
Achievements of Relational Database SchemaDesign Theory RevisitedJoachim BiskupFachbereich Informatik,Universit�at Dortmund,D-44221 Dortmund,Germany,biskup@ls6.informatik.uni-dortmund.deAbstract. Database schema design is seen as to decide on formats fortime-varying instances, on rules for supporting inferences and on sem-antic constraints. Schema design aims at both faithful formalization ofthe application and optimization at design time. It is guided by fourheuristics: Separation of Aspects, Separation of Specializations, Infer-ential Completeness and Unique Flavor. A theory of schema design isto investigate these heuristics and to provide insight into how syntacticproperties of schemas are related to worthwhile semantic properties, howdesirable syntactic properties can be decided or achieved algorithmically,and how the syntactic properties determine costs of storage, queries andupdates. Some well-known achievements of design theory for relationaldatabases are reviewed: normal forms, view support, deciding implica-tions of semantic constraints, acyclicity, design algorithms removing for-bidden substructures.1 IntroductionDue to its great importance for database applications, database schema designhas attracted a lot of researchers, and, accordingly, a lot of insight into goodschemas has been obtained. On the one side, practical experience suggests to fol-low some basic design heuristics, which have been rami�ed into considerable de-tail. On the other side, theoretical investigations have accumulated many formalnotions and theorems on database schema design. Unfortunately, however, the-ory apparently does not have much impact on practice yet.The purpose of this paper is to improve on this mismatch of theory and practiceby presenting well-known theoretical results on schema design within a fresh andunifying framework. In a companion paper [Bis95a] we also discuss the presentshortcomings of database schema design theory and suggest some directions forits future elaboration. This paper does not aim at providing a complete surveyon well-established and current contributions but at highlighting important ex-amples. Accordingly, all references to the literature are to be understood just ashints for further reading.

2 Problem of Schema DesignThe purpose of a database system can be roughly summarized as follows: adatabase system aims at persistently and dependably storing a large amount ofstructured data, shared by many and various users, and at e�ciently managingthis data with respect to update execution and query evaluation. The databaseitself, i.e. the structured data, is organized in a self-describing way: it consistsof a time independent part, its schema, and a time-varying part, its instance,where the schema describes the structure and the formal semantics of the possibleinstances. At design time, the database administrator (representing the groupof people involved), basically, has to perform two steps: �rst abstracting andmodeling the application, then formalizing and formatting the model.In the �rst step, the administrator models the application at hand by employingsome well-disciplined linguistic framework for descriptions of reality, let's saythe framework of the widely accepted entity-relationship approach [Che76]. Inthe second step, the administrator formalizes the model and declares a databaseschema, using a data de�nition language, which is an implemented fragment ofa �rst order logic, esssentially.This two-step procedure is based on the fundamental paradigm of the semantictriade: reality { space of concepts (ideas) and laws of logic { language. Fig.1sketches the basic assumptions of this paradigm, which is not at all obvious orindisputable, but rather a tried attempt helpful for restricted tasks.

Fig.1. Fundamental paradigm of the semantic triadeFig.2 indicates some correspondences between the framework of the entity-relationship approach, an approved heuristic tool for detecting and reconstruct-ing the pertinent concepts, and the syntax of �rst order logic and its set theorybased semantics, a well-studied formal language for declarative programming.2

ER-approach logic and set theorysyntax semanticsentity �simplecomposed constant symbolground term (with functionsymbol) element of a universerelationship ground fact tuple of a relationproperty (attribute) �(binary) ground factground term tuple of a (binary) relationvalue of a functionrole place of a predicate symbol component of a relationabstractionuniverse of discourse set of constant symbols universeseparation/specialization formula � comprehension1, power setgeneralization _ unionaggregation ^, = intersection, Cartesianproductconstraint (implicational) statement model classkey constraint with equality-conclusionisa constraintpartition constraintmany-one constraint with equality-conclusionexistence constraintreferential constraintview rule set of formulas relationactionmessage statement(positive) information conjunctively addedstatement reduction of model classFig.2. Some correspondences between the entity-relationship approach and �rstorder logic with set theory based semanticsBoth steps of the design require taking decisions. In the �rst step the adminis-trator has to decide on the relevance of certain aspects of the \miniworld" underconsideration. However, it is important to realize that a database system can beseen under three di�erent though related viewpoints:{ the system constitutes a formal image of an outside miniworld;{ or it manages an autonomous formal miniworld (of documents, for example);{ or it mediates formal messages between communicating actors (one actorinserts a message, which is later on delivered to another actor as a queryresult, for example).1 If M is a structure with universe d and � is a formula with free occurances of thevariables x1; : : : ; xn, then the comprehension is de�ned bydM;� := ���(x1); : : : ; �(xn)�j � is variable assignment into universe d, and � is truein structure M under assignment �	 � Xi=1;:::;n d.3

In fact, the last viewpoint appears to be most comprehensive:{ human individuals act communicatively within the (outside) miniworld (ofthe application),{ the basic facts and events of which are re
ected by formal documents{ that in turn are mediated over time and space by the database system.Thereby the database becomes part of the already overwhelming \formalismreality" [Bis94] surrounding its users.Once the decisions about the relevant aspects are available from the �rst step ofthe design, in the second step the administrator has to decide on the structure oftheir formalization. More speci�cally, he has to decide on the following problems,essentially:{ Which aspects of the application should be enumerated, i.e. represented by atime-varying enumeration of ground facts the formats of which are staticallydeclared in the schema?{ Which aspects of the application should be inferrable, i.e. derivable from thetime-varying enumerations, possibly complemented by additional input, byrules which are declared in the schema?{ Which aspects should constrain the enumerations under updates, i.e. whichformat-conforming enumerations of ground facts should be considered mean-ingful in the sense that they satisfy semantic constraints, which are declaredin the schema.The decisions result in a schema that comprises{ the formats for enumerations (the time-varying extensional instances pro-duced over the life time of the database),{ the rules (for intensional views supporting queries),{ and the semantic constraints.Being �xed over the time, the schema statically determines the future dynamicbehaviour of the database and, in particular, its usefulness for its end users.Fig.3 illustrates the design and the usage of a database, and it summarizes theterminology introduced so far.The quality of a schema can be evaluated along two lines of reasoning:{ The schema should formalize the application as faithful as achievable.{ The schema should allow to execute queries and updates, as far as theseoperations can be foreseen, as e�ciently as possible. From this point of view,schema design can be understood as optimization at design time.Whether a faithful formalization has been achieved or not, cannot be evaluatedsolely based on formal mathematical reasoning. Rather we have to investigatewhether the database will successfully provide technical support for communica-tions among those persons that employ the database as end users. Presumably,successful support is based on a common agreement on the following questions:4

application

modeling, abstracting

model of the enterprise
time-
independent
description

time-varying description

shared,
persistent

local,
transitory

local

interpreting, concretizing

administrator users

declaring updating querying

integratingformalizing and formatting

schema: instance: query: query result:
formats
rules
constraints

enumeration
of ground facts

result format
rules

all implied
ground facts

algorithm for logical implicationFig.3. Design and usage of a database{ Which entities are to be considered basic?{ Which relationships are to be considered basic and{ how to select from the basic ones those for actual redundancy-free enumer-ations, such that all relationships can be completely inferred?{ Which actions are to be considered basic?Optimization at design time, however, can be evaluated in formal mathematicalterms by considering{ storage costs (basically determined by the size of the enumerated instances),{ query costs (basically the time complexity of anticipated queries, in partic-ular those that are declared as rules in the schema),{ update costs (basically the time complexity of anticipated insertions and de-letions, including maintenance of the semantic constraints that are declaredin the schema). 5

