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Abstract. Database schema design is seen as to decide on formats for
time-varying instances, on rules for supporting inferences and on sem-
antic constraints. Schema design aims at both faithful formalization of
the application and optimization at design time. It is guided by four
heuristics: Separation of Aspects, Separation of Specializations, Infer-
ential Completeness and Unique Flavor. A theory of schema design is
to investigate these heuristics and to provide insight into how syntactic
properties of schemas are related to worthwhile semantic properties, how
desirable syntactic properties can be decided or achieved algorithmically,
and how the syntactic properties determine costs of storage, queries and
updates. Some well-known achievements of design theory for relational
databases are reviewed: normal forms, view support, deciding implica-
tions of semantic constraints, acyclicity, design algorithms removing for-
bidden substructures.

1 Introduction

Due to its great importance for database applications, database schema design
has attracted a lot of researchers, and, accordingly, a lot of insight into good
schemas has been obtained. On the one side, practical experience suggests to fol-
low some basic design heuristics, which have been ramified into considerable de-
tail. On the other side, theoretical investigations have accumulated many formal
notions and theorems on database schema design. Unfortunately, however, the-
ory apparently does not have much impact on practice yet.

The purpose of this paper is to improve on this mismatch of theory and practice
by presenting well-known theoretical results on schema design within a fresh and
unifying framework. In a companion paper [Bis95a] we also discuss the present
shortcomings of database schema design theory and suggest some directions for
its future elaboration. This paper does not aim at providing a complete survey
on well-established and current contributions but at highlighting important ex-
amples. Accordingly, all references to the literature are to be understood just as
hints for further reading.



2 Problem of Schema Design

The purpose of a database system can be roughly summarized as follows: a
database system aims at persistently and dependably storing a large amount of
structured data, shared by many and various users, and at efficiently managing
this data with respect to update execution and query evaluation. The database
itself, i.e. the structured data, is organized in a self-describing way: it consists
of a time independent part, its schema, and a time-varying part, its instance,
where the schema describes the structure and the formal semantics of the possible
instances. At design time, the database administrator (representing the group
of people involved), basically, has to perform two steps: first abstracting and
modeling the application, then formalizing and formatting the model.

In the first step, the administrator models the application at hand by employing
some well-disciplined linguistic framework for descriptions of reality, let’s say
the framework of the widely accepted entity-relationship approach [Che76]. In
the second step, the administrator formalizes the model and declares a database
schema, using a data definition language, which is an implemented fragment of
a first order logic, esssentially.

This two-step procedure is based on the fundamental paradigm of the semantic
triade: reality — space of concepts (ideas) and laws of logic — language. Fig.1
sketches the basic assumptions of this paradigm, which is not at all obvious or
indisputable, but rather a tried attempt helpful for restricted tasks.
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Fig.1. Fundamental paradigm of the semantic triade

Fig.2 indicates some correspondences between the framework of the entity-
relationship approach, an approved heuristic tool for detecting and reconstruct-
ing the pertinent concepts, and the syntax of first order logic and its set theory
based semantics, a well-studied formal language for declarative programming.
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Fig.2. Some correspondences between the entity-relationship approach and first
order logic with set theory based semantics

Both steps of the design require taking decisions. In the first step the adminis-
trator has to decide on the relevance of certain aspects of the “miniworld” under
consideration. However, it is important to realize that a database system can be

seen under three different though related viewpoints:

— the system constitutes a formal image of an outside miniworld;

— or it manages an autonomous formal miniworld (of documents, for example);

— or it mediates formal messages between communicating actors (one actor
inserts a message, which is later on delivered to another actor as a query

result, for example).
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In fact, the last viewpoint appears to be most comprehensive:

— human individuals act communicatively within the (outside) miniworld (of
the application),

— the basic facts and events of which are reflected by formal documents

— that in turn are mediated over time and space by the database system.

Thereby the database becomes part of the already overwhelming “formalism
reality” [Bis94] surrounding its users.

Once the decisions about the relevant aspects are available from the first step of
the design, in the second step the administrator has to decide on the structure of
their formalization. More specifically, he has to decide on the following problems,
essentially:

— Which aspects of the application should be enumerated, i.e. represented by a
time-varying enumeration of ground facts the formats of which are statically
declared in the schema?

— Which aspects of the application should be inferrable, i.e. derivable from the
time-varying enumerations, possibly complemented by additional input, by
rules which are declared in the schema?

