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bstract

Stress plays a key role in pathogenesis of anxiety and depression. Animal models of these disorders are widely used in behavioral neuroscience to
xplore stress-evoked brain abnormalities, screen anxiolytic/antidepressant drugs and establish behavioral phenotypes of gene-targeted or transgenic

nimals. Here we discuss the current situation with these experimental models, and critically evaluate the state of the art in this field. Noting a
eficit of fresh ideas and especially new paradigms for animal anxiety and depression models, we review existing challenges and outline important
irections for further research in this field.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Stress underlies anxiety and affective disorders [8,12,102,
30,151,152,366]. Human anxiety is associated with exces-

[202,261,331,354]. Unipolar and bipolar depression constitute
another common group of stress disorders with a wide spectrum
of syndromes (depressed mood, anhedonia, sleep disturbances,
ive worries, and its formalized disorders include generalized
nxiety, panic, social and separation anxiety, agoraphobia, post-
raumatic stress and obsessive–compulsive (OCD) disorders
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D 20892-1264, USA. Tel.: +1 301 594 0126; fax: +1 301 402 0188.
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egative thinking and suicidality) and unclear pathogenesis
79,165,368].

In her recent book “What’s wrong with my mouse?” Craw-
ey [73] comprehensively evaluated current animal models
f anxiety and depression, which have also been discussed
n detail in several recent reviews [20,78,79,195,257,337].
hile researchers’ confidence in these models varies [e.g., 69,
38], they are indispensable for screening psychotropic drugs
109,288,346,368], phenotyping gene-targeted and transgenic
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Table 1
A brief history of animal models/tests and paradigm shifts in anxiety (A) and depression (D) research

Years Field Models Paradigm shift

1930s A Hall introduced the open field test [136,137] Objective measure of animal
exploration

1950s A Berlyne studied of arousal and curiosity in the rat [32,33] Curiosity theory of exploration
A Montgomery published his pioneering works on animal fear and exploration [243,244] Motivation conflict theory

1960–1970s A, D Numerous pharmacological studies in animals (see [239] for details) Drug-induced anxiety and depression
D Harlow developed separation depression theory [140,141] based on studies in non-human

primates
Separation depression

A Geller and Vogel introduced conflict-based anxiety tests (review: [160,269,356,357] Conflict models
D Seligman introduced the learned helpless model (review: [363] Learned depression
A, D Accumulating reports focused on behavioral strain differences in exploration and activity

(anxiety) and depression-like behaviors
Genetic models

A Gray developed behavioral inhibition theory [130,131] Behavioral inhibition

1980s D Willner introduced a new model of animal depression based on reduced hedonic behaviors
[363–365]

Anhedonic depression

D Porsolt used the forced swim test to show that “despair” can be used to assess antidepressant
drugs in animals [282–284]

Despair depression

A Crawley introduced the light–dark anxiety test (review: [73])
A File introduced the social interaction model of anxiety (review: [104]) Social anxiety
A Handley and Mittani [142] used the elevated plus maze (based on Montgomery’s findings) to

assess anxiety
D Steru et al. [333] introduced the tail suspension test

1990–2000s A, D Kudryavtseva et al. introduced the social defeat (confrontation) model [209–211] Transitions from anxiety to
depression

D Olfactobulbectomy model of depression (review: [198]) Lesioned limbic system as a model of
depression

A, D Numerous mutant mice reported to have anxiety and depression phenotypes [240] Gene-specific models
A Belzung and colleagues introduced free-exploratory paradigm [30,31] Free (vs. forced) exploration
A, D Creation of gene-targeted mice with altered anxiety and depression phenotypes
A Golani and his colleagues developed multiple “kinematics” behavioral indices sensitive to

anxiety
Animal anxiety translated into
kinematics
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A Chapouthier and colleagues developed models of an
disintegration [217,218]

nimals [73,108,345], testing neurobiological hypotheses and
nding candidate genes for human disorders [65,119,195,280].

Traditional anxiety models include exploration-based
aradigms (e.g., open field, holeboard, elevated plus maze,
ight–dark box, mirrored chamber, social interaction tests) and
onditioned or unconditioned threat responses [1,105,108,134,
60,205,264,298]; Table 1. Popular experimental models of
epression include “despair” paradigms (such as Porsolt’s
orced swim, tail suspension tests and learned helplessness),
s well as olfactory bulbectomy, maternal/social deprivation
nd “anhedonic” chronic mild stress [15,64,80–82,90,226,232,
33,363–365]. With the growing popularity of these tests
n neuroscience, drug development and genetics research
76,103,115,207,240,251,314,316,345,348], it is timely to re-
xamine the current situation with animal models of anxiety
nd depression. The present review aims to discuss further chal-
enges and outline strategic perspectives of research in this field.

. State of the art: moving from Hall and Montgomery
In general, there are as many methodological and conceptual
roblems with animal experimental models of stress, as exist
etailed protocols and useful recommendations on how to over-

fi
t
m
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tress-evoked motorisensory Motorisensory models

ome these problems [20,75–77,116,297,330]. Certain features
f human behavior and cognition cannot be fully reproduced
n animals, which complicates potential translation of human
ymptoms into animal tests [78,207,368]. Animal paradigms
ften fail to reproduce complex multi-syndromal human disor-
ers, show unwanted selectivity to particular neuromediatory
ystems [29,80,108,190], may constrain species-specific behav-
ors [362] or have questionable ability to detect novel compounds
ith unknown mechanism(s) of action [81,180,269,368].
Other problems with these models include conflicting time-

ourse results [112], questionable reliability [5], over-sensitivity
o external (environmental, epigenetic) or internal (genetic) fac-
ors, as well as their variable reproducibility even within the
ame laboratory [19,70,80,81,280,359,360]. Animal modeling
ay face “bottleneck” problems, as some aspects of brain patho-

enesis may be limited to specific stages of development, or to
narrow range of cells in the brain [166]. There is an unclear

ink between behaviors and brain events [36], and some disor-
ers have a considerable latent period between the onset and

rst clinical manifestations. There are also objective difficul-

ies with mimicking (at a behavioral phenocopy level) versus
odeling a “true” psychiatric state, and targeting behavioral

ersus physiological and cognitive components of pathogene-
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is [27,36,76,107,307,345]. Thus, understanding the potential
enefits and weaknesses of the existing animal models is crucial
or obtaining valid animal data to parallel and/or complement
he available clinical findings [188,190].

