequence is to minimise the game cycles spent on moving
without considering the positioning directly. Instead, the game cycles are spent on
dealing damage ignoring any positional advantages presented by the map. Here,
K is set to two.

Attack K nearestconsists of the following three rules applied in the order given
below:

1. Keep attacking same

2. Attack K lowest HP enemies

3. Remove stand-ground

Here, theKeep attacking same-rule ensures that all units gives attacking the same
target higher priority than attacking a new. If a unit is not engaged in combat it is
guided towards theK enemy units with the lowest amount of hitpoints.

74

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

Ranged assist

Here ranged units acts as support to other friendly units. The idea is that if the
melee units are engaged in combat the ranged units can assistin killing the en-
gaged enemy units faster thereby minimising the received damage.

Ranged assistconsists of five rules applied in the order given below:

1. Ranged support

2. Keep attacking same

3. No enemy in cell

4. Attack K lowest HP enemies

5. Remove stand-ground

TheRanged support-rule ensures that if there is a possibility to support a friendly
unit within attack-range then the ranged units will do so. Units not handled by the
Ranged support-rule behave almost as in theAttack K nearest-sequence. Again,K
is set to two. The difference lies in guidance towards the enemy units. Instead of
moving towards theK weakest enemy units, the units move towards the influence
map cell chosen by theNo enemy in cell-rule.

5.5 Rating game states

Assessing or estimating how good a game state is a game specific topic. The es-
timate method evaluating a game state is very hard to design.It requires an ex-
tensive insight into the game mechanics. Given a game state the estimate method
should return a value which represents the desirability of astate. It should be evi-
dent that the precision of the chosen rating method influences the optimality of the
game tree method. Also, the speed of the rating method is of interest. The rating
method must be able to rate game states in the tree within the time limit.

In order to rate states in a game tree representing an SSC situation we have
chosen to use the threat matrix (see section 5.3.1 on page 61)as input. This ma-
trix was chosen because it captures the elements of SSC whichwe have identified
as important. A rating method was designed by hand. However,the interdepen-
dency of the elements in SSC is complex making a precise rating method hard
to design. Therefore, machine learning methods were also investigated for rating
game states. Recall that a threat matrix is of size 20×20 and therefore all rating
methods in this project can be seen as functions mappingR

400[−1,1]→ R.

75

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

s u bt r e e s u bt r e e I n
I nI nI n o u tI n
I nI nI nI n H I D D E N

Figure 5.10: A game tree and a sample rating method

In figure 5.10 a game tree and a rating method are shown. Nodes in the tree
contain the threat matrix. The rating method shown is a neural network explained
in section 5.5.2 on the following page. This figure shows how the threat matrix is
mapped via a neural network to a single value.

In the following the handcrafted rating method and the machine learning based
methods are presented along with their applicabilities andadvantages. Lastly, how
to choose actions is discussed.

5.5.1 Handcrafted rating method

As the threat matrix captures many elements of an SSC situation we have designed
a simple rating method calledthreat matrix rater(TMR) based on the threat ma-
trix. Recall that TVs for enemy units are negative and TVs forcontrolled units are
positive. The value of a game state is calculated as the sum ofall entries in the
threat matrix. This rating method uses the overall strengthof each side to decide
the desirability of each game state. Clearly this method’s performance is entirely
dependent on the ability of the TVs to accurately portray thesituation in the snap-
shot.

A handcrafted rating method’s accuracy depends solely on the skills of the

76

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

designer and the designer’s understanding of the problem domain. This method is
troubled by the fact that it cannot generalise nor adapt to situations not anticipated
by the designer. This kind of rating method is often an easy and quick way to rate
a situation but high precision is hard to achieve.

The time needed for the TMR to rate a threat matrix is linear inthe number of
entries in the matrix since the value of each entry must be summed. In this project
the amount of summations needed is 400 for each rating.

5.5.2 Machine learning rating methods

A machine learning method is another way to rate game states.Such methods can
automatically improve their precision through learning. An advantage of these
methods is their ability to generalise from a small set of problem instances with
reasonable precision. To obtain the wanted generalisationthe machine learning
methods need to be trained.

We have chosen to apply two machine learning methods to rate game states. To
train these methods a set of handmade game states was designed. The threat ma-
trix of each constructed game state was translated into several equivalent training
examples to increase the size of the training set.

In the following the two chosen machine learning methods will be presented.

Neural networks

A neural network (NN) is a learning method which is modelled as the way col-
lections of neurons in the human brain work. An output signalis produced based
on several input signals. The NN applied in this project is a fixed fully-connected
layered feed-forward network as defined in[Nilsson, 1998] and[Mitchell, 1997,
Chap. 4].

We have chosen to use three layers for the NN: an input layer, ahidden layer
and an output layer. As input for the NN each entry in the threat matrix is mapped
to an input node resulting in 400 nodes in the input layer. We have chosen to use
the same size for the hidden layer. As a single value is neededfor the rating the
output layer contains a single node.

The training of the neural network was performed with theResilient Propaga-
tion-algorithm (RProp), [Champandard, 2003, Chap. 19], a much used variant of
theBack-Propagation-algorithm,[Mitchell, 1997, Chap. 4.5.2].

The time needed for the NN to rate a threat matrix is linear in the num-
ber of nodes in each layer in the neural network since each input-value must
be propagated through the network. In this project the number of calculations
is 400×400×1 = 160.000 for each rating.

77

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

The RMSE,[Wikipedia, 2005d], for the NN over the validation set extracted
from the training threat matrices is 0.0976.

K nearest neighbour

TheK nearest neighbour (KNN) is an instance-based learning method,[Mitchell,
1997, Chap. 8]. The KNN applied in this project views each threat matrix as a
point inR

400 and uses the euclidean distance to determine closest neighbours.
As training the KNN method stores each sample threat matrix for later usage

in rating. Rating is done by calculating the euclidean distance of the given threat
matrix to each stored point. The rating value is taken as the average of theK
nearest.

The time needed for the KNN to rate a threat matrix is linear inthe number of
stored threat matrices andK, because the distance between the threat matrix and
the stored set must be calculated and theK nearest must be found. In this project
the number of stored examples is 3600 andK is 5. Therefore, 3600×400×5 =
7.200.000 calculations must be made for each rating. This was empirically tested
to be too slow and the number of stored threat matrices was therefore reduced
to 360 resulting in 360× 400× 5 = 720.000 calculations for each rating which
resulted in no perceived violations of the real time constraints.

The RMSE for the KNN over the validation set extracted from the training
threat matrices is 0.2562.

5.5.3 Choosing actions for units

A game tree is built in game cycles where at least one unit has no actions assigned.
This means that the root node of the game tree represents a situation in which
at least one unit is ready to act. When the game tree has been built the action
sequence leading from the root to the child with the highest value is assigned to
the units in the engine.

The rating methods described in sections 5.5.1 on page 76 and5.5.2 on the
preceding page only rate single states. This means that the rating methods do not
account for states which are reachable from the state being rated. To let future
states influence the choice of unit actions we have introduced two variants of each
rating method:

1. Only rate the children of the root ignoring the future states reachable beyond
the children of the root. This is the equivalent of rating allnodes in the tree.
But as the rating methods does not explicitly use the reachable states to rate
a given node those states can be ignored.

78

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

2. Only rate the leaves of the game tree and then assign the average value of
the children to each internal node. This allows a child node of the root to
indicate an estimated value of the subtree this node represents.

5.6 Measuring the performance of an SSC situation

Recall from section 3.4.4 on page 46 that an optimal solutionto SSC leads to con-
sistent behaviour for the involved units. When a method for solving SSC has been
implemented a way of measuring the optimality of the method must be available.
As optimality leads to consistency all of the created methods for handling SSC sit-
uations are evaluated. This provides an indication of whichcomputer controlled
method is the most optimal in the designed SSC situations.

As discussed in section 3.4.4 on page 46 human players can usethe method
as a support routine which automatically carries out combatin SSC situations re-
sulting in a near-optimal handling of these. The goal is not to create an interesting
behaviour but to create the most optimal behaviour which leads to a consistent
behaviour.

5.6.1 SSC situation value

To evaluate a method solving SSC several SSC situations havebeen designed,
as described in section 7.1.2 on page 90. Each method is evaluated on each de-
signed situation. When two methods oppose each other a measure of performance
must be available. Preferably as a numerical value indicating how well a particular
method performed. Options for this value include: a binary indicator of whether
the given method won or lost, a count of inflicted casualties or a count of the
amount of damage inflicted. We have chosen a more expressive value indicating
the relative strength of each faction in the situation. We have designed aSituation
Value(SV) which indicates how good an situation is for a particular game cycle
compared to the starting situation. We have chosen to use thenumber of units and
their hitpoints as indicators of how good the situation is. Thus, for a game cyclex
we introduce the following factors:

EUnitsx is the number of enemy units at game cyclex.

FUnitsx is the number of friendly units at game cyclex.

eHPx is the sum of all enemy units’ hitpoints at game cyclex.

f HPx is the sum of all friendly units’ hitpoints at game cyclex.

79

CHAPTER 5. GAME TREES APPLIED TO SMALL SCALE COMBAT

The SV is calculated to indicate that the higher the SV, the better the situation. It is
considered bad to lose units and thereby hitpoints. These incidents should reduce
the SV. It is also considered bad if the enemy has many units and many hitpoints.
Given these considerations we have designed the following equation:

SVx = FUnitsx×
f HPx

f HP0
−EUnitsx×

eHPx

eHP0
(5.8)

If friendly hitpoints or units are lost the SV is reduced. If enemy units are damaged
the SV is not reduced as if no enemy unit was damaged. Note, that due to the
calculations involved, the value given to one faction is thenegated value of the
opposing faction’s.

5.6.2 Experiments

In section 5.2.2 on page 60 we identified three issues which had to be handled be-
fore the performance of a game tree-based method could be evaluated. Section 5.3
on page 60 presented one solution to the problem of representation. As mentioned
in section 5.4.3 on page 73 we designed three rule sequences which we deemed
applicable to the game of Wargus. In section 5.5.3 on page 78 six rating methods
were presented to the problem of rating game states.

To investigate these different solutions to the issues involved with game tree-
based methods we have chosen to evaluate all permutations ofthese resulting in
1×3×6 = 18 game tree-based methods. These permutations will be referred to
asexperimentsand are presented in section 7.1.1 on page 89.

80

Chapter 6

Extending the Stratagus engine
"There are no problems, only opportunities"

- Bill Austin

In this chapter we will present the overall scope of our implemented system and
describe how our module interfaces with the Stratagus RTS engine. As mentioned
in chapter 4 the Stratagus engine was chosen as the platform for evaluations and
from now on the Stratagus engine which is written in C will only be referred to as
theengine. For complete design, implementation details and pseudo-code for the
game tree construction, see appendix C on page 129.

For solving the SSC problem the game tree-based method can beseen as a
support routine as described in section 3.4.4 on page 46. Therefore, our module
which handles the problem of SSC should be designed so replacing or extending
this module can be accomplished. As such, the design of this support routine was
suited for an object oriented approach. We decided to createa JNI interface,[Sun
Microsystems, 2003] for Java v. 1.4.2 since this allowed us to separate the game
tree code from the engine while using object oriented facilities.

6.1 The Stratagus engine background

Stratagus,[Stratagus, 2004], is an RTS engine written in C and is released under
the GPL,[Free Software Foundation, 1991]. Using what the Stratagus developers
call theCraft Configuration Language(CCL) a potential game developer can im-
plement an RTS game by specifying the rules of the game and what media files
should be used. The CCL is aLua, [Ierusalimschyet al., 2003], interface which
exposes some of the Stratagus engine’s internal data-structures. The Lua interface
allows developers to modify how the engine runs the actual game and how the
game is presented to the player graphically. There are some technical limits to this
interface which have their roots in the 10 year long development history of the
Stratagus engine.

81

CHAPTER 6. EXTENDING THE STRATAGUS ENGINE

Wargus,[Wargus, 2004], is a set of CCL-scripts for Stratagus that enable end-
users to play the famous Warcraft I and II,[Blizzard, 1995]. The Wargus project
does not distribute the media files associated with WarcraftII, but includes a con-
version utility which takes the original Warcraft II (including expansion) CDs and
converts the media on these CDs to a format Stratagus can read. The Wargus
project is maintained by the Stratagus developers and this implies that all new
releases of Stratagus are accompanied by a simultaneous release of Wargus.

Stratagus and Wargus started their lives as an application calledFreeCraft. It
was an Open-Source game which allowed people to play Warcraft I and II on other
platforms than Windows provided the player had the originalCDs from Blizzard.
Blizzard’s legal department struck down on this project dueto the flamboyant use
of theCraft name in the project. From the ashes of FreeCraft rose the Stratagus
engine and the Wargus project. The inherent limits in the CCLof Stratagus stems
from this history as it primarily was designed to play the Wargus game. Since
then, the Stratagus developers have focused on generalising the CCL and thereby
giving new game developers more freedom to deviate from the way Wargus is
played.

6.2 The Stratagus engine

Recall from section 3.4 on page 40 that we focus on multi-player network games
called skirmishes. To reach the goal of creating a support routine enabling both
participants and players to use it we needed to investigate how the engine handles
network games and unit control.

6.2.1 Communication protocol

For network communications the engine uses a P2P protocol based on the UDP-
protocol,[Stallings, 2000, Chap. 17.4] and[Coulouriset al., 2001, Chap. 3.4.6 &
4.2.3]. To minimise the network traffic, all clients in a networked game maintain a
complete state of the game. The only traffic occurring on the network is the orders
assigned by the players. Due to this, all clients which participate in a networked
game maintain the complete game world state internally. An approach like this
has several implications. E.g. the computations required for the participant are
performed on all clients simultaneously and must be guaranteed to reach the same
conclusions on different hardware. More specifically, whena unit has no assigned
order and something changes in the unit’s environment the default behaviour as
previously described in section 3.4.4 on page 46 makes the unit perform some
action. No network traffic occurs with this event as the change happens on all
clients and these all reach the same end-result.

82

CHAPTER 6. EXTENDING THE STRATAGUS ENGINE

Randomisations in the Stratagus engine is a noteworthy issue. To avoid the
network traffic associated with agreeing on a seed to the random number generator
the engine uses a static seed which never changes. This implies that if a player
issues the exact same orders at the exact same time in two different games on
the same map, the two games evolve exactly alike. This is because the estimated
damage and other factors which rely on randomisations always result in the same.

6.2.2 Unit control mechanisms

To enable our game tree-based module to control individual units we investigated
how the engine handles units and their assigned orders. The following methods
which handles units in networked games was found:

SendCommandMoveAccepts a pointer to a unit which should be moved and a
pair of coordinates to move to. The path to the target location is calculated
by the pathfinding algorithm, the A*-algorithm[Wikipedia, 2005a], incor-
porated in the engine. Technically, this method changes thestate of the unit
to a movestate which makes the control loop of the engine move the unit
according to the rules of the actual game.

SendCommandStandGroundThis method takes a pointer to a unit. This unit’s
state changes to thestandgroundstate. When trying to override the default
behaviour of the units in Wargus this is the method used to make them stand
still.

SendCommandAttack This method accepts two pointers to units. One is the
aggressor and the other is the target. Also accepted is a pairof coordinates
which indicate whether the attack is an ordinary attack on anenemy unit or
an attack move command. In the case of a zero unit pointer thisis interpreted
as an attack move command. This method is thus used to issue attack actions
against enemy units or to issue attack-move actions which move the unit to
the specified location and engages all enemies encountered along the way.

The engine implements an order queue for each unit. Meaning that a player can
issue several orders to a unit and this unit will then complete these orders in turn.
All the above methods also accept an integer indicating whether or not the order
being assigned should empty the order queue and insert the current order as the
next to perform. We always flush the queue, because we derive actions continually.

Several other methods for assigning orders to units exist inthe engine. These
control other aspects of the units e.g. following other units, constructing buildings
or harvesting resources. We do not use these in our module forhandling SSC so
these will not be presented here.