— Which aspects should constrain the enumerations under updates, i.e. which
format-conforming enumerations of ground facts should be considered mean-
ingful in the sense that they satisfy semantic constraints, which are declared
in the schema.

The decisions result in a schema that comprises

— the formats for enumerations (the time-varying extensional instances pro-
duced over the life time of the database),

— the rules (for intensional views supporting queries),

— and the semantic constraints.

Being fixed over the time, the schema statically determines the future dynamic
behaviour of the database and, in particular, its usefulness for its end users.
Fig.3 illustrates the design and the usage of a database, and it summarizes the
terminology introduced so far.

The quality of a schema can be evaluated along two lines of reasoning:

— The schema should formalize the application as faithful as achievable.

— The schema should allow to execute queries and updates, as far as these
operations can be foreseen, as efficiently as possible. From this point of view,
schema design can be understood as optimization at design time.

Whether a faithful formalization has been achieved or not, cannot be evaluated
solely based on formal mathematical reasoning. Rather we have to investigate
whether the database will successfully provide technical support for communica-
tions among those persons that employ the database as end users. Presumably,
successful support is based on a common agreement on the following questions:
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Fig.3. Design and usage of a database

— Which entities are to be considered basic?
— Which relationships are to be considered basic and

— how to select from the basic ones those for actual redundancy-free enumer-
ations, such that all relationships can be completely inferred?

— Which actions are to be considered basic?

Optimization at design time, however, can be evaluated in formal mathematical
terms by considering

— storage costs (basically determined by the size of the enumerated instances),
— query costs (basically the time complexity of anticipated queries, in partic-
ular those that are declared as rules in the schema),

— update costs (basically the time complexity of anticipated insertions and de-
letions, including maintenance of the semantic constraints that are declared

in the schema).



3 Design Heuristics

Most guidelines for schema design can be summarized by the following four
heuristics:

Separation of Aspects: A declared format should be appropriate to enumer-
ate exactly one aspect.

Separation of Specializations: A declared format should be appropriate to
conform to ezactly one specialization of an aspect.

Inferential Completeness: All meaningful aspects that are not enumerated
according to a declared format should be inferrable by using the query lan-
guage.

Unique Flavor: Meaningful aspects should be identified and understood by
expressing their basic attributes only (and omitting additional context in-
formation).

Clearly, an administrator will tentatively apply a separation heuristic by using
an agreement that the entities or relationships of some class are considered ba-
sic. But afterwards he has to justify that property mathematically with respect
to the formally declared schema and the inferential power of the formal query
language. Similarly, an administrator will tentatively apply the Inferential Com-
pleteness heuristic by using an agreement on the selection of basic relationships
for enumerations, and afterwards he has to justify the claimed completeness
property mathematically with respect to the selected formalization. In the same
spirit, an application of the Unique Flavor heuristic is, firstly, based on some in-
tuitive agreements, which, afterwards, are subject to mathematical verification
with respect to the selected formalization.

Having in mind the achievements of design theory presented in the rest of this
paper, we will somehow artificially distinguish desirable syntactic properties of
schemas from worthwhile semantic requirements: the former properties only refer
to the purely syntactically given schema, whereas the latter requirements are
explicitly related to the semantics of the query language. Accordingly, the sep-
aration heuristics will primarily suggest desirable syntactic properties, and the
completeness and uniqueness heuristics worthwhile semantic requirements. It
should be understood, however, that, on the one side, syntax and semantics are
always closely related, and, on the other side, in computing we aim at eventually
finding appropriate syntactic expressions for any kind of notion.

4 Tasks of Design Theory

In order to be helpful in achieving faithful formalizations and in pursuing the
design heuristics, the following tasks of design theory are due:

— Task 1: Formalize the worthwhile semantic requirements and the desirable
syntactic properties of schemas!



— Task 2: State and prove relationships between the formalized versions of
worthwhile semantic requirements and desirable syntactic properties!

— Task 3: Find algorithms for deciding on or even achieving syntactic prop-
erties of schemas, and prove their correctness and efficiency!

In order to be helpful for optimization at design time, additionally, design theory
should tackle a fourth task:

— Task 4: Prove that desirable syntactic properties actually ensure low costs!

Being supplied with appropriate solutions for these tasks, an administrator can
effectively benefit from design theory. For, at design time,

— the administrator, essentially, has to deal with syntactic material only (sup-
ported by Task 3)

— which must be evaluated with respect to its semantic properties (as stated
by Task 1 and Task 2) on the one side

— and the future operational cost (as stated by Task 4) on the other side.