Although we have witnessed marked progress in the
eld, thoughtful reviews (e.g., [79–81,90,107,112,127,157,195,
06,271,349]) seem to outnumber reports on new models or
ajor modifications of the existing paradigms. This situation is

learly of concern, and raises questions as to how far we have
rogressed from the early works of Hall [136,137], Montgomery
243,244], Berlyne [32,33] and Gray [130,131] in advancing
heoretical bases of animal behavior and its models. Examining
he history of animal models (Table 1), one can see relatively
ew paradigm shifts in this field over the last few decades, as
he growing globalization of scientific research makes it “safer”
o publish data from well-accepted tests rather than to modify
hem or invent new methods. Clearly slowing further progress,
his situation emphasizes the need to develop paradigms based
n new principles, theories and approaches (see further).

. Current discussions

Several important discussions in the field will be commented
n here. First, while some authors stress stringent standardiza-
ion of experimental conditions [350,358,359], others question
ts utility [369,370]. Although substantial inter-laboratory vari-
bility has been reported in the literature [70,358,360], other
tudies have shown that some behaviors and their pattern-
ng either remain stable in varying environmental conditions
184,359,367], or vary despite standardization [222]. Impor-
ant factors that cannot be standardized are the individuality
f animals and the experimenters [70,215]. Subsequent dis-
ussion in Science revealed other factors (such as diet, social
tatus, handling/animal care procedures) that may confound data
f Crabbe et al. [70] on marked behavioral variations in mice
ested in different laboratories. Finally, although small within-
nd between-subject variability is usually desirable, there are
ases when the study of the variability of the model system
ould lead to a better understanding of the phenomenon in ques-
ion [119,206]. Thus, standardization alone may not solve the
roblem. Indeed, how do we know that the procedures selected
s “reference” are the best, and cannot be improved further?
or example, if one had implemented 100% standardization in
930s, we would still use Hall’s 3-min open field test and focus
n defecation and urination.

Moreover, we mostly still test animals in standard (rel-
tively small) boxes, a long-considered confound of their
pecies-specific behavioral responses [362]. While not every
aboratory is prepared to use playing fields or parking lots
s their models (as in the latter study), it may indeed be
ecessary to assess what animals might do when their behav-
or is not constrained by a test apparatus [362]. Therefore,
hile controlling pre-testing and testing procedures [169],
here would seem to be possible improvements to the exist-
ng protocols [86,115,143,159,255,256,266,285]—which may
ventually also lead to new paradigms. As intra-laboratory repro-
ucibility is core for experimental modeling [237,238], one may
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ee constant development of specially-selected animal models
nd their modifications as an important part of behavioral neuro-
cience, and the diversity of models as a driving force of further
rogress of animal experimentation.

The selection of endpoints for behavioral research is another
mportant topic for discussion [54,57,299–301]. Do we need

ore or less measures? While some authors favor ethologization
62,298,303], others prefer to measure a few “good” indices. An
nfortunate trend currently observed in papers published in some
op biomedical journals is that their behavioral data are limited
o only few measures, in striking contrast with other types of
ata, such as microarray charts and molecular biology data (see,
owever, [220,276] as examples how such data may complement
nd parallel behavioral findings). With the growing number of
ublished papers with limited behavioral data, it is critical to
nderstand that behavioral endpoints can well be as important
s genetic or neurochemical markers of anxiety and depression.

A related question is whether to model complex behavioral
yndromes, or target simple behavioral (also neurophysio-
ogical, biochemical, anatomical or endocrine) “symptoms”.
escribed in the literature as the endophenotyping approach

127], reducing complex behaviors into components may
nhance clarity in animal experimentation. However, once a
pecific response is at least partially understood, it can be
mbedded into a complex phenotype to analyze overlap with
ther domains and responses, some of which may or may
ot be directly related to anxiety or depression (see fur-
her). Therefore, a behavioral dissection should include the
ollowing steps: identify endophenotypes → analyse their neu-
obiological rationale → assess interplay with other responses
domains) → re-construct their collective contribution to a com-
lex pathogenesis → identify new endophenotypes. It is only
y studying interactions between different domains that we can
etter understand complex brain disorders such as anxiety and
epression. Again, not the number of phenotypes, but their inter-
lay merits special attention. From this point of view, the current
tandards of 6+ rodent phenotypes to make a high-impact paper
an be justly questioned [127].

Terminology is also key, since (as R. Feinman once noted)
greeing on terms solves 50% of a scientific problem. The dis-
ussion about “models” versus “tests” is not new [157,345,349],
nd scientists should recognize the difference between evoking
athology and the measuring of responses. For example, some
uthors indicate that open field is not a test, and tail suspension is
ot a model, whereas others use both terms as synonyms, some-
imes also calling them “paradigms”. In our opinion, models
r tests are not “hereditary titles”, and only the researcher can
ssign their roles to specific procedures. Indeed, the forced swim
est does not induce depression (and therefore is not a model of
epression-like behavior), but can detect antidepressant effects
as a test), while after repeated testing it may induce depression,
nd therefore become a model. The open field induces anxiety
as a model), is sensitive to anxiolytic drugs (as a test/screen) and

etects antidepressant effects in depressed animals by reversing
ypoactivity (again used as a test). The sensory contact paradigm
eads to both anxiety and depression, and therefore may be the

odel of both disorders, and also a test (to screen for anxiolytic
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r antidepressant drugs); see [37,209–211] for details. Thus, we
ay use procedures as models or tests, but should explain clearly

n which capacity the procedure is used, to avoid misinterpret-
ng the data or confusing the literature. In addition, there should
lso be a clear distinction between models or tests relevant to the
isk factors, and the models relevant to pathogenesis per se; also
ee [5] for discussion on trait versus state models, and [97,98]
n animal models of human behaviors versus psychopatho-
ogies.