83

CHAPTER 6. EXTENDING THE STRATAGUS ENGINE

e n d o f g a m e e n d o f g a m e e n d o f g a m e

e n g i n e s t r a t a g u s r a d aT i m e m a i ns e t u p s e t u ps t a r ts t a r tp r e * s t a r t e v e n t p r e * s t a r t e v e n ti n i t i a l w o r l dc y c l e c y c l e
s e t u p

R E P E A TU N T I L E N Du p d a t e w o r l d
a p p l y a c t i o n sa p p l y a c t i o n s r e s u l t sq u e r i e s

Figure 6.1: A callgraph depicting the overall communication between the engine
and our module

6.3 Integration with the engine

For realising our game tree-based module we implemented an automatic propaga-
tion of much data and changes herein from the engine to our module. The prop-
agation is done once per game cycle and once the engine is initialised the propa-
gation happens relatively fast, because only changes are propagated. Changes in
non-static map-topology such as forests harvested were ignored while the static
map-topology such as gold-mines and rocks was included. A set of callbacks was
inserted in the control loop of the engine. These send eventsback to our module
accordingly.

6.3.1 Execution path

In figure 6.1 a simplified call graph is depicted and shows the nature of our inte-
gration with the engine. The four modules depicted are the engine and three Java
packages calledstratagus, rada andmain. Thestratagus package encapsu-
lates the engine in an easily accessible Java representation along with a set of
methods needed for interaction with the engine. Therada package contains two
essential elements; a set of auxiliary classes allowing forgame tree construction
and a set of classes which contains variants of the game tree-based methods. The
main package is solely responsible for configuring the two Java packages.

84

CHAPTER 6. EXTENDING THE STRATAGUS ENGINE

As depicted in the figure the only package to ever communicatedirectly with
the engine is the stratagus package. This was done to separate our module from
the engine. All communication between the rada package and the engine thus goes
through the stratagus package.

All evaluations follow the same pattern. The main package configures the rada
and stratagus packages. The stratagus package then configures the engine to suit
the needs of the main component – including informing the engine which objects
to use for callback targets. The main component sends a startsignal to the strata-
gus package which is propagated to the engine. The engine then propagates the
world-model to the stratagus package and sends an event which indicates that the
engine is about to start. This event is propagated to the radapackage which al-
lows our code to perform any needed pre-game computations onthe map – such
as map analysis, see section 3.4.2 on page 45. When these computations are com-
plete the engine resumes execution and initiates the game. For each game cycle the
engine updates the world representation and sends an event to the stratagus pack-
age which propagates this information on to the rada package. The rada package
then queries the stratagus package for all data needed to perform the computations
at hand. The calculated actions are then applied to the engine. This cycle of up-
date/query/apply continues until a game result has been reached which results in
the end-of-game event being propagated all the way back to the main component.

6.3.2 The C to Java link

We have implemented a JNI,[Sun Microsystems, 2003], module which is embed-
ded in the Stratagus engine. It contains several referencesto JNI data structures
allowing the engine to access fields and call methods in the Java virtual machine.
The C code references objects from the stratagus Java package. These objects are
used to notify the stratagus package of newly created units,updating the location
of existing units, removing dead units, managing controlled groups of units and
so on.

The Stratagus package contains several methods with the native keyword.
Meaning that their implementation is given in C but that the method is callable
from Java. The noteworthy of these methods are the unit manipulation methods
calledattack, move andstandground which directly translate their parameters
to suitable parameters for their C counterparts as described in section 6.2.2 on
page 83.

85

CHAPTER 6. EXTENDING THE STRATAGUS ENGINE

6.4 Java Packages

Our primary java packages are thestratagus andrada packages. These pack-
ages are described briefly in the following. Full design and implementation details
of both java packages are given in appendix C on page 129 alongwith the game
tree construction-algorithms.

6.4.1 Stratagus Java package

The Stratagus package encapsulates the engine enabling future users to use the
Wargus game as a testbed for Game AI modules. Furthermore, the JNI module
and the modifications we have made to the engine completely hide the engine-
specific details of network and unit control from the user. Therefore, this package
enables users to quickly implement and test a Game AI module without worrying
about engine-specific issues.

The Stratagus package contains an interface which must be implemented by
its user. This interface provides the callbacks needed by the engine to propagate
events to the implementing object.

6.4.2 Rada Java package

This package1 uses the stratagus package described above to handle SSC situa-
tions. In this package we have created anexperiment framework which enables
fast implementation and testing of methods for handling SSCsituations. This is
realised by means of an experiment interface and an experiment factory. The ex-
periment interface contains several methods. Some are designed for the game tree-
based experiments and others are general purpose. The framework handles among
other things the setup of the stratagus package and the recording of situation val-
ues (SVs). We have implemented all experiments using this framework. Another
part of this experiment framework includes the three ratingmethods we have used
in this project. Two of these rating methods were implemented as a part of the
experiment framework. The final rating method, the neural network, was included
in the package using the Joone,[Joone, 2005], framework which provided the
necessary functionality for rating the game tree nodes.

The package furthermore contains many supporting classes enabling us to han-
dle the game tree construction efficiently. Among these are fast accessor methods
to units and fast derivation of game tree child nodes. The game tree algorithm con-
structs the tree to a specified depth and assign orders to eachunit. The game tree
construction-algorithm is capable of assigning orders to units at any given game

1The name, rada, is more or less randomly chosen.

86

CHAPTER 6. EXTENDING THE STRATAGUS ENGINE

cyclex as long asx is included in the tree. Meaning, the tree can be builty game
cycles ahead and orders to units can be assignedx game cycles ahead. The only
requirement is thatx < y.

To handle the rule sequences used for pruning of nodes we havecreated a stan-
dard way of implementing these realised by means of a rule interface. A factory-
class, as described in[Gammaet al., 1994, Chap. 3], was implemented as a way
of statically instantiating the rules described in section5.4 on page 64.

87

Chapter 7

Results
"Success is getting what you want

happiness is wanting what you get"
- Dave Gardner

In this chapter the setup for the evaluation of the game tree method introduced
in chapter 5 on page 53 is presented along with the obtained results. To automate
the evaluation of our method we have chosen to create severalmaps. Each con-
tains one group of human units and one group of orc units positioned in a small
scale combat (SSC) situation. The situation value (SV) of these situations is then
measured as described in section 5.6 on page 79.

Firstly, the setup for our evaluations is presented. Secondly, the results are
presented along with a discussion. Thirdly, a subset of the performed evaluations
is recorded as movies and these will be presented accompanied by a discussion
on the perceived execution time of our method. Lastly, the tables referenced from
this chapter is presented.

7.1 Setup

To measure the different variants of our game tree method we have chosen to
evaluate a number of experiments. Recall from section 5.6.2on page 80 that we
have identified 18 variants of the game tree-based methods. These variants will
be described in the following section and will be used as basis for measuring the
game tree-based method against the built-in methods of Wargus.

All evaluations have been performed on two 2.4 GHz Pentium 4swith 512 MB
RAM. We noticed no slowdowns in the game while using the game tree methods.
This hardware is adequate for running the method in real time.

The selected experiments are described in the following. Afterwards the SSC
situations wherein the evaluation takes place are presented.

88

CHAPTER 7. RESULTS

7.1.1 Experiments

The following experiments which implement different variants of the game tree
method have been chosen for evaluation. These experiments were chosen to por-
tray and measure the overall performance of several rating methods and rule se-
quences against the Wargus built-in handling of SSC situations.

KNNGTall -experiment uses theK nearest neighbour as rating method. It only
rates the children of the root.

KNNGTavg-experiment uses theK nearest neighbour as rating method. It rates
the leaves in the tree. For each internal node it assigns the average of this
node’s childrens’ value.

NNGTall -experiment uses the neural net as rating method. It only rates the chil-
dren of the root.

NNGTavg-experiment uses the neural net as rating method. It rates the leaves
in the tree. For each internal node it assigns the average of this node’s chil-
drens’ value.

TVGTall -experiment uses the threat matrix rater (TMR) as rating method. It
only rates the children of the root.

TVGTavg-experiment uses the TMR as rating method. It rates the leaves in the
tree. For each internal node it assigns the average of this node’s childrens’
value.

The different rating methods were described in section 5.5 on page 75. Each of
the game tree-based experiments above are each run with the three different rule
sequences for pruning the tree. These were described in section 5.4.3 on page 73
and are theFocus Fire, AttackKNearestand theRanged Assist-sequences.

We have chosen to hold the performance of our method up against two ex-
periments. These are called thebuilt-in methods as they only use simple actions
available from the engine. They simulate the way Wargus handles units in SSC
situations. These are therefore applicable for investigating whether the game tree-
based methods can improve the current handling of SSC situations.

AttackNearest-experiment orders each controlled unit to attack the nearest en-
emy unit.

AttackMove-experiment orders the controlled units to attack-move towards a
calculated centre of the group of enemy units.

89

CHAPTER 7. RESULTS

Figure 7.1: A simple SSC situation with two opposing melee units calledScen1vs1

7.1.2 SSC situations

All of the designed SSC situations have been created with themap editor pro-
vided by the engine and each is depicted in figure 7.1 to 7.5. Each of the SSC
situations were placed in different maps. On these maps all experiments fought
against the built-in experiments. In the following each situation will be described.
Recall from section 5.6 on page 79 that we use the situation value (SV) to evaluate
the performance of an experiment. We record the SV at the end of an evaluation
as this value depicts the strength of the winning faction.

Scen1vs1In figure 7.1 a very simple SSC situation is shown. Each side controls
only one melee-unit. No environment features exist. This situation is used
primarily as a test situation to determine whether each experiment is able
to perform well in very simple situations. Since each side isequally strong
and the situation is very simple the winner is expected to be decided ran-
domly. The end SV is expected to be approximately 0 in this situation. This
situation is referred to asScen1vs1in the results.

Scen3vs2Figure 7.2 on the next page shows another SSC situation. Heretwo hu-
man footmen combat three orc grunts. No environment features are placed
on the map. The orc faction is very strong compared to the human faction.
In this situation the winner is expected to be the Orcs since the human fac-
tion is outnumbered. Therefore, the SV of the orc faction should clearly

90

CHAPTER 7. RESULTS

Figure 7.2: Two melee units opposing three melee units called Scen3vs2

indicate that the human faction loses. This map is referred to asScen3vs2in
the results.

Scen7vs7Figure 7.3 on the following page shows an SSC situation typical of
those encountered in an RTS game. The two groups of units are of equal
size. Each faction controls four melee units and three ranged units. The
environment contains no environmental features. This situation is expected
to be complex enough to show the diversity of the different methods for
solving SSC. Therefore, the winner is more dependent on the optimality
of the method used than the situations previously described. This map is
referred to asScen7vs7in the results.

archer-ambushIn figure 7.4 on the next page yet another SSC situation is de-
picted. Each group of units consists of two melee units and four ranged
units. The environment consists of small narrow paths between the two
groups. The ranged units have high importance, because if each narrow path
is blocked by a melee unit the ranged units can attack from a distance while
being out of reach from the enemy melee units. As above, this situation is
expected to be complex enough to show the diversity of the methods used
for SSC. This map is referred to asarcher-ambushin the results.

CapturedIn figure 7.5 on page 93 the last SSC situation is shown. In thissituation
the human faction controls four melee units and one ranged unit. The orc
faction controls three melee units and two ranged units. Thehuman faction

91

CHAPTER 7. RESULTS

Figure 7.3: Two squads with four melee and three ranged unitseach called
Scen7vs7

Figure 7.4: Two squads with two melee and four ranged units each calledarcher-
ambush

92

CHAPTER 7. RESULTS

Figure 7.5: Three melee and two ranged units surrounded by four melee units and
one ranged unit calledCaptured

is stronger than the orc faction. The orc units are surrounded by the human
units. The winner is expected to be the Humans and the end SV for the
human faction should indicate this. This map is referred to as capturedin
the results.

We consider theScen7vs7andarchers-ambushto be the most interesting situa-
tions as they arefair to both factions. The SV is 0 at the beginning of the situations
and none of the groups have any map specific advantages. The situations called
CapturedandScen3vs2are on the other handunfair situations. The starting SV
of Scen3vs2for the Orcs is 1, thus the Orcs are the strongest faction at the start of
the situation. InCapturedthe starting SV is 0 but the composition of the groups
and start positions favour the Humans.

7.2 Questions

We wish to answer the following questions in order to discussthe obtained results.

1. Do any of the experiments perform erratically inScen1vs1? I.e. does the SV
measured at the end of the situation provide a clear winner?

2. Do any of the experiments when controlling the orc units lose inScen3vs2?
I.e. was the SV negative for the Orcs?

93

CHAPTER 7. RESULTS

3. In Scen3vs2do any of the experiments win when controlling the human
units? I.e. was the SV positive for the Humans?

4. Do any of the experiments when controlling the human unitslose onCap-
tured? I.e. was the SV negative for the Humans?

5. In Captureddo any of the experiments win when controlling the orc units?
I.e. was the SV positive for the Orcs?

6. Which built-in experiment is the best in the designed SSC situations?

7. Do any of our game tree-based experiments outperform the built-in experi-
ments in SSC situations?

8. Which rule sequence performs best?

9. Which rating method performs best?

Questions 1, 2, 3, 4 and 5 above serve as tests since answers tothese question
should be no. If for a given experiment the answer is yes to anyof the five ques-
tions this specific experiment deserves greater analysis.

To evaluate the game tree-based experiments we need to know which built-in
experiment is the most optimal. Question 6 should provide this information.

We expect that we can answer yes to question 7 making the extrawork in-
volved with a game tree-based method a worthwhile investment. This would mean
that the built-in methods were outperformed by the game tree-based methods.

The answers to questions 8 and 9 are of interest when examining the areas
where more work could be conducted.

To provide a foundation to answer the above questions we havechosen to
compare each game tree-based experiments to each of the built-in experiments.
The built-in experiments are also compared to each other to determine the optimal
one. Each experiment combination is evaluated in every designed SSC situation.
We record the end SV in the game cycle where a winner has been found, i.e. only
one faction remains on the map. All collected results can be seen in appendix D
on page 144.

Recall from section 6.2 on page 82 that the random number generator in the
engine always returns the same sequence of random numbers. Due to this fact
we have chosen to run each evaluation only once and record theresult, because
running the evaluations multiple times would provide identical results.

94

CHAPTER 7. RESULTS

7.3 Presentation of results

Here, we will answer the nine questions formulated previously. All collected re-
sults can be seen in appendix D on page 144.

1. As seen in tables 7.1 on page 100 and 7.2 on page 101 the end SVof all
evaluations onScen1vs1is approximately 0 as expected. Thus, none of the
experiments perform erratically onScen1vs1.

2. In table 7.3 on page 102 it is shown that all experiments winwhen they con-
trol the orc units onScen3vs2. This was expected since this SSC situation
favours the orc side.

3. Table 7.4 on page 103 tells that all experiments lose when controlling the
human units onScen3vs2. This was also expected.

4. Table 7.5 on page 104 shows that all experiments win when controlling the
human units onCaptured. It was also expected.

5. Table 7.6 on page 105 tells that all experiments lose when controlling the
orc units onCaptured, as expected.

6. Recall from section 7.1.1 on page 89 that we evaluate the optimality of
an experiment by comparing it to the built-in experiments. In table 7.7 on
page 105 the results of evaluating the built-in experimentsare shown. Based
on the average SV we conclude that theAttackMove-experiment is the over-
all most optimal built-in experiment. As theAttackMove-experiment per-
forms better than theAttackNearest-experiment in the fair scenarios this
experiment is the most interesting when evaluating the gametree-based
methods in these scenarios. When looking at the unfair scenarios we are
interested in theAttackNearest-experiment.