5 Achievements for Relational Databases

5.1 Notations

For the sake of readability and conciseness we will employ (more or less) standard
notations in a somehow sloppy, and sometimes also imprecise, way. In order to
study carefully elaborated versions of the notations and of the results, the reader
should consult the references, in particular the textbooks [Mai83, UlI88, Ull89,
PDGvG89, Vos91, MR92, AD93, AHV95, Bis95b].

(R, X, S’C’i)1 denotes a relation scheme where

R; is a relation symbol,

X; is a set of attributes (possibly with a range for its values),
i.e. a format, and

SC; are the local semantic constraints.

A (database) schema comprises relation schemes, rules, and global semantic
constraints:

((Ry,X1,58C1),...,(Rn, X,,SCy)| relation schemes for extensional

3

enumerations,
Q1,...,Qnm rules (queries) for intensional views,
SCyiobar)* global semantic constraints.

Semantic constraints are denoted as follows where X,Y,Y;, Z are sets of attrib-
utes and R;, R; are relation symbols:

! Later on we will sometimes omit those components which are not relevant for the
current discussion. For instance, using the notation ( , U, SC), we indicate that only
the set of attributes U and the semantic constraints SC' are important, but not the
omitted relation symbol.



X-Y functional dependency,

X —>Y|Z or X[ XUY,XUZ] multivalued dependency,

X [Y1,..., Y] join dependency,

ITx (R;) C IIyv(R;) inclusion dependency,

SC+ implicational closure of a set of semantic

constraints SC.

5.2 Normal Forms: Separation of Aspects Formalized as Desirable
Syntactic Property

The first design heuristic, Separation of Aspects, can be rephrased by considering
formats and semantic constraints as some kind of structure and by requiring that
any nontrivial substructure should correspond to, refer to or identify exactly
one aspect of the application. Depending on the class of semantic constraints
involved, we can define different notations of “nontrivial substructure”; but in all
cases the notion of “exactly one aspect” is related to the concept of identification
of unit pieces of information. In order to formalize the heuristic as desirable
syntactic property, normally referred to as “normal form”, see Task 1, we favor
expressing the separation requirement in a negative form: the structure should
not contain any forbidden substructures that might be harmful with respect to
the quality measures. Then most algorithms to achieve high quality schemas
can be conveniently described as iterated schema transformations that stepwise
detect and remove forbidden substructures.

The most popular normal forms are listed in Fig.4, giving their names and
forbidden substructures [Cod70, Cod72, Fag77, Del78, Zan76, BBG78, Fag8l,
Ken83, MR86, BDLM91, DF92]:

name forbidden substructures
3 NF, third normal form Z — A€ SCt, A ¢ Z A nonkey-attribute,
(but) Z — X; ¢ SC+.
BCNF, Boyce/Codd normal|Z — A€ SC*, A¢ Z,
form (but) Z — X; ¢ SC™.
4 NF, fourth normal form |X - Y € SC*, Y ¢ X, XUY G X;,
(but) X — X; ¢ SC+.

5 NF, fifth normal form X [Y;...Y,] € SCT,
MIY1...Yi 1, Y., Y] ¢ SCT
fori=1,...,k,

(but) there exists j: Y; —» X; ¢ SC™.

referential normal form IIx(R;) C IIy(R;) € SC*, i # j,
(but) Y — X; ¢ SC+.

unique key normal form X — X; € SC*, X minimal,

Y = X; € SCT, Y minimal,
(but) X # Y.

Fig.4. Normal forms and their forbidden substructures



5.3 View Support: Inferential Completeness Formalized as
Worthwhile Semantic Requirements

The third design heuristic, Inferential Completeness, can be rephrased by con-
sidering those aspects of the application that are not explicitly represented by
enumerations and by requiring that these aspects are completely supported as
intensional views by appropriate rules. There are, essentially, three versions of
support: view instance support, view query support, view update support.

Restricting our discussion to one-relation views or even so-called universal rela-
tion views, we suppose that a database schema, of the form

DS = (schemes for extensional enumerations| |global semantic constraints)
is given, and that some candidate view (or external schema)

ES = (,U0,50)
with set of attributes U and semantic constraints SC' should be supported.
Then we state the following formal versions of the heuristic as worthwhile sem-
antic property, see Task 1.

— Schema DS provides view instance support for ES
;iff there exists a query @ on DS such that
{instances of ES} C Q[{instances of DS}|.