Do models always work? Clearly not, and while the lack of
ositive results may be due to poor models of restricted validity
349], in some cases it is a lack of necessary skills (see [97,98] for
iscussion) that can lead to model’s poor reproducibility, accom-
anied by misinterpretation of its rationale and endpoints. For
xample, the simplest behavior – animal immobility – has 19
ther interpretations in addition to anxiogenic freezing, includ-
ng those of a clear opposite nature [180]. Likewise, the lack of
ocial contacts is not always a sign of animal depression [37],
ut may also be relevant to other traits, such as anxiety [182]
r autism [248–250]. Therefore, caution is needed before con-
luding that a model does not work or has limited validity. As
his requires more efforts to interpret (in Lorentz’s terms) ani-

al behaviors, we should neither anthropomorpize [73,157] nor
implify them [190], fitting into the “expected” schemes.

. Deeper into anxiety and depression

Importantly, anxiety and depression, as both dramatic and
ebilitating multi-facetic psychiatric illnesses, demonstrate
arked overlap and co-occurrence [113,260–263,331]. Many

f their symptoms are similar, and mild anxiety can be diffi-
ult to distinguish from mild depression. Depression is common
n anxiety patients and anxiety is often reported in depressed
atients, both being predictors of poor outcome [260,263]. Over
he past several decades, there has been intensive study of a
ariety of neurobiological mechanisms that underlie depres-
ion and anxiety, which has suggested they share common
enetic determinants but partly different environmental triggers
155,199,200,305]. The fact that the symptoms of anxiety and
epression may respond to the same treatments support the pos-
ibility of a common neurobiological dysfunction, though the
eurobiological mechanisms of anxiety and depression have yet
o be fully elucidated [188,263].

As experimental models of brain disorders imply some degree
f specificity, an important question is whether we always
eed models to be specific. While some models lack speci-
city (e.g., failing to discriminate between anxiolytics and
ntidepressants [46,307]), others do not reflect some clinically
mportant aspects (such as comorbidity [76]) because of their
pecificity. Kalueff and Nutt [188] have discussed genetic and
harmacological animal data, noting overlap between anxi-
ty and depression—the pathogenic feature that needs to be
ddressed in animal models. Thus, in addition to “pure” anx-

ety and depression paradigms, there should be models that
ssess common pathogenic mechanisms, risk factors and co-
orbidity associated with these disorders (Table 2). Along this

ine, Hinojosa et al. [155] have recently re-evaluated an interest-
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ng genetic rat model that appears to be relevant to both anxiety
nd depression. Likewise, inbred Fawn-Hooded rats display
ncreased depression-like behaviors [292], reduced social inter-
ction (suggesting a possible model for social anxiety) [193],
igher anxiety in novelty tests, and enhanced plasma corticos-
erone responses after exposure to stressors, such as open field or
orced swim tests [138,139]. Many of these changes, which also
re found together with other features of anxiety and depression
uch as changes in sleep, food intake and other neuroendocrine
esponses to anxiogenic drugs that involve the amygdala, corti-
otropin releasing hormone, and catecholamines are responsive
n this rat strain to antidepressant and anti-bipolar drug such as
ithium, with additional evidence implicating serotonergic sys-
em involvement [18,361]. Collectively, these findings suggest
hat the Fawn-Hooded rat strain represents a particularly inter-
sting genetic model of several overlapping disorders, including
epression, generalized anxiety disorder, social anxiety disorder
nd possibly bipolar disorder.

Transitions between anxiety and depression are well-known
n clinical literature, and a better understanding of this patho-
enetic aspect and its neural underpinning is also necessary.
udryavtseva has made an important step in this direction by
eveloping a mouse model that targets the dynamics of both
isorders [209–211]. In this model, 10-day social defeats pro-
uces anxiety, whereas chronic social stress for 20 days leads to
epression [16,17]. Today this paradigm is widely used in vari-
us laboratories worldwide, yielding interesting findings about
ifferent aspects of brain pathogenesis [37,342]. Using a similar
trategy to model the dynamics of stress pathogenesis, another
roup [234] treated rats with intranasal ZnSO4, demonstrat-
ng increased anxiety after 1-week anosmia, and pronounced
epression following 4-week anosmia, again showing that new
odels may be created based on anxiety–depression transitions.
nxiogenic-like effects of 1-week anosmia were similar to that
f 10 mg/kg pentylenetetrazole (a reference anxiogenic drug),
nd included reduced horizontal and vertical activity, accom-
anied by higher frequency of grooming bouts. The depression
een in rats after 3–4-week anosmia was similar to that generally
een in olfactobulbectomized animals [179,234].

