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1

I N T R O D U C T I O N

The whole humankind dreams about a creation of an artificial creature which
will be their servant, helper or companion. This dream is a part of the human
nature. It is possible to find it in the Jewish folklore in a form of the Golem, an
animated anthropomorphic being, created entirely from inanimate matter. In the
Talmud, it is written that Adam was initially created as a Golem. The most famous
Golem was reportedly created by rabbi Jehuda Loew ben Bezalel in Prague under
emperor Rudolph’s II. rule.

One of the goals in alchemy was to create a homunculus. The first record of
an artificial being in alchemical literature appeared in the book Visions of Zosimos,
written in the third century AD. The artificial being is denoted as an anthroparion
in this book, and it is something similar to the Golem but with a higher level of
autonomy and intelligence. The Arabic word takwin refers to the artificial creation
of life in the laboratory, including human life.

In a modern time, the robotics has the ambition to fulfill this ancient dream
- to build an artificial man. The first humanoid robot, a flute player, was built
by Jacques de Vaucanson in 1738 [85]. This robot was able to play 12 different
melodies. Vaucanson had arrived at those sounds by mimicking every muscle by
which a man would make them. Bellows inside the robot produces a varying flow
of air. The mechanical lips could open, close and move backwards or forwards. A
moveable metal tongue located inside the mouth governs the air-flow and creates
pauses. Because the robot was made from wood, and wooden fingers was not soft
enough to play a metal flute correctly, Vaucanson adds the glows which work as an
artificial skin.

Robot gakutensoku was built in Japan, Osaka in 1929. Gakutensoku could change
its facial expression, and move its head and hands via an air pressure mechanism.
In 1937, the robot Electro was built by the Westinghouse Electric Corporation in
USA,Ohio. Two meters tall, weighing 120 kilograms, humanoid could walk by
voice command, speak about 700 words (using a 78-rpm record player), smoke
cigarettes, blow up balloons, and move his head and arms. Leonardo da Vinci’s
mechanical robot hidden in medieval armor was designed in 1495, but it is not
known whether or not the device was build during Leonardo’s lifetime. Since the
discovery of the sketchbook, the robot has been built in 1950s faithfully based on
Leonardo’s design. This proved it was fully functional, as Leonardo had planned.

On the other hand, there exists the fear that the robots will become intelligent
and autonomous too much and rise against their creators - humans. Such a fear
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introduction

can be found in many movies and books, e.g. the novel Frankenstein or Modern
Prometheus written by Mary Shelley. Even the famous three Asimov’s robotic
laws express the necessity of the humans’ control over the robots. Also the drama
Rossum’s Universal Robots (RUR) written by Karel Čapek, which is cited in almost
every robotic literature for the first usage of the world robot1, warns of possible
robots’ rebellions.

As the robots were used more and more as tools, the robots lost their anthropo-
morphic form and get the form best suitable to perform a specific task. Maybe, the
fear from rebellion was also some non-conscious motivation, because people did
not dread the manipulator even the intelligence of such a robot can be on very high
level. In case of mobile robotics, robots obtain the shapes of different vehicles, boats,
submarines, airplanes and helicopters. The wheels and the caterpillars usually
overcame the artificial legs on the ground.

The anthropomorphous robots keep their place mainly in an entertainment, e.g.
toys like Nao humanoid robot. The robots like Honda’s Asimo, Sony’s Qrio, or
Toyota’s robotic trumpet player are going in the footprints of early robots, and
their purpose is mostly in showing the technical maturity of their builder. The
human-like shape can be advantageous in the field, where the robots are in a tight
contact with humans or co-work with them. One example for all, the NASA in
collaboration with the General Motors is building the robonaut, the humanoid
robot to work side by side with human astronauts. Notable is the fact, the robot is
planned to use two types of lower bodies, legged and wheeled according to the
environment to move through.

The field, where the robotics is still taking the inspiration from the humans
and animals is the cognition and intelligence. Cognitive robotics views animal
and human cognition as a starting point for the developing of robotic information
processing. Target robotic cognitive capabilities include perception processing,
attention allocation, anticipation, planning, complex motor coordination, reasoning
about the environment, actions and the goals. Cognitive robotics is concerned with
endowing the robot with an intelligent behavior by providing the robot with a
processing architecture that will allow it to learn and reason about how to behave
in response to complex goals in a complex world. Perception and action, and
the notion of symbolic representation are therefore core issues to be addressed in
cognitive robotics.

1.1 motivation

Nowadays, robots are quickly moving from the laboratories and factories into
households, offices, and streets. Mobile robots have to explore and navigate large-
scale every-day environments with only general assumptions about their properties
and structure. To do this, they have to sense their environment, construct a rep-
resentation of the environment, reason over that representation, and perform the

1 To satisfy the tradition, the word robot was invented by the Karel’s Capek brother Josef and refers to
the old Czech world robota which means a mandatory work
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1.2 thesis outline

actions to fulfill their goals. They also have to interact and communicate with
humans in an understandable form. In other words, the robot must possess cogni-
tive capabilities in order to operate in an every-day environment. The cognitive
capabilities are:

• Informational attitudes such as knowledge and beliefs,

• motivational attitudes such as preferences and goals,

• cognitive capabilities such as reasoning, decision making, planning, observing
and communicating and

• physical capabilities to move in the physical world, and to interact safely with
objects in that world.

The aim of the thesis is to allow a mobile robot to operate autonomously in
large every-day environment. Therefore the thesis focuses on the finding suitable
representation of the spatial knowledge about the surrounding environment. Two
sources of inspiration are used: the cognitive theories, how the humans and animals
represent the spatial knowledge, and existing implementations of robotic maps,
which are the robotic representation of the spatial knowledge.

The robot needs the mechanism, how to build the map (inner representation of
the knowledge about the environment) autonomously. Therefore, the algorithm
for autonomous exploration of the unknown environment will be proposed in the
thesis.

As the information gathered during the exploration are subject to errors, the
mechanism for handling the uncertain information is requested. The reasoning
algorithm will be proposed in the thesis. It has to combine the uncertain information
with the aim to diminish the uncertainty and to deduce the new information for
the actual knowledge.

1.2 thesis outline

The thesis is organized into two parts. The first part is an introduction into the
problem, and consists from this introduction, Chapter 2 which defines the problem
of robotic mapping, Chapter 3 introduces the goals of the thesis. The following
chapters present the current state of the art in the areas of cognitive theories
of the humans spatial representation (Chapter 4), robotic mapping (Chapter 5),
exploration (Chapter 6) and reasoning with uncertainty (Chapter 7).

The second part of this thesis is a description of the thesis contribution. Chapter 8

compares the existing representation of spatial knowledge and proposes the novel
representation of this knowledge. Then Chapter 9 follows, with the description the
method for reasoning about the spatial knowledge. Chapter 10 consists of detailed
description of a localizing and navigating algorithms used for proposed spatial
representation. Chapter 11 focuses on exploration algorithms for this representa-
tion. The experimental verification of the localization, navigation, exploration and
mapping is described in Chapter 12. The contributions of the work and the future
research are summarized in Chapter 13. The thesis concludes in Chapter 14.
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2

P R O B L E M D E F I N I T I O N

This thesis aims to solve the problem of a mobile robot operation in a large
environment. The autonomous movement is a crucial ability for the mobile robot
to operate in any environment and fulfill given tasks. The robot needs a model of
the environment to be able robustly, autonomously and repeatably move in the
environment. Therefore, the thesis deals primarily with the problem of mapping.

The problem of mapping is defined as a process of learning and maintaining an
inner spatial model of an initially unknown environment. This inner spatial model
is called a map. A mobile robot moves through an unknown environment and
integrates local spatial information, called observations, gathered over time into
coherent overall model which correctly reflects the spatial properties of a section of
the external world.

The environment is called large-scale as a space can not be perceived at once: the
sensor limitations make it necessary for a mobile robot to navigate through the
environment when building a map. In this case, the map must be integrated from
local observations gathered from different places over time. Note, the property of
“being a large-scale” is defined by perceptual mechanisms and capabilities rather
than by physical size of the space.

The integration process during the mapping is supposed to be either incremental
(on-line), new information is incorporated into the internal model an then discarded
or off-line, when all the input data are available at once and it is possible to process
the data even repeatedly.

The mapping problem is challenging because the available information is typ-
ically erroneous, imprecise, and ambiguous. A large part of the problem is the
perceptual aliasing. Different places in the environment look similar, and it is not
possible to distinguish these places using only the local observation. The problem
is to establish the correct correspondences between the currently observed entities
which represent the robot’s current local observation and the memorized entities in
the robot’s spatial model - the map.

2.1 formal definition

A classical formal definition of mapping problem uses a probabilistic terminology.
The robot moves through the environment and observes its’ local surrounding. Let
ot be a local observation at time t, a vector of readings from robot sensors. Let
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problem definition

OT = {o1, o2, o3, . . . , oT} be a sequence of observation from the beginning till the
time T. It is assumed, without loss of generality, that the robot takes exactly one
measurement in each time t.

The robot is moving actively using its’ actuators (wheels, legs, propellers etc.).
Let ut be the control action between time t− 1 and t, a vector of control values for
the actuators. Let UT = {u1, u2, u3, . . . , uT} be a robot’s actions from the beginning
till the time T.

Let m denote the map of the environment. As the map can be incrementally
updated with every incoming observation, the map in time t is denoted as mt.

The on-line mapping is defined as determining the map mt that maximizes the
conditional probability

p(mt|ot, ut, mt−1),

where the ot and ut is directly accessible for the robot, mt−1 is a map computed in
previous step and mt is actual map. It is easy to see, that the knowledge is build
incrementally, only the actual observation and control action is used. The final map
m is a map mT computed in the last step T of mapping process.

The off-line mapping is defined similar to on-line mapping as maximization of
conditional probability

p(m|OT, UT),

where the final map m is computed from sequence of all observations and control
actions.

The map is always gathered for a specific reason. Two main purposes for
mapping in robotics are the localization and navigation of a mobile robot.

Let a map m be :

localizable for a robot r if there is a function loc(t), that estimates the position
of r in m at any position in time t.

traversable for a robot r if there is a predicate conn(x, y) that for any elements
x, y ∈ m tells if there is a sequence of actions for r to go from x to y. The
conn(x, y) often computes also the sequence of action to follow the connecting
path.

Being localizable and traversable are not properties of a map itself, but rather the
properties of the pair a map and a robot. Localizable map contains the information
to allow a given robot to answer the question “Where am I?”, and a traversable
map contains the information to answer the question “How can I go from A to B?”.

There exists numbers of approaches solving the mapping problem together
with localization. These are denoted as simultaneously localization and mapping
(SLAM) or concurrent localization and mapping (CLM) approaches.

On-line slam seeks, besides the map, the present robot position xt, a vector
describing the position of the robot according to the conditional probability

p(xt, mt|ot, ut, mt−1).
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2.2 conditions

The position for a wheeled mobile robot on a flat ground is usually defined by three-
dimensional vector (two-dimensional coordinate and heading). As the robot is in a
raw terrain or is moving freely in the space, then the position is a six-dimensional
vector ( tree-dimensional coordinate and three rotational angles). The position can
be described also with higher-dimensional space, if the robot is more complex and
it is not possible to deal the robot as a rigid object.

Full SLAM (off-line) is the problem of calculating the join posterior probability

p(XT, m|OT, UT),

over the entire robot path XT and the map m, where XT = {x1, x2, x3, . . . , xT} is a
robot path.

The localization is consider as crucial for operation of a mobile robot by many
researchers. The navigation and traversability of the map is often pushed into
background and the navigation is often solved through localization and finding a
sequence of way-points.

This is not the only possible approach. Humans and animals are able to navigate
without explicit localization. As the goal of this thesis is to allow the robot to
operate and move in the large environment, the navigation is the crucial ability.
The localization is required only in particular situation and can be viewed as
a support for navigation but not the main goal. Therefore the thesis focuses
on building the traversable map of the large environment for the purposes of
navigation of the mobile robot.

2.2 conditions

To solve the mapping problem in full generality is hard, therefore the following
limitation of the environment is assumed. First, the properties of environment is
defined as follows.

Let the environment be structured environment if it consists of mutually disjoint
regions with strictly defined borders. The structure of the environment is given by
regions itself and their connectivity and adjacency.

Let the structured environment be stable, if all the changes of environment does
not influence the structure of the environment.

For example, indoor environments with rooms and corridors, urban environ-
ment with streets and city blocks or suburban environment with roads, gardens
and houses are typical structured environments. Similarly, a typical park-like
environment has a structure given by pathways and lawn regions. Typical urban
environment is highly dynamic environment with number of moving objects but
is stable as the roads and buildings defining the regions and its structure are not
changing.

The environments are supposed to be structured and stable in the rest of the
thesis.

21





3

T H E S I S G O A L S

The aim of this thesis is to allow a mobile robot to operate autonomously in a
large-scale every-day environment. The robot has to build a map of an unknown
environment and store it in an appropriate data structure. Then the robot uses
the map for localization and navigation while fulfills tasks (like a pick up and
delivery).

A model of the environment should also be understandable for people, as the
robot interacts often with people. Usually, human operator specifies the tasks
or targets of the robot movement. The interaction (or cooperation) is sometimes
necessary even during the map building.

Therefore, the main goals of this thesis have been determined as :

1. To perform a study of the currently used representations of the spatial
knowledge. The study will elaborate the properties and weakness of the
currently used representation of the spatial knowledge in natural and artificial
systems.

2. To propose a scalable probabilistic representation of the space - a map which
is able to represent diverse types of environments, indoor as well as outdoor
and deal with the uncertainty. Expected size of the operational spaces lies
in order of kilometers. An important expected property is possibility of
incremental building of the map as novel information is discovered. The
proposed map must be reusable.

3. To propose a method of an autonomous exploration without necessity of the
environment modification. As the robot has to operate in an every-day type
of environment, it is necessary to be able to learn the environment without
any modification made to it.

4. To propose a method for reasoning about uncertain spatial knowledge. All
the data about the environment are uncertain, due to the fact that these
are gathered using real sensors, which are subject to errors and noise. The
reasoning method should take these uncertain data and combine them with a
view to minimize the uncertainty in the build of knowledge. The reasoning
then allows to gain the information which is not directly observable by the
sensors.

5. To implement and integrate the proposed methods into a unified mapping
framework. The implementation will work with the real sensors and robots
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thesis goals

in every-day environments. As the robot must be able to operate in an
environment with real sensors, the set of localization and navigation methods
must be integrated with the proposed mapping methods.

6. To verify the proposed methods in realistic environments and conditions. The
methods will be experimentally verified and evaluated in the diverse types
of the environment and with diverse sensors. The verification will aim not
only to obtaining of the map but also to the usage map in real navigation and
localization tasks later on.
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4

C O G N I T I V E M A P S

This chapter describes, how the animals and humans deal with the representation
of the space. Such a representation can be source of inspiration for a robotics.

The mental representation of the environment is called cognitive map. This term
was created by E. Tolman in [81]. During his experiments with rats in a maze,
he observed that rat’s behavior is not a matter of mere simple stimulus-response
connections. Rats rather use an inner representation of the surroundings which
Tolman calls the cognitive map. The cognitive map was used in the case the learned
path was closed. The rats were able to choose the correct alternative route even
they never went these. The cognitive map is learned by rats even if they are not
rewarded for it, and they also remembered what they learned previously.

Downs and Stea in [16] define cognitive mapping as “a process composed of a
series of psychological transformations by which an individual acquires, codes,
stores, recalls, and decodes information about the relative locations and attributes
of phenomena in his everyday spatial environment.”

Many researches from different branches of the science are interested how the
human beings and animals cope with spatial knowledge. The process of acquisition,
manipulation and utilization of the cognitive maps is studied from different points
of view and for different reasons. Psychology and pedagogy is interested in a
description how this mental representation is being developed during growing of
the children and how the people learn the environment. Neuropsychology still tries
to find how the hippocampus is related to spatial reasoning and learning. Biology
studies how the animals (also the humans) are finding their way. Also architects
are interested in how people sense the surroundings and navigate in the city.

4.1 developmental theory

The developmental theory is based on children’s cognitive maps development.
The researchers mainly build on Piaget theory [63] and recognize three stages of
the development: (1) Landmarks, (2) Route map and (3) Survey map.
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cognitive maps

4.1.1 Landmarks stage

The landmarks level is the first stage and can be also called object level. Children
start to recognize objects and are able to distinguish them. Landmarks are objects in
the environment vital in determining orientation and current location. Landmarks
function as a kind of environmental index. The fundamental property of the
landmarks is that they must be uniquely identifiable. In reality, this requirement
can hardly be fulfilled.

4.1.2 Route map stage

At the route map stage, children connect the landmarks by the route. These
routes reflect the children direct experiences rather than abstract connections. The
route map is egocentric due to reliance on the direct and personal experience. As
the child is moving through his neighbourhood their cognitive map reflects it. The
routes connect the landmarks and have a topological character.

4.1.3 Survey map stage

The survey map stage is defined by a qualitative change of the space knowledge
representation. This change can be described as a movement from egocentric to
allocentric view. It means the objective frame of reference appears. One stream of
existing theories is modelling this objective frame of reference as a precise Euclidean
spatial information. But there are little experimental data to support this notion in
people’s mind. Also it appears the ability to determine spatial relationships of the
objects that are not close in space in this stage.

The survey map provides and overview of the large-scale space which is usually
too large to seen at once. Once the survey map is developed, the global information
is available for solving different types of tasks, e.g. way-finding.

4.2 neurological theory

Neurological theory describe the cognitive mapping as a neurological process
in the brain. O’Keefe and Nadel in [62] formulate a hypothesis that the primary
function of hippocampus is to form a cognitive map. This theory is based on
the existence of place-coded neurones in the hippocampus of rodents and spe-
cific rhythmic electrical activity recorded from the hippocampus during certain
behaviours. The activity of different place cells in hippocampus corresponds to
sensory stimulus from different places. Place cells do not form a Euclidean repre-
sentation of the environment nor are strictly topological as the rodents are able to
find shortcuts.

Later experiments with primates and humans described hippocampal cells that
fire in relation to the place the subject is looking at, rather than the place its body
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4.3 computational models of cognitive maps

is located. It is a frequent observation that without a fully functional hippocampus,
humans may not remember where they have been and how to get where they are
going.

4.3 computational models of cognitive maps

This section presents the models of cognitive mapping made by scientists from the
field of computer sciences and artificial intelligence. They build their models on the
psychological and neurological theories, but use formalism common in computer
sciences and artificial intelligence. This formalism allows to run simulations on the
computers. These simulated results were reused by psychologists and neurologists
and bring novel approach into the field of cognitive sciences.

4.3.1 TOUR model

The first comprehensive computational model of the human cognitive map is a
TOUR model introduced by Kuipers in his PhD thesis [42]. The TOUR model [43]
was strongly inspired by Kevin Lynch’s seminar book, The Image of the City [53],
and by studies of the development of children’s spatial knowledge [63]. All evidence
suggests that the human cognitive map represents a space quite differently from
a printed map, which has a single global frame of reference. Unlike previous
attempts to model spatial knowledge, the TOUR model included several distinct
representations for large-scale space, such as procedures for following a route from
one place to another, a topological map containing places connected by paths, and
localized metrical maps with separate frames of reference.

The TOUR model divides spatial knowledge into five categories and each cate-
gory has its’ own representation.

routes are represented as a sequences of actions.

a topological structure represents local topological properties of route net-
works, including the ordering of places on a route and local geometry of
intersections.

frame of reference defines relative positions of objects with respect to only
local referential point. Different frames of reference may not be comparable.

dividing boundaries provide a qualitative partial knowledge of position.

regions provide useful levels of abstraction for stating properties of their ele-
ments.

There are three classes of representation in the TOUR model: (1) representation of
the particular environment , (2) description of the current position and (3) inference
rules to manipulate the knowledge of two previous classes. Both the description of
current position (see Fig. 1b) and the environmental descriptions (see Fig. 1c) may
be incompletely specified. In this case, the TOUR model will function properly,
although with degraded performance.
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(a) Map (b) Current position

(c) Environment representation

Figure 1: TOUR computational model of human cognitive map.

28



4.3 computational models of cognitive maps

The inference rules that manipulate knowledge take place mostly through an
interaction between the environmental description and description of the current
position. Furthermore, the only accessed environmental descriptions are the ones
referred by the description of the current position. Therefore the most operations
are quite efficient due to a lack of search for environmental elements.

The inference rules fall into categories that correspond roughly to the kinds of
representation.

• Rules which work with the route instruction and can complete the missing
parts in each representation with information from the others.