3 Design HeuristicsMost guidelines for schema design can be summarized by the following fourheuristics:Separation of Aspects: A declared format should be appropriate to enumer-ate exactly one aspect.Separation of Specializations: A declared format should be appropriate toconform to exactly one specialization of an aspect.Inferential Completeness: All meaningful aspects that are not enumeratedaccording to a declared format should be inferrable by using the query lan-guage.Unique Flavor: Meaningful aspects should be identi�ed and understood byexpressing their basic attributes only (and omitting additional context in-formation).Clearly, an administrator will tentatively apply a separation heuristic by usingan agreement that the entities or relationships of some class are considered ba-sic. But afterwards he has to justify that property mathematically with respectto the formally declared schema and the inferential power of the formal querylanguage. Similarly, an administrator will tentatively apply the Inferential Com-pleteness heuristic by using an agreement on the selection of basic relationshipsfor enumerations, and afterwards he has to justify the claimed completenessproperty mathematically with respect to the selected formalization. In the samespirit, an application of the Unique Flavor heuristic is, �rstly, based on some in-tuitive agreements, which, afterwards, are subject to mathematical veri�cationwith respect to the selected formalization.Having in mind the achievements of design theory presented in the rest of thispaper, we will somehow arti�cially distinguish desirable syntactic properties ofschemas from worthwhile semantic requirements: the former properties only referto the purely syntactically given schema, whereas the latter requirements areexplicitly related to the semantics of the query language. Accordingly, the sep-aration heuristics will primarily suggest desirable syntactic properties, and thecompleteness and uniqueness heuristics worthwhile semantic requirements. Itshould be understood, however, that, on the one side, syntax and semantics arealways closely related, and, on the other side, in computing we aim at eventually�nding appropriate syntactic expressions for any kind of notion.4 Tasks of Design TheoryIn order to be helpful in achieving faithful formalizations and in pursuing thedesign heuristics, the following tasks of design theory are due:{ Task 1: Formalize the worthwhile semantic requirements and the desirablesyntactic properties of schemas! 6

{ Task 2: State and prove relationships between the formalized versions ofworthwhile semantic requirements and desirable syntactic properties!{ Task 3: Find algorithms for deciding on or even achieving syntactic prop-erties of schemas, and prove their correctness and e�ciency!In order to be helpful for optimization at design time, additionally, design theoryshould tackle a fourth task:{ Task 4: Prove that desirable syntactic properties actually ensure low costs!Being supplied with appropriate solutions for these tasks, an administrator cane�ectively bene�t from design theory. For, at design time,{ the administrator, essentially, has to deal with syntactic material only (sup-ported by Task 3){ which must be evaluated with respect to its semantic properties (as statedby Task 1 and Task 2) on the one side{ and the future operational cost (as stated by Task 4) on the other side.5 Achievements for Relational Databases5.1 NotationsFor the sake of readability and conciseness we will employ (more or less) standardnotations in a somehow sloppy, and sometimes also imprecise, way. In order tostudy carefully elaborated versions of the notations and of the results, the readershould consult the references, in particular the textbooks [Mai83, Ull88, Ull89,PDGvG89, Vos91, MR92, AD93, AHV95, Bis95b].(Ri; Xi; SCi)1 denotes a relation scheme whereRi is a relation symbol,Xi is a set of attributes (possibly with a range for its values),i.e. a format, andSCi are the local semantic constraints.A (database) schema comprises relation schemes, rules, and global semanticconstraints:h(R1; X1; SC1); : : : ; (Rn; Xn; SCn)j relation schemes for extensionalenumerations,Q1; : : : ; Qmj rules (queries) for intensional views,SCglobali1 global semantic constraints.Semantic constraints are denoted as follows where X;Y; Yi; Z are sets of attrib-utes and Ri; Rj are relation symbols:1 Later on we will sometimes omit those components which are not relevant for thecurrent discussion. For instance, using the notation (; U; SC), we indicate that onlythe set of attributes U and the semantic constraints SC are important, but not theomitted relation symbol. 7

X ! Y functional dependency,X !! Y jZ or 1 [X [Y;X [Z] multivalued dependency,1 [Y1; : : : ; Yk] join dependency,�X(Ri) � �Y (Rj) inclusion dependency,SC+ implicational closure of a set of semanticconstraints SC.5.2 Normal Forms: Separation of Aspects Formalized as DesirableSyntactic PropertyThe �rst design heuristic, Separation of Aspects, can be rephrased by consideringformats and semantic constraints as some kind of structure and by requiring thatany nontrivial substructure should correspond to, refer to or identify exactlyone aspect of the application. Depending on the class of semantic constraintsinvolved, we can de�ne di�erent notations of \nontrivial substructure"; but in allcases the notion of \exactly one aspect" is related to the concept of identi�cationof unit pieces of information. In order to formalize the heuristic as desirablesyntactic property, normally referred to as \normal form", see Task 1, we favorexpressing the separation requirement in a negative form: the structure shouldnot contain any forbidden substructures that might be harmful with respect tothe quality measures. Then most algorithms to achieve high quality schemascan be conveniently described as iterated schema transformations that stepwisedetect and remove forbidden substructures.The most popular normal forms are listed in Fig.4, giving their names andforbidden substructures [Cod70, Cod72, Fag77, Del78, Zan76, BBG78, Fag81,Ken83, MR86, BDLM91, DF92]:name forbidden substructures3 NF, third normal form Z ! A 2 SC+; A =2 Z; A nonkey-attribute,(but) Z ! Xi =2 SC+:BCNF, Boyce/Codd normalform Z ! A 2 SC+; A =2 Z;(but) Z ! Xi =2 SC+:4 NF, fourth normal form X !! Y 2 SC+; Y 6� X; X [Y $ Xi;(but) X ! Xi =2 SC+:5 NF, �fth normal form 1 [Y1 : : : Yk] 2 SC+;1 [Y1 : : : Yi�1; Yi+1; : : : ; Yk] =2 SC+for i = 1; : : : ; k;(but) there exists j : Yj ! Xi =2 SC+:referential normal form �X(Ri) � �Y (Rj) 2 SC+, i 6= j;(but) Y ! Xj =2 SC+:unique key normal form X ! Xi 2 SC+; X minimal,Y ! Xi 2 SC+; Y minimal,(but) X 6= Y:Fig.4. Normal forms and their forbidden substructures8