In addition to modeling anxiety-depressive pathogenesis,
aradigms may enable dissection of different anxiety or
epression spectrum disorders (Fig. 1). For example, unipo-
ar depression is more common [71] than is bipolar illness,
hich is characterized by alternating periods of manic (pos-

tive) and depressive (negative) episodes. While the existing
nimal depression models focus predominantly on depressive-
ike symptoms, the emerging clinical significance of bipolar
isorders (affecting approximately 1% of the global population)
mplies the need to develop reliable models of manic states, and
f the cyclic nature of bipolar illness [94,145,253]. For instance,
uabain injected into the rat brain induces hyper- and hypoac-
ivity [88] resembling manic and depressive phases of bipolar
epression (also see [94,287] for discussion of putative genetic

nd pharmacogenetic models of bipolar depression). Thus, con-
eptualizing parallels between human and animal data on differ-
nt types of anxiety or depression may be a useful source of new
r new-subgroup models, as specific as agitated depression with
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Table 2
Strategies for experimental modeling of anxiety and depression

I. Modeling different subtypes of anxiety and depression
• Modeling better defined disorders (e.g., social anxiety, unipolar depression) vs. generalized anxiety or depression
• Modeling state vs. trait disorders (e.g., chronic vs. acute anxiety)
• Modeling different subtypes of specific disorders within a spectrum (e.g., bipolar vs. unipolar depression; post-traumatic stress vs. generalized anxiety)
• Exploring non-linear relationships between stress and anxiety or depression (e.g., “paradoxical” anxiolytic-like effects of mild arousal: [302])

II. Modeling anxiety–depression pathogenesis
• Modeling transitions between anxiety and depression
• Modeling comorbidity vs. anxious depression or anxiety with depressive components
• Modeling-specific behaviors whose psychiatric interpretations and classifications are still unclear (e.g., OCD-associated hoarding, stereotypies [228];

separation anxiety/depression [202]; “sickness behavior” [83])
• Targeting cognitive processes in animal models of anxiety and depression
• Analysis of genetic, epigenetic and gene × environment interactions
• Models exploring behavioral and cognitive therapy [68] approaches to anxiety, depression and related disorders (e.g., [274])
• Modeling psychosomatic aspects of anxiety and depression pathogenesis

III. Using a wider spectrum of methods and measures
• Extensive use of in vivo brain imaging in animals (including non-invasive neuroimaging, such as small-animal single-photon emission tomography)
• Use of non-exploratory behaviors (grooming, vocalization, defense) to assess animal anxiety and depression [40,41,93,372]
• Use of sophisticated methods of automated registration of animal behaviors [146]
• Detailed dissection of animal activity parameters (kinematics, velocity, turning characteristics) [52,111,174–178] that may be sensitive to anxiety or

depression
• Use of non-behavioral “physiological” indices (hyperthermia, bradycardia) of anxiety (especially panic-like states) or depression, especially using minimally

invasive techniques (e.g., telemetry) [48,268,275,310]
• Assessment of other biological (biochemical, immunological or endocrinological) markers of anxiety and depression to parallel behavioral observations
• Analysis of gene activity correlates of anxiety or depression (e.g., c-fos expression: [327], brain microarray data [61,220])
• Testing a wide spectrum of pharmacological agents from different classes vs. predominantly benzodiazepines psychopharmacology for anxiety [298] or

serotonin reuptake inhibitors for depression [81]
• Use of virtual reality tests in anxiety and depression research (based on recently established rodent sensitivity to virtual environments [156])

IV. Modeling other disorders that are related to anxiety and depression
• Models beyond anxiety and depression (i.e., comorbidity with other psychiatric disorders, such as eating, sleep disorders, cognitive impairments, autism-like

social behavior impairments)
• Modeling schizoaffective pathogenesis (targeting pathogenetic link between mood and psychotic disorders) and personality disorders (Fig. 1)
• Analysis of stress-evoked behavioral stereotypies related to anxiety, depression and OCSD
• Modeling-specific symptoms that were not targeted previously (e.g., anxiety-evoked motor/vestibular deficits, self-destructive behavior, manic component of

bipolar disorder)

V. Use of “hybrid” models or tests
• Use of model-model, model-test and test-test “hybrid” paradigms for simultaneous profiling of anxiety and depression, and their subtypes
• Use of “hybrid” models to simultaneously assess anxiety/depression and other domains or disorders (e.g., cognitive functions, balancing problems)

VI. Studying other model objects and systems
• Use of cell cultures in animal behavioral models (e.g., neurotransplantation, including cross-species: [230])
• Use of in vitro models of anxiety/depression neurophysiology and neurochemistry (in a way similar to in vitro models of epilepsy; e.g., [279])
• Extensive use of primate models in translational research [24,25]
• Use of invertebrate (Drosophila, C. elegans), lower vertebrate (zebrafish) and other models (birds) to mimic brain mechanisms that may be relevant to anxiety

and depression, or have rodent/human phenotype analogs of clinical/model interest
• Computerized emulation (in silico models) of animal behavior in different experimental paradigms (e.g., [311])
• Computerized modeling of genetic and pharmacogenetic (drug-behavior, gene-behavior, gene-drug-behavior) interactions in animal models
• Building “bioneuronetwork” models underlying animal anxiety and depression-like phenotypes (e.g., [66,254]), powered by bioinformatics analyses [201]
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and extensive publicly available on-line searchable databases [240,251]; se

ypo-serotonin function, anxiety disorder subtypes with mood
ysfunctions, and single-gene syndromes of wider interest.

Quantitative trait loci (QTL) [28,110,114] are becoming a
seful tool to dissect animal anxiety and depression behaviors,
nd may sometimes yield interesting data on their neurobiol-
gy and genetics. For example, Yoshikawa et al. [373] linked
nimal depressive-like behavior in the despair tests to QTL on

hromosomes 8 and 11, encoding �1, �6 and �2 subunits of
ABA-A receptors, known to be involved in both anxiety and
epression in animals and humans [188]. Another elegant study
tarted from QTLs implicated in mouse behavioral inhibition
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esponses as targets for family-based association methods in
umans, thereby linking anxiety-related personality trait to spe-
ific genes [328]. Other approaches include the use of selectively
red [95,125,264] mutant or transgenic animals with altered anx-
ety and depression phenotypes [37,240,339,340]. While genetic

odels based on synergetic alterations in these domains focus
n common genetic mechanisms of these disorders, models that

how reciprocal alterations (e.g., elevated anxiety and reduced
epression in 5-HT1a receptor knockout mice [149]) enable
better dissection of disorder-specific neurobiological mech-

nisms.
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In addition, numerous studies have analysed home-cage mea-
ures relevant to anxiety or depression [92], the effects of test
atteries [236,278,300], inter-group variability [215], neo- and
ost-natal environmental influences [55,169,171,308]; as well
s age [147], inter-species genetics [195] and sex differences
73,242,291,344] of these responses. Analysis of some vis-
eral behaviors (such as grooming) may also be used to assess
nxiety and depression [28,179,189,192,289,308]. Grooming,
ommon in laboratory rodents, represents the longest (after
leep) activity in their repertoire, and is frequently seen during
ehavioral testing, sometimes being the most robust behavioral
esponse [179,186,289]. Anxiety generally increases frequency
f grooming bouts and impairs their sequential organization,
hereas depression may lead to prolonged stereotypic bouts