• Rules maintaining the current heading or 2-D orientation with respect to
current frame.

• Rules detecting structural features such as dividing boundaries.

• Rules which use the hierarchy of regions, boundaries and referential frames
to solve the route-finding and position-finding problems.

The TOUR maintains a topological model of learned environments, but stores
route knowledge separately, in production rules. The TOUR model has been
criticized for the separation of route knowledge and topological model of the
learned environment. Kuipers admits [51] that this route knowledge is insufficient
to find novel routes or shortcuts. However, the TOUR has the capability to deal with
these shortcomings to some degree by the use of its stored topological information.

4.3.2 PLAN model

PLAN (Prototypes, Locations and Associative Networks) [12] is cognitive map-
ping theory, build on the top of the developmental theory. Basic functions of human
cognitive map during the way-finding defined in PLAN are:

landmark identification is the most basic component of way-finding. The
landmark identification problem in way-finding is to separate out distinctive
objects in the environment, called landmarks, which can later be used in
route planning and can be recognised while traversing the chosen route. The
landmark identification problem primarily concerns the object recognition
system.

path selection involves choosing a route to the goal. In this case a path is not a
direction, but is more algorithmic, for example, a series of places that will lead
to the goal. In many models of cognitive mappings, paths are conceptualised
as sequences of landmarks. To follow a path one goes from landmark to
landmark in the sequence. The path selection problem is cognitive, often
requiring the selection of one path among a number of alternatives.

direction selection involves choosing a direction in which to travel. The
direction selection problem, while generally visual, is more locational than
the landmark identification problem If the goal is in sight, a reasonable
direction to pick would be towards the goal. For goals that are not in sight
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the direction selection problem is more difficult; beyond the fact that the goal
cannot be seen, sometimes a journey will require a series of turns and shifts
in direction. Thus, direction selection at the starting point is rarely sufficient
to guide an entire route.

abstract environmental overviews are further generalizations of the rou-
te concept. If it is required to travel extensively in a particular environment,
it would be useful to have a coherent overview of the entire environment.
Rather than dealing with routes individually, such a structure would allow
them to be extracted from a common abstraction. In addition, this overview
would make large-scale reasoning about the environmental simpler. However,
these overviews do serve to increase the efficiency of way-finding approaches
without these afore mentioned capabilities. The problem of creating and
abstract environmental overview requires a hierarchical synthesis of each of
the other three solutions.

The PLAN builds on the three basic concepts: prototypes, locations and associa-
tive networks. The short description of them follows.

Prototypes

In the PLAN model, the landmarks are treated as a category called prototypes
rather than a single, unique object. These categories are a generalization derived
from a range of experience. In the case of a landmark, the landmark can be
experienced from different angles, distances, orientations etc. The most typical
features of the landmark will be part of the prototype. The prototypes are organized
into hierarchies, where individual examples will be at the bottom and higher levels
bring an increase of the generality.

The PLAN model imposes following requirements on the landmarks:

1. Landmarks must be recognizable. This in turn requires that (a) a landmark
must be recognizable from a variety of views and orientations, and (b) that
in many cases only a partial view of the landmark should be sufficient to
activate the entire representation.

2. The number of landmarks which can be active, or processed, at one time is
limited to 5± 2, the number of objects that a person can think of at one time.

3. Landmarks are intimately linked to the context. A good landmark in one
environment may be a poor one in another environment.

Therefore, not every object can be treated as a landmark because the fundamental
property of landmarks is that they are uniquely identifiable.

Associative Network

A topological system is encoded into a associative network where the nodes
represent landmarks, and directed links between them represent spatial proximity.
In such a network paths could be extracted by following the links from one
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4.3 computational models of cognitive maps

(a) Map (b) Location (Home)

(c) Associative Network

Figure 2: PLAN computational model of human cognitive map.

landmark to the next. This associative network is called Network Activity Passing
System (NAPS). All of the information is stored locally; the only other landmarks
that are connected to a landmark x are those that can be seen from x.

The path searching problem is solved in connectionist manner by spreading
activation from both the starting point and the goal location. The activity waves
will coalesce at some intermediate node which is treated as a subgoal and the
process is repeated until the complete path is extracted.

Location

A location is a local directional representation of the landmarks. An example can
be seen on Figure 2b. It is able to provide a relative change in orientation for any
neighboring target landmark. One of the hypotheses of the PLAN system is that
the directional structures used in cognitive mapping directly reflect how humans
process information (mainly visual information). Visual information is treated as a
fixed 2-dimensional picture. The orientation of the picture is related to the position
of the eyes, the head and the body.

The locations are stored in associative network called R-Net similar to NAPS
used for storing the landmarks (in the form of prototypes). R-Net has no attempt
to construct a single global spatial representation integrated over a large number of
scenes. Only local information is taken instead.
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The regional maps represent the survey map functionality. It is an abstraction
of the R-Net and network of landmarks. Regional maps reduce the amount of
information and not only provide another organization of it. More information can
be extracted from lower level representation if needed.

4.3.3 Yeap’s computational model

Yeap in [87] focuses on a problem how the information perceived directly from
sensors are used to compute a cognitive map. Yeap builds his computational model
on the Marr’s theory [56] of vision. In short, Marr suggests the process of vision
should be studied in three steps:

1. Primal sketch makes explicit the types of intensity changes present in the
image.

2. 2 1
2 D sketch makes explicit the shape and disposition of surface relative to the

perceiver.

3. 3D model representation makes explicit the three-dimensional shape of the
surfaces perceived.

The cognitive map is studied as two loosely coupled modules in this theory:

raw cognitive map produces a map of the environment from information
gathered through sensory modalities.

full cognitive map takes the map as input and produces different spatial
tasks.

Raw Cognitive map

The raw cognitive map (see Fig. 3) is represented as a non- egocentric and struc-
tured relative-absolute model. The important properties of the relative-absolute model
are: its parts are computed locally, allows incremental building and represents the
structure of the experience rather than the structure of the world.

Each local space is described with absolute space representation - ASR. The Absolute
space representation is computed in two steps: the first identifies the extent of the
space and the second computes a description in form of a volumetric descriptor
computed from the 2 1

2 D sketch.

The global space is referred as relative space representation. The main problem is
recognize the parts (in form of ASR) of an environment which have been visited
before. The following assumptions simplify the implementation: The ASR for each
part of environment is complete and ASR contains only its boundary description.
The relative space representation is computed simply by relating the ASRs via their
common exits.
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4.3 computational models of cognitive maps

(a) Map (b) Raw Cognitive Map

Figure 3: Yeap’s computational model of human cognitive map.

Full Cognitive Map

The full cognitive map consists of different place representations which are
formed by grouping the ASRs. The following types of information are made
explicit:

• The inter-level connection is the linkage for building hierarchical representa-
tion.

• The intra-level connection represents the structural relationship between
members of groups.

• The exit connection expresses the possible exits in terms of the actual ASRs
and allow to get knowledge where one can move from current place without
searching down the hierarchy.

Unlike the TOUR model, this model represents paths implicitly by connecting
ASRs. Also there are no explicit landmarks in this model.

The description of spatial models used in robotics follows in next chapter.
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R O B O T I C M A P S

Robotic mapping addresses the problem of acquiring spatial models of physical
environments through the mobile robots. To acquire a map, robots must be
equipped with sensors that enable it to perceive the surrounding world, e.g.,
cameras, range finders like sonar, laser and infrared technology, radar, tactile
sensors, compasses and GPS. All these sensors are subject to errors, measurement
noise, and have limited resolution and range. At the present, robust methods
exist for mapping environments that are static, structured, and of limited size.
Mapping unstructured, dynamic, or large-scale environments remains largely an
open research problem.

Two paradigms for map representation have been mainly pursued in robotics,
metric and topological maps.

5.1 metric maps

A metric map represents the environment by collecting positions of relevant
landmarks, features and object with respect to a single metric frame of reference
i.e. a global coordinate system [77], [49], [64]. During the process of building a
metric map is necessary to determine the position of a robot in a global frame
of reference. When the environment is a large-scale space, then a localization
becomes an important issue. Therefore the localization and mapping is tightly
coupled. Simultaneous localisation and mapping (SLAM) or concurrent mapping
and localisation (CLM) [70], [75], [58], [11] solve simultaneously the mapping
problem and the induced problem of locating the robot relative to its growing map.

In connection with SLAM techniques, three categories of metric map can be
recognized: (1) feature-based, (2) location-based and (3) view-based.

The feature-based approaches define map as a list of parametrized objects with
specified poses. Features like points, lines, corners etc., need to be extracted
from the raw sensor picture of the environment and therefore maps are limited to
environments for which the features are designed.

Location-based maps divide the environment into a number of regions. A special
case of this concept is occupancy grid [24], [60], which represents free and occupied
space in a rectangular grid at a fixed resolution and does not require a-priori knowl-
edge about the environment, objects or landmarks. Every grid cell is associated
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with one or more values, which correspond to physical properties, whereas one of
them can be the presence of obstacles. The main disadvantages of location-based
map are resolution-dependency, memory consumption and computational intensity
of many manipulations done over its content.

View-based maps [38] are composed of collection of full sensor readings associ-
ated with pose of the readings. These approaches can be considered as a subtype
of feature-based approach where the entire scan is considered for a feature. This
approach does not limit usability to any environment type and there is also no
information loss. Since the sensor readings usually contain large amounts of data,
the view-based maps are more demanding in terms of memory and computational
resources. Moreover the view-based maps are dedicated solely for localization and
navigation purposes. Easy visualisation and their use as a human readable output
belongs to advantages of this approach.

Metric maps excel in solving of some low-level problems encountered in robotics
[46, 48]. Metric maps reduce a pose error in small-scale space but this error
dramatically grows over large-scale spaces. As a consequence, metric maps cannot
easily handle large cyclical environments once the position has drifted excessively.
Perceptual aliasing makes it difficult to handle loop-closure event.

Mapping and planning in very large metric maps can be time consuming. Metric
maps also suffer from the lack of a good interface to higher-level symbolic problem
solvers.

5.2 topological maps

A topological map [42], [69], [57], [11] generally represents spatial knowledge
as a graph, describing locations and object of interest as nodes and their spatial
relations as edges. The concepts mostly used in topological mapping are described
in following sections.

5.2.1 Spatial Semantic Hierarchy

The basic concept outlined in the TOUR model (see Sec. 4.3.1) has been refined
into the Spatial Semantic Hierarchy (SSH)[44]. The SSH treats observations gathered
during movement through environment as the fundamental source of experience
for building a cognitive map of large-scale space. The SSH approach uses a natural
five-level semantic hierarchical description of large-space.

sensorimotor level describes the sensorimotor system of the robot which
provides the sensors and effectors.

control level. Control strategies and sensory measures are used to define
distinctive states and produce control trajectories which move the robot from
one distinctive state to the neighbourhood of another. A distinctive state
is defined as a local maximum found by a hill-climbing control strategy to
maximise a selected sensory feature or distinctiveness measure.
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causal level works with views, actions and schemes. The views are sensory
readings at a distinctive states. Actions represent the control law trajectories
through which the robot moves from one view to another. The trajectories
are a result of an application of a sequence of more than one control strategy.
Schemes provide the causal relations among the views and actions.

topological level works with places, directed paths and paths abstracting
relationships among the distinctive states and trajectories defined at the
control level and relationships among views and actions at the causal level.
The places and paths are nodes and edges in a topological map represents
environment. This map can be used for solving problem like finding route.

geometrical level includes geometrical properties as shapes, relative distance
and orientation, absolute distance etc. This geometrical properties are repre-
sented as annotation on the nodes and edges of the topological graph.

The logical dependencies among the levels are depicted on Figure 4. Different parts
of the cognitive map may represent knowledge at different SSH levels, but each
part of the map must respect the dependency structure.

Figure 4: Spatial Semantic Hierarchy scheme according to [44]

To verify the proposed model works, Kuipers and Byun implement exploration
and mapping algorithm based on SSH for a simulated robot NX [45]. NX robot has
sixteen sonar distance sensors covering 360 degrees and an absolute compass for
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global orientation. Another implementation of exploration and mapping algorithm
based on SSH is [50]. Lee implements his algorithm for the real robot Spot. Spot
has three-wheeled base and ring of twelve sonar sensors.

The formal axiomatization of the causal and topological levels is provided in
[69]. As the topological map is the result of an abduction process, finding the best
consistent explanation of the available observations, the formalization requires a
non-monotonic logic. This non-monotonic logical inference is implemented as an
algorithm that creates a tree of all possible topological maps with a preference order
of the leafs. The leafs represent the topological maps consistent with experience so
far.

Savelli [71] subsequently augmented the existing inference system with the test
for the planarity of the topological maps. This planarity test could be applied either
as a consistency requirement of as a preference criterion.

5.2.2 RPLAN

Kortenkamp in [39] implements the cognitive map theory PLAN (Prototypes,
Location and Associative Networks) [12] for a mobile robot. He calls his implemen-
tation RPLAN - Robot PLAN.

RPLAN uses the integration of sonar and vision through two theoretical concepts,
gateways and scenes. The gateway is a place that is a choice point and new
landmarks can be seen. In a building, these are typically doorways, outside they
occur where the visual narrowing is followed by visual opening. The gateways
are detected using the sonar sensors and correspond to big changes in the spatial
surroundings of the robot. The scenes are visual images taken and stored by the
robot at gateways and provide information that allows the robot to discriminate
among gateways.

Routes connect adjacent gateways. At each gateway, the route informs the robot
what direction to turn in order to move toward the next gateway along the way to
the goal. Routes are stored in a network (topological map). To attach a direction
to each connection in the network, Spreading activation network was used. The
spreading activation network is composed of nodes, which represent places, and
subnodes of nodes, which represent directions. These subnodes are connected
together with links of varying strengths.

RPLAN creates an additional level of representation on top of regional networks,
called regional maps. Regional maps correspond to what are called survey maps
and support the fourth function of cognitive maps: Environmental Abstraction.
Regional maps allow the robot to reason about its environment from a global
perspective.
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5.3 hybrid maps

A hybrid map combines metric and topological approaches to support advantages
and suppress disadvantages of both. The hybrid map, according the [9], can be
defined as a pair H =<M, C > whereM = {M1, . . . , Mn} is a set of maps called
components and C = {c1, . . . , cp} is a set of links. Each link is a pair < ci, cj >,
where mi is an object of Mi and mj is an object of Mj, with i 6= j.

This definition is wider than what is usually means by term “hybrid map”.
Therefore, in rest of the section, the hybrid map means a heterogeneous hybrid
map, where at least two of its components are of essentially different types, hereafter
the metric and topological.

Synergies, which can increase performance to a level that would be hard or
impossible to achieve using only single component, are gained by exchanging
and combining information between the components. Without this interaction,
the hybrid map would be simply a storage of independent maps and most of the
advantages would be lost.

Typical form of the hybrid map is aM = {T, M1, M2, . . . , MN}, where links C
connect the nodes of the topological component map with the local metric maps
describing in details the places represented by the nodes.

Typical example of this form is hybrid spatial semantic hierarchy [41]. The
SSH approach, where the topological map is a primary structure, was extended
by local perceptual map metrically accurate representation of the distinctive places.
Where the basic SSH treats views as atomic symbols, the hybrid SSH treats the
local perceptual map as the observable manifestation of a topological place. The
SLAM methods are used for creating local perceptual map. The problem of closing
loops is avoided while whole structure of the local map lies within the sensory
observation horizon.

Local SLAM method continually maintains robot’s localization in the frame of
reference of the local map. Accurate incremental localization supports incorporation
of observations into the local map, and accurate local motion planning. In the
basic SSH, hill-climbing provides the localization but at the cost of physical motion
to the distinctive place. As long the robot has enough knowledge to maintain its
localization within the local perceptual map, it no longer requires physical motion.

Also Tomatis at al. in [82], [83] and [84] describe environment by a global
topological map which permits moving in the whole environment, and local metric
maps which the robot can use as soon as it required improved localisation precision.
Local metric maps are represented by infinite lines.

Thrun et al. [80], [79] divide mapping on two phases. The topological mapping
phase solves a global position alignment problem between potentially indistin-
guishable, significant places and the subsequent metric mapping phase produces a
fine-grained metric map of the environment.

Simhon and Dudek [73] use occupancy grid as local metric descriptor of dis-
tinctive places. The global map is formed from a set of local maps organised in a
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topological structure. Local maps are denoted as islands of reliability because they
provide accurate metric information.

The approach entitled Atlas [6] has same form, but metric maps are the primary
structures and the topological component provides an additional information. Atlas
is a SLAM framework, comprising multiple small-scale mapping algorithms, can
be used to achieve real-time performance in large-scale, cyclic environments. The
map representation herein consists of a graph of multiple local maps of limited
size. Each vertex represents a local coordinate frame of reference and each edge
denotes the transformation between local frames as a Gaussian random variable.

Jefferies at al. [29], [30] use a hybrid map in form ofM = {T, M1, . . . , MN , MG}
There are also local metric maps to describe places but the hybrid map has the global
metric map MG in addition. Combination of information from the topological map
and absolute global metric map use for detection of cycles. The main purpose of
this approach is to close cycles in the topological map. However with the cycle
closed there is the opportunity to realign the global metric map, correcting the
error backwards through the map.

Duckett [19] uses the same hybrid map form with the global metric map as a
requested output. The topological map is used for ensuring the consistency of
the global map using the relaxation technique to deal with the errors in position
estimation.

FABmap [13], [14] is an approach to topological SLAM based on visual appear-
ance. FABmap is focused on localization and recognition of previously visited
places being very efficient for loop closing. This framework is focused on the
vision-only localization.

The hybrid maps are likely to become the dominant paradigm for representing
spatial information in autonomous robots. The main advantages of the hybrid map
are that it covers a larger extent of space and with better resolution, than would by
possible by any of it component maps.

The majority of maps used in robotics are focused on the localization of the robot.
This thesis focuses on the proposition of the map representation more focused
on the navigation of the robot, as the navigation is a crucial ability to operate the
robot in a large environment. The detailed comparison of widely used spatial
representation is provided in Chapter 8.
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6

E X P L O R AT I O N

The process of exploration can be understood as a process of autonomous
navigation of a mobile robot in an unknown environment in order to build a model
of the environment. An exploration algorithm can be defined as an iterative
procedure consisting of a selection of a new goal and a navigation to this goal. Such
an algorithm is terminated whenever the defined condition (mission objective) is
fulfilled. Besides, the usage of resources (e.g. the exploration time, the length of the
trajectory) is optimized. While optimal robot motion is relatively well-understood
in fully known environments, exploring robots have to cope with partial and
incomplete knowledge.

The exploration strategy determines the next robot goal in each exploration
iteration (one exploration step) with respect to the actual robot position, the current
knowledge about the environment, and a selected optimization criterion. Any
exploration strategy has to be able to adapt to any unexpected situations during
map acquisition.

The gready algorithms is often used as an exploration strategy. Robot always
moves from its current location to the closest location that it has not been visited
(or observed) yet, until the environment is mapped.

The exploration algorithm depends on the type of the created map. Following
sections give overview of the approaches for the metric and topological maps.

6.1 metric exploration

For a metric maps, exploration algorithms based on the Yamauchi frontier-based
exploration [86] are widely used. Only a sort description of these algorithms is
presented here, as the metric exploration is not a goal of the thesis.

The main idea behind frontier-based exploration is:"To gain the most new infor-
mation about the world, move to the boundary between open space and uncharted
territory." Frontiers are regions on the boundary between open space and unex-
plored space. By moving to successive frontiers, the robot can constantly increase
its knowledge of the world. A greedy exploration strategy is used in Yamauchi’s
original paper .

The other approaches modify exploration strategies of the frontier-base explo-
ration. The strategies differ in the way how candidates for the next goal are
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generated and in the criterion how the best candidate is selected. The authors
of [28] discussed two simple heuristics improving Yamauchi’s approach. The first
one uses Voronoi diagrams to prefer exploration of the whole room in office-like
environments before leaving it, while the second one repetitively re-checks whether
the currently approached goal is still a frontier. A strategy selecting the leftest
candidate according to a robot position and orientation with a defined distance to
obstacles is described in [59].

The work[47] proposes the strategy using the distance cost that reflects traveling
through all goal candidates. The cost is determined as a solution of the Traveling
Salesman Problem.

6.2 topological exploration

The topological exploration is an exploration where the topological map is a
model to build. This problem can be seen as a graph search, where the graph is
not known in advance.

In [37] bounds of worst-case travel distance of greedy exploration is discussed.
The worst-case travel distance of greedy mapping is O(|V|3/2) on strongly con-
nected undirected graphs G = (V, E).