If we have even equality, the view instance support is called faithful. In that case,
if, additionally, the supporting query @ is injective on {instances of DS}, the
view instance support is called unique.

— Schema DS provides view query support for ES
:;iff for each query P on ES there exists a query P’ on DS such that:
for all instances u of ES there exists an instance (r;);=1,....n of DS such that
P(u) = P'((ri)i=1,..,n)-

Under some rather weak assumptions on the query language we have a funda-
mental equivalence [AABMS82, Hul86, BR88]:

Theorem 1. DS provides view instance support for ES
iff DS provides view query support for ES.

If DS provides view query support for ES, then the query P’ corresponding to
the identity query on ES supports the instances of ES. On the other hand, if
DS provides view instance support for ES by some query ), then @) can be
composed with queries on ES. Such compositions yield a query translation from
queries on the view to queries on the full schema.

For the support of updates on views, however, we essentially need that the view
instance support is unique. For otherwise, well-known as the view update problem
[BS81, DB82, FC85, Kel86, GHLM93], there is no information available to resolve
the ambiguity caused by non-injectivity.



5.4 Syntactic Characterization of View Support

According to Task 2, the worthwhile semantic requirements of view support
should be related to desirable syntactic properties of a schema. The main results
available concern universal relation views, the supporting query of which is the
natural join. For instance we have the following theorems [Ris77, Ris82, BBGT7S].

Theorem 2. A schema DS with formats Xy, ..., X,, for the extensional enu-
merations (ignoring local and global semantic constaints of DS ) supports a uni-
versal relation view ( ,U, SC) by the natural join

iff W[X1,...X,]€SCt.

Theorem 3. A schema DS with formats Xy, ..., X, for the extensional enu-
merations and functional dependencies Fy, ..., F, as local semantic constraints
faithfully supports a universal relation view ( ,U, F'), where F is a set of func-
tional dependencies, by the natural join

if X[Xy,..Xp]€FTand( U F)T D> F.

i=1

The proof of Theorem 2 is straightforward just by confirming that the formal

semantics of join dependencies is appropriately defined. The faithfulness of the

natural join results from the inclusion r; D 7x;( X 7;), showing that func-
1,...,n

tional dependencies that are valid in some compo_nén;c r; are also valid in the
join X r;. More refined results appear for example in [Var82, CM87].

i=1,...,n
In [Heg94] a rather general theory of schema decomposition is presented. This
theory explores an algebraic framework, in which the class of instances of a data-
base schema is partially ordered and possesses a least element and the inverses
of supporting queries (which are the projections in case of a natural join) are
isotonic and preserve least elements. It turns out that, within this framework,
the components of a schema DS faithfully supporting a universal relation view
uniquely “complement” each other. Besides treating many further topics, the
theory also deals with the union as supporting query (with the selection as in-
verse) and thus with the so-called horizontal decomposition [DP84, PDGvG89],
and it clarifies the role of null values in schema decomposition.

5.5 Deciding Desirable Syntactic Properties for Normal Forms and
View Support

Both heuristics treated so far finally lead to syntactic properties that are basically
expressed in terms of implications of semantic constraints. In Section 5.2 normal
forms, formalizing the Separation of Aspects heuristic, are just defined in these
terms, and in Section 5.4 view support, formalizing the Inferential Completeness
heuristic, has been reduced to these terms. According to Task 3, then, we have
to design algorithms to decide implications among semantic constraints and,
additionally, to explore all relevant implications systematically .

Here are some prominent examples for results [Arm74, Men79, Bis80, BV84a,
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BV84b, Vars4, Mit83, KCV83, CFP84, CV85, FV84, Var88a, Tha9l, BCYI,
Her95]:

Theorem 4. The implication problem of “® € SCt” is decidable for “many
important classes” of semantic constraints.

Theorem 5. The implication problem “® € SC*t7” is undecidable for the class
of “functional and inclusion dependencies”.

The important semantic constraints can be expressed as implicational first order
logic formulae. Then the various proof procedures, called chase procedures, are
based on specialized versions of the more general proof techniques of (hyper-)
resolution and paramodulation. Roughly described, hyperresolution, applied to
an implicational formula with a nonequality-conclusion and its previously gen-
erated premises, yields the conclusion as additional statement, and paramodu-
lation, applied to an implicational formula with an equality-conclusion and its
previously generated premises, equates the terms in the equality-conclusion, i.e.
one side is substituted by the other side. Chase procedures are designed to apply
such rules, starting with the premises of the constraint to be decided, until no
further change can be produced. If the procedure terminates, the constraint is
implied iff its conclusion is among the finally produced statements.