189,192,179]. Numerous endo- and exogenous factors involved
n anxiety and depression, such as neuromediators, hormones,
rugs and genetic manipulations are known to influence groom-
ng, making its analysis a useful tool in behavioral neuroscience
f anxiety and depression [186,192].

Finally, as cognitive processes play a key role in clinical
nxiety and depression [187,188], experimental models that
imultaneously assess these domains [38,101,181,252,265,323]
ecome important (see further).

. Expanding beyond anxiety and depression: focus on
bsessions, compulsions and impulsivity

The emerging link between clinical anxiety, depression and
ome other brain disorders prompts the need in animal mod-
ls that specifically address this aspect of pathogenesis, and
xtend beyond anxiety and depression domains [112]. For
xample, given high comorbidity of anxiety and autism, the
ossibility to study this phenomenon in animal models of
utism based on social interaction is particularly interesting
74,167,249,250,293,312], and is also relevant to social anx-
ety component of this illness [164]. Thus, it should not be
urprising that across many inbred mouse strains, the strain
uggested to be a genetic model of autism is BALB/c [51]
nown for its high baseline anxiety and emotional responsiv-
ty [251]. Moreover, genetic models like this may be highly
elevant to modeling the interplay of autism spectrum disorders
ith anxiety, whose frequent comorbidity and common genetic
eterminants have long been recognized [153,212,241]. Again,
ot only social investigation-related behaviors, but also some
ther parameters (such as self- and hetero-grooming and barber-
ng, sensitive to social and anxiety-related domains [185,186])
hould be examined in detail (see, for example, [51] for discus-
ion of poor barbering in BALB/c mice and its potential relation
o autism-related traits).

OCD is an anxiety disorder that afflicts 2–3% of the pop-
lation with recurrent intrusive thoughts and ritualized actions,
ausing significant stress and impairment [10]. Several disorders
ave been conceptualized as obsessive–compulsive spectrum

isorders (OCSD) because they share obsessive–compulsive
eatures, and similar patient characteristics, course, comorbidity,
eurobiology, genetics and treatment responsivity [26,89,150].
hree distinct clusters have been found in OCSD, includ-
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ng “reward deficiency” (trichotillomania, Tourette’s syndrome,
athological gambling, and hypersexual disorder), “impul-
ivity” (compulsive shopping, kleptomania, eating disorders,
elf-injury, and intermittent explosive disorder), and “somatic”
body dysmorphic disorder and hypochondriasis) [227]. Collec-
ively, this implies further complexity and multi-dimensionality
f these disorders, and reveals how closely related disorders can
esult in differential symptom presentation, stressing the need
or more nuanced animal models of human behaviors.

OCSD are characterized by numerous anxiety-related phe-
otypes, cognitive and behavioral inhibition deficits, and
requent comorbidity with depression, implying that anxiety and
epression may be an integral factor of obsessive–compulsive
athogenesis [6,59,106,148]. Thus, a new class of animal mod-
ls related to anxiety/depression and obsessive–compulsive
omains, could be developed based on phenomenological,
thological, physiological and pharmacogenetic paradigms of
nimal OCD-like behaviors [4,63,117,132,173,223,231]. Mod-
ls of specific neuropsychologic aspects of OCD (reward,
djunctive and displacement behavior, perseveration, indeci-
iveness, spontaneous stereotypy) are important to unify the
iverse behavioral manifestations of this disorder [206]. For
xample, primates reared in captivity often display stereo-
ypic behaviors (reminiscent of human obsessive–compulsive
r post-traumatic symptoms), which respond to selective sero-
onin reuptake inhibitors (SSRIs), paralleling research on human
nxiety symptoms [161]. Many other behavioral and genetic
odels with both anxiety- and OCSD-related rationale have

een recently reported in the literature [135,225,336]. Some
CD-related behaviors, such as repetitive grooming and barber-

ng, have already been robustly modeled in animals [35,154].
oth domains not only share construct validity (as behav-

oral stereotypies) but also show striking analogy to several
uman OCD-like behaviors, such as compulsive washing and tri-
hotillomania, which is conceptualized as an OCSD [154]. The
ensitivity of these animal behaviors to anxiety and anxiotropic
rugs [189,192] implies that targeting such behaviors would be
f particular interest for modeling OCSD/anxiety pathogenesis.

Recent data suggest that it may be possible to model impulsiv-
ty, a key feature of many OCSDs [224]. A recent study reported
hat dopamine transporter heterozygous (+/−) mutant mice show
ormal activity and less anxiety, but are strikingly different in
heir novelty seeking from both wild type and hyperactive anx-
ous knockout mice [281]. While novelty-seeking may be an
nxiolytic-like response, mounting data indicates that it is a core
ersonality aspect in many conditions, including impulsivity
203]. Therefore, models assessing behaviors related to anxi-
ty and impulsivity may advance our understanding of animal
erformance in novelty tests, and enable parallels with similar
uman behavioral disorders.