Bender et al. [3] solve the problem of exploration of the graph with directed
edges. The vertices are completely unlabeled, but the outgoing edges of each vertex
have global ordering. The robot has ability to place a marker at the vertex and
recognize this marker later and to recollect it. It is shown in the paper, if the upper
bound n̂ on the number of vertices n is known and a single marker is used, the
running time is O(n̂2n6d2), where d is vertex degree. In addition, if the upper
bound on the number of vertices is not known, it is needed Ω(log(log(n))) markers
at least.

Dudek in [23] introduces an algorithm based on the maintenance and validation
of an explored graph. As new vertices are encountered, they are added to the
explored graph, which is a subgraph of the full graph, and their outgoing edges
are added to the set of edges that lead to unknown places and therefore must be
explored. This new vertex must be validated. Validating a vertex means making
sure that it is not identical to any other vertex in the explored subgraph. This is
carried out by placing a marker and visiting all vertices of the known subgraph S
along edges e ∈ S, looking for the marker. If marker is not found, then vertex must
be added to subgraph. To improve the performance multiple markers are used.

Rekleitis [68] proposes the exploration technique that uses the marker for undi-
rected planar graph where the vertices are unlabeled and edges have local ordering
related to the one it entered by. The main idea of the exploration is the exploration
of closed path called an ear. Ear can be defined as a closed cycle obtained by
leaving a vertex on a specific edge and selecting for traversal, at the following
vertex, the edge that is next to the entry edge in a consistent orientation, until
return to original vertex. Any planar graph can be decomposed into a union of
ears.
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The ear searching strategy is used also in [55] without using a marker. The robot
keeps the exploration tree, similar to previous works [20],[21]. The exploration
tree refers to the collection of possible hypotheses about the world the robot is
exploring, consistent with the data accumulated so far in the exploration. The root
of the tree is the initial location from which the exploration began. A level in the
tree corresponds to the traversal of a previously unexplored edge. The nodes in a
given level represent possible partial models of connectivity in the world, according
to the locations visited so far. The hypotheses here are pruned on the principle of
Occam’s Razor.

Map verification is discussed in [15]. The task is to find out whatever the given
map M is correct for the world G. In this work a strategy is shown, that verifies
a map in O(VM) edge traversals, using a single edge marker, when M is a plane
embedded graph, even though G may not be planar. Note that here is a edge marker
used in contrary to previous works where the vertex marker is used.

6.3 multi-robot exploration

Usage of multiple robots is a natural extension of the exploration task. Explo-
ration and mapping, according the Dudek’s taxonomy [22], are the tasks which can
group of robots perform more effectively than a single robot. Bender and Slonim [4]
show that two cooperative robots can learn directed graph with unlabeled vertices
using the homing sequence. They show that, the robot with single marker cannot
learn a unknown directed graph in polynomial time but the two cooperative robots
can.

The usage of multiple robots brings new problems to solve. To achieve the
improvements over the single robot exploration, the robots in group must be
coordinated and cooperative. Coordination mechanism ensure coherent behaviour
of the group. Without coordination, all robots might follow the same exploration
path, so that the group requires the same amount of time as a single robot would
need. Therefore, coordination mechanism must choose different actions for the
individual robots so that they simultaneously explore different areas of their
environment.

In [8] authors used cooperative point selection instead of greedy navigation.
Target point selection is based on the trade-off between the costs of reaching the
target point and its utility. To determine the cost of reaching the current frontier
cells, they compute the optimal path from the current position of the robot to all
frontier cells using dynamic programming algorithm.

Cost of moving to neighbourhood is equivalent to the probability that the cell
is occupied multiplied the distance to the cell. Utility Ux,y is based on expected
visibility range. Initially, the utility is set to 1. Whenever a target point is selected
for a robot, we reduce the utility of the adjacent point in distance d according to
their visibility probability P(d). Probability P(d) is updated during exploration
and represent probability that the robot’s sensors cover object at distance d.
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Utility function represents the coordination mechanism. Whereas uncoordinated
robots would choose the same target position, the coordinated robots select different
frontier cell with the best overall evaluation.

Rekleitis et al. [65], [66] and [67] focus on the problem of reducing the odometry
error during exploration. The robots explore the environment in teams of two; each
robot is equipped with a robot tracker sensor that observes the other robots and
reports its relative pose. The observing robot uses the position of its partner in
order to update the estimate of its position.

Robot tracker sensor is a camera in [67], that allows to observe its partner. The
robots are marked with a special pattern for pose estimation. The first part of
the pattern is a series of horizontal cylinders. This allows the robot to be easily
discriminated from background objects. The second component of the pattern is
a helix that wraps once around the robot. The elevation of the center of the helix
allows the relative orientation of the robot to be inferred.

In [66] a laser range-finder is used as robot’s tracker sensor. That allows to
cooperate in bigger groups. The motion planning strategy is such that at any time,
one of the robots is stationary while the other robot is moving and acts as an
artificial landmarks. On the observed robot, a target is mounted which consists
of a set of three vertical planes extending from the center of the target at three
distinct angles (approximately 100◦, 120◦, 140◦). The intersection of the two planes
defines a unique point and the angle between the two planes combined with their
orientations provides an estimate for the orientation of the robot.

The coordination algorithm for multi-robot exploration in [76] applies a unsuper-
vised clustering algorithm (K-Means). Unknown cells are partitioned into as many
clusters as available robots by applying K-Means and each robot is assigned the
region with the closest centroid. Every robot then moves to the frontier cell with
the lowest cost, senses the environment from it and proceeds with the next lower
cost frontier. The cost of a frontier receives a very significant, constant penalisation
when the frontier does not belong to the robot’s assigned region, as well as a
variable penalisation that consists of the distance between the frontier and the
center of the assigned region.

The proposed spatial representation should support the spatial knowledge shar-
ing among multiple robots, to allow multi-robot exploration. It will be an advantage,
if the spatial knowledge could be exchanged between robots with diverse sensors
and capabilities.
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7

R E A S O N I N G U N D E R U N C E RTA I N T Y

This chapter describes the current state of the art in the area of the reasoning
and inference under uncertainty. As the logic is the formal systematic study of the
principles of valid inference and correct reasoning, this chapter focuses on the logic
as a tool for reasoning. The reasoning is understood here as the process of drawing
new facts from set of observations. It remains irrelevant if it is a deductive reasoning,
where from preconditions and rules are inferred a conclusion, inductive reasoning
discovering the rules from set of examples or abductive reasoning determining the
preconditions for observed conclusions.

In context of robotic mapping, the reasoning brings the ability to infer new facts,
which are not directly accessible trough the sensors. It is the process, how to build
the spatial knowledge from the spatial information.

The formal logic is tightly connected with the reasoning and inference from
ancient times, but the classical formal logic works with the facts or evidences
which are certainly true or false. In the real world, there is nothing totally certain,
especially in context of the robotics. The world is perceived using the sensors, which
are subjected to errors and noise. Therefore this chapter introduces the different
extensions of formal symbolic logic, which allow to incorporate the uncertainty in
a quantitative way into the reasoning process. At first, the concept of uncertainty is
introduced.

7.1 uncertainty

According to Smets [74] uncertainty concerns the state of knowledge of an agent
(a robot) about relations between the world and the statements about the world.
The statement is either true or false, but agent’s knowledge about the world does
not allow agent to decide if the statement stands really true or false. The uncertainty
is a partial knowledge of the true value of the data and results in ignorance (having
the meaning a “do not know”) in opposite to certainty, which is the full knowledge
of the true value of the data. The major cause of the uncertainty is imprecision in
the data.

The uncertainty can be expressed and measured by Sugeno’s fuzzy measures
[78]. Even though has been called fuzzy measure, it should not be confused with
the fuzzy set theory. The Sugeno’s measure express the uncertainty associated with
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a statement “x belongs to S” where S is a crisp set and x is a particular element of X
which is not a-priori located in any of the subset of X. The Sugeno’s measure g
satisfies the following properties:

g(∅) = 0 (7.1a)

g(X) = 1 (7.1b)

∀A, B ⊆ X, A ⊆ B, g(A) ≤ g(B) (7.1c)

∀Ai ⊆ X, i ∈N, lim
i→∞

g(Ai) = g( lim
i→∞

Ai) (7.1d)

where A1 ⊆ A2 ⊆ A3 . . . or A1 ⊇ A2 ⊇ A3 . . .

The property (7.1c) is called monotony, and property (7.1d) is called Sugeno’s
convergence. The Sugeno measure is a normalized measure, monotonous for
inclusion for finite X. Note, that the additivity property is not needed. It fits with
probability measures, possibility measures, necessity measures, belief functions,
plausibility measures.

There exists different approaches to model uncertainty and work with it. The
most used approaches based on symbolic logics are described in the following
sections. The most suitable approach will be chosen from them at the and of this
chapter.

7.2 fuzzy logic

The fuzzy logic [5] is based on fuzzy sets introduced by Zadeh in [88]. A fuzzy
set A is defined by a membership function µA that assigns each element x a degree
of membership to A : µA(x) ∈ [0, 1]. In contrast to classical “crisp” set, where an
element can either belong to a set or completely outside of this set. Classical sets
allow only values 1 and 0 of the membership function, whereas fuzzy set theory
deals with the whole interval between 0 and 1.

In the fuzzy logic, the logic operators are defined as follows.

Complement µ¬A(x) = 1− µA(x)

Conjunction µA∧B(x) = min{µA(x), µB(x)}
Disjunction µA∨B(x) = max{µA(x), µB(x)}
Implication µA→B(x) = max{1− µA(x), min{µA(x), µB(x)}}

Besides, there exists alternative definitions of the operators. The following
definitions are common and used.

Conjunction µA∧B(x) = µA(x) · µB(x)

Disjunction µA∨B(x) = min{µA(x) + µB(x), 1}
Implication µA→B(x) = min{1, 1− µA(x) + µB(x)}

However, using any of these definitions not all tautologies from classical logic are
valid for fuzzy logic, e.g., A ∧ ¬A 6= ⊥ and A ∨ ¬A 6= >.
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The inference mechanism of the fuzzy logic is the generalized Modus Ponens,
describing how from µA′(x) and A → B infer µB′(y). It is worth to mention that
membership functions of A′ and A can be different.

Min-max norms are used for determination of µB′(y) as follows equation:

µB′(y) = sup
x
{min{µA′(x), min{µA(x), µBy}}

Alternatively the Lukasiewicz’s definition follows:

µB′(y) = sup
x
{min{µA′ , 1− µA(x) + µB(y)}}

Both definitions lead to different interpretation of the fuzzy implication, but also
other interpretations exist.

7.3 probabilistic logic

The term probabilistic logic was firstly used in [61] by Nils Nilsson. The proba-
bilistic logic is a semantic generalization of a logic in which the truth values of
sentences are probability values. This generalization applies to any logical system,
where the consistency of a finite set of sentences S can be established.

Let a set of possible world be Ω corresponding to a different set of consistent
truth values for the sentences in S . The probability distribution p : Ω 7→ [0, 1] is
defined on this set Ω which defines probability pi that actual world equals ωi. The
∑ω∈Ω p(ω) = 1 holds as the possible worlds are mutually exclusive and exhaustive.

Suppose there are K possible worlds for L sentences in S . The K-dimensional col-
umn vector P represent probabilities of the possible worlds. Let the L-dimensional
column vectors V1, V2, . . . , VK correspond to all consistent truth valuations of the sen-
tences in S (in an arbitrary order). The matrix V consists from vectors V1, V2, . . . , VK,
and the elements are 0 or 1 as equals to false or true. The probability of each sen-
tence Si ∈ S is a component of the L-dimensional column vector P . The relation
between them is expressed as equation:

P = VP =


V1,1 V2,1 · · · VK,1

V1,1 V2,2 · · · VK,2
...

...
. . .

...
V1,L V2,L · · · VK,L




P1

P2
...

PK


Probabilistic entailment is a problem when the base set of sentences (beliefs) B

with associated probabilities is given. New belief S with associated probability is
deduced from the B. The set S = B ∪ {S}. First, the matrix equation is solved for
P using given probabilities of B it is used again to compute the probability of S.

Probabilistic entailment is a probabilistic generalization of the modus ponens
but only for a logically consistent set of the sentences. The inconsistent set can be
handled by moving the inconsistent valuation P to a “nearby” valuation in the
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consistent region. This ad-hoc solution is not suitable for fully automatic reasoning.
On other hand, as probabilistic entailment presented here is a monotonic reasoning,
an additional information never increases the uncertainty.

7.4 possibilistic logic

The possibilistic logic [17], [18] handles propositional or first-order logic sentences
weighted by a real number, which is a lower bound of a necessity or possibility
measure as used by Zadeh [89]. Possibility of the sentence x is denoted as Π(x),
and necessity as N(x). Although any bounded linear order set can be used as a
range for the possibility and necessity, the interval [0, 1] is used for convenience.
Functions N and Π are the special kind of belief and plausibility function in the
sense of Shafer [72], called consonant belief and consonant plausibility function.

Possibilistic logic is well adapted to the representation of the state of incomplete
knowledge. The different levels of the incomplete knowledge can be represented
as follows:

• N(x) = 1 means that x is certainly true.

• Π(x) = 0 means that x is certainly false.

• N(x) = 1−Π(¬x) the sentence x is more certainly true as its negation is less
possible

• The total ignorance can be expressed as Π(x) = Π(¬x) = 1 or equally
N(x) = N(¬x) = 0 since x and its negation are both possible true but none
of them are certain at all.

The basic axiom of possibility theory

∀p, ∀q, Π(p ∧ q) = max(Π(q), Π(q))

or equally

∀p, ∀q, N(p ∨ q) = min(N(q), N(q))

N(x) > 0 implies Π(x) > 1 A sentence must be a totally possible before becomes a
somehow certain.

Important aspect of the possibilistic logic is that it provides a resolution principle.
The resolution principle can be used to infer new informations from the knowledge
base.

7.5 subjective logic

The subjective logic [31] operates on the subjective beliefs about the world, which
are denoted opinion. The opinion can be interpreted as a probability measure
containing secondary uncertainty. The subjective logic contains standard logical
operators extended with some non-standard operators [32], [36], [35], [33] which
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specifically depend on belief ownership. The subjective logic can be seen as an
extension of both probability calculus and binary logic. An example of the usage
of the subjective logic in real situations can be found in [34], which describes the
application of the subjective logic to legal reasoning.

Because the subjective logic is used later in this work, some important definitions
are outlined here.

The subjective logic builds on Dempster-Shafer belief theory [72]. This theory
defines a set of possible situations, called the frame of discernment, denoted as Θ.
The powerset of Θ (denotes as 2Θ) contains all possible unions of the states in Θ
including Θ itself. Elementary states in the frame of discernment are called atomic
states because they do not contains any substates. It is assumed that only one
atomic state is true at a time. If a atomic state is assumed to be true, then all states
containing this state are considered true as well.

The belief mass can be assigned to one or more states in the powerset 2Θ. Belief
mass on an atomic state x is interpreted as the belief that the state in question is
true. Belief mass on a non-atomic state is interpreted as the belief that one of the
atomic state it contains is true, but it is uncertain which of the state is true.

Definition 1 (Belief Mass Assignment). Let Θ be a frame of discernment. With
each substate x ∈Θ a number mΘ(x) is associated such that:

1. mΘ(x) ≥ 0,

2. mΘ(∅) = 0, and

3.

∑
x∈2Θ

mΘ(x) = 1; (7.2)

Then, mΘ is called Belief Mass Assignment on Θ. For each substate x ∈ 2Θ

To show an application of the belief mass assignment, assume the following
situation:

I forgot my keys somewhere, when I was moving between my home, office, class-
room and laboratory. The frame of discernment holds four states Θ = {x1, x2, x3, x4}
represents the I forgot the keys at home, in the office, in the classroom or in the lab-
oratory respectively. Surely, only one of these states can be true, because I can not
forgot the keys in two different places. I am sure, I did not forget the keys at home, so
it must be somewhere in the office, classroom or the laboratory. Therefore I assign the
whole belief mass to superstate x = {x2, x3, x4}. Every atomic state x1, x2, x3,and
x4 has zero belief mass because I do not prefer any of the particular place.

The belief in a state is interpreted as a total belief that a particular state is true.
The belief in state x does not depend only on belief mass assigned to x, but also on
the belief mass assigned to substates of x.
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Definition 2 (Belief Function). Let Θ be a frame of discernment, and let mΘ be a
belief mass assignment on Θ. Then, the belief function is the function b : 2Θ 7→ [0, 1]
defined by:

b(x) = ∑
y⊂x

mΘ(y), x, y ∈ 2Θ.

Similarly is defined the disbelief as a total belief that a state is not true. The
disbelief of x corresponds to the doubt in Shafer’s notation, but in the subjective
logic, the term disbelief is used as opposite to the belief.

Definition 3 (Disbelief Function). Let Θ be a frame of discernment, and let mΘ

be a belief mass assignment on Θ. Then the disbelief function is the function
d : 2Θ 7→ [0, 1] defined by:

d(x) = ∑
y∩x=∅

mΘ(y), x, y ∈ 2Θ.

Uncertainty stands for ignorance or lack of evidence for the given proposition. It
is something that fills void in the absence of both belief and disbelief.

Definition 4 (Uncertainty Function). Let Θ be a frame of discernment, and let mΘ

be a belief mass assignment on Θ. Then the uncertainty function is the function
u : 2Θ 7→ [0, 1] defined by:

u(x) = ∑
y∩x 6=∅

y*x

mΘ(y), x, y ∈ 2Θ.

The following equality

b(x) + d(x) + u(x) = 1, ∀x 6= ∅ (7.3)

is direct consequent of the equation (7.2) in definition 1 and the fact that the sums
of the belief, disbelief and uncertainty runs over the whole powerset 2Θ.

For the purpose of deriving probability expectation values, the relative number
of atomic states is also needed in addition to belief masses. For a particular state x,
the atomicity of x is the number of atomic states it contains, and is denotes as |x|.
The atomicity of Θ is equal to the total number of atomic states it contains.

Definition 5 (Relative atomicity). Let Θ be a frame of discernment, and let x, y ∈ 2Θ.
Then the relative atomicity of x to y is the function a : 2Θ 7→ [0, 1] defined by:

a(x/y) =
|x ∪ y|
|y|

Definition 6 (Probability Expectation). Let Θ be a frame of discernment, and let
mΘ be a belief mass assignment on Θ. Then the probability expectation function is
the function E : 2Θ 7→ [0, 1] defined by:

E(x) = ∑
y

mΘ(y)a(x/y), x, y ∈ 2Θ.

50



7.5 subjective logic

Definition 7 (Opinion). Let Θ be a frame of discernment with two atomic states
x and ¬x and let mΘ be a belief mass assignment and bx, dx, ux, ax are the belief,
disbelief, uncertainty and atomicity functions on x ∈ 2Θ respectively. Then the
opinion about x, denoted O(x) is a tuple

O(x) = (bx, dx, ux, ax).

The probability expectation

E(Ox) = bx + axux. (7.4)

Because the three parameters of opinion are dependent trough the equation (7.3),
they represent nothing more than the pair (belief, plausibility) of the Dempster-
Shafer belief theory. Keeping all three parameters simplifies the operator expres-
sions.

The opinions can be ordered according to probability expectation value. The
additional criteria are used in case of equal probability expectation values.

Definition 8 (Ordering of Opinions). Let Ox and Oy be two opinions. these can be
ordered according the following priorities:

1. if E(Ox) > E(Oy) then Ox > Oy.

2. if E(Ox) = E(Oy) and u(Ox) < u(Oy) then Ox > Oy.

3. if E(Ox) = E(Oy) and u(Ox) = u(Oy) and a(Ox) < a(Oy) then Ox > Oy.

Beside, operators from classic logic (AND, OR, NOT), there are defined the
operators specific for the subjective logic like discounting and consensus. This two
operators provides the mechanism for combination of two or more opinions.

The discounting operator provides mechanism for the transfer of the knowledge
from one agent to another. Assume the agent A has an opinion OA(B) about
correctness of an agent B. The discounting operator computes the resulting agent’s
A opinion about the proposition p, given the opinion of the agent B about the
proposition p with given opinion about the agent B.

OA : B(x) = OA(B)⊗OB(x)

Consensus operator allows to combine two opinions about same proposition given
by two different agents as:

OA�B(x) = OA(x)⊕OB(x).

The subjective logic has also mechanism for deductive and abductive reasoning.
The abduction allows inferring the precondition a as an explanation of the observed
consequence b. It is a method of reasoning which finds the hypothesis that would
best explain the relevant evidence.
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7.6 method selection

In this section, the applicability of the aforementioned logic approaches are
compared with respect to the application in the robotic mapping. The propositions
about the world are typically evaluated as true or false and the uncertainty arises
from the errors of the measurements and sensing. The advantage of the fuzzy logic,
the ability to express vague proposition, is not crucial for this work.