7. Tables 7.8 on page 106 and 7.9 on page 107 show the results ofthe game
tree-based experiments against the two built-in experiments. Table 7.8 on
page 106 shows the game tree experiments vs. theAttackMoveexperiment.
Table 7.9 on page 107 shows the game tree experiments vs. theAttack-
Nearestexperiment.

From table 7.8 on page 106 it can be seen that the experiment performing
best overall including in the unfair situations is theKNNGTall experiment
with the RangedAssistrule sequence. TheTVGTall experiment with the
AttackKNearestrule sequence performs best in the fair situations though.

Table 7.9 on page 107 shows that experimentNNGTall with the Attack-
KNearestrule sequence performs best overall including the fair situations.

95

CHAPTER 7. RESULTS

In the unfair situations theKNNGTavgexperiment with theRangedAssist
rule sequence performs best.

If both tables are taken into consideration it can be seen that the TVGTall
experiment with theAttackKNearestrule sequence overall averagely outper-
forms both built-in experiments. The average is0,105+0,049

2 = 0,077. Even
though theNNGTall experiment with theAttackKNearestrule sequence
loses to theAttackMove-experiment its overall performance is quite impres-
sive with an average of0,236−0,153

2 = 0,042.

8. Table 7.10 on page 107 shows the performance of the rule sequences aver-
aged. It can be seen that theAttackKNearestrule sequence overall performs
best. This rule sequence also performs best in the fair situations. But the
RangedAssistrule sequence performs best in the unfair situations.

9. Table 7.11 on page 108 reveals the performance of the rating methods aver-
aged. It can be seen that the best rating method overall and also in the fair
situations is the threat matrix rating method which only rates the immedi-
ate children of the root (experimentTVGTall). In the unfair situations theK
nearest neighbour rating method which averages the values of the internal
nodes (experimentKNNGTavg) performs best.

The answers to questions 7, 8 and 9 raise a few issues.
Firstly, determining the optimal strategy in a SSC situation depends on the

opposing player’s strategy, because the game tree experiments do not perform
equally well when opposing the built-in experiments.

Secondly, choosing the best rule sequence among the designed is difficult since
the sequence performing best in the fair situations is not the best in the unfair
situations. Meaning, a rule sequence depends on the actual situation as expected.

Thirdly, choosing the best rating method is non-trivial. The performance of
designed indicate that theTMRperforms well in fair situations and theKNN per-
forms best in the unfair situations. Again, the rating method depends on the com-
plexity of the situation.

7.4 Presentation of movies

Recall from section 5.4 on page 64 that the time constraint for our method is1
30

seconds. This is the guideline ensuring that the player doesnot notice a slowdown
in the game caused by the game tree method.

The recorded movies are available on the enclosed CD. These are described
in the movies section on the CD. The movies have some graphical flaws resulting

96

CHAPTER 7. RESULTS

from very technical linker and compiler problems of the engine and the Mac OS
X 10.4 operating system.

We have recorded four movies. These illustrate how the choice of rating method
and rule sequence influences the end-result of an evaluation. No slowdowns in ei-
ther of the movies can be seen.

1. KNNallAKNasHumansVSAttackMoveOnScen7vs7.movshows the course of
an evaluation onScen7vs7. The KNNGTall experiment with theAttack-
KNearestrule sequence as Humans fights theAttackMoveexperiment which
plays Orcs. Notice there are no slowdowns in the game.

From the table D.2 in appendix D.2 on page 146 we see that the end SV for
this evaluation is−0,128. Meaning that the game tree based method lost.

2. TVavgAKNasHumansVSAttackMoveOnScen7vs7.movshows almost the same
evaluation as above. The difference is that theTVGTavgexperiment is used
instead of theKNNGTallexperiment. Again, notice there are no slowdowns.

From table D.2 in appendix D.2 on page 146 we see that the end SVfor this
evaluation is 0,119. Meaning that the game tree based method won.

3. TVallAKNasOrcsVSAttackNearestOnScen7vs7.movshows the course of an
evaluation onScen7vs7where theTVGTall experiment with theAttack-
KNearestrule sequence as Orcs fights theAttackNearestexperiment playing
Humans. Again, there are no visual slowdowns.

From table D.11 in appendix D.2 on page 146 we see that the end SV of
this evaluation is 0,85. Meaning that the game tree based method won quite
big.

4. TVallAKNasOrcsVSAttackNearestOnScen7vs7.movshows almost the same
evaluation as above. The difference is that theFocusFirerule sequence is
used instead of theAttackKNearestrule sequence. No slowdowns can be
seen.

From table D.10 in appendix D.2 on page 146 we see that the end SV of this
evaluation is−0,925, Meaning that the game tree based method lost.

Items 1 and 2 illustrate the difference in the end result whenchoosing different
rating methods. In this case choosing the right rating method is therefore a crucial
factor. This choice decides whether the game tree-based method wins or loses.

Items 3 and 4 above show the difference in the end result when choosing differ-
ent rule sequences. As with item 1 and 2 this choice of rule sequence determined
which side won.

97

CHAPTER 7. RESULTS

7.5 Discussion

As suspected and described in section 5.2.2 on page 60 the solutions to all of
the issues presented in that section influence the optimality of a game tree-based
method. Especially the choice of rating method and rule sequence influence the
end-result, as illustrated in the previous section.

The only requirement of representing a game state in a node isthat it must
provide sufficient information for the rating methods and rule sequences to per-
form well. The questions answered in section 7.3 on page 95 indicate that our
representation contains enough information, because we are able to outperform
the built-in experiments.

From table 7.9 on page 107 it can be seen that theAttackKNearestrule se-
quence almost always outperforms theAttackNearestexperiment regardless of
rating method. This leads us to conclude that it is more favourable to estimate the
outcome of attacking several enemy unit than just attackingthe nearest. This is
an interesting fact. It means that it is worthwhile to consider theK nearest enemy
units before actually choosing one to attack.

We have so far introduced our method as a support routine by enabling both
players and participants to use the method. Restricting theavailability to partic-
ipants would allow current games to handle SSC situations near-optimally while
not changing the gameplay for the player. This restriction enables the game-
developers to adjust the difficulty level by changing rule sequences, rating meth-
ods or the amount of game cycles predicted by the game tree.

7.5.1 A problem with the game tree method

Figure 7.6 on the following page shows a situation where the game tree method
performs erratically. It shows theKNNGTall experiment with theFocusFirerule
sequence as the Orcs in the situation calledScen3vs2opposing an experiment
where all units stand still. Recall that the Orcs are expected to win in this situ-
ation. The game tree method does win as expected but it takes alot longer than
necessary. Figure 7.6 on the next page shows the grunt labelled with a 1 as the
only one attacking the enemy footman. The grunts labelled 2 and 3 do nothing.
They just stand still behind grunt 1. This is clearly not an optimal handling of the
SSC situation as grunts 2 and 3 ought to assist grunt 1 in the attack. Recall from
section 5.4.3 on page 73 that theFocusFirerule sequence uses theAttack K low-
est HP enemiesrule for melee type units. The erratic behaviour occurs, because
this rule sequence ensures that units attack or move towardsthe K enemy units
with the lowest amount of hitpoints. There is only one enemy unit in the depicted
situation so the rule constraints grunt 2 and 3 to move closerto the footman al-
lowing them to attack. As we do not have a dynamic path-findingalgorithm the

98

CHAPTER 7. RESULTS

Figure 7.6: A problem with our game tree-based method. Here illustrated by the
KNNGTallexperiment withFocusFirerule sequence as the Orcs

rule chooses one adjacent tile which decreases the distanceto the target by one.
This leaves only one action available to both grunts but as grunt 1 stands in the
field chosen by the rule for the grunts to move to grunt 2 and 3 are not allowed to
move and thus just stand still.

Situations as this show the importance of designing the rules and the rule se-
quences correctly. We, the designers of the rules and the sequences, had not fore-
seen the situation depicted and did not incorporate any handling of such situations.
If more work, thought and time was put into the making of the rule sequences such
erratic behaviour could be overcome.

99

CHAPTER 7. RESULTS

Game tree-based experimentAttackNearest AttackMove
TVGTall w. FF 0,033 0,033
TVGTall w. AKN 0,033 0,033
TVGTall w. RA 0,033 0,033
KNNGTall w. FF 0,033 0,033
KNNGTall w. AKN 0,033 0,033
KNNGTall w. RA 0,033 0,033
NNGTall w. FF 0,033 0,033
NNGTall w. AKN 0,033 0,033
NNGTall w. RA 0,033 0,033
TVGTavg w. FF 0,033 0,033
TVGTavg w. AKN 0,033 0,033
TVGTavg w. RA 0,033 0,033
KNNGTavg w. FF 0,033 0,033
KNNGTavg w. AKN 0,033 0,033
KNNGTavg w. RA 0,033 0,033
NNGTavg w. FF 0,033 0,033
NNGTavg w. AKN 0,033 0,033
NNGTavg w. RA 0,033 0,033
AttackNearest 0,033 0,033
AttackMove -0,033 0,033

Table 7.1: SituationScen1vs1, Human side. FF isFocusFire, AKN is Attack-
KNearestand RA isRangedAssist. The important fact in this table is that all values
are approximately zero.

100

CHAPTER 7. RESULTS

Game tree-based experimentAttackNearest AttackMove
TVGTall w. FF -0,033 0,033
TVGTall w. AKN -0,033 0,033
TVGTall w. RA -0,033 0,033
KNNGTall w. FF -0,033 0,033
KNNGTall w. AKN -0,033 0,033
KNNGTall w. RA -0,033 0,033
NNGTall w. FF -0,033 0,033
NNGTall w. AKN -0,033 0,033
NNGTall w. RA -0,033 0,033
TVGTavg w. FF -0,033 0,033
TVGTavg w. AKN -0,033 0,033
TVGTavg w. RA -0,033 0,033
KNNGTavg w. FF -0,033 0,033
KNNGTavg w. AKN -0,033 0,033
KNNGTavg w. RA -0,033 0,033
NNGTavg w. FF -0,033 0,033
NNGTavg w. AKN -0,033 0,033
NNGTavg w. RA -0,033 0,033
AttackNearest -0,033 0,033
AttackMove -0,033 -0,033

Table 7.2:Scen1vs1, Orc side. FF isFocusFire, AKN is AttackKNearestand RA is
RangedAssist. The important fact in this table is that all values are approximately
zero.

101

CHAPTER 7. RESULTS

Game tree-based experimentAttackNearest AttackMove
TVGTall w. FF 1,717 0,900
TVGTall w. AKN 1,883 0,944
TVGTall w. RA 1,717 1,033
KNNGTall w. FF 1,767 1,033
KNNGTall w. AKN 1,800 1,450
KNNGTall w. RA 1,717 1,550
NNGTall w. FF 1,189 1,967
NNGTall w. AKN 1,733 1,467
NNGTall w. RA 1,356 1,967
TVGTavg w. FF 1,783 1,950
TVGTavg w. AKN 1,800 1,533
TVGTavg w. RA 1,767 1,517
KNNGTavg w. FF 1,517 1,133
KNNGTavg w. AKN 1,800 1,033
KNNGTavg w. RA 1,733 0,900
NNGTavg w. FF 1,883 1,289
NNGTavg w. AKN 1,767 1,467
NNGTavg w. RA 1,683 1,750
AttackNearest 1,733 1,033
AttackMove 1,850 1,517

Table 7.3:Scen3vs2, Orc side. FF isFocusFire, AKN is AttackKNearestand RA
is RangedAssist. The important fact in this table is that all values are positive
meaning that the Orcs won as expected.

102

CHAPTER 7. RESULTS

Game tree-based experimentAttackNearest AttackMove
TVGTall w. FF -1,256 -1,233
TVGTall w. AKN -1,967 -1,967
TVGTall w. RA -1,356 -1,800
KNNGTall w. FF -1,256 -1,222
KNNGTall w. AKN -1,967 -2,017
KNNGTall w. RA -1,322 -2,017
NNGTall w. FF -1,967 -1,933
NNGTall w. AKN -1,917 -2,017
NNGTall w. RA -1,322 -2,017
TVGTavg w. FF -1,967 -2,017
TVGTavg w. AKN -1,967 -2,017
TVGTavg w. RA -1,967 -2,017
KNNGTavg w. FF -1,967 -1,233
KNNGTavg w. AKN -1,967 -2,017
KNNGTavg w. RA -1,256 -2,017
NNGTavg w. FF -1,967 -1,233
NNGTavg w. AKN -1,356 -2,017
NNGTavg w. RA -1,967 -1,222
AttackNearest -1,733 -1,850
AttackMove -1,033 -1,517

Table 7.4:Scen3vs2, Human side. FF isFocusFire, AKN is AttackKNearestand
RA is RangedAssist. The important fact in this table is that all values are negative
meaning that the Humans lost as expected.

103

CHAPTER 7. RESULTS

Game tree-based experimentAttackNearest AttackMove
TVGTall w. FF 0,436 1,671
TVGTall w. AKN 1,271 1,189
TVGTall w. RA 0,500 1,018
KNNGTall w. FF 0,193 1,039
KNNGTall w. AKN 0,464 1,039
KNNGTall w. RA 0,739 1,671
NNGTall w. FF 0,514 1,168
NNGTall w. AKN 1,039 1,600
NNGTall w. RA 0,407 1,200
TVGTavg w. FF 0,421 0,664
TVGTavg w. AKN 0,507 1,061
TVGTavg w. RA 0,393 0,536
KNNGTavg w. FF 0,479 1,671
KNNGTavg w. AKN 0,943 1,514
KNNGTavg w. RA 0,607 1,671
NNGTavg w. FF 0,250 1,157
NNGTavg w. AKN 0,179 1,136
NNGTavg w. RA 0,429 1,629
AttackNearest 1,179 1,571
AttackMove 1,471 1,686

Table 7.5:Captured, Human side. FF isFocusFire, AKN is AttackKNearestand
RA is RangedAssist. The important fact in this table is that all values are positive
meaning that the Humans won as expected.

104

CHAPTER 7. RESULTS

Game tree-based experimentAttackNearest AttackMove
TVGTall w. FF -1,029 -1,829
TVGTall w. AKN -1,343 -1,629
TVGTall w. RA -0,911 -1,543
KNNGTall w. FF -1,671 -1,471
KNNGTall w. AKN -0,657 -1,700
KNNGTall w. RA -0,921 -0,679
NNGTall w. FF -1,254 -1,339
NNGTall w. AKN -0,657 -1,857
NNGTall w. RA -1,393 -1,093
TVGTavg w. FF -1,757 -1,296
TVGTavg w. AKN -1,039 -1,643
TVGTavg w. RA -0,514 -1,232
KNNGTavg w. FF -1,136 -1,529
KNNGTavg w. AKN -1,050 -1,200
KNNGTavg w. RA -0,586 -1,318
NNGTavg w. FF -0,793 -1,829
NNGTavg w. AKN -1,061 -1,771
NNGTavg w. RA -1,814 -1,657
AttackNearest -1,179 -1,471
AttackMove -1,571 -1,686

Table 7.6:Captured, Orc side. FF isFocusFire, AKN is AttackKNearestand RA
is RangedAssist. The important fact in this table is that all values are negative
meaning that the Orcs lost as expected.

Built-in experiment SV Fair Unfair
AttackMove 0,060 0.313 -0.179
AttackNearest -0,060 -0.313 0.179

Table 7.7: End situation value of AttackMove and AttackNearest vs. each other
(Averaged over sides and situations). The important fact inthis table is that the
AttackMove performs slightly better than the AttackNearest on the average.