As already mentioned, there is a strong similarity between
CD and Tourette’s syndrome in terms of clinical symptoms,

omorbidity and genetic determinants [58,128,148,277,294].

ourette’s syndrome is a neuropsychiatric movement disorder
ith unclear pathogenesis, frequently comorbid with obses-

ions, compulsions, hyperactivity, distractibility, impulsivity,
nxiety and depression [58,227,320,326]. Given well-known
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ig. 1. Pathogenic clusters related to stress, anxiety and depression (accordin
ummary of strategies). GAD, generalized anxiety disorder; PTSD, post-trauma
isorder; OCD, obsessive–compulsive disorder; OCSD, obsessive–compulsive

ourette’s syndrome exacerbation after psychosocial stressors,
nd higher risks of anxiety and mood disorders in patients with
ourette’s syndrome and Tourette + OCD [214,295,335], the
evelopment of animal models of Tourette’s syndrome (Fig. 1)
nd especially those with Tourette/OCD profiles [3], including
ecent transgenic mice [56,259], offers new insights into the
ole of Tourette’s syndrome/OCD-like disorders in the patho-
enesis of anxiety and depression. Again, grooming-related
ehaviors may be especially useful for modeling Tourette’s
yndrome and the anxiety-Tourette interplay, given grooming
tress-sensitivity (discussed above) and its regulation by basal
anglia [35]—the brain structures directly involved in Tourette’s
athogenesis [2,335]. Well-known cephalocaudal progression
f grooming resembles that of Tourette’s symptoms, further
trengthening parallels between human Tourette’s syndrome and
nimal grooming [3].

Another related disorder is Rett syndrome, whose symp-
oms include motor and learning deficits, autism and tremor
246,247,319]. Recently, a genetic mouse model of this disor-
er has been developed, resembling many clinical symptoms
f this disorder and displaying abnormal social interaction and
igher anxiety [245,319]. The association between anxiety,
utism- and a Rett-like phenotype in this mouse model is par-
icularly interesting, since it parallels clinical data on common
nxiety, depression and autism in patients with Rett syndrome
246,296,313].

The role of aggression in modulating stress-related responses
hould also be considered when developing new experimen-
al models of stress. Arakawa [11] has recently demonstrated
hanges in exploratory behaviors associated with rat social

ominance, while Shibata et al. [321] reported the effects of
ntidepressants on aggressive (muricidal) behavior in olfac-
obulbectomized rats. These and other like approaches (e.g.,
37,162,211,336]) may lead to interesting models relevant to

d
s
a
g

180,190,195,331], representing targets for animal modeling (see Table 2 for
ess disorder; SAD, subsyndrome GAD; ADHD, attention deficit/hyperactivity
um disorders.

he interplay between human anxiety, depression and aggres-
iveness that has long been recognized in clinical literature
150,304,332,351].

Attention deficit hyperactivity disorder (ADHD) is another
eterogeneous disorder with unknown etiology and frequent
omorbidity with anxiety and depression [39,315]. Relevant to
CSD, aggression and impulsivity, this disorder is the most

ommonly diagnosed childhood psychiatric disorder [324],
lso co-occurring with autism, Tourette’s syndrome and other
CSDs [50,334]. Thus, animal models of ADHD (Fig. 1) may
elp better our understanding of the etiology of this disorder and
ts pathogenetic link to anxiety, depression and cognitive dys-
unctions. For example, the coloboma mice (recently suggested
s a genetic model of ADHD, based on their profound hyperac-
ivity, disturbed latent inhibition and higher impulsivity in the
elayed reinforcement task) also display higher responsivity to
tressors, such as saline injections [53], implying possible alter-
tions in their anxiety domain. Forebrain-specific trkB-receptor
nockout mice showed unaltered forced swim, elevated zero
aze, or novel object test responses, but produced a stereotyped

yperlocomotion, reduced exploration, and impulsive reactions
o novel stimuli, similar to ADHD [374]. Another example is

transgenic mouse bearing a human mutant thyroid receptor
Rbeta1 [324], which displays inattention, hyperactivity, and

mpulsivity. Since thyroid hormones and their receptors are
nvolved in the occurrence of anxiety and affective disorders
67], this and other like models may foster animal modeling of
DHD- and anxiety/depression-related pathogenesis (Fig. 1).
Further insights may also come from modeling the link

etween anxiety and depression with eating disorders, sleep

isorders, personality disorders and psychoses, whose growing
ignificance and co-morbidity is recognized in clinical liter-
ture [85,121,133,163,196]. For example, recent clinical and
enetic data question traditional “Kraepelinian dichotomy”, sug-
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esting that there may not be a clear biological distinction
etween schizophrenia and bipolar disorders [71]. Therefore,
nimal models relevant to bipolar disorders (such as those dis-
ussed above) may, in fact, be used for a more far-reaching
urpose—modeling both mood and psychotic features of
chizoaffective pathogenesis. Interestingly, some animal behav-
ors may also be relevant to psychotic-like states and anxiety. For
xample, injections of the anxiogenic drug picrotoxin into baso-
ateral amygdala (implicated in both anxiety and schizophrenia)
roduced neural circuitry abnormalities similar to those seen
n psychotic patients [34]. Paterlini et al. [276] have recently
eported a genetic model of schizophrenia-related phenotypes
n mice, also displaying reduced open field exploration (sug-
esting altered anxiety responses). Audet et al. [13,14] showed
hat repeated subchronic phencyclidine elicits psychotic-like
ehaviors in rats (manifest in hyperlocomotion and excessive
rooming) and anxiogenic-like reduction of exploration. More-
ver, disturbed grooming sequencing, also seen in this model,
s consistent with its sensitivity to anxiety [189,192], further
upporting its validity for modeling or mimicking mechanisms
elevant to psychotic and emotional disorders.