It is assumed, the knowledge about the real world can be logically inconsistent,
as the knowledge is build from the uncertain data. Therefore, this assumption
excludes the probabilistic logic from the selection, as this logic needs consistent
knowledge base.

The choice can be done between the possibilistic logic and the subjective logic. As
the subjective logic provides richer representation of uncertainty and new operators,
the subjective logic is used in the thesis.
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S PAT I A L K N O W L E D G E R E P R E S E N TAT I O N

The aim of this chapter is to propose a novel suitable representation for the
spatial knowledge of a large environment. First the existing approaches and their
properties are discussed and confronted with the requirements resulting from the
properties of the large real-world environment.

After that, the spatial representation will be proposed. At the end of this chapter
the advantages of proposed representation are summarized.

8.1 comparison of the spatial representations

The previous chapters (Chapter 4 and Chapter 5) describe the current state of
the art in the representation of the spatial knowledge by humans and robots. Here,
the analysis of these representations is provided.

Robot and humans have very different capabilities. Human cognitive mapping
relies on a highly developed visual system that recognize object and landmarks
with ease. These objects and landmarks are ordered into route maps and survey
maps in a hierarchical structure. This structure provides a global overview of the
whole environment.

The computer vision, in comparison to human visual system, provides inaccurate
and often inefficient perception for the robots. Therefore, robots frequently rely
on other sensors including laser range-finders and sonars. These sensors have the
abilities that human’s senses lack or are weak in.This primarily incorporates e.g.:
The precise range estimation and dead-reckoning. Therefore the metric maps are
often used to represent the environment in one global frame of reference.

Approaches using purely metric maps are vulnerable to inaccuracies in both
map-making and odometry abilities of the robot. Even by taking into account all
relationship between features and the robot itself, the drift in the odometry makes
the global consistency of the map difficult to maintain, in large environments.

The landmark-based approaches try to handle this problem with employing the
topology of the environment. The topological relationship can better handle the
incremental drift of the position estimation. However, these approaches becomes a
computably intractable for a large environments when a high precision is required.
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Despite many differences between human cognitive mapping and robotic map-
ping, there are success approaches utilizing the cognitive theories. The Spatial
Semantic Hierarchy (SSH) employs a Tour cognitive theory pioneered by Kuipers,
subsequently was improved by many of his colleagues. The RPLAN builds on
the theory called PLAN (prototypes, locations and associative networks). The
common background of all these approaches is representation of the environment
as a topological map.

Property Metric maps Topological maps
robot position position and orientation states or places
map building easy (for small spaces) complex

require precise robot’s posi-
tion

doesn’t require precise po-
sition

global consistency difficult to maintain (for
large space)

easy to maintain

path planning computational intensive efficient planning on graph
planning result shortest paths may yield suboptimal

paths
symbolic interfacing poor convenient
Annotating the map hard easy
place recognition based on geometry based on properties

Table 1: Comparison of metric and topological maps.

A comparison of the metric and topological maps is shown in Table 1. The
hybrid approaches combines the metric and topological representations, and their
properties are depending on the partial implementation. Generally, they are better
in some aspects, and worse in others. For a particular aspect, the approaches are
between the metrical and topological map.

8.2 confrontation with environment properties

This work focuses on the large structured and stable environments as defined in
Section 2.2. Making the map (in any form) of the environment without structure
tends to be almost useless (imagine a desert or similar open-space environments).

It is required the environment is stable. Nevertheless, it does not denote a
static environment, where no changes are allowed. The stable environment can
contain movable objects, and dynamic obstacles. The example of moving objects
are walking people or moving cars. The changes, which are not allowed are, e.g.,
closing and opening the doors, closing the roads, building new houses etc.

A review of the properties of this type of the environment follows. In that aspect,
the environment may be:

• Large, while it contains large number of landmarks, features, objects, obstacles
etc.,
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• Contains areas which are inaccessible,

• Contains moving and movable objects,

• Number of places, where a robot has to interact with the environment is
limited,

• Contains areas which serve exclusively to traverse to certain destinations,

• Variation of sensing conditions.

As the environment is large, it is not easy to build and keep a single consistent
metric map, while intensive or intractable computations can be required. The
inaccessible areas can increase the space complexity of some metric approaches. In
contrast to that, the topological representation is scalable without any substantial
problems and does not represent the inaccessible areas at all.

Moreover, as it is requested to use the map also to guide the operation of the
robot later, it is suitable to have a possibility to annotate the map with additional
information. For example, the annotation of the place with some sort of address
or property, is expected. It can be done with a topological map but not with the
metric one (or it may become rather complicated).

A human or an animal, does not need to know its’ precise position with respect
to the environment when traveling. Therefore, the robot shall also navigate without
knowing the precise position. Of course, it has to avoid obstacles during the motion.
The only moment, in which it needs to be aware of the precise position with respect
to the environment, appears when it has to interact with the environment (e.g.
docking, manipulation with the objects etc.). Therefore, it is not necessary to keep
the metric map of the paths through the environment. However, it is necessary to
have a precise metric information on that places where the robot should interact
with the environment.

The current topological mapping approaches rely mainly on a reactive navigation
- changing of the sensing condition can easily cause a failure of the reactive system.
The metric approaches rely on the localization of the robot during navigation, and
therefore,they appears more robust.

Besides, the topological approaches are not ready to treat efficiently uncertain
information. Again, the metric map approach can handle the uncertain sensory
information better, but on the other hand it may become not efficient in handling
movable objects.

The known hybrid approaches combines the metric and topological in three
ways:

• Single global metrical map is augmented with the topological structures.

• Vertices of the global topological map are augmented with local metric maps.

• Global metric map is divided into parts and this parts are connected in
graph-like structure.

Regarding the approaches, it seems suitable to have a hybrid approach based
on a global topological map for the representation of the environment. This
global topological map needs to be augmented with the metric information in the
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places, where interaction with environment is expected. Moreover, this approach
requires reliable performance of the navigation capabilities of the robot together
with improved ways of handling the uncertainty.

8.3 proposed spatial representation

Novel approach to robotic mapping proposed in this section is based on the
cognitive theories of the human spatial knowledge regarding the previously defined
requirements. The main structure is a topological map, a directed graph G = (V, E)
which consists of vertices V and edges E, likewise existing robotic implementation
of topological maps. The vertices stand for places in the environment whereas the
edges represents navigation paths.

This classical representation is extended by explicit association of the procedu-
ral knowledge. The procedural knowledge represent the knowledge how to do
something in contrast to declarative knowledge describing what it is. It is the
information which is necessary to know how to get from one place to another or
how to distinguish one place from another.

The metric maps can be attached to a vertex and/or an edge, enriching these by
certain additional information. Each vertex or edge can carry further additional
information as area, length, curvature, relative position, and so on.

All the knowledge can be stored with the measure representing the uncertainty
of the knowledge. The reasoning module, described in Chapter 9, takes uncertain
knowledge stored in the map and infers the new information based on predefined
set of rules. It is also capable to generate the most consistent hypothesis explaining
given set of observation and in cooperation with the planner, it recommend actions
to verify, reject or adopt this hypothesis. Stored information is transformable in
human understandable form and can be used in communication with human.

The detailed description of the proposed representation is presented in following
paragraphs. The elements of the map, the vertices and the edges, are described at
first.

8.3.1 Vertex

The vertex vi ∈ V represent the point of interest or the significant place in the
environment. Typically vertices are placed to the points, where robot can take a
decision. They are placed where are the salient points of the control behaviors. The
robots’ interestingness of point can radically differ from humans’ interestingness.

Each vertex holds a set of descriptors Dv. The descriptors are extracted from
different sensors by different algorithms. The set of metric maps M is a subset of
the descriptor set M ⊂ Dv.

The information stored in the descriptors are used to localize the robot inside the
local frame of reference and to distinguish the vertices from each other. The vertex
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is not requested to be uniquely distinguish by its description from others. The
pairwise similarity sA(vi, vj) of two vertices is computed by a matching algorithm
A from the set of matching algorithms, which compares a specific descriptors of
the involved vertices. The similarity measure is used in the process of loop-closing.
The localizing algorithms provide the pose of the robot Rv = (x, y, φ) in the vertex’s
local frame of reference. The algorithms for extraction of the descriptor, matching
and localizing are grouped into one module called localizing jockey according the
type of the sensor and data used in the algorithms.

The vertex is internally identified by a number. One physical place should
correspond to one vertex. As the environment is explored, the one physical place
can be represented by multiple vertices, as is visited more than once. The loop-
closing is a process of removing this inconsistency. The different places can look
similar due to sensor aliasing, therefore the whole structure of the environment
and the edges information are take into account.

8.3.2 Edge

Each edge ei = (vs, vt, De), ei ∈ E, vs, vt ∈ V stores the reference to the starting
and target vertex and set of descriptors D, which can be used for navigation,
visualization, comparison of edges or others purposes. The edge need not to hold
all the descriptors.

The set of procedural knowledge K ⊂ D, where the procedural knowledge k ∈ K
describing how to traverse from the starting place vs to the target place vt. The
procedural knowledge is an input for one of a navigating algorithm a ∈ A from
the set of navigating algorithms. The edge can hold the procedural knowledge for
more than one navigating algorithm but for each navigating algorithm can hold no
more than one.

It is expected, the procedural knowledge describes a deterministic behavior i.e.
robot placed in the starting place vs and using certain procedural knowledge k
navigates always to the same destination vt. The violation of this expectation is
handled as a failure which can be recovered in the navigation phase but can be
fatal in the exploration phase. The probabilistic extension of traversing behavior in
exploration is subjected to further research.

The procedural knowledge can be implicit in the form of the reactive navigating
algorithm and store a few parameters modifying the behaviour. For example the
input of the reactive navigating algorithm can be a direction of the corridor to
follow. The reactive navigating algorithms are encapsulated into modules called
memory-less navigating jockeys.

Alternatively, the procedural knowledge is an explicit description of the whole
path, like record of the control command or vector of the visual targets to follow in
order to navigate along the specific edge. This type of procedural knowledge is
gathered along the whole path by modules called learning jockeys, while the robot
is navigated along the path by another algorithm. For navigation, this procedural
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knowledge is passed to the navigating module denoted memory-based navigating
jockey.

The edge is internally identified by a number. During the discovering the environ-
ment, one physical path can be represented by more than one edge with different
internal identifier. This inconsistency is removed by the reasoning procedure
described in Chapter 9.

8.3.3 Database

The proposed annotated graph needs to be implemented in an efficient way.
Therefore, the map elements are stored in a transactional database. Every vertex
and edge is identified by its number and edge also holds identifiers of source and
target vertices. The descriptors of the basic elements (vertices and edges) are stored
in separated tables following the snowflake scheme. Each type of the descriptor
is handled by a map interface which also creates new table in the database. The
database scheme is depicted in Fig. 5.

This structure of the database allows easy extension of the representation. As
new descriptor of the edges or vertices is needed to store, new table is added to
the database. It is possible to extend even the already existing map with the new
descriptors without influence on the functionality.

Figure 5: Database scheme of proposed representation.

8.3.4 Map Interfaces

A map interface is an implementation of the access module of the map stored
in the database. Map interfaces form an abstract layer above the specific type of
the data stored in the map. Every interface takes care about storing the specific
descriptor of the vertices or edges. This information is stored in a table, that is
connected to basic type using the foreign key.

The modular system of the map interfaces allows to easily extend the existing
map by new type of information. If the information stored in the map is not rich
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enough for performing a specific task, the new algorithm and new map interface is
added seamlessly. The modules are independent and do not influence each others.
Since the particular stored information do not affect each other, the existing map
can be extended with new type of knowledge without affecting functionality of all
other algorithms.

The interface mechanism is transparent; so, a vertex can be requested for all
available information as well as particular information can be specified. The
information, which is not requested by the executed algorithm, is ignored and
made not visible.

8.4 advantages

The advantages of the proposed map in the form of the annotated graph are
summarized in this section.

The main advantage over a current topological approaches is the rich descriptor
(with the explicit procedural knowledge) of the edge in contrast to the simple link
representing only the connection between the places. It allows to use a complex
navigating algorithms, which needs the detailed description of the path. This
description is learned during the traverse along the edge first time and then reused.

The advantages of the proposed approach over the current hybrid approaches
is the possibility to have multiple metric maps related to one place. The different
maps produced by different sensors or different algorithms are assigned to the
same vertex, and represent the same physical location. For example, one place is
represented by an occupancy grid from sonars, and a feature map generated from
camera and a point map from a laser scanner, all at hand and aligned.

This type of rich representation allows to have a one map for an environment
consists from parts of a different type. It is possible to have for example a map a
university campus, where the areal of the campus with insides of the building is
stored in one representation. It is not necessary to split it to different maps for each
building and then switching between them. The robot is able to navigate fluently
from indoor to outdoor and back.

Also it is possible to have a one map for different types of robots. The robot
equipped with a camera shares the map with a robot equipped with a laser range-
finder. The same definition of the vertices and edges, representing the same
physical locations and paths, processed making-use of different algorithms for i.e.
navigation and localization. This approach brings up a novel functionality, not
possible for the classical metric representations.

The representation of the uncertainty increase the robustness and reliability of the
representation. As the representation is augmented with the reasoning procedure,
the missing information is deduce from the current uncertain information. The
resulting uncertainty indicates if the current information is convenient enough to
make the required conclusion, or, it is necessary to gain more information.

The reasoning procedure is described in the following chapter.
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R E A S O N I N G

The map can be understood as a knowledge base, the set of proposition about
the environment, and robot-environment interaction. With the proper formal tool,
it is possible to infer new facts from this knowledge base and set of rules. The facts
in the map are uncertain and possibly stochastic in contrast to classical logic values
(true or false). The subjective logic (see Section 7.5) is proposed as a suitable formal
logic system to handle uncertain and stochastic facts proposed representation. It
is suitable also for conditional reasoning which is useful in hypothesis generation
and verification.

Suppose, there is a propositional language L, supplemented by the tautology >
and contradiction ⊥. The set of propositions will be finite, as the world is assumed
to be limited and closed. Let ΩL denotes the set of worlds that corresponds the
interpretations of L.

For every pair of worlds in ΩL:

∀ΩiΩj∃φ; Ωi |= φ ∧Ωj |= ¬φ,

there exists a proposition in the language L that is true in one world and false in
the other. This condition excludes logically equivalent worlds.

Let consider an actual world, denoted as ω0, i.e., a world that corresponds to
the actual state of environment. The robot does not know which world in a set
of possible worlds is the actual world. This ignorance results from the robot’s
ignorance about the truth status of some propositions in the actual world. If the
robot knows the truth status of every propositions of interest in ω0, then it would
know, which world is ω0.

The robot’s actual knowledge about the actual world can be encoded in set of
propositions K . The robot knows the truth values of the propositions in K. It
is assumed, the K is consistent and deductively closed. Then, the set ΩK can be
constructed as:

ΩK = {ω : ω ∈ ΩL, ω |= φ, ∀φ ∈ K}.

The set ΩK is set of worlds considered as possible for the robot being in the actual
situation. The actual world is one of the possible worlds ω0 ∈ ΩK if the set K is
reflexive.
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The situation is relatively easy, when the robot has an exact information about
the environment. Then the set K contains the classical logic proposition with truth
value from {0, 1}. But in reality, a robot senses the environment with sensors
influenced by different types of errors. Therefore the information gathered from the
environment is uncertain and cannot be expressed by classical logic propositions.

Therefore, the probabilistic extension of the subjective logic is applied at this point.
The true value of the proposition p is expressed by an opinion O(p). The opinion
O has four components: believe b, disbelieve d, uncertainty u and atomicity a. First
three parameters define position in opinion space and are dependent according the
equation (7.3) and fourth component - atomicity - is added to simplify computing
of the probability expectation. Herein, the uncertainty stands for ignorance or lack
of evidence for the given proposition. It fills a void in absence of both the belief
and disbelief.

It is necessary to redefine the possible worlds in case of the subjective logic. Let
µK(ω) is compatibility of the world ω with the robot’s actual knowledge

µK : ΩL 7→ [0, 1].

Nevertheless, the use of interval [0, 1] remains purely as a convenience, and any
other arbitrary interval can be used instead, but [0, 1] is perfectly acceptable in this
case. The understanding is that larger µK(ω) expresses, that ω is more compatible
with K. The extreme value of µK(ω) = 0 means that the world is not possible at all
and µK(ω) = 1 means the world ω is fully possible according to the robot’s actual
knowledge.

Now the possible worlds cannot be expressed as the classical set because the
membership function maps not to a set {0, 1} but to an interval [0, 1]. If the classical
set is needed, it is possible to define :

ΩK = {ω : µK(ω) ≥ ϑ},

where ϑ is a selected threshold.

During the exploration, the robot gains the information about the actual world,
and adds the propositions to K, and reduce the size of ΩK for a given threshold.
In the case when |ΩK| = 1, the robot knows the actual world and the exploration
ends. There exists situations, when the robot is not able to distinguish the possible
worlds even when the whole environment is explored and all available information
is gathered.

In proposed approach, the whole list of possible worlds is not maintained. The
actual model of the environment is one world chosen from ΩK only.

The world nearest to the world build from direct observation is chosen. This
is opposite approach to Occam’s Razor principle, where the smallest number of
entities is preferred. Here the larger number of entities is preferred as the possible
mistake in the observation has smaller impact on the usability of the map.
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9.1 observation fusion

The result of the localizing algorithm can be a value in range [0, 1] or [0, ∞] for
the proposition “the place Px is same as the place Py”. It is necessary to convert this
value into the form of an opinion. The parameters for the conversion are acquired
using machine learning techniques from training sets of annotated vertices.

The result can be taken as a probability expectation E(x) in the case of the range
[0, 1]. The optimal discriminating threshold ϑ is determined from the receiver
operating characteristic (ROC) curve (see Sec. 12.1) as a point with the maximal
distance from a random classifier. As there is no evidence to prefer to belief or
disbelief, the uncertainty will be maximized during the conversion procedure. An
uncertainty can be derived from the equation

ux =
Ex − bx

ax
, (9.1)

where atomicity ax is set according to the ROC curve. From the maximization of
the equation (9.1), the opinion is derived as

O(x) =

{
(bx = 1− ux, dx = 0, ux = E(x)−1

ax−1 , ax), E(x) > ax

(bx = 0, dx = 1− ux, ux = E(x)
ax

, ax), E(x) ≤ ax.
(9.2)

The results from the range [0, ∞] need to be converted to the interval [0, 1] at first.
In reality, the results of the localization are limited. This limit becomes from the
properties of the input data. As the maximum sensing range of the sensor is limited
and a type of the sensory data is given, the variability of descriptors is constrained.
This makes possible to compute the supremum from the results and use it for the
conversion. Alternatively, the guess of upper bound can be determined from the
training set as a maximum value.

The second property of the localization results from [0, ∞] is that 0 stands for the
best match. Therefore, the values higher than the threshold ζ can be threated as
mismatching. Even though the guess is not the supremum, the error appears not
significant.

E(x) =

{
1− x

ζ , x
ζ ≤ 1

0, x
ζ > 1

(9.3)

As soon as the value of E(x) is computed, the opinion is determined according to
Equation (9.2).

The consensus operator ⊕ is used a for fusion of the localizing algorithms’ results.

OA(x)⊕OB(x)) =

{
OA(x), κ = 0

( bAuB+bBuA
κ , dAuB+dBuA

κ , uAuB
κ ), otherwise,

(9.4)

where κ is defined as κ = uA + uB − uAuB.
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9.2 deduction

The binomial conditional deduction is defined in probability calculus as

p(y‖x) = p(x)p(y|x) + p(x̄)p(y|x̄),

where p(y‖x) is the deduced probability of the consequent y, p(x) is the probability
of the antecedent x, and the probability of its complement p(x̄) = 1− p(x). The
p(y|x) and p(y|x̄) are the conditional probability of the y for the cases the given x
is true and false, respectively. Jøsang in [33] defines the conditional deduction in
conformity with the probability calculus in the subjective logic. It means, both the
conditional probabilities are necessary to know to deduce the consequent.

Modus Ponens says if the proposition P and proposition P → Q are true,
deduction stands that Q is also true.

MP : P, P→ Q ` Q.