In general, the implication problem for semantic constraints is fairly well under-
stood in the relational case:

— As long as the constraints are “full”, i.e., basically, in their implicational
formulae no existentially quantified variable occurs positively, we have de-
cidability.

— Otherwise, for “embedded” constraints, we have undecidability due to posit-
ively occuring existentially quantified variables. Such variables can cause the
generation of an unlimited number of terms in executing proof procedures
that do not terminate in this case.

Actually, even for the restricted case of embedded multivalued dependencies the
implication problem has been proved to be undecidable [Her95]. The sophist-
icated proof employs a reduction of the word problem for finite semigroups,
known to be undecidable, to the implication problem for embedded multivalued
dependencies.

As already mentioned above, null values are important for the theory of schema
decompositions [CM87, Heg94] and also for so-called “representative instances”
of fragmented database schemas [Hon82, Sag83, GMV86]. Accordingly, the mean-
ing of semantic constraints in the presence of relations with null values and
the corresponding variant of the implication problem have been studied [Lie79,
Vos79, Gra84, AM86, Tha91, LL94].

Theorem 6. For the class of relation schemes ( ,U, F), where F is a set of
functional dependencies, the problem “( ,U, F) is in third normal form” is NP-
complete.
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The deep reason for the negative result is that, in this situation, the prob-
lem “attribute A appears in a key of relation scheme ( ,U, F')” is already NP-
complete; this result in turn is related to the fact that a relation scheme ( ,U, F')
can possibly have exponentially many keys [LO78, JF82, MR83, Kat92, VS93a,
DKMST95].

Theorem 7. For the class of relation schemes ( ,U,F), where F is a set of
functional dependencies, the problem “( ,U, F) is in Boyce/Codd normal form”
is decidable in polynomial time.

Indeed, a decision procedure can be based on the following equivalence [Osb78]:
Boyce/Codd normal form iff forall X - YV € FwithY ¢ X: X U e F*. It
should be noted, however, that also for Boyce/Codd normal form some important
decision problems are of high computational complexity. In particular, deciding
Boyce/Codd normal form for a projection of a scheme is coNP—complete [BB79).
This result on intractability as well as Theorem 6 contrast to the fact that the
corresponding decision problems for relations, rather than schemes, are decidable
in polynomial time (in the number of attributes and tuples of the relation under
consideration) [DLM92].

Theorem 8. For the class of relation schemes ( ,U,F), where F is a set of
functional dependencies, the problem “( U, F) is in unique key normal form”
is decidable in polynomial time.

Again, a decision procedure can be based on an equivalence statement [BDLM91]:
unique key normal form iff {A| A€ U and U\A— A¢ F*} > U € F™ .

5.6 Achieving Normal Forms and View Support Simultaneously

So far, the Separation of Aspects and the Inferential Completeness heuristics
have been treated separately, although, as we have seen in Section 5.5, both
heuristics lead to related implication problems. According to Task 2, we have
to explore the relationship between their formalizations in more detail, in par-
ticular, whether their formal versions are compatible. As far as we can actually
achieve the desirable syntactic properties simultaneously, according to Task 3,
we have to design algorithms to obtain them.

The following two theorems are the most well-known examples of results on
compatibility.

Theorem 9. For every (universal relation) scheme ES = ( ,U, F), where F is
a set of functional dependencies, there exists a database schema DS with relation
schemes ( , X1, F1),..., ( ,Xn, F,) for extensional enumerations such that:

i) Schema DS supports ES by the natural join.
ii) Each scheme ( ,X;, F;) of DS is in Boyce/Codd normal form.

Theorem 10. For every (universal relation) scheme ES = ( ,U, F), where F' is
a set of functional dependencies, there exists a database schema DS with relation
schemes ( , X1, F1),...,( ,Xn, Fy) for extensional enumerations such that:
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i) Schema DS faithfully supports ES by the natural join.
it) Fach scheme ( ,X;, F;) of DS is in third normal form.

The proofs of these and related theorems are constructive, yielding outlines
of design methods of decomposition and synthesis, respectively [Cod72, Fag77,
Fag81, Ber76, BB79, BDB79, KM80, LTK81, BK86, SR88, BM87, TLJ90, YO92a,
YO92b]. Such methods will be discussed in a more general framework in Section
5.11.