5.3 View Support: Inferential Completeness Formalized asWorthwhile Semantic RequirementsThe third design heuristic, Inferential Completeness, can be rephrased by con-sidering those aspects of the application that are not explicitly represented byenumerations and by requiring that these aspects are completely supported asintensional views by appropriate rules. There are, essentially, three versions ofsupport: view instance support, view query support, view update support.Restricting our discussion to one-relation views or even so-called universal rela-tion views, we suppose that a database schema of the formDS = hschemes for extensional enumerationsj jglobal semantic constraintsiis given, and that some candidate view (or external schema)ES = (; U; SC)with set of attributes U and semantic constraints SC should be supported.Then we state the following formal versions of the heuristic as worthwhile sem-antic property, see Task 1.{ Schema DS provides view instance support for ES:i� there exists a query Q on DS such thatfinstances of ESg � Q[finstances of DSg].If we have even equality, the view instance support is called faithful. In that case,if, additionally, the supporting query Q is injective on finstances of DSg, theview instance support is called unique.{ Schema DS provides view query support for ES:i� for each query P on ES there exists a query P 0 on DS such that:for all instances u of ES there exists an instance (ri)i=1;:::;n of DS such thatP (u) = P 0((ri)i=1;:::;n).Under some rather weak assumptions on the query language we have a funda-mental equivalence [AABM82, Hul86, BR88]:Theorem1. DS provides view instance support for ESi� DS provides view query support for ES.If DS provides view query support for ES, then the query P 0 corresponding tothe identity query on ES supports the instances of ES. On the other hand, ifDS provides view instance support for ES by some query Q, then Q can becomposed with queries on ES. Such compositions yield a query translation fromqueries on the view to queries on the full schema.For the support of updates on views, however, we essentially need that the viewinstance support is unique. For otherwise, well-known as the view update problem[BS81, DB82, FC85, Kel86, GHLM93], there is no information available to resolvethe ambiguity caused by non-injectivity.9

5.4 Syntactic Characterization of View SupportAccording to Task 2, the worthwhile semantic requirements of view supportshould be related to desirable syntactic properties of a schema. The main resultsavailable concern universal relation views, the supporting query of which is thenatural join. For instance we have the following theorems [Ris77, Ris82, BBG78].Theorem2. A schema DS with formats X1; : : : ; Xn for the extensional enu-merations (ignoring local and global semantic constaints of DS) supports a uni-versal relation view (; U; SC) by the natural joini� 1 [X1; : : :Xn] 2 SC+:Theorem3. A schema DS with formats X1; : : : ; Xn for the extensional enu-merations and functional dependencies F1; : : : ; Fn as local semantic constraintsfaithfully supports a universal relation view (; U; F), where F is a set of func-tional dependencies, by the natural joinif 1 [X1; : : : Xn] 2 F+ and (Si=1;:::;nFi)+ � F .The proof of Theorem 2 is straightforward just by con�rming that the formalsemantics of join dependencies is appropriately de�ned. The faithfulness of thenatural join results from the inclusion rj � �Xj (1i=1;:::;n ri), showing that func-tional dependencies that are valid in some component rj are also valid in thejoin 1i=1;:::;n ri. More re�ned results appear for example in [Var82, CM87].In [Heg94] a rather general theory of schema decomposition is presented. Thistheory explores an algebraic framework, in which the class of instances of a data-base schema is partially ordered and possesses a least element and the inversesof supporting queries (which are the projections in case of a natural join) areisotonic and preserve least elements. It turns out that, within this framework,the components of a schema DS faithfully supporting a universal relation viewuniquely \complement" each other. Besides treating many further topics, thetheory also deals with the union as supporting query (with the selection as in-verse) and thus with the so-called horizontal decomposition [DP84, PDGvG89],and it clari�es the role of null values in schema decomposition.5.5 Deciding Desirable Syntactic Properties for Normal Forms andView SupportBoth heuristics treated so far �nally lead to syntactic properties that are basicallyexpressed in terms of implications of semantic constraints. In Section 5.2 normalforms, formalizing the Separation of Aspects heuristic, are just de�ned in theseterms, and in Section 5.4 view support, formalizing the Inferential Completenessheuristic, has been reduced to these terms. According to Task 3, then, we haveto design algorithms to decide implications among semantic constraints and,additionally, to explore all relevant implications systematically .Here are some prominent examples for results [Arm74, Men79, Bis80, BV84a,10

BV84b, Var84, Mit83, KCV83, CFP84, CV85, FV84, Var88a, Tha91, BC91,Her95]:Theorem4. The implication problem of \� 2 SC+" is decidable for \manyimportant classes" of semantic constraints.Theorem5. The implication problem \� 2 SC+" is undecidable for the classof \functional and inclusion dependencies".The important semantic constraints can be expressed as implicational �rst orderlogic formulae. Then the various proof procedures, called chase procedures, arebased on specialized versions of the more general proof techniques of (hyper-)resolution and paramodulation. Roughly described, hyperresolution, applied toan implicational formula with a nonequality-conclusion and its previously gen-erated premises, yields the conclusion as additional statement, and paramodu-lation, applied to an implicational formula with an equality-conclusion and itspreviously generated premises, equates the terms in the equality-conclusion, i.e.one side is substituted by the other side. Chase procedures are designed to applysuch rules, starting with the premises of the constraint to be decided, until nofurther change can be produced. If the procedure terminates, the constraint isimplied i� its conclusion is among the �nally produced statements.In general, the implication problem for semantic constraints is fairly well under-stood in the relational case:{ As long as the constraints are \full", i.e., basically, in their implicationalformulae no existentially quanti�ed variable occurs positively, we have de-cidability.{ Otherwise, for \embedded" constraints, we have undecidability due to posit-ively occuring existentially quanti�ed variables. Such variables can cause thegeneration of an unlimited number of terms in executing proof proceduresthat do not terminate in this case.Actually, even for the restricted case of embedded multivalued dependencies theimplication problem has been proved to be undecidable [Her95]. The sophist-icated proof employs a reduction of the word problem for �nite semigroups,known to be undecidable, to the implication problem for embedded multivalueddependencies.As already mentioned above, null values are important for the theory of schemadecompositions [CM87, Heg94] and also for so-called \representative instances"of fragmented database schemas [Hon82, Sag83, GMV86]. Accordingly, the mean-ing of semantic constraints in the presence of relations with null values andthe corresponding variant of the implication problem have been studied [Lie79,Vos79, Gra84, AM86, Tha91, LL94].Theorem6. For the class of relation schemes (; U; F), where F is a set offunctional dependencies, the problem \(; U; F) is in third normal form" is NP-complete. 11