Nevertheless, Modus Ponens does not resolve anything about the case if the
antecedent or conditional are only partially true. Therefore, let define the Modus
Ponens for the subjective logic as follows:

Let the O(P) be the opinion about antecedent and O(P → Q) be the opinion
about the rule. The question is how to determine the opinion O(Q). First assume
O(P→ Q) equals to the tautology, i.e., O(>) = (1, 0, 0, a). Then as long as there is
a belief into truthfulness of P, there will be a belief in Q. It can be expressed as
discounting the opinion about the rule by the opinion about the antecedent:

O(Q) = O(P)⊗O(P→ Q). (9.5)

The operator ⊗ discounting is defined as

(OA ⊗OB) = (bAbB, bAdB, dA + uA + bAuB, aB).

It can be easily seen from this equations, the zero belief in the antecedent produces
the vacuous (totally uncertain) belief into the consequent.

9.3 reasoning in loop-closing

The loop closing is a process of finding the correct correspondences in a ex-
perienced set of observations gathered during the exploration. Let the map
ME = (VE, EE) be a graph with a set of discovered vertices VE and edges EE.
This experienced graph is in a form of chain as it represents a single run through
the environment (without any loops). Alternatively, the graph may be given
in a form of tree, if the exploration algorithm preserves the information about
backtracking during the search.

The map ME is converted into the list of the opinions KE about the environment.
This propositions are in a form of similarity of the vertices and edges in the task of
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loop-closing. The similarity of the edges and vertices is computed by the localizing
algorithms. Therefore, for each pair of vertices or edges there can exist more than
one opinion about their similarity.

To keep the computation complexity low, the similarity is kept in the matrix
Sa, a ∈ A for each algorithm a from the set of localizing algorithms A. The
elements of the matrix SV

a (k, l) = sa(vk, vl), are the pairwise similarity sa of the
vertices vk and vl as given by algorithm a. A matrix SE

a defined similarly for the
edges SE

a (k, l) = sa(ek, el).

These similarity matrices are fused into two matrices, one global similarity matrix
for opinions about vertices OV and one for edges OE where elements of a matrix O

are

O(k, l) = S1(k, l)⊕ S2(k, l)⊕ . . .⊕ SJ(k, l).

The first step is to convert the similarity matrix Sa to opinions matrix Oa. This is
done as described in section 9.1. Then the fusion is done by the consensus operator,
see Eq. (9.4).

The knowledge about the properties of the environment is converted into the
form of the logical proposition with the opinions about the validity for a given
environment. The following propositions were used in the rest of the paper:

s(vu, vv) ∧ s(ek = (vu, vw), el = (vv, vx))→ s(vw, vx) (9.6)

s(vw, vx) ∧ s(ek = (vu, vw), el = (vv, vx))→ s(vu, vv) (9.7)

s(vu, vv) ∧ ¬s(ek = (vu, vw), el = (vv, vx))→ ¬s(vw, vx), (9.8)

where s(·, ·) denotes the similarity.

The implication (9.6) expresses the premise that the edges from a particular
vertex are distinguishable. This premise rises from the properties of the navigating
algorithms and edge description. If the algorithm is not able to distinguish the
outgoing edges, these are described as one.

The implication (9.7) expresses the premise that the edges coming to the particular
vertex are distinguishable. This premise comes from the assumption that the
incoming edges are dual to the outgoing edges. This assumption is not valid in
general for an arbitrary navigating algorithm, but is valid for the reactive navigation
described later in this work.

The last implication (9.8) expresses the assumption that the environment is not a
multi-graph, i.e. there are no parallel edges. This assumption is weaker than the
previous two, but it remains valid for all the environments used for experiments
later.

Assume, there are two matrices OV and OE holding the opinions about the
experiences, and a set of rules in the form of implications.

All the rules have as the consequent the similarity of two vertices. Therefore,
for each rule, the matrix of opinions will be computed according to equation (9.5).
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Then, the algorithm fuses all matrices which are results from the previous step into
one.

As the edge similarity in the antecedent of all rules exists, the computation of
the resulting matrix follows Algorithm 1.

Algorithm 1: Entailment computation.

Input: Opinion matrices OV , OE, set of rules R
Output: OV

c
initialize OV

c with uncertain opinion (0, 0, 1, 0.5);
for r ∈ R do

initialize OV
r with uncertain opinion (0, 0, 1, 0.5);

for O(s(ei, ea)) ∈ OE do
u, x ← ei = (vu, vx);
v, y← ej = (vv, vy);
OV(x, y)← OV(x, y)⊕ ((OV(u, v) ∧O(s(ei, ej)))⊗O(r)) ;

OV
c ← OV

c ⊕OV
r ;

OV
c ← OV

c ⊕OV ;

The algorithm deduced the knowledge KC about the loop-closing KE, R ` KC from
the experienced knowledge KE and the set of rules R . The algorithm is passing
through the whole edge similarity opinion matrix and for each edge and rule it
computes the consequent by the Modus Ponens according equation (9.5). The
indices u, v, x, y of source and target vertices are determined for each pair of the
edges. The opinions about the vertices pairwise similarity is taken from the vertex
similarity opinion matrix OV . Then, the consequent is stored into the result matrix.
If there is already an opinion in the matrix, the resulting element is computed
using the consensus operator.

The complexity of this algorithm is O(|E|2), where |E| is the number of edges.

The map with closed loops is computed from the result of the deduction and the
original map.

Algorithm 2: Loop closing algorithm.

Input: Map ME = (V, E), OV
c , OE, threshold ϑ

Output: Map with closed loops Mc = (Vc, Ec)

for O(s(u, v)) ∈ OV
c do

copy ME into Mc;
if belief of O(s(u, v))(b) > ϑ then

for ej = (v, y), x ∈ V ∪ unknown, ej ∈ E do
for ei = (u, x), x ∈ V ∪ unknow, ei ∈ E do

if OE(i, j)(b) > ϑ∧ (x is unknown ) ∧ y ∈ V then
set ei = (u, y) in Ec;

remove ej from Ec;

for ei = (x, v), x ∈ V, ei ∈ E do
set ei = (x, u) in Ec;

remove v from Vc
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9.3 reasoning in loop-closing

If there exists opinion about the similarity of the pair of vertices u and V with
the belief value greater than the threshold ϑ, the vertex v is removed from the map
with the closed loops. Consequently all the edges going from the removed vertex v
are also removed. If there exists edge ei = (u, unknown), going from the remaining
vertex u, which has an unknown target and there exists a similar edge ej = (v, x),
going from the removed vertex v to the known target x, the edge ei is modified to
ei = (u, x).
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10

F R A M E W O R K I N T E G R AT I O N

The proposed spatial knowledge representation and the reasoning procedure
assume the existence of localizing and navigating algorithms. This chapter describes
the proposed and implemented algorithms, which where used in the experiments
later on. These algorithms work with different sensors and robotic platforms.

All of the algorithms are used with a common environment representation.
The unified approach to handle and to establish communication amongst these
algorithms is necessary. Therefore, all the new methods for localization, navigation
along with reasoning and map representation are incorporated into one framework
called Large Maps Framework (LaMa).

The LaMa Framework is build as a modular system and therefore allows to
easily incorporate new methods into it. Mechanism for modules coordination and
cooperation is incorporated into the LaMa framework and therefore the individual
modules need no specific mechanism for these interactions.

Figure 6: LaMa Architecture

The framework consists of several backbone parts: Map, Executor and Jockeys.
The Map holds gathered information about the environment and provides interfaces
for writing, modifying and reading data. The knowledge about the environment is
stored according the spatial knowledge representation proposed in Chapter 8.
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The Executor module provides abstraction for higher level planning, hides the
implementation details and enables handling of all types of map elements in
a unified way. Moreover, this concept enables coordination and cooperation of
navigating, learning and localizing Jockey modules.

10.1 executor

This thesis introduces the procedural knowledge as a crucial property of the
proposed spatial knowledge representation. The procedural knowledge can hardly
be stored in the map directly, in form of algorithms. Therefore the procedural
knowledge is split into two parts, the algorithm and the data. The data are stored
directly in the map, more specifically in the transactional database. These data
are accessible using the map interfaces. The specification of the used algorithm is
stored along with these data.

The algorithms are stored separately as libraries or executable programs. The
implementation strongly depends on the used robot hardware and sensors, there-
fore it is not reasonable to access directly these libraries or programs, as there
exists a particular implementation for each sensor or robot hardware. The access
to these must be unified to achieve universal representation, otherwise the map
representation differs for every possible combination of sensors and robots.

In the LaMa Framework, the Executor provides a unified access to different
navigating , learning and localizing algorithms working directly with the hardware
of the robot. These are are encapsulated as Jockeys. The higher levels of LaMa
Framework accesses the robot hardware through the Executor and Jockeys only.

The Executor is responsible for executing the plan made by a Planner or an
Explorer. The Executor calls a specific Jockey according to the requested action. If
there are more Jockeys admissible for the current action at once, the one with the
best expected performance is chosen. The Executor supervises the behavior of the
executed Jockey and if the Jockey fails, tries substitute the requested behavior by
executing another Jockey with similar function.

During the exploration phase, the Executor runs Jockeys following the best
possible information gain about the environment. It tries to run all available
Learning Jockeys during an edge traversal and runs Localizing Jockeys in the target
vertex after the traversing ends.

The Executor coordinates the concurrently running Jockeys. Only one Jockey can
control the robot actuator at once. It may occur, that one or more Jockeys needs to
stop the robot and/or access actuators of the robot in a specific situation. Then the
Executor checks if it possible to interrupt the Jockey currently controlling the robot
and provides access to hardware for the requesting Jockey. After the reason for an
interrupt vanishes, control is returned to navigation Jockey.

The Executor also performs the localization in the newly visited vertex. It tries to
decide if robot enters new vertex or just revisit the already mapped one. It takes in

70



10.2 jockeys

a count the time consumption of each Jockey and optimizes gathered information
against the required time. The Executor calls Jockeys in order of their efficiency.

10.2 jockeys

The algorithmic part of the procedural knowledge is denoted as Jockey. Numbers
of different navigating and localizing algorithms were designed and implemented
during the development of herein presented framework. Even with the presence
of the Executor is reasonable to have the unified access to all the algorithms.
Therefore, these algorithms, representing particular functionalities, were designed
as an independent software modules with defined interface.

These modules are called Jockeys as, in certain sense, are “riding” the robot. It
means that these modules have direct access to the robot hardware and are able
(and allowed) to control the robot actuators, to read the robot sensors and to process
raw data gathered from the robot’s sensors.

Diverse algorithms represent the different types of the procedural knowledge.
Some of these are dedicated to the robot navigation, another ones are able to gather
the data necessary for navigation later on, some provides both the functionalities.
There are algorithms for extraction of the descriptors from data, another are
matching the descriptors or localize the robot inside the place.

Generally, the functionalities of the algorithms can be grouped into three basic
types: navigation, localization and learning. According these functionalities, three
different core types of modules are defined :

• Navigating Jockey,

• Learning Jockey and

• Localizing Jockey.

Whereas for each type of Jockey is the specific interface in form of communication
protocol defined.

Jockeys are connected to the Executor through socket and XML based protocol.
Socket communication is chosen, as it allows to split execution part (the Jockeys)
from deliberative part(Map and Reasoning) in logical as well as spatial manner.
The spatial detachment allows to run the Jockeys on the different computation
resources than the deliberative part. For example, the Localizing Jockey can run
on an intelligent IP camera and be connected to the rest of the system only by
Ethernet.

The XML protocol is chosen due to the ease to extend and customize, and
ensure connectivity of different types of control programs not depending on the
background operating system. It is necessary to have an extensibility property, as
the protocol is extended for each individual Jockey, according the functions and
needs of each ones. The extended part is passed into the related Map Interface
where is further processed. Each Jockey is related to one or more Map Interfaces
(see sec. 8.3.4) storing the data into the map.
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10.2.1 Navigating Jockey

The navigating Jockey takes care of traversing edges with respect to the proce-
dural knowledge of a specific type. It guides the robot along the given edge and
determines the end of this edge when entering into a next vertex. If it is possible
to interrupt the execution of the navigating algorithm, the Navigating Jockey is
call interruptible. This property allows to restart it later from a slightly different
position while the algorithm still keeps the capability to navigate to the original
target vertex.

The navigating Jockey has two different subtypes: Memory-less and Memory-
based.

Memory-less Navigating Jockey

A Memory-less Jockey uses a reactive navigating strategy. The procedural
knowledge represented by reactive navigating strategy has minimal data part. Only
the information needed to distinguish outgoing edges from each other is stored in
the map.

The reactive algorithm computes the control commands directly from the sensory
input and has no persistent internal state. Therefore, the Memory-less Navigating
Jockeys are often interruptible.

Main advantage of reactive navigating is the ability to traverse an unknown
edges which was not traversed before. It allows to discover new locations, which
are the target vertices of these edges. Therefore the Memory-less Jockeys are used
mainly during the exploration of the environment.

Memory-based Navigating Jockey

A Memory-based Jockey needs the data part of the procedural knowledge about
the edge for the proper operation. The data for the Memory-based Jockey are
typically more complex than for the Memory-less one. These data (edge descriptor)
are stored in the map and must be inserted into the map by the coupled Learning
Jockey in advance. Therefore, the Memory-based Navigating Jockey can guide the
robot along previously visited edges only.

The Memory-based navigation can be more precise and repeatable than the
reactive one. This Jockey can determine the failure of the navigation and report it
to the Executor module. In addition, the Jockey can estimate the possibility of the
failure according the given edge descriptor in advance.

Secondary, the Jockey can provide the measurement of similarity of the ap-
propriate edges. This property is used in the Reasoning procedure described in
Chapter 9.
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10.2.2 Learning Jockey

The Learning Jockey is tightly coupled with particular Memory-based Navigating
Jockey which utilizes the procedural knowledge of the same type. This Jockey
produces the procedural knowledge by gathering the information while a robot
is driven by another Navigating Jockey (typically Memory-less), as the Learning
Jockey is not supposed to control the robot actuator while traversing the edge.

The gathered procedural knowledge is divided into algorithmic and data parts.
The data parts is stored in the map as the edge descriptor. This edge descriptor can
be utilized by Memory-based navigating Jockey later on.

It is possible, that the Learning Jockey needs to control the robot actuator
occasionally, in order to increase the performance, get more data from the sensor,
get more time for data processing or fix the errors. In this case, the Learning
Jockey can request the Executor to interrupt the running Navigating Jockey. If the
Navigating Jockey is interruptible, the Executor suspends the Navigating Jockey,
and the control over the robot actuators grants to the Learning Jockey. The original
Navigating Jockey is reactivated, as soon as the Learning Jockey achieves the goal
and notifies the Executor, that the reason for interruption disappears.

The Learning Jockey extends the existing edge with the new procedural knowl-
edge how to traverse the edge. This property allows to build rich but unified spatial
representation for different types of robots equipped with wide range of sensors.
Such a map is suitable for a heterogeneous robotic team, as it allows easy sharing
of the spatial knowledge among team members.

10.2.3 Localizing Jockey

The Localizing Jockey is related to the specific type vertex descriptor and specific
sensors. This Jockey processes the sensor data into the form of vertex descriptor.
Resulting descriptor is stored in the map using the specific Map Interface. Different
sensors require different Localizing Jockeys for handling specific hardware and
processing data, nevertheless these Jockeys can utilize same Map Interface and
therefore share the stored information. On the other hand, Localizing Jockeys with
different algorithms can share the same sensors.

When the robot arrives into the vertex, the Jockey gathers information about the
surrounding environment, computes and stores specific descriptors into the map
and also discovers outgoing edges from the current vertex (if possible). Different
Localizing Jockeys can produce different vertex descriptions and also discover
different outgoing edges.

The Localizing Jockey is able to distinguish vertices of the specific type from
each other and compare the actual vertex with other vertices stored already in the
map. As results it gives the probabilities of being in some of the previously visited
vertices. This behavior is used for global localization and loop-closing.
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In addition, Localizing Jockey can estimate robot relative position in the vertex
local frame of reference, if the stored descriptor has the form of the metric map.
This ability is crucial, if the robot has to interact with the environment.

Further follows the detailed description of particular algorithms. They are
grouped according the types defined above.

10.3 navigating memory-less jockeys

10.3.1 Visual Reactive Navigation

This memory-less navigating jockey called GeNav (from Gerstner navigation) is
designed to use a visual system to navigate in the environment and detect certain
locations. The jockey tries to navigate along the path in the environment and is
expected, the path has a distinctive color. The navigation is done reactively, solely
on the information from the camera. The places of interests are the crossing of the
paths, where the robot can decide to follow another path. A magnetic compass
as an absolute sensor of robot heading is used for the outgoing edges (paths)
distinction.

The path and crossings are recognized in the color picture taken by calibrated
camera aimed at a surface in front of the robot. The viewed area spans from 1 to
5 m in the direction of the robot movement and approximately 3 m to both sides. It
is supposed, that color of the path is given by other method or sensor, or is known
in advance. Path color can be also entered by an operator.

A hue-saturation-value (HSV) color space is utilized for path color specification,
because a Cartesian product of HSV values color description offers greater invari-
ance to the changing illumination than similar description in Red-Green-Blue color
space. To prevent costly calculations of HSV description of every evaluated pixel
during recognition procedures, a RGB lookup color table is first computed from
the HSV color specification.

The jockey implements two behaviors: Path traversing and Crossing detection.

As the navigation starts, a command with azimuth of traversed path is received
and the robot turns to the given azimuth using the magnetic compass. Afterwards,
the robot moves forwards a certain finite distance and path traversing routines are
activated. Leaving an actual crossing, the crossing detection routine is temporarily
inhibited to prevent recognition of previously visited crossing.

In the path traversing mode, the jockey attempts to keep the robot in the mid-
dle of recognized path while driving it forwards. This procedure estimates the
width of the recognized path and executes crossing recognition routines when this
width changes rapidly. Once a crossing is recognized and approached, the place
description is sent to executor module.
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Figure 7: Block scheme of visual memory-less navigating jockey (GeNav).

Path traversing

The path traversing behaviour follows the central line of the recognized path. In
the first step of the algorithm, last row of acquired image is searched for pixels
of path color and a mean value of their horizontal coordinate is computed. After
that, an identification of path boundaries on this row is performed, i.e. a pixel
sequence of other than path color is searched in both directions from the mean
position of pixels of path color. The path centre and the width are then calculated
out of the detected boundaries. If the width is greater than a predefined threshold,
the algorithm proceeds to a higher row with search start position given by the
current path centre coordinate. The search algorithm is completed whenever the
path width drops below this threshold.

Robot forward velocity v and turn speed ϕ vector is computed by:(
v
ϕ

)
=

(
α(h− r)− β|∑h

i=r(
w
2 −mi)|

β∑h
i=r(

w
2 −mi)

)
, (10.1)

where h and w are the image height and width respectively, mi is detected path
centre of the ith row, r is the last processed row number and α, β are constants.

As noise is usually present in the image and may influence smoothness of the
computed driving parameters, the centre and the width values are smoothed by
second order linear adaptive filters.

Crossing recognition

The crossing recognition detects the crossing of the paths in the picture from
the camera, finds the outgoing edges and computes its angles using the magnetic
compass. Unlike path recognition, employability and precision of this routine
requires the camera to be calibrated. If the detected path width differs from
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Figure 8: Detected path and crossing

the predicted one consecutively, crossing detection routines are activated. This
performs search for compact regions of path color on the periphery of the sensed
image. Regions not connected by a path to the center of detected crossing are
removed. Image coordinates of the remaining region centers are converted to the
robot coordinate system (crossing is considered to be planar and collinear with
robot undercarriage). The crossing description is then calculated out of these
regions, detected crossing center and compass measurements. This description
consists of a set of path bearings leading out of the crossing.

Finally, the image of crossing center is searched for a large blob - a sufficiently
large compact region of predefined color. If the blob is found, the crossing is
designated as a “base vertex”. Then the robot moves to the computed crossing
center coordinates controlled in the open-loop. The description is delivered to the
executor module.

10.3.2 Laser-based Navigation Jockey

The task of the LaNav jockey is to navigate a robot reactively through an en-
vironment using purely data from a laser range finder. It is assumed, that an
omni-directional laser range-finder is applied, or two 180 degree scanners are
employed.

The jockey operates in three main modes:

leave mode, where the robot leaves the current place,

navigation mode, where the jockey navigates robot through the environment
based on laser data and

goal mode, where the robot has to reach (possibly) near goal.

The navigation mode is used for exploring the environment. During the navigation,
robot tries to find a significant places, e.g. crossings. If such a place is detected, the
Goal-mode is employed to navigate the robot towards the detected place.
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Figure 9: Block scheme of laser memory-less navigating jockey

Leave Mode

The leave mode takes the edge description from the Executor and starts the
navigation along this edge. The navigation mode cannot be used for this task,
while in navigation mode significant places are continuously detected and robots
attempts to move towards their centers. If the navigation mode starts at a center of
a significant place, it will possibly detect it and report to the Executor module. In
such a case, robot may never escape from that place.