5.7 Normal Forms Ensure Low Storage and Update Costs

We have introduced normal forms as desirable syntactic properties, formalizing
the Separation of Aspects heuristics. According to Task 4, we now justify these
normal forms in terms of cost, thus providing formal counterparts to informal
motivations of the Separation of Aspects heuristic to avoid so-called “update
anomalies”.

The benefits of all purely decompositional normal forms in terms of storage costs
are summarized as follows:

Theorem 11. A relation scheme ( ,U,SC) is in decompositional normal form
(i.e. BCNF, 4 NF, 5 NF), relative to the class of semantic constraints considered
in SC (i.e. functional dependencies, multivalued dependencies, join dependen-
cies)
iff for each decomposed database schema DS that supports ( ,U,SC) by the
natural join, for each instance of ( ,U,SC):
size (instance of ( ,U,SC)) < size (decomposed instance).

Here size means the number of occurences of constant symbols in the instances.
This “folklore theorem” is closely related to a theorem of [VS93b] that char-
acterizes normal forms in terms of data redundancy. The intuitive reasoning of
the proof is the following. Assume that ( ,U, SC) is already in decompositional
normal form. Then any further decomposition would result in duplicating the
key components of tuples (and thus would increase the size) without getting
any compensating size benefit. If on the other hand ( ,U, SC) is not in decom-
positional normal form, then the forbidden substructure can cause a redundant
representation of facts, and the size benefit of removing this redundancy by
decomposition can exceed the disadvantage of duplicating tuple components,
necessary for support by the natural join.

Decompositional normal forms are also helpful to ensure low update costs [BG80,
Vos88, Bis89, Cha89, HC91, BD93]. As an example, we present a theorem that
takes care of functional and inclusion dependencies [BD93]. The theorem char-
acterizes those database schemas that allow maintenance of all semantic con-
straints by simply checking whether a newly inserted tuple does not violate a
key condition.
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Theorem 12. A database scheme DS with relation schemes (Ry, X1, F1),...,
(Rn, Xy, Fp,) with functional dependencies as local semantic constraints and in-
clusion dependencies I as global semantic constraints allows X C X;, for some

i, as update object, i.e.

7,) X - X, € (IU U Fz)+ and
i=1,...,n
it)  for each instance (r1,...,7i...,r) of DS, for each tuple p with
plX ¢ mx(ri):
(ri,...,r; U{p},...,r) is instance of DS
iff the following properties hold:
iii) R; is “not referencing” by inclusion dependencies of I.
i) R; is in unique key normal form.
v)  R; is in Boyce/Codd normal form.

The proof is based on a careful analysis and equivalent reformulations of the
fundamental notions, as well as, on separation conditions that restrict the in-
teraction of functional dependencies and inclusion dependencies (which may be
very complex in general, according to Theorem 5).

5.8 Unique Essences: Unique Flavor Formalized as Worthwhile
“Semantic” Requirement

The fourth design heuristic, Unique Flavor, can be formalized in the frame-
work of designing a so-called universal relation interface for a database schema
[MUV84, KKFVU84, Var88b, BB83, BBSK86, BV88, Lev92]. Such an interface
should translate queries, which are expressed in terms of attributes only (omit-
ting the information about relation schemes), into join paths within the hyper-
graph structure of the schema. If there are several candidate join paths, then,
according to the Unique Flavor heuristic, all these candidates should provide
essentially the same query answer [BBSKS86].

Given a database schema DS, a formalized version of this requirement is defined

as follows:
U:= |J X;and H :={Xy,...,X,} describes the hypergraph of DS.
i=1,...,n
jp: U — ppH, jp(Y):={E|E CH, E connected, Y C |JE, E minimal}
defines the translation from a set of attributes into join paths.
essence(E,Y) = {X;n(Y U U X;) | X; € E} is the essence of a join

X;EF,Xj£X;

path E over a set of attributes Y.

— Finally, Unique Flavor motivates that essences should be unique:
Forall Y C U, for all E, F € jp(Y) : essence(E,Y) = essence(F,Y).

Of course, here the property of unique essences is already defined in purely
syntactic terms although it is “semantically” motivated.
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5.9 Acyclicity: Unique Flavor Formalized as Desirable Syntactic
Property

The fourth design heuristic, Unique Flavor, can also be rephrased by considering
the hypergraph structure of a database schema, as defined by the formats, and
by requiring that the hypergraph is to some degree acyclic [Fag83, BFMY83,
BBSKS86]. The two most important degrees are listed below by their names and
their forbidden substructures:

— a-acyclic: a nontrivial hypergraph as produced by the GYO-reduction ap-
plied to the schema [Gra79, YO79].