105

CHAPTER 7. RESULTS

Game tree-based experiment SV Fair Unfair
TVGTall w. FF 0,013 0,134 -0,123
TVGTall w. AKN 0,049 0,458 -0,366
TVGTall w. RA -0,081 0,123 -0,323
KNNGTall w. FF 0,039 0,225 -0,155
KNNGTall w. AKN -0,149 -0,045 -0,307
KNNGTall w. RA 0,067 -0,002 0,131
NNGTall w. FF -0,186 -0,400 -0,034
NNGTall w. AKN -0,153 -0,160 -0,202
NNGTall w. RA -0,099 -0,254 0,014
TVGTavg w. FF -0,059 0,024 -0,175
TVGTavg w. AKN -0,191 -0,180 -0,267
TVGTavg w. RA -0,196 -0,160 -0,299
KNNGTavg w. FF -0,094 -0,240 -0,011
KNNGTavg w. AKN -0,175 -0,243 -0,167
KNNGTavg w. RA -0,189 -0,252 -0,191
NNGTavg w. FF -0,165 -0,234 -0,154
NNGTavg w. AKN -0,297 -0,389 -0,296
NNGTavg w. RA -0,201 -0,594 0,125

Table 7.8: End SV result of game tree-based experiments vs. AttackMove (Aver-
aged over sides and situations). The important fact in this table is that TVGTall
and KNNGTall outperforms AttackMove on average in two out ofthree situations.

106

CHAPTER 7. RESULTS

Game tree-based experiment SV Fair Unfair
TVGTall w. FF -0,189 -0,44 -0,033
TVGTall w. AKN 0.105 0,302 -0,039
TVGTall w. RA -0.132 -0,319 -0,013
KNNGTall w. FF -0.431 -0,835 -0,242
KNNGTall w. AKN 0.028 0,160 -0,090
KNNGTall w. RA -0.320 -0,852 0,053
NNGTall w. FF -0.281 -0,322 -0,380
NNGTall w. AKN 0.236 0,539 0,050
NNGTall w. RA -0.078 0,043 -0,238
TVGTavg w. FF -0.127 0,062 -0,380
TVGTavg w. AKN -0.178 -0,269 -0,175
TVGTavg w. RA -0.259 -0,568 -0,080
KNNGTavg w. FF -0.421 -0,788 -0,264
KNNGTavg w. AKN 0.062 0,224 -0,069
KNNGTavg w. RA 0.140 0,226 0,125
NNGTavg w. FF -0.128 -0,162 -0,157
NNGTavg w. AKN 0.051 0,245 -0,118
NNGTavg w. RA -0.285 -0,296 -0,417

Table 7.9: End SV result of game tree-based experiments vs. AttackNearest (Aver-
aged over sides and situations). The important fact in this table is that KNNGTavg
outperforms the AttackNearest on average in two out of threesituations.

Rule sequence SV Fair Unfair
FocusFire -0,165 -0,248 -0,174
AttackKNearest -0,043 0,053 -0,170
RangedAssist -0,159 -0,280 -0,093

Table 7.10: End SV result of rule sequences vs. the built-in experiments (Averaged
over sides, situations and opposing experiments). The important fact in this table
is that the AttackKNearest rule-sequence performs better than the two other rule-
sequences.

107

CHAPTER 7. RESULTS

Rating method SV Fair Unfair
TVGTall -0,039 0,043 -0,149
KNNGTall -0,127 -0,225 -0,102
NNGTall -0,086 -0,092 -0,132
TVGTavg -0,161 -0,181 -0,229
KNNGTavg -0,135 -0,254 -0,093
NNGTavg -0,160 -0,238 -0,170

Table 7.11: End SV result of rating methods vs. the built-in experiments (Averaged
over sides, situations and opposing experiments). The important fact this table
shows is that the TVGTall rating method performs overall best.

108

Chapter 8

Future work
"Choice. The problem is choice"

- Neo

In this chapter we wish to portray the nature of enhancementswhich could be
made in our project. We will describe the reason for the enhancements and propose
ways to obtain these.

8.1 Engine enhancements

When designing a system for real time use several optimisations may be needed
in order to uphold the real time constraints. Even though some optimisations were
implemented in this project additional contributions could be made to make the
system even more resilient to the time limit imposed. The primary motivations for
the optimisations are that the game tree can be built to a deeper level and that more
game states can be considered in the model.

As our project is written in Java and integrated with the engine as described
in section 6 on page 81 a possible optimisation would be to integrate the game
tree and its support functions within the engine. This optimisation would make
the data-propagation between C and Java unnecessary and would thus result in a
quicker solution. Also, an exact representation would be available at all times and
no considerations about what to propagate would be needed. Some of the code
should be redesigned due to the object hierarchy in the project and C’s non-object
oriented facilities.

8.2 Machine learning accuracy

When using machine learning techniques as described in section 5.5 on page 75
their accuracy can always be improved. As we train the machine learning algo-

109

CHAPTER 8. FUTURE WORK

rithms with handmade training examples and associated values the accuracy of the
algorithms depend solely upon the quality of the examples. Amore thorough anal-
ysis of the problem domain would very likely increase the quality of the training
examples and thereby increase the accuracy of the rating methods. In section 5.5.3
on page 78 we also described how to choose actions. Other methods for choosing
game tree nodes and assign values to the internal nodes couldbe investigated.

The threat values constituting the threat matrix are calculated by a handmade
equation as described in section 5.3 on page 60. It could be that we left out some
essential features and therefore threat value does not capture the overall value of a
unit. We chose the parameters involved due to apparent importance. But whether
these are the most important features is left unknown. If a more expressing equa-
tion could be found the obtained results could also be improved.

8.3 Improving evaluation methods

The scenario value (SV) described in section 5.6 on page 79 measures the course
of an SSC situation. The SV does not incorporate the number ofgame cycles spent
in the situation. Incorporation of game cycles would allow us to assign a lower SV
to the erratic behaviour described in section 7.5.1 on page 98 thereby not rating
these evaluations as high as they currently are. How this incorporation could be
achieved is not obvious to us.

The set of situations produced in the engine’s editor-module was made to be
able to test our game tree method and to let it battle against the other implemented
experiments. By extending the set of SSC situations one could discover whether
the end-results of the simulations would produce equally good results on these as
well. Also, it would be interesting to implement our method as an actual support
routine in Wargus thereby making the game tree method available to the play-
ers. It would be interesting to see whether human players would find our method
applicable to handle SSC situations.

8.4 Improving the integration with Wargus

Recall from section 5.3 on page 60 that fog of war was ignored.We assumed
implicitly that when the tree is about to be built, an actual combat situation is
already in process or just about to be. This is partially incorrect. Enemy units
not yet seen by the controlled units must not influence the decisions made. The
inclusion of fog of war can be achieved by letting the fields under the fog of war be
unavailable until these are within sight-range of a friendly unit. Available fields
in the snapshot would thus be the fields in sight. Some memory of previously

110

CHAPTER 8. FUTURE WORK

seen enemy units would have to be incorporated as it would be illogical to ignore
enemy units just seen.

The code handling the units implicitly assumes that the controlled units are
either of type melee or type ranged. In these two types there are a lot of different
units. We chose two for each side which were identical in attributes to make testing
and correctness of the algorithms easier. Additionally, the possibility of including
flying units was ignored. Since flying units have the same action possibilities as
either the melee land unit or the ranged land unit extending the code to include
these could be accomplished.

Allowing additional actions for the units such as the ability to cast magic or
use siege weaponry upon a target area is technically hard to achieve. The magic or
siege attacks are often in effect for a prolonged time. Unitsstanding in the target
zone are affected by the magic- or siege-damage for a while. The model cannot
currently handle this effect though the design could be extended to model this. The
prolonged effects could be modelled as attacks appearing inthe tree at intervals.
Many of the effects givex points of damage everyy’th second. An attack node
could be inserted everyy’th game cycle and estimate damage to the units within
the area of effect accordingly.

8.5 Game tree extensions

As described in section 7.5.1 on page 98 we do not use the path-finding algorithm
in the engine. Instead we statically calculate the shortestpath from all tiles to all
tiles. An extension of the model would naturally be to incorporate the handling
of non-static paths. A dynamic pathfinding-algorithm wouldbe needed to handle
other units obstructing the path. This algorithm would needto be extremely fast
since the shortest paths change dynamically during the calculation of the tree.
Some of the experienced problems with the game tree-based method were due to
the model’s inability to handle dynamic shortest paths. TheA* algorithm in the
engine could if redesigned be used to give these paths. But whether this would
violate the real time constraint is currently unknown.

Another future work topic is the fairly inflexibility of the game tree construc-
tion, because the number of game cycles to evaluate is specified statically. Another
approach could be to incorporate a detection of time spent ingame tree construc-
tion allowing it to stop if no more time is available. This would of course intro-
duce some problems. E.g. if the time limit is exceeded and units still exist with
no orders. This problem should then be solved reasonably so no units would stand
around doing nothing.

As described in section 5.4 on page 64 we model the enemy unitsas standing
still in the game tree. This is imprecise and in all SSC situations the enemy units

111

CHAPTER 8. FUTURE WORK

move around and attack. The problem is that in the current model the future states
are very imprecise. A different method for pruning the tree or a less restrictive
model for the enemy unit’s behaviour could be investigated.

By designing near-optimal rules and sets of rules the game tree could only con-
sider near-optimal states. Finding near-optimal rules areof course a game specific
topic. This problem depends on the actual engine, how complex the environment
is and the interdependency of the rules. Sequences of rules are equally hard to
design. The order is a very important factor for the success of the rule sequence.
We designed a few sample rule sequences by hand as previouslydescribed in sec-
tion 5.4.3 on page 73 which at the time of creation seemed likegood and simple
strategies. In a further investigation of the area of SSC a good starting point would
be to extend this rule set and possibly find better rule sequences. The rule system
of our game tree based method could also be extended to include better debugging
facilities. This would let us detect the erratic behaviour described in section 7.5
on page 98 and handle this before it appears in the evaluations.

112

Chapter 9

Conclusion
"I may not have gone where I intended to go

but I think I have ended up where I intended to be"
- Douglas Adams

In this thesis we defined the problem of small scale combat (SSC) situations in
real time strategy (RTS) games. We investigated the area of Game AI to provide a
basis for understanding the methods used for solving the SSCproblem.

We presented an overview of several computer game genres andargued that
consistent behaviour of characters in a game world is a contributing factor to the
overall quality of a computer game. We examined several behavioural models in
different computer game genres. We discussed whether the used methods resulted
in consistent character behaviour. Based on these investigations we concluded that
in SSC situations an optimal unit behaviour results in a consistent unit behaviour.

We presented different methods for handling SSC situationsalong with a dis-
cussion involving the advantages and disadvantages of these methods. Based on
this examination we chose a game tree model as the method for handling SSC
situations.

Investigating the game tree method applied to RTS games further, we intro-
duced the notion of timestamped game trees to handle the varying time lengths of
actions and concurrent actions. Three issues were identified and handled. The first
issue concerning the representation of the tree was handledby modelling a SSC
situation as a simplified snapshot of the game state. The second issue regarding
the size of the tree was handled by letting sequences of rulesreduce the fanout
of each node. The last issue involving which states to chooseafter the tree had
been constructed was handled by letting different algorithms rate the game tree
nodes. A handcrafted rating method and two machine learningalgorithms were
designed to perform this rating. As input to the rating methods we introduced the
threat matrix which contained all units threat values. The threat value formula was
designed to capture units’ desirability in a single value.

113

CHAPTER 9. CONCLUSION

To evaluate the performance of the game tree-based methods the Open Source
RTS game of Wargus was chosen as platform. Wargus was chosen because it is of
a commercial comparable quality and we had access to the source code. Further-
more, Wargus contains simple rules for handling SSC situations. These built-in
rules were opposed to the game tree variations to investigate which method per-
formed best.

The results obtained show that the performance of the game tree-based meth-
ods relies on the actual pruning and rating methods, as expected. Nevertheless,
the game tree method outperformed the built-in methods of Wargus. This fact
suggests that a game tree method which respects the real timeconstraints can ac-
tually perform better than methods currently used by the commercial computer
game industry.

If an optimal rule sequence can be devised by analysing the rules of the tar-
geted game the game tree model can be used to give players the option of au-
tonomously handling SSC situations effectively. This letsthe player shift his fo-
cus to the high level decisions needed to win in an RTS game. Furthermore, if the
game tree method is used solely by the computer controlled opponents the chal-
lenge posed by the opponents could be adjusted by using different rating methods
or different rule sequences without succumbing to letting the opponent cheat.

The game tree method is not without its limitations. Much work is needed to
implement the game tree and to fit the rules and the rating method to the actual
game. Also, as rule sequences are used to prune the game tree this method is also
sensitive to the ability of the rule designers to understandthe game at hand.

To conclude, we found that game trees can be used as an alternative way of
obtaining consistent behaviour in SSC situations. But morework could be made
in order to increase the performance of the game tree method in this domain.

114

Bibliography

[Abandonia, 2005] Abandonia. Home of abandonware DOS games, 2005.http:
//www.abandonia.com. Visited 18. May 2005.

[Adams and Mendler, 2002] David Adams and Michael Mendler. Automated
Generation of Dungeons for Computer Games.http://www.dcs.shef.ac.
uk/teaching/eproj/ug2002/pdf/u9da.pdf. Visited 21. May, 2002.

[AMAI, 2005] AMAI. Advanced Melee AI, 2005. http://amai.
wc3campaigns.com/. Visited 5. July 2005.

[Atari, 2000] Atari. Driver, 2000. http://www.atari.com/driv3r/. Visited
21. June 2005.

[Auran, 1997] Auran. Dark Reign, 1997. http://www.auran.com/games/
darkreign/default.htm. Visited 23. August 2005.

[Bethesda Softworks, 1994] Bethesda Softworks. The Elder Scrolls, 1994.http:
//www.elderscrolls.com/. Visited 20. May 2005.

[Björnson and Marsland, 2001] Yngvi Björnson and Tony A. Marsland. Multi-
cutα-β pruning in game-tree search.Theoretical Computer Science, 252:177–
196, 2001.

[Blizzard, 1995] Blizzard. Warcraft II, 1995. http://www.blizzard.com/
war2bne/. Visited 18. May 2005.

[Blizzard, 1998] Blizzard. Starcraft, 1998. http://www.blizzard.com/
starcraft/. Visited 31. May 2005.

[Blizzard, 2000] Blizzard. Diablo II, 2000. http://www.blizzard.com/
diablo2/. Visited 18. May 2005.

[Blizzard, 2002] Blizzard. Warcraft III, 2002. http://www.blizzard.com/
war3/. Visited 31. May 2005.

115

BIBLIOGRAPHY

[Blizzard, 2004] Blizzard. The Story of Warcraft, 2004. http://www.
worldofwarcraft.com/info/story/. Visited 22. April 2005.

[Blizzard, 2005] Blizzard. World of Warcraft, 2005. http://www.
worldofwarcraft.com. Visited 20. May 2005.

[Brockington, 2000] Mark Brockington. Pawn Captures Wyvern: How Computer
Chess Can Improve Your Pathfinding, 2000.http://www.gamasutra.com/
features/20000626/brockington_01.htm. Visited 8. July 2005.

[Buckland, 2005] Mat Buckland. AI-Junkie, 2005.http://www.ai-junkie.
com/. Visited 19. July 2005.

[Buro and Furtak, 2004] Michael Buro and Timothy M. Furtak. RTS Games and
Real-Time AI Research. InProceedings of the Behavior Representation in
Modeling and Simulation Conference (BRIMS), Arlington VA, 2004.

[Buro, 2002] Michael Buro. ORTS: a hack-free RTS game environment. InPro-
ceedings of the International Computers and Games Conference, 2002.

[Buro, 2004] Michael Buro. Call for AI Research in RTS Games. InProceedings
of the AAAI-04 workshop on AI in games, San Jose, 2004.

[Callan, 2003] Rob Callan.Artificial Intelligence. Palgrave Macmillan, 2003.

[Capcom, 1996] Capcom. Street Fighter Alpha II, 1996. http://www.
gamefaqs.com/coinop/arcade/data/583633.html. Visited 16. May 2005.

[Carlisle, 2004] Phil Carlisle. An AI Approach to Creating an Intelligent Camera
System. InAI Game Programming Wisdom 2. Charles River Media, Inc., 2004.