Interestingly, Garner et al. [118] noted that stereotypic behav-
ors of caged parrots resemble stereotypies commonly seen in
atients with autism, Tourette’s syndrome, mental retardation
nd unmedicated chronic schizophrenia. Given likely involve-
ent of basal ganglia in these recurrent perseverative behaviors

118], animal models based on basal ganglia motor system dys-
unctions (such as aberrant grooming and stereotypies) may be
elevant to modeling a cluster of brain disorders (Tourette’s syn-
rome, psychoses, OCSD) already mentioned here in relation
o anxiety and depression. Some evidence suggests that behav-
oral stereotypies in animals and humans are provoked by early
tressors, and may represent “scars” of previous conflicts and
rustrations [371]. Indeed, stereotypies are common in cages
nimals (that can serve as a simple model for such studies) and
ffectively reduced by improved environment [370], collectively
upporting their utility as additional indirect indices of animal
tress resposivity, potentially relevant to anxiety and depression
omains.

. Modeling other relevant brain disorders

In addition to modeling emotional and behavioral disorders,
here are several other related psychiatric conditions that merit
urther scrutiny. For example, anxiety is often seen in sero-
onin syndrome [122,168], and may be an interesting target
or experimental modeling. Serotonin syndrome is a serious
isorder, commonly observed in humans with increased seroton-
rgic tone due to antidepressant therapy [96,120,122]. A similar
henomenon has been reported in animals with pharmacolog-
cally elevated serotonin levels [45,170,172]. Notably, stress
nd anxiety may mimic some serotonin syndrome-like behav-
ors in animals, including Straub tail [197], hyperthermia [270],

reezing (resembling ataxia and low/flat body posture), and
ackward gait (especially in anxious strains; see [73,180,190]
or details). Stress-related hormones (such as thyrotropin releas-
ng hormone [286]) also produce behaviors similar to those
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voked by serotonergic drugs. Recent data on the attenuation of
nimal serotonin-like behaviors by anxiolytic drugs [258] sup-
ort the link between anxiety and serotonin syndrome, implying
he need for new models targeting these disorders. From this
oint of view, animals that display both anxiety and hyper-
ensitivity to serotonergic drugs (such as serotonin transporter
r 5-HT1a receptor knockout mice [183,240]) deserve spe-
ial attention. Given the growing practice to treat anxiety by
erotonergic antidepressants [235], and the risks of serotonin
yndrome-related anxiety provoked by such therapy (leading to
urther clinical complications), animal models relevant to anxi-
ty, depression and serotonin syndrome, may be of high clinical
ignificance.

Several lines of evidence suggest that addiction represents
n important domain implicated in pathogenesis of anxiety and
epression. The use and abuse of substances (alcohol, nicotine,
arijuana, inhalants, and other drugs) are commonly comorbid
ith human depression and anxiety [7,22,87]. They also share

ome common genetic determinants [99,123,124], generally
aralleling the available animal data [25,219]. Self-medication
f anxiety with ethanol or drugs provokes mood and substance
se disorders, distress and suicidal behavior [44]. Finally, addic-
ive behaviors predict individual vulnerability to anxiety and
epression, and vise versa [144,375]. Therefore, animal mod-
ls that target addictive behaviors may also enable a better
ocus on the integration of addictive, emotional and affective
echanisms of brain pathogenesis. For example, concurrent

ssessment of novelty responses and conditioned place pref-
rence for cocaine in mice may be useful for examining drug
ddiction with respect to anxiety-like behavior [49,322]. Genetic
odels based on animals with simultaneously altered addictive,

nxious or depressive phenotypes [124,272,273,292,309,310],
nable further understanding of the genetic mechanisms under-
ying the interplay between addiction, anxiety and depression.

Among recent developments in stress neurobiology, the con-
ept of cytokine-mediated “sickness behavior” [9,23,83,84] is
articularly attractive in regard to experimental modeling of
nxiety and depression, both known to be associated with
ytokine disregulation [60,84,91,216,290,343]. Animal data
enerally parallel these clinical findings, and show anxiogenic-
ike hypolocomotion, social deficits, and anhedonic depression
rovoked by pro-inflammatory cytokines [9,208,325]. In both
nimals and humans, sickness behavior was reversed by antide-
ressant treatment [9,290,343]; antidepressants are also reported
o elevate anti-inflammatory cytokines in mice [208]. Likewise,

ouse sickness behavior was predictably influenced by genetic
anipulations altering the expression of cytokines or their recep-

ors (review: [9,325]). Taken together, these data suggest that
xperimental models affecting the cytokine levels in animals
nd assessing their sickness behavior may be relevant to target-
ng specific “immunogenic” forms of anxiety and depression
uch as the ‘PANDAS’ (pediatric autoimmune neuropsychiatric
isorders associated with streptococcal infections) form of OCD

329].

Finally, the emerging pathogenetic link between anxiety,
epression and vestibular/balancing disorders [21,43,100,267]
rompts the need for new models targeting stress-evoked
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otorisensory deficits. Several models exploring the sensi-
ivity of animal balancing to anxiolytic and antidepressant
rugs, and simultaneously assessing anxiety and anxiety-
voked motorisensory deficits [191,217,218,306,352] have been
eported in the literature. Taken together, these findings confirm
hat a detailed analysis of motorisensory integration may be used
o study anxiety and depression and their link to deficits in animal
r human motor-sensory functions.

. “Hybridizing” animal models

In addition to targeting specific domains, some models can
imultaneously be relevant to several disorders, or their sub-
ypes. Conceptualized as “hybrid models” [180], these models
re particularly interesting from the animal modeling point
f view. For example, the forced swim paradigm is a test of
epression, but can also induce post-swim anxiety (serving as
ts model). Despite early claims of specificity to depression,
his paradigm may also be used as a test of anxiety, due to
ensitivity to some anxiolytic drugs [188], and possible anxiety-
elated (exploratory/escape-searching?) rationale [264]. In line
ith this, the Suok ropewalking test is a hybrid model of

nxiety and balancing disorders [191]. Marble-burying is an
nxiety-sensitive test, but responds to antidepressants [90] and
as recently been used to assess compulsive-like stereotypic
ehaviors based on initial exploratory responses, turned into
nappropriate repetition [229].