— y-acyclic:

As a contribution to Task 2, it turns out that y-acyclicity syntactically charac-
terizes the “semantic” property of Section 5.8 [BBSKS86):

Theorem 13. DS is v-acyclic iff DS has unique essences.

We can easily construct join paths over some set of attributes Y with different
essences from the cyclic substructures forbidden for v-acyclic database schemas:
in each case, Y := {A, B} is contained in a single relation scheme, which con-
stitutes a trivial covering join path, and Y is covered by an essentially different
join path containing two or more relation schemes (namely those connecting A
with B running the “long way”). The converse claim of the theorem is proved by
a tedious and subtle examination of the so-called intersection hypergraph of DS,
which is generated from the hypergraph by adding all nonempty intersections of
its hyperedges.

As a contribution to Task 3, the desirable syntactic property of acyclicity can
be efficiently decided [YOT79, Gra79, Fag83, TY84, DMSG|:

Theorem 14. The problems “DS is vy-acyclic” and “DS is a-acyclic” are de-
cidable in polynomial time.

For each degree of acyclicity a recursive decision procedure can be based on a
“pruning” predicate on hyperedges. At each stage the procedure can delete a
hyperedge that satisfies the predicate. The initial schema is acyclic iff the pro-
cedure succeeds in reducing the schema to nothing. The pruning predicate for
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v-acyclicity can be paraphrased by “either there exists another hyperedge that
has the same set of intersections with the remaining hyperedges or all nonempty
intersections with the remaining hyperedges are identical”. The pruning predic-
ate for a-acyclicity can be paraphrased as “there exists a remaining hyperedge
that contains all the intersections with the remaining hyperedges”. These de-
cision procedures are elaborated variants of the well-known acyclicity test for
ordinary graphs: the test recursively deletes a leaf and its corresponding edge
and recognizes acyclic graphs, i.e. trees, as those graphs that can be reduced to
nothing.

5.10 Acyclicity Ensures Low Query Costs

According to Task 4, the impact of acyclicity as desirable syntactic property
on costs should be examined. As suggested by the corresponding worthwhile
semantic requirement, the evaluation of view queries that are join paths should
be efficient. Indeed, we have the following assertions which have subtle and
tedious proofs [Fag83, BEMY83|:

Theorem 15. DS is y-acyclic
iff all noncartesian join trees are monotone

(i.e. for pairwise consistent relations ry,...r, all partial results are
consistent)
iff projections Ty (u) with uw:= X 1y, 1= 7x,(u),

can be computed by determining a covering join path and evaluating it
(i.e. my(u) = 7y ( X r;) for some E € jp(Y)).
X,€E

Theorem 16. DS is a-acyclic
iff there exists a monotone join tree
(which, essentially, is determined by the GYO-reduction).

5.11 Design Algorithms Remove Forbidden Substructures

Fig.5 summarizes the presented achievements with respect to Tasks 1, 2 and
4. Finally, according to Task 3, a lot of design methods for achieving desirable
syntactic properties have been proposed. Apparently, any concrete refinement of
such a method will, necessarily, result into a highly interactive design procedure.
The general skeleton of such procedures and the division of labour between
the insightful administrator and the automatic algorithm [Bis95, BC86, BC&9,
Bis95b] can be outlined as shown in Fig.6.
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Task 2. syntactic characte-
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— X[X),...,X,] € SCF
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Task 2. relationships between syntactic properties and semantic requirements

— BCNF and join support are compatible (decomposition)
— 3 NF and faithful join support are compatible (synthesis)
— v-acyclic iff join paths are essentially unique

optimize at design time
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not referencing
— < one key
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Fig.5. A short summary of presented achievements with respect to Tasks 1, 2