[Champandard, 2003] Alex J. Champandard.AI Game Development - Synthethic
Creatures with Learning and Reactive Behaviours. New Riders, 2003.

[Codemasters, 1998] Codemasters. TOCA race driver II, 1998. http:
//www.codemasters.com/tocaracedriver2/index.php?territory=
EnglishUSA. Visited 21. June 2005.

[Coulouriset al., 2001] George Coulouris, Jean Dollimore, and Tim Kindberg.
Distributed System – Concepts and Design. Addison Wesley, 2001.

[CSteam, 1999] CSteam. Counterstrike, 1999. http://counterstrike.
sierra.com/. Visited 16. May 2005.

[Dalmau, 2003] Daniel Sanchez-Crespo Dalmau.Core Techniques and Algo-
rithms in Game Programming. New Riders, 2003.

116

BIBLIOGRAPHY

[Davis, 1999] Ian Lane Davis. Strategies for Strategy Game AI.AAAI Spring
Symposium Technical Report SS-99-02, 1999.

[Design, 2003] Core Design. Tomb Raider: Angel of Darkness, 2003.http:
//www.tombraiderchronicles.com/tng/. Visited 22. June 2005.

[EA Games, 2000] EA Games. The Sims, 2000.thesims.ea.com/. Visited 21.
June 2005.

[EA-Sports, 2004] EA-Sports. Madden NFL 2004, 2004. http://www.
easports.com/games/madden2004/home.jsp. Visited 16. May 2005.

[Ensemble Studios, 1997] Ensemble Studios. Age of Empires, 1997.http://
www.ensemblestudios.com/aoe.htm. Visited 31. May 2005.

[Epic Games, 2004] Epic Games. Unreal, 2004.http://www.unreal.com/.
Visited 20. June 2005.

[Firaxis Games, 2001] Firaxis Games. Civilization III, 2001. http://www.
civ3.com/. Visited 14. July 2005.

[Fogel, 2002] David Fogel.Blondie24: Playing at the Edge of AI. Morgan Kauf-
mann Publishers, 2002.

[Free Software Foundation, 1991] Free Software Foundation. GNU General Pub-
lic License version 2, 1991.http://www.gnu.org/copyleft/gpl.html.
Visited 22. April 2005.

[Free Software Foundation, 1999] Free Software Foundation. GNU Lesser Gen-
eral Public License version 2.1, 1999.http://www.gnu.org/copyleft/
lesser.html. Visited 27. July 2005.

[Fu and Houlette, 2004] Dan Fu and Ryan Houlette. The Ultimate Guide to FSMs
in Games. InAI Game Programming Wisdom 2. Charles River Media, Inc.,
2004.

[GameFAQs, 1993] GameFAQs. NBA games, 1993.http://www.gamefaqs.
com/search/index.html?game=NBA&x=0&y=0. Visited 21. June 2005.

[GameFAQs, 1996] GameFAQs. FIFA, 1996. http://www.gamefaqs.com/
search/index.html?game=fifa&x=0&y=0. Visited 21. June 2005.

[GameFAQs, 2005] GameFAQs. Video game FAQs, 2005.http://www.
gamefaqs.com. Visited 18. May 2005.

117

BIBLIOGRAPHY

[GameSpot, 2005] GameSpot, 2005. http://www.gamespot.com. Visited 7.
July 2005.

[Gammaet al., 1994] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns - Elements of Reusable Object-Oriented Software.
Addison Wesley, 1994.

[Goodrich and Tamassia, 1998] Michael T. Goodrich and Roberto Tamassia.
Data Structure and Algorithms in Java. John Wiley and Sons, 1998.

[Grimani, 2004] Mario Grimani. Wall Building for RTS Games. InAI Game
Programming Wisdom 2. Charles River Media, Inc., 2004.

[Gustafsson, 2004] Tommi Gustafsson. Warcraft III AIs, 2004.http://users.
tkk.fi/~tgustafs/wc3ai.html. Visited 6. July 2005.

[Hubbard, 2002] Craigh Hubbard. PC Gamer September article.Imagine Media,
2002.

[ID Software, 1999] ID Software. Quake III Arena, 1999. http://www.
idsoftware.com/games/quake/quake3-arena/. Visited 18. May 2005.

[Ierusalimschyet al., 2003] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes.
Lua 5.0 Reference Manual.Technical Report MCC-14/03, PUC-Rio, 2003.
http://www.lua.org. Visited 22. April 2005.

[IGN, 2005] IGN, 2005.http://www.ign.com. Visited 7. July 2005.

[Infocom, 1980] Infocom. Zork I: The Great Underground Empire, 1980.http:
//en.wikipedia.org/wiki/Zork_I. Visited 23. June 2005.

[Interplay, 1997] Interplay. Fallout, 1997.http://www.nma-fallout.com/.
Visited 20. May 2005.

[Jefsen, 2000] Per Jefsen. RTS Artificial Intelligence - An evolutionary approach.
Master’s thesis, DAIMI, Aarhus University, 2000.

[Joone, 2005] Joone. Java Object Oriented Neural Engine, 2005.http://
jooneworld.com/index.html. Visited 27. July 2005.

[Kent, 2004] Tom Kent. Multi-Tiered AI Layers and Terrain Analysis for RTS
Games. InAI Game Programming Wisdom 2. Charles River Media, Inc., 2004.

[Kozen, 1997] Dexter C. Kozen.Automata and Computability. Springer Verlag,
1997.

118

BIBLIOGRAPHY

[Laraée, 2004] François Dominic Laraée. Dead Reckoning in Sports and Strategy
games. InAI Game Programming Wisdom 2. Charles River Media, Inc., 2004.

[Lidén, 2004] Lars Lidén. Artificial Stupidity: The Art of Intentional Mistakes.
In AI Game Programming Wisdom 2. Charles River Media, Inc., 2004.

[Lionhead Studios, 2001] Lionhead Studios. Black and White, 2001.http://
www.lionhead.com/bw/index.html. Visited 21. June 2005.

[LucasArts, 1987] LucasArts. Maniac Mansion, 1987. http://www.
if-legends.org/\%7Eadventure/LucasArts.html\#Maniac_Mansion.
Visited 23. May 2005.

[LucasArts, 1990] LucasArts. Monkey Island, 1990.http://www.worldofmi.
com/thegames/monkey1/index.php. Visited 16. May 2005.

[Main, 1999] Michael Main. Data Structures & Other Objects Using Java. Ad-
dison Wesley, 1999.

[Manovich, 2001] Lev Manovich. The Language of New Media. MIT Press,
2001.

[Manslow, 2004] John Manslow. Fast and Efficient Approximation of Racing
Lines. InAI Game Programming Wisdom 2. Charles River Media, Inc., 2004.

[Mathiassenet al., 2001] Lars Mathiassen, Andreas Munk Madsen, Peter Axel
Nielsen, and Jan Stage.Objektorienteret Analyse og Design. Forlaget Marko,
2001.

[Maxis, 2003] Maxis. SimCity 4, 2003. http://simcity.ea.com/about/
simcity4/overview.php. Visited 16. May 2005.

[McLean, 2004] Alex McLean. Hunting down the Player in a convincing manner.
In AI Game Programming Wisdom 2. Charles River Media, Inc., 2004.

[Media Research Group, 2004] Media Research Group. Grand Master Chess,
2004.http://www.alawar.com/games/chess/. Visited 16. May 2005.

[Michalewicz and Fogel, 2004] Zbigniew Michalewicz and David B. Fogel.How
to Solve It: Modern Heuristics. Springer, 2004.

[MicroProse, 1995] MicroProse. Transport Tycoon Deluxe, 1995.http://www.
tycoongames.net/introduction.html. Visited 30. June 2005.

[Midway, 1992] Midway. Mortal Kombat, 1992.http://en.wikipedia.org/
wiki/Mortal_Kombat. Visited 21. June 2005.

119

BIBLIOGRAPHY

[Mitchell, 1997] Tom Mitchell. Machine Learning. McGraw Hill, 1997.

[Namco, 1994] Namco. Tekken, 1994. http://en.wikipedia.org/wiki/
Tekken. Visited 21. June 2005.

[Nareyek, 2001] Alexander Nareyek. Review: Intelligent Agent for Computer
Games.Computers and Games – Second International Conference – CG 2000,
pages 414–422, 2001.

[Nilsson, 1998] Nils J. Nilsson.Artificial Intelligence A New Synthesis. Morgan
Kaufmann Publishers Inc., 1998.

[Nintendo, 1985a] Nintendo. Mario, 1985.http://en.wikipedia.org/wiki/
List_of_Mario_games. Visited 21. June 2005.

[Nintendo, 1985b] Nintendo. Super Mario Brothers, 1985.http://www.
classicgaming.com/tmk/smb.shtml. Visited 16. May 2005.

[Orkin, 2004a] Jeff Orkin. Constaining Autonomous Character Behaviour with
Human Concepts. InAI Game Programming Wisdom 2. Charles River Media,
Inc., 2004.

[Orkin, 2004b] Jeff Orkin. Simple Techniques for Coordinated Behaviour. In AI
Game Programming Wisdom 2. Charles River Media, Inc., 2004.

[Paramount, 2005] Paramount. Tomb Raider, 2005. http://www.
tombraidermovie.com/. Visited 26. July 2005.

[Patel, 2004] Amit J. Patel. Pathfinding, 2004.http://theory.stanford.edu/
~amitp/GameProgramming/. Visited 2. May 2005.

[Polyphony, 2000] Polyphony. Gran Turismo II, 2000.http://www.gamefaqs.
com/console/psx/data/197469.html. Visited 16. May 2005.

[Rabin, 2004a] Steve Rabin, editor.AI Game Programming Wisdom 2. Charles
River Media, Inc., 2004.

[Rabin, 2004b] Steve Rabin. Common Game AI Techniques. InAI Game Pro-
gramming Wisdom 2. Charles River Media, Inc., 2004.

[Rabin, 2004c] Steve Rabin. Promising Game AI Techniques. InAI Game Pro-
gramming Wisdom 2. Charles River Media, Inc., 2004.

[Ramsey, 2004] Michael Ramsey. Designing a Multi-Tiered AI Framework. In
AI Game Programming Wisdom 2. Charles River Media, Inc., 2004.

120

BIBLIOGRAPHY

[Reynolds, 2004] John Reynolds. Team Member AI in an FPS. InAI Game
Programming Wisdom 2. Charles River Media, Inc., 2004.

[Rouse, 2000] Richard Rouse.Game Design Theory and Practice. Wordware
Publishing Inc., 2000.

[Runestone, 2005] Runestone. Seed, 2005.http://www.seedthegame.com.
Visited 26. July 2005.

[Sidran, 2003] Ezra Sidran.The Current State of Human-Level Artificial Intel-
ligence in Computer Simulations and Wargames. PhD thesis, University of
Iowa, 2003.

[Sidran, 2004] Ezra Sidran. A Calculated Strategy: Readings directed towards the
creation of a strategic artificial intelligence.Readings for Research. University
of Iowa, 2004.

[Sierra Entertainment, 1998] Sierra Entertainment. Half Life, 1998.http://
www.sierra.com/product.do?gamePlatformId=180. Visited 5. July 2005.

[Sierra Entertainment, 2005] Sierra Entertainment. No one lives forever II, 2005.
http://nolf2.sierra.com/site.html. Visited 18. May 2005.

[Sierra, 1987] Sierra. Leisure Suit Larry, 1987.http://www.if-legends.org/
~adventure/Sierra_On-Line,_Inc/Larry.html. Visited 23. May 2005.

[Sonic Team, 1991] Sonic Team. Sonic the Hedgehog, 1991. http:
//en.wikipedia.org/wiki/List_of_games_featuring_Sonic_the_
Hedgehog. Visited 21. June 2005.

[Sony Online Entertainment, 1999] Sony Online Entertainment. EverQuest,
1999.http://eqlive.station.sony.com/. Visted 20. June 2005.

[Stallings, 2000] William Stallings.Data & Computer Communications. Prentice
Hall, 2000.

[Stratagus, 2004] Stratagus. The Stratagus Engine v. 2.1, 2004.http://
stratagus.sf.net. Visited 22. April 2005.

[Studios, 1992] Westwood Studios. Dune II, 1992. http://www.
flashback-aw.net/games.php?GameID=38. Visited 16. May 2005.

[Sun Microsystems, 2003] Sun Microsystems. Java Native Interface, 2003.
http://java.sun.com/j2se/1.4.2/docs/guide/jni/index.html. Vis-
ited 18. July 2005.

121

BIBLIOGRAPHY

[Sweetser, 2004] Penny Sweetser. Strategic Decision-Making with Neural Net-
works and Influence Maps. InAI Game Programming Wisdom 2. Charles River
Media, Inc., 2004.

[Taylor, 2002] Laurie N. Taylor. Video Games: Perspective, Point-of-View, and
Immersion. Master’s thesis, Graduate Art School, University of Florida, 2002.

[TV2, 2005] TV2. TV2 spil, 2005. http://spil.tv2.dk/. Visited 23. May
2005.

[van de Wijdeven, 2002] Marco van de Wijdeven. Game Trees in Realtime
Games, 2002.http://ai-depot.com/GameAI/GameTree.html. Visited 21.
May 2005.

[Wargus, 2004] Wargus. Wargus v. 2.1, 2004.http://wargus.sf.net. Visited
22. April 2005.

[Weeks, 2005] Mark Weeks. Relative Value of Chess Pieces, 2005.http://
chess.about.com/library/ble23pvl.htm. Visited 11. July 2005.

[Westwood Studios, 1991] Westwood Studios. Eye of the Beholder II,
1991. http://www.abandonia.com/games/176/Eye_of_the_Beholder_
2.htm. Visited 16. May 2005.

[Wexler, 2002] James Wexler. Artifical Intelligence in Games. 2002.

[Wikipedia, 2004] Wikipedia. Lens Flare Definition, 2004. http://en.
wikipedia.org/wiki/Lens_flare. Visited 28. April 2005.

[Wikipedia, 2005a] Wikipedia. A* search algorithm, 2005. http://en.
wikipedia.org/wiki/A-star_search_algorithm. Visited 2. May 2005.

[Wikipedia, 2005b] Wikipedia. Computer and video game genres, 2005.http:
//en.wikipedia.org/wiki/Computer_and_video_game_genres. Visited
12. May 2005.

[Wikipedia, 2005c] Wikipedia. Dead Reckoning, 2005. http://en.
wikipedia.org/wiki/Dead_reckoning. Visited 28. June 2005.

[Wikipedia, 2005d] Wikipedia. Mean squared error, 2005. http://en.
wikipedia.org/wiki/Mean_squared_error. Visited 27. July 2005.

[Wikipedia, 2005e] Wikipedia. Real-time strategy, 2005. http://en.
wikipedia.org/wiki/Real_time_strategy. Visited 21. July 2005.

122

BIBLIOGRAPHY

[Wikipedia, 2005f] Wikipedia. Wikipedia, 2005.http://en.wikipedia.org/
wiki/Wikipedia. Visited 13. May 2005.

[Wikipedia, 2005g] Wikipedia. Wikipedia: Neutral point of view, 2005.http:
//en.wikipedia.org/wiki/Wikipedia:Neutral_point_of_view. Visited
15. May 2005.

[Wolf, 2002] Mark J. P. Wolf, editor.The Medium of the Video Game, chapter 6.
University of Texas Press, 2002.

[Woodcock, 2005] Steven M. Woodcock. The Game AI Page, 2005.http://
www.gameai.com/. Visited 19. July 2005.

[Yahoo, 2005] Yahoo. Yahoo Games, 2005.http://games.yahoo.com/. Vis-
ited 18. May 2005.

123

Appendix A

A note on search for literature

We have been extensively searching for literature describing the application of
methods from soft computing and game theory to commercial computer games.
This effort was however largely fruitless. Most literaturefound was from people
within the game industry describing by example how to improve the game and
the experience for the human player. There is little effort to describe the theo-
retic foundations for applying these techniques to the commercial computer game
domain.