The deep reason for the negative result is that, in this situation, the prob-lem \attribute A appears in a key of relation scheme (; U; F)" is already NP-complete; this result in turn is related to the fact that a relation scheme (; U; F)can possibly have exponentially many keys [LO78, JF82, MR83, Kat92, VS93a,DKMST95].Theorem7. For the class of relation schemes (; U; F), where F is a set offunctional dependencies, the problem \(; U; F) is in Boyce/Codd normal form"is decidable in polynomial time.Indeed, a decision procedure can be based on the following equivalence [Osb78]:Boyce/Codd normal form i� for all X ! Y 2 F with Y 6� X : X ! U 2 F+. Itshould be noted, however, that also for Boyce/Codd normal form some importantdecision problems are of high computational complexity. In particular, decidingBoyce/Codd normal form for a projection of a scheme is coNP{complete [BB79].This result on intractability as well as Theorem 6 contrast to the fact that thecorresponding decision problems for relations, rather than schemes, are decidablein polynomial time (in the number of attributes and tuples of the relation underconsideration) [DLM92].Theorem8. For the class of relation schemes (; U; F), where F is a set offunctional dependencies, the problem \(; U; F) is in unique key normal form"is decidable in polynomial time.Again, a decision procedure can be based on an equivalence statement [BDLM91]:unique key normal form i� fA j A 2 U and UnA! A =2 F+ g ! U 2 F+.5.6 Achieving Normal Forms and View Support SimultaneouslySo far, the Separation of Aspects and the Inferential Completeness heuristicshave been treated separately, although, as we have seen in Section 5.5, bothheuristics lead to related implication problems. According to Task 2, we haveto explore the relationship between their formalizations in more detail, in par-ticular, whether their formal versions are compatible. As far as we can actuallyachieve the desirable syntactic properties simultaneously, according to Task 3,we have to design algorithms to obtain them.The following two theorems are the most well-known examples of results oncompatibility.Theorem9. For every (universal relation) scheme ES = (; U; F), where F isa set of functional dependencies, there exists a database schema DS with relationschemes (; X1; F1); : : : ; (; Xn; Fn) for extensional enumerations such that:i) Schema DS supports ES by the natural join.ii) Each scheme (; Xi; Fi) of DS is in Boyce/Codd normal form.Theorem10. For every (universal relation) scheme ES = (; U; F), where F isa set of functional dependencies, there exists a database schema DS with relationschemes (; X1; F1); : : : ; (; Xn; Fn) for extensional enumerations such that:12

i) Schema DS faithfully supports ES by the natural join.ii) Each scheme (; Xi; Fi) of DS is in third normal form.The proofs of these and related theorems are constructive, yielding outlinesof design methods of decomposition and synthesis, respectively [Cod72, Fag77,Fag81, Ber76, BB79, BDB79, KM80, LTK81, BK86, SR88, BM87, TLJ90, Y�O92a,Y�O92b]. Such methods will be discussed in a more general framework in Section5.11.5.7 Normal Forms Ensure Low Storage and Update CostsWe have introduced normal forms as desirable syntactic properties, formalizingthe Separation of Aspects heuristics. According to Task 4, we now justify thesenormal forms in terms of cost, thus providing formal counterparts to informalmotivations of the Separation of Aspects heuristic to avoid so-called \updateanomalies".The bene�ts of all purely decompositional normal forms in terms of storage costsare summarized as follows:Theorem11. A relation scheme (; U; SC) is in decompositional normal form(i.e. BCNF, 4 NF, 5 NF), relative to the class of semantic constraints consideredin SC (i.e. functional dependencies, multivalued dependencies, join dependen-cies)i� for each decomposed database schema DS that supports (; U; SC) by thenatural join, for each instance of (; U; SC):size (instance of (; U; SC)) � size (decomposed instance).Here size means the number of occurences of constant symbols in the instances.This \folklore theorem" is closely related to a theorem of [VS93b] that char-acterizes normal forms in terms of data redundancy. The intuitive reasoning ofthe proof is the following. Assume that (; U; SC) is already in decompositionalnormal form. Then any further decomposition would result in duplicating thekey components of tuples (and thus would increase the size) without gettingany compensating size bene�t. If on the other hand (; U; SC) is not in decom-positional normal form, then the forbidden substructure can cause a redundantrepresentation of facts, and the size bene�t of removing this redundancy bydecomposition can exceed the disadvantage of duplicating tuple components,necessary for support by the natural join.Decompositional normal forms are also helpful to ensure low update costs [BG80,Vos88, Bis89, Cha89, HC91, BD93]. As an example, we present a theorem thattakes care of functional and inclusion dependencies [BD93]. The theorem char-acterizes those database schemas that allow maintenance of all semantic con-straints by simply checking whether a newly inserted tuple does not violate akey condition. 13

Theorem12. A database scheme DS with relation schemes (R1; X1; F1); : : : ;(Rn; Xn; Fn) with functional dependencies as local semantic constraints and in-clusion dependencies I as global semantic constraints allows X � Xi, for somei, as update object, i.e.i) X ! Xi 2 (I [Si=1;:::;nFi)+ andii) for each instance (r1; : : : ; ri : : : ; rn) of DS, for each tuple � with�dX =2 �X (ri):(r1; : : : ; ri [f�g; : : : ; rn) is instance of DSi� the following properties hold:iii) Ri is \not referencing" by inclusion dependencies of I.iv) Ri is in unique key normal form.v) Ri is in Boyce/Codd normal form.The proof is based on a careful analysis and equivalent reformulations of thefundamental notions, as well as, on separation conditions that restrict the in-teraction of functional dependencies and inclusion dependencies (which may bevery complex in general, according to Theorem 5).5.8 Unique Essences: Unique Flavor Formalized as Worthwhile\Semantic" RequirementThe fourth design heuristic, Unique Flavor, can be formalized in the frame-work of designing a so-called universal relation interface for a database schema[MUV84, KKFVU84, Var88b, BB83, BBSK86, BV88, Lev92]. Such an interfaceshould translate queries, which are expressed in terms of attributes only (omit-ting the information about relation schemes), into join paths within the hyper-graph structure of the schema. If there are several candidate join paths, then,according to the Unique Flavor heuristic, all these candidates should provideessentially the same query answer [BBSK86].Given a database schema DS, a formalized version of this requirement is de�nedas follows:U := Si=1;:::;nXi and H := fX1; : : : ; Xng describes the hypergraph of DS.jp : }U ! }}H; jp(Y) := fE j E � H; E connected; Y � SE; E minimalgde�nes the translation from a set of attributes into join paths.essence(E; Y) := fXi \ (Y [SXj2E;Xj 6=XiXj) j Xi 2 Eg is the essence of a joinpath E over a set of attributes Y .{ Finally, Unique Flavor motivates that essences should be unique:For all Y � U , for all E;F 2 jp(Y) : essence(E; Y) = essence(F; Y).Of course, here the property of unique essences is already de�ned in purelysyntactic terms although it is \semantically" motivated.14