and 4.
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[modeling by administrator]
model the application;
document the model;
[parametrization by administrator]
identify the desirable syntactic properties (? of particular
interest;
define the appropriate worthwhile semantic requirements I’
related to Inferential Completeness;
[initialization by administrator and algorithm)]
initialize the current database schema DS as formalization of
the model such that DS satisfies the semantic requirements [';
[achieve_properties]
LOOP {DS satifies I'}
[check_of_properties by algorithm]
determine the set of all (2-forbidden substructures of the
current database schema DS
IF this set is empty THEN EXIT
ELSE
[investigate_forbidden_substructure by administrator]
select an (?-forbidden substructure forb;
IF forb appears to be inherent in the application
THEN mark forb as unavoidable and adjust {2 accordingly
ELSIF forb stems from faulty modeling
THEN improve the model and adjust (2 and I' if necessary
ELSIF forb arises from bad formalization of an agreed model
THEN
[remove_forbidden_substructure by algorithm]
DS:=Transform (DS, forb)
[where Transform is a schema transformation that removes the
forbidden substructure forb from the current schema DS while
it leaves the semantic requirements [’ invariant, i.e. the
transformed schema satisfies [’ again]
ENDIF;
ENDIF;
ENDLOOP {DS satisfies I and 2};

Fig.6. Outline of interactive design procedures.
[ | embraces comments indicating a module together
with its active entity or semantics, respectively;
{ } embraces state conditions, i.e. the invariant
and the post condition of the main loop.
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We shortly discuss some examples that fit the skeleton of Fig.6 by indicating (2,
I' and Transform:

— Classical decomposition, based on Theorem 9 and related statements, identi-
fies 2 as Boyce/Codd or higher normal form and selects I" as view support
of an initial universal relation scheme by the natural join. Trans form splits
a current relation scheme with attribute set X; into fragments that are de-
termined by the components of the forbidden join dependency; Transform
is [-invariant by the semantics of join dependencies (and because any func-
tional dependency implies a corresponding multivalued dependency).

— Classical synthesis, based on Theorem 10 and related statements, has two
phases. The first phase achieves faithfulness, and the second phase adds view
support of an initial universal relation scheme by the natural join. In the first
phase (2 is identified as third normal form, and I" is selected as faithfulness
(syntactically characterized as the preservation of the given set of functional
dependencies). T'ransform removes all kinds of redundancy (which can lead
to f2-forbidden substructures) from the functional dependencies. An early
version of synthesis [Ber76] achieves this goal by computing a minimal cover
of the functional dependencies, leaving I" invariant. A later version [BM87]
achieves this goal by removing so-called “abnormal nonprime” attributes
from relation schemes following some sophisticated strategy, whereby a some-
what stronger invariant I" (namely faithfulness and “object-faithfulness” and
“strong normativity”) is preserved. In the second phase view support of an
initial universal relation scheme by the natural join is guaranteed by ensur-
ing the existence of a relation scheme that contains a global key [BDB79].
If necessary, such a key component is added (in this case as a previously
“missing substructure”).

— In view integration, as formalized in [BC86], (2 is identified as absence of so-
called “integration constraints”, which indicate a redundant overlap of views
and, thus, are interpreted as forbidden substructures in the wanted integ-
rated schema, and I is selected as view support of all given view database
schemas. Transform removes an integration constraint by appropriately
merging the relation schemes involved, leaving I" invariant.

Examining the general skeleton of design procedures, we can further comment on
the tasks of design theory. The parametrization step is based on Task 1 and Task
2. The check_of_properties step and the remove_forbidden_substructure step are
based on Task 3. Finally, after getting the final output schema, the adminis-
trator can evaluate the quality of the design based on results of Task 4, and,
if necessary, he can iteratively process the design procedure using a different
parametrization.

The skeleton also shows the impact of the administrator’s interaction: he is
responsible for modeling, parametrization, selection and investigation of forbid-
den substructure. While modeling and investigation of forbidden substructures
is principally outside the scope of automatic algorithms, parametrization and
selection of forbidden substructures could possibly be better supported by al-
gorithms as known today.
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6 Final Remarks

Since the first pioneering work of E.F. Codd [Cod70, 72] and W.W. Armstrong
[Arm74], a substantial body of results on database schema design theory has
been published. This paper summarizes only a small part of the highly detailed
work. It emphasizes the tasks of design theory in producing and using interact-
ive design tools. In a companion paper [Bis95a] three main topics for further
enhancement of the design theory are outlined: all current achievements still
have to be carried out within one unifying framework; the current achievements
have to be embedded in the full design process and to be extended to deal more
deeply with advanced database features like incomplete information, recursive
query languages, complex objects or object identifiers; all achievements have to
be reconsidered from the viewpoint of distributed computing, abandoning the
classical centralized approach to databases.

Acknowledgement: I would like to thank Ralf Menzel and Torsten Polle for
valuable discussions. I am also grateful to an anonymous reviewer for helpful
remarks and hints.
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