Aside from papers we also found several websites among others [Woodcock,
2005] and[Buckland, 2005] maintained by people from the commercial computer
game industry regarding Game AI.

The situation is improving thanks to among others the work ofMichael Buro
and his team at the University of Alberta. They actively callfor a research agenda
in real time strategy games[Buro, 2004]. They are however mostly focused on
creating an open platform,[Buro, 2002], for testing Game AI in RTS games.

Books We also found a few books covering Game AI development. They do a
thorough job at explaining by examples how to develop Game AImethods for
different types of games. In[Champandard, 2003] Alex Champandard develops
a consistent opponent for first person shooters and explainsall methodologies
used in the process. In[Rabin, 2004a] a collection of articles concerning the topic
of Game AI written by people from the commercial computer game industry is
presented.

Older games As a part of this thesis we also researched the games which in ret-
rospect defined many of the computer game genres (see section2.2 on page 8) of
today. Official information about these games is hard to comeby as the companies
which created these vanish or devote their official homepages to newer games.

124

APPENDIX A. A NOTE ON SEARCH FOR LITERATURE

As sources of information to older games we found fan-based websites dedi-
cated gaming sites such as[GameFAQs, 2005] or the so-calledabandonwaresites
such as[Abandonia, 2005].

Wikipedia.org The online encyclopedia called Wikipedia,[Wikipedia, 2005f],
is a source of much information on the Internet. Anyone can edit any entry and
this is why so many topics exist on the site but is also why its credibility can be
questioned.

The people behind Wikipedia a group called Wikimedia are well aware of this
issue. They write:

“Wikipedia’s status as a reference work has been controversial. It has
received praise for being free, editable, and covering a wide range of
topics. It has been criticized for a perceived lack of accountability and
authority when compared with traditional encyclopedias, systemic bi-
ases, and deficiencies in some topics.”,[Wikipedia, 2005f].

To remedy this, Wikipedia has adopted an official policy,[Wikipedia, 2005g],
which asserts that Wikipedia articles must have aneutral point of view. We ac-
knowledge that Wikipedia might be biased and use referencesto Wikipedia with
care – as a way of getting background information for introductory purposes and
cross-references where possible.

125

Appendix B

Summary of diary

We have been writing a diary during the making of this thesis where notes of
design- and implementation-progress were kept. The individual entries which
were updated on a daily basis contains design choices, implementation details re-
garding non-thesis relevant information, the current progress of the thesis-report,
notes and general thoughts. We have loosely followed an iterative sequence of pro-
cess so design, implementation, game-engine examinationsand testing tasks were
alternated throughout the thesis-work as described in[Mathiassenet al., 2001].

During the course of this project several seminars were heldwhere this project
was presented. Constructive criticism and many good solution-models came from
these meetings where both associate professors and students alike were prepared
to comment on design and general issues.

A diary-extract is presented below giving a general overview of the diary.

September ’04 - November ’04 Early work with the general domain of RTS
games was conducted and a choice of game-engine, Stratagus,was decided upon.
General preliminary design-issues were discussed on more or less general levels.

In this early phase the game-engine was investigated to understand whether it
was technically possible to incorporate a Game AI module as adisjunct client. As
such it was found that extending the engine was technically more plausible than
extending the network protocols substantially.

Early implementation work based on the language of C++ was started but was
abandoned due to technical limits of the engine in collaboration with C++.

November ’04 - January ’05 The general design issues were exemplified
and design-work became more focused in solving the problemswithin SSC. An
overview of an RTS opponent was created and identifying areas of responsibility
was conducted. As a result several packages were identified and designed.

126

APPENDIX B. SUMMARY OF DIARY

The game-engine was studied in greater detail to find other applicable ap-
proaches than the disjunct client-model.

Implementation based on Java using the JNI-interface was started and within
days the code reached the level of the C++ implementation.

January ’05 - March ’05 The design progress moved towards a optimal
solution-model for SSC. Several discussions with Associate Professor Thiemo
Krink were conducted and it was during these discussions a game tree method
was considered and afterwards decided upon.

Much work was needed to incorporate JNI in the engine and the overall work
with the link between Java and the engine was performed during this period of
time.

Implementation regarding the game tree method was started and many discus-
sions involving learning algorithms primarily a neural network-solution into the
model were conducted. An implementation consisting of an experiment frame-
work was started with the objective of engine experimentation. This framework
was created in such a way that testing-code and individual experiment executions
could be incorporated easily.

March ’05 - April ’05 With the general design-issues in place much of the
work done during this period was used in implementation and design phases of
the actual code.

The engine was now and then referenced to test various situations on which
our code was based.

The implementation reached new heights as the set of rules was implemented.
This was to allow experiments in real simulations within theengine. A parser
which was used in context with training the neural network, timing of the individ-
ual runs and testing of the code was created. Several frameworks, Log4J and the
NetBeans profiler were included in the project to allow more testing and timing
capabilities. These were incorporated to allow a collaboration with our present
code.

April ’05 - May ’05 Design work in this period was reduced to designing
test-suites (unit-tests and integration-tests), final design of the neural network-
model, evaluation of the timing-runs and general design-layout changes.

The primary implementation work was done in the experiment framework and
in the timing of experiment- and test-cases. Implementation work regarding load-
ing and storing training examples was made to the parser written earlier. Imple-
mentation and incorporation of the Joone-framework was also conducted during
this period of time.

127

APPENDIX B. SUMMARY OF DIARY

For those modules in our project, which deserved special attention, software
reviews were made to secure the correctness of these.

The thesis report was started during the start of this periodand several layout
options were considered.

May ’05 - June ’05 The design process was extended to include the design
of additional rules which were needed in the pruning of the game tree. Design
of two alternative pruning methods KNN and TVGT was made and some minor
design changes were also carried out. Training examples were created by hand
and multiple ways of generating a greater number of these were discussed. Several
rule-compositions were discussed to give the units a more consistent behaviour.

During May implementation work was primarily made in extending the set of
rules and testing this. The two alternative pruning methodswere also implemented
and tested in several scenarios in Stratagus. Methods for generating additional
training examples based on the hand-made ones were implemented and tested.
The rule sequences were implemented and tested using an integration test-suite.

Several chapters in the thesis report were written as preliminary versions.

June ’05 - August ’05 Design-work in this phase of the project was only
used to discuss and re-design parts of the thesis-report.

Some code was created in the start of this period which could be used to collect
and merge various findings from the evaluation-runs. A module was implemented
to automate the data collection and merge the results.

The thesis report was finalised during this phase of the project.

128

Appendix C

Design and Implementation

In this appendix we will present the design and implementation details of our
system. Recall that the communication between our module and the Stratagus
engine was examined in chapter 6 and will therefore not be covered here.

C.1 Design

This section describes the design details of the game tree method. The primary
design choice was to create a plugin system for the engine. This design would
allow some players to use the game tree module for SSC situations while letting
other players use the standard client. I.e. the players would be able to choose be-
tween several plugin modules and pick the one best suited fortheir playing style
as discussed in section 2.3.2 on page 24. As already examinedin chapter 6 on
page 81 the method favoured an object oriented approach and in this light we im-
plemented three packages which allowed code-separation from the engine along
with an extensible and flexible design model. These packageswill be examined in
detail in the following sections.

C.1.1 Java packages

The package calledstratagus was created solely for interfacing between our
module and the engine. Our implementation for the game tree-based methods
calledrada uses this package for all functions related to the engine. Following,
each package and the associations between the classes in these will be examined.

129

APPENDIX C. DESIGN AND IMPLEMENTATIONS t r a t a g u st h e M a ps t r a t a g u s U n i t s 11 S t r a t a g u s M a pfi e l d sS t r a t a g u s U n i tu n i t T y p eu n i t S t a tp l a y e r0 . . *1 S t r a t a g u s F i e l du n i t0 . . *10 . . 1 1S t r a t g u s U n i t T y p e0 . . * 1 S t r a t a g u s U n i t S t a t0 . . * 1S t r a t a g u s P l a y e rt h i s P l a y e re n e m y P l a y e ru n i t s
0 . . *1 G r o u pu n i t s

0 . . * 0 . . *
H i s t o r yc h a n g e s C h a n g et y p eu n i t I Dv a l u ex , y0 . . *1 G a m e H a n d l e r I n t e r f a c et i c k (i n t)fi r s t R o u n d E v e n t ()e n d O f G a m e (b o o l , i n t)

Figure C.1: The UML diagram of the Stratagus package

Stratagus package

In the following, the classes which constitute thestratagus package are de-
scribed. The associated UML-diagram is depicted in figure C.1. All of the classes
with the prefix Stratagus are used to explicitly represent the data we need from the
engine whereas the History, Change and GameHandlerInterface classes represent
non-engine dependent information.

Stratagus Stratagus is the main class of the Stratagus package. It imple-
ments all of the required functions which the JNI code uses. This class furthermore
contains the scenario’s map and all units on this.

StratagusMap The StratagusMap class is a representation of the map in the
scenario. It contains a collection of fields which is associated with the map. This
class also contains methods for distance-calculations so units may quickly access
distance-information.

StratagusField The StratagusField class represents the individual entries on
the map. This class contains information about the field’s location on the map and
whether a unit or a environment feature is positioned in thislocation.

130

APPENDIX C. DESIGN AND IMPLEMENTATION

Group The Group class represents a group of units which a single player
controls in the engine. This object is a placeholder for a collection of units and
offers little functionality but accessor-methods.

StratagusUnit The StratagusUnit is an essential class since it representsa
unit in the engine. It contains a large amount of attributes although some important
attributes are contained in the StratagusUnitType- and StratagusUnitStat-classes
instead. This is because these either are static for the individual types of units
(melee or ranged) or depend on upgrades such as an increase inarmour or weapon-
damage.

StratagusUnitType The StratagusUnitType class contains information about
those attributes which are shared for all units of that specific type.

StratagusUnitStat The StratagusUnitStat class contains information about
those attributes which have been upgraded by technologicaladvances.

StratagusPlayer The StratagusPlayer class represents the player controlling
the units. This class should not been seen as an actual playerbut merely a way of
identifying who controls which units. The class contains information about what
faction is played and which units are in the player’s control.

Change and History The Change and History classes are used to record
a complete run of a simulation. A Change-object represents an essential single
change in a unit-state. The History class contains a collection of Change-objects
and the functionality of loading and storing these.

GameHandlerInterface The GameHandlerInterface class is the interface
all applications are required to implement and pass on to theStratagus class to
enable callbacks from the engine.

Rada package

Therada package contains several components including an experiment frame-
work which can be used for data collection and testing purposes. A game tree
component also is included along with the set of rules. Each component is de-
scribed in turn below.

In figure C.3 on page 134 therada package is depicted. Thestratagus com-
ponent described earlier is also shown in this figure. This isto emphasise that

131

APPENDIX C. DESIGN AND IMPLEMENTATIONE x p e r i m e n tp r u n e t U n i t R T ()p r u n e N o d e G T ()c l a s s i f y N o d e ()s e t u p ()fi r s t R o u n d E v e n t ()t i c k ()e n d O f G a m e () E x p e r i m e n t A t t a c k N e a r e s tE x p e r i m e n t A t t a c k M o v eE x p e r i m e n t S t a n d G r o u n dE x p e r i m e n t G TE x p e r i m e n t R u l e G TE x p e r i m e n t R u l e G T A v gE x p e r i m e n t R u l e G T A l lE x p e r i m e n t K N N G T E x p e r i m e n t T V G TE x p e r i m e n t T V G T A l lE x p e r i m e n t T V G T A v gE x p e r i m e n t K N N G T A l lE x p e r i m e n t K N N G T A v g
Figure C.2: The UML diagram of the Experiments component

communication is solely transmitted between thestratagus package and the
rada package and not between therada package and the Stratagus engine.

Firstly, the Experiments-component depicted in figure C.2 will be described
and following this description the remaining classes of therada component shown
in figure C.3 on page 134 will be elaborated upon.

Experiment framework

The classes which are included in the experiment framework are described in the
following and the UML associated which depicts the overall design of the experi-
ment framework is shown in figure C.2. It should be noted that several experiment
classes are not depicted nor described since these only served in testing various
engine-dependent aspects.

Experiment Experiment is an interface and represents a general experiment
which all experiments in the framework implement. It contains methods which
aim towards a game tree model since this was the primary focusof this thesis.

ExperimentAttackMove The ExperimentAttackMove class represents the
experiment in which an attack-move command examined in section 3.4.1 on page 40
is given to each controlled unit. The destination of the attack-move is calculated as
the centre of the enemy group. This command is given to each controlled unit ev-
ery 50’th game cycle. From here on the resulting behaviour isdetermined solely by

132

APPENDIX C. DESIGN AND IMPLEMENTATION

the attack-move order and the engine’s default behaviour asdescribed in section
3.4.4. This way of conducting combat is very similar to the way human players
do since players generally select several units and then perform an attack-move
command towards the enemy forces.

ExperimentAttackNearest The ExperimentAttackNearest class represents
the experiment in which each controlled unit is ordered to attack the nearest en-
emy unit. If multiple units are equally close a random one of these is chosen. This
order is given to each unit every 10’th game cycle. If the pathto the nearest en-
emy unit is blocked by obstacles the controlled unit will automatically find a way
around these. If another unit comes closer this unit will be attacked instead, i.e. no
memory of who engages who is included.

ExperimentStandGround The ExperimentStandGround class orders each
controlled unit to stand ground as described in 3.4.1. This stand ground order
is given to each unit every 10’th game cycle. No movement actions will be per-
formed. Due to the default behaviour a stand ground’ed unit will only attack if the
enemy stands in front of it.

ExperimentGT This class is the most general experiment which uses a
game tree model. It is the methods within this class which construct the game tree
and apply the chosen actions found in the game tree to the engine. Every experi-
ment which uses some form of game tree extends this class and overrides certain
methods such as how rating on both internal and leaf nodes is accomplished.

ExperimentRuleGT The ExperimentRuleGT class is a super class for sev-
eral experiments. This class extends the ExperimentGT withthe option of using
rules to prune the game tree as described in section 5.4. Every subclass overrides
the rating method used whereas this class uses a neural network to evaluate the
game tree nodes. Nodes are rated by rating all leaves and taking the minimum
value and assigning this to the parent node. Thus, all subclasses use the same
game tree construction algorithm and only vary in the ratingmethod and how the
internal nodes are rated.

The ExperimentRuleGTAvg subclass also uses a neural network to rate nodes
but rates each internal node with the average of its children.

The ExperimentRuleGTAll subclasses the same rating methodas above but
only rates the child-nodes of the root to derive actions.

ExperimentTVGT The ExperimentTVGT class uses thethreat matrix rater
(TMR) rating method as previously described in section 5.5.1. The TMR uses the

133

APPENDIX C. DESIGN AND IMPLEMENTATIONG a m e H a n d l e rs t r a t a g u s 11 111 1 E x p e r i m e n t s
G a m e T r e eS q u a dN o d e

S q u a ds t r a t a g u s U n i t ss n a p s h o t
N o d eA c t i o n sS n a p S h o t

C o m m a n dS n a p S h o tu n i t sfi e l d s 0 . . *
10 . . * 1

11
1 . . * 11 1 P a i rS n a p S h o t U n i t

R u l e

1 . . *1
1 . . * 111

1 . . *1
1 . . *

1
0 . . *1

1 . . *
1

Figure C.3: The UML diagram of the rada package

sum of the threat matrix to decide the related node’s value. In this experiment all
game tree leaves are rated according to the sum whereas internal nodes are given
the minimum value of their children.

The ExperimentTVGTAvg subclass also uses the TMR as rating method but
rate all internal nodes with the average of the children.

The ExperimentTVGTAll experiment also uses the TMR rating method but
only rate the the immediate children of the root.

ExperimentKNNGT The ExperimentKNNGT class uses aK nearest neigh-
bour (KNN) algorithm as rating method. This experiment rates the leaves and
assigns to a node the minimum of its children.