The edge descriptor is a relative direction, in which the robot has to leave the
current place. At first, the robots turns to this direction and it computes maximum
distance, which can be reached in this direction without collision. In the second
phase, the robot moves along a straight line to this distance. Operating in the leave
mode, significant places are not detected and range scan data are used only to detect
new unexpected obstacles. If the robot moves to the distance at least radius of the
start place, LaNav switches into the navigation mode.

If not successful, the navigation mode may also be started directly, but the start
place has to be ignored, if it is detected repeatably. To ignore the start place, its
position and size are stored and tracked using odometry, as the robot moves.

Navigation Mode

In navigation mode robot uses a reactive navigation algorithm which is based on
actual scan data only. This aims to navigate the robot in collision free manner and
move robot on such a trajectory, that maximizes possibility, of interesting place
detection. Such a trajectory should be close to medial axis of the environment. The
navigation algorithm computes control input for the robot based on distances to
the nearest obstacles in the environment.
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Figure 10: A coordination system of a robot, r denotes the safe radius. In this
case, the robot will move in direction of blue arrow, because the nearest
obstacle is on the right (a). Example of a situation near a corner, where
the robot has to turn back (b).

The forward speed v and turning speed φ are computed as:

v =

{
0 if nearest obstacle is too close

vconst otherwise

φ = −φconstsx/n,

where vconst and φconst are numerical constant and sx = ∑n
i=0 xi, where xi is x-

coordinate of a obstacle detected by i-th laser beam in a robot local frame of
reference as depicted in Figure 10. This controller thus turns the robot to that
direction where the obstacles are more distant. The robot thus moves along a
trajectory close to medial axis. To prevent collisions with closest obstacles in front
of the robot, the forward velocity is set to zero (complete stop), if the distance to
the closest obstacle in front of the robot is less than a preselected safety diameter of
the robot. In such a case robot just may turn towards a free area.

During the navigation mode the scan data are processed in order to detect places
and its centers. If a place is found and the place center is in front of the robot, the
robot changes to goal mode.

Goal Mode

In this mode, the center of the detected place is denoted as goal G = (xG, yG),
and robots tries to reach it. However, during moving towards a place center, the
position of the place center is continuously updated. If the place is not longer
detected as a valid place, due to recent sensory readings, the navigation mode is
entered. Otherwise, robot finish the goal mode in the nearest crossing center and
reports this to the Executor module.

During the goal mode the forward speed v and turning speed φ are computed as:

v = max(1, cvxG) (10.2)

φ = max(1, cφyG), (10.3)
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here the goal coordinates lay in a robot local frame of reference and cv, cφ are
treated as multiplicative constants to angular and radial speeds, depending on
robot dynamics.

Place detection

The detection of interesting places (crossings) is based on search for frontiers
in laser range scan. The scan S = {p1, . . . , pn} consists of n points, where each
point pi = (xi, yi) is a detected point in a robot local frame of reference. The points
form a polygon P, where the robot’s position is at location (0, 0). A frontier is
defined by such a two consecutive points pj, pj+1 ∈ P, whose distance is larger than
a predefined parameter dt. In our case the parameter dt is defined as the radius of
the robot, thus the frontiers are defined as segments in the polygon, though that
the robot can escape the polygon. For the navigation purpose, the direction αi of
each frontier is stored. This angle is used as an edge descriptor.

The frontiers can be detected in O(n), where n is number of points in the polygon,
the algorithm of frontier detection is shown in Alg. 3. The example of a detected
frontiers is depicted in Fig. 11b.

Algorithm 3: Frontiers detection.
Input: P = {p1, . . . , pn}: laser data, n is number of beams, threshold r
Output: F = {(α1, p1, q1), . . . , (αm, pm, qm)}: m detected frontiers, each frontier

has a direction αi and its boundary points are pi and qi
for i ∈ 1, . . . , n do

d = distance between pi and pi+1;
if d > dt then

α =direction to midpoint on line (pi, pi+1);
F = F ∪ {(α, pi, pi+1)}

Detection of center of an interesting place

To be able to navigate the robot towards the interesting place, we have to define
the center of the place. This is determined as the center of the largest free circle in
the laser data. The free circle does not contain any point from the laser polygon.
Moreover, the free circle must lay inside the scan polygon.

The detection of the largest free circle is based on a Voronoi diagram constructed
over the laser polygon. The algorithm first replaces all frontiers (which are segments
of length larger than dt) by a set of points. In the second step a Voronoi diagram
is built from the polygon data and from the frontier points. The Voronoi diagram
is a graph VD = (V, E) with the set of Voronoi verices V and Voronoi edges E.
The center of the largest free circle is located at the vertex v ∈ V of the Voronoi
diagram. However, first the Voronoi edges outside the polygon must by removed,
otherwise the largest free circle will likely be located outside the polygon. An edge
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is removed from the Voronoi diagram, if at least one of its points is located outside
the polygon P. The reduced Voronoi diagram

VDR = (VR, ER), : {e = (p, q) ∈ ER, p, q ∈ VR : p, q ∈ V ∧ p, q inside polygon area}

.

The center of the largest free circle in the polygon is then searched among all
vertices v ∈ Vr:

cmax = max
v∈Vr

c(v), (10.4)

where c(v) is a radius of the largest free circle with a center v. The searching of the
maximum can be speeded up by using the KD-tree.

The center of the largest free circle can be found in O(n2) time, where n is
number of points in P′. Herein the most time consuming operation is the filtering
of outer voronoi edges, which is O(n2). The algorithm of the center detection is
depicted in Alg. 4. The examples of detected center of an interesting place in a
polygon is are depicted in Fig. 11.

Algorithm 4: Finding a largest free circle in a polygon.
Input: P = {p1, . . . , pn} laser scan polygon, F = {(α1, p1, q1), . . . , (αm, pm, qm)}

set of m frontiers
Output: cx, cy, cr center and radius of the largest empty circle
P′′ = replace frontier F by set of points;
P′ = P ∪ P′′ ;
V = voronoi digram of points P′;
Vr = filter voronoi edges outside polygon P′ ;
K = build KD-tree from P′;
for edge e = (p, q) ∈ Vr do

(dist1, k1) = find nearest point in P′ to p using KD-tree K;
if dist1 > distm then

cx = p.x;
cy = p.y;
cr = dist1;
distm = dist1

(dist2, k2) = find nearest point in P′ to q using KD-tree K;
if dist2 > distm then

cx = q.x;
cy = q.y;
cr = dist2;
distm = dist2

10.3.3 Manual Navigation

The manual navigation (MANAV) is a special case of the Memory-less navigating
Jockey. The human operator manually drives the robot following the command set
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a b

c d

Figure 11: Example of detection of frontiers and largest empty circle in laser scan.
(a) simulation environment, (b) detected frontiers, green line denotes
polygon in a reduced visibility (2 m), (c) Voronoi diagram made of
points on green polygon, blue line denotes filtered Voronoi edges, (d)
the detected largest free circle.
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requested by the executor. It is necessary to have at least one Learning Jockey to
profit from the manual navigation. The edges traversed by MANAV can be mapped
even in spit of absence of Learning Jockey, but these edges are traversable only in
presence of the human operator.

The power of the manual navigation arises in the combination with the Learning
and Memory-based navigating Jockey. In this case, the human operator can lead
the robot to areas inaccessible by reactive navigation or can add the used-defined
place. The trajectory is learned and represented in the map in a way, the robot is
able to traverse this learned trajectory autonomously later on.

It works as follows: The executor asks the human operator to traverse an edge.
Human operator drives the robot along desired edge. Simultaneously, the Learning
Jockeys are learning the actual edge, if Learning Jockeys are presented. The operator
denotes the end of the edge and return the control of the robot to the executor.

The intention of the manual navigation is in the exploration phase. But it is also
possible to use it in the case of failure. Another possible usage of the MANAV is
recovery action during the operation of the system. If the robot fails to navigate
the edge and the executor runs out of all possible recovery action, the last recovery
is to ask the operator to navigate the robot out of this situation, if the operator is
present.

10.4 learning and memory-based navigating jockeys

As the Learning and memory-base navigation are tightly connected, the Learning
and Memory-based navigating Jockeys are described together. The Memory-based
navigating Jockeys are able to move only along the pre-learned edge. They are
useless in absence of appropriate Learning Jockey and vice versa. The learned edge
is traversable only using the appropriate Memory-based navigating Jockey.

10.4.1 Visual Surf-based Navigating and Learning Jockey

This algorithm [40] provides the functionality of the learning and memory-based
navigating jockeys at once. It is called SURFNav according the SURF features used
for image processing. For the navigation is necessary to have an edge descriptor
previously acquired by SURFNav learning jockey.

The SURFNav jockey recognizes objects in the image taken by a forward looking
camera and corrects direction of robot movement. Measurements from the magnetic
compass and odometry are integrated as well.

A brief explanation of object extraction from the image is given in following
subsection. Then the description of learning jockey function is given followed with
the description of the navigating jockey.
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Object recognition

SURFNav uses Speeded Up Robust Features [1] to identify robust and reliable
landmarks in the image. This algorithm processes gray-scale images in two phases:
At first, a local brightness extrema detector is applied to the image. In the next
phase, a scale, rotation and skew invariant descriptor of detected extrema neigh-
borhood is computed. Algorithm provides image coordinates of salient features
together with their descriptor. To speed up computation time, the image is hor-
izontally split and its parts can be processed simultaneously by multiprocessor
machine. See processed image with highlighted feature positions on Figure 12.

Figure 12: Image and detected features.

Learning Jockey

In the learning mode of the SURFNav, the learning jockey expects the robot is
guided through the edge along a piece wise linear trajectory. At the beginning of
each edge, the jockey resets robot odometry counter, reads compass data and takes
a predefined number of images. Objects, which have been detected in predefined
numbers of subsequent snapshots of this series are considered to be stable. Stable
objects with constant positions are regarded as stationary. Positions and descriptors
of stored objects are saved. Afterwards, the robot starts to move forwards, the
jockey obtains and processes images and records odometric data. When an object
is detected for the first time, the algorithm saves its descriptor, image coordinates
and robot distance from the segment start. Saved objects are tracked over several
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pictures and their positions in the image are assigned to current robot position
within a segment. Tracking of an object is terminated after three subsequent
unsuccessful attempts to detect it in the image. Its descriptor, image coordinates
and odometric data in moments of the first and the last successful recognition
are inserted into the dataset describing the traversed segment. Edge learning is

Figure 13: Block scheme of SurfNav learning jockey.

terminated by an executor, which stops the robot (edge length is saved).

Navigation Jockey

When navigation mode is started, the navigating jockey receives the edge descrip-
tion and turns robot to the indicated direction. After that, the odometry counter
is reset, forward movement and picture scanning are initiated. Objects, which are
expected to occur in the image, are selected from learned set. These are the objects
with the first and the last detection distance greater, respectively lower than the
current robot distance from edge start. Expected image coordinates in current
camera image are calculated by linear interpolation using aforementioned distances.
Selected objects are rated by a number of frames which they have been detected in
and top-rated objects are chosen as suitable for navigation. For each candidate, the
most similar object is searched in the set of actually detected ones. The similarity
is calculated from an Euclidean distance of descriptors of both compared objects.
A difference in horizontal image coordinates is computed for each such a couple.
A modus estimate of those differences is then converted to a correction value of
movement direction. After the robot travels distance greater or equal to the length
of the given segment, jockey announces the edge has been traversed.

An important aspect of this navigation algorithm is its functionality without
the need to localize the robot or to create a three-dimensional map of detected
objects. Even though the camera readings are utilized only to correct the direction
and the distance is measured by an imprecise odometry, it is shown, that if the
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robot changes direction often enough, it will keep close to the previously learned
trajectory.

Figure 14: Block scheme of SurfNav memory-based navigating jockey.

10.4.2 Laser Memory-based Navigation Jockey

The laser memory-based navigating jockey relies on the “record and replay”
approach.

The navigating jockey takes the first scan from the descriptor of the learned edge
and localizes the actual scan within it. The localization reuses the approach of
the Bosse and Zlot [7], where histograms of the angles and projections of the scan
is used. While the method is not invariant to the width of the histogram bins in
diverse environments, this parameter has to be determined adaptively. At normal
conditions histogram bin starts at a predefined size.

Algorithm 5: Laser memory-based Navigation
input: edge description = vector of scans S
repeat

take first scan s← S;
localize robot c, ε← localize(nbins, s);
while error of the localization ε > τ do

modify nbins ;
if all possible nbins tried then

return navigation failed
localize robot c, ε← localize(nbins, s);

if |c, origin| > ς then
navigate to localized sensing location c ;

else
remove s from S;

until empty S ;
return navigation succeed
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According to the quality of the computed match of two current scans ε, measured
by average distance between nearest points in compared scans, the size of the bin
is lowered until the quality not reached required precision.

After the matching algorithm ends, the center of the scan (sensing location)
c is localized within the robot’s local frame of reference. In next steps robot is
navigating towards this point and periodically re-localize the position of the sensing
position using an actual laser scan. After the robot reaches the sensing location, the
scan from next sensing location is taken and matched with the actual scan. This
procedure is repeated until the robot reaches the destination vertex of the edge.

This navigation method is relatively insensitive to moving objects like pass-
ing people. Also small changes of static objects do not influence the navigation
algorithm substantially.

Figure 15: Block scheme of laser memory-based navigating jockey.

10.4.3 Laser Learning Jockey

The learning jockey simply records the traversed edge by taking a single laser
range scan from each sensing location along the edge. The sensing locations are
distributed along the edge to ensure the navigating jockey is able to follow this
edge. The fist sensing location is placed at the beginning of the edge and the scan
of this place is stored into the descriptor of the edge. The actual laser scan is taken
and localized within this scan. The relative position c and error ε of the localization
is taken.

The next sensing location is created when the distance of actual position to the
previous sensing location is higher than the threshold ϑ. The size of the threshold
determines the sampling of the edge and influences the precision of the following
the learned edge.

The next sensing location is also created if the error ε is bigger than the τ. This
error pointed to that the previous sensing location is not descriptive enough to
navigate to them from actual location. In this case, the previous scan with lower
error is used to create sensing location and store in the edge descriptor. Typical
structures/situations, where the error of localization increase radically are doors
and narrow passages. The environment structure on each side of the door (or the
passage) can be very different and there is not sufficient information of the other
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Algorithm 6: Laser memory-based Edge Learning
output: edge description D
D ← ∅;
take actual scan s;
create sensing location sl1 ← s;
add sl1 into D;
i← 1;
repeat

take actual scan s;
localize robot c, ε← localize(n, sli) ;
if error of the localization ε > τ or |c, origin| > ϑ then

i ++;
sli ← s;
add sli into D;

take actual scan s;
sln ← s;
add sln into D;

until Edge traversal ends ;
return D edge descriptor

side in the actual scan. This rule ensures the placement of the sensing location
inside the door.

The last sensing location is placed at the end of the edge. The learned edge is
then possible to traverse in both direction.

10.5 localizing jockeys

The Localizing Jockeys provide two functionalities. They determine the similarity
of vertices and localize the robot within the local frame of coordinates of the vertex.

10.5.1 Laser-based Localization Jockey

The robots equipped with a laser rangefinder may use the laser-based localization
jockey. This jockey consists of algorithm for detection of the places of interest and
algorithm detecting outgoing edges.

The place of interest (intersections) can be defined as a place where more than
two edges are joined. The detection algorithm searches for the outgoing edges,
however these depend on robot position. The algorithm thus determines the center
of the place from which the outgoing edges are searched. This center is computed
as a center of the largest free circle in the polygon formed by a laser data.

During the outgoing edge detection the scan is considered as a simple polygon
in which the frontiers are searched. The frontier searching algorithm works in two
steps. At the first step all polygon vertices, which are distant from the current
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standpoint more than a given threshold r are removed. The polygon edges which
length is larger than the size of a robot make a set of frontiers candidates. From this
set the frontiers through which the robot cannot pass due to physical constrains
are removed.

The algorithms are same as in the section 10.3.2. The algorithm for frontiers
detection is algorithm 3. The algorithm for center detection is algorithm 4.

The number of found frontiers is influenced by a value of the threshold r. The
values of the threshold cannot be preset while the robot is assumed to operate in
both large free areas (where the r should be large) and narrow corridors (where
the r should be small).

Therefore value of the threshold is dynamically adopted to structure and shape of
the current environment based on processing of incoming laser data. The histogram
of measured distances is build from laser data and the highest score bin determines
the value of r.

Figure 16: Raw laser data (red) with detected frontiers (blue). The threshold r is
depicted by the blue circle , L denotes the size of the robot.

10.5.2 Descriptor matching

Each vertex in the topological map has assigned several descriptors obtained
by various jockeys. The descriptor matching algorithm computes similarities
between place descriptors of the same type. For each descriptor type several
diverse algorithms can be used to determine the similarity.

The algorithms for similarity computing, produces a single quantitative measure
for each pair of vertices descriptors being compared. In this context, any descriptors
in a pair are considered to represent the same physical place if the similarity is
larger than a threshold ϑ. This threshold must be set for each particular matching
algorithm separately. The value of the threshold ϑ can be determined using ROC
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(Receiver Operating Characteristic) [25]. For the above mentioned algorithms for
similarity computation the classification threshold ϑ has been determined using
the ROC see sec. 12.1.

Normalized Cross-Correlation

A way how to obtain level of similarity for a given pair of laser range data is
evaluation of a cross-correlation function for the measured distances. The laser
scan is a finite set of measured range data d of size N. Let d be an access function
to a finite data set as

d(iN + k) = d(k), i ∈N, 0 ≤ k < N

.

As the similarity is intended to be from the interval [0, 1] in is necessary to use a
normalized version of cross-correlation:

( f ? g)(y) =
1

N − 1

N

∑
x=1

( f (x)− f̄ )(g(x + y)− ḡ)
σf σg

, 0 ≤ y < N,

where f̄ means average of f and σf is a standard deviation. This function returns 1

only if the both functions are equivalent.

Alternatively, the normalized vector F can be defined as

F(x) = f (x)− f̄

and the above sum is equal to

〈 F
‖F‖ ,

G
‖G‖〉,

where 〈·, ·〉 is a inner product and ‖ · ‖ is the L2 norm.

The normalized cross-correlation method is called NCC( f , g) for rest of the paper.
The similarity of two laser scans is then computed as :

sNCC(di, dj) = max
y

NCC(di(x), dj(x + y)).

Fourier Transformation

More sophisticated approach to evaluate the similarity may be normalized cross
correlation of the Fourier coefficients calculated by corresponding discrete Fourier
transformation of the data in polar coordination system:

Xk =
N−1

∑
n=0

xne−i2πk n
N k = 0, 1, . . . , N − 1

The Fourier coefficients are computed using the fast Fourier transformation
implementation from [26] and therefore is denoted as FFT for rest of the paper. As
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Figure 17: The raw laser data (red) and data reconstructed using first k = 32
harmonic functions (green)

amplitudes of the Fourier coefficients express the similarity, descriptor is invariant
to rotation. It permits a robot to scan the place descriptors regardless of the its
orientation.

Descriptor based on FFT is defined as

DFFT = {X1, X2, . . . , Xk}

To minimize influence of the noise in the data, the first k < N harmonic functions
can be considered for similarity computing only. As the first harmonics describe a
coarse character of the laser data, the higher harmonics describe preferrably the
noise components of the data. An example scan of real environment and the scan
reconstructed from its first k = 32 harmonic functions are depicted in Fig. 17.

The similarity of two descriptors s(Di, Dj) is computed

s(Di, Dj) = NCC(Di, Dj)

Polygonal Methods

If the laser data are represented by a simple polygon, the polygon matching
algorithms can be used for computation of the similarity between place descriptors.
The polygonal matching algorithms have been studied for many years [52] and
with the assumption that the global properties of the polygons like area, perimeter,
moments etc. can be used to measure the similarity. However these methods do
not consider a shape of the polygon. Different places of interest can have assigned
polygons, that cannot be discriminated using their global properties only. Hence
shape matching algorithms are used for similarity measurement.
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Integral Invariant

The integral invariant method [54] relies on measurement of similarity between
two curves that represent an integral invariant of the polygon. The integral invariant
for a continuous curve C is defined as computing I(p) by equation:

I(p) =
∫

C
‖p− x‖ds(x),

where ‖x − y‖ is Euclidean distance in R2, for every point p ∈ C. The discrete
version holds for a polygon P:

I(p) = log ∑
x∈P

(‖p− x‖)

for every point p from polygon and the descriptor then is:

DI I = {I(p1), I(p2), . . . , I(pn)} n = |P|

where n is number of points in the polygon P.