Likewise, holeboard test head dipping (nose poking) is tra-
itionally used as a measure of anxiety (exploration [204]),
ut may also have compulsive rationale, resembling compul-
ive checking in OCD patients. Chou-Green et al. [63] used a
odified (single-hole) holeboard to demonstrate perseverative

ead dipping in 5-HT2c receptor knockout mice. Similar com-
ulsive head dipping (accompanied by other like responses, such
s stereotypic locomotion and excessive self-aggressive groom-
ng) has been also shown in rats following chronic lesions of

edian raphe nucleus [158].
The novelty-suppressed feeding test may be another example

f “hybrid” tests. Anxiety in this test is assessed by measur-
ng the latency to eat familiar food in a novel environment,
nd is predictably reduced by anxiolytic drugs [126]. In addi-
ion to being a test of anxiety, this model is highly sensitive to
hronic (but not acute) antidepressants, suggesting its utility in
issecting between chronic versus acute effects of antidepressant
reatments [126].

Finally, since cognitive mechanisms play a key role in stress
athogenesis [101,187,188,264,347], an in-depth analysis of
emory in animal models of anxiety and depression may also

e necessary. In addition to habituation in different paradigms
42,221], other studies have successfully used the elevated T-
aze [129,353] and 3-D maze [98] for simultaneous profiling of

nxiety, learning and memory. Likewise, the Morris water maze
known as a hippocampal memory paradigm) has been recently

sed as the forced swim test to assess depression-like behav-
oral despair [317,318]. Spontaneous alternation represents an
mportant feature of rodent behavior, relevant to both cognitive
unctions (memory) and exploration [341,344]. Therefore, ani-

i
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al models based on alternation in Y- or T-mazes can be used to
ssess anxiety and spatial memory in rodents [73], representing
et another “hybrid” model simultaneously targeting differ-
nt behavioral domains. Interestingly, rodent alternation has
een recently used to assess OCD-like phenotypes [341,344],
mplying even greater potential of alternation-based tests in
ehavioral research. These and other examples strongly support
he advantages (time-saving, focus on novel pathogenic phe-
omena, and minimization of test batteries effects) of a wider
se of the “hybridization” strategy (Table 2) in behavioral neuro-
cience.

. Concluding remarks: reinforcing the “mouse
sychiatry”

The 1973 Nobel Prize to von Frisch, Lorentz, and Tinbergen
arked a major success of behavioral analysis, and we should

ontinue work in this direction, promoting the ideas of in-depth
ehavioral dissection of complex phenotypes and translating
nimal data into clinical research. While some authors recom-
end concentrating on a few models with high face and construct

alidity, care should be taken to heed famous warning [194] that
he dangers are not in working with models, but in working with
oo few, and those too much alike, and in belittling the efforts to
ork with anything else. Today, 30 years later, we face the same

hallenge, with paradigms based on new principles necessary to
revent stagnation in the field.

Clearly, today’s biological psychiatry needs new models of
ymptom formation, and a new language of description [36,195].
urrent formal psychiatric approaches are compromised by a
erhaps “artificial” heterogeneity, with insufficient appreciation
f the commonalities of emotional, personality, behavioral, and
ddictive disorders [85,206,213]. Therefore, further innovation
n animal models based on the current spectrum-oriented psy-
hiatric theories is crucial in behavioral research of anxiety and
epression. These may also relate to genetic linkage and associa-
ion studies that are beginning to challenge even long-established
raepelinian boundaries between psychiatric concepts as differ-

nt as schizophrenia and depression/bipolar disorders [72].
Potential strategies for the development of new animal

aradigms are summarized in Table 2. They include model-
ng different subtypes of anxiety and depression, their common
athogenesis, and the use of a wider spectrum of parameters,
echniques and model objects. With psychiatric nomenclature
nd diagnostic criteria subject to constant modifications and
econsiderations [213,331], we may also benefit from target-
ng a wider cluster of related behavioral phenomena (e.g.,
CSDs, addiction), expanding models beyond traditional “anx-

ety” and “depression” domains, and using “hybrid” models and
ests. Together, these approaches will allow a better focus on
he neurobiology of stress, enabling further integrative model-
ng of mood, behavioral and personality disorders consistent
ith recent trends and paradigmal shifts in modern psychiatry
Importantly, we need new models not for the sake of modeling
tself. While clever combinations of the existing models and
heir sophistication [46,47,307] may serve present needs, one of
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he main reasons to invest time and efforts into new models of
nxiety and depression is the possibility to discover new agents
nd, more importantly, new classes of psychotropic drugs, the
eed for which has long been recognized [316,368]. Another
eason is that it will increase our understanding of pathogenesis
f anxiety, depression and even psychotic and brain immune and
ther neurologic disorders, and the long-sought potential links
etween this broad sprecturm of neuropsychiatric disorders and
ther brain illnesses.

As a practical solution, the neuroscientific community should
ncourage researchers to introduce principally new models and
estow a higher priority for publishing their innovative research.
e should encourage balanced and coherent research based on
ulti-disciplinary approaches using both single- and complex
ulti-domain models to explore the gap and overlap between

istinct psychiatric illnesses. Finally, in addition to training in
sychiatry and basic neuroscience [166], extensive professional
raining in neuroethology is crucial to ensure that scientists cor-
ectly build new models, diligently and critically evaluate animal
esponses, and avoid searching (despite all twists of scientific
ashion [36]) for simple answers at the expense of complex
ehavioral phenotypes. Only in so doing, may we expect fur-
her advances in the neurobiology of anxiety, depression and
ther neuropsychiatric disorders.
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