5.9 Acyclicity: Unique Flavor Formalized as Desirable SyntacticPropertyThe fourth design heuristic, Unique Flavor, can also be rephrased by consideringthe hypergraph structure of a database schema, as de�ned by the formats, andby requiring that the hypergraph is to some degree acyclic [Fag83, BFMY83,BBSK86]. The two most important degrees are listed below by their names andtheir forbidden substructures:{
-acyclic:
{ �-acyclic: a nontrivial hypergraph as produced by the GYO-reduction ap-plied to the schema [Gra79, Y�O79].As a contribution to Task 2, it turns out that
-acyclicity syntactically charac-terizes the \semantic" property of Section 5.8 [BBSK86]:Theorem13. DS is
-acyclic i� DS has unique essences.We can easily construct join paths over some set of attributes Y with di�erentessences from the cyclic substructures forbidden for
-acyclic database schemas:in each case, Y := fA;Bg is contained in a single relation scheme, which con-stitutes a trivial covering join path, and Y is covered by an essentially di�erentjoin path containing two or more relation schemes (namely those connecting Awith B running the \long way"). The converse claim of the theorem is proved bya tedious and subtle examination of the so-called intersection hypergraph of DS,which is generated from the hypergraph by adding all nonempty intersections ofits hyperedges.As a contribution to Task 3, the desirable syntactic property of acyclicity canbe e�ciently decided [Y�O79, Gra79, Fag83, TY84, DM86]:Theorem14. The problems \DS is
-acyclic" and \DS is �-acyclic" are de-cidable in polynomial time.For each degree of acyclicity a recursive decision procedure can be based on a\pruning" predicate on hyperedges. At each stage the procedure can delete ahyperedge that satis�es the predicate. The initial schema is acyclic i� the pro-cedure succeeds in reducing the schema to nothing. The pruning predicate for15

-acyclicity can be paraphrased by \either there exists another hyperedge thathas the same set of intersections with the remaining hyperedges or all nonemptyintersections with the remaining hyperedges are identical". The pruning predic-ate for �-acyclicity can be paraphrased as \there exists a remaining hyperedgethat contains all the intersections with the remaining hyperedges". These de-cision procedures are elaborated variants of the well-known acyclicity test forordinary graphs: the test recursively deletes a leaf and its corresponding edgeand recognizes acyclic graphs, i.e. trees, as those graphs that can be reduced tonothing.5.10 Acyclicity Ensures Low Query CostsAccording to Task 4, the impact of acyclicity as desirable syntactic propertyon costs should be examined. As suggested by the corresponding worthwhilesemantic requirement, the evaluation of view queries that are join paths shouldbe e�cient. Indeed, we have the following assertions which have subtle andtedious proofs [Fag83, BFMY83]:Theorem15. DS is
-acyclici� all noncartesian join trees are monotone(i.e. for pairwise consistent relations r1; : : : rn all partial results areconsistent)i� projections �Y (u) with u := 1i=1;:::;n ri; ri := �Xi(u),can be computed by determining a covering join path and evaluating it(i.e. �Y (u) = �Y (1Xi2E ri) for some E 2 jp(Y)).Theorem16. DS is �-acyclici� there exists a monotone join tree(which, essentially, is determined by the GYO-reduction).5.11 Design Algorithms Remove Forbidden SubstructuresFig.5 summarizes the presented achievements with respect to Tasks 1, 2 and4. Finally, according to Task 3, a lot of design methods for achieving desirablesyntactic properties have been proposed. Apparently, any concrete re�nement ofsuch a method will, necessarily, result into a highly interactive design procedure.The general skeleton of such procedures and the division of labour betweenthe insightful administrator and the automatic algorithm [Bis95, BC86, BC89,Bis95b] can be outlined as shown in Fig.6.16

formalize heuristicsseparationTask 1. syntacticpropertiesno forbiddensubstructure:{ 3 NF{ BCNF{ 4 NF{ 5 NF{ referential NF{ unique key NF
unique
avourTask 1. \semantic"requirements{ join paths areessentially uniqueTask 1. syntactic propertiesno forbidden substructure:{
-acyclic{ �-acyclic

inferenceTask 1. semantic require-ments{ (faithful) view instancesupport{ view query supportTask 2. syntactic characte-rizationfor FDs, join support:{ 1 [X1; : : : ; Xn] 2 SC+{ �Si Fi�+� FTask 2. relationships between syntactic properties and semantic requirements{ BCNF and join support are compatible (decomposition){ 3 NF and faithful join support are compatible (synthesis){
-acyclic i� join paths are essentially uniqueoptimize at design timeTask 4. syntactic properties ensure low costsstorage{ normal forms query{
-acyclic:� join trees are mono-tone� projection by cover-ing joins{ �-acyclic: existence ofmonotone join trees
update{ 8<:not referencingone keyBCNF

Fig.5. A short summary of presented achievements with respect to Tasks 1, 2and 4.17

[modeling by administrator]model the application;document the model;[parametrization by administrator]identify the desirable syntactic properties
 of particularinterest;define the appropriate worthwhile semantic requirements �related to Inferential Completeness;[initialization by administrator and algorithm]initialize the current database schema DS as formalization ofthe model such that DS satisfies the semantic requirements �;[achieve properties]LOOP fDS sati�es �g[check of properties by algorithm]determine the set of all
-forbidden substructures of thecurrent database schema DS;IF this set is empty THEN EXITELSE[investigate forbidden substructure by administrator]select an
-forbidden substructure forb;IF forb appears to be inherent in the applicationTHEN mark forb as unavoidable and adjust
 accordinglyELSIF forb stems from faulty modelingTHEN improve the model and adjust
 and � if necessaryELSIF forb arises from bad formalization of an agreed modelTHEN[remove forbidden substructure by algorithm]DS:=Transform(DS, forb)[where Transform is a schema transformation that removes theforbidden substructure forb from the current schema DS whileit leaves the semantic requirements � invariant, i.e. thetransformed schema satisfies � again]ENDIF;ENDIF;ENDLOOP fDS satis�es � and
g;Fig.6. Outline of interactive design procedures.[] embraces comments indicating a module togetherwith its active entity or semantics, respectively;f g embraces state conditions, i.e. the invariantand the post condition of the main loop.
18

We shortly discuss some examples that �t the skeleton of Fig.6 by indicating
,� and Transform:{ Classical decomposition, based on Theorem 9 and related statements, identi-�es
 as Boyce/Codd or higher normal form and selects � as view supportof an initial universal relation scheme by the natural join. Transform splitsa current relation scheme with attribute set Xi into fragments that are de-termined by the components of the forbidden join dependency; Transformis � -invariant by the semantics of join dependencies (and because any func-tional dependency implies a corresponding multivalued dependency).{ Classical synthesis, based on Theorem 10 and related statements, has twophases. The �rst phase achieves faithfulness, and the second phase adds viewsupport of an initial universal relation scheme by the natural join. In the �rstphase
 is identi�ed as third normal form, and � is selected as faithfulness(syntactically characterized as the preservation of the given set of functionaldependencies). Transform removes all kinds of redundancy (which can leadto
-forbidden substructures) from the functional dependencies. An earlyversion of synthesis [Ber76] achieves this goal by computing a minimal coverof the functional dependencies, leaving � invariant. A later version [BM87]achieves this goal by removing so-called \abnormal nonprime" attributesfrom relation schemes following some sophisticated strategy, whereby a some-what stronger invariant � (namely faithfulness and \object-faithfulness" and\strong normativity") is preserved. In the second phase view support of aninitial universal relation scheme by the natural join is guaranteed by ensur-ing the existence of a relation scheme that contains a global key [BDB79].If necessary, such a key component is added (in this case as a previously\missing substructure").{ In view integration, as formalized in [BC86],
 is identi�ed as absence of so-called \integration constraints", which indicate a redundant overlap of viewsand, thus, are interpreted as forbidden substructures in the wanted integ-rated schema, and � is selected as view support of all given view databaseschemas. Transform removes an integration constraint by appropriatelymerging the relation schemes involved, leaving � invariant.Examining the general skeleton of design procedures, we can further comment onthe tasks of design theory. The parametrization step is based on Task 1 and Task2. The check of properties step and the remove forbidden substructure step arebased on Task 3. Finally, after getting the �nal output schema, the adminis-trator can evaluate the quality of the design based on results of Task 4, and,if necessary, he can iteratively process the design procedure using a di�erentparametrization.The skeleton also shows the impact of the administrator's interaction: he isresponsible for modeling, parametrization, selection and investigation of forbid-den substructure. While modeling and investigation of forbidden substructuresis principally outside the scope of automatic algorithms, parametrization andselection of forbidden substructures could possibly be better supported by al-gorithms as known today. 19