The ExperimentKNNGTAvg subclass also uses the KNN rating method to rate
each leaf and each internal node is given the average value ofits children.

Finally, the class ExperimentKNNGTAll uses the KNN method but only rates
the immediate children of the root.

Rada package continued

GameHandler The GameHandler class is an actual implementation of the
GameHandlerInterface from thestratagus package. This class organises the

134

APPENDIX C. DESIGN AND IMPLEMENTATION

propagation of events to experiments. The GameHandler is also responsible for
outputting results from the experiments.

Squad The Squad class encapsulates a collection of units and is capable of
creating a snapshot centred around the units.

SnapShot The SnapShot class represents the controlled units and their im-
mediate environment. This class contains methods for updating the state of the
units and is furthermore responsible for detecting and handling conflicts in unit-
actions. A SnapShot-object is part of a node in the game tree.

SnapShotUnit The SnapShotUnit class represents a unit in our model. It
contains many of the attributes found in the StratagusUnit class in thestratagus
package but has additional methods for calculating its threat value and distances
to the nearest enemies. Lastly, a collection of methods is available for removing
certain actions which have been deemed by the rules or the actual game’s state to
be illegal.

GameTree The GameTree class is our implementation of a timestamped
game tree. It is responsible for building the tree to a certain depth and to build
the tree correctly according to included rules.

Node The Node class is our implementation of a node in the game tree.
The class does not contain much functionality but acts as an object for holding
references to a SnapShot-object. This class also contains arepresentation of the
actions which lead to this node from its parent. This information is obtained by
using a collection of Pair-objects.

Pair Pair is a class which encapsulates information about important changes
in the game state. A collection of Pair-objects is used to derive a child-node from
its parent.

Rule The Rule class is an abstract class which is used as a placeholder
for a rule’s specific priority. The class contains two methods the pruneRT- and
pruneGT-method which an actual implementation of a rule should override. These
methods are used in the calculations to derive a node’s fanout.

A factory-class described in[Gammaet al., 1994, Chap. 3] was implemented
called RuleFactory. This static class is used for instantiating rules described in
section 5.4 and is used from the class responsible for setting up the Java packages.

135

APPENDIX C. DESIGN AND IMPLEMENTATION

Command The Command class contains actions applicable to units in the
engine. This class is used exclusively by the ExperimentGT-class and its sub-
classes.

C.2 Implementation

In this section we wish to present the implementation details of the most impor-
tant methods in our module. We also aim to present a detailed view of how we
construct game trees and how we apply rules to these.

Rating methods

As a handcrafted rating method the threat matrix rater (TMR)was implemented.
The TMR simply iterates through the threat matrix and sums the entries.

To implement the neural network, a large Java project calledJoone, [Joone,
2005], was used. Joone is released under the LGPL,[Free Software Foundation,
1999], license and provided the necessary training and experimentation function-
ality which were needed to rate the game tree nodes. Each input node in the net-
work is mapped to an entry in the threat matrix. The output of the network is a
single value which represents the state’s value.

The K nearest neighbour algorithm was also implemented as ratingmethod.
When rating a node the KNN algorithm iterates linearly through every stored
training threat matrix and calculates the average of theseK. K was chosen to 5
in all experiments.

C.2.1 Datastructures and methods

In this section we aim to describe the different methods of the most interesting of
our classes.

StratagusMap

As previously mentioned in section C.1.1 on page 129 the StratagusMap class is
responsible for representing the map as the engine views it.This is done through a
double array of fields-objects. The most important methods are the following two:

calculateDistancesWe are often interested in knowing the length of the shortest
path between two fields on the map. To obtain this information, we run a
Dijkstra’s shortest path algorithm on all fields of the map before starting
the game. This method is responsible for exactly that. As a map contains

136

APPENDIX C. DESIGN AND IMPLEMENTATION

at least 32×32 tiles this computation takes some time. We have incorpo-
rated the loading and saving of precomputed data for each mapso Dijkstra’s
algorithm only runs once per map and this saved information is then only
loaded on subsequent runs.

getDistance This method accepts two pairs of coordinates and returns thelength
of the shortest path between these.

SnapShotUnit

A SnapShotUnit instance is a direct representation of a StratagusUnit tailored for
inclusion in the game tree calculations. It contains the unique identifier of the
StratagusUnit unit it represents along with the important attributes of the Strata-
gusUnit. A SnapShotUnit knows in what game cycle it is ready to perform actions.
An instance of SnapShotUnit also maintains an array of available actions and if
the unit is of the ranged type a list of ranged attack actions is also included. The
methods of interest in a SnapShotUnit are the following four:

estimateDamageWhen a SnapShotUnit attacks a unit, we need a way of estimat-
ing the amount of damage the engine will actually apply if theaction was
performed in the engine. This method calculates this value.The method
takes the target unit as parameter and returns the estimatedamount of dam-
age. Note that we use the Java random number generator and notthe gener-
ator in the engine. This implies that this method is not accurate.

calculateTV A SnapShotUnit is able to calculate its own threat value as described
in section 5.3 on page 60 and calculateTV returns this value.

getMapDistanceToUnit This method simply queries the static shortest path in-
formation in the map and returns the number of tiles in the shortest path
between this unit and the unit given as an argument.

getNumberOfActions A simple and efficient way of obtaining the number of
actions currently available to the unit.

SnapShot

To enable efficient access to the SnapShotUnit instances contained in a SnapShot
instance we have three datastructures available dependingon the nature of the
access. These were implemented due to the heavy time constraints involved and
are as follows:

To enable a quick lookup of a specific unit given the unit’s unique identifier a
hash table using Java’s HashMap instance contains a reference to all units in the

137

APPENDIX C. DESIGN AND IMPLEMENTATION

snapshot. This hash table uses the unit identifiers as keys soefficient lookups can
be made.

If quick access to the immediate vicinity of a specific unit isrequired, i.e. the
position is known we have an array representation of the units where the neigh-
bourhood of a given unit can be efficiently searched.

Lastly, a priority queue contains all units sorted by the game cycle in which
they are ready to perform actions.

A SnapShot instance contains the following methods of interest:

getRatingInput This method returns an array of doubles with 400 entries. Each
entry is uniquely mapped to one of the fields in the SnapShot and contains
the threat value for the unit occupying that field or zero as a default value.
This method iterates over the array representation of the units.

getReadyUnits For easy access to the units ready to perform actions in the game
cycle represented by the snapshot, the getReadyUnits method returns an
array containing these. As the ready times of units do not change during
the life of a single snapshot this method stores the result ofthe first call to
getReadyUnits in an internal variable. Subsequent calls togetReadyUnits
on the same instance of a SnapShot then returns the precalculated result.
The priority queue allows this method to perform its calculations quickly.

updateSnapShotWhen instantiating a new SnapShot we need to update the in-
formation in the new instance. This is achieved through the updateSnapShot
method. This method accepts a linked list of actions and updates the game
state by applying the effect of each action sequentially.

removeIllegalMoveAction When a unit performs an action the performed action
might influence the movement actions available to other units. This method
takes as arguments a unit and a linked list of actions to be performed by
other units in the snapshot. The method iterates through theavailable actions
of the unit and removes all actions which would conflict with at least one
action in the linked list.

setUnitActions This method takes a unit as argument and assigns the unit its
available movement actions as determined by the unit’s placement on the
map. No other factors than placement on the map and static environment
features are handled by this method.

C.2.2 Game tree construction

The GameTree class is responsible for constructing the timestamped game tree.
The pseudo-code seen in algorithm 1 on page 140 depicts our buildTree method

138

APPENDIX C. DESIGN AND IMPLEMENTATION

which builds the tree to a user-defined depth.
The buildTree method first checks if the argument node does not contain units

from both sides or if the depth given has been reached. In thiscase a leaf node is
identified and a rating of the node is performed.

In the general case the Buildtree-method first assigns the basic experiment-
independent allowed actions such as not moving outside the map and not mov-
ing into static environment features to each unit. Following, the unit-actions are
pruned according to the associated experiment and its rulesif any. A sorting of the
units based on the amount of actions is then performed. Afterwards, the children
of the node are calculated. The method is then called recursively for each of the
children and the best rated child maximumWeightChild is stored.

It should be noted that in our game tree model the effect of an action is applied
immediately and then the unit performing the action will be ready to perform an-
other action when exactly enough game cycles have passed in the model. Meaning,
a node which models an attack reduces the hitpoints of the receiving unit imme-
diately and not when the action is completed. This is a discretisation compared to
the way it is simulated in the engine, because the action’s effect lies implicit in the
transition and not during the transition as in the engine.

The pseudo-code of calculateChildren-method is depicted in Algorithm 2.
This method takes as input a tree node, a list of units and a list of actions and
creates the node’s fanout, i.e. the children of the node as output.

The method first checks if the list of units is empty and if so a child is created
as a deep copy of the actual node. An update of the child is thenperformed as
well as updating the timestamp of the child. The child-node is then added to the
children-list of the node.

In the general case the unit with the least amount of actions available is re-
moved from the list of units and experiment-dependent actions are pruned and
then actions which conflicts with other units’ earlier assigned actions are also re-
moved. Following the removal of actions each available action is appended to a
list and the list is then deep copied. The calculateChildren-method is then called
recursively. If all actions for a unit were removed the unit receives a standGround-
action and the method is then called recursively as above.

Recursion tree construction

When the game tree is being built just before the children of anode are calculated
the units are sorted by their available actions. The reason for this is of optimisation
reasons since the number of children of a node is the same independent of the
order of the units. Put another way, the leaves and the numberof layers in the
recursion tree is always the same regardless of which unit isbranched on first,
secondly and so on. The leaves constitute the permutations of available actions

139

APPENDIX C. DESIGN AND IMPLEMENTATION

Algorithm 1 : The buildTree algorithm
Input : The number of steps to look ahead,depth, and the root node,node
Output : A timestamped game tree, evolved from the input node

begin
if node does not contain units from both sidesor
node.timestamp >depth then

Experiment.rateNode(node);
return ;

end
assignActionsToReadyUnits(node.readyUnits);
Experiment.pruneNode(node);
sortUnitsByNumberOfAvailableActions(node.readyUnits);
calculateChildren(node, a copy ofnode.readyUnits, empty list);
val←−∞ ;
foreach c in node.childrendo

buildTree(depth, c);
if c.weight >val then

val← c.weight;
node.maximumWeightChild← c;

end
end
Experiment.rateNode(node);

end

and each layer refers to a specific unit. It should be clear that nodes with a large
number of children should be placed as far down the recursiontree as possible for
minimising internal recursion tree nodes.

Figures C.4 on page 142 and C.5 on page 142 shows two equally expressing
trees for three units. In figure C.4 on page 142 the unit with three actions available
is chosen to be branched on first, then the unit with two actions and finally the unit
with one action available. Opposed to this a similar situation is shown in figure C.5
on page 142 where the same units exist and have the same actions available. The
only difference is that the units in figure C.5 on page 142 are sorted based on their
available actions before recursing.

Since the number of leaves in the recursion tree is the same only the internal
nodes can be minimised. This minimisation can be accomplished by inserting the
unit with the fewest actions first.

140

APPENDIX C. DESIGN AND IMPLEMENTATION

Algorithm 2 : The calculateChildren algorithm
Input : A node,node, a list of units,unitList, and a list of actions,actionList
Output : A list of nodes,node.children, constituting the children of the

input node

begin
if unitList is emptythen

child← deep copy ofnode ;
updateNodeFromActions(child, actionList);
child.timestamp←minu∈child.unitsu.ready;
Add child to node.children;
return ;

end
u← removeFirstUnit(unitList);
Experiment.pruneUnitActions(u, actionList);
removeIllegalUnitActions(u, actionList);
if u.actions is not emptythen

foreach a in u.actionsdo
addActionToEndOfList(actionList, a);
aList← deep copy ofunitList ;
calculateChildren(node, aList, actionList);
removeActionAtEndOfList(actionList);

end
else

a← standGround action;
addActionToEndOfList(actionList, a);
aList← deep copy ofunitList ;
calculateChildren(node, aList, actionList);
removeActionAtEndOfList(actionList);

end
end

141

APPENDIX C. DESIGN AND IMPLEMENTATION

U n i t 3
U n i t 2 U n i t 2U n i t 2 { 3 ▷2 } { 3 ▷ 3 }{ 3 ▷1 }

U n i t 1U n i t 1U n i t 1U n i t 1U n i t 1U n i t 1 { 3 ▷1 ,2 ▷2 } { 3 ▷1, 2 ▷3 } { 3 ▷2 ,2 ▷2 } { 3 ▷ 2 , 2 ▷ 3 } { 3 ▷3 ,2 ▷2 } { 3 ▷ 3 , 2 ▷ 3 }
P e r m6P e r m5P e r m4P e r m3P e r m2P e r m1

{ 3 ▷1, 2 ▷2, 1 ▷1 } { 3 ▷1 ,2 ▷3 ,1 ▷1 } { 3 ▷2 ,2 ▷2 ,1 ▷1 } { 3 ▷2 ,2 ▷3 ,1 ▷1 } { 3 ▷3 ,2 ▷2 ,1 ▷1 } { 3 ▷3 ,2 ▷3 ,1 ▷1}

U n i t 1 c a n m o v e i n d i r e c t i o n { 1 }U n i t 2 c a n m o v e i n d i r e c t i o n s { 2 , 3 }U n i t 3 c a n m o v e i n d i r e c t i o n s { 1 , 2 , 3 }

Figure C.4: The full recursion graphU n i t 1
U n i t 2 { 1 ▷ 1 , 2 ▷3 }{ 1 ▷1 , 2 ▷2 } U n i t 3

P e r m6P e r m5P e r m4
{ 1 ▷ 1 , 2 ▷ 3 , 3 ▷3}{ 1 ▷1, 2 ▷3, 3 ▷2}{ 1 ▷1 ,2 ▷3 ,3 ▷1}U n i t 3

P e r m2P e r m1 P e r m3
{ 1▷ 1 , 2 ▷ 2 , 3 ▷ 3 }{ 1 ▷1 ,2 ▷2 ,3 ▷2 }{ 1 ▷1 ,2 ▷2 ,3 ▷1 } U n i t 1 c a n m o v e i n d i r e c t i o n { 1 }U n i t 2 c a n m o v e i n d i r e c t i o n s { 2 , 3 }U n i t 3 c a n m o v e i n d i r e c t i o n s { 1 , 2 , 3 }{ 1 ▷ 1 }

Figure C.5: The reduced recursion graph

142

APPENDIX C. DESIGN AND IMPLEMENTATION

Applying choice

When the game tree has been built and the nodes have been ratedthe task at hand
is to give commands to the units in the engine. From the root node the maxi-
mumWeightChild node is chosen and the actions which led to this node are in-
serted into a queue of commands. This queue only contains theactions of the
controlled units and not the actions of non-controlled units. When the queue is
filled with the maximumWeightChild’s actions the commands are propagated to
the units in the engine.

However, the implemented game tree and the command queue canhandle
cases much more complex cases than just choosing the immediate best child-node
of the root. The game tree is as an argument given the amount ofgame cycles
to which the tree should be built. The number of game cycles isalso given to
the method which fills the queue of commands. As such, the treecan be built to
game cycley and the queue can be filled to game cyclex where the only require-
ment is thatx < y. Due to the uncertainty involved in the model such as opponent
modelling and randomisations we chose to only assign commands as the imme-
diate maximumWeightChild of the root dictated. One could bysimply changing
an argument value calculate a long list of commands but due tothe uncertainty
involved the model would hastily become incorrect.

143

Appendix D

Results

In this appendix all tables generated from the evaluation runs described in section
7.2 are presented. Firstly, we will describe how the tables should be read and then
present the tables.

D.1 Reading the tables

Tables C.1 through C.16 show the results of all evaluations performed.

Tables C.1 through C.3 show the results of the game tree-based experi-
ments playing as Humans against theAttackMove-experiment in all designed sit-
uations.