The similarity s(Di, Dj) is computed as:

s(Di, Dj) =
n

∑
k=1

(Diu − Djv), (u, v) = C(k),

where C(k) is k-th correspondence. The best correspondence is defined by minimis-
ing the function:

L

∑
k∈1...M
l∈1...N

|I1(k∆s1)− I2(l∆s2)|2 +
(h1 + h2)

2
+ α

∣∣∣∣h2 − h1

h1 + h2

∣∣∣∣2 h1 + h2

2
,

(k, l) are corresponding points ,I(k∆s) is a integral invariant in k-th point and
h1, h2 are determined by warping function h = (h1, h2) which represents the point-
wise correspondence between points of curves (as defined in [54]).

The integral invariant is more sensitive to global changes (the shape of the
polygon) and less to changes imposed by a noise in depth data along the horizon.

Shape context

This approach assigns to each polygon vertex a shape context [2], which describes
the near neighborhood of the vertex in question. Then, two vertices are considered
similar if their shape contexts are similar. The shape context is defined as the
two-dimensional histogram H(p) of logarithmic polar distances from a particular
vertex to other vertices in the polygon.

The distance between two shape contexts is given as a distance between two such
histograms

C(pi, pj) =
1
2

K

∑
i=1

(
Hi(k)− Hj(k)

)2

Hi(k) + Hj(k)
,
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ϕ
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d1

Figure 18: Shape context of one point.

where K is number of bins in the histogram.

Similarity measure between two polygons can be then computed as follows: First
the shape context is computed for each vertex and the shape distance between
vertices of the two polygons are computed. The correspondences between polygon
vertices are resolved by application the bipartite matching problem. The distance
between two polygons is obtained as a sum of distances between resulting matched
vertex pairs.

Tangent Space

Traditionally, the closed polygon can be represented as a list of vertices or by
giving a list of line segments. Alternatively, a polygon can be represented using
a tangent space - a list of angle-length pairs, whereby the angle at a vertex is an
accumulated tangent angle at this point while length is the normalized accumulated
length of polygon sides up to this point. The length is normalized to be 1 for all
polygons.
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Figure 19: Closed polygon and corresponding tangent space representation.

As the tangent space representation depends on the starting vertex, lets define a
tangent space representation tp : [0, 1] 7→ [0, 2π] to be a projection from normalized
length to accumulated tangent angle starting from point p ∈ P. Then the similarity
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of two polygons is a minimum difference between all possible variants of the
tangent space representation:

s(P, Q) = minp∈P

∫ 1

0
|tq(x)− tp(x)|dx.

Scan Line

The scan line matching algorithm is based on the approach introduced in [10].
The shape descriptor is computed from the intersection l∩ P of the randomly placed
lines l ∈ L with the polygon P. All the intersecting points x1, x2, x3, . . . , x2n ∈ R2

are ordered and forms n compact intervals. The intersection function is defined as

Sl∩P(ξ) =
2n

∑
k=2

k−1

∑
i=1

(−1)i+k+1 I{xk − ki > ξ}

for all interval lengths ξ > 0, and where

I{xk − xi > ξ =

{
1 , ‖xk − xl‖ > ξ

0 , otherwise
(10.5)

If xk − xi represents an interval strictly interior or exterior to a polygon, the sum is
incremented. If the interval represents a collection of intervals both interior and
exterior, the sum is decremented.

The descriptor of the polygon is then defined as

DSL(ξ) =
1
N ∑

L
Sl∩P(ξ)

and the similarity of two polygons

s(Di, Dj) = ∑
ξ∈Ξ
|Di(ξ)− Dj(ξ)|,

where the Ξ is a set of interval lengths used in the descriptor.
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E X P L O R AT I O N

In this chapter, the algorithms for the topological exploration are described. The
topological exploration of the environment can be seen as the graph exploration.
Many of the graph exploration algorithms rely on the unique labeling of the vertices
or edges. These approaches are not suitable for the robotic exploration at all, or
require to put the artificial landmarks into the environment to produce such a
labeling.

The currently used algorithms often use an movable marker to allow robot
distinguish the vertices from each other. It puts the hard requirements to the robot
hardware which must be able to put the marker into the environment and collect it
later back. Therefore in the first section, the algorithm with one not-movable marker
is proposed. This marker is placed at the starting place, called “base vertex”.

In the second section, the algorithm is further modified to avoid usage of the
marker at all. The reasoning procedure is used to close the loops in the environment
instead of the marker.

11.1 exploration with marker

The algorithm consists of two phases: exploration and vertices merging.

In the exploration phase, the robot moves through the environment and makes its
own map GM = (VM, EM) of the world. As the robot cannot distinguish particular
vertices from each other, it is also unable to close loop in exploration without
visiting the “base” vertex (or interacting with some other robot). Moreover, every
visited vertex must be handled as previously unvisited one unless the robot proves
the contrary.

The vertices merging phase starts whenever the robot detects the “base” vertex. This
situation allows to close the loop and merge identical vertices. In the exploration
phase, one place in the environment might be represented by more vertices in the
map. This inconsistency is reduced in the vertices merging phase.

The algorithm works properly only if the robot is able to follow all detected edges.
Existence of complementary edges is also necessary. Edge ē ∈ E is complementary
to edge e ∈ E if and only if expression (11.1) holds.

∀e∃ē, e, ē ∈ E, e = (u, v), ē = (v, u), u, v ∈ V (11.1)
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Moreover, the robot knows complementary edge ē after passing e. It means that
the robot is able to backtrack its movements.

After the robot passes from the vertex u to v, it also knows how to move from v
to u even without passing this way back. As the robot knows azimuth from which
it entered a vertex, it also knows the way back.

Exploration Phase

The robot moves through environment and stores vertices and edges into the
map during this phase. At the beginning, the robot has no information about the
environment. The robot starts to follow actual edge until a crossing is detected.
This crossing is stored in the map as the first vertex. The nearest unexplored edge
is used for the further movement.

The exploration phase is based on a graph depth-first search (DFS) algorithm.
This algorithm is greedy because the robot follows the nearest vertex with unex-
plored edge. If there is more than one unexplored outgoing edge from an actual
vertex, the edge for next step is chosen randomly with uniform probability. It is
possible to use breadth-first search (BFS) algorithm, but the robot travels typically
larger distances with BFS.

When the robot arrives to the next vertex (crossing), the edge between this and
previous vertex is added into the map. The complementary edge is known from
entry azimuth and is also added into the map. If the robot visits the “base” vertex,
vertices merging phase is executed.

Algorithm 7: exploration phase
follow edge c(e);
if detected place then

add new vertex v to the map VM;

while exists unexplored edge in the world do
if all edges from u was explored then

find path to nearest vertex with unexplored edge;
choose first edge e from path;
execute edge e;

else
choose randomly unexplored edge e;
store azimuth into t(e); execute e to move to v;
add vertex v into the map VM;
add edge e = (u, v) to the map EM;
add edge ē = (v, u) to the map EM;

As the robot uses only the greedy exploration strategy, exploration can take a
long time. If the environment is a tree-like graph with n crossings, it is guaranteed,
the exploration finishes in 2n steps. When cycles occur in the environment, the
robot can stuck in the cycle, if the cycle does not contain the “base”.
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Therefore, the metrical heuristic function is utilized. This heuristic function esti-
mates metric position of the vertex from robot odometry. After the robot spends
certain time in unexplored space, edges directing to the base are preferred. Edges
are still chosen randomly but not with uniform probability. The Roulette-wheel
selection is used. The parts for each edge are allocated according to its deviation
from the direction to the base. The largest part of the roulette-wheel has edge with
lowest deviation.

Random choice must be kept because errors in computation of base position are
affected by cumulative errors in its odometry. Also paths may not be straight but
can have different shapes.

Vertices Merging Phase

When the robot arrives into the “base” vertex, the vertices merging phase is started.
First, the actual vertex recognized as base is merged with base vertex in the map.
Next, the robot makes the map consistent according Algorithm 8.

Algorithm 8: vertices merging phase
merge(vactual , vbase) ;
while ∃u, v, w ∈ VM : e1 = (u, v), e2 = (u, w), e1, e2 ∈ EM ∧ t(u, v) ≈ t(u, w)

do
merge(v,w);

It is assumed, there may exist exactly one edge of each type leading from every
vertex. Type of the edge is denoted as t(e) or t(u, v). The same edge type means that
the difference between azimuths is smaller than the azimuth recognition precision.
If two or more edges of the same type lead to different vertices, these vertices
necessarily represent the same place in the world and therefore are merged. This is
repeated recursively.

Algorithm 9: merge(u,v)

while ∃x ∈ VM : e = (v, x) ∈ EM do
if e = (u, x) /∈ EM then

add e = (u, x);
remove e = (v, x);

while ∃x ∈ VM : e = (x, v) ∈ EM do
if e = (x, u) /∈ EM then

add e = (x, u);
remove e = (x, v);

remove v;
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Terminal Condition

The whole exploration procedure terminates whenever the environment is ex-
plored completely. It means that the robot has available a complete map of the
environment at this time. The map is complete if and only if no vertex of the map
has unexplored edge.

11.2 marker-less exploration

The previous exploration algorithm has a drawback of usage of the marker. In
this section, the modification of the previously described exploration algorithm is
described. The usage of the marker is replaced with the reasoning procedure.

The exploration strategy is breadth-first search modified to minimize back-
tracking moves of the robot. In this approach, the exploration strategy examines
all outgoing edges from the current vertex. The presence of at least one learning
jockey is required to ensure the backtracking.

Algorithm 10: Exploration algorithm
start Memory-less navigating jockey to find the nearest vertex u;
start Localizing jockeys to get descriptor and outgoing edge;
add u to the map M;
add edges at the end of open list;
set u as actual vertex; while open not empty do

remove edge e nearest to actual from open list;
if estart 6= actual then

find route to estart;
traverse route; set estart as actual;

start Learning Jockeys;
traverse e with memory-less jockey;
stop Learning jockeys;
get vertex v;
get learned edges el = (u, v) and ēl = (v, u);
if M contains v then

set v as actual;
else

add v, el , ēl into M;
traverse ēl ;

The robot starts at an arbitrary location in the environment. As the first step, the
first place is found using a reactive navigating algorithm. This place is put into the
map as a vertex. Then, the robot starts to explore all outgoing edges from vertex.
During the navigation along the edge, the learning jockey is started. The learned
edge is used for backtracking. After all the edges outgoing from actual vertex are
explored, and their target vertex is known, the robot moves to next vertex in the
BFS manner.
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When it is checked if the map M contains the newly discovered vertex v, the
loop-closing procedure (Alg. 2) is called. If belief in the similarity of the new
vertex v with any of the existing vertex is higher than threshold b > ϑ, the method
deduces that the map M contains vertex v. Along with this check, the other loops
can be discovered and closed and therefore, the map M is replaced with the actual
map with closed loops Mc.

11.2.1 Knowledge-base Exploration Strategy

Both previously described exploration strategies, breadth-first search and depth-
first search, are uninformed search strategies. The reasoning process has the partial
information about the environment, therefore the novel informed exploration
strategy is proposed here.

The knowledge-base exploration strategy utilizes the information about the
visited vertices, traversed edges as well as the unexplored edges. The new infor-
mation is gained every time the new vertex is discovered or the unexplored edge
is traversed and the target vertex becomes known. Therefore, the robot gets new
information after traversing an unexplored edge but the amount of information
differs.

The knowledge-base exploration strategy chooses as a next step such an unex-
plored edge which brings the largest enrichment of to the knowledge about the
environment. The increase of the knowledge is equivalent to decrease of uncer-
tainty in sense of subjective logic. Biggest decrease of uncertainty is caused by loop
closing, when a numbers of unexplored edges are eliminated from the model, as
each unexplored edge has the uncertainty in a target vertex.

Algorithm 11: Knowledge-base exploration strategy
Input: Map M = (V, E = {EU ∪ EE})
Output: edge to explore
for e = (u, x) ∈ EU u ∈ V, x = unknown do

for f = (v, w) ∈ EE v, w ∈ V do
compute similarity ~O(e)← O(S(e, f )) ∧O(s(u, v));

return edge← arg maxe(~O);

The input of the algorithm is the map M, where the set of edges is divided
into two subsets EU set of unexplored edges, and EE set of explored edges. The
algorithm finds the unexplored edge, which is the most similar to some explored
one and the starting vertices of both the edges are also the most similar. The
opinion from the subjective logic is used to combine and compare the similarities.
This represents the hypothesis, that the most similar pair of edges represents the
one physical route. The verification is made by traversing the unexplored edge and
discovering its’ target vertex. The result of the exploration step enters the reasoning
process and supports or weaken this hypothesis.
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Theoretical complexity of the knowledge-base exploration strategy is O(|EE||EU |).
In real computation, the precomputed values of the vertices and edges similarities
are used and the complexity is O(|EE|) as only the inner loop of the algorithm is
necessary to run.

The experimental results are summarized in next chapter.
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E X P E R I M E N T S

The experimental results of the proposed methods are summarized in this chapter.
The results are aggregated into the groups according the performed task.

The results of topological localization are described in the next section. The
results from the simulated, indoor and outdoor environments are presented.

The experiments to verify the navigation algorithms in the real world environ-
ment is described in Section 12.2. Last Section 12.3 describes the result of the
automated exploration of the diverse simulated environment as well as the real
world indoor and outdoor environment.

12.1 localization

The localization in topological maps can be viewed as a problem of classification.
A classifier is a mapping of instances into a certain class. The instances are the
pair of the vertices and the two classes are positive, if the two vertices represents
the same physical place, and negative otherwise. The classifier result can be in a
real value (continuous output) in which the classifier boundary between classes
must be determined by a threshold value ϑ. A receiver operating characteristic
(ROC), or simply ROC curve firstly appears in a signal detection theory during
World War II for detecting enemy objects in battle fields. Soon it was introduced in
psychology to account for perceptual detection of stimuli. ROC analysis since then
has been used in medicine, radiology, and other areas for many decades, and it has
been introduced relatively recently in other areas like machine learning and data
mining.

ROC curve, is a graphical plot of the sensitivity, or true positive rate, vs. false
positive rate for a binary classifier system as its discrimination threshold ϑ is
varied. The true positive rate TPR is fraction of true positive hits of classifier
c : {P ∪ N} 7→ {0, 1} out of all positive P cases with a given threshold ϑ

cϑ(x) =

{
1 , c(x) > ϑ

0 , c(x) ≤ ϑ
(12.1)
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Method Complexity Computation time [s]
fft O(n log(n)) 0.01
ncc O(n log n) 0.01
tangentspace O(n log(n)) 0.1
integral invariant O(n2) 0.15
scanline O(nl) 0.4
shape context O(n3) 2.7

Table 2: Complexity of the matching algorithms.

and false positive rate FPR is the fraction of false positive hits out of all negative N
cases.

TPR(ϑ) = ∑x∈P cϑ(x)
|P| (12.2)

FPR(ϑ) = ∑x∈N cϑ(x)
|N| (12.3)

12.1.1 Algorithms complexity

The complexity of the localizing algorithms is shown in Tab. 2. The n is the
number of measurement in the scan or number of points in the polygon. The
n = 761 in case of the scans and can be smaller for the polygons as the scan is
filtered. The l is the number of lines used in scan line algorithm and typical value
used in experiments is l = 2000. The computation was performed on the computer
with processor Pentium 4, 3GHz and 1 GB memory.

12.1.2 Simulated Environment

The localizing algorithms were tested at first in the simulator. The position from
the simulator is used as a ground truth.

As the environments were chosen the standard simulated environment from the
Player/Stage system, in which the simulation were performed. This environments
are depicted in Fig. 20.

The robot performs a random walk in the environment and concurrently detects
the places. Each place and its description is stored in the map as vertex. As the
robot travel through the environment, the places are visited repeatedly and each
time is inserted into the map. Therefore, multiple vertices represent the same place
in the environment. All the vertices nearer than one meter were considered as a
representing the same place.

The localization was performed for each pair of vertices. It forms a test set
with 4352 negative and 799 positive examples for the cave environment and 4983
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(a) Cave (b) Autolab

Figure 20: Simulated environments.

negative and 795 positive examples for the autolab environment. Results of the
localization (classification) are presented in the form of ROC curve.

The area under curve (AUC) is related to the quality of the classifier. It is depicted
in the table for the quantitative comparison of the classifier. The values of the
optimal threshold and the appropriate true positive and false positive rates are
depicted in the table 3 and 4.
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matching algorithm AUC ϑ TP[%] FP[%]
fft 0.976 0.964 97.5 16.1
ncc 0.989 0.723 95.4 8.9
scanline 0.725 0.967 56.2 18.1
tangent space 0.673 0.841 44.9 4.3
integral invariant 0.809 0.94 96.4 50.9

Table 3: Classifier results for cave environment.
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matching algorithm AUC ϑ TP[%] FP[%]
fft 0.974 0.995 87.8 2.6
ncc 0.972 0.712 96.1 12.0
scanline 0.734 0.939 74.2 33.9
tangent space 0.814 0.726 74.2 24.5
integral invariant 0.895 0.96 95.2 28.3

Table 4: Classifier results for autolab environment.
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12.1.3 Indoor Environment

The data for indoor environment was collected using the G2 bot equipped with
2 sick laser range-finder pls-100 in our laboratory. The robot moves trough the
environment and visit each place multiple times, similarly to the simulation. The
odometry is taken as a ground truth. The raw composition of the scans with
positions of all places is depicted in Fig. 21 The dataset produces 200 negative and
76 positive examples.

Figure 21: Map of indoor environment.

The resulting ROC and the values of optimal thresholds and values of true
positive and false positive rates are shown in the table 5.
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matching algorithm AUC ϑ TP[%] FP[%]
fft 0.572 0.918 76.3 9.0
ncc 0.812 0.711 56.6 2.5
tangent space 0.643 0.846 35.5 2.0
integral invarinant 0.687 0.963 38.2 2.0

Table 5: Classifier results for indoor environment.

107



experiments

12.1.4 Outdoor Environment

To verify the proposed algorithms, the data from the Radish robotics dataset
repository was used. The dataset named kenmore_pradoroof submitted by Michael
Bosse in May 2007. The dataset contains the laser range data collected from two
SICK LMS lasers mounted on the roof of a Toyota Prado driving through suburban
streets in Kenmore, QLD, Australia. The dataset does not contains the ground
truth.

Figure 22: Map of outdoor environment.

Only first few hundreds of meters was used. At first, there were detected
places using the algorithm 3. There exist multiple scans slightly displaced for each
physical place, as the scans were taken in sequence. Therefore there exists multiple
vertices for each physical places with slightly different descriptors. First 100 vertices
was used to create the test set. Then these vertices were grouped according the
timestamps in the dataset.

The test set contains 4332 negative and 718 positive examples. The ROC curve
and parameters are summarized in Tab. 6.
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FFT
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matching algorithm AUC ϑ TP[%] FP[%]
fft 0.922 0.917 83.8 18.2
ncc 0.963 0.784 91.5 11.1
scanline 0.732 0.856 70.9 34.6
tangent space 0.748 0.729 81.1 43.3
integral invariant 0.785 0.915 61.6 17.9

Table 6: Classifier results for outdoor environment.
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12.1.5 Fusing the Localizing Jockeys

This section desrcibes the results of the fusing the localizing jockeys using the
consensus operators. The results of the localizing jockeys are converted to the
opinions according the equations described in sec 9.1. Then these opinions were
fused with the consensus operator ⊕.

According the previous experiments described here, only the NCC and FFT
localizing algorithms are used for the matching the places. These two algorithms
have best performance and also are quicker than others. A similar improvement is
achieved by fusing this two algorithms in all the tested environments. Therefore,
here is presented only the result for the cave simulated environment. Only the left
upper corner of the ROC diagram is displayed to improve readability. It can be
seen that mainly the area under curve and false positive rate was improved in the
table 7.
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matching algorithm AUC ϑ TP[%] FP[%]
fft 0.976 0.964 97.5 16.1
ncc 0.989 0.723 95.4 8.9
consensus 0.993 0.554 93.6 1.2

Table 7: Classifier results for consensus operator.
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12.2 navigation

To prove that the navigation jockeys works in real environments, set of tests were
performed. Suitable navigating jockeys were chosen for specific environments.

12.2.1 Visual Navigating Memory-less Jockey in Outdoor Environment

For the verification of the performance of the reactive navigating jockey (GeNav),
a rosarium at Kinsky garden1 in Prague was chosen for having narrow and short
paths and crossing abundance.