6 Final RemarksSince the �rst pioneering work of E.F. Codd [Cod70, 72] and W.W. Armstrong[Arm74], a substantial body of results on database schema design theory hasbeen published. This paper summarizes only a small part of the highly detailedwork. It emphasizes the tasks of design theory in producing and using interact-ive design tools. In a companion paper [Bis95a] three main topics for furtherenhancement of the design theory are outlined: all current achievements stillhave to be carried out within one unifying framework; the current achievementshave to be embedded in the full design process and to be extended to deal moredeeply with advanced database features like incomplete information, recursivequery languages, complex objects or object identi�ers; all achievements have tobe reconsidered from the viewpoint of distributed computing, abandoning theclassical centralized approach to databases.Acknowledgement: I would like to thank Ralf Menzel and Torsten Polle forvaluable discussions. I am also grateful to an anonymous reviewer for helpfulremarks and hints.References[AABM82] P. Atzeni, G. Ausiello, C. Batini, and M. Moscarini. Inclusion and equiv-alence between relational database schemata. Theoretical Computer Sci-ence, 19:267{285, 1982.[ADA93] P. Atzeni and V. De Antonellis. Relational Database Theory. Ben-jamin/Cummings, Redwood City, CA, 1993.[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, Reading, MA, 1995.[AM86] P. Atzeni and N. M. Morfuni. Functional dependencies and constraintson null values in database relations. Information and Control, 70(1):1{31,1986.[Arm74] W. W. Armstrong. Dependency structures of data base relationships. InJ. L. Rosenfeld, editor, Proceedings of IFIP Congress 1974, pages 580{583.North-Holland, Amsterdam, 1974.[BB79] C. Beeri and P.A. Bernstein. Computational problems related to thedesign of normal form relational schemas. ACM Transactions on Data-base Systems, 4(1):30{59, 1979.[BB83] J. Biskup and H. H. Br�uggemann. Universal relation views: A pragmaticapproach. In Proceedings of the 9th International Conference on VeryLarge Data Bases, pages 172{185, 1983.[BBG78] C. Beeri, P. A. Bernstein, and N. Goodman. A sophisticated introductionto database normalization theory. In Proceedings of the 4th InternationalConference on Very Large Data Bases, Berlin, pages 113{124, September1978.[BBG78] C. Beeri, P. A. Bernstein, and N. Goodman. A sophisticated introductionto database normalization theory. In Proceedings of the 4th InternationalConference on Very Large Data Bases, Berlin, pages 113{124, September1978. 20

[BBSK86] J. Biskup, H. H. Br�uggemann, L. Schnetg�oke, and M. Kramer. One
avorassumption and
-acyclicity for universal relation views. In Proceedings ofthe Fifth ACM SIGACT-SIGMOD Symposium on Principles of DatabaseSystems, pages 148{159, 1986.[BC86] J. Biskup and B. Convent. A formal view integration method. In Proceed-ings of the ACM SIGMOD International Conference on Management ofData, Washington, pages 398{407, 1986.[BC89] J. Biskup and B. Convent. Towards a schema design methodology for de-ductive databases. In J. Demetrovics and B. Thalheim, editors, Proceed-ings of the Symposium on Mathematical Fundamentals of Database Sys-tems (MFDBS '89), number 364 in Lecture Notes in Computer Science,pages 37{52. Springer, 1989.[BC91] J. Biskup and B. Convent. Relational chase procedures interpreted as res-olution with paramodulation. Fundamenta Informaticae, XV(2):123{138,1991.[BD93] J. Biskup and P. Dublish. Objects in relational database schemes withfunctional, inclusion and exclusion dependencies. Informatique th�eoriqueet Applications / Theoretical Informatics and Applications, 27(3):183{219,1993.[BDB79] J. Biskup, U. Dayal, and P. A. Bernstein. Synthesizing independent data-base schemas. In P. A. Bernstein, editor, Proceedings of the ACM SIG-MOD International Conference on Management of Data (SIGMOD '79),Boston, pages 143{151, New York, NY, 1979. ACM.[BDLM91] J. Biskup, J. Demetrovics, L. O. Libkin, and I. B. Muchnik. On relationaldatabase schemes having unique minimal key. Journal of InformationProcessing and Cybernetics EIK, 27(4):217{225, 1991.[Ber76] P. A. Bernstein. Synthesizing third normal form relations from functionaldependencies. ACM Transactions on Database Systems, 1(4):272{298,December 1976.[BFMY83] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability ofacyclic database schemes. Journal of the ACM, 30:479{513, 1983.[BG80] P. A. Bernstein and N. Goodman. What does Boyce-Codd normal formdo? In Proceedings of the 6th International Conference on Very Large DataBases, pages 245{259, 1980.[Bis80] J. Biskup. Inferences of multivalued dependencies in �xed and undeter-mined universes. Theoretical Computer Science, 10:93{105, 1980.[Bis85] J. Biskup. Entwurf von Datenbankschemas durch schrittweises Umwan-deln verbotener Teilstrukturen. In Tagungsband GI-EMISA-Fachgespr�achEntwurf von Informationssystemen | Methoden und Modelle, Tutzing,pages 130{148, 1985.[Bis89] J. Biskup. Boyce-Codd normal form and object normal forms. Informa-tion Processing Letters, 32(1):29{33, 1989.[Bis94] J. Biskup. Impacts of creating, implementing and using formal lan-guages. In K. Duncan and K. Krueger, editors, Proceedings of the 13thWorld Comupter Congress 94, volume 3, pages 402{407. Elsevier (North-Holland), Amsterdam etc., 1994.[Bis95a] J. Biskup. Database schema design theory: achievements and challenges.In Proceedings of the 6th International Conference on Information Systemsand Management of Data (CISMOD '95), number 1006 in Lecture Notesin Computer Science, pages 14{44, Bombay, 1995. Springer, Berlin etc.21