Tables C.4 through C.6 show the results of the game tree-based experi-
ments playing as Humans against theAttackNearest-experiment in all designed
situations.

Tables C.7 through C.9 show the results of the game tree-based experi-
ments playing as Orcs against theAttackMove-experiment in all designed situa-
tions.

Tables C.10 through C.12 show the results of the game tree-based experi-
ments playing as Orcs against theAttackNearest-experiment in all designed situ-
ations.

Tables C.13 and C.14 show the results of theAttackNearest-experiment as
both Orcs and Humans against the built-in experiments.

144

APPENDIX D. RESULTS

Tables C.15 and C.16 show the results of theAttackMove-experiment as
both Orcs and Humans against each of the built-in experiments.

Tables C.17 through C.20 show the results in tables C.1 through C.12 averaged
over the rule sequences.

Tables C.17 and C.18 show the results of the game tree-based experiments
playing as Humans against the built-in experiments, averaged over rule sequences.

Tables C.19 and C.20 show the results of the game tree-based experiments
playing as Orcs against the built-in experiments, averagedover rule sequences.

Tables C.21 and C.22 show the results of the game tree-based experiments
against the built-in experiments, averaged over controlling both Humans and Orcs
and the rule sequences.

Tables C.23 through C.26 show the results in tables C.1 through C.12 averaged
over rating methods.

Tables C.23 and C.24 show the results of the rule sequences playing as
Humans against the built-in experiments, averaged over rating methods.

Tables C.25 and C.26 show the results of the rule sequences playing as Orcs
against the built-in experiments, averaged over rating methods.

Tables C.27 and C.28 show the results of the rule sequences against the built-
in experiments, averaged over controlling both Humans and Orcs and the rating
methods.

Table C.29 shows the results of the built-in experiments playing against each
other, averaged over controlling both the Humans and the Orcs.

145

APPENDIX D. RESULTS

D.2 The tables

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
TVGTall -0,428 0,033 0,221 -1,233 1,671
KNNGTall -0,506 0,033 -0,118 -1,222 1,039
NNGTall -1,267 0,033 0,218 -1,933 1,168
TVGTavg -0,528 0,033 -0,118 -2,017 0,664
KNNGTavg -1,1 0,033 -0,121 -1,233 1,671
NNGTavg -0,35 0,033 -0,118 -1,233 1,157

Table D.1: End result of game trees with FocusFire against the AttackMove ex-
periment (GT as Humans.).

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
TVGTall 0,467 0,033 0,379 -1,967 1,189
KNNGTall -0,25 0,033 -0,557 -2,017 1,039
NNGTall -0,128 0,033 -0,307 -2,017 1,6
TVGTavg 0,119 0,033 0,586 -2,017 1,061
KNNGTavg -1,322 0,033 0,629 -2,017 1,514
NNGTavg -0,792 0,033 -0,443 -2,017 1,136

Table D.2: End result of game trees with AttackKNearest against the AttackMove
experiment (GT as Humans).

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
TVGTall -0,161 0,033 0,086 -1,8 1,018
KNNGTall -1,478 0,033 0,386 -2,017 1,671
NNGTall -1,075 0,033 0,214 -2,017 1,2
TVGTavg -0,875 0,033 0,386 -2,017 0,536
KNNGTavg -0,842 0,033 -0,132 -2,017 1,671
NNGTavg -0,9 0,033 -0,632 -1,222 1,629

Table D.3: End result of game trees with RangedAssist against the AttackMove
experiment (GT as Humans).

146

APPENDIX D. RESULTS

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
TVGTall 0,036 0,033 0,136 -1,256 0,436
KNNGTall -1,444 0,033 0,136 -1,256 0,193
NNGTall -0,081 0,033 0,189 -1,967 0,514
TVGTavg 0,494 0,033 0,136 -1,967 0,421
KNNGTavg -1,042 0,033 0,207 -1,917 0,479
NNGTavg -0,147 0,033 0,207 -1,967 0,25

Table D.4: End result of game trees with FocusFire against the AttackNearest
experiment (GT as Humans).

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
TVGTall 0,517 0,033 0,879 -1,967 1,271
KNNGTall -0,097 0,033 0,125 -1,967 0,464
NNGTall 0,1 0,033 1,257 -1,917 1,039
TVGTavg -0,108 0,033 -0,45 -1,967 0,507
KNNGTavg 0,139 0,033 0,429 -1,967 0,943
NNGTavg 0,8 0,033 0,65 -1,356 0,179

Table D.5: End result of game trees with AttackKNearest against the Attack-
Nearest experiment (GT as Humans).

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
TVGTall -0,378 0,033 0,114 -1,356 0,5
KNNGTall -0,858 0,033 -0,464 -1,322 0,739
NNGTall -0,128 0,033 0,436 -1,322 0,407
TVGTavg -1,167 0,033 -0,471 -1,967 0,393
KNNGTavg 0,108 0,033 -0,371 -1,256 0,607
NNGTavg -0,4 0,033 0,054 -1,967 0,429

Table D.6: End result of game trees with RangedAssist against the AttackNearest
experiment (GT as Humans).

147

APPENDIX D. RESULTS

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
TVGTall 0,092 0,033 0,65 0,9 -1,829
KNNGTall 0,875 0,033 0,65 1,033 -1,471
NNGTall -1,2 0,033 0,65 1,967 -1,339
TVGTavg 0,092 0,033 0,65 1,95 -1,296
KNNGTavg -0,389 0,033 0,65 1,133 -1,529
NNGTavg -1,117 0,033 0,65 1,289 -1,829

Table D.7: End result of game trees with FocusFire against the AttackMove ex-
periment (GT as Orcs).

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
TVGTall 0,117 0,033 0,868 0,944 -1,629
KNNGTall 0,111 0,033 0,514 1,45 -1,7
NNGTall -0,133 0,033 -0,071 1,467 -1,857
TVGTavg -0,983 0,033 -0,443 1,533 -1,643
KNNGTavg 0,128 0,033 -0,407 1,033 -1,2
NNGTavg -0,125 0,033 -0,196 1,467 -1,771

Table D.8: End result of game trees with AttackKNearest against the AttackMove
experiment (GT as Orcs).

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
TVGTall 0,317 0,033 0,25 1,033 -1,543
KNNGTall 0,522 0,033 0,564 1,55 -0,679
NNGTall -0,394 0,033 0,239 1,967 -1,093
TVGTavg -0,389 0,033 0,239 1,517 -1,232
KNNGTavg -0,278 0,033 0,246 0,9 -1,318
NNGTavg -1,083 0,033 0,239 1,75 -1,657

Table D.9: End result of game trees with RangedAssist against the AttackMove
experiment (GT as Orcs).

148

APPENDIX D. RESULTS

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
TVGTall -0,925 -0,033 -1,007 1,717 -1,029
KNNGTall -1,025 -0,033 -1,007 1,767 -1,671
NNGTall -0,389 -0,033 -1,007 1,189 -1,254
TVGTavg 0,625 -0,033 -1,007 1,783 -1,757
KNNGTavg -1,311 -0,033 -1,007 1,517 -1,136
NNGTavg 0,3 -0,033 -1,007 1,883 -0,793

Table D.10: End result of game trees with FocusFire against the AttackNearest
experiment (GT as Orcs).

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
TVGTall 0,85 -0,033 -1,039 1,883 -1,343
KNNGTall 0,517 -0,033 0,093 1,8 -0,657
NNGTall 0,708 -0,033 0,093 1,733 -0,657
TVGTavg 0,383 -0,033 -0,9 1,8 -1,039
KNNGTavg 0,708 -0,033 -0,379 1,8 -1,05
NNGTavg 0,592 -0,033 -1,061 1,767 -1,061

Table D.11: End result of game trees with AttackKNearest against the Attack-
Nearest experiment (GT as Orcs).

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
TVGTall -0,511 -0,033 -0,5 1,717 -0,911
KNNGTall -1,544 -0,033 -0,543 1,717 -0,921
NNGTall 0,817 -0,033 -0,954 1,356 -1,393
TVGTavg -0,089 -0,033 -0,543 1,767 -0,514
KNNGTavg -0,097 -0,033 -0,543 1,733 -0,586
NNGTavg -0,339 -0,033 -0,5 1,683 -1,814

Table D.12: End result of game trees with RangedAssist against the AttackNearest
experiment (GT as Orcs).

149

APPENDIX D. RESULTS

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
AttackMove 0,289 0,033 0,996 -1,85 1,571
AttackNearest -1,017 0,033 0,771 -1,733 1,179

Table D.13: End result of AttackNearest vs. AttackNearest,and AttackMove
(AttackNearest as Humans).

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
AttackMove 0,106 0,033 -0,143 1,033 -1,471
AttackNearest 1,017 -0,033 -0,771 1,733 -1,179

Table D.14: End result of AttackNearest vs. AttackNearest,and AttackMove
(AttackNearest as Orcs).

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
AttackMove 0,128 0,033 -0,121 -1,517 1,686
AttackNearest -0,106 -0,033 0,143 -1,033 1,471

Table D.15: End result of AttackMove vs. AttackNearest and AttackMove (At-
tackMove as Humans).

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
AttackMove -0,128 -0,033 0,121 1,517 -1,686
AttackNearest -0,289 -0,033 -0,996 1,85 -1,571

Table D.16: End result of AttackMove vs. AttackNearest and AttackMove (At-
tackMove as Orcs).

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
TVGTall -0,041 0,033 0,229 -1,667 1,293
KNNGTall -0,744 0,033 -0,096 -1,752 1,25
NNGTall -0,823 0,033 0,042 -1,989 1,323
TVGTavg -0,428 0,033 0,285 -2,017 0,754
KNNGTavg -1,088 0,033 0,125 -1,756 1,619
NNGTavg -0,681 0,033 -0,398 -1,491 1,307

Table D.17: End result of game trees averaged over rules against the AttackMove
experiment (GT as Humans).

150

APPENDIX D. RESULTS

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
TVGTall 0,058 0,033 0,376 -1,526 0,736
KNNGTall -0,8 0,033 -0,068 -1,515 0,465
NNGTall -0,036 0,033 0,627 -1,735 0,654
TVGTavg -0,26 0,033 -0,262 -1,967 0,44
KNNGTavg -0,265 0,033 0,088 -1,713 0,676
NNGTavg 0,084 0,033 0,304 -1,763 0,286

Table D.18: End result of game trees averaged over rules against the AttackNearest
experiment (GT as Humans).

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
TVGTall 0,175 0,033 0,589 0,959 -1,667
KNNGTall 0,503 0,033 0,576 1,344 -1,283
NNGTall -0,576 0,033 0,273 1,8 -1,43
TVGTavg -0,427 0,033 0,149 1,667 -1,39
KNNGTavg -0,18 0,033 0,163 1,022 -1,349
NNGTavg -0,775 0,033 0,231 1,502 -1,752

Table D.19: End result of game trees averaged over rules against the AttackMove
experiment (GT as Orcs).

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
TVGTall -0,195 -0,033 -0,849 1,772 -1,094
KNNGTall -0,684 -0,033 -0,486 1,761 -1,083
NNGTall 0,379 -0,033 -0,623 1,426 -1,101
TVGTavg 0,306 -0,033 -0,817 1,783 -1,104
KNNGTavg -0,233 -0,033 -0,643 1,683 -0,924
NNGTavg 0,184 -0,033 -0,856 1,778 -1,223

Table D.20: End result of game trees averaged over rules against the AttackNearest
experiment (GT as Orcs).

151

APPENDIX D. RESULTS

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
TVGTall 0,067 0,033 0,409 -0,354 -0,187
KNNGTall -0,121 0,033 0,24 -0,204 -0,017
NNGTall -0,7 0,033 0,157 -0,094 -0,054
TVGTavg -0,427 0,033 0,217 -0,175 -0,318
KNNGTavg -0,634 0,033 0,144 -0,367 0,135
NNGTavg -0,728 0,033 -0,083 0,006 -0,223

Table D.21: End result of game trees averaged over rules against the AttackMove
experiment (Also averaged over sides).

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
TVGTall -0,069 -0 -0,236 0,123 -0,179
KNNGTall -0,742 -0 -0,277 0,123 -0,309
NNGTall 0,171 -0 0,002 -0,155 -0,224
TVGTavg 0,023 -0 -0,539 -0,092 -0,332
KNNGTavg -0,249 -0 -0,277 -0,015 -0,124
NNGTavg 0,134 -0 -0,276 0,007 -0,468

Table D.22: End result of game trees averaged over rules against the AttackNearest
experiment (Also averaged over sides).

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
FocusFire -0,696 0,033 -0,006 -1,479 1,229
AttackKNearest -0,318 0,033 0,048 -2,008 1,257
RangedAssist -0,888 0,033 0,051 -1,848 1,288

Table D.23: End result of rule sequences averaged over rating methods against the
AttackMove experiment (GT as Humans).

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
FocusFire -0,364 0,033 0,168 -1,721 0,382
AttackKNearest 0,225 0,033 0,482 -1,856 0,734
RangedAssist -0,47 0,033 -0,117 -1,531 0,512

Table D.24: End result of rule sequences averaged over rating methods against the
AttackNearest experiment (GT as Humans).

152

APPENDIX D. RESULTS

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
FocusFire -0,275 0,033 0,65 1,379 -1,549
AttackKNearest -0,148 0,033 0,044 1,316 -1,633
RangedAssist -0,218 0,033 0,296 1,453 -1,254

Table D.25: End result of rule sequences averaged over rating methods against the
AttackMove experiment (GT as Orcs).

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
FocusFire -0,454 -0,033 -1,007 1,643 -1,273
AttackKNearest 0,626 -0,033 -0,532 1,797 -0,968
RangedAssist -0,294 -0,033 -0,597 1,662 -1,023

Table D.26: End result of rule sequences averaged over rating methods against the
AttackNearest experiment (GT as Orcs).

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
FocusFire -0,485 0,033 0,322 -0,05 -0,16
AttackKNearest -0,233 0,033 0,046 -0,346 -0,188
RangedAssist -0,553 0,033 0,174 -0,198 0,017

Table D.27: End result of rule sequences averaged over rating methods against the
AttackMove experiment (Also averaged over sides).

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
FocusFire -0,409 -0 -0,419 -0,039 -0,446
AttackKNearest 0,426 -0 -0,025 -0,03 -0,117
RangedAssist -0,382 -0 -0,357 0,065 -0,255

Table D.28: End result of rule sequences averaged over rating methods against the
AttackNearest experiment (Also averaged over sides).

Scen7vs7 Scen1vs1 archer-ambush Scen3vs2 captured
AttackMove 0,198 0,033 0,427 -0,409 0,050
AttackNearest -0,198 -0,033 -0,427 0.409 -0,050

Table D.29: End result of AttackMove and AttackNearest vs. each other (Averaged
over sides).

153

Appendix E

Contents of the enclosed CD

We have chosen a web-page layout for browsing the data on the enclosed CD. In
the root of the CD there is a file calledindex.html which displays the entry page
for the data on the CD.

The movies included on the CD are recorded with Snapz Pro1 and edited with
Apple Quicktime 7 Pro2. Therefore, the viewing the movies require the quicktime
player.

There are the following sections on the CD:

Graphs This section shows the graphs of all performed evaluations.Each graph
shows the situation value (SV) for each 25 game cycle.

Movies The movies section contains links to and a description of allrecorded
movies.

Software This section contains links to Quicktime Player installersfor Windows
and Mac OS X. Note that the Windows installer bundles the latest iTunes
music player.

Stratagus The source code of the Stratagus engine, the Wargus game and our
module is available in this section along with a guide to installing, compiling
and running this project. Note that we have included the media files from
Warcraft II and expansion for use with the Wargus game. Thesemedia files
are copyright of Blizzard. We do not know whether further distribution of
these media files is legal but the reader should be aware of this issue.

1http://www.ambrosiasw.com/utilities/snapzprox/
2http://www.apple.com/dk/quicktime/pro/

154