The experiment was performed with robotic platform Pioneer 3AT equipped
with TCM2 compass. The robot was equipped with Fire i-400 camera providing 15

color images per second at 640x480 pixel resolution. The images were processed in
real time by Intel Core 2 Duo notebook.

Figure 23: (a) Outdoor experiment map; (b) robotic platform

The navigating jockey was guided to the rightmost outgoing edge for every
following step. The robot repeated this trajectory until the first error occurs. After
the robot missed the crossing, it was placed at a starting place and restarted. The
approximate success rate was 92%.

12.2.2 Visual Navigating Memory-based Jockey in Outdoor Environment

The experiment with the memory-based surfnav jockey was performed in the
”Stromovka” park2 in Prague. The park pathways were denoted by characters A to
W (see 24). As a memory-based jockey needs to have a pre-learned map, the robot
has been guided by human operator along them while LaMa SURFNav learning
jockey was recording edges and vertices.

1 Kinsky gardens 50
◦
4’53.579”N, 14

◦
23’48.846”E

2 Kralovska obora, Stromovka 50
◦
6’18.778”N, 14

◦
25’33.395”E
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The size of mapped area was approximately 400× 300 m. While there was a
need to guide the robot along each pathway in both directions, the total map length
was ∼ 5 km.

Experiments were performed by Pioneer 3AT robotic platform with TCM2 com-
pass. Robot was equipped with Fire i-601c camera providing 30 images per second
at 1024x768 pixel resolution. A wide angle objective with focus length 3.5 mm was
used. Images were processed in real time by Intel Core 2 Duo notebook. Only the
upper half of the picture was processed in order to use more distant objects as
landmarks.

Figure 24: Park pathway map

Pathway sequence length [m]
ABCW 250

ORQPMKJIH 850

ABCHGFDCW 500

HGFEAWOUVW 600

UTSROCDEBCW 700

Total 2 900

Table 8: Outdoor test path description

On the next day, five sequences of mapped pathways (see Table 8) forming a
closed path were randomly chosen and the robot was switched to traverse them.
One week later, we performed similar navigation tests on the same place with the
”old” map. In all runs robot was able to finish desired path.

Precision of following the learned path was measured as distance between
learned and actual robot positions and was physically measured just in ”crossing”
vertices. Learned positions were marked on the ground directly and the error was
measured as distance between actual robot position when localized in vertex and
related marker on the ground. The achieved (maximum) positioning error was less
then 0.85m with mean error of 0.34m.
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12.3 exploration

The exploration and autonomous mapping of the previously unknown envi-
ronment is a task, which checks all the components of the mapping framework.
The experiments were performed in all three types of environments. First, the
exploration using the marker was tested. In the next sections are described the
experiments with the marker-less exploration algorithms, with the loop-closing
procedure.

12.3.1 Exploration with marker of Simulated World

Because real-world testing is a time costly process, exploration behavior has
been tested on a simulator. The robot behavior was simulated using MobileSim3.
Synthetic camera images were automatically generated from a hand-drawn map of
a part of Kinsky garden in Prague. In order to improve the realism of generated
images, real-world textures were used and artificial noise was added.

Figure 25: Generated view and textured map

The system was tested on four maps of various sizes (see figure 26). Ten test
runs were performed for each map. Exploration time, number of failed exploration
attempts and number of crossing passages were recorded (see table 9).

The topological exploration algorithm requires the system providing node infor-
mation to be absolutely inerrant. Even that the GeNav system recognition success
is approximately 98% (in simulated environment), exploration success rate drops
fast with the increasing number of passed crossings.

12.3.2 Exploration Strategies without Marker

The experiments were performed in simulator on tree maps of various sizes. The
simulated robot was equipped with two laser range-finders covering together the
view of 360 degree. Five laser-based jockeys are involved in this experiment: laloc -

3 http://robots.mobilerobots.com/MobileSim/
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Figure 26: Explored maps

Map size (crossings) Crossings traversed Failures Exploration Time (s)
Minimal (4) 11 0 365

Small (5) 14 0 418

Middle (8) 28 2 922

Large (14) 63.2 4 2283

Table 9: Simulation results

localizing jockey, lanav - memory-less (reactive) navigating jockey, lalearn - learning
jockey, lalearnav - memory-based navigating jockey, and odoloc - localizing jockey
using odometry.

The lanav jockey discovers new edges in the environment, during the navigation
of these edges, the lalearn learns the edge for later backtracking. The laloc jockey is
used for vertices description, localization, and loop closing. The lalearnnav is used
for backtracking, when the robot needs to traverse to a vertex, where the path is
already known.

Each map contains loops, which must be closed during the exploration. The
odoloc jockey was not used in the exploration process directly but was used as an
“oracle”, which check the correctness of the loop closing process. If there was a
mistake in the loop closing, this mistake was recorded and fixed according the
“oracle”.

Three exploration strategies were tested: depth-first search, breadth-first search
and knowledge search. Depth-first search (DFS) is a greedy approach. The (topo-
logically) nearest edge is chosen in each step. Breath-first search (BFS) searches
systematically edges in oder given by order of vertex discovery. All outgoing edges
from first vertex are explored, after them the outgoing edges from second vertex etc.
The knowledge search (KNOW) is a sort of best-first search. The edge, which brings
the most information is chosen for exploration. The reasoning process chooses such
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edge, which is expected to bring new knowledge of the structure, to confirm or
refute the loop closure.

map algorith edges total steps backtrack missed loops errors

Small (7)
BFS 15 29 7.3 1.3 1.7
DFS 14 18.3 1.7 0 0

KNOW 16 31.6 14.3 0 0.6

Middle (9)
BFS 18 56 12 1.7 1.3
DFS 19.6 30.3 6.3 1 1.7

KNOW 21 47 24 0 2

Large (15)
BFS 32 75 30 6 3

DFS 32.3 60.7 17.3 7.7 3.3
KNOW 37.6 99 60.3 0 4.3

Table 10: Comparison of exploration strategies

The results are depicted in Table 10. For each map and exploration strategy
is depicted the real number of edges in the resulting map, number of total steps
needed to explore the whole map, number of steps made on already knows edges,
number of missed loop closing corrected by the oracle, and number of corrections
made by oracle when the loop was wrongly closed.

The DFS strategy finishes the exploration in the smallest number of steps as
is expected. The BFS strategy is slightly worst than the DFS in the number of
steps. On the other hand, BFS is slightly better, because the errors are mostly the
missed loop closing, which are less fatal than wrongly closed loops. The KNOW
strategy is the best in the number of mistakes, as the most information is gained
in each step of the exploration. It is necessary to note that the KNOW strategy
has reasoning procedure in background, because next step is computed by the
reasoning procedure. The big number of steps ( backtracking) is needed to verify
all hypothesis in order, which does not take into account the distance to required
edge.

Therefore, the combination of the BFS strategy with the reasoning procedure is
used in following experiments.

12.3.3 Exploration without Marker

The experiments were performed in a simulated environment and with real
robots in indoor and outdoor environments. During these experiments, robot
performs an exploration task with loop-closing. Multiple jockeys were used and
coordinated by the executor module.
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12.3.4 Simulation

The laser-based localizing and navigating jockeys were tested in a simulator of
Player/Stage system [27]. The used environment matches the pre-programmed
description entitled the "Cave" in Player/Stage system. The simulated robot was
equipped with two laser range-finders covering together the view of 360 degree.
Four laser-based jockeys are involved in this experiment: laloc - localizing jockey,
lanav - memory-less (reactive) navigating jockey, lalearn - learning jockey and
lalearnav - memory-based navigating jockey.

The executor then coordinates afore listed jockeys. The laloc jockey discovers
vertices and outgoing edges, also describes each vertex with actual laser scan. The
laloc jockey also provides similarity measure of the vertices employing diverse
computation methods described in Section 10.5.2. The lanav jockey is used to
navigate the discovered unknown edges. Besides the lanav jockey is executed also
the lalearn jockey. The lalearn jockey is learning actual traversed edge as well as
the opposite one. The lalearnav jockey is used for traversing already navigated and
learned edges. While the lalearn jockey learns also the edge opposite to actually
traversed one, it is possible to use the lalearn and lalearnav for its’ recovery in case
of failure of the reactive (lanav) jockey.

(a) Real environment (b) Resulting map

Figure 27: Simulated environment for exploration.

The reconstructed map depicted in Figure 28 has loops closed only by the similar-
ity of the vertices. This is the best map acquired without employing the reasoning
module for loop closing. There can be seen that some places are represented by
multiple (two) vertices. This is caused by displacement in vertices positions and
consequently smaller similarity in descriptors. One place is actually missing (see
left bottom corner), what is caused by too high similarity with another place. The
vertex position from the odometry is used only for the visualization purposes and
is not used for exploration and loop-closing at all.
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(a) with reasoning (b) without reasoning

Figure 28: Map gathered with reasoning (a) and without reasoning (a) used for
loop-closing.

12.3.5 Indoor environment

The results of exploration of real indoor environment is described in this section.
No loops are present in the experimental environment. Experiments were per-
formed by the G2Bot robotic platform with two Sick LMS 200 laser range-finders
in a configuration where the lasers provide whole 360◦ view.

The same setup of the jockeys as in the simulator was used for the real indoor
environment. Also the same exploration algorithm were performed.

In this experiment only part of the space was mapped. The robot was able
to navigate in the environment even in the narrow passages as can be seen in
Figure 29a. The exploration stops after 26 steps and lasts 93 minutes at average.

The resulting map is depicted in Figure 29b. The odometry is used for displaying
the proper position in the one frame of reference only.

12.3.6 Outdoor environment

The outdoor experiment was performed in park-like environment. In this ex-
periment robot performs exploration task with loop-closing. The experiment was
performed by Pioneer 3AT robotic platform with on-board sensors comprising
magnetic TCM2 compass and Fire i-601c camera providing 1024x768 images at 30
FPS, a lens used with focus length 3.5 mm. Gathered images were processed in
real time by Intel Core 2 Duo laptop PC.

Different jockeys were used in this experiment. Reactive memory-less navigating
jockey GeNav keeps the robot on the pathways of the garden and recognizes the
crossings. The GeNav localizing jockey provides the similarity measure of the
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(a) Environment (b) Resulting map

Figure 29: Indoor environment

vertices based only on the number and angles of outgoing edges. This localization
purposely causes strong sensor aliasing of the vertices to show ability of framework
to utilize information stored in edges. Memory-based navigating jockey SurfNav
learns the traversed edges using the SURF from pictures in learning mode. In
navigating mode, SurfNav where able to traverse learned edges. There is also
third mode of SurfNav module, used for comparison of the learned edge utilizing
this ability in loop-closing procedure. The GPSLoc localizing jockey was used for
visualization of the vertices and data were not used in the algorithm at all.

Robot traverses every outgoing edge driven by GeNav jockey while SurfNav
jockey stores visual descriptors along this edge for later usage. The edge ends
in next crossing discovered by GeNav. This new crossing is registered with all
outgoing edges with corresponding angles. Robot then returns the same edge
back to get the SURF descriptors in both directions and then continues with edge
exploration.

New registered vertex is compared with all vertices existing in the map. The
candidates are chosen according to the number (amount) and angles of the outgoing
edges. In addition, all outgoing edges itself are compared to distinguish vertices.
Then the robot starts to traverse each edge to compare this edge’s descriptor with a
stored one. While traversing the whole edge can be very time consuming, robot
traverse only a specified section of the edge. Even the comparison is done on only
partial description of the edge with stored complete edge, the method provides
an estimation of the similarity of edge pair. In the case the edge for comparison
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is not known, still not explored, the loop closing is postponed until new relevant
information is gained.

It has to be pointed out, that the used environment contains nearly all vertices
almost undistinguishable and whole loop-closing algorithm must rely only on
similarity of edges only. The experiment shows, that the edges gathered by SurfNav
jockey are information-rich, and it was sufficient to compare first 10 cm of the edge
to distinguish edge from each other.

(a) Real environment (b) Resulting map

Figure 30: Outdoor environment - botanical garden, Albertov, Prague

The map of the botanical garden Albertov can be seen on Figure 30b. Position of
the vertices where taken from GPS receiver, nevertheless GPS data was not used by
the algorithm at all. The size of the working environment of the robot was reduced
by an on-road obstacle. The robot considers these blocked paths as dead-ends and
in the map are represents as self-loop.

The exploration stops after 36 steps and lasts for 103 minutes on average. Note,
that all existing loops were correctly closed.

The created map was applied for navigation again one month later. The robot
traversed about 500 meters using the given map and no significant decrease of
navigating precision and robustness was observed although the environment did
proceed with minor changes due to seasonal changes.
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C O N T R I B U T I O N A N D F U T U R E W O R K

13.1 contribution

The following section recapitulates the contribution of the thesis. In comparison
with existing topological maps, the proposed representation brings the following
achievemnts:

• Paths in an environment are represented as edges in a map. This representa-
tion contains a procedural knowledge (how to traverse the edge) in contrast
to previously used simple edge representation in the sense of connection or
existence of route.

The procedural knowledge representation is necessary to utilize various navi-
gational algorithms not only reactive ones, but also the algorithms relaying
on the previously learned information. The each edge can hold more than
one procedure to navigate from the starting point to the destination. It allows
to select the most reliable navigational algorithm or the most suitable for
current conditions, state of the environment and the robot itself.

• The proposed modular concept of jockeys - algorithms for navigation, learning
and localization allows to utilize multiple senors and algorithms concurrently.
This approach allows to use a single map for representing heterogeneous
environment consisting from a wide range of vertex and edge types.

• The concept of learning and memory-base navigating jockey brings a qualita-
tively improvement into the area of topological mapping. The flexibility and
reactivity of the navigation method is required during the exploration of the
environment and the map learning. The robot needs to move autonomously
through the unknown environment; thus, the reactive navigation approaches
are used.

On the other hand, the repeatability and rigidity is requested during the
navigation using the map. It is not possible to fulfill this antagonistic require-
ments in nowadays topological mapping system. To solve this problem in
the proposed framework, the pairs of learning and memory-based navigating
jockeys are introduced. The classical reactive navigation is used during the
exploration of an unknown environment, but simultaneously one or more
learning jockeys are running. These jockeys memorize the trajectory, and
store the data necessary for traverse of the edge - the procedural knowledge.
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Whenever there is a request to traverse already learned edge, the appropriate
memory-based jockey is called. If there exists more than one procedural
knowledge, the best navigating algorithm can be chosen according to a-priori
computed or observed performance for a particular edge. The behavior of
memory-based jockeys is deterministic, also they are able to recognize and
report the failure in contrast to reactive memory-less navigating jockeys.

• The uncertainty representation using the subjective logic brings the power of
the symbolic reasoning with the uncertain propositions. The advantage of
the subjective logic is shown in the combining the information from different
localizing modules into one opinion about the position of the robot. Also the
proposed symbolic description of the environment properties and usage of
this feature is shown in the loop-closing during the exploration. The used
representation of uncertainty allows the extension of the representation by
the non-deterministic behavior of navigation algorithms.

13.2 goals fulfillment

This section compares the achievements of the work with the goals defined in
Chapter 3.

1. The goal was to perform a study of the currently used representations of the spatial
knowledge. The current state of the art in the human spatial knowledge
representation is described in Chapter 4. The currently used representations in
robotics are described in Chapter 5. Then follows (Chapter 6) the description
of the exploration algorithms used in metric and topological maps. Chapter 7,
the last chapter of the study, presents the overview of the formal logical
systems, which are able to work with the uncertainty. The findings, arising
from the study, are used in the proposition of the novel spatial representation,
exploration and reasoning method.

2. The goal was to propose as scalable probabiilistic representation of the space. The
proposed spatial representation is described in Chapter 8. Rich descriptions
of the environmental elements - places and routes are mapped to the graph-
like structure where places are stored as vertices and routes as edges. This
structure is easy scalable from its nature. The richness of the environmental
elements’ description ensures that the map can describe wide variety of
the environmental types concurrently. The modular structure of the map
interfaces allows straightforward extension of the map representation. As
experimental results in Chapter 12 shows, the same map representation is
able to describe the indoor as well as outdoor environment depending on the
choice of navigating and localizing algorithms.

3. The goal was to propose a method of an autonomous exploration wothout necessity of
the environment modification. Proposed methods for autonomous exploration
are described in Chapter 11. The first proposed exploration method does
not meet the requirement not to modify environment, because it requires
marking of the “base”. However, the marking can be easily realized (any
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object of distinctive color) and therefore it is not an issue. The second of the
proposed exploration algorithms is fully marker-free and it is able to explore
an unknown environment. Experimental results are shown in Section 12.3.

4. The goal was to propose a method for a reasoning about uncertain spatial knowledge.
The method for working with uncertainty is described in Section 9. The
reasoning with uncertainty is employed by fusing the results of the localizing
jockeys and the loop-closing procedure. The results of the localizing jockeys
fusion is depicted in Section 12.1.5. The loop-closing was used in the explo-
ration experiments. The advantage of the loop-closing procedure is illustrated
in Fig. 28.

5. The goal was to implement and integrate the proposed methods into a unified mapping
framework. The implementation and integration is described in Chapter 10.
The spatial knowledge representation, the reasoning algorithm, the navigating
and localizing algorithms are integrated into the unified framework called
Large Maps (LaMa). The proposal modular framework LaMa allows the
integration of different algorithms working with different sensors and robotic
platforms.

6. The goal was to verify the proposed methods in realistic environments and condi-
tions. The verification of the proposed map representation, reasoning and
exploration are described in Chapter 12. The verification were performed in
the simulated, indoor and outdoor environments under the realistic condi-
tion. The localizing and navigating algorithms were firstly tested separately.
Afterwards, the performance of the integrated framework was tested by the
autonomous exploration task.

Beside these main goals, the localization algorithms are described in the section
10.5. From the experimental results (described in Section 12.1), it can be easy to see,
that proposed proposed localizing algorithms based on FFT and cross-correlation
outperforms the existing shape-matching algorithms working on polygons. The
proposed methods exploit the properties of the range laser-scans and therefore are
better for this application.

13.3 future work

The proposed representation may be further extended in following areas:

The proposed exploration algorithm based of the knowledge maximization will
be further investigated. The experiment shows, that the choice of the next goal
guided only by the expected knowledge gain is not sufficient. It is necessary to
include the distance into the objective function as well.

Representation of the uncertainty may be used for the non-deterministic nav-
igation strategies. According to this, the planning algorithm will be proposed,
which will be able to take the non-deterministic behaviour into account. Such a
representation is a first step for the next extension.
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Mapping of the dynamic environment is a most challenging problem in the
context of topological maps. The edges in the graph may be replaced with the
multivalued opinion about the expected result of the navigation strategy. Also
the vertices may be extended with the description of the possible changes in their
descriptors. Moreover, the forgetting mechanism can be employed to deal with the
situation, when some places or routes physically disappear from the environment.

Multiple robots may be used for the exploration of the environment. The
usage of multiple robots improves the exploration not only quantitatively but also
qualitatively. the verification of the hypotheses may be done with cooperation of
two or more robots.

Also there is a possible usage of the group of heterogeneous robot during the
navigation. There can exist parts of the environment, where is possible to navigate
only using a specific sensors or abilities. These parts are inaccessible for the robot
without these sensors or abilities. The robots may form the formation and combine
their abilities and sensors to reach the previously inaccessible parts of environment.
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C O N C L U S I O N

The robotics is a wide multi-disciplinary field of science. This work addresses the
problem of robotic mapping of an unknown large-scale environment. The proposed
map representation is based on the cognitive theories of the human spatial knowl-
edge. The methods for localization, navigation, reasoning and exploration together
with the map proposed representation are incorporated into modular framework
called Large Maps Framework (LaMa). This LaMa framework is considered as
a knowledge base allowing to handle and utilize spatial knowledge of various
environment in a unified way.

The experimental verification of the proposed methods shows, that the framework
is able to handle indoor as well as outdoor environments in the scale of hundreds
of meters and perfectly operate in them later on. The automated exploration of
unknown environment can be seamlessly extend with a human assisted exploration.
The performance of navigation is improved using the pairs of learning and memory-
based navigating jockeys.

The established principles proposed in the thesis are successfully exploited in
the European projects from Symbiotic Evolutionary Robot Organisms (Symbrion)
founded by FET Proactive Intiative: pervasive adaptation and Robotic Evolutionary
Self-Programming and Self-Assembling Organisms (Replicator) founded by Cogni-
tive Systems, Interaction and Robotics. The partial implementation of the LaMa
framework was previously used in the Robotour competition. Our team wins this
competition in years 2008 and 2009.
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