[Bis95b] J. Biskup. Grundlagen von Informationssystemen. Vieweg, Braunschweig-Wiesbaden, 1995.[BK86] C. Beeri and M. Kifer. An integrated approach to logical design of re-lational database schemes. ACM Transactions on Database Systems,11(2):134{158, 1986.[BM87] J. Biskup and R. Meyer. Design of relational database schemes by delet-ing attributes in the canonical decomposition. Journal of Computer andSystem Sciences, 35(1):1{22, 1987.[BR88] J. Biskup and U. R�asch. The equivalence problem for relational databaseschemes. In Proceedings of the 1st Symposium on Mathematical Funda-mentals of Database Systems, number 305 in Lecture Notes in ComputerScience, pages 42{70. Springer-Verlag, Berlin etc., 1988.[BS81] F. Bancilhon and N. Spyratos. Update semantics of relational views. ACMTransactions on Database Systems, 6(4):557{575, 1981.[BV84a] C. Beeri and M. Y. Vardi. Formal systems for tuple and equality generat-ing dependencies. SIAM Journal on Computing, 13(1):76{98, 1984.[BV84b] C. Beeri and M. Y. Vardi. A proof procedure for data dependencies.Journal of the ACM, 31(4):718{741, October 1984.[BV88] V. Brosda and G. Vossen. Update and retrieval in a relational databasethrough a universal schema interface. ACM Transactions on DatabaseSystems, 13(1988):449{485, 1988.[CFP84] M. A. Casanova, R. Fagin, and C. H. Papadimitriou. Inclusion dependen-cies and their interaction with functional dependencies. Journal of Com-puter and System Sciences, 28(1):29{59, 1984.[Cha89] E. P. F. Chan. A design theory for solving the anomalies problem. SIAMJournal on Computing, 18(3):429{448, June 1989.[Che76] P. P.-S. Chen. The entity-relationship-model | towards a uni�ed view ofdata. ACM Transactions on Database Systems, 1(1):9{36, March 1976.[CM87] E. P. F. Chan and A. O. Mendelzon. Independent and separable databaseschemes. SIAM Journal on Computing, 16(5):841{851, 1987.[Cod70] E. F. Codd. A relational model of data for large shared data banks.Communications of the ACM, 13(6):377{387, June 1970.[Cod72] E. F. Codd. Further normalization of the database relational model. InR. Rustin, editor, Database Systems, number 6 in Courant Institute Com-puter Science Symposia Series, pages 33{64. Prentice Hall, EnglewoodCli�s, NJ, 1972.[CV85] A. K. Chandra and M. Y. Vardi. The implication problem for functionaland inclusion dependencies is undecidable. SIAM Journal on Computing,14(3):671{677, 1985.[DB82] U. Dayal and P. A. Bernstein. On the correct translation of update op-erations on relational views. ACM Transactions on Database Systems,8(3):381{416, 1982.[Del78] C. Delobel. Normalization and hierarchical dependencies in the relationaldata model. ACM Transactions on Database Systems, 3:201{222, 1978.[DF92] C. J. Date and R. Fagin. Simple conditions for guaranteeing higher normalforms in relational databases. ACM Transactions on Database Systems,17:465{476, 1992.[DKM+95] J. Demetrovics, G. O. H. Katona, D. Miklos, O. Seleznjew, and B. Thal-heim. The average length of key and functional dependencies in (random)22

databases. In G. Gottlob and M. Y. Vardi, editors, Database Theory|ICDT '95, pages 266{279. Springer-Verlag, Berlin etc., 1995.[DLM92] J. Demetrovics, L. Libkin, and I.B. Muchnik. Functional dependencies inrelational databases: a lattice point of view. Discrete Applied Mathematics,40:155{185, 1992.[DM86] A. D'Atri and M. Moscarini. Recognition algorithms and design method-ologies for acyclic database. In P. C. Kanellakis and F. Preparata, editors,Advances in Computing Research, volume 3, pages 164{185. JAI Press,Inc., Greenwich, CT, 1986.[DP84] P. DeBra and J. Paredaens. Horizontal decompositions for handling ex-ceptions to functional dependencies. In H. Gallaire, J. Minker, and J. M.Nicolas, editors, Advances in Database Theory, volume 2. Plenum, NewYork - London, 1984.[Fag77] R. Fagin. Multivalued dependencies and a new normal form for rela-tional databases. ACM Transactions on Database Systems, 2(3):262{278,September 1977.[Fag81] R. Fagin. A normal form for relational databases that is based on domainsand keys. ACM Transactions on Database Systems, 6(3):387{415, 1981.[Fag83] R. Fagin. Degrees of acyclicity for hypergraphs and relational databaseschemes. Journal of the ACM, 30(3):514{550, July 1983.[FC85] A. L. Furtado and M. A. Casanova. Updating relational views. InW. Kim, D. S. Reiner, and D. S. Batory, editors, Query Processing inDatabase Systems. Springer-Verlag, Berlin, 1985.[FV84] R. Fagin and M. Y. Vardi. The theory of data dependencies - an over-view. In Proceedings of the 11th International Colloquium on Automata,Languages and Programming, number 172 in Lecture Notes in ComputerScience, pages 1{22. Springer-Verlag, Berlin etc., 1984.[GHLM93] J. Grant, J. Horty, J. Lobo, and J. Minker. View Updates in Strati�edDisjunctive Databases. Journal of Automated Reasoning, 11:249{267,1993.[GMV86] M. H. Graham, A. O. Mendelzon, and M. Y. Vardi. Notions of dependencysatisfaction. Journal of the ACM, 33(1):105{129, 1986.[Gra79] M. H. Graham. On the universal relation. Systems research group report,University of Toronto, 1979.[Gra84] G. Grahne. Dependency satisfaction in databases with incomplete infor-mation. In U. Dayal, editor, Proceedings of the 10th International Confer-ence on Very Large Data Bases, pages 37{45, Singapore, 1984.[HC91] H. J. Hern�andez and E. P. F. Chan. Constant-time-maintainable BCNFdatabase schemes. ACM Transactions on Database Systems, 16(4):571{599, December 1991.[Heg94] S. J. Hegner. Unique complements and decompositions of databaseschemata. Journal of Computer and System Sciences, 48:9{57, 1994.[Her95] C. Herrmann. On the undecidability of implications between embeddedmultivalued dependencies. Information and Computation, 122:221{235,1995.[Hon82] P. Honeyman. Testing satisfaction of functional dependencies. Journal ofthe ACM, 29(3):668{677, 1982.[Hul86] R. Hull. Relative information capacity of simple relational databaseschemata. SIAM Journal on Computing, 15(3):856{886, 1986.23

[JF82] J. H. Jou and P. C. Fischer. The complexity of recognizing 3NF relationschemes. Information Processing Letters, 14(4):187{190, 1982.[Kat92] G. O. H. Katona. Combinatorial and algebraic results for database rela-tions. In Database Theory|ICDT '92, number 646 in Lectures Notes inComputer Science, pages 1{20. Springer-Verlag, Berlin etc., 1992.[KCV83] P. C. Kanellakis, S. S. Cosmadakis, and M. Y. Vardi. Unary inclusiondependencies have polynomial time inference problems. In Proceedingsof the 15th Symposium on Theory of Computing, Boston, pages 246{277,1983.[Kel86] A. M. Keller. The role of semantics in translating view updates. IEEEComputer, 19(1):63{73, January 1986.[Ken83] W. Kent. A simple guide to �ve normal forms in relational databases.Communications of the ACM, 26(2):120{125, 1983.[KKF+84] H. F. Korth, G. M. Kuper, J. Feigenbaum, A. VanGeldern, and J. D. Ull-man. A database system based on the universal relation assumption. ACMTransactions on Database Systems, 9(1984):331{347, 1984.[KM80] P. Kandzia and M. Mangelmann. On covering Boyce-Codd normal forms.Information Processing Letters, 11:218{223, 1980.[Lev92] M. Levene. The Nested Universal Relation Database Model. Lecture Notesin Computer Science 595. Springer, Berlin etc., 1992.[Lie79] Y. E. Lien. Multivalued dependencies with nulls in relational databases.In Proceedings of the 5th International Conference on Very Large DataBases, pages 61{66, 1979.[LL94] M. Levene and G. Loizou. The nested universal relation model. Journalof Computer and System Sciences, 49:683{717, 1994.[LO78] C. L. Lucchesi and S. L. Osborn. Candidate keys for relations. Journal ofComputer and System Sciences, 17(2):270{279, 1978.[LTK81] T.-W. Ling, F. W. Tompa, and T. Kameda. An improved third normalform for relational databases. ACM Transactions on Database Systems,6(2):329{346, 1981.[Mai83] D. Maier. The Theory of Relational Databases. Computer Science Press,Rockville, MD, 1983.[Men79] A. O. Mendelzon. On axiomatizing multivalued dependencies in relationaldatabases. Journal of the ACM, 26(1):37{44, 1979.[Mit83] J. C. Mitchell. The implication problem for functional and inclusion de-pendencies. Information and Control, 56(3):154{173, 1983.[MR83] H. Mannila and K.-J. R�aih�a. On the relationship of minimum and op-timum covers for a set of functional dependencies. Acta Informatica,20:143{158, 1983.[MR86] H. Mannila and K.-J. R�aih�a. Inclusion dependencies in database design. InProceedings of the Second International Conference on Data Engineering,pages 713{718, Washington, DC, 1986. IEEE Computer Society Press.[MR92] H. Mannila and K.-J. R�aih�a. The Design of Relational Databases.Addison-Wesley, Wokingham, England, 1992.[MUV84] D. Maier, J. D. Ullman, and M. Y. Vardi. On the foundations of the uni-versal relation model. ACM Transactions on Database Systems, 9(2):283{308, June 1984.[Osb78] S. L. Osborn. Normal Forms for Relational Data Bases. PhD thesis,Department of Computer Science, University of Waterloo, 1978.24

[PDGvG89] J. Paredaens, P. DeBra, M. Gyssens, and D. van Gucht. The Structureof the Relational Database Model. Number 17 in EATCS Monographs onTheoretical Computer Science. Springer-Verlag, Berlin, 1989.[Ris77] J. Rissanen. Independent components of relations. ACM Transactions onDatabase Systems, 2(4):317{325, 1977.[Ris82] J. Rissanen. On equivalence of database schemes. In Proceedings of the 1stACM SIGACT{SIGMOD Symposium on Principles of Database Systems,pages 23{26, 1982.[Sag83] Y. Sagiv. A characterization of globally consistent databases and theircorrect access paths. ACM Transactions on Database Systems, 8(2):266{286, 1983.[SR88] D. Seipel and D. Ruland. Designing gamma-acyclic database schemes us-ing decomposition and augmentation techniques. In Proc. 1st Symposiumon Mathematical Fundamentals of Database Systems, number 305 in Lec-ture Notes in Computer Science, pages 197{209. Springer-Verlag, Berlinetc., 1988.[Tha91] B. Thalheim. Dependencies in relational databases. Teubner, Stuttgart -Leipzig, 1991.[TLJ90] P. Thanisch, G. Loizou, and G. Jones. Succint database schemes. Inter-national Journal of Computer Mathematics, 33:55{69, 1990.[TY84] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to testchordality of graphs, test acyclicity of hypergraphs, and selectivity reduceacyclic hypergraphs. SIAM Journal on Computing, 13:566{579, 1984.[Ull88] J. D. Ullman. Principles of Database and Knowledge-Base Systems(Volume I). Computer Science Press, Rockville, MD, 1988.[Ull89] J. D. Ullman. Principles of Database and Knowledge-Base Systems(Volume II: The New Technologies). Computer Science Press, Rockville,MD, 1989.[Var82] M. Y. Vardi. On decomposition of relational databases. In Proc. 23rdSymposium on Foundations of Computer Science, pages 176{185, 1982.[Var84] M. Y. Vardi. The implication and �nite implication problem for typedtemplate dependencies. Journal of Computer and System Sciences, 28:3{28, 1984.[Var88a] M. Y. Vardi. Fundamentals of dependency theory. In E. B�orger, editor,Trends in Theoretical Computer Science, pages 171{224. Computer SciencePress, Rockville, 1988.[Var88b] M. Y. Vardi. The universal-relation data model for logical independence.IEEE Software, 5(1988):80{85, 1988.[Vas79] Y. Vassiliou. Null values in database management, a denotational se-mantics approach. In Proc. ACM SIGMOD Symp. on the Managementof Data, pages 162{169, 1979.[Vos88] G. Vossen. A new characterization of FD implication with an applicationto update anomalies. Information Processing Letters, 29(3):131{135, 1988.[Vos91] G. Vossen. Data Models, Database Languages and Database ManagementSystems. Addison-Wesley, Wokingham, England, 1991.[VS93a] M. W. Vincent and B. Srinivasan. A note on relation schemes which are in3NF but not in BCNF. Information Processing Letters, 48:281{283, 1993.[VS93b] M. W. Vincent and B. Srinivasan. Redundancy and the justi�cation forfourth normal form in relational databases. International Journal ofFoundations of Computer Science, 4:355{365, 1993.25

[Y�O79] C. T. Yu and Z. M. �Ozsoyo�glu. An algorithm for tree-query membership ofa distributed query. In Proceedings of the 3rd IEEE COMPSAC, Chicago,pages 306{312, 1979.[Y�O92a] L.-Y. Yuan and Z. M. �Ozsoyo�glu. Design of desirable relational databaseschemes. Journal of Computer and System Sciences, 45:435{470, 1992.[Y�O92b] L.-Y. Yuan and Z. M. �Ozsoyo�glu. Unifying functional and multivalueddependencies for relational database design. Information Science, 59:185{211, 1992.[Zan76] C. Zaniolo. Analysis and design of relational schemata for database sys-tems. PhD thesis, University of California Los Angeles, Computer ScienceDepartment, 1976. Technical Report UCLA-ENG-7669, July 1976.

This article was processed using the LATEX macro package with LLNCS